• Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

How to Read Research Papers— Unveiling AI Tool for Reading

Sumalatha G

Table of Contents

Reading research papers is an essential skill for students, academics, and professionals in various fields. It allows you to stay updated with the latest findings, develop critical thinking skills, and contribute to scholarly discussions. However, understanding these papers can be challenging due to their complex language and structure. That’s why we have written this article, which will provide you with comprehensive strategies on how to read a research paper effectively.

Let’s get started with how to identify the structure of a research paper!

Identify the structure of a research paper

Understanding the structure of a research paper is the first step toward how to read research paper effectively. Most research papers follow a standard structure, which includes an abstract , introduction , methodology , results, discussion and conclusion . Familiarizing yourself with the research paper structure can help you navigate the paper and understand its content.

Each section of a research paper serves a specific purpose. The abstract provides a summary of the entire research paper, the introduction presents the research question, the methodology explains how the research was conducted, the results section presents the findings, the discussion interprets these findings, and the conclusion summarizes the paper and suggests areas for future research.

Structure-of-a-Research-Paper

Source: University of Wisconsin

Abstract: The abstract serves as a concise summary of the entire research paper. To efficiently grasp its content, focus on key elements such as the research question, methodology, and significant findings. This will provide a quick overview and help you decide whether the paper aligns with your interests.

Introduction: The research paper introduction sets the stage for the research, presenting the problem statement and the purpose of the study. Take note of the research gap, hypotheses, and objectives discussed here to understand the context of the paper.

Methodology: Understanding the methods employed in a study is crucial for evaluating the research's validity. Take note of the research design, data collection, and analysis methods to comprehend how the study was conducted.

Results: The results section presents the outcomes of the research. Approach this section with a critical mindset, assessing whether the results align with the research question and the methods used. Consider the implications of the findings within the broader context of the field.

Conclusion: The conclusion summarizes the key findings and their significance. It's a crucial part of the paper that brings together the entire study. Take the time to reflect on how the research contributes to the existing body of knowledge.

Citations: Follow the trail of references provided in the paper. This not only enhances your understanding but also leads you to related works that can deepen your knowledge of the subject.

More tips on how to read research papers effectively

Developing effective reading strategies can help you understand research papers more efficiently. These strategies include active reading, note-taking, and using AI tools for summarizing and understanding research papers.

Active reading involves engaging with the text, asking questions, and making connections. Note-taking helps you remember important information and organize your thoughts. Summarizing using AI tools allows you to condense the information and understand the main points of the paper easily.

Active Reading:

Active reading is a strategy that involves interacting with the text. This can include highlighting important information, making notes in the margins, and asking questions. Active reading can help you understand the content of the paper and remember it more effectively.

When reading a research paper, try to identify the main points, arguments, and evidence. Ask yourself questions like:

  • What is the research question?
  • What methods were used to answer it?
  • What were the results? What conclusions were drawn?

This will help you engage with the paper and understand its content.

Active-Reading-Strategies

Source: https://idaho.pressbooks.pub/write/chapter/reading-for-writing/

Note-Taking:

Note-taking is another effective reading strategy. It involves writing down important information, ideas, and questions. Note-taking can help you remember the content of the paper, organize your thoughts, and prepare for discussions or writing assignments.

When taking notes, try to be concise and use your own words. This will help you understand the information and remember it more effectively. You can also use symbols or diagrams to represent complex ideas.

Note-Taking-from-Research-Paper

Source: University of Toronto

Using AI Tools to Summarize Research Paper:

When research papers are flooded with complex language, jargon, and acronyms, it’s important to use AI summarizer that helps you breakdown the sentences and makes it easier to read the information. In that case, you can make use of SciSpace Copilot which not only explains the highlighted section or paragraph, but also explains you the equations, tables, figures, and images present in the research paper. You can also rely on other AI tools to comprehend research papers in a short span of time.

Watch this video to learn how to use the AI summarizer:

Dealing with Technical Jargon:

Research papers often contain a lot of technical jargon. Don't be intimidated; instead, create a glossary for yourself. Look up unfamiliar terms and gradually build your understanding of the terminology used in your field of interest. As mentioned above, you can use AI summarizer to decode the jargon and get the essence of the research paper.

Joining Academic Communities:

Engage in discussions and forums related to your area of interest. Academic communities provide valuable insights, differing perspectives, and opportunities for networking with experts in the field.

Staying Updated on Research Trends:

To read research papers effectively, it's crucial to stay informed about the latest developments in your field. Subscribe to academic journals, follow reputable researchers on social media, and attend conferences or webinars to stay updated.

Using Academic Search Engines:

Make use of online tools and databases such as Google Scholar, PubMed, SciSpace , and academic journals to access a vast repository of research papers. These platforms often provide additional features like citation tracking and related articles, enriching your reading experience.

Also Read: Beast Academic Search Engines(2024)

Reading research papers is a complex task that requires a good understanding of the structure of a research paper, effective reading strategies, and the ability to interpret results. However, with practice and patience, you can develop these skills and become proficient at reading research papers.

Remember, the goal is not just to read the paper, but to understand it, evaluate it, and use it to contribute to your own research or professional development.

Frequently Asked Questions

Active reading helps understand research papers better. It involves activities like highlighting, taking notes, asking questions, and summarizing. This makes it easier to understand and evaluate the research material.

Taking notes during research helps you remember important information, stay organized, avoid plagiarism, think critically, and serve as a reference for future use, allowing you to revisit key points and findings as needed.

SciSpace notebook is the go-to tool for taking notes effortlessly

The best AI tool for reading research papers varies based on individual needs. A popular AI tools include SciSpace Copilot.

Using AI tools to read research papers is easy. First, choose a tool, example — SciSpace Copilot. Then, upload your paper. It analyzes it and explains it in a language of your choice. You can then use this summary to help with your research or understanding of the topic.

You might also like

The Impact of Visual Abstracts on Boosting Citations

The Impact of Visual Abstracts on Boosting Citations

Sumalatha G

Introducing SciSpace’s Citation Booster To Increase Research Visibility

AI for Meta-Analysis — A Comprehensive Guide

AI for Meta-Analysis — A Comprehensive Guide

Monali Ghosh

Reference management. Clean and simple.

How to read a scientific paper: a step-by-step guide

tips how to read an academic paper

Scientific paper format

How to read a scientific paper in 3 steps, step 1: identify your motivations for reading a scientific paper, step 2: use selective reading to gain a high-level understanding of the scientific paper, step 3: read straight through to achieve a deep understanding of a scientific paper, frequently asked questions about reading a scientific paper efficiently, related articles.

A scientific paper is a complex document. Scientific papers are divided into multiple sections and frequently contain jargon and long sentences that make reading difficult. The process of reading a scientific paper to obtain information can often feel overwhelming for an early career researcher.

But the good news is that you can acquire the skill of efficiently reading a scientific paper, and you can learn how to painlessly obtain the information you need.

In this guide, we show you how to read a scientific paper step-by-step. You will learn:

  • The scientific paper format
  • How to identify your reasons for reading a scientific paper
  • How to skim a paper
  • How to achieve a deep understanding of a paper.

Using these steps for reading a scientific paper will help you:

  • Obtain information efficiently
  • Retain knowledge more effectively
  • Allocate sufficient time to your reading task.

The steps below are the result of research into how scientists read scientific papers and our own experiences as scientists.

Firstly, how is a scientific paper structured?

The main sections are Abstract, Introduction, Methods, Results, and Discussion. In the table below, we describe the purpose of each component of a scientific paper.

Because the structured format of a scientific paper makes it easy to find the information you need, a common technique for reading a scientific paper is to cherry-pick sections and jump around the paper.

In a YouTube video, Dr. Amina Yonis shows this nonlinear practice for reading a scientific paper. She justifies her technique by stating that “By reading research papers like this, you are enabling yourself to have a disciplined approach, and it prevents yourself from drowning in the details before you even get a bird’s-eye view”.

Selective reading is a skill that can help you read faster and engage with the material presented. In his article on active vs. passive reading of scientific papers, cell biologist Tung-Tien Sun defines active reading as "reading with questions in mind" , searching for the answers, and focusing on the parts of the paper that answer your questions.

Therefore, reading a scientific paper from start to finish isn't always necessary to understand it. How you read the paper depends on what you need to learn. For example, oceanographer Ken Hughes suggests that you may read a scientific paper to gain awareness of a theory or field, or you may read to actively solve a problem in your research.

3 steps for reading a scientific paper.

To successfully read a scientific paper, we advise using three strategies:

  • Identify your motivations for reading a scientific paper
  • Use selective reading to gain a high-level understanding of the scientific paper
  • Read straight through to achieve a deep understanding of a scientific paper .

All 3 steps require you to think critically and have questions in mind.

Before you sit down to read a scientific paper, ask yourself these three questions:

  • Why do I need to read this paper?
  • What information am I looking for?
  • Where in the paper am I most likely to find the information I need?

Is it background reading or a literature review for a research project you are currently working on? Are you getting into a new field of research? Do you wish to compare your results with the ones presented in the paper? Are you following an author’s work, and need to keep up-to-date on their current research? Are you keeping tabs on emerging methods in your field?

All of these intentions require a different reading approach.

For example, if you're delving into a new field of research, you'll want to read the introduction to gather background information and seminal references. The discussion section will also be important to understand the broader context of the findings.

If you aim to extend the work presented in a paper, and this study will be the starting point for your work, it's crucial to read the paper deeply.

If your focus is on the study design and techniques used by the authors, you'll spend most of your time reading and understanding the methods section.

Sometimes you'll need to read a paper to discuss it in your own research. This may be to compare or contrast your work with the paper's content, or to stimulate a discussion on future applications of your work.

If you are following an author’s work, a quick skim might suffice to understand how the paper fits into their overall research program.

Tip: Knowing why you want to read the paper facilitates how you will read the paper. Depending on your needs, your approach may take the form of a surface-level reading or a deep and thorough reading.

Knowing your motivations will guide your navigation through the paper because you have already identified which sections are most likely to contain the information you need. Approaching reading a paper in this way saves you time and makes the task less daunting.

➡️ Learn more about how to write a literature review

Begin by gaining an overview of the paper by following these simple steps:

  • Read the title. What type of paper is it? Is it a journal article, a review, a methods paper, or a commentary?
  • Read the abstract . The abstract is a summary of the study. What is the study about? What question was addressed? What methods were used? What did the authors find, and what are the key findings? What do the authors think are the implications of the work? Reading the abstract immediately tells you whether you should invest the time to read the paper fully.
  • Look at the headings and subheadings, which describe the sections and subsections of the paper. The headings and subheadings outline the story of the paper.
  • Skim the introduction. An introduction has a clear structure. The first paragraph is background information on the topic. If you are new to the field, you will read this closely, whereas an expert in that field will skim this section. The second component defines the gap in knowledge that the paper aims to address. What is unknown, and what research is needed? What problem needs to be solved? Here, you should find the questions that will be addressed by the study, and the goal of the research. The final paragraph summarizes how the authors address their research question, for example, what hypothesis will be tested, and what predictions the authors make. As you read, make a note of key references. By the end of the introduction, you should understand the goal of the research.
  • Go to the results section, and study the figures and tables. These are the data—the meat of the study. Try to comprehend the data before reading the captions. After studying the data, read the captions. Do not expect to understand everything immediately. Remember, this is the result of many years of work. Make a note of what you do not understand. In your second reading, you will read more deeply.
  • Skim the discussion. There are three components. The first part of the discussion summarizes what the authors have found, and what they think the implications of the work are. The second part discusses some (usually not all!) limitations of the study, and the final part is a concluding statement.
  • Glance at the methods. Get a brief overview of the techniques used in the study. Depending on your reading goals, you may spend a lot of time on this section in subsequent readings, or a cursory reading may be sufficient.
  • Summarize what the paper is about—its key take-home message—in a sentence or two. Ask yourself if you have got the information you need.
  • List any terminology you may need to look up before reading the paper again.
  • Scan the reference list. Make a note of papers you may need to read for background information before delving further into the paper.

Congratulations, you have completed the first reading! You now have gained a high-level perspective of the study, which will be enough for many research purposes.

Now that you have an overview of the work and you have identified what information you want to obtain, you are ready to understand the paper on a deeper level. Deep understanding is achieved in the second and subsequent readings with note-taking and active reflection. Here is a step-by-step guide.

Notetaking on a scientific paper

  • Active engagement with the material
  • Critical thinking
  • Creative thinking
  • Synthesis of information
  • Consolidation of information into memory.

Highlighting sentences helps you quickly scan the paper and be reminded of the key points, which is helpful when you return to the paper later.

Notes may include ideas, connections to other work, questions, comments, and references to follow up on.

There are many ways for taking notes on a paper. You can:

  • Print out the paper, and write your notes in the margins.
  • Annotate the paper PDF from your desktop computer, or mobile device .
  • Use personal knowledge management software, like Notion , Obsidian, or Evernote, for note-taking. Notes are easy to find in a structured database and can be linked to each other.
  • Use reference management tools to take notes. Having your notes stored with the scientific papers you’ve read has the benefit of keeping all your ideas in one place. Some reference managers, like Paperpile, allow you to add notes to your papers, and highlight key sentences on PDFs .

Note-taking facilitates critical thinking and helps you evaluate the evidence that the authors present. Ask yourself questions like:

  • What new contribution has the study made to the literature?
  • How have the authors interpreted the results? (Remember, the authors have thought about their results more deeply than anybody else.)
  • What do I think the results mean?
  • Are the findings well-supported?
  • What factors might have affected the results, and have the authors addressed them?
  • Are there alternative explanations for the results?
  • What are the strengths and weaknesses of the study?
  • What are the broader implications of the study?
  • What should be done next?

Note-taking also encourages creative thinking . Ask yourself questions like:

  • What new ideas have arisen from reading the paper?
  • How does it connect with your work?
  • What connections to other papers can you make?
  • Write a summary of the paper in your own words. This is your attempt to integrate the new knowledge you have gained with what you already know from other sources and to consolidate that information into memory. You may find that you have to go back and re-read some sections to confirm some of the details.
  • Discuss the paper with others. You may find that even at this stage, there are still aspects of the paper that you are striving to understand. It is now a good time to reach out to others—peers in your program, your advisor, or even on social media. In their 10 simple rules for reading a scientific paper , Maureen Carey and coauthors suggest that participating in journal clubs, where you meet with peers to discuss interesting or important scientific papers, is a great way to clarify your understanding.
  • A scientific paper can be read over many days. According to research presented in the book " Make it Stick: The Science of Successful Learning " by writer Peter Brown and psychology professors Henry Roediger and Mark McDaniel, "spaced practice" is more effective for retaining information than focusing on a single skill or subject until it is mastered. This involves breaking up learning into separate periods of training or studying. Applying this research to reading a scientific paper suggests that spacing out your reading by breaking the work into separate reading sessions can help you better commit the information in a paper to memory.

A dense journal article may need many readings to be understood fully. It is useful to remember that many scientific papers result from years of hard work, and the expectation of achieving a thorough understanding in one sitting must be modified accordingly. But, the process of reading a scientific paper will get easier and faster with experience.

The best way to read a scientific paper depends on your needs. Before reading the paper, identify your motivations for reading a scientific paper, and pinpoint the information you need. This will help you decide between skimming the paper and reading the paper more thoroughly.

Don’t read the paper from beginning to end. Instead, be aware of the scientific paper format. Take note of the information you need before starting to read the paper. Then skim the paper, jumping to the appropriate sections in the paper, to get the information you require.

It varies. Skimming a scientific paper may take anywhere between 15 minutes to one hour. Reading a scientific paper to obtain a deep understanding may take anywhere between 1 and 6 hours. It is not uncommon to have to read a dense paper in chunks over numerous days.

First, read the introduction to understand the main thesis and findings of the paper. Pay attention to the last paragraph of the introduction, where you can find a high-level summary of the methods and results. Next, skim the paper by jumping to the results and discussion. Then carefully read the paper from start to finish, taking notes as you read. You will need more than one reading to fully understand a dense research paper.

To read a scientific paper critically, be an active reader. Take notes, highlight important sentences, and write down questions as you read. Study the data. Take care to evaluate the evidence presented in the paper.

how can we read research papers

Proactive Grad

How to Read Research Papers: A Cheat Sheet for Graduate Students

Aruna Kumarasiri

  • August 4, 2022
  • PRODUCTIVITY

how to read research papers

It is crucial to stay on top of the scientific literature in your field of interest. This will help you shape and guide your experimental plans and keep you informed about what your competitors are working on.

To get the most out of your literature reading time, you need to learn how to read scientific papers efficiently. The problem is that we simply don’t have enough time to read new scientific papers in our results-driven world. 

It takes a great deal of time for researchers to learn how to read research papers. Unfortunately, this skill is rarely taught.

I wasted a lot of time reading unnecessary papers in the past since I didn’t have an appropriate workflow to follow. In particular, I needed a way to determine if a paper would interest me before I read it from start to finish.

So, what’s the solution?

This is where I came across the Three-pass method for reading research papers. 

Here’s what I’ve learned from using the three pass methods and what tweaks I’ve made to my workflow to make it more personalized.

Build time into your schedule 

Before you read anything, you should set aside a set amount of time to read research papers. It will be very hard to read research papers if you do not have a schedule because you will only try to read them for a week or two, and then you will feel frustrated. An organized schedule reduces procrastination significantly.

 For example, I take 30-40 minutes each weekday morning to read a research paper I come across.

After you have determined a time “only” to read research papers, you have to have a proper workflow.

Develop a workflow

For example, I follow a customized version of the popular workflow, the “Three-pass method”. 

When you are beginning, you may follow the method exactly as described, but as you get more experienced, you can make some changes down the road.

Why you shouldn’t read the entire paper at once?

Oftentimes, the papers you think are so important and that you should read every single word are actually worth only 10 minutes of your time.

Unlike reading an article about science in a blog or newspaper, reading research papers is an entirely different experience. In addition to reading the sections in a different order, you must take notes, read them several times, and probably look up other papers for details. 

It may take you a long time to read one paper at first. But that’s okay because you are investing yourself in the process.

However, you’re wasting your time if you don’t have a proper workflow. 

Oftentimes, reading a whole paper might not be necessary to get the specific information you need.

The Three-pass concept

The key idea is to read the paper in up to three passes rather than starting at the beginning and plowing through it. With each pass, you accomplish specific goals and build upon the previous one.

The first pass gives you a general idea of the paper. A second pass will allow you to understand the content of the paper, but not its details. A third pass helps you understand the paper more deeply.

The first pass (Maximum: 10 minutes)

The paper is scanned quickly in the first pass to get an overview. Also, you can decide if any more passes are needed. It should take about five to ten minutes to complete this pass.

Carefully read the title, abstract, and introduction

You should be able to tell from the title what the paper is about. In addition, it is a good idea to look at the authors and their affiliations, which may be valuable for various reasons, such as future reference, employment, guidance, and determining the reliability of the research.

The abstract should provide a high-level overview of the paper. You may ask, What are the main goals of the author(s) and what are the high-level results? There are usually some clues in the abstract about the paper’s purpose. You can think of the abstract as a marketing piece.

As you read the introduction, make sure you only focus on the topic sentences, and you can loosely focus on the other content.

What is a topic sentence?

Topic sentences introduce a paragraph by introducing the one topic that will be the focus of that paragraph. 

The structure of a paragraph should match the organization of a paper. At the paragraph level, the topic sentence gives the paper’s main idea, just as the thesis statement does at the essay level. After that, the rest of the paragraph supports the topic.

In the beginning, I read the whole paragraph, and it took me more than 30 minutes to complete the first pass. By identifying topic sentences, I have revolutionized my reading game, as I am now only reading the summary of the paragraph, saving me a lot of time during the second and third passes.

Read the section and sub-section headings, but ignore everything else 

Regarding methods and discussions, do not attempt to read even topic sentences because you are trying to decide whether this article is useful to you.

Reading the headings and subheadings is the best practice. It allows you to get a feel for the paper without taking up a lot of time.

Read the conclusions

It is standard for good writers to present the foundations of their experiment at the beginning and summarize their findings at the end of their paper.

Therefore, you are well prepared to read and understand the conclusion after reading the abstract and introduction.

Many people overlook the importance of the first pass. In adopting the three-pass method into my workflow, I realized that many papers that I thought had high relevance did not require me to spend more time reading. 

Therefore, after the first pass, I can decide not to read it further, saving me a lot of time.

Glance over the references

You can mentally check off the ones you’ve already read.

As you read through the references, you will better understand what has been studied previously in the field of research.

First pass objectives

At the end of the first pass, you should be able to answer these questions: 

  • What is the  category  of this paper? Is it an analytical paper? Is it only an “introductory” paper? (if this is the case, probably, you might not want to read further, but it depends on the information you are after)or is it an argumentative research paper?
  • Does the  context  of the paper serve the purpose for what you are looking for? If not, this paper might not be worth passing on to the second stage of this method.
  • Does the basic logic of the paper seem to be valid? How do you comment on the  correctness  of the paper?
  • What is the main  output  of the paper, or is there output at all?
  • Is the paper well written? How do you comment on the  clarity  of the paper?

After the first pass, you should have a good idea whether you want to continue reading the research paper.

Maybe the paper doesn’t interest you, you don’t understand the area enough, or the authors make an incorrect assumption. 

In the first pass, you should be able to identify papers that are not related to your area of research but may be useful someday. 

You can store your paper with relevant tags in your reference manager, as discussed in the previous blog post in the  Bulletproof Literature Management System  series.

This is the third post of the four-part blog series:  The Bulletproof Literature Management System . Follow the links below to read the other posts in the series:

  • How to How to find Research Papers
  • How to Manage Research Papers
  • How to Read Research Papers (You are here)
  • How to Organize Research Papers

The second pass (Maximum: 60 minutes)

You are now ready to make a second pass through the paper if you decide it is worth reading more.

You should now begin taking some high-level notes because there will be words and ideas that are unfamiliar to you. 

Most reference managers come with an in-built PDF reader. In this case, taking notes and highlighting notes in the built-in pdf reader is the best practice. This method will prevent you from losing your notes and allow you to revise them easily.

Don’t be discouraged by everything that does not make sense. You can just mark it and move on. It is recommended that you only spend about an hour working on the paper in the second pass. 

In the second pass:

  • Start with the abstract, skim through the introduction, and give the methods section a thorough look. 
  • Make sure you pay close attention to the figures, diagrams, and other illustrations on the paper. By just looking at the captions of the figures and tables in a well-written paper, you can grasp 90 percent of the information. 
  • It is important to pay attention to the overall methodology . There is a lot of detail in the methods section. At this point, you do not need to examine every part. 
  • Read the results and discussion sections to better understand the key findings.
  • Make sure you mark the relevant references in the paper so you can find them later.

Objectives of the second pass

You should be able to understand the paper’s content. Sometimes, it may be okay if you cannot comprehend some details. However, you should now be able to see the main idea of the paper. Otherwise, it might be better to rest and go through the second pass without entering the third. 

This is a good time to summarize the paper. During your reading, make sure to make notes.

After the second pass, you can: 

  • Return to the paper later(If you did not understand the basic idea of the paper)
  • Move onto the thirst pass.

The third pass (Maximum: four hours)

You should go to the third stage (the third pass) for a complete understanding of the paper. It may take you a few hours this time to read the paper. However, you may want to avoid reading a single paper for longer than four hours, even at the third pass.

A great deal of attention to detail is required for this pass. Every statement should be challenged, and every assumption should be identified.

By the third pass, you will be able to summarize the paper so that not only do you understand the content, but you can also comment on limitations and potential future developments.

Color coding when reading research papers

Highlighting is one way I help myself learn the material when I read research papers. It is especially helpful to highlight an article when you return to it later. 

Therefore, I use different colors for different segments. To manage my references, I use Zotero. There is an inbuilt PDF reader in Zotero. I use the highlighting colors offered by this software. The most important thing is the concept or phrase I want to color code, not the color itself.

Here is my color coding system.

  • Problem statement: Violet
  • Questions to ask: Red (I highlight in red where I want additional questions to be asked or if I am unfamiliar with the concept)
  • Conclusions: Green (in the discussion section, authors draw conclusions based on their data. I prefer to highlight these in the discussion section rather than in the conclusion section since I can easily locate the evidence there)
  • Keywords: Blue
  • General highlights and notes: Yellow

Minimize distractions

Even though I’m not a morning person, I forced myself to read papers in the morning just to get rid of distractions. In order to follow through with this process (at least when you are starting out), you must have minimum to no distractions because research papers contain a great deal of highly packed information.

It doesn’t mean you can’t have fun doing it, though. Make a cup of coffee and enjoy reading!

Images courtesy : Online working vector created by storyset – www.freepik.com

Aruna Kumarasiri

Aruna Kumarasiri

Founder at Proactive Grad, Materials Engineer, Researcher, and turned author. In 2019, he started his professional carrier as a materials engineer with the continuation of his research studies. His exposure to both academic and industrial worlds has provided many opportunities for him to give back to young professionals.

Did You Enjoy This?

Then consider getting the ProactiveGrad newsletter. It's a collection of useful ideas, fresh links, and high-spirited shenanigans delivered to your inbox every two weeks.

I accept the Privacy Policy

Hand-picked related articles

a productive morning routine

Why do graduate students struggle to establish a productive morning routine? And how to handle it?

  • March 17, 2024

how to stick to a schedule

How to stick to a schedule as a graduate student?

  • October 10, 2023

best note-taking apps for graduate students obsidian app

The best note-taking apps for graduate students: How to choose the right note-taking app

  • September 20, 2022

Leave a Reply Cancel Reply

Your email address will not be published. Required fields are marked *

Name  *

Email  *

Add Comment  *

Notify me of follow-up comments by email.

Notify me of new posts by email.

Post Comment

How to Read a Research Paper – A Guide to Setting Research Goals, Finding Papers to Read, and More

Harshit Tyagi

If you work in a scientific field, you should try to build a deep and unbiased understanding of that field. This not only educates you in the best possible way but also helps you envision the opportunities in your space.

A research paper is often the culmination of a wide range of deep and authentic practices surrounding a topic. When writing a research paper, the author thinks critically about the problem, performs rigorous research, evaluates their processes and sources, organizes their thoughts, and then writes. These genuinely-executed practices make for a good research paper.

If you’re struggling to build a habit of reading papers (like I am) on a regular basis, I’ve tried to break down the whole process. I've talked to researchers in the field, read a bunch of papers and blogs from distinguished researchers, and jotted down some techniques that you can follow.

Let’s start off by understanding what a research paper is and what it is NOT!

What is a Research Paper?

A research paper is a dense and detailed manuscript that compiles a thorough understanding of a problem or topic. It offers a proposed solution and further research along with the conditions under which it was deduced and carried out, the efficacy of the solution and the research performed, and potential loopholes in the study.

A research paper is written not only to provide an exceptional learning opportunity but also to pave the way for further advancements in the field. These papers help other scholars germinate the thought seed that can either lead to a new world of ideas or an innovative method of solving a longstanding problem.

What Research Papers are NOT

There is a common notion that a research paper is a well-informed summary of a problem or topic written by means of other sources.

But you shouldn't mistake it for a book or an opinionated account of an individual’s interpretation of a particular topic.

Why Should You Read Research Papers?

What I find fascinating about reading a good research paper is that you can draw on a profound study of a topic and engage with the community on a new perspective to understand what can be achieved in and around that topic.

I work at the intersection of instructional design and data science. Learning is part of my day-to-day responsibilities. If the source of my education is flawed or inefficient, I’d fail at my job in the long term. This applies to many other jobs in Science with a special focus on research.

There are three important reasons to read a research paper:

  • Knowledge —  Understanding the problem from the eyes of someone who has probably spent years solving it and has taken care of all the edge cases that you might not think of at the beginning.
  • Exploration —  Whether you have a pinpointed agenda or not, there is a very high chance that you will stumble upon an edge case or a shortcoming that is worth following up. With persistent efforts over a considerable amount of time, you can learn to use that knowledge to make a living.
  • Research and review —  One of the main reasons for writing a research paper is to further the development in the field. Researchers read papers to review them for conferences or to do a literature survey of a new field. For example, Yann LeCun’ s paper on integrating domain constraints into backpropagation set the foundation of modern computer vision back in 1989. After decades of research and development work, we have come so far that we're now perfecting problems like object detection and optimizing autonomous vehicles.

Not only that, with the help of the internet, you can extrapolate all of these reasons or benefits onto multiple business models. It can be an innovative state-of-the-art product, an efficient service model, a content creator, or a dream job where you are solving problems that matter to you.

Goals for Reading a Research Paper — What Should You Read About?

The first thing to do is to figure out your motivation for reading the paper. There are two main scenarios that might lead you to read a paper:

  • Scenario 1 —  You have a well-defined agenda/goal and you are deeply invested in a particular field. For example, you’re an NLP practitioner and you want to learn how GPT-4 has given us a breakthrough in NLP. This is always a nice scenario to be in as it offers clarity.
  • Scenario 2 —  You want to keep abreast of the developments in a host of areas, say how a new deep learning architecture has helped us solve a 50-year old biological problem of understanding protein structures. This is often the case for beginners or for people who consume their daily dose of news from research papers (yes, they exist!).

If you’re an inquisitive beginner with no starting point in mind, start with scenario 2. Shortlist a few topics you want to read about until you find an area that you find intriguing. This will eventually lead you to scenario 1.

ML Reproducibility Challenge

In addition to these generic goals, if you need an end goal for your habit-building exercise of reading research papers, you should check out the ML reproducibility challenge.

1

You’ll find top-class papers from world-class conferences that are worth diving deep into and reproducing the results.

They conduct this challenge twice a year and they have one coming up in Spring 2021. You should study the past three versions of the challenge, and I’ll write a detailed post on what to expect, how to prepare, and so on.

Now you must be wondering – how can you find the right paper to read?

How to Find the Right Paper to Read

In order to get some ideas around this, I reached out to my friend, Anurag Ghosh who is a researcher at Microsoft. Anurag has been working at the crossover of computer vision, machine learning, and systems engineering.

Screenshot-2021-03-04-at-12.08.31-AM

Here are a few of his tips for getting started:

  • Always pick an area you're interested in.
  • Read a few good books or detailed blog posts on that topic and start diving deep by reading the papers referenced in those resources.
  • Look for seminal papers around that topic. These are papers that report a major breakthrough in the field and offer a new method perspective with a huge potential for subsequent research in that field. Check out papers from the morning paper or C VF - test of time award/Helmholtz prize (if you're interested in computer vision).
  • Check out books like Computer Vision: Algorithms and Applications by Richard Szeliski and look for the papers referenced there.
  • Have and build a sense of community. Find people who share similar interests, and join groups/subreddits/discord channels where such activities are promoted.

In addition to these invaluable tips, there are a number of web applications that I’ve shortlisted that help me narrow my search for the right papers to read:

  • r/MachineLearning  — there are many researchers, practitioners, and engineers who share their work along with the papers they've found useful in achieving those results.

Screenshot-2021-03-01-at-10.55.53-PM

  • Arxiv Sanity Preserver  — built by Andrej Karpathy to accelerate research. It is a repository of 142,846 papers from computer science, machine learning, systems, AI, Stats, CV, and so on. It also offers a bunch of filters, powerful search functionality, and a discussion forum to make for a super useful research platform.

Screenshot-2021-03-01-at-10.59.41-PM

  • Google Research  — the research teams at Google are working on problems that have an impact on our everyday lives. They share their publications for individuals and teams to learn from, contribute to, and expedite research. They also have a Google AI blog that you can check out.

Screenshot-2021-03-01-at-11.13.31-PM

How to Read a Research Paper

After you have stocked your to-read list, then comes the process of reading these papers. Remember that NOT every paper is useful to read and we need a mechanism that can help us quickly screen papers that are worth reading.

To tackle this challenge, you can use this Three-Pass Approach by S. Keshav . This approach proposes that you read the paper in three passes instead of starting from the beginning and diving in deep until the end.

The three pass approach

  • The first pass —  is a quick scan to capture a high-level view of the paper. Read the title, abstract, and introduction carefully followed by the headings of the sections and subsections and lastly the conclusion. It should take you no more than 5–10 mins to figure out if you want to move to the second pass.
  • The second pass —  is a more focused read without checking for the technical proofs. You take down all the crucial notes, underline the key points in the margins. Carefully study the figures, diagrams, and illustrations. Review the graphs, mark relevant unread references for further reading. This helps you understand the background of the paper.
  • The third pass —  reaching this pass denotes that you’ve found a paper that you want to deeply understand or review. The key to the third pass is to reproduce the results of the paper. Check it for all the assumptions and jot down all the variations in your re-implementation and the original results. Make a note of all the ideas for future analysis. It should take 5–6 hours for beginners and 1–2 hours for experienced readers.

Tools and Software to Keep Track of Your Pipeline of Papers

If you’re sincere about reading research papers, your list of papers will soon grow into an overwhelming stack that is hard to keep track of. Fortunately, we have software that can help us set up a mechanism to manage our research.

Here are a bunch of them that you can use:

  • Mendeley [not free]  — you can add papers directly to your library from your browser, import documents, generate references and citations, collaborate with fellow researchers, and access your library from anywhere. This is mostly used by experienced researchers.

Screenshot-2021-03-02-at-1.28.19-AM

  • Zotero [free & open source] —  Along the same lines as Mendeley but free of cost. You can make use of all the features but with limited storage space.

Screenshot-2021-03-02-at-1.42.28-AM

  • Notion —  this is great if you are just starting out and want to use something lightweight with the option to organize your papers, jot down notes, and manage everything in one workspace. It might not stand anywhere in comparison with the above tools but I personally feel comfortable using Notion and I have created this board to keep track of my progress for now that you can duplicate:

2

⚠️ Symptoms of Reading a Research Paper

Reading a research paper can turn out to be frustrating, challenging, and time-consuming especially when you’re a beginner. You might face the following common symptoms:

  • You might start feeling dumb for not understanding a thing a paper says.
  • Finding yourself pushing too hard to understand the math behind those proofs.
  • Beating your head against the wall to wrap it around the number of acronyms used in the paper. Just kidding, you’ll have to look up those acronyms every now and then.
  • Being stuck on one paragraph for more than an hour.

Here’s a complete list of emotions that you might undergo as explained by Adam Ruben in this article .

Key Takeaways

We should be all set to dive right in. Here’s a quick summary of what we have covered here:

  • A research paper is an in-depth study that offers an detailed explanation of a topic or problem along with the research process, proofs, explained results, and ideas for future work.
  • Read research papers to develop a deep understanding of a topic/problem. Then you can either review papers as part of being a researcher, explore the domain and the kind of problems to build a solution or startup around it, or you can simply read them to keep abreast of the developments in your domain of interest.
  • If you’re a beginner, start with exploration to soon find your path to goal-oriented research.
  • In order to find good papers to read, you can use websites like arxiv-sanity, google research, and subreddits like r/MachineLearning.
  • Reading approach — Use the 3-pass method to find a paper.
  • Keep track of your research, notes, developments by using tools like Zotero/Notion.
  • This can get overwhelming in no time. Make sure you start off easy and increment your load progressively.

Remember: Art is not a single method or step done over a weekend but a process of accomplishing remarkable results over time.

You can also watch the video on this topic on my YouTube channel :

Feel free to respond to this blog or comment on the video if you have some tips, questions, or thoughts!

If this tutorial was helpful, you should check out my data science and machine learning courses on Wiplane Academy . They are comprehensive yet compact and helps you build a solid foundation of work to showcase.

Web and Data Science Consultant | Instructional Design

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER COLUMN
  • 07 July 2022

How to find, read and organize papers

  • Maya Gosztyla 0

Maya Gosztyla is a PhD student in biomedical sciences at the University of California, San Diego.

You can also search for this author in PubMed   Google Scholar

“I’ll read that later,” I told myself as I added yet another paper to my 100+ open browser tabs.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

doi: https://doi.org/10.1038/d41586-022-01878-7

This is an article from the Nature Careers Community, a place for Nature readers to share their professional experiences and advice. Guest posts are encouraged .

Competing Interests

The author declares no competing interests.

Related Articles

how can we read research papers

  • Research management

Hunger on campus: why US PhD students are fighting over food

Hunger on campus: why US PhD students are fighting over food

Career Feature 03 MAY 24

US National Academies report outlines barriers and solutions for scientist carers

US National Academies report outlines barriers and solutions for scientist carers

Career News 02 MAY 24

My PI yelled at me and I’m devastated. What do I do?

My PI yelled at me and I’m devastated. What do I do?

Career Feature 02 MAY 24

Japan can embrace open science — but flexible approaches are key

Correspondence 07 MAY 24

US funders to tighten oversight of controversial ‘gain-of-function’ research

US funders to tighten oversight of controversial ‘gain-of-function’ research

News 07 MAY 24

France’s research mega-campus faces leadership crisis

France’s research mega-campus faces leadership crisis

News 03 MAY 24

How I’m supporting other researchers who have moved to Lithuania

How I’m supporting other researchers who have moved to Lithuania

Spotlight 01 MAY 24

Faculty Positions in School of Engineering, Westlake University

The School of Engineering (SOE) at Westlake University is seeking to fill multiple tenured or tenure-track faculty positions in all ranks.

Hangzhou, Zhejiang, China

Westlake University

how can we read research papers

High-Level Talents at the First Affiliated Hospital of Nanchang University

For clinical medicine and basic medicine; basic research of emerging inter-disciplines and medical big data.

Nanchang, Jiangxi, China

The First Affiliated Hospital of Nanchang University

how can we read research papers

Technician / Senior Technician in Structural Biology of Membrane-Less Organelles

Job description APPLICATION CLOSING DATE: June 15th, 2024. Human Technopole (HT) is a distinguished life science research institute founded and sup...

Human Technopole

how can we read research papers

Research Associate (part-time) / Ph.D. candidate in Surface Science

The University of Bonn is an international research university with a wide education and research profile. With a 200-year history, approximately...

Bonn, Nordrhein-Westfalen (DE)

Rheinische Friedrich-Wilhelms-Universität

how can we read research papers

Research assistant (praedoc) (m/f/d) - Department of Physics

Department of Physics - Institute of Experimental Physics   Research assistant (praedoc) (m/f/d) with 75 %part-time job limited up to 4 years salar...

Berlin (DE)

Freie Universität Berlin

how can we read research papers

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

LSE - Small Logo

  • About the LSE Impact Blog
  • Comments Policy
  • Popular Posts
  • Recent Posts
  • Subscribe to the Impact Blog
  • Write for us
  • LSE comment

May 9th, 2016

How to read and understand a scientific paper: a guide for non-scientists.

95 comments | 1998 shares

Estimated reading time: 7 minutes

jennifer raff

Enjoying this blogpost? 📨 Sign up to our mailing list and receive all the latest LSE Impact Blog news direct to your inbox.

My post,  The truth about vaccinations: Your physician knows more than the University of Google  sparked a very lively discussion, with comments from several people trying to persuade me (and the other readers) that their paper disproved everything that I’d been saying. While I encourage you to go read the comments and contribute your own, here I want to focus on the much larger issue that this debate raised: what constitutes scientific authority?

It’s not just a fun academic problem. Getting the science wrong has very real consequences. For example, when a community doesn’t vaccinate children because they’re afraid of “toxins” and think that prayer (or diet, exercise, and “clean living”) is enough to prevent infection, outbreaks happen .

“Be skeptical. But when you get proof, accept proof.” –Michael Specter

What constitutes enough proof? Obviously everyone has a different answer to that question. But to form a truly educated opinion on a scientific subject, you need to become familiar with current research in that field. And to do that, you have to read the “primary research literature” (often just called “the literature”). You might have tried to read scientific papers before and been frustrated by the dense, stilted writing and the unfamiliar jargon. I remember feeling this way!  Reading and understanding research papers is a skill which every single doctor and scientist has had to learn during graduate school.  You can learn it too, but like any skill it takes patience and practice.

I want to help people become more scientifically literate, so I wrote this guide for how a layperson can approach reading and understanding a scientific research paper. It’s appropriate for someone who has no background whatsoever in science or medicine, and based on the assumption that he or she is doing this for the purpose of getting a  basic understanding of a paper and deciding whether or not it’s a reputable study.

The type of scientific paper I’m discussing here is referred to as a primary research article . It’s a peer-reviewed report of new research on a specific question (or questions). Another useful type of publication is a review article . Review articles are also peer-reviewed, and don’t present new information, but summarize multiple primary research articles, to give a sense of the consensus, debates, and unanswered questions within a field.  (I’m not going to say much more about them here, but be cautious about which review articles you read. Remember that they are only a snapshot of the research at the time they are published.  A review article on, say, genome-wide association studies from 2001 is not going to be very informative in 2013. So much research has been done in the intervening years that the field has changed considerably).

Before you begin: some general advice

Reading a scientific paper is a completely different process than reading an article about science in a blog or newspaper. Not only do you read the sections in a different order than they’re presented, but you also have to take notes, read it multiple times, and probably go look up other papers for some of the details. Reading a single paper may take you a very long time at first. Be patient with yourself. The process will go much faster as you gain experience.

Most primary research papers will be divided into the following sections: Abstract, Introduction, Methods, Results, and Conclusions/Interpretations/Discussion. The order will depend on which journal it’s published in. Some journals have additional files (called Supplementary Online Information) which contain important details of the research, but are published online instead of in the article itself (make sure you don’t skip these files).

Before you begin reading, take note of the authors and their institutional affiliations. Some institutions (e.g. University of Texas) are well-respected; others (e.g. the Discovery Institute ) may appear to be legitimate research institutions but are actually agenda-driven. Tip: g oogle “Discovery Institute” to see why you don’t want to use it as a scientific authority on evolutionary theory.

Also take note of the journal in which it’s published. Reputable (biomedical) journals will be indexed by Pubmed . [EDIT: Several people have reminded me that non-biomedical journals won’t be on Pubmed, and they’re absolutely correct! (thanks for catching that, I apologize for being sloppy here). Check out Web of Science for a more complete index of science journals. And please feel free to share other resources in the comments!]  Beware of questionable journals .

As you read, write down every single word that you don’t understand. You’re going to have to look them all up (yes, every one. I know it’s a total pain. But you won’t understand the paper if you don’t understand the vocabulary. Scientific words have extremely precise meanings).

how to read a sci paper

Step-by-step instructions for reading a primary research article

1. Begin by reading the introduction, not the abstract.

The abstract is that dense first paragraph at the very beginning of a paper. In fact, that’s often the only part of a paper that many non-scientists read when they’re trying to build a scientific argument. (This is a terrible practice—don’t do it.).  When I’m choosing papers to read, I decide what’s relevant to my interests based on a combination of the title and abstract. But when I’ve got a collection of papers assembled for deep reading, I always read the abstract last. I do this because abstracts contain a succinct summary of the entire paper, and I’m concerned about inadvertently becoming biased by the authors’ interpretation of the results.

2. Identify the BIG QUESTION.

Not “What is this paper about”, but “What problem is this entire field trying to solve?”

This helps you focus on why this research is being done.  Look closely for evidence of agenda-motivated research.

3. Summarize the background in five sentences or less.

Here are some questions to guide you:

What work has been done before in this field to answer the BIG QUESTION? What are the limitations of that work? What, according to the authors, needs to be done next?

The five sentences part is a little arbitrary, but it forces you to be concise and really think about the context of this research. You need to be able to explain why this research has been done in order to understand it.

4. Identify the SPECIFIC QUESTION(S)

What exactly are the authors trying to answer with their research? There may be multiple questions, or just one. Write them down.  If it’s the kind of research that tests one or more null hypotheses, identify it/them.

Not sure what a null hypothesis is? Go read this , then go back to my last post and read one of the papers that I linked to (like this one ) and try to identify the null hypotheses in it. Keep in mind that not every paper will test a null hypothesis.

5. Identify the approach

What are the authors going to do to answer the SPECIFIC QUESTION(S)?

6. Now read the methods section. Draw a diagram for each experiment, showing exactly what the authors did.

I mean literally draw it. Include as much detail as you need to fully understand the work.  As an example, here is what I drew to sort out the methods for a paper I read today ( Battaglia et al. 2013: “The first peopling of South America: New evidence from Y-chromosome haplogroup Q” ). This is much less detail than you’d probably need, because it’s a paper in my specialty and I use these methods all the time.  But if you were reading this, and didn’t happen to know what “process data with reduced-median method using Network” means, you’d need to look that up.

Image credit: author

You don’t need to understand the methods in enough detail to replicate the experiment—that’s something reviewers have to do—but you’re not ready to move on to the results until you can explain the basics of the methods to someone else.

7. Read the results section. Write one or more paragraphs to summarize the results for each experiment, each figure, and each table. Don’t yet try to decide what the results mean , just write down what they are.

You’ll find that, particularly in good papers, the majority of the results are summarized in the figures and tables. Pay careful attention to them!  You may also need to go to the Supplementary Online Information file to find some of the results.

 It is at this point where difficulties can arise if statistical tests are employed in the paper and you don’t have enough of a background to understand them. I can’t teach you stats in this post, but here , here , and here are some basic resources to help you.  I STRONGLY advise you to become familiar with them.

Things to pay attention to in the results section:

  • Any time the words “significant” or “non-significant” are used. These have precise statistical meanings. Read more about this here .
  • If there are graphs, do they have error bars on them? For certain types of studies, a lack of confidence intervals is a major red flag.
  • The sample size. Has the study been conducted on 10, or 10,000 people? (For some research purposes, a sample size of 10 is sufficient, but for most studies larger is better).

8. Do the results answer the SPECIFIC QUESTION(S)? What do you think they mean?

Don’t move on until you have thought about this. It’s okay to change your mind in light of the authors’ interpretation—in fact you probably will if you’re still a beginner at this kind of analysis—but it’s a really good habit to start forming your own interpretations before you read those of others.

9. Read the conclusion/discussion/Interpretation section.

What do the authors think the results mean? Do you agree with them? Can you come up with any alternative way of interpreting them? Do the authors identify any weaknesses in their own study? Do you see any that the authors missed? (Don’t assume they’re infallible!) What do they propose to do as a next step? Do you agree with that?

10. Now, go back to the beginning and read the abstract.

Does it match what the authors said in the paper? Does it fit with your interpretation of the paper?

11. FINAL STEP: (Don’t neglect doing this) What do other researchers say about this paper?

Who are the (acknowledged or self-proclaimed) experts in this particular field? Do they have criticisms of the study that you haven’t thought of, or do they generally support it?

Here’s a place where I do recommend you use google! But do it last, so you are better prepared to think critically about what other people say.

(12. This step may be optional for you, depending on why you’re reading a particular paper. But for me, it’s critical! I go through the “Literature cited” section to see what other papers the authors cited. This allows me to better identify the important papers in a particular field, see if the authors cited my own papers (KIDDING!….mostly), and find sources of useful ideas or techniques.)

UPDATE: If you would like to see an example of how to read a science paper using this framework, you can find one here .

I gratefully acknowledge Professors José Bonner and Bill Saxton for teaching me how to critically read and analyze scientific papers using this method. I’m honored to have the chance to pass along what they taught me.

I’ve written a shorter version of this guide for teachers to hand out to their classes. If you’d like a PDF, shoot me an email: jenniferraff (at) utexas (dot) edu. For further comments and additional questions on this guide, please see the Comments Section on the original post .

This piece originally appeared on the author’s personal blog and is reposted with permission.

Featured image credit:  Scientists in a laboratory of the University of La Rioja  by Urcomunicacion  (Wikimedia CC BY3.0)

Note: This article gives the views of the authors, and not the position of the LSE Impact blog, nor of the London School of Economics. Please review our  Comments Policy  if you have any concerns on posting a comment below.

About the Author

Jennifer Raff (Indiana University—dual Ph.D. in genetics and bioanthropology) is an assistant professor in the Department of Anthropology, University of Kansas, director and Principal Investigator of the KU Laboratory of Human Population Genomics, and assistant director of KU’s Laboratory of Biological Anthropology. She is also a research affiliate with the University of Texas anthropological genetics laboratory. She is keenly interested in public outreach and scientific literacy, writing about topics in science and pseudoscience for her blog ( violentmetaphors.com ), the Huffington Post , and for the Social Evolution Forum .

Print Friendly, PDF & Email

About the author

' src=

95 Comments

Very good Indeed.I always Read Abstract First Time always ……Thanks

Great information and guide to reading and understanding scientific paper. However, there are non-scientific student asked to do scientific research and it would be great to actually give an example and you point out the answers to the steps in the sample article or journal cited. Thank you.

  • Pingback: Very useful (for scientists too): How to read and understand a scientific paper: a guide for non-scientists – microBEnet: the microbiology of the Built Environment network.
  • Pingback: Reader beware | Liblog
  • Pingback: Research Roundup: DOAJ’s Clean Sweep, A.I. In The Classroom And More | PLOS Blogs Network

I can summarize it eve further: three stars by a number in a table = good, no stars = bad

within the context of the fact that a very sizable portion of scientific papers are falsified, what does this article mean?

Your “fact” needs explanation and evidence, otherwise it can be considered alternative.

That’s why you don’t skip step 11

I think it would be useful also to point out that, even after diligently pursuing all of these excellent steps, the reader is usually still unable to determine whether the subjects or materials even existed. Unlike with lay media, where most important stories are covered by multiple sources, and where facts are sometimes checkable from primary sources – even by readers – it is rare indeed that a reader can go beyond the words on the page.

Is the fact that you read instructions on how to read a paper not evidence that there is something wrong with the way we write papers?

The issue of scientific literacy is always challenging for my students. But this is the most practical and helpful guide I’ve ever seen on the web, thanks for this. I usually share with my students the following tips already mentioned above: – Learn the vocabulary before reading – Summarize the background in five sentences or less – Identify the BIG QUESTION

But the pieces of advice this guide gives are structured better and easier. I especially love this one: Don’t yet try to decide what the results mean, just write down what they are. Thanks again for writing this piece!

  • Pingback: Como ler um artigo científico – um guia para não-cientistas | Antônio Carlos Lessa

you left out ask for the data, so you can check for yourself… (ie trust but verify)

an example a psychology paper that surveyed a group of people about conspiracy theories (n=137) and it’s main/only novel finding was that people that believed in conspiracies theories, there was a tendency for people to believe in mutually contradictory conspiracy theories. ie individual could believe that Princess Diana faked her own death, whilst at the same time had been murdered by MI5

The paper, was duly called – Dead and Alive – M Wood et al…

However. after requesting the data. there was not a single individual person that ticked the survey boxes, that simultaneously believed this finding. Not one person.

The problem, most people surveyed did not believe either of those conspiracies, and inappropriate stats method was applied to data, that assumed a non skewed dataset. Thus, not believing in A and not believing in B correlated, but it also gave a ‘result that believing in A, and Believing in B also correlated..

A very dumb paper… Author still hasn’t retracted it yet.

  • Pingback: How to Read a Scientific Paper as a Non-Scientist » Public(s) Sociology

I love this! Great simmered-down resource for my undergrads- both science and non-science majors. Thanks for sharing!

“Web of Science” link is broken (at least for me) but a useable alternative is webofknowledge.com (same resource, different name).

I think it is important to note that the journal in which a paper is published is no proof as to the rigor of that paper. A listing in PubMed does not guarantee quality; thus, you need to focus on teaching people how to interpret the paper without relying on a simple JTASS approach to initial assessment. This may be a guide, but nothing more. I say this as a former editor of a MEDLINE journal. There can be good papers in bad journals and bad papers in good ones. But you are correct. Key questions are: What is the question? How will we answer the question? What answer did we get? Did we use the right tools to answer the question? What do we think it means? What else could we do? And thus we can train people to watch for sleights of hand, such as shifting primary outcomes, data mining, salami slicing, etc.

  • Pingback: How to read and understand a scientific paper: a guide for non-scientists – Sociology of Knowledge

Yikes! This is a lot of work just to read a single paper! It’s almost the same as writing a paper! I understand the logic in why you recommend this, but the average person is going to be willing to spend 20-30 minutes reading and trying to learn. This method calls for multiple hours of effort and I just don’t seem many non-scientist people being willing to do that when they’re more curious than actually invested. I was really hoping this entry was going to make it easier to navigate the foreign and confusing world that these papers represent, and it probably will if someone does this process repeatedly for quite some time…..like a scientist…..but most of us aren’t scientists and don’t have that kind of time to dedicate to something that’s not our work or family.

By tradition, we expect our scientists to report their findings by codifying them in unreadable gobbledygook. Then we write instructions on how to decode that unreadable nonsense!!

We need to encourage papers to be written in everyday language so it is easier for all. Problem solved.

I wholeheartedly agree with Kaveh Bazargan. From personal experience as a non-scientist trying to do this with medical research papers is a very intimidating and isolating experience. Most people don’t have the time spare to even try to learn this skill. It would be great if systematic reviewers who are acknowledged experts in reading and analysing papers could find a way of communicating the important information about individual papers to non-scientists before – or instead of – burying them in systematic reviews and meta-analyses which are even more difficult to understand. Structured plain language summaries of primary research would be very helpful rather than individuals having to teach themselves how to read and understand a scientific paper which is written for other scientists in “unreadable goggledygook”. Many (most?) papers conceal methodogical flaws in the research conduct which are almost impossible to spot without years of scientific training.

I love this! Extraordinary cooled off assets for my students both science and non-science majors. A debt of gratitude is in order for sharing!

Regarding step 11, if you have access to Web of Science I recommend looking up how many citations the paper has (this will also vary depending on the age of the paper) and who cites it, and whether there even any replies to it in the peer-reviewed literature.

Do you literally do this for every paper you read? I’m curious how much time it takes you to go from start to finish on what you would consider a typical paper. How often do you read new articles a week?

This post has the laudable goal of helping nonscientists understand the primary literature, but the recommendations seem even more onerous than they have to be. For example, the idea that one should write down every single word that he/she doesn’t know? That sounds more like a task for a scientist scrutinizing the work of a rival. For a nonscientist, there may be dozens and dozens of unknown words, and chasing down the meaning of each one may cause a serious forest/trees problem. I agree that there’s no substitute for the hard work of digging into a paper, but following the prescribed advice to the letter would be utterly exhausting for almost any lay reader. I base these comments on my experiences as a biology researcher and undergraduate instructor.

  • Pingback: How to read and understand a scientific paper: a guide for non-scientists – Agriculture Blog!
  • Pingback: The Literary Drover No. 354 | The Literary Drover
  • Pingback: Weekly Digest – February 6-12 – Austin Science Advocates
  • Pingback: Impact of Social Sciences – How to read and understand a scientific paper: a guide for non-scientists | ARC Playground

I really like your post and the effort, but much of the problem wouldn’t exist if we, academics, did a better job in writing down the correct conclusions. Researcher degrees of freedom are seldom properly understood and we keep on having the tendency to be overdeterministic about statistics that are not intended as such. Of course we want to communicate in black and white about our tests (significance!) because it is a human tendency to persuade the reader. Most of the research probably is not as inconsistent as it first seems but we forget to report the proper statistics to see so (CI around the ES)

  • Pingback: Rare Disease Research – moving from Study Participant to Research Partner | hcldr
  • Pingback: Tips on Reading Scientific Papers – The Inner Scientist
  • Pingback: How to read and understand a scientific paper | EDS and Chronic Pain News & Info

Thank you very much for sharing a guide that will help me to follow the best standards for writing a scientific paper even I am not a scientist.

  • Pingback: Știința din spatele convingerii – 24 de ore
  • Pingback: How to read and understand a scientific paper: A guide for non-scientists. | Climate Change

Reading the abstract last is one, not the, way to read a paper. It it biases the naive reader, then they are not reviewing with a level of skepticism required to evaluate science. We put abstracts first because they lay out the problem, overview the sample and design, and tersely describe what they think they discovered. Then, as I read, I have a roadmap in my head of what to look for to determine for myself whether or not they found something noteworthy.

What is the problem? Are hypotheses to be tested likely to illuminate/clarify the problem? Is the sample appropriate for testing and was it sampled without imputing bias? Were measures appropriate and do they have a history of validity? We the analytics applied appropriate for testing at the level of power needed give the sample size? [Here even many scientist are ill-equipped to judge.] After enumerating results, do the authors list weaknesses in their design that might suggest replication is necessary? If not, check for snow – as in snowjob. If significance levelsare low or variables correlate with one another too much, are moderators discussed? [e.g., results hold for males but not females, old vs young, fat vs skinny, etc.). If so, why were data not re-analyzed to control for moderator effects on results?

Lastly, if the word “prove” appears anywhere in the paper, assume it is junk science (like fake news). Research is never ever done to prove anything. Research is only done to find out. Once a preponderance of studies report a similar finding looking at the same problem with different people, measures, designs, and statistical analyses, then you have something like proof; consensus.

Lastly, if you are a conspiracy theory believer, you will disbelieve any scientific study that does not support your word view. Keep this in mind. A few studies that run counter to the prevailing consensus is not PROOF that your conspiracy is correct, and mainstream science is wrong. I do not know a single scientist (and I know thousands globally) who do not consider climate change to be well-evidenced. Similarly, evolutionary theory remains useful – our current understanding of genomic medicine hinges on cellular mutation, which is evolution on a microscopic scale.

This is a very useful set of instructions, but I found the following statement highly amusing: “Before you begin reading, take note of the authors and their institutional affiliations. Some institutions (e.g. University of Texas) are well-respected; others (e.g. the Discovery Institute) may appear to be legitimate research institutions but are actually agenda-driven.”

All research institutions are agenda driven (including my alma mater, the University of Texas), because funding and professional advancement depend on results. Researchers are fallible humans and subject to temptation and error. There is a very big lawsuit pending against Duke University (see below) for falsifying data.

When I read any research (especially medical), I now search for evidence of legal or professional action. So you might add that as #12: “Lawsuits? Retractions?” Caveat lector.

http://science.sciencemag.org/content/353/6303/977.full

http://www.dukechronicle.com/article/2016/09/experts-address-research-fabrication-lawsuit-against-duke-note-litigation-could-be-protracted

  • Pingback: Four short links: 27 June 2017 | Vedalgo
  • Pingback: How to read and understand a scientific paper: a guide for non-scientists | ExtendTree
  • Pingback: Bookmarks for June 26th through June 27th | Chris's Digital Detritus
  • Pingback: Four short links: 27 June 2017 | A bunch of data

Weird advice, like: ‘I always read the abstract last’ . This is advice for referees, not for general readers. I always read the abstract first.

An abstract can be misleading, but I am often not qualified enough to judge that. Actually, this blog post title and abstract are misleading too: your advice is for referees, not for non-scientists. So you wanted to provide an immersive experience into a misleading piece, well done 😉

First thing, get rid of the word proof. This is a huge error in that even if you have reputable scientists, journals, institutions, etc. that what is published, especially in a single article, is anything resembling a fact. It is merely research findings from one instance and in no way forms a fact. This is the next level of misinterpretation of science, even among those able to comprehend the journal article, that science produces or discovers facts. There is nothing that is factual that we know of.

Several comments:

For the mid-term exam in a graduate class I took in experimental design the professor would select half a dozen articles from the peer reviewed literature, tell her students to pick three and explain what they had done wrong. New articles for every class and she never ran out.

Beware of articles published in inappropriate journals, no matter how respectable (E.g., something about sociology or criminology published in a medical journal). This is a strategy for sneaking agenda driven research past the peer review process by going to a journal whose reviewers are likely to be unfamiliar with the subject while the editors are sympathetic to the agenda.

There is a reason research papers are written in what looks like “scientific gobbledygook” to lay persons. They are not intended for a lay audience and the goal is to be extremely precise with the technical details of what was done and found so other scientists can examine the results and, most important, attempt to replicate them.. There is no way to simplify the language and put it in lay terms without losing the precision required for a scientific study. E.g., a particle physicist may give a lay explanation of an experiment in metaphorical terms of little balls of energy smashing into each other, but their peers are going to want to see the pages and pages of mathematics that really describe what was happening.

  • Pingback: Climate News: Top Stories for the Week of June 24-30 - ecoAmerica

I would add “Check the source of funding for the research.” If paper on the safety of glyphosate is funded by Bayer or Monsanto, or a paper on climactic change is funded by Exxon, read no further.

  • Pingback: Stats Trek IV | The IAABC Journal

Get the dissertation writing service students look for these days with the prime focus being creating a well researched and lively content on any topic.

The non-scientist should pay extra attention towards this article for the non-technical writing and understanding for them.

A lot of a researcher’s work includes perusing research papers, regardless of whether it’s to remain progressive in their field, propel their logical comprehension, survey compositions, or assemble data for a task proposition or concede application. Since logical articles are not the same as different writings, similar to books or daily paper stories, they ought to be perused in an unexpected way.

  • Pingback: 2017 – collected articles – The Old Git's Cave

Thanks, I’ll use this a lot for my MSc Thesis.

Those are some great tips but please don’t forget that each school has its own requirements to academic papers.

Clarifying your methodology for reading science paper: excellent idea and great information. Thanks a lot!

Thanks for sharing this blog. Its very helpful for me and I bookmarked this for future

Excelente trabajo, original. Lo recomendaré para mis estudiantes de Posgrado. Si no hay problema, me gustaría hacer una traducción al castellano para el uso de mis estudiantes de pregrado de Sociología.

Excellent work,original. I will recommend it for my graduate students. If there is no problem, I would like to make a translation into Spanish for the use of my undergraduate Sociology students.

Hi Luis, all our works are CC licensed so you are more than welcome to make a translation provided you link back to the original source. See here for details: https://creativecommons.org/licenses/by/3.0/deed.en_GB

Great information , it is very helpful thanks for sharing the blog .

Step 1 and 10 is a great idea, but I still think it’s possible to read the abstract with the introduction and still keep an open mind? and shouldn’t they keep their results for the interpretation section? sorry new to reading scientific papers

Step 1 and 10 is a great idea, but I still think it’s possible to read the abstract with the introduction and still keep an open mind? and shouldn’t they keep their results for the interpretation section? sorry new to reading scientific papers

  • Pingback: Eight Blogging Mistakes Which Most Beginners Make | Congress of International Society of Peritoneal Dialysis
  • Pingback: Inflammatory breast cancer (IBC) is a rare and often fatal form of breast cancer. In IBC, lymphatic vessels in the skin are blocked causing the breasts to appear swollen and red. - Versed Writers
  • Pingback: Inflammatory breast cancer (IBC) is a rare and often fatal form of breast cancer. In IBC, lymphatic vessels in the skin are blocked causing the breasts to appear swollen and red. – essay studess

Thank you for sharing the tips, they were very helpful.

  • Pingback: Introduce Yourself (Example Post) – Dr. Hemachandran Nair G

The article is extremely helpful. Considering that scientific research are not as easy, the tips in the article are great.

  • Pingback: Seattle: notes from a pandemic: 9 | Genevieve Williams

Thank you for posting this. It has really helped a lot, especially for those of us who always read the abstract first haha

Thanks for writing this blog. It is very much informative and at the same time useful for me

Yeah, great advice on how to be objective from someone who openly declares their prejudice in the opening statement.

  • Pingback: How to Read and Understand a Scientific Paper -
  • Pingback: Mirroring your partner’s stress, if your partner is anxious – Celia Smith

Do you in a real sense do this for each paper you read? I’m interested what amount of time it requires for you to go beginning to end on what you would think about an average paper. How frequently do you read new articles seven days?

  • Pingback: CRAFT: Writing Science by Sarah Boon | Hippocampus Magazine - Memorable Creative Nonfiction
  • Pingback: HOW TO READ AND UNDERSTAND A SCIENTIFIC PAPER FOR NON-SCIENTIST – KALISHAAR

That is literally my question too, I see it as quite time consuming to conduct such a lengthy process for all scientific articles we come across especially as one has other responsibilities to give attention too

  • Pingback: Straight from the horse’s mouth: How to read (and hopefully understand) a scientific research paper – Notes from a small scientist
  • Pingback: How to read cannabis research papers | Toronto Cannabis Delivery - Toronto Relief Chronic Pain
  • Pingback: How to read cannabis research papers - Social Pothead
  • Pingback: 2 – Cory Doctorow on unfair contracts for writers - Traffic Ventures

There is a reason research papers are written in what looks like “scientific gobbledygook” to lay persons. They are not intended for a lay audience and the goal is to be extremely precise with the technical details of what was done and found so other scientists can examine the results and, most important, attempt o replicate them.

  • Pingback: How to Read Cannabis Research Papers – BARC Collective
  • Pingback: Your 3-Step Guide to Start Reading Research Papers
  • Pingback: How to Read Cannabis Research Papers - BARC Collective

Thanks for posting this. You are doing a service to the general public and also graduate students by not only posting this but answering all sincere questions. I have a Ph. D. in Zoology and have been a peer-reviewer for at least 12 papers and am first author of three peer-reviewed papers. I have taught statistics in two universities as a contract professor and all of my papers rely on use of statistics. To answer a frequently asked question, yes, personally it can take me a couple of hours or several more to read some papers. This is true for my colleagues as well. Scientific papers are written so as to be as concise as possible and this can make them hard to read. They often also use technical terms which one has to look up. At least biology and statistics. nothing I have read (or written) has been in “goobledygook” or purposely incomprehensible jargon but they do use terms and concepts that are probably unfamiliar to the layman. I think what the author means, by her comment on absstracts can be intepreted as “don’t JUST read the abstract. Be sure to read the introduction. Personally I go to the discussion and conclusion next.

  • Pingback: Bagaimana Cara Download Jurnal Gratis Itu? - EMAF
  • Pingback: How to read a clinical research study about trichotillomania
  • Pingback: Reading studies: Resources – 495R Research Studies

Your writing skills and passion for sharing your knowledge and experiences are truly outstanding. . Keep writing and inspiring others with your words.

I would add, look at who funded the study and their financial interests. Most science is not independent it is funded by those with an agenda. Look at the demographic data, length of time the study took place, what was left out, where you might need more information. Look at who was included and excluded in the data set. Anyone that has taken statistics knows what you include or exclude in the data set can skew and or outright change the outcome.

  • Pingback: Undergraduate Economics Resources – tanvi madhaw
  • Pingback: How Do I Critically Consume Quantitative Research?

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

Related Posts

how can we read research papers

How Academia Resembles a Drug Gang

December 11th, 2013.

how can we read research papers

What would honest university rankings look like?

September 11th, 2023.

how can we read research papers

When publishing becomes the sole focus of PhD programmes academia suffers

December 5th, 2022.

how can we read research papers

Student evaluations of teaching are not only unreliable, they are significantly biased against female instructors.

February 4th, 2016.

how can we read research papers

Visit our sister blog LSE Review of Books

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

How to read a scientific manuscript.

Martin R. Huecker ; Jacob Shreffler .

Affiliations

Last Update: September 12, 2022 .

  • Definition/Introduction

The Statistics and Healthcare Economics section of StatPearls seeks to provide a framework for learners to engage with evidence-based medicine (EBM) in order to maintain high standards of clinical practice.

The father of EBM, Dr. David Sackett, describes EBM as “conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients … integrating individual clinical expertise with the best available external clinical evidence from systematic research." [1]  “Good doctors use both individual clinical expertise and the best available external evidence, and neither alone is enough .” [1] (Italics provided)

  • Issues of Concern

Evidence-based medicine involves “life-long, self-directed learning in which caring for our own patients creates the need for clinically important information about diagnosis, prognosis, therapy, and other clinical and health care issues, and in which we [1] :

  • Convert this information needs into answerable questions
  • Track down, with maximum efficiency, the best evidence with which to answer them (whether from the clinical examination, the diagnostic laboratory from research evidence, or other sources)
  • Critically appraise that evidence for its validity (closeness to the truth) and usefulness (clinical applicability)
  • Integrate this appraisal with our clinical expertise and apply it in practice
  • Evaluate our performance."

The above establishes the paradigm that clinicians must maintain curiosity and continuous learning to ensure effective care for all patients regardless of competence and experience. Please refer to the StatPearls overview chapter on evidence-based medicine for more background.

  • Clinical Significance

This article will cover the approach to reading, digesting, and applying content from scientific manuscripts to optimize patient care for all providers.

Original research manuscripts have the following sections (in chronologic order) [2] :

  • Title and Abstract
  • Introduction (Background and Objectives)
  • Methods (Design, Setting, Participants, Variables, Statistics)
  • Results (Participants, Descriptives, Outcomes, Subgroups)
  • Tables and Figures     
  • Discussion (Key findings, Limitations, Interpretations)
  • Conflict of Interest (COI), Author affiliations, Acknowledgments, Funding

Though less likely to follow a standardized outline, review articles typically consist of the following sections [3] :

  • Context/Objective
  • Methods (Data Sources, Study Selection, Data Extraction)
  • Results (Tables and Figures)

Literature Search

The first step in answering a question about clinical management (and the first step in embarking upon one’s own research) is searching for the existing literature on a topic. The fundamental skill in evaluating the results of a literature search is understanding and interpreting a scientific paper. Other StatPearls chapters cover different types of studies (retrospective, prospective, cohort, case-control, blinded, epidemiologic, etc.). This chapter focuses on the practical aspects of reading a paper.

One main distinction involves whether a study describes a quality improvement project (measuring adherence to the current standard of care) or presenting new data (potential changes to the standard of care). One, two, or a handful of papers cannot establish a new standard of care; thus, one must always exercise caution in rushing to adopt practices gleaned from limited evidence that may prove false in subsequent research. [4]

The literature search is a crucial feature of practicing EBM. Tactics are described elsewhere, but one should explore different tools such as OVID, Pubmed, and Google Scholar. [5] Unlike a general Google web search, Pubmed Clinical Queries and Google Scholar perform very well, though different users will have different preferences. [6]  You can filter the search by year, subject type (human or animal), article type (trials, review), etc. Pay close attention to the journal in which papers appear. For instance, when using Google Web search, you may find non-peer-reviewed papers and non-indexed manuscripts, which likely will have less reliability. If you find and spend time reading ten low-quality papers from obscure predatory journals, you will not draw accurate conclusions about your clinical question. Again, garbage in, garbage out. Sadly, scientific literature becomes less and less readable over time, with authors lacking the skill or motivation to write concisely and straightforwardly. [7]

Efficient Manuscript Reading

  • Effective literature search methods
  • Introduction if needed
  • Tables and Figures
  • Results and Discussion
  • Abstract again
  • Methods and COI
  • Write down notes, consider implications for practice, discuss with a colleague.

The first and most lasting impression readers have of a scientific publication is the Title. Because much of the audience only read the Title, it should convey the main take-home point. [8]  The other component of the paper that most readers will attend to is the Abstract. One should read the title and Abstract first to establish a blueprint for what the author(s) wants to convey related to their research.

The next step in reading a manuscript will depend upon one’s prior knowledge of the topic, goals of reading the paper, level of concentration/time to devote to reading, and overall interest. If one has a limited background knowledge on the topic, one should begin with the Introduction. The Introduction should establish what is already published/known on the topic, what gaps exist in the literature, and what this study intends to accomplish / hypotheses the researchers intend to test. Typically, the last paragraph of the introduction clearly states the aims of the study; thus, one can skip to this paragraph if desired.

The most efficient next step in reading the manuscript is reviewing the Tables and Figures. Tables should present data on the study subjects, their characteristics, and possibly how the subject sample or population was divided for the study. If done well, Figures will visually capture the larger themes of the paper, the most important findings presented in a visuospatial form (compared to word form in the conclusions).

After reviewing the Tables and Figures, move next to the Results section. Here, the author summarizes the objective results, ideally with no opinion as to the significance. You should begin to interpret the results and how they relate to the Tables and Figures. You can use your own background knowledge to compare the results to what has already been established in the literature. Even with limited background in statistics, attempt to critique the analysis, ensuring it makes sense. Consult and scrutinize the methods section with any questions on techniques, regardless of your background in statistics. Refer to other publications on tips to detect misleading or inaccurate statistical claims. [9]

Next, read the Discussion section. The first paragraph of the Discussion will usually highlight the most important findings of the study. The Discussion should interpret the results in light of stated hypotheses, citing within reason all prior (both remote and recent) studies directly relevant to these results. Look for gaps in citations – did the authors leave out any seminal papers? Do they make connections that seem reasonable, logical? Follow the given References; use this paper to explore prior similar papers. You will often find Reference(s) that is more precisely addressing the clinical question you seek to answer for your practice.

The Discussion (and Conclusion) sections can be fraught with bias, as the authors move from statement of objective data to interpretation. As the reader, our role is to beware of and detect biases or unsubstantiated conclusions that do not directly follow from the data presented. Do not simply accept conclusions without this critical evaluation. 

At this point, you may refer back to the Abstract to consider if the authors captured the most salient background, results, and conclusions. Did they take too much liberty with the conclusions? Did they downplay something of significance? To address questions about methodology, refer to the Methods section. Does the precise patient population allow for the generalization of the conclusions? Do the settings and participants look similar to your practice environment? Could you apply these findings to your patients? 

Finally, you should review the authors’ affiliations, contributions (if provided), and especially the conflicts of interest (COI). Authors with extensive COI may have difficulty objectively assessing their own data and making reasonable conclusions.

Once you have read the entire paper and feel comfortable with understanding, write down notes, think about how this research could impact your practice, and go explain the study to someone! This will test your comprehension and lead to better retention of the material, as with any new content in preparation for a licensing examination. [10]  Follow the other references you found in the paper and take notes from them. Put together a well-rounded answer to your original question. Exercise caution in adopting new practices to reduce iatrogenic harm from overzealous attempts at progressive practice. [11]  Maintain a balance between knowledge of new findings and the need for the reversal of disproven practices. [12]

  • Nursing, Allied Health, and Interprofessional Team Interventions

The plural of anecdote is data, but don’t forget, garbage in, garbage out. Aggregating patient data can yield important insight superior to the recollection of individual patient encounters. However, poor methodology, bias, or a combination of both can lead to erroneous conclusions that eventually hurt patients. Continue to practice this skill of reading the literature, and review more papers related to this topic. [13]

If you have answered your clinical question and weighed the risk of harm and benefits, you can begin to integrate this new knowledge into clinical practice. If there is a gap in the literature related to your question, consider conducting your own research. Your ability to critically read a manuscript will equip you with the skills to write your own (covered in a separate StatPearls chapter).

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

Disclosure: Martin Huecker declares no relevant financial relationships with ineligible companies.

Disclosure: Jacob Shreffler declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Huecker MR, Shreffler J. How To Read A Scientific Manuscript. [Updated 2022 Sep 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Similar articles in PubMed

  • How To Write And Publish A Scientific Manuscript. [StatPearls. 2024] How To Write And Publish A Scientific Manuscript. Huecker MR, Shreffler J. StatPearls. 2024 Jan
  • The effect of capacity building evidence-based medicine training on its implementation among healthcare professionals in Southwest Ethiopia: a controlled quasi-experimental outcome evaluation. [BMC Med Inform Decis Mak. 2023] The effect of capacity building evidence-based medicine training on its implementation among healthcare professionals in Southwest Ethiopia: a controlled quasi-experimental outcome evaluation. Ngusie HS, Ahmed MH, Mengiste SA, Kebede MM, Shemsu S, Kanfie SG, Kassie SY, Kalayou MH, Gullslett MK. BMC Med Inform Decis Mak. 2023 Aug 31; 23(1):172. Epub 2023 Aug 31.
  • Focused Evidence-Based Medicine Curriculum for Trainees in Neonatal-Perinatal Medicine. [MedEdPORTAL. 2017] Focused Evidence-Based Medicine Curriculum for Trainees in Neonatal-Perinatal Medicine. Pammi M, Lingappan K, Carbajal MM, Suresh GK. MedEdPORTAL. 2017 Dec 26; 13:10664. Epub 2017 Dec 26.
  • Review A real-world approach to Evidence-Based Medicine in general practice: a competency framework derived from a systematic review and Delphi process. [BMC Med Educ. 2017] Review A real-world approach to Evidence-Based Medicine in general practice: a competency framework derived from a systematic review and Delphi process. Galbraith K, Ward A, Heneghan C. BMC Med Educ. 2017 May 3; 17(1):78. Epub 2017 May 3.
  • Review The evidence-based medicine model of clinical practice: scientific teaching or belief-based preaching? [J Eval Clin Pract. 2011] Review The evidence-based medicine model of clinical practice: scientific teaching or belief-based preaching? Charles C, Gafni A, Freeman E. J Eval Clin Pract. 2011 Aug; 17(4):597-605. Epub 2010 Nov 18.

Recent Activity

  • How To Read A Scientific Manuscript - StatPearls How To Read A Scientific Manuscript - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Loading metrics

Open Access

Ten simple rules for reading a scientific paper

* E-mail: [email protected]

Affiliation Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America

ORCID logo

  • Maureen A. Carey, 
  • Kevin L. Steiner, 
  • William A. Petri Jr

PLOS

Published: July 30, 2020

  • https://doi.org/10.1371/journal.pcbi.1008032
  • Reader Comments

Table 1

Citation: Carey MA, Steiner KL, Petri WA Jr (2020) Ten simple rules for reading a scientific paper. PLoS Comput Biol 16(7): e1008032. https://doi.org/10.1371/journal.pcbi.1008032

Editor: Scott Markel, Dassault Systemes BIOVIA, UNITED STATES

Copyright: © 2020 Carey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MAC was supported by the PhRMA Foundation's Postdoctoral Fellowship in Translational Medicine and Therapeutics and the University of Virginia's Engineering-in-Medicine seed grant, and KLS was supported by the NIH T32 Global Biothreats Training Program at the University of Virginia (AI055432). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

“There is no problem that a library card can't solve” according to author Eleanor Brown [ 1 ]. This advice is sound, probably for both life and science, but even the best tool (like the library) is most effective when accompanied by instructions and a basic understanding of how and when to use it.

For many budding scientists, the first day in a new lab setting often involves a stack of papers, an email full of links to pertinent articles, or some promise of a richer understanding so long as one reads enough of the scientific literature. However, the purpose and approach to reading a scientific article is unlike that of reading a news story, novel, or even a textbook and can initially seem unapproachable. Having good habits for reading scientific literature is key to setting oneself up for success, identifying new research questions, and filling in the gaps in one’s current understanding; developing these good habits is the first crucial step.

Advice typically centers around two main tips: read actively and read often. However, active reading, or reading with an intent to understand, is both a learned skill and a level of effort. Although there is no one best way to do this, we present 10 simple rules, relevant to novices and seasoned scientists alike, to teach our strategy for active reading based on our experience as readers and as mentors of undergraduate and graduate researchers, medical students, fellows, and early career faculty. Rules 1–5 are big picture recommendations. Rules 6–8 relate to philosophy of reading. Rules 9–10 guide the “now what?” questions one should ask after reading and how to integrate what was learned into one’s own science.

Rule 1: Pick your reading goal

What you want to get out of an article should influence your approach to reading it. Table 1 includes a handful of example intentions and how you might prioritize different parts of the same article differently based on your goals as a reader.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pcbi.1008032.t001

Rule 2: Understand the author’s goal

In written communication, the reader and the writer are equally important. Both influence the final outcome: in this case, your scientific understanding! After identifying your goal, think about the author’s goal for sharing this project. This will help you interpret the data and understand the author’s interpretation of the data. However, this requires some understanding of who the author(s) are (e.g., what are their scientific interests?), the scientific field in which they work (e.g., what techniques are available in this field?), and how this paper fits into the author’s research (e.g., is this work building on an author’s longstanding project or controversial idea?). This information may be hard to glean without experience and a history of reading. But don’t let this be a discouragement to starting the process; it is by the act of reading that this experience is gained!

A good step toward understanding the goal of the author(s) is to ask yourself: What kind of article is this? Journals publish different types of articles, including methods, review, commentary, resources, and research articles as well as other types that are specific to a particular journal or groups of journals. These article types have different formatting requirements and expectations for content. Knowing the article type will help guide your evaluation of the information presented. Is the article a methods paper, presenting a new technique? Is the article a review article, intended to summarize a field or problem? Is it a commentary, intended to take a stand on a controversy or give a big picture perspective on a problem? Is it a resource article, presenting a new tool or data set for others to use? Is it a research article, written to present new data and the authors’ interpretation of those data? The type of paper, and its intended purpose, will get you on your way to understanding the author’s goal.

Rule 3: Ask six questions

When reading, ask yourself: (1) What do the author(s) want to know (motivation)? (2) What did they do (approach/methods)? (3) Why was it done that way (context within the field)? (4) What do the results show (figures and data tables)? (5) How did the author(s) interpret the results (interpretation/discussion)? (6) What should be done next? (Regarding this last question, the author(s) may provide some suggestions in the discussion, but the key is to ask yourself what you think should come next.)

Each of these questions can and should be asked about the complete work as well as each table, figure, or experiment within the paper. Early on, it can take a long time to read one article front to back, and this can be intimidating. Break down your understanding of each section of the work with these questions to make the effort more manageable.

Rule 4: Unpack each figure and table

Scientists write original research papers primarily to present new data that may change or reinforce the collective knowledge of a field. Therefore, the most important parts of this type of scientific paper are the data. Some people like to scrutinize the figures and tables (including legends) before reading any of the “main text”: because all of the important information should be obtained through the data. Others prefer to read through the results section while sequentially examining the figures and tables as they are addressed in the text. There is no correct or incorrect approach: Try both to see what works best for you. The key is making sure that one understands the presented data and how it was obtained.

For each figure, work to understand each x- and y-axes, color scheme, statistical approach (if one was used), and why the particular plotting approach was used. For each table, identify what experimental groups and variables are presented. Identify what is shown and how the data were collected. This is typically summarized in the legend or caption but often requires digging deeper into the methods: Do not be afraid to refer back to the methods section frequently to ensure a full understanding of how the presented data were obtained. Again, ask the questions in Rule 3 for each figure or panel and conclude with articulating the “take home” message.

Rule 5: Understand the formatting intentions

Just like the overall intent of the article (discussed in Rule 2), the intent of each section within a research article can guide your interpretation. Some sections are intended to be written as objective descriptions of the data (i.e., the Results section), whereas other sections are intended to present the author’s interpretation of the data. Remember though that even “objective” sections are written by and, therefore, influenced by the authors interpretations. Check out Table 2 to understand the intent of each section of a research article. When reading a specific paper, you can also refer to the journal’s website to understand the formatting intentions. The “For Authors” section of a website will have some nitty gritty information that is less relevant for the reader (like word counts) but will also summarize what the journal editors expect in each section. This will help to familiarize you with the goal of each article section.

thumbnail

https://doi.org/10.1371/journal.pcbi.1008032.t002

Rule 6: Be critical

Published papers are not truths etched in stone. Published papers in high impact journals are not truths etched in stone. Published papers by bigwigs in the field are not truths etched in stone. Published papers that seem to agree with your own hypothesis or data are not etched in stone. Published papers that seem to refute your hypothesis or data are not etched in stone.

Science is a never-ending work in progress, and it is essential that the reader pushes back against the author’s interpretation to test the strength of their conclusions. Everyone has their own perspective and may interpret the same data in different ways. Mistakes are sometimes published, but more often these apparent errors are due to other factors such as limitations of a methodology and other limits to generalizability (selection bias, unaddressed, or unappreciated confounders). When reading a paper, it is important to consider if these factors are pertinent.

Critical thinking is a tough skill to learn but ultimately boils down to evaluating data while minimizing biases. Ask yourself: Are there other, equally likely, explanations for what is observed? In addition to paying close attention to potential biases of the study or author(s), a reader should also be alert to one’s own preceding perspective (and biases). Take time to ask oneself: Do I find this paper compelling because it affirms something I already think (or wish) is true? Or am I discounting their findings because it differs from what I expect or from my own work?

The phenomenon of a self-fulfilling prophecy, or expectancy, is well studied in the psychology literature [ 2 ] and is why many studies are conducted in a “blinded” manner [ 3 ]. It refers to the idea that a person may assume something to be true and their resultant behavior aligns to make it true. In other words, as humans and scientists, we often find exactly what we are looking for. A scientist may only test their hypotheses and fail to evaluate alternative hypotheses; perhaps, a scientist may not be aware of alternative, less biased ways to test her or his hypothesis that are typically used in different fields. Individuals with different life, academic, and work experiences may think of several alternative hypotheses, all equally supported by the data.

Rule 7: Be kind

The author(s) are human too. So, whenever possible, give them the benefit of the doubt. An author may write a phrase differently than you would, forcing you to reread the sentence to understand it. Someone in your field may neglect to cite your paper because of a reference count limit. A figure panel may be misreferenced as Supplemental Fig 3E when it is obviously Supplemental Fig 4E. While these things may be frustrating, none are an indication that the quality of work is poor. Try to avoid letting these minor things influence your evaluation and interpretation of the work.

Similarly, if you intend to share your critique with others, be extra kind. An author (especially the lead author) may invest years of their time into a single paper. Hearing a kindly phrased critique can be difficult but constructive. Hearing a rude, brusque, or mean-spirited critique can be heartbreaking, especially for young scientists or those seeking to establish their place within a field and who may worry that they do not belong.

Rule 8: Be ready to go the extra mile

To truly understand a scientific work, you often will need to look up a term, dig into the supplemental materials, or read one or more of the cited references. This process takes time. Some advisors recommend reading an article three times: The first time, simply read without the pressure of understanding or critiquing the work. For the second time, aim to understand the paper. For the third read through, take notes.

Some people engage with a paper by printing it out and writing all over it. The reader might write question marks in the margins to mark parts (s)he wants to return to, circle unfamiliar terms (and then actually look them up!), highlight or underline important statements, and draw arrows linking figures and the corresponding interpretation in the discussion. Not everyone needs a paper copy to engage in the reading process but, whatever your version of “printing it out” is, do it.

Rule 9: Talk about it

Talking about an article in a journal club or more informal environment forces active reading and participation with the material. Studies show that teaching is one of the best ways to learn and that teachers learn the material even better as the teaching task becomes more complex [ 4 – 5 ]; anecdotally, such observations inspired the phrase “to teach is to learn twice.”

Beyond formal settings such as journal clubs, lab meetings, and academic classes, discuss papers with your peers, mentors, and colleagues in person or electronically. Twitter and other social media platforms have become excellent resources for discussing papers with other scientists, the public or your nonscientist friends, or even the paper’s author(s). Describing a paper can be done at multiple levels and your description can contain all of the scientific details, only the big picture summary, or perhaps the implications for the average person in your community. All of these descriptions will solidify your understanding, while highlighting gaps in your knowledge and informing those around you.

Rule 10: Build on it

One approach we like to use for communicating how we build on the scientific literature is by starting research presentations with an image depicting a wall of Lego bricks. Each brick is labeled with the reference for a paper, and the wall highlights the body of literature on which the work is built. We describe the work and conclusions of each paper represented by a labeled brick and discuss each brick and the wall as a whole. The top brick on the wall is left blank: We aspire to build on this work and label this brick with our own work. We then delve into our own research, discoveries, and the conclusions it inspires. We finish our presentations with the image of the Legos and summarize our presentation on that empty brick.

Whether you are reading an article to understand a new topic area or to move a research project forward, effective learning requires that you integrate knowledge from multiple sources (“click” those Lego bricks together) and build upwards. Leveraging published work will enable you to build a stronger and taller structure. The first row of bricks is more stable once a second row is assembled on top of it and so on and so forth. Moreover, the Lego construction will become taller and larger if you build upon the work of others, rather than using only your own bricks.

Build on the article you read by thinking about how it connects to ideas described in other papers and within own work, implementing a technique in your own research, or attempting to challenge or support the hypothesis of the author(s) with a more extensive literature review. Integrate the techniques and scientific conclusions learned from an article into your own research or perspective in the classroom or research lab. You may find that this process strengthens your understanding, leads you toward new and unexpected interests or research questions, or returns you back to the original article with new questions and critiques of the work. All of these experiences are part of the “active reading”: process and are signs of a successful reading experience.

In summary, practice these rules to learn how to read a scientific article, keeping in mind that this process will get easier (and faster) with experience. We are firm believers that an hour in the library will save a week at the bench; this diligent practice will ultimately make you both a more knowledgeable and productive scientist. As you develop the skills to read an article, try to also foster good reading and learning habits for yourself (recommendations here: [ 6 ] and [ 7 ], respectively) and in others. Good luck and happy reading!

Acknowledgments

Thank you to the mentors, teachers, and students who have shaped our thoughts on reading, learning, and what science is all about.

  • 1. Brown E. The Weird Sisters. G. P. Putnam’s Sons; 2011.
  • View Article
  • Google Scholar
  • PubMed/NCBI
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Reading Research Effectively
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Reading a Scholarly Article or Research Paper

Identifying a research problem to investigate usually requires a preliminary search for and critical review of the literature in order to gain an understanding about how scholars have examined a topic. Scholars rarely structure research studies in a way that can be followed like a story; they are complex and detail-intensive and often written in a descriptive and conclusive narrative form. However, in the social and behavioral sciences, journal articles and stand-alone research reports are generally organized in a consistent format that makes it easier to compare and contrast studies and to interpret their contents.

General Reading Strategies

W hen you first read an article or research paper, focus on asking specific questions about each section. This strategy can help with overall comprehension and with understanding how the content relates [or does not relate] to the problem you want to investigate. As you review more and more studies, the process of understanding and critically evaluating the research will become easier because the content of what you review will begin to coalescence around common themes and patterns of analysis. Below are recommendations on how to read each section of a research paper effectively. Note that the sections to read are out of order from how you will find them organized in a journal article or research paper.

1.  Abstract

The abstract summarizes the background, methods, results, discussion, and conclusions of a scholarly article or research paper. Use the abstract to filter out sources that may have appeared useful when you began searching for information but, in reality, are not relevant. Questions to consider when reading the abstract are:

  • Is this study related to my question or area of research?
  • What is this study about and why is it being done ?
  • What is the working hypothesis or underlying thesis?
  • What is the primary finding of the study?
  • Are there words or terminology that I can use to either narrow or broaden the parameters of my search for more information?

2.  Introduction

If, after reading the abstract, you believe the paper may be useful, focus on examining the research problem and identifying the questions the author is trying to address. This information is usually located within the first few paragraphs of the introduction or in the concluding paragraph. Look for information about how and in what way this relates to what you are investigating. In addition to the research problem, the introduction should provide the main argument and theoretical framework of the study and, in the last paragraphs of the introduction, describe what the author(s) intend to accomplish. Questions to consider when reading the introduction include:

  • What is this study trying to prove or disprove?
  • What is the author(s) trying to test or demonstrate?
  • What do we already know about this topic and what gaps does this study try to fill or contribute a new understanding to the research problem?
  • Why should I care about what is being investigated?
  • Will this study tell me anything new related to the research problem I am investigating?

3.  Literature Review

The literature review describes and critically evaluates what is already known about a topic. Read the literature review to obtain a big picture perspective about how the topic has been studied and to begin the process of seeing where your potential study fits within the domain of prior research. Questions to consider when reading the literature review include:

  • W hat other research has been conducted about this topic and what are the main themes that have emerged?
  • What does prior research reveal about what is already known about the topic and what remains to be discovered?
  • What have been the most important past findings about the research problem?
  • How has prior research led the author(s) to conduct this particular study?
  • Is there any prior research that is unique or groundbreaking?
  • Are there any studies I could use as a model for designing and organizing my own study?

4.  Discussion/Conclusion

The discussion and conclusion are usually the last two sections of text in a scholarly article or research report. They reveal how the author(s) interpreted the findings of their research and presented recommendations or courses of action based on those findings. Often in the conclusion, the author(s) highlight recommendations for further research that can be used to develop your own study. Questions to consider when reading the discussion and conclusion sections include:

  • What is the overall meaning of the study and why is this important? [i.e., how have the author(s) addressed the " So What? " question].
  • What do you find to be the most important ways that the findings have been interpreted?
  • What are the weaknesses in their argument?
  • Do you believe conclusions about the significance of the study and its findings are valid?
  • What limitations of the study do the author(s) describe and how might this help formulate my own research?
  • Does the conclusion contain any recommendations for future research?

5.  Methods/Methodology

The methods section describes the materials, techniques, and procedures for gathering information used to examine the research problem. If what you have read so far closely supports your understanding of the topic, then move on to examining how the author(s) gathered information during the research process. Questions to consider when reading the methods section include:

  • Did the study use qualitative [based on interviews, observations, content analysis], quantitative [based on statistical analysis], or a mixed-methods approach to examining the research problem?
  • What was the type of information or data used?
  • Could this method of analysis be repeated and can I adopt the same approach?
  • Is enough information available to repeat the study or should new data be found to expand or improve understanding of the research problem?

6.  Results

After reading the above sections, you should have a clear understanding of the general findings of the study. Therefore, read the results section to identify how key findings were discussed in relation to the research problem. If any non-textual elements [e.g., graphs, charts, tables, etc.] are confusing, focus on the explanations about them in the text. Questions to consider when reading the results section include:

  • W hat did the author(s) find and how did they find it?
  • Does the author(s) highlight any findings as most significant?
  • Are the results presented in a factual and unbiased way?
  • Does the analysis of results in the discussion section agree with how the results are presented?
  • Is all the data present and did the author(s) adequately address gaps?
  • What conclusions do you formulate from this data and does it match with the author's conclusions?

7.  References

The references list the sources used by the author(s) to document what prior research and information was used when conducting the study. After reviewing the article or research paper, use the references to identify additional sources of information on the topic and to examine critically how these sources supported the overall research agenda. Questions to consider when reading the references include:

  • Do the sources cited by the author(s) reflect a diversity of disciplinary viewpoints, i.e., are the sources all from a particular field of study or do the sources reflect multiple areas of study?
  • Are there any unique or interesting sources that could be incorporated into my study?
  • What other authors are respected in this field, i.e., who has multiple works cited or is cited most often by others?
  • What other research should I review to clarify any remaining issues or that I need more information about?

NOTE :  A final strategy in reviewing research is to copy and paste the title of the source [journal article, book, research report] into Google Scholar . If it appears, look for a "cited by" followed by a hyperlinked number [e.g., Cited by 45]. This number indicates how many times the study has been subsequently cited in other, more recently published works. This strategy, known as citation tracking, can be an effective means of expanding your review of pertinent literature based on a study you have found useful and how scholars have cited it. The same strategies described above can be applied to reading articles you find in the list of cited by references.

Reading Tip

Specific Reading Strategies

Effectively reading scholarly research is an acquired skill that involves attention to detail and an ability to comprehend complex ideas, data, and theoretical concepts in a way that applies logically to the research problem you are investigating. Here are some specific reading strategies to consider.

As You are Reading

  • Focus on information that is most relevant to the research problem; skim over the other parts.
  • As noted above, read content out of order! This isn't a novel; you want to start with the spoiler to quickly assess the relevance of the study.
  • Think critically about what you read and seek to build your own arguments; not everything may be entirely valid, examined effectively, or thoroughly investigated.
  • Look up the definitions of unfamiliar words, concepts, or terminology. A good scholarly source is Credo Reference .

Taking notes as you read will save time when you go back to examine your sources. Here are some suggestions:

  • Mark or highlight important text as you read [e.g., you can use the highlight text  feature in a PDF document]
  • Take notes in the margins [e.g., Adobe Reader offers pop-up sticky notes].
  • Highlight important quotations; consider using different colors to differentiate between quotes and other types of important text.
  • Summarize key points about the study at the end of the paper. To save time, these can be in the form of a concise bulleted list of statements [e.g., intro has provides historical background; lit review has important sources; good conclusions].

Write down thoughts that come to mind that may help clarify your understanding of the research problem. Here are some examples of questions to ask yourself:

  • Do I understand all of the terminology and key concepts?
  • Do I understand the parts of this study most relevant to my topic?
  • What specific problem does the research address and why is it important?
  • Are there any issues or perspectives the author(s) did not consider?
  • Do I have any reason to question the validity or reliability of this research?
  • How do the findings relate to my research interests and to other works which I have read?

Adapted from text originally created by Holly Burt, Behavioral Sciences Librarian, USC Libraries, April 2018.

Another Reading Tip

When is it Important to Read the Entire Article or Research Paper

Laubepin argues, "Very few articles in a field are so important that every word needs to be read carefully." However, this implies that some studies are worth reading carefully. As painful and time-consuming as it may seem, there are valid reasons for reading a study in its entirety from beginning to end. Here are some examples:

  • Studies Published Very Recently .  The author(s) of a recent, well written study will provide a survey of the most important or impactful prior research in the literature review section. This can establish an understanding of how scholars in the past addressed the research problem. In addition, the most recently published sources will highlight what is currently known and what gaps in understanding currently exist about a topic, usually in the form of the need for further research in the conclusion .
  • Surveys of the Research Problem .  Some papers provide a comprehensive analytical overview of the research problem. Reading this type of study can help you understand underlying issues and discover why scholars have chosen to investigate the topic. This is particularly important if the study was published very recently because the author(s) should cite all or most of the key prior research on the topic. Note that, if it is a long-standing problem, there may be studies that specifically review the literature to identify gaps that remain. These studies often include the word review in their title [e.g., Hügel, Stephan, and Anna R. Davies. "Public Participation, Engagement, and Climate Change Adaptation: A Review of the Research Literature." Wiley Interdisciplinary Reviews: Climate Change 11 (July-August 2020): https://doi.org/10.1002/ wcc.645].
  • Highly Cited .  If you keep coming across the same citation to a study while you are reviewing the literature, this implies it was foundational in establishing an understanding of the research problem or the study had a significant impact within the literature [positive or negative]. Carefully reading a highly cited source can help you understand how the topic emerged and motivated scholars to further investigate the problem. It also could be a study you need to cite as foundational in your own paper to demonstrate to the reader that you understand the roots of the problem.
  • Historical Overview .  Knowing the historical background of a research problem may not be the focus of your analysis. Nevertheless, carefully reading a study that provides a thorough description and analysis of the history behind an event, issue, or phenomenon can add important context to understanding the topic and what aspect of the problem you may want to examine further.
  • Innovative Methodological Design .  Some studies are significant and worth reading in their entirety because the author(s) designed a unique or innovative approach to researching the problem. This may justify reading the entire study because it can motivate you to think creatively about pursuing an alternative or non-traditional approach to examining your topic of interest. These types of studies are generally easy to identify because they are often cited in others works because of their unique approach to studying the research problem.
  • Cross-disciplinary Approach .  R eviewing studies produced outside of your discipline is an essential component of investigating research problems in the social and behavioral sciences. Consider reading a study that was conducted by author(s) based in a different discipline [e.g., an anthropologist studying political cultures; a study of hiring practices in companies published in a sociology journal]. This approach can generate a new understanding or a unique perspective about the topic . If you are not sure how to search for studies published in a discipline outside of your major or of the course you are taking, contact a librarian for assistance.

Laubepin, Frederique. How to Read (and Understand) a Social Science Journal Article . Inter-University Consortium for Political and Social Research (ISPSR), 2013; Shon, Phillip Chong Ho. How to Read Journal Articles in the Social Sciences: A Very Practical Guide for Students . 2nd edition. Thousand Oaks, CA: Sage, 2015; Lockhart, Tara, and Mary Soliday. "The Critical Place of Reading in Writing Transfer (and Beyond): A Report of Student Experiences." Pedagogy 16 (2016): 23-37; Maguire, Moira, Ann Everitt Reynolds, and Brid Delahunt. "Reading to Be: The Role of Academic Reading in Emergent Academic and Professional Student Identities." Journal of University Teaching and Learning Practice 17 (2020): 5-12.

  • << Previous: 1. Choosing a Research Problem
  • Next: Narrowing a Topic Idea >>
  • Last Updated: May 7, 2024 9:40 AM
  • URL: https://libguides.usc.edu/writingguide

Home

Research Techniques for Undergraduate Research

  • Library Research
  • Citation Tracing/Tracking in Google Scholar
  • Strategies for Research
  • Chicago Manual of Style
  • Writing Research Papers
  • How to Read a Citation
  • How to read and understand a scientific paper
  • Skimming an article
  • Workshop presentation powerpoint
  • Post-Workshop Quiz
  • Post-Workshop Reflection

How to Read a Scientific Paper overview

Below, you'll find two different articles about how to read a scientific paper. The second one is written by a science journalist and was added to this guide in 2024. We hope you find both articles useful. They overlap and bring useful techniques to light. 

How to read and understand a scientific paper: a guide for non-scientists

  • Handout for How to Read and Understand a Scientific Paper: A Guide for Non-Scientists

Reprinted by permission of the author, Jennifer Raff, Assistant Professor, Department of Anthropology, University of Kansas,  https://about.me/jenniferraff  ::  original URL:  https://violentmetaphors.com/2013/08/25/how-to-read-and-understand-a-scientific-paper-2/ Last week’s post ( The truth about vaccinations: Your physician knows more than the University of Google ) sparked a very lively discussion, with comments from several people trying to persuade me (and the other readers) that  their  paper disproved everything that I’d been saying. While I encourage you to go read the comments and contribute your own, here I want to focus on the much larger issue that this debate raised: what constitutes scientific authority?

It’s not just a fun academic problem. Getting the science wrong has very real consequences. For example, when a community doesn’t vaccinate children because they’re afraid of “toxins” and think that prayer (or diet, exercise, and “clean living”) is enough to prevent infection,  outbreaks happen .

“Be skeptical. But when you get proof, accept proof.” –Michael Specter

What constitutes enough proof? Obviously everyone has a different answer to that question. But to form a truly educated opinion on a scientific subject, you need to become familiar with current research in that field.  And to do that, you have to read the “primary research literature” (often just called “the literature”). You might have tried to read scientific papers before and been frustrated by the dense, stilted writing and the unfamiliar jargon. I remember feeling this way!  Reading and understanding research papers is a skill which every single doctor and scientist has had to learn during graduate school.  You can learn it too, but like any skill it takes patience and practice.

I want to help people become more scientifically literate, so I wrote this guide for how a layperson can approach reading and understanding a scientific research paper. It’s appropriate for someone who has no background whatsoever in science or medicine, and based on the assumption that he or she is doing this for the purpose of getting a basic  understanding of a paper and deciding whether or not it’s a reputable study.

The type of scientific paper I’m discussing here is referred to as a  primary research article . It’s a peer-reviewed report of new research on a specific question (or questions). Another useful type of publication is a  review article . Review articles are also peer-reviewed, and don’t present new information, but summarize multiple primary research articles, to give a sense of the consensus, debates, and unanswered questions within a field.  (I’m not going to say much more about them here, but be cautious about which review articles you read. Remember that they are only a snapshot of the research at the time they are published.  A review article on, say, genome-wide association studies from 2001 is not going to be very informative in 2013. So much research has been done in the intervening years that the field has changed considerably).

Before you begin: some general advice Reading a scientific paper is a completely different process than reading an article about science in a blog or newspaper. Not only do you read the sections in a different order than they’re presented, but you also have to take notes, read it multiple times, and probably go look up other papers for some of the details. Reading a single paper may take you a very long time at first. Be patient with yourself. The process will go much faster as you gain experience.

Most primary research papers will be divided into the following sections: Abstract, Introduction, Methods, Results, and Conclusions/Interpretations/Discussion. The order will depend on which journal it’s published in. Some journals have additional files (called Supplementary Online Information) which contain important details of the research, but are published online instead of in the article itself (make sure you don’t skip these files).

Before you begin reading, take note of the authors and their institutional affiliations. Some institutions (e.g. University of Texas) are well-respected; others (e.g.  the Discovery Institute ) may appear to be legitimate research institutions but are actually agenda-driven.  Tip: g oogle “Discovery Institute” to see why you don’t want to use it as a scientific authority on evolutionary theory.

Also take note of the journal in which it’s published. Reputable (biomedical) journals will be indexed by  Pubmed . [ EDIT: Several people have reminded me that non-biomedical journals won’t be on Pubmed, and they’re absolutely correct! (thanks for catching that, I apologize for being sloppy here). Check out  Web of Science  for a more complete index of science journals. And please feel free to share other resources in the comments!]    Beware of  questionable journals .

  As you read, write down  every single word  that you don’t understand. You’re going to have to look them all up (yes, every one. I know it’s a total pain. But you won’t understand the paper if you don’t understand the vocabulary. Scientific words have extremely precise meanings).

Step-by-step instructions for reading a primary research article

1. Begin by reading the introduction, not the abstract.

The abstract is that dense first paragraph at the very beginning of a paper. In fact, that’s often the  only  part of a paper that many non-scientists read when they’re trying to build a scientific argument. (This is a terrible practice—don’t do it.).  When I’m choosing papers to read, I decide what’s relevant to my interests based on a combination of the title and abstract. But when I’ve got a collection of papers assembled for deep reading, I always read the abstract  last . I do this because abstracts contain a succinct summary of the entire paper, and I’m concerned about inadvertently becoming biased by the authors’ interpretation of the results.

2. Identify the BIG QUESTION.

Not “What is this paper about”, but “What problem is this entire field trying to solve?”

This helps you focus on why this research is being done.  Look closely for evidence of agenda-motivated research.

3. Summarize the background in five sentences or less.

Here are some questions to guide you:

What work has been done before in this field to answer the BIG QUESTION? What are the limitations of that work? What, according to the authors, needs to be done next?

The five sentences part is a little arbitrary, but it forces you to be concise and really think about the context of this research. You need to be able to explain  why  this research has been done in order to understand it.

4.   Identify the SPECIFIC QUESTION(S)

What  exactly  are the authors trying to answer with their research? There may be multiple questions, or just one. Write them down.  If it’s the kind of research that tests one or more null hypotheses, identify it/them.

Not sure what a null hypothesis is? Go read  this , then go back to my last post and read one of the papers that I linked to (like  this one ) and try to identify the null hypotheses in it. Keep in mind that not every paper will test a null hypothesis.

5. Identify the approach

What are the authors going to do to answer the SPECIFIC QUESTION(S)?

  6. Now read the methods section. Draw a diagram for each experiment, showing exactly what the authors did.

I mean  literally  draw it. Include as much detail as you need to fully understand the work.  As an example, here is what I drew to sort out the methods for a paper I read today ( Battaglia et al. 2013: “The first peopling of South America: New evidence from Y-chromosome haplogroup Q” ). This is much less detail than you’d probably need, because it’s a paper in my specialty and I use these methods all the time.  But if you were reading this, and didn’t happen to know what “process data with reduced-median method using Network” means, you’d need to look that up.

Battaglia et al. methods

You don’t need to understand the methods in enough detail to replicate the experiment—that’s something reviewers have to do—but you’re not ready to move on to the results until you can explain the basics of the methods to someone else.

7.   Read the results section. Write one or more paragraphs to summarize the results for each experiment, each figure, and each table. Don’t yet try to decide what the results  mean , just write down what they  are.

You’ll find that, particularly in good papers, the majority of the results are summarized in the figures and tables. Pay careful attention to them!  You may also need to go to the Supplementary Online Information file to find some of the results.

 It is at this point where difficulties can arise if statistical tests are employed in the paper and you don’t have enough of a background to understand them. I can’t teach you stats in this post, but  here ,  here , and  here  are some basic resources to help you.  I STRONGLY advise you to become familiar with them.

  THINGS TO PAY ATTENTION TO IN THE RESULTS SECTION:

-Any time the words “ significant ” or “ non-significant ” are used. These have precise statistical meanings. Read more about this  here .

-If there are graphs, do they have  error bars  on them? For certain types of studies, a lack of confidence intervals is a major red flag.

-The sample size. Has the study been conducted on 10, or 10,000 people? (For some research purposes, a sample size of 10 is sufficient, but for most studies larger is better).

8. Do the results answer the SPECIFIC QUESTION(S)? What do you think they mean?

Don’t move on until you have thought about this. It’s okay to change your mind in light of the authors’ interpretation—in fact you probably will if you’re still a beginner at this kind of analysis—but it’s a really good habit to start forming your own interpretations before you read those of others.

9. Read the conclusion/discussion/Interpretation section.

What do the authors  think  the results mean? Do you agree with them? Can you come up with any  alternative  way of interpreting them? Do the authors identify any weaknesses in their own study? Do you see any that the authors missed? (Don’t assume they’re infallible!) What do they propose to do as a next step? Do you agree with that?

10. Now, go back to the beginning and read the abstract.

Does it match what the authors said in the paper? Does it fit with your interpretation of the paper?

11. FINAL STEP:  (Don’t neglect doing this)  What do other researchers say about this paper?

Who are the (acknowledged or self-proclaimed) experts in this particular field? Do they have criticisms of the study that you haven’t thought of, or do they generally support it?

Here’s a place where I do recommend you use google! But do it last, so you are better prepared to think critically about what other people say.

(12. This step may be optional for you, depending on why you’re reading a particular paper. But for me, it’s critical! I go through the “Literature cited” section to see what other papers the authors cited. This allows me to better identify the important papers in a particular field, see if the authors cited my own papers (KIDDING!….mostly), and find sources of useful ideas or techniques.)

Now brace for more conflict– next week we’re going to use this method to go through a paper on a controversial subject! Which one would you like to do? Shall we critique one of the papers I posted last week?

UPDATE: If you would like to see an example, you can find one  here ———————————————————————————————————

I gratefully acknowledge Professors José Bonner and Bill Saxton for teaching me how to critically read and analyze scientific papers using this method. I’m honored to have the chance to pass along what they taught me.

How to Read a Scientific Paper by a science journalist

How to read a scientific paper.

  • Alexandra Witze
  • November 6, 2018

   Léelo en español

Screenshot of a paragraph of a paper with an annotation in red.

It’s one of the first, and likely most intimidating, assignments for a fledgling science reporter. “Here,” your editor says. “Write up this paper that’s coming out in  Science  this week.” And suddenly you’re staring at an impenetrable PDF—pages of scientific jargon that you’re supposed to understand, interview the author and outside commenters about, and describe in ordinary English to ordinary readers.

Fear not!  The Open Notebook  is here with a primer on how to read a scientific paper. These tips and tricks will work whether you’re covering developmental biology or deep-space exploration. The key is to familiarize yourself with the framework in which scientists describe their discoveries, and to not let yourself get bogged down in detail as you’re trying to understand the overarching point of it all. As a specific example, we’ve marked up a  Science  paper in the accompanying image.

But first, let’s break down what a typical scientific paper contains. Most include these basic sections, usually in this order:

The  author list  is as it sounds, a roster of the scientists involved in the discovery. But hidden within the names are  clues that will help you navigate the politics  of reporting the story. The first name in the list is often (but not always) the person who did the most work, perhaps the graduate student or postdoc who is the lead on the project. This person is usually (but not always) designated as the “corresponding author” by an asterisk by their name, or by their email address being given on the first or last page of the paper. If the corresponding author is not the first name in the author list, then take extra care to Google the various authors and figure out how they relate to one another. (In many fields, such as biology and psychology, the last author in the list is typically the senior author or lab head. In others, such as experimental physics where the author list can number in the dozens or hundreds, authors are usually listed alphabetically.) The senior author might be able to provide some broad perspective as to why and how the study was undertaken. But the first or corresponding author is much more likely to be the person who actually did the work, and therefore your better request for an interview.

The  abstract  is a summary of the paper’s conclusions. Always read this first, several times over. Usually the significance of the paper will be laid out here, albeit in technical terms. A good abstract will summarize what research was undertaken, what the scientists found, and why it’s important. (Compare the abstract of  this recent  Nature  paper , on the discovery of a prehistoric human hybrid, to the first three paragraphs of  Sarah Kaplan’s  Washington Post  story reporting the discovery . Kaplan clearly captures the essence of the new findings as described in the abstract.) Relevant numbers such as the statistical significance of the finding are often highlighted here as well. Abstracts are prone to typographical errors, so be sure to double-check numbers against the body of the paper as well as your interview with the author.

The  body  of the paper lays out the bulk of the scientific findings. Pay special attention to the first couple of paragraphs, which often serve as an introduction, describing previous research in the field and why the new work is important. This is an excellent place to hunt for references to other papers that can serve as your guidepost for outside commenters (more on that later). Next will come the details of how the research was done; sometimes much of this is broken out into a later  methods  section (see below). Then come the  results , which may be lengthy. Look for phrases such as “we concluded” to clue you in to their most important points. If statistics are involved, see Rachel Zamzow’s  primer on how to spot shady statistics.

The final section (sometimes labeled as  discussion ) often summarizes the new findings, puts them in context, and describes the likely next steps to be taken. If your reading has been dragging through the results section, now is the time to refocus. “That sort of information will help a writer answer the nearly inevitable “so what?” question for their readers as well as their editors,” says Sid Perkins, a freelance science writer in Crossville, Tennessee, who writes for outlets including  Science  and  Science News for Students .

The  figures  are the data, graphics, or other visual representations of the discovery. Read these and their captions carefully, as they often contain the bulk of the new findings. If you don’t understand the figures, ask the scientist to walk you through them during your interview. Don’t be afraid to say things like, “I don’t understand what  the x-axis  means.”

The  references  are your portal into a world of additional inscrutable PDFs. You need to plow through at least a couple of the citations, because they are your initial guide in figuring out who you need to call for outside comment. The references are referenced (usually by number) within the body of the text, so you can pinpoint the ones that will be most helpful. For instance, if the text talks about how previous studies have found the opposite of this new one, go look up the cited references, because those authors would be excellent outside commenters. If you do not have access to the journals described in the references, you can at least look at the paper abstract, which is always  outside the paywall , to get a sense of what those earlier studies concluded. (For further caveats on references, see below.)

The  acknowledgments  are meant for transparency, to show the contributions of the various authors and where they got their funding from. Things to look for in here are whether they thank other scientists for “discussions” or “review” of the work; sometimes peer reviewers are explicitly acknowledged as such, in which case you can call those people right away for outside comment. Occasionally there are humorous tidbits that  you can pick up on for a story , such as when authors thank the field-camp guards who kept them  safe from predatory polar bears . The funding section is usually pro forma, but it is worth scanning for mention of unusual sources of income, such as from a science-loving philanthropist. If the authors declare competing financial interests (such as a patent filing) you will need to report those out and make sure you understand what financial conflicts of interest may be clouding their objectivity.

The  methods  often appear in a ridiculously small typeface after the body of the paper. These lay out how the actual experiments were done. Scour these for any details that will bring your story to life. For instance, they might describe how the climate models were so complicated that they took more than a year to run on one of the world’s most powerful supercomputers.

Supplementary information  comes with some but not all papers. In most cases it is extra material that the journal did not want to devote space to describing in the paper itself. Always check it out, because there may be hidden gems. In  a 2015 study of global lake warming , the only way to find out which specific lakes were warming—and  talk about the nearest ones for readers —was to wade through the supplementary information. In another recent example, Harvard researchers left it to the supplementary information to explain  that they cranked up a leaf-blower  to see how lizards fared during hurricanes, a fact that the Associated Press’s Seth Borenstein  turned into his lede .

So now you’re armed with the basics of what makes up a science paper. How should you tackle reading for your next assignment? The task will be more manageable if you break it into a series of jobs.

Strategize During the First Pass

Your first dive into a paper should be aimed at gathering the most important information for your story—that is, what the research found and why anyone should care. For that, consider following the approach of Mark Peplow, a freelance science journalist in Cambridge, England, who writes for publications including  Nature  and  Chemical & Engineering News .

If it’s a field he’s relatively familiar with, such as chemistry or materials science, Peplow takes a first pass through the paper, underlining with a red pen all the facts that are likely to make it into his initial draft. “That means I can produce a skeleton first draft of the story by simply writing a series of sentences containing what I’ve underlined, and then go into editing mode to jigsaw them into the right order,” he says. (In my annotated example, I’ve done this for the abstract using a purple pen.)

how can we read research papers

As Peplow reads, he looks for numbers to help make the story sing (“… so porous that a chunk of material the size of a sugar cube contains the surface area of 17 tennis courts”—see orange highlighter in the annotated paper) and methodological details that might prompt a fun interview question (“How scary was it to be pouring that very hazardous liquid into another one?”). He also keeps an eye out for anything indicating an emerging trend or other examples of the same phenomenon, which can be useful for context within the story or as a forward-looking kicker (see how he pulls this off in  this  Chemical & Engineering News  story) .

But what if the paper is in a field you’re not experienced with, and you don’t understand the terminology? Peplow has a plan for that too. “I read the abstract, bathe in my lack of understanding, and mentally throw the abstract away,” he says.

Then he goes through the paper, underlining fragments he understands and putting wiggly lines next to paragraphs that he thinks sound important, but doesn’t actually know what they mean. Jargon words get circled, and equations ignored. He forges onward, paying attention to phrases such as “our findings,” “revealed,” “established,” or “our measurements show”—signs that these are the new and important bits. “Once I’ve reached the end of the paper, and I’m sure I don’t understand it, I remind myself it’s not my fault,” Peplow says.

At that point, Peplow starts looking up definitions for the jargon words, either with Google or Wikipedia or in a stack of science reference books he picked up for free when a local library closed. He jots definitions of the words on the paper. To understand concepts, he sometimes searches  EurekAlert!  for past press releases that explain core concepts, or Googles a string of keywords and adds “review” to hunt for a more comprehensible description.

By this point, Peplow can circle back to the paragraphs marked with wiggly lines and start to understand them better. What he doesn’t yet comprehend, he marks down as an interview question for the researcher.

Circle Back for What You May Have Missed

Before picking up the phone for that interview, it’s worth making a second pass through the paper to see what else you need to help you in your reporting. Check, usually near the end of the paper, to see whether the scientists discuss what the next steps should be—either for their own team or for other groups following up to confirm or expand on the new results, says Perkins. That can provide a ready-made kicker for your story.

Susan Milius, a reporter who covers the life sciences for  Science News , often makes a beeline straight for the references to try to start identifying outside commenters for a piece. She will find those PDFs and then look within the references’ references to build a broad understanding of the field. One caveat, though: Be sure to research how these possible commenters are connected to the author of the current study. Once, Milius phoned an outside commenter who had published on the topic in question some years earlier—but that scientist turned out to be the spouse of the new paper’s author. She had a different last name than her husband.

It’s also worth remembering that the authors may well be biased in which references they include in the paper. Self-citations, in which authors try to boost their citation count by adding their previous publications to the reference list, are common. And sometimes authors deliberately omit papers by competing groups, a fact that is not always caught during the peer-review process. So don’t rely on the references within the PDF to be comprehensive; try a Google Scholar search using keywords from the paper to unearth whether there are competing groups out there.

Other clues may lie in how long the manuscript took to make it through the peer-review process. For many journals these dates come at the very end of the paper, marked something like “submitted” and “accepted.” Different journals have different timescales for publishing, but it is always worth looking to see whether the manuscript languished an extraordinary amount of time (like many months) in the review process. If so, ask the author why things took so long. (A fairly innocuous way to do this is to say something like, “I noticed it took a while for this paper to be accepted. Can you tell me how that process went?” Then be prepared for the authors to go on a rant about peer review.)

how can we read research papers

Hunt for Extra Details

Finally, see if there are additional sources of information you can sweep into your reporting. Check to see if the author’s institution is issuing a press release about the work; if this isn’t already posted on EurekAlert!, ask the author during the interview if they are preparing additional press materials and, if so, how you can get hold of those. This is also a good time to ask for any art, such as photos or videos to illustrate your story. You will of course have already looked at all their figures in detail, so you’ll be well placed to request the art that is most relevant to what you and your editor are looking for.

With these tools at your side, you should be well suited to tackle your next scientific paper.

how can we read research papers

Alexandra Witze  is a science journalist in Boulder, Colorado, and a member of  The Open Notebook ’s board of directors.  Her news story on the Martian subglacial lake  (marked up above) appeared in  Nature . Follow her on 

  • << Previous: How to Read a Citation
  • Next: Skimming an article >>
  • Last Updated: Mar 27, 2024 12:30 PM
  • URL: https://libguides.citytech.cuny.edu/advancedResearch
  • EXPLORE Random Article

How to Read Research Papers

Last Updated: October 11, 2022 References

This article was co-authored by Matthew Snipp, PhD . C. Matthew Snipp is the Burnet C. and Mildred Finley Wohlford Professor of Humanities and Sciences in the Department of Sociology at Stanford University. He is also the Director for the Institute for Research in the Social Science’s Secure Data Center. He has been a Research Fellow at the U.S. Bureau of the Census and a Fellow at the Center for Advanced Study in the Behavioral Sciences. He has published 3 books and over 70 articles and book chapters on demography, economic development, poverty and unemployment. He is also currently serving on the National Institute of Child Health and Development’s Population Science Subcommittee. He holds a Ph.D. in Sociology from the University of Wisconsin—Madison. This article has been viewed 9,788 times.

Research papers can be a great resource for academic information and scholarly references. Reading research papers can also help you understand how to write a good one. Start by skimming the paper, identifying key details that stand out to you. Then, do a critical read of the paper, reading it carefully a second or third time so you can look at it in depth. Once you have done a critical read, analyze the key arguments and ideas in the paper so you can fully understand it.

Skimming the Paper

Step 1 Look at the title to determine what the paper is about.

  • For example, if you read a title like “What Global Poverty Means in the 21st Century,” you can assume the paper will address the issue of global poverty in modern times.

Step 2 Check the name of the author for credentials.

  • Ph.D stands for a doctor of philosophy and is the highest degree awarded by a university. M.D. stands for a doctor of medicine and is given to an individual who earns their medical degree.

Step 3 Read the abstract to understand the issue and the proposed solutions.

  • If you have a difficult time understanding the abstract of the paper, this may be a sign the paper is poorly written or does not have a clear focus.
  • Abstracts that contain a lot of jargon or complex wording may indicate the paper will be hard to understand, especially if you do not have an academic background.

Step 4 Look at the headings and subheadings to determine the method or approach.

  • For example, you may read headings like “Analysis of Poverty Statistics” or “Exploration of Poverty Solutions.” The author may also use questions in their headings, such as “Why is Poverty a Problem?” or “How Can We Address Poverty?”

Step 5 Check the list of references to confirm the sources are legitimate.

  • Check the citation style of the references to ensure they are correct, based on whether the paper was written in APA style, MLA style or Chicago style.
  • Look at the title of the reference to check that the subject matter relates to the topic of the paper.
  • If you are reading a paper about a topic you know well, you may check the reference list to see if you recognize any of the sources. You can then lean on your familiarity with them to better understand the paper as a whole.

Step 6 Take notes as you skim the paper.

  • If you have a hard copy of the paper, mark it up with a pen, pencil, or highlighter as part of your note taking while you read. As you skim, look at the key details in the paper, rather than do a close read.
  • Skimming the paper can take 1-2 hours, depending on how long the paper is.

Doing a Critical Read

Step 1 Look at the structure and organization of the paper.

  • Some research papers have a research question instead of a hypothesis, where they pose a question to the reader and explore it in detail. A good research question will be specific, focusing on a particular idea or topic within a larger idea.
  • For example, you may come across a hypothesis like, “Global poverty levels continue to rise due to the exploitation of workers in third world countries.” Or you may find a research question like, “How does the United States contribute to rising poverty levels in third world countries?”

Step 3 Read the body sections for an evaluation of the hypothesis or idea.

  • The body sections are often the most complex and detailed in the research paper. Take your time when reading these sections so you can look at them critically. Depending on the length of the paper, it can take 1-3 hours to fully unpack the body sections.

Step 4 Look at any graphs, charts, or figures in the paper.

  • Check for any graphs or charts that are poor quality or improperly labeled, as this may be a sign they are bad visuals.
  • Read the labels on the graphs, charts, and figures to ensure they relate to the topic of the paper and are not misleading or incorrect.

Step 5 Circle any terms or phrases you do not know and look them up.

  • In some conclusion sections, the author may offer possible solutions for a topic or propose next steps that a governing body or an institution can take to address the topic.

Analyzing the Paper’s Ideas and Arguments

Step 1 Analyze the author’s argument or solution.

  • Ask yourself questions like, “Is the author’s solution clear and easy to follow? What are the gaps or missing pieces of the author’s argument? Can I disprove or dispute the author’s argument?”

Step 2 Identify new approaches or solutions proposed in the paper.

  • For example, the author may discuss solutions to global poverty rates that feel new or different to you. Or they may present a new approach to measuring global poverty rates that you might find engaging and exciting.

Step 3 Compare the paper to other research papers on the topic.

  • Note if the ideas in the research paper feels new compared to other works in the field. Check for any ideas or solutions in the paper that contradict the ideas in other scholarship on the topic.

Step 4 Make a list of questions or concerns you have about the paper.

  • You can then refer to your list of questions if you have to discuss the paper in a class or for an assignment.
  • The list of questions and concerns can also come in handy if you have to compose a summary or review of the research paper for a class.

Expert Q&A

Matthew Snipp, PhD

You Might Also Like

Best Crypto Casinos

  • ↑ http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
  • ↑ https://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
  • ↑ Matthew Snipp, PhD. Research Fellow, U.S. Bureau of the Census. Expert Interview. 26 March 2020.
  • ↑ https://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html
  • ↑ http://foreignpolicy.com/2010/07/09/how-to-read-research-papers/
  • ↑ https://www.cc.gatech.edu/fac/Spencer.Rugaber/txt/research_paper.txt

About this article

Matthew Snipp, PhD

Did this article help you?

Best Crypto Casinos

  • About wikiHow
  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

IndiaBioscience

Columns education, how can we teach how to read a research paper to undergraduate students, anuttama kulkarni.

A lot of emphasis is given to introducing research in undergraduate curricula. On the other hand, there is little to no discussion about how to introduce the students to reading primary literature critically, or how to assess their understanding of it. Can there be a structured way of getting a regular undergraduate, who may or may not be interested in a research career, enthused about reading a research paper? How to test whether they have understood what they have read? These were the questions dealt with by the educators of the Homi Bhabha Centre for Science Education (HBCSE), Mumbai while developing a three-day module for reading research papers. In this article, one of the facilitators of the module walks us through their process.

Conventionally, teaching biology in undergraduate courses involves delivering content from textbooks. This approach is inefficient for teaching how to read a research paper. Reading a research article becomes frustrating for undergraduate students when they cannot comprehend it. Hence, ​ ‘ teaching’, here, is about taking the frustration out and enabling learning. To that end, we used a structured and timed approach and observed encouraging feedback from the students. Additionally, their test scores indicated a good understanding of the paper by them. We would like to share our experience here. 

About the initiative 

Our first batch of students comprised 29 first-year undergraduate students from different regions of the country who were selected under the National Initiative for Undergraduate Science (NIUS) program of HBCSE in December 2018. The next three modules were conducted online with a total of 62 regular undergraduates in July and August 2020. Participants were second- and third-year B.Sc. students from three colleges who had chosen life sciences or related sub-disciplines as major subjects. 

Research paper reading is one of the most effective and inexpensive ways of introducing scientific inquiry in undergraduate courses. Yet, there are roadblocks (Table 1) that hinder the inclusion of a systematic approach to reading research papers in many of the regular undergraduate courses. While some of these problems are universal, others are more prominent in our Indian colleges and universities. 

How can we work around these limitations? 

  • Choosing the ​ ‘ right’ paper

Our process to work along with these limitations began with choosing the ​ ‘ right’ paper. We considered the following factors in making our choice. We looked for papers that were landmarks in their field, as they are excellent examples of how to practice science. We also wanted the paper to be relevant to some topic in students’ curriculum to make comprehension easier. We avoided recent publications with complex techniques and statistics in the introductory session – we didn’t want to burden the students with technicalities at this stage. We also avoided articles describing huge, classical discoveries, like DNA polymerase, and DNA structure/​function. This was simply because the students already know about the crux of these famous discoveries and can easily guess their impact on the field, even without reading the article. Lastly, we wanted the facilitator to be comfortable with the paper. Considering all the above, the paper we chose was related to the effects of extracellular matrix on cell differentiation. The title of the article was ​ ‘ Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity’, published in The Journal of Cell Biology by Streuli et al ., in the year 1991. We used this paper in all of our modules.

  • Taking the ​ ‘ before’ lecture

We started each of our modules with an introductory lecture to make students feel more confident about their ability to comprehend the paper. This ​ ‘ before’ lecture covered the background of the field, for example, cell-matrix interactions, adherence junctions, and so on. It also covered the techniques used in the paper. We also discussed what a scientific method is, what a research paper is, and why students should read it (Table 2).

  • Dividing the paper into two parts 

After the lecture, students read the first half of the paper on their own. The next day, we asked them to answer multiple-choice as well as subjective questions about the research question addressed by the article, the hypothesis, their understanding of the figures and the results in the first half of the results section, and the conclusions drawn from them. After the students answered the questions, the facilitator took them through the details of what they read and understood. The students were then asked to read the second half of the paper.

On the third day, we conducted another test based on the second half of the paper and following that, we asked the students to lead the discussion. We think that having read half of the paper just a day before with the entire class and the facilitator encourages the students to persist in reading and discussing the rest of the article on their own. A detailed schedule for all three days is outlined in table 3.

  • Assessing students- the open book/​internet test 

We assessed the students for their ability to understand the research article. Hence, the questions were analytical in nature. We allowed them to keep the article and reference books, and access the internet as they answered the test. The only restriction during the test was that they do not discuss with their peers. This was a requirement for individual assessment. 

Students’ answers were graded using the following four criteria: if the answer was copy-pasted or irrelevant (graded — 0), if the answer revealed some / incomplete understanding (graded ‑1), if the answer indicated satisfactory understanding (graded‑2), and finally, if the understanding was good to excellent (graded‑3). Figure 1 shows an example of the questions asked and the learning outcomes of three online classrooms (n = 62) where these sessions were conducted. 

  • Taking feedback and improvising 

After the three days were over, we requested feedback from the students. Most of the students of our first batch rated the experience to be very good or excellent. But, while interacting with them, we realized that we had to tell them why they are reading a paper. Also, we had to cover ​ ‘ all’ the figures in our tests and presentations. We noticed that students would not understand the methods or the future directions/​impact of the findings in detail in a three-day schedule. So these topics were reserved for discussions and omitted from tests from the later three workshops. 

In the online modules, more than 80% of the students rated the experience to be very good or excellent on all aspects. As science educators, we found the students’ comments encouraging and interesting. We list some selected comments below; words in bold indicate that the students were intellectually enthused. 

“ Excellent experience, the analyzing portion induced curiosity ”

“ This workshop has been great throughout. Gives a completely different aspect of research. Would love to learn more !!”

“ It was a fun workshop; we were so influenced and motivated by the speakers. They provided [us] with great knowledge. [We] would like to attend more workshops and would like to do the experiment in person, as it would be [better] to also have practical knowledge. Thank you so much to all the people who made this possible. And we would like to have this one more time in future..” 

“ It was a very beneficial session. A number of previously known concepts have become clearer . The discussions conducted made it much better to understand a paper that I wouldn’t have [understood] otherwise”

“ The session was very informative. It was a great exercise for my brain ”

  • Parting thoughts

Reading a virology paper can be very different from reading an ecology paper. An undergraduate student studies a variety of sub-disciplines of biology. 44 out of 57 students who filled out the feedback form wanted to discuss another research paper on a topic of their interest. The choice of the research paper depends a lot on the comfort zone of the teacher/​local facilitators. And to be honest, most of us are not equipped with in-depth background knowledge of all the fields. 

Can we have scientists/​postdoctoral researchers/​PhD scholars select the right papers from their field, and record a ​ ‘ before’ lecture for undergraduates or the facilitators? Can there be an online resource for teaching how to read research papers? Would that minimize the need for a specialized facilitator for reading discipline-wise research papers? We would like to part with this thought for all of us. 

IMAGES

  1. How to Read a Research Paper

    how can we read research papers

  2. How to read a Research Paper ? Made easy for young researchers

    how can we read research papers

  3. How to Write a Research Paper in English

    how can we read research papers

  4. (PDF) How to read a research paper

    how can we read research papers

  5. How To Read A Research Paper ?

    how can we read research papers

  6. How to Read Research Papers: A Cheat Sheet for Graduate Students

    how can we read research papers

VIDEO

  1. How To Read Research Papers For Literature Review #shorts

  2. Why you should read Research Papers in ML & DL? #machinelearning #deeplearning

  3. How to Read Research Paper Quickly

  4. Must Read Research Papers for Data Scientists

  5. Read Research Papers Fast with these 3 Essential AI Tools

  6. How to read research papers #researchpapers #trendingvideo #googlescholar

COMMENTS

  1. How to (seriously) read a scientific paper

    I first get a general idea by reading the abstract and conclusions. The conclusions help me understand if the goal summarized in the abstract has been reached, and if the described work can be of interest for my own study. I also always look at plots/figures, as they help me get a first impression of a paper.

  2. How to Read Scientific Papers

    Active reading involves engaging with the text, asking questions, and making connections. Note-taking helps you remember important information and organize your thoughts. Summarizing using AI tools allows you to condense the information and understand the main points of the paper easily.

  3. PDF How to Read a Paper

    Researchers must read papers for several reasons: to re-view them for a conference or a class, to keep current in their eld, or for a literature survey of a new eld. A typi-cal researcher will likely spend hundreds of hours every year reading papers. Learning to e ciently read a paper is a critical but rarely taught skill.

  4. How to read a scientific paper [3 steps

    Content: Scientific paper format. How to read a scientific paper in 3 steps. Step 1: Identify your motivations for reading a scientific paper. Step 2: Use selective reading to gain a high-level understanding of the scientific paper. Step 3: Read straight through to achieve a deep understanding of a scientific paper.

  5. Ten simple rules for reading a scientific paper

    One approach we like to use for communicating how we build on the scientific literature is by starting research presentations with an image depicting a wall of Lego bricks. Each brick is labeled with the reference for a paper, and the wall highlights the body of literature on which the work is built.

  6. How to Read Research Papers: A Cheat Sheet for Graduate Students

    Move onto the thirst pass. The third pass (Maximum: four hours) You should go to the third stage (the third pass) for a complete understanding of the paper. It may take you a few hours this time to read the paper. However, you may want to avoid reading a single paper for longer than four hours, even at the third pass.

  7. How to Read a Research Paper

    The first pass — is a quick scan to capture a high-level view of the paper. Read the title, abstract, and introduction carefully followed by the headings of the sections and subsections and lastly the conclusion. It should take you no more than 5-10 mins to figure out if you want to move to the second pass.

  8. How to find, read and organize papers

    Step 1: find. I used to find new papers by aimlessly scrolling through science Twitter. But because I often got distracted by irrelevant tweets, that wasn't very efficient. I also signed up for ...

  9. Infographic: How to read a scientific paper

    Reading a scientific paper should not be done in a linear way (from beginning to end); instead, it should be done strategically and with a critical mindset, questioning your understanding and the findings. Sometimes you will have to go backwards and forwards, take notes and have multiples tabs opened in your browser.

  10. How To Read A Research Paper Effectively In 10 Simple Steps & 15 Free Tools

    How To Read A Research Paper. A research paper is primarily divided into seven sections: 1. Title and Abstract. The title is a quick summary of the paper and the abstract a short summary of the paper. 2. Introduction. The introduction outlines the problem being discussed. 3.

  11. How to read and understand a scientific paper

    1. Begin by reading the introduction, not the abstract. The abstract is that dense first paragraph at the very beginning of a paper. In fact, that's often the only part of a paper that many non-scientists read when they're trying to build a scientific argument. (This is a terrible practice—don't do it.).

  12. How to read and understand a scientific paper: a guide for non

    Reading a scientific paper is a completely different process than reading an article about science in a blog or newspaper. Not only do you read the sections in a different order than they're presented, but you also have to take notes, read it multiple times, and probably go look up other papers for some of the details.

  13. How To Read A Scientific Manuscript

    One should read the title and Abstract first to establish a blueprint for what the author(s) wants to convey related to their research. The next step in reading a manuscript will depend upon one's prior knowledge of the topic, goals of reading the paper, level of concentration/time to devote to reading, and overall interest.

  14. PDF How to Read a Research Paper

    In fact, it's expected. During your initial read through the paper, pay most of your attention to the crucial parts of any research paper: the abstract, the introduction, and the conclusion. The abstractis where the author(s) will summarize the overall paper. This big picture overview of the paper will establish its scope, its research ...

  15. Ten simple rules for reading a scientific paper

    One approach we like to use for communicating how we build on the scientific literature is by starting research presentations with an image depicting a wall of Lego bricks. Each brick is labeled with the reference for a paper, and the wall highlights the body of literature on which the work is built.

  16. PDF How to read a research paper.

    one or two sentence summary of the paper. deeper, more extensive outline of the main points of the paper, including for example assumptions made, arguments presented, data analyzed, and conclusions drawn. any limitations or extensions you see for the ideas in the paper. your opinion of the paper; primarily, the quality of the ideas and its ...

  17. Organizing Your Social Sciences Research Paper

    Below are recommendations on how to read each section of a research paper effectively. Note that the sections to read are out of order from how you will find them organized in a journal article or research paper. 1. Abstract. The abstract summarizes the background, methods, results, discussion, and conclusions of a scholarly article or research ...

  18. How to read and understand a scientific paper

    Step-by-step instructions for reading a primary research article. 1. Begin by reading the introduction, not the abstract. The abstract is that dense first paragraph at the very beginning of a paper. In fact, that's often the only part of a paper that many non-scientists read when they're trying to build a scientific argument. (This is a ...

  19. How To Read Research Papers. Introduction:

    if you read 5 to 20 papers you will get a basic understanding of the area. if you read 50 to 100 papers then you will get a very good understanding of the areas. Do not go from the first word and ...

  20. 3 Ways to Read Research Papers

    Skimming the Paper. 1. Look at the title to determine what the paper is about. Start by reading the full title of the research paper. The title should contain keywords or phrases that will tell you about the content of the paper. In some cases, the title also contains the key argument or research question in the paper.

  21. How to Write a Research Paper

    Choose a research paper topic. Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft.

  22. PDF How to Read a Paper

    2.2 The second pass. In the second pass, read the paper with greater care, but ignore details such as proofs. It helps to jot down the key points, or to make comments in the margins, as you read. 1. Look carefully at the figures, diagrams and other illus-trations in the paper. Pay special attention to graphs.

  23. How can we teach how to read a research paper to ...

    Photo: Pixabay. Conventionally, teaching biology in undergraduate courses involves delivering content from textbooks. This approach is inefficient for teaching how to read a research paper. Reading a research article becomes frustrating for undergraduate students when they cannot comprehend it. Hence, ' teaching', here, is about taking the ...

  24. 2024 AP Exam Dates

    AP African American Studies Exam Pilot: For the 2024 AP Exam administration, only schools that are participating in the 2023-24 AP African American Studies Exam Pilot can order and administer the exam. AP Seminar end-of-course exams are only available to students taking AP Seminar at a school participating in the AP Capstone Diploma Program.