Hungarian Method

The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term “Hungarian method” to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let’s go through the steps of the Hungarian method with the help of a solved example.

Hungarian Method to Solve Assignment Problems

The Hungarian method is a simple way to solve assignment problems. Let us first discuss the assignment problems before moving on to learning the Hungarian method.

What is an Assignment Problem?

A transportation problem is a type of assignment problem. The goal is to allocate an equal amount of resources to the same number of activities. As a result, the overall cost of allocation is minimised or the total profit is maximised.

Because available resources such as workers, machines, and other resources have varying degrees of efficiency for executing different activities, and hence the cost, profit, or loss of conducting such activities varies.

Assume we have ‘n’ jobs to do on ‘m’ machines (i.e., one job to one machine). Our goal is to assign jobs to machines for the least amount of money possible (or maximum profit). Based on the notion that each machine can accomplish each task, but at variable levels of efficiency.

Hungarian Method Steps

Check to see if the number of rows and columns are equal; if they are, the assignment problem is considered to be balanced. Then go to step 1. If it is not balanced, it should be balanced before the algorithm is applied.

Step 1 – In the given cost matrix, subtract the least cost element of each row from all the entries in that row. Make sure that each row has at least one zero.

Step 2 – In the resultant cost matrix produced in step 1, subtract the least cost element in each column from all the components in that column, ensuring that each column contains at least one zero.

Step 3 – Assign zeros

  • Analyse the rows one by one until you find a row with precisely one unmarked zero. Encircle this lonely unmarked zero and assign it a task. All other zeros in the column of this circular zero should be crossed out because they will not be used in any future assignments. Continue in this manner until you’ve gone through all of the rows.
  • Examine the columns one by one until you find one with precisely one unmarked zero. Encircle this single unmarked zero and cross any other zero in its row to make an assignment to it. Continue until you’ve gone through all of the columns.

Step 4 – Perform the Optimal Test

  • The present assignment is optimal if each row and column has exactly one encircled zero.
  • The present assignment is not optimal if at least one row or column is missing an assignment (i.e., if at least one row or column is missing one encircled zero). Continue to step 5. Subtract the least cost element from all the entries in each column of the final cost matrix created in step 1 and ensure that each column has at least one zero.

Step 5 – Draw the least number of straight lines to cover all of the zeros as follows:

(a) Highlight the rows that aren’t assigned.

(b) Label the columns with zeros in marked rows (if they haven’t already been marked).

(c) Highlight the rows that have assignments in indicated columns (if they haven’t previously been marked).

(d) Continue with (b) and (c) until no further marking is needed.

(f) Simply draw the lines through all rows and columns that are not marked. If the number of these lines equals the order of the matrix, then the solution is optimal; otherwise, it is not.

Step 6 – Find the lowest cost factor that is not covered by the straight lines. Subtract this least-cost component from all the uncovered elements and add it to all the elements that are at the intersection of these straight lines, but leave the rest of the elements alone.

Step 7 – Continue with steps 1 – 6 until you’ve found the highest suitable assignment.

Hungarian Method Example

Use the Hungarian method to solve the given assignment problem stated in the table. The entries in the matrix represent each man’s processing time in hours.

\(\begin{array}{l}\begin{bmatrix} & I & II & III & IV & V \\1 & 20 & 15 & 18 & 20 & 25 \\2 & 18 & 20 & 12 & 14 & 15 \\3 & 21 & 23 & 25 & 27 & 25 \\4 & 17 & 18 & 21 & 23 & 20 \\5 & 18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

With 5 jobs and 5 men, the stated problem is balanced.

\(\begin{array}{l}A = \begin{bmatrix}20 & 15 & 18 & 20 & 25 \\18 & 20 & 12 & 14 & 15 \\21 & 23 & 25 & 27 & 25 \\17 & 18 & 21 & 23 & 20 \\18 & 18 & 16 & 19 & 20 \\\end{bmatrix}\end{array} \)

Subtract the lowest cost element in each row from all of the elements in the given cost matrix’s row. Make sure that each row has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 5 & 10 \\6 & 8 & 0 & 2 & 3 \\0 & 2 & 4 & 6 & 4 \\0 & 1 & 4 & 6 & 3 \\2 & 2 & 0 & 3 & 4 \\\end{bmatrix}\end{array} \)

Subtract the least cost element in each Column from all of the components in the given cost matrix’s Column. Check to see if each column has at least one zero.

\(\begin{array}{l}A = \begin{bmatrix}5 & 0 & 3 & 3 & 7 \\6 & 8 & 0 & 0 & 0 \\0 & 2 & 4 & 4 & 1 \\0 & 1 & 4 & 4 & 0 \\2 & 2 & 0 & 1 & 1 \\\end{bmatrix}\end{array} \)

When the zeros are assigned, we get the following:

Hungarian Method

The present assignment is optimal because each row and column contain precisely one encircled zero.

Where 1 to II, 2 to IV, 3 to I, 4 to V, and 5 to III are the best assignments.

Hence, z = 15 + 14 + 21 + 20 + 16 = 86 hours is the optimal time.

Practice Question on Hungarian Method

Use the Hungarian method to solve the following assignment problem shown in table. The matrix entries represent the time it takes for each job to be processed by each machine in hours.

\(\begin{array}{l}\begin{bmatrix}J/M & I & II & III & IV & V \\1 & 9 & 22 & 58 & 11 & 19 \\2 & 43 & 78 & 72 & 50 & 63 \\3 & 41 & 28 & 91 & 37 & 45 \\4 & 74 & 42 & 27 & 49 & 39 \\5 & 36 & 11 & 57 & 22 & 25 \\\end{bmatrix}\end{array} \)

Stay tuned to BYJU’S – The Learning App and download the app to explore all Maths-related topics.

Frequently Asked Questions on Hungarian Method

What is hungarian method.

The Hungarian method is defined as a combinatorial optimization technique that solves the assignment problems in polynomial time and foreshadowed subsequent primal–dual approaches.

What are the steps involved in Hungarian method?

The following is a quick overview of the Hungarian method: Step 1: Subtract the row minima. Step 2: Subtract the column minimums. Step 3: Use a limited number of lines to cover all zeros. Step 4: Add some more zeros to the equation.

What is the purpose of the Hungarian method?

When workers are assigned to certain activities based on cost, the Hungarian method is beneficial for identifying minimum costs.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

what is hungarian method in assignment problem

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

  • Data Structures
  • Linked List
  • Binary Tree
  • Binary Search Tree
  • Segment Tree
  • Disjoint Set Union
  • Fenwick Tree
  • Red-Black Tree
  • Advanced Data Structures

Hungarian Algorithm for Assignment Problem | Set 2 (Implementation)

  • Hungarian Algorithm for Assignment Problem | Set 1 (Introduction)
  • Implementation of Exhaustive Search Algorithm for Set Packing
  • Greedy Approximate Algorithm for Set Cover Problem
  • Introduction to Exact Cover Problem and Algorithm X
  • Job Assignment Problem using Branch And Bound
  • Prim's Algorithm (Simple Implementation for Adjacency Matrix Representation)
  • Introduction to Disjoint Set (Union-Find Algorithm)
  • Channel Assignment Problem
  • Java Program for Counting sets of 1s and 0s in a binary matrix
  • Top 20 Greedy Algorithms Interview Questions
  • C++ Program for Counting sets of 1s and 0s in a binary matrix
  • C# Program for Dijkstra's shortest path algorithm | Greedy Algo-7
  • Java Program for Dijkstra's shortest path algorithm | Greedy Algo-7
  • C / C++ Program for Dijkstra's shortest path algorithm | Greedy Algo-7
  • Self assignment check in assignment operator
  • Python Program for Dijkstra's shortest path algorithm | Greedy Algo-7
  • Algorithms | Dynamic Programming | Question 7
  • Assignment Operators in C
  • Assignment Operators in Programming

Given a 2D array , arr of size N*N where arr[i][j] denotes the cost to complete the j th job by the i th worker. Any worker can be assigned to perform any job. The task is to assign the jobs such that exactly one worker can perform exactly one job in such a way that the total cost of the assignment is minimized.

Input: arr[][] = {{3, 5}, {10, 1}} Output: 4 Explanation: The optimal assignment is to assign job 1 to the 1st worker, job 2 to the 2nd worker. Hence, the optimal cost is 3 + 1 = 4. Input: arr[][] = {{2500, 4000, 3500}, {4000, 6000, 3500}, {2000, 4000, 2500}} Output: 4 Explanation: The optimal assignment is to assign job 2 to the 1st worker, job 3 to the 2nd worker and job 1 to the 3rd worker. Hence, the optimal cost is 4000 + 3500 + 2000 = 9500.

Different approaches to solve this problem are discussed in this article .

Approach: The idea is to use the Hungarian Algorithm to solve this problem. The algorithm is as follows:

  • For each row of the matrix, find the smallest element and subtract it from every element in its row.
  • Repeat the step 1 for all columns.
  • Cover all zeros in the matrix using the minimum number of horizontal and vertical lines.
  • Test for Optimality : If the minimum number of covering lines is N , an optimal assignment is possible. Else if lines are lesser than N , an optimal assignment is not found and must proceed to step 5.
  • Determine the smallest entry not covered by any line. Subtract this entry from each uncovered row, and then add it to each covered column. Return to step 3.

Consider an example to understand the approach:

Let the 2D array be: 2500 4000 3500 4000 6000 3500 2000 4000 2500 Step 1: Subtract minimum of every row. 2500, 3500 and 2000 are subtracted from rows 1, 2 and 3 respectively. 0   1500  1000 500  2500   0 0   2000  500 Step 2: Subtract minimum of every column. 0, 1500 and 0 are subtracted from columns 1, 2 and 3 respectively. 0    0   1000 500  1000   0 0   500  500 Step 3: Cover all zeroes with minimum number of horizontal and vertical lines. Step 4: Since we need 3 lines to cover all zeroes, the optimal assignment is found.   2500   4000  3500  4000  6000   3500   2000  4000  2500 So the optimal cost is 4000 + 3500 + 2000 = 9500

For implementing the above algorithm, the idea is to use the max_cost_assignment() function defined in the dlib library . This function is an implementation of the Hungarian algorithm (also known as the Kuhn-Munkres algorithm) which runs in O(N 3 ) time. It solves the optimal assignment problem. 

Below is the implementation of the above approach:

Time Complexity: O(N 3 ) Auxiliary Space: O(N 2 )

Please Login to comment...

Similar reads.

  • Mathematical

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

The Hungarian Method for the Assignment Problem

  • First Online: 01 January 2009

Cite this chapter

what is hungarian method in assignment problem

  • Harold W. Kuhn 9  

9684 Accesses

185 Citations

11 Altmetric

This paper has always been one of my favorite “children,” combining as it does elements of the duality of linear programming and combinatorial tools from graph theory. It may be of some interest to tell the story of its origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

H.W. Kuhn, On the origin of the Hungarian Method , History of mathematical programming; a collection of personal reminiscences (J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver, eds.), North Holland, Amsterdam, 1991, pp. 77–81.

Google Scholar  

A. Schrijver, Combinatorial optimization: polyhedra and efficiency , Vol. A. Paths, Flows, Matchings, Springer, Berlin, 2003.

MATH   Google Scholar  

Download references

Author information

Authors and affiliations.

Princeton University, Princeton, USA

Harold W. Kuhn

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Harold W. Kuhn .

Editor information

Editors and affiliations.

Inst. Informatik, Universität Köln, Pohligstr. 1, Köln, 50969, Germany

Michael Jünger

Fac. Sciences de Base (FSB), Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland

Thomas M. Liebling

Ensimag, Institut Polytechnique de Grenoble, avenue Félix Viallet 46, Grenoble CX 1, 38031, France

Denis Naddef

School of Industrial &, Georgia Institute of Technology, Ferst Drive NW., 765, Atlanta, 30332-0205, USA

George L. Nemhauser

IBM Corporation, Route 100 294, Somers, 10589, USA

William R. Pulleyblank

Inst. Informatik, Universität Heidelberg, Im Neuenheimer Feld 326, Heidelberg, 69120, Germany

Gerhard Reinelt

ed Informatica, CNR - Ist. Analisi dei Sistemi, Viale Manzoni 30, Roma, 00185, Italy

Giovanni Rinaldi

Center for Operations Reserach &, Université Catholique de Louvain, voie du Roman Pays 34, Leuven, 1348, Belgium

Laurence A. Wolsey

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Kuhn, H.W. (2010). The Hungarian Method for the Assignment Problem. In: Jünger, M., et al. 50 Years of Integer Programming 1958-2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68279-0_2

Download citation

DOI : https://doi.org/10.1007/978-3-540-68279-0_2

Published : 06 November 2009

Publisher Name : Springer, Berlin, Heidelberg

Print ISBN : 978-3-540-68274-5

Online ISBN : 978-3-540-68279-0

eBook Packages : Mathematics and Statistics Mathematics and Statistics (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Quantitative Techniques: Theory and Problems by P. C. Tulsian, Vishal Pandey

Get full access to Quantitative Techniques: Theory and Problems and 60K+ other titles, with a free 10-day trial of O'Reilly.

There are also live events, courses curated by job role, and more.

HUNGARIAN METHOD

Although an assignment problem can be formulated as a linear programming problem, it is solved by a special method known as Hungarian Method because of its special structure. If the time of completion or the costs corresponding to every assignment is written down in a matrix form, it is referred to as a Cost matrix. The Hungarian Method is based on the principle that if a constant is added to every element of a row and/or a column of cost matrix, the optimum solution of the resulting assignment problem is the same as the original problem and vice versa. The original cost matrix can be reduced to another cost matrix by adding constants to the elements of rows and columns where the total cost or the total completion time of an ...

Get Quantitative Techniques: Theory and Problems now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Don’t leave empty-handed

Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

It’s yours, free.

Cover of Software Architecture Patterns

Check it out now on O’Reilly

Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

what is hungarian method in assignment problem

HungarianAlgorithm.com

Index     Assignment problem     Hungarian algorithm     Solve online    

The Hungarian algorithm

The Hungarian algorithm consists of the four steps below. The first two steps are executed once, while Steps 3 and 4 are repeated until an optimal assignment is found. The input of the algorithm is an n by n square matrix with only nonnegative elements.

Step 1: Subtract row minima

For each row, find the lowest element and subtract it from each element in that row.

Step 2: Subtract column minima

Similarly, for each column, find the lowest element and subtract it from each element in that column.

Step 3: Cover all zeros with a minimum number of lines

Cover all zeros in the resulting matrix using a minimum number of horizontal and vertical lines. If n lines are required, an optimal assignment exists among the zeros. The algorithm stops.

If less than n lines are required, continue with Step 4.

Step 4: Create additional zeros

Find the smallest element (call it k ) that is not covered by a line in Step 3. Subtract k from all uncovered elements, and add k to all elements that are covered twice.

Continue with:

The Hungarian algorithm explained based on an example.

The Hungarian algorithm explained based on a self chosen or on a random cost matrix.

HungarianAlgorithm.com © 2013-2024

Hungarian Method Examples

Now we will examine a few highly simplified illustrations of Hungarian Method for solving an assignment problem .

Later in the chapter, you will find more practical versions of assignment models like Crew assignment problem , Travelling salesman problem , etc.

Example-1, Example-2

Example 1: Hungarian Method

The Funny Toys Company has four men available for work on four separate jobs. Only one man can work on any one job. The cost of assigning each man to each job is given in the following table. The objective is to assign men to jobs in such a way that the total cost of assignment is minimum.

This is a minimization example of assignment problem . We will use the Hungarian Algorithm to solve this problem.

Identify the minimum element in each row and subtract it from every element of that row. The result is shown in the following table.

"A man has one hundred dollars and you leave him with two dollars, that's subtraction." -Mae West

On small screens, scroll horizontally to view full calculation

Identify the minimum element in each column and subtract it from every element of that column.

Make the assignments for the reduced matrix obtained from steps 1 and 2 in the following way:

  • For every zero that becomes assigned, cross out (X) all other zeros in the same row and the same column.
  • If for a row and a column, there are two or more zeros and one cannot be chosen by inspection, choose the cell arbitrarily for assignment.

An optimal assignment is found, if the number of assigned cells equals the number of rows (and columns). In case you have chosen a zero cell arbitrarily, there may be alternate optimal solutions. If no optimal solution is found, go to step 5.

Use Horizontal Scrollbar to View Full Table Calculation

Draw the minimum number of vertical and horizontal lines necessary to cover all the zeros in the reduced matrix obtained from step 3 by adopting the following procedure:

  • Mark all the rows that do not have assignments.
  • Mark all the columns (not already marked) which have zeros in the marked rows.
  • Mark all the rows (not already marked) that have assignments in marked columns.
  • Repeat steps 5 (ii) and (iii) until no more rows or columns can be marked.
  • Draw straight lines through all unmarked rows and marked columns.

You can also draw the minimum number of lines by inspection.

Select the smallest element (i.e., 1) from all the uncovered elements. Subtract this smallest element from all the uncovered elements and add it to the elements, which lie at the intersection of two lines. Thus, we obtain another reduced matrix for fresh assignment.

Now again make the assignments for the reduced matrix.

Final Table: Hungarian Method

Since the number of assignments is equal to the number of rows (& columns), this is the optimal solution.

The total cost of assignment = A1 + B4 + C2 + D3

Substituting values from original table: 20 + 17 + 17 + 24 = Rs. 78.

Share This Article

Operations Research Simplified Back Next

Goal programming Linear programming Simplex Method Transportation Problem

Assignment Problem: Meaning, Methods and Variations | Operations Research

what is hungarian method in assignment problem

After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations.

Meaning of Assignment Problem:

An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total cost or maximize total profit of allocation.

The problem of assignment arises because available resources such as men, machines etc. have varying degrees of efficiency for performing different activities, therefore, cost, profit or loss of performing the different activities is different.

Thus, the problem is “How should the assignments be made so as to optimize the given objective”. Some of the problem where the assignment technique may be useful are assignment of workers to machines, salesman to different sales areas.

Definition of Assignment Problem:

ADVERTISEMENTS:

Suppose there are n jobs to be performed and n persons are available for doing these jobs. Assume that each person can do each job at a term, though with varying degree of efficiency, let c ij be the cost if the i-th person is assigned to the j-th job. The problem is to find an assignment (which job should be assigned to which person one on-one basis) So that the total cost of performing all jobs is minimum, problem of this kind are known as assignment problem.

The assignment problem can be stated in the form of n x n cost matrix C real members as given in the following table:

what is hungarian method in assignment problem

Step :4 If each row and each column contains exactly one assignment, then the solution is optimal.

Example 10.7

Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

what is hungarian method in assignment problem

Here the number of rows and columns are equal.

∴ The given assignment problem is balanced. Now let us find the solution.

Step 1: Select a smallest element in each row and subtract this from all the elements in its row.

what is hungarian method in assignment problem

Look for atleast one zero in each row and each column.Otherwise go to step 2.

Step 2: Select the smallest element in each column and subtract this from all the elements in its column.

what is hungarian method in assignment problem

Since each row and column contains atleast one zero, assignments can be made.

Step 3 (Assignment):

what is hungarian method in assignment problem

Thus all the four assignments have been made. The optimal assignment schedule and total cost is

what is hungarian method in assignment problem

The optimal assignment (minimum) cost

Example 10.8

Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows. Determine the optimum assignment schedule.

what is hungarian method in assignment problem

∴ The given assignment problem is balanced.

Now let us find the solution.

The cost matrix of the given assignment problem is

what is hungarian method in assignment problem

Column 3 contains no zero. Go to Step 2.

what is hungarian method in assignment problem

Thus all the five assignments have been made. The Optimal assignment schedule and total cost is

what is hungarian method in assignment problem

The optimal assignment (minimum) cost = ` 9

Example 10.9

Solve the following assignment problem.

what is hungarian method in assignment problem

Since the number of columns is less than the number of rows, given assignment problem is unbalanced one. To balance it , introduce a dummy column with all the entries zero. The revised assignment problem is

what is hungarian method in assignment problem

Here only 3 tasks can be assigned to 3 men.

Step 1: is not necessary, since each row contains zero entry. Go to Step 2.

what is hungarian method in assignment problem

Step 3 (Assignment) :

what is hungarian method in assignment problem

Since each row and each columncontains exactly one assignment,all the three men have been assigned a task. But task S is not assigned to any Man. The optimal assignment schedule and total cost is

what is hungarian method in assignment problem

The optimal assignment (minimum) cost = ₹ 35

Related Topics

Privacy Policy , Terms and Conditions , DMCA Policy and Compliant

Copyright © 2018-2024 BrainKart.com; All Rights Reserved. Developed by Therithal info, Chennai.

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • Personal Finance
  • AP Investigations
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election Results
  • Delegate Tracker
  • AP & Elections
  • Auto Racing
  • 2024 Paris Olympic Games
  • Movie reviews
  • Book reviews
  • Personal finance
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

Orbán challenger in Hungary mobilizes thousands at a rare demonstration in a government stronghold

Péter Magyar, a rising challenger to Hungarian Prime Minister Viktor Orbán, addresses people at a campaign rally in the rural city of Debrecen, Hungary, on Sunday, May 5, 2024. Magyar, whose TISZA party is running in European Union elections, has managed to mobilize large crowds of supporters on a campaign tour of Hungary's heartland, a rarity for an Orbán opponent. (AP Photo/Denes Erdos)

Péter Magyar, a rising challenger to Hungarian Prime Minister Viktor Orbán, addresses people at a campaign rally in the rural city of Debrecen, Hungary, on Sunday, May 5, 2024. Magyar, whose TISZA party is running in European Union elections, has managed to mobilize large crowds of supporters on a campaign tour of Hungary’s heartland, a rarity for an Orbán opponent. (AP Photo/Denes Erdos)

People clap during Péter Magyar’s speech at a campaign rally in the rural city of Debrecen, Hungary, on Sunday, May 5, 2024. Magyar, whose TISZA party is running in European Union elections, has managed to mobilize large crowds of supporters on a campaign tour of Hungary’s heartland, a rarity for an Orbán opponent. (AP Photo/Denes Erdos)

People listen to Péter Magyar’s speech at a campaign rally in the rural city of Debrecen, Hungary, on Sunday, May 5, 2024. Magyar, whose TISZA party is running in European Union elections, has managed to mobilize large crowds of supporters on a campaign tour of Hungary’s heartland, a rarity for an Orbán opponent. (AP Photo/Denes Erdos)

People wave the Hungarian national flag during Péter Magyar’s speech at a campaign rally in the rural city of Debrecen, Hungary, on Sunday, May 5, 2024. Magyar, whose TISZA party is running in European Union elections, has managed to mobilize large crowds of supporters on a campaign tour of Hungary’s heartland, a rarity for an Orbán opponent. (AP Photo/Denes Erdos)

Péter Magyar, a rising challenger to Hungarian Prime Minister Viktor Orbán, speaks before addressing people at a campaign rally in the rural city of Debrecen, Hungary, on Sunday, May 5, 2024. Magyar, whose TISZA party is running in European Union elections, has managed to mobilize large crowds of supporters on a campaign tour of Hungary’s heartland, a rarity for an Orbán opponent. (AP Photo/Denes Erdos)

Péter Magyar, a rising challenger to Hungarian Prime Minister Viktor Orbán, arrives with his girlfriend to address people at a campaign rally in the rural city of Debrecen, Hungary, Sunday, May 5, 2024. Magyar, whose TISZA party is running in European Union elections, has managed to mobilize large crowds of supporters on a campaign tour of Hungary’s heartland, a rarity for an Orbán opponent. (AP Photo/Denes Erdos)

  • Copy Link copied

Justin Spike, AP Reporter

DEBRECEN, Hungary (AP) — A rising challenger to Hungarian Prime Minister Viktor Orbán held what he called the largest countryside political demonstration in the country’s recent history on Sunday, the latest stop on his campaign tour that has mobilized thousands across Hungary’s rural heartland.

Some 10,000 people gathered in Debrecen, Hungary’s second-largest city, in support of Péter Magyar, a political newcomer who in less than three months has shot to prominence on pledges to bring an end to problems like official corruption and a declining quality of life in the Central European country.

Supporters endured a brief but unexpected rain shower ahead of the afternoon demonstration, turning the city’s central square into a sea of umbrellas. They waved Hungarian flags bearing the names of towns and villages across the country from which they had come.

“Today, the vast majority of the Hungarian people are tired of the ruling elite, of the hatred, apathy, propaganda and artificial divides,” Magyar told the crowd. “Hungarians today want cooperation, love, unity and peace.”

Magyar, a former insider within Hungary’s ruling Fidesz party, has since February denounced the nationalist Orbán as running an entrenched “mafia state,” and declared war on what he calls a propaganda machine run by the government.

FILE - Chinese President Xi Jinping, left, speaks during his joint press conference with Hungarian Prime Minister Viktor Orban following their talks at the PM's office, the former Carmelite Monastery, in Budapest, Hungary, Thursday, May 9 2024. Most countries in the European Union are making efforts to “de-risk” their economies from perceived threats posed by China. But Hungary and Serbia have gone in the other direction. They are courting major Chinese investments in the belief that the world’s second-largest economy is essential for Europe’s future. (Szilard Koszticsak/MTI via AP)

His party, TISZA (Respect and Freedom), has announced it will run 12 candidates in June 9 European Union elections, with Magyar appearing first on the party list. TISZA has also announced it will run four candidates in local council elections in the capital Budapest.

His appearance on Sunday in Debrecen, a stronghold of Orbán’s ruling Fidesz party, reflected the focus his fledgling campaign has placed on the Hungarian countryside, where Orbán is popular.

The Mother’s Day event was the latest stop on a tour of the country where Magyar has appeared in dozens of cities, towns and villages, often drawing thousands of supporters — numbers that few Orbán opponents have ever been able to mobilize in rural areas.

Addressing the crowd, he said that “government propaganda” had tried to discredit his movement as “just a downtown Budapest media hack,” and criticized Hungary’s traditional opposition parties as having abandoned rural Hungarians.

“We’ve heard for 14 years from the opposition that it’s impossible in these circumstances to defeat Orbán, that it’s not worth traveling to the countryside, that young people aren’t interested in politics, that you can’t break down the walls of propaganda,” he said. “But look around! What’s the truth?”

Katalin Nagy, who traveled several hours to the rally, said she finds Magyar credible “because he comes from the inside.”

“He’s aware of the things that are really causing problems in this country, and I think he can provide solutions to problems so that we can come out of the hole that this country is currently in,” she said.

Recent polls show that Magyar’s party may have become the largest opposition force little more than a month before the election. Pollster Median this week measured TISZA at 25% among certain voters, with Orbán’s Fidesz well ahead at 45%.

Governing party politicians have dismissed Magyar, who describes himself as a moderate conservative, as a leftist in disguise, and suggested that foreign interests lie behind his rise.

Orbán and has party have ruled Hungary with a constitutional majority since 2010.

JUSTIN SPIKE

IMAGES

  1. How to Solve an Assignment Problem Using the Hungarian Method

    what is hungarian method in assignment problem

  2. Assignment Problem (Part-3) Hungarian Method to solve Assignment Problem

    what is hungarian method in assignment problem

  3. Hungarian Algorithm for Assignment Problem

    what is hungarian method in assignment problem

  4. [#1]Assignment Problem[Easy Steps to solve

    what is hungarian method in assignment problem

  5. Assignment Problem 1

    what is hungarian method in assignment problem

  6. assignment problem optimization |hungarian method|assignment problem maximization hungarian method

    what is hungarian method in assignment problem

VIDEO

  1. 2. Minimal Assignment problem {Hungarian Method}

  2. 03 Assignment Problem Hungarian Method

  3. Operation Management

  4. Assignment problem. Hungarian method

  5. HUNGARIAN METHOD||ASSIGNMENT PROBLEM ||OPERATIONS RESEARCH|| Lecture

  6. Assignment Problem

COMMENTS

  1. Hungarian Algorithm for Assignment Problem

    This is because the algorithm implements the Hungarian algorithm, which is known to have a time complexity of O(n^3). Space complexity : O(n^2), where n is the number of workers and jobs. This is because the algorithm uses a 2D cost matrix of size n x n to store the costs of assigning each worker to a job, and additional arrays of size n to ...

  2. Hungarian Method

    The Hungarian method is a computational optimization technique that addresses the assignment problem in polynomial time and foreshadows following primal-dual alternatives. In 1955, Harold Kuhn used the term "Hungarian method" to honour two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry. Let's go through the steps of the Hungarian method with the help of a solved example.

  3. Hungarian algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal-dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.

  4. PDF Hungarian method for assignment problem

    Hungarian method for assignment problem Step 1. Subtract the entries of each row by the row minimum. Step 2. Subtract the entries of each column by the column minimum. Step 3. Make an assignment to the zero entries in the resulting matrix. A = M 17 10 15 17 18 M 6 10 20 12 5 M 14 19 12 11 15 M 7 16 21 18 6 M −10

  5. Assignment Problem and Hungarian Algorithm

    General description of the algorithm. This problem is known as the assignment problem. The assignment problem is a special case of the transportation problem, which in turn is a special case of the min-cost flow problem, so it can be solved using algorithms that solve the more general cases. Also, our problem is a special case of binary integer ...

  6. PDF The Assignment Problem and the Hungarian Method

    The Hungarian Method: The following algorithm applies the above theorem to a given n × n cost matrix to find an optimal assignment. Step 1. Subtract the smallest entry in each row from all the entries of its row. Step 2. Subtract the smallest entry in each column from all the entries of its column. Step 3.

  7. How to Solve an Assignment Problem Using the Hungarian Method

    In this lesson we learn what is an assignment problem and how we can solve it using the Hungarian method.

  8. Hungarian Algorithm for Assignment Problem

    Different approaches to solve this problem are discussed in this article.. Approach: The idea is to use the Hungarian Algorithm to solve this problem. The algorithm is as follows: For each row of the matrix, find the smallest element and subtract it from every element in its row. Repeat the step 1 for all columns.

  9. The Assignment Problem (Using Hungarian Algorithm)

    Approach 4: Hungarian Algorithm The Hungarian Algorithm is a combinatorial optimization algorithm which is a faster approach which solves the problem in polynomial time complexity. We see the ...

  10. PDF The Hungarian method for the assignment problem

    THE HUNGARIAN METHOD FOR THE ASSIGNMENT. PROBLEM'. H. W. Kuhn. Bryn Y a w College. Assuming that numerical scores are available for the perform- ance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the. n scores so obtained is as large as possible.

  11. The Hungarian Algorithm for the Assignment Problem

    The Hungarian method is a combinatorial optimization algorithm which solves the assignment problem in polynomial time . Later it was discovered that it was a primal-dual Simplex method.. It was developed and published by Harold Kuhn in 1955, who gave the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians: Denes Konig and Jeno ...

  12. Using the Hungarian Algorithm to Solve Assignment Problems

    This is an example of an assignment problem that we can use the Hungarian Algorithm to solve. The Hungarian Algorithm is used to find the minimum cost when assigning people to activities based on ...

  13. PDF Chapter 2 The Hungarian Method for the Assignment Problem

    the general assignment problem to a 0-1 problem. Thus, by putting the two ideas together, the Hungarian Method was born. I tested the algorithm by solving 12 by 12 problems with random 3-digit ratings by hand. I could do any such problem, with pencil and paper, in no more than 2 hours. This seemed to be much better than any other method known ...

  14. The Hungarian Method for the Assignment Problem

    The Hungarian Method for the Assignment Problem. Chapter; First Online: 01 January 2009; pp 29-47; Cite this chapter; Download book PDF. 50 Years of Integer Programming 1958-2008. The Hungarian Method for the Assignment Problem Download book PDF.

  15. Learn Hungarian Method

    The Hungarian method provides an efficient solution to assignment problems. But first, let's understand what an assignment problem is. Defining an Assignment Problem. An assignment problem is a type of transportation problem where the goal is to assign resources to tasks in such a way that the total cost of assignment is minimized or the total ...

  16. Assignment Problem, Maximization Example, Hungarian Method

    The Hungarian Method can also solve such assignment problems, as it is easy to obtain an equivalent minimization problem by converting every number in the matrix to an opportunity loss. The conversion is accomplished by subtracting all the elements of the given matrix from the highest element. It turns out that minimizing opportunity loss ...

  17. Hungarian Method

    HUNGARIAN METHOD. Although an assignment problem can be formulated as a linear programming problem, it is solved by a special method known as Hungarian Method because of its special structure. If the time of completion or the costs corresponding to every assignment is written down in a matrix form, it is referred to as a Cost matrix. The Hungarian Method is based on the principle that if a ...

  18. Steps of the Hungarian Algorithm

    The Hungarian algorithm consists of the four steps below. The first two steps are executed once, while Steps 3 and 4 are repeated until an optimal assignment is found. The input of the algorithm is an n by n square matrix with only nonnegative elements. Step 1: Subtract row minima.

  19. Hungarian Method Examples, Assignment Problem

    Example 1: Hungarian Method. The Funny Toys Company has four men available for work on four separate jobs. Only one man can work on any one job. The cost of assigning each man to each job is given in the following table. The objective is to assign men to jobs in such a way that the total cost of assignment is minimum. Job.

  20. Assignment Problem: Meaning, Methods and Variations

    After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations. Meaning of Assignment Problem: An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total ...

  21. Solution of assignment problems (Hungarian Method)

    Solution of assignment problems (Hungarian Method) First check whether the number of rows is equal to the numbers of columns, if it is so, the assignment problem is said to be balanced. Step :1 Choose the least element in each row and subtract it from all the elements of that row.

  22. [PDF] The Hungarian method for the assignment problem

    A note on Hungarian method for solving assignment problem. Jayanta Dutta Subhas Chandra Pal. Computer Science, Mathematics. 2015. TLDR. Hungarian method is modified to find out the optimal solution of an assignment problem which reduces the computational cost of the method. Expand.

  23. Difference between solving Assignment Problem using the Hungarian

    $\begingroup$ The Hungarian algorithm is, of course, O(n^3) for fully dense assignment problems. I don't know if there is a simplex bound explicitly for assignments. Simplex is exponential in the worst case and linear in variables plus constraints (n^2 + 2n here) in practice. But assignments are highly degenerate (n positive basics out of 2n rows).

  24. Smart Delivery Assignment through Machine Learning and the Hungarian

    Then, we applied the Hungarian optimization algorithm to solve the assignment problem, which optimally assigns delivery personnel and orders. The results demonstrate that when used to estimate distance information, linear regression can reduce estimation errors by up to 568.52 km (1.51%) for our dataset compared to other methods.

  25. Orbán challenger in Hungary mobilizes thousands at a rare demonstration

    DEBRECEN, Hungary (AP) — A rising challenger to Hungarian Prime Minister Viktor Orbán held what he called the largest countryside political demonstration in the country's recent history on Sunday, the latest stop on his campaign tour that has mobilized thousands across Hungary's rural heartland.. Some 10,000 people gathered in Debrecen, Hungary's second-largest city, in support of ...