Issue Cover

  • Previous Article
  • Next Article

Promises and Pitfalls of Technology

Politics and privacy, private-sector influence and big tech, state competition and conflict, author biography, how is technology changing the world, and how should the world change technology.

[email protected]

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Guest Access
  • Get Permissions
  • Cite Icon Cite
  • Search Site

Josephine Wolff; How Is Technology Changing the World, and How Should the World Change Technology?. Global Perspectives 1 February 2021; 2 (1): 27353. doi: https://doi.org/10.1525/gp.2021.27353

Download citation file:

  • Ris (Zotero)
  • Reference Manager

Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing relies largely on digital technologies and artificial intelligence, and therefore involves less human-to-human contact than ever before and more opportunities for biases to be embedded and codified in our technological systems in ways we may not even be able to identify or recognize. Bioengineering advances are opening up new terrain for challenging philosophical, political, and economic questions regarding human-natural relations. Additionally, the management of these large and small devices and systems is increasingly done through the cloud, so that control over them is both very remote and removed from direct human or social control. The study of how to make technologies like artificial intelligence or the Internet of Things “explainable” has become its own area of research because it is so difficult to understand how they work or what is at fault when something goes wrong (Gunning and Aha 2019) .

This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions. This can seem like an impossible task in light of the rapid pace of technological change and the sense that its continued advancement is inevitable, but many countries around the world are only just beginning to take significant steps toward regulating computer technologies and are still in the process of radically rethinking the rules governing global data flows and exchange of technology across borders.

These are exciting times not just for technological development but also for technology policy—our technologies may be more advanced and complicated than ever but so, too, are our understandings of how they can best be leveraged, protected, and even constrained. The structures of technological systems as determined largely by government and institutional policies and those structures have tremendous implications for social organization and agency, ranging from open source, open systems that are highly distributed and decentralized, to those that are tightly controlled and closed, structured according to stricter and more hierarchical models. And just as our understanding of the governance of technology is developing in new and interesting ways, so, too, is our understanding of the social, cultural, environmental, and political dimensions of emerging technologies. We are realizing both the challenges and the importance of mapping out the full range of ways that technology is changing our society, what we want those changes to look like, and what tools we have to try to influence and guide those shifts.

Technology can be a source of tremendous optimism. It can help overcome some of the greatest challenges our society faces, including climate change, famine, and disease. For those who believe in the power of innovation and the promise of creative destruction to advance economic development and lead to better quality of life, technology is a vital economic driver (Schumpeter 1942) . But it can also be a tool of tremendous fear and oppression, embedding biases in automated decision-making processes and information-processing algorithms, exacerbating economic and social inequalities within and between countries to a staggering degree, or creating new weapons and avenues for attack unlike any we have had to face in the past. Scholars have even contended that the emergence of the term technology in the nineteenth and twentieth centuries marked a shift from viewing individual pieces of machinery as a means to achieving political and social progress to the more dangerous, or hazardous, view that larger-scale, more complex technological systems were a semiautonomous form of progress in and of themselves (Marx 2010) . More recently, technologists have sharply criticized what they view as a wave of new Luddites, people intent on slowing the development of technology and turning back the clock on innovation as a means of mitigating the societal impacts of technological change (Marlowe 1970) .

At the heart of fights over new technologies and their resulting global changes are often two conflicting visions of technology: a fundamentally optimistic one that believes humans use it as a tool to achieve greater goals, and a fundamentally pessimistic one that holds that technological systems have reached a point beyond our control. Technology philosophers have argued that neither of these views is wholly accurate and that a purely optimistic or pessimistic view of technology is insufficient to capture the nuances and complexity of our relationship to technology (Oberdiek and Tiles 1995) . Understanding technology and how we can make better decisions about designing, deploying, and refining it requires capturing that nuance and complexity through in-depth analysis of the impacts of different technological advancements and the ways they have played out in all their complicated and controversial messiness across the world.

These impacts are often unpredictable as technologies are adopted in new contexts and come to be used in ways that sometimes diverge significantly from the use cases envisioned by their designers. The internet, designed to help transmit information between computer networks, became a crucial vehicle for commerce, introducing unexpected avenues for crime and financial fraud. Social media platforms like Facebook and Twitter, designed to connect friends and families through sharing photographs and life updates, became focal points of election controversies and political influence. Cryptocurrencies, originally intended as a means of decentralized digital cash, have become a significant environmental hazard as more and more computing resources are devoted to mining these forms of virtual money. One of the crucial challenges in this area is therefore recognizing, documenting, and even anticipating some of these unexpected consequences and providing mechanisms to technologists for how to think through the impacts of their work, as well as possible other paths to different outcomes (Verbeek 2006) . And just as technological innovations can cause unexpected harm, they can also bring about extraordinary benefits—new vaccines and medicines to address global pandemics and save thousands of lives, new sources of energy that can drastically reduce emissions and help combat climate change, new modes of education that can reach people who would otherwise have no access to schooling. Regulating technology therefore requires a careful balance of mitigating risks without overly restricting potentially beneficial innovations.

Nations around the world have taken very different approaches to governing emerging technologies and have adopted a range of different technologies themselves in pursuit of more modern governance structures and processes (Braman 2009) . In Europe, the precautionary principle has guided much more anticipatory regulation aimed at addressing the risks presented by technologies even before they are fully realized. For instance, the European Union’s General Data Protection Regulation focuses on the responsibilities of data controllers and processors to provide individuals with access to their data and information about how that data is being used not just as a means of addressing existing security and privacy threats, such as data breaches, but also to protect against future developments and uses of that data for artificial intelligence and automated decision-making purposes. In Germany, Technische Überwachungsvereine, or TÜVs, perform regular tests and inspections of technological systems to assess and minimize risks over time, as the tech landscape evolves. In the United States, by contrast, there is much greater reliance on litigation and liability regimes to address safety and security failings after-the-fact. These different approaches reflect not just the different legal and regulatory mechanisms and philosophies of different nations but also the different ways those nations prioritize rapid development of the technology industry versus safety, security, and individual control. Typically, governance innovations move much more slowly than technological innovations, and regulations can lag years, or even decades, behind the technologies they aim to govern.

In addition to this varied set of national regulatory approaches, a variety of international and nongovernmental organizations also contribute to the process of developing standards, rules, and norms for new technologies, including the International Organization for Standardization­ and the International Telecommunication Union. These multilateral and NGO actors play an especially important role in trying to define appropriate boundaries for the use of new technologies by governments as instruments of control for the state.

At the same time that policymakers are under scrutiny both for their decisions about how to regulate technology as well as their decisions about how and when to adopt technologies like facial recognition themselves, technology firms and designers have also come under increasing criticism. Growing recognition that the design of technologies can have far-reaching social and political implications means that there is more pressure on technologists to take into consideration the consequences of their decisions early on in the design process (Vincenti 1993; Winner 1980) . The question of how technologists should incorporate these social dimensions into their design and development processes is an old one, and debate on these issues dates back to the 1970s, but it remains an urgent and often overlooked part of the puzzle because so many of the supposedly systematic mechanisms for assessing the impacts of new technologies in both the private and public sectors are primarily bureaucratic, symbolic processes rather than carrying any real weight or influence.

Technologists are often ill-equipped or unwilling to respond to the sorts of social problems that their creations have—often unwittingly—exacerbated, and instead point to governments and lawmakers to address those problems (Zuckerberg 2019) . But governments often have few incentives to engage in this area. This is because setting clear standards and rules for an ever-evolving technological landscape can be extremely challenging, because enforcement of those rules can be a significant undertaking requiring considerable expertise, and because the tech sector is a major source of jobs and revenue for many countries that may fear losing those benefits if they constrain companies too much. This indicates not just a need for clearer incentives and better policies for both private- and public-sector entities but also a need for new mechanisms whereby the technology development and design process can be influenced and assessed by people with a wider range of experiences and expertise. If we want technologies to be designed with an eye to their impacts, who is responsible for predicting, measuring, and mitigating those impacts throughout the design process? Involving policymakers in that process in a more meaningful way will also require training them to have the analytic and technical capacity to more fully engage with technologists and understand more fully the implications of their decisions.

At the same time that tech companies seem unwilling or unable to rein in their creations, many also fear they wield too much power, in some cases all but replacing governments and international organizations in their ability to make decisions that affect millions of people worldwide and control access to information, platforms, and audiences (Kilovaty 2020) . Regulators around the world have begun considering whether some of these companies have become so powerful that they violate the tenets of antitrust laws, but it can be difficult for governments to identify exactly what those violations are, especially in the context of an industry where the largest players often provide their customers with free services. And the platforms and services developed by tech companies are often wielded most powerfully and dangerously not directly by their private-sector creators and operators but instead by states themselves for widespread misinformation campaigns that serve political purposes (Nye 2018) .

Since the largest private entities in the tech sector operate in many countries, they are often better poised to implement global changes to the technological ecosystem than individual states or regulatory bodies, creating new challenges to existing governance structures and hierarchies. Just as it can be challenging to provide oversight for government use of technologies, so, too, oversight of the biggest tech companies, which have more resources, reach, and power than many nations, can prove to be a daunting task. The rise of network forms of organization and the growing gig economy have added to these challenges, making it even harder for regulators to fully address the breadth of these companies’ operations (Powell 1990) . The private-public partnerships that have emerged around energy, transportation, medical, and cyber technologies further complicate this picture, blurring the line between the public and private sectors and raising critical questions about the role of each in providing critical infrastructure, health care, and security. How can and should private tech companies operating in these different sectors be governed, and what types of influence do they exert over regulators? How feasible are different policy proposals aimed at technological innovation, and what potential unintended consequences might they have?

Conflict between countries has also spilled over significantly into the private sector in recent years, most notably in the case of tensions between the United States and China over which technologies developed in each country will be permitted by the other and which will be purchased by other customers, outside those two countries. Countries competing to develop the best technology is not a new phenomenon, but the current conflicts have major international ramifications and will influence the infrastructure that is installed and used around the world for years to come. Untangling the different factors that feed into these tussles as well as whom they benefit and whom they leave at a disadvantage is crucial for understanding how governments can most effectively foster technological innovation and invention domestically as well as the global consequences of those efforts. As much of the world is forced to choose between buying technology from the United States or from China, how should we understand the long-term impacts of those choices and the options available to people in countries without robust domestic tech industries? Does the global spread of technologies help fuel further innovation in countries with smaller tech markets, or does it reinforce the dominance of the states that are already most prominent in this sector? How can research universities maintain global collaborations and research communities in light of these national competitions, and what role does government research and development spending play in fostering innovation within its own borders and worldwide? How should intellectual property protections evolve to meet the demands of the technology industry, and how can those protections be enforced globally?

These conflicts between countries sometimes appear to challenge the feasibility of truly global technologies and networks that operate across all countries through standardized protocols and design features. Organizations like the International Organization for Standardization, the World Intellectual Property Organization, the United Nations Industrial Development Organization, and many others have tried to harmonize these policies and protocols across different countries for years, but have met with limited success when it comes to resolving the issues of greatest tension and disagreement among nations. For technology to operate in a global environment, there is a need for a much greater degree of coordination among countries and the development of common standards and norms, but governments continue to struggle to agree not just on those norms themselves but even the appropriate venue and processes for developing them. Without greater global cooperation, is it possible to maintain a global network like the internet or to promote the spread of new technologies around the world to address challenges of sustainability? What might help incentivize that cooperation moving forward, and what could new structures and process for governance of global technologies look like? Why has the tech industry’s self-regulation culture persisted? Do the same traditional drivers for public policy, such as politics of harmonization and path dependency in policy-making, still sufficiently explain policy outcomes in this space? As new technologies and their applications spread across the globe in uneven ways, how and when do they create forces of change from unexpected places?

These are some of the questions that we hope to address in the Technology and Global Change section through articles that tackle new dimensions of the global landscape of designing, developing, deploying, and assessing new technologies to address major challenges the world faces. Understanding these processes requires synthesizing knowledge from a range of different fields, including sociology, political science, economics, and history, as well as technical fields such as engineering, climate science, and computer science. A crucial part of understanding how technology has created global change and, in turn, how global changes have influenced the development of new technologies is understanding the technologies themselves in all their richness and complexity—how they work, the limits of what they can do, what they were designed to do, how they are actually used. Just as technologies themselves are becoming more complicated, so are their embeddings and relationships to the larger social, political, and legal contexts in which they exist. Scholars across all disciplines are encouraged to join us in untangling those complexities.

Josephine Wolff is an associate professor of cybersecurity policy at the Fletcher School of Law and Diplomacy at Tufts University. Her book You’ll See This Message When It Is Too Late: The Legal and Economic Aftermath of Cybersecurity Breaches was published by MIT Press in 2018.

Recipient(s) will receive an email with a link to 'How Is Technology Changing the World, and How Should the World Change Technology?' and will not need an account to access the content.

Subject: How Is Technology Changing the World, and How Should the World Change Technology?

(Optional message may have a maximum of 1000 characters.)

Citing articles via

Email alerts, affiliations.

  • Special Collections
  • Review Symposia
  • Info for Authors
  • Info for Librarians
  • Editorial Team
  • Emerging Scholars Forum
  • Open Access
  • Online ISSN 2575-7350
  • Copyright © 2024 The Regents of the University of California. All Rights Reserved.

Stay Informed

Disciplines.

  • Ancient World
  • Anthropology
  • Communication
  • Criminology & Criminal Justice
  • Film & Media Studies
  • Food & Wine
  • Browse All Disciplines
  • Browse All Courses
  • Book Authors
  • Booksellers
  • Instructions
  • Journal Authors
  • Journal Editors
  • Media & Journalists
  • Planned Giving

About UC Press

  • Press Releases
  • Seasonal Catalog
  • Acquisitions Editors
  • Customer Service
  • Exam/Desk Requests
  • Media Inquiries
  • Print-Disability
  • Rights & Permissions
  • UC Press Foundation
  • © Copyright 2024 by the Regents of the University of California. All rights reserved. Privacy policy    Accessibility

This Feature Is Available To Subscribers Only

Sign In or Create an Account

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

A comprehensive study of technological change

Press contact :.

Bar graph. On the y-axis: density, from 0.00 to 0.08. On the X-axis: estimated yearly improvement rates, from 0 to 200. There is a large spike of data going past .08 on the y-axis, in between approximately the 0 and 25 marks on the x-axis. A red vertical dotted line exists at the 36.5 mark.

Previous image Next image

The societal impacts of technological change can be seen in many domains, from messenger RNA vaccines and automation to drones and climate change. The pace of that technological change can affect its impact, and how quickly a technology improves in performance can be an indicator of its future importance. For decision-makers like investors, entrepreneurs, and policymakers, predicting which technologies are fast improving (and which are overhyped) can mean the difference between success and failure.

New research from MIT aims to assist in the prediction of technology performance improvement using U.S. patents as a dataset. The study describes 97 percent of the U.S. patent system as a set of 1,757 discrete technology domains, and quantitatively assesses each domain for its improvement potential.

“The rate of improvement can only be empirically estimated when substantial performance measurements are made over long time periods,” says Anuraag Singh SM ’20, lead author of the paper. “In some large technological fields, including software and clinical medicine, such measures have rarely, if ever, been made.”

A previous MIT study provided empirical measures for 30 technological domains, but the patent sets identified for those technologies cover less than 15 percent of the patents in the U.S. patent system. The major purpose of this new study is to provide predictions of the performance improvement rates for the thousands of domains not accessed by empirical measurement. To accomplish this, the researchers developed a method using a new probability-based algorithm, machine learning, natural language processing, and patent network analytics.

Overlap and centrality

A technology domain, as the researchers define it, consists of sets of artifacts fulfilling a specific function using a specific branch of scientific knowledge. To find the patents that best represent a domain, the team built on previous research conducted by co-author Chris Magee, a professor of the practice of engineering systems within the Institute for Data, Systems, and Society (IDSS). Magee and his colleagues found that by looking for patent overlap between the U.S. and international patent-classification systems, they could quickly identify patents that best represent a technology. The researchers ultimately created a correspondence of all patents within the U.S. patent system to a set of 1,757 technology domains.

To estimate performance improvement, Singh employed a method refined by co-authors Magee and Giorgio Triulzi, a researcher with the Sociotechnical Systems Research Center (SSRC) within IDSS and an assistant professor at Universidad de los Andes in Colombia. Their method is based on the average “centrality” of patents in the patent citation network. Centrality refers to multiple criteria for determining the ranking or importance of nodes within a network.

“Our method provides predictions of performance improvement rates for nearly all definable technologies for the first time,” says Singh.

Those rates vary — from a low of 2 percent per year for the “Mechanical skin treatment — Hair removal and wrinkles” domain to a high of 216 percent per year for the “Dynamic information exchange and support systems integrating multiple channels” domain. The researchers found that most technologies improve slowly; more than 80 percent of technologies improve at less than 25 percent per year. Notably, the number of patents in a technological area was not a strong indicator of a higher improvement rate.

“Fast-improving domains are concentrated in a few technological areas,” says Magee. “The domains that show improvement rates greater than the predicted rate for integrated chips — 42 percent, from Moore’s law — are predominantly based upon software and algorithms.”

TechNext Inc.

The researchers built an online interactive system where domains corresponding to technology-related keywords can be found along with their improvement rates. Users can input a keyword describing a technology and the system returns a prediction of improvement for the technological domain, an automated measure of the quality of the match between the keyword and the domain, and patent sets so that the reader can judge the semantic quality of the match.

Moving forward, the researchers have founded a new MIT spinoff called TechNext Inc. to further refine this technology and use it to help leaders make better decisions, from budgets to investment priorities to technology policy. Like any inventors, Magee and his colleagues want to protect their intellectual property rights. To that end, they have applied for a patent for their novel system and its unique methodology.

“Technologies that improve faster win the market,” says Singh. “Our search system enables technology managers, investors, policymakers, and entrepreneurs to quickly look up predictions of improvement rates for specific technologies.”

Adds Magee: “Our goal is to bring greater accuracy, precision, and repeatability to the as-yet fuzzy art of technology forecasting.”

Share this news article on:

Related links.

  • Sociotechnical Systems Research Center
  • Institute for Data, Systems, and Society (IDSS)

Related Topics

  • Technology and society
  • Innovation and Entrepreneurship (I&E)

Related Articles

“Science is a way to connect with people around the world. There are no national boundaries; it's like a more unified network of people working on problems and discussing them,” says Associate Professor Jessika Trancik.

Shaping technology’s future

Ali Jadbabaie is the JR East Professor of Engineering in the Department of Civil and Environmental Engineering, the associate director of the Institute for Data, Systems, and Society (IDSS), and the director of one of its parts, the Sociotechnical Systems Research Center. “Our focus is on addressing large societal problems, whether they be power systems and energy systems, or social networks, or...

Tackling society’s big problems with systems theory

research paper about modern technology

Patents forecast technological change

Previous item Next item

More MIT News

Headshot of a woman in a colorful striped dress.

A biomedical engineer pivots from human movement to women’s health

Read full story →

Closeup of someone’s hands holding a stack of U.S. patents. The top page reads “United States of America “ and “Patent” in gold lettering, among other smaller text. They are next to a window that looks down on a city street.

MIT tops among single-campus universities in US patents granted

Jennifer Rupp, Thomas Defferriere, Harry Tuller, and Ju Li pose standing in a lab, with a nuclear radiation warning sign in the background

A new way to detect radiation involving cheap ceramics

Photo of the facade of the MIT Schwarzman College of Computing building, which features a shingled glass exterior that reflects its surroundings

A crossroads for computing at MIT

Hammaad Adam poses in front of a window. A brick building with large windows is behind him.

Growing our donated organ supply

Two hands inspect a lung X-ray. One hand is illustrated with nodes and lines creating a neural network. The other is a doctor’s hand. Four “alert” icons appear on the lung X-ray.

New AI method captures uncertainty in medical images

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

Science, technology and innovation in a 21st century context

  • Published: 27 August 2011
  • Volume 44 , pages 209–213, ( 2011 )

Cite this article

  • John H. Marburger III 1  

23k Accesses

8 Citations

3 Altmetric

Explore all metrics

Avoid common mistakes on your manuscript.

This editorial essay was prepared by John H. “Jack” Marburger for a workshop on the “science of science and innovation policy” held in 2009 that was the basis for this special issue. It is published posthumously .

Linking the words “science,” “technology,” and “innovation,” may suggest that we know more about how these activities are related than we really do. This very common linkage implicitly conveys a linear progression from scientific research to technology creation to innovative products. More nuanced pictures of these complex activities break them down into components that interact with each other in a multi-dimensional socio-technological-economic network. A few examples will help to make this clear.

Science has always functioned on two levels that we may describe as curiosity-driven and need-driven, and they interact in sometimes surprising ways. Galileo’s telescope, the paradigmatic instrument of discovery in pure science, emerged from an entirely pragmatic tradition of lens-making for eye-glasses. And we should keep in mind that the industrial revolution gave more to science than it received, at least until the last half of the nineteenth century when the sciences of chemistry and electricity began to produce serious economic payoffs. The flowering of science during the era, we call the enlightenment owed much to its links with crafts and industry, but as it gained momentum science created its own need for practical improvements. After all, the frontiers of science are defined by the capabilities of instrumentation, that is, of technology. The needs of pure science are a huge but poorly understood stimulus for technologies that have the capacity to be disruptive precisely because these needs do not arise from the marketplace. The innovators who built the World Wide Web on the foundation of the Internet were particle physicists at CERN, struggling to satisfy their unique need to share complex information. Others soon discovered “needs” of which they had been unaware that could be satisfied by this innovation, and from that point the Web transformed the Internet from a tool for the technological elite into a broad platform for a new kind of economy.

Necessity is said to be the mother of invention, but in all human societies, “necessity” is a mix of culturally conditioned perceptions and the actual physical necessities of life. The concept of need, of what is wanted, is the ultimate driver of markets and an essential dimension of innovation. And as the example of the World Wide Web shows, need is very difficult to identify before it reveals itself in a mass movement. Why did I not know I needed a cell phone before nearly everyone else had one? Because until many others had one I did not, in fact, need one. Innovation has this chicken-and-egg quality that makes it extremely hard to analyze. We all know of visionaries who conceive of a society totally transformed by their invention and who are bitter that the world has not embraced their idea. Sometimes we think of them as crackpots, or simply unrealistic about what it takes to change the world. We practical people necessarily view the world through the filter of what exists, and fail to anticipate disruptive change. Nearly always we are surprised by the rapid acceptance of a transformative idea. If we truly want to encourage innovation through government policies, we are going to have to come to grips with this deep unpredictability of the mass acceptance of a new concept. Works analyzing this phenomenon are widely popular under titles like “ The Tipping Point ” by Gladwell ( 2000 ) or more recently the book by Taleb ( 2007 ) called The Black Swan , among others.

What causes innovations to be adopted and integrated into economies depends on their ability to satisfy some perceived need by consumers, and that perception may be an artifact of marketing, or fashion, or cultural inertia, or ignorance. Some of the largest and most profitable industries in the developed world—entertainment, automobiles, clothing and fashion accessories, health products, children’s toys, grownups’ toys!—depend on perceptions of need that go far beyond the utilitarian and are notoriously difficult to predict. And yet these industries clearly depend on sophisticated and rapidly advancing technologies to compete in the marketplace. Of course, they do not depend only upon technology. Technologies are part of the environment for innovation, or in a popular and very appropriate metaphor—part of the innovation ecology .

This complexity of innovation and its ecology is conveyed in Chapter One of a currently popular best-seller in the United States called Innovation Nation by the American innovation guru, Kao ( 2007 ), formerly on the faculty of the Harvard Business School:

“I define it [innovation],” writes Kao, “as the ability of individuals, companies, and entire nations to continuously create their desired future. Innovation depends on harvesting knowledge from a range of disciplines besides science and technology, among them design, social science, and the arts. And it is exemplified by more than just products; services, experiences, and processes can be innovative as well. The work of entrepreneurs, scientists, and software geeks alike contributes to innovation. It is also about the middlemen who know how to realize value from ideas. Innovation flows from shifts in mind-set that can generate new business models, recognize new opportunities, and weave innovations throughout the fabric of society. It is about new ways of doing and seeing things as much as it is about the breakthrough idea.” (Kao 2007 , p. 19).

This is not your standard government-type definition. Gurus, of course, do not have to worry about leading indicators and predictive measures of policy success. Nevertheless, some policy guidance can be drawn from this high level “definition,” and I will do so later.

The first point, then, is that the structural aspects of “science, technology, and innovation” are imperfectly defined, complex, and poorly understood. There is still much work to do to identify measures, develop models, and test them against actual experience before we can say we really know what it takes to foster innovation. The second point I want to make is about the temporal aspects: all three of these complex activities are changing with time. Science, of course, always changes through the accumulation of knowledge, but it also changes through revolutions in its theoretical structure, through its ever-improving technology, and through its evolving sociology. The technology and sociology of science are currently impacted by a rapidly changing information technology. Technology today flows increasingly from research laboratories but the influence of technology on both science and innovation depends strongly on its commercial adoption, that is, on market forces. Commercial scale manufacturing drives down the costs of technology so it can be exploited in an ever-broadening range of applications. The mass market for precision electro-mechanical devices like cameras, printers, and disk drives is the basis for new scientific instrumentation and also for further generations of products that integrate hundreds of existing components in new devices and business models like the Apple iPod and video games, not to mention improvements in old products like cars and telephones. Innovation is changing too as it expands its scope beyond individual products to include all or parts of systems such as supply chains and inventory control, as in the Wal-Mart phenomenon. Apple’s iPod does not stand alone; it is integrated with iTunes software and novel arrangements with media providers.

With one exception, however, technology changes more slowly than it appears because we encounter basic technology platforms in a wide variety of relatively short-lived products. Technology is like a language that innovators use to express concepts in the form of products, and business models that serve (and sometimes create) a variety of needs, some of which fluctuate with fashion. The exception to the illusion of rapid technology change is the pace of information technology, which is no illusion. It has fulfilled Moore’s Law for more than half a century, and it is a remarkable historical anomaly arising from the systematic exploitation of the understanding of the behavior of microscopic matter following the discovery of quantum mechanics. The pace would be much less without a continually evolving market for the succession of smaller, higher capacity products. It is not at all clear that the market demand will continue to support the increasingly expensive investment in fabrication equipment for each new step up the exponential curve of Moore’s Law. The science is probably available to allow many more capacity doublings if markets can sustain them. Let me digress briefly on this point.

Many science commentators have described the twentieth century as the century of physics and the twenty-first as the century of biology. We now know that is misleading. It is true that our struggle to understand the ultimate constituents of matter has now encompassed (apparently) everything of human scale and relevance, and that the universe of biological phenomena now lies open for systematic investigation and dramatic applications in health, agriculture, and energy production. But there are two additional frontiers of physical science, one already highly productive, the other very intriguing. The first is the frontier of complexity , where physics, chemistry, materials science, biology, and mathematics all come together. This is where nanotechnology and biotechnology reside. These are huge fields that form the core of basic science policy in most developed nations. The basic science of the twenty-first century is neither biology nor physics, but an interdisciplinary mix of these and other traditional fields. Continued development of this domain contributes to information technology and much else. I mentioned two frontiers. The other physical science frontier borders the nearly unexploited domain of quantum coherence phenomena . It is a very large domain and potentially a source of entirely new platform technologies not unlike microelectronics. To say more about this would take me too far from our topic. The point is that nature has many undeveloped physical phenomena to enrich the ecology of innovation and keep us marching along the curve of Moore’s Law if we can afford to do so.

I worry about the psychological impact of the rapid advance of information technology. I believe it has created unrealistic expectations about all technologies and has encouraged a casual attitude among policy makers toward the capability of science and technology to deliver solutions to difficult social problems. This is certainly true of what may be the greatest technical challenge of all time—the delivery of energy to large developed and developing populations without adding greenhouse gases to the atmosphere. The challenge of sustainable energy technology is much more difficult than many people currently seem to appreciate. I am afraid that time will make this clear.

Structural complexities and the intrinsic dynamism of science and technology pose challenges to policy makers, but they seem almost manageable compared with the challenges posed by extrinsic forces. Among these are globalization and the impact of global economic development on the environment. The latter, expressed quite generally through the concept of “sustainability” is likely to be a component of much twenty-first century innovation policy. Measures of development, competitiveness, and innovation need to include sustainability dimensions to be realistic over the long run. Development policies that destroy economically important environmental systems, contribute to harmful global change, and undermine the natural resource basis of the economy are bad policies. Sustainability is now an international issue because the scale of development and the globalization of economies have environmental and natural resource implications that transcend national borders.

From the policy point of view, globalization is a not a new phenomenon. Science has been globalized for centuries, and we ought to be studying it more closely as a model for effective responses to the globalization of our economies. What is striking about science is the strong imperative to share ideas through every conceivable channel to the widest possible audience. If you had to name one chief characteristic of science, it would be empiricism. If you had to name two, the other would be open communication of data and ideas. The power of open communication in science cannot be overestimated. It has established, uniquely among human endeavors, an absolute global standard. And it effectively recruits talent from every part of the globe to labor at the science frontiers. The result has been an extraordinary legacy of understanding of the phenomena that shape our existence. Science is the ultimate example of an open innovation system.

Science practice has received much attention from philosophers, social scientists, and historians during the past half-century, and some of what has been learned holds valuable lessons for policy makers. It is fascinating to me how quickly countries that provide avenues to advanced education are able to participate in world science. The barriers to a small but productive scientific activity appear to be quite low and whether or not a country participates in science appears to be discretionary. A small scientific establishment, however, will not have significant direct economic impact. Its value at early stages of development is indirect, bringing higher performance standards, international recognition, and peer role models for a wider population. A science program of any size is also a link to the rich intellectual resources of the world scientific community. The indirect benefit of scientific research to a developing country far exceeds its direct benefit, and policy needs to recognize this. It is counterproductive to base support for science in such countries on a hoped-for direct economic stimulus.

Keeping in mind that the innovation ecology includes far more than science and technology, it should be obvious that within a small national economy innovation can thrive on a very small indigenous science and technology base. But innovators, like scientists, do require access to technical information and ideas. Consequently, policies favorable to innovation will create access to education and encourage free communication with the world technical community. Anything that encourages awareness of the marketplace and all its actors on every scale will encourage innovation.

This brings me back to John Kao’s definition of innovation. His vision of “the ability of individuals, companies, and entire nations to continuously create their desired future” implies conditions that create that ability, including most importantly educational opportunity (Kao 2007 , p. 19). The notion that “innovation depends on harvesting knowledge from a range of disciplines besides science and technology” implies that innovators must know enough to recognize useful knowledge when they see it, and that they have access to knowledge sources across a spectrum that ranges from news media and the Internet to technical and trade conferences (2007, p. 19). If innovation truly “flows from shifts in mind-set that can generate new business models, recognize new opportunities, and weave innovations throughout the fabric of society,” then the fabric of society must be somewhat loose-knit to accommodate the new ideas (2007, p. 19). Innovation is about risk and change, and deep forces in every society resist both of these. A striking feature of the US innovation ecology is the positive attitude toward failure, an attitude that encourages risk-taking and entrepreneurship.

All this gives us some insight into what policies we need to encourage innovation. Innovation policy is broader than science and technology policy, but the latter must be consistent with the former to produce a healthy innovation ecology. Innovation requires a predictable social structure, an open marketplace, and a business culture amenable to risk and change. It certainly requires an educational infrastructure that produces people with a global awareness and sufficient technical literacy to harvest the fruits of current technology. What innovation does not require is the creation by governments of a system that defines, regulates, or even rewards innovation except through the marketplace or in response to evident success. Some regulation of new products and new ideas is required to protect public health and environmental quality, but innovation needs lots of freedom. Innovative ideas that do not work out should be allowed to die so the innovation community can learn from the experience and replace the failed attempt with something better.

Do we understand innovation well enough to develop policy for it? If the policy addresses very general infrastructure issues such as education, economic, and political stability and the like, the answer is perhaps. If we want to measure the impact of specific programs on innovation, the answer is no. Studies of innovation are at an early stage where anecdotal information and case studies, similar to John Kao’s book—or the books on Business Week’s top ten list of innovation titles—are probably the most useful tools for policy makers.

I have been urging increased attention to what I call the science of science policy —the systematic quantitative study of the subset of our economy called science and technology—including the construction and validation of micro- and macro-economic models for S&T activity. Innovators themselves, and those who finance them, need to identify their needs and the impediments they face. Eventually, we may learn enough to create reliable indicators by which we can judge the health of our innovation ecosystems. The goal is well worth the sustained effort that will be required to achieve it.

Gladwell, M. (2000). The tipping point: How little things can make a big difference . Boston: Little, Brown and Company.

Google Scholar  

Kao, J. (2007). Innovation nation: How America is losing its innovation edge, why it matters, and what we can do to get it back . New York: Free Press.

Taleb, N. N. (2007). The black swan: The impact of the highly improbable . New York: Random House.

Download references

Author information

Authors and affiliations.

Stony Brook University, Stony Brook, NY, USA

John H. Marburger III

You can also search for this author in PubMed   Google Scholar

Additional information

John H. Marburger III—deceased

Rights and permissions

Reprints and permissions

About this article

Marburger, J.H. Science, technology and innovation in a 21st century context. Policy Sci 44 , 209–213 (2011). https://doi.org/10.1007/s11077-011-9137-3

Download citation

Published : 27 August 2011

Issue Date : September 2011

DOI : https://doi.org/10.1007/s11077-011-9137-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research
  • Reference Manager
  • Simple TEXT file

People also looked at

Review article, a framework for research on education with technology.

research paper about modern technology

  • Alder Graduate School of Education, Redwood City, CA, United States

Educational software offers the potential for greatly enhanced student learning. The current availability and political will for trying new approaches means that there is currently much interest in and expenditure on technology for education. After reviewing some of the relevant issues, a framework that builds upon Marr and Poggio's (1977) levels of explanation is presented. The research itself should draw upon existing cognitive, educational, and social research; much existing research is applicable. Guidelines for those conducting research and those wishing to acquire technology are presented.

While the phrases: blended learning, computer-assisted instruction, computer supported education, edutainment, e-learning, flipped classrooms, intelligent tutoring systems, interactive learning environments, personalized learning, serious games, teaching machines, etc., are relatively recent labels, people have been thinking about the cognitive processes upon which these phrases rely for millenia. Many of the issues now faced have been addressed before (e.g., how to provide teachers with clear actionable information about how their students are doing, creating enough content for students), though with modern computers some of the difficulties faced by, for example, the teaching machines of the 1950s, can be addressed more easily (e.g., allowing multiple response formats for questions).

The different labels that have been used over the decades and those currently used by different stakeholders convey subtle differences of focus and also reflect different marketing strategies. To avoid these a more generic phrase will be used here: Education with Technology , abbreviated EwT. This was chosen to stress that the emphasis is on education and that technology provides a method for implementing some aspects of education.

Suppes (1966) notes while Alexander the Great was able to have personalized tutoring from Aristotle, this privilege is not available to many. He argued that if the wisdom and skills of Aristotle could be delivered by a computer, this could be scaled to benefit many students. Training millions of people to become Aristotle-like personal tutors is not economically feasible. However, if computer software could be developed to perform like Aristotle for some tasks, the additional costs of scaling this up to allow many to benefit is relatively small if the hardware is in place and if the same program is suitable for many. Computer software is a very scalable technology. In the future there will be more technologies that can be used for education. Part of the success of any new system will be if it scales as well as computer software. For example, holodecks might be used in education ( Thornburg, 2014 ), virtual reality glasses are already on the market, and neural implants designed to improve cognition are being built (e.g., https://www.neuralink.com/ ), but these would likely be expensive to scale-up. Nootropics (drugs designed to improve cognition) could become part of education discourse, and could be cost effective, but their use raises some ethical/health concerns. Future technologies could provide a radically different way to gain new information. For now, designing computer software is the most scalable technology available.

This first section is largely US focused. This is because the manuscript arose out of concerns for research and practice in the US. The framework is proposed for all EwT. The AIED (Artificial Intelligence in Education) conferences provide good snapshots of the relevant international research ( André, 2017 ; Conati et al., 2015 ).

Learning Before Computers

People have been interested in the cognitive processes that underlie learning and memory for centuries (e.g., Yates, 1966 ; Carruthers, 1990 ; Rubin, 1995 ; Small, 1997 ). Different theories of how people learn and remember have lead to different theories of how people should be taught ( Roediger, 1980 ). For example, if you assume that memory works like a file cabinet, where memories exist unaltered, memory errors result from not finding the “right” file. It follows that educational approaches should attempt to put knowledge into these cabinets until they are filled and teach retrieval techniques. With this metaphor, memory errors of omission (forgetting) may be seen as failures of retrieval, but elaborate errors of commission (confabulation) should be rare. Other memory metaphors (e.g., a sponge, wax tablet, a paleontologist recreating a dinosaur) suggest different reasons for memory errors and different pedagogies.

Over the centuries memory researchers have examined both internal memory mechanisms and external memory devices, and how they interact. Rubin (1995) describes how internal memory aides, or mnemonics , were taught to those needing to recite long passages. An example is the method of loci where the person visualizes to be remembered information on a well learned path and then mentally travels along this path when needing to recite the information. These skills were viewed so important that their name is associated with a Titan in Greek mythology, Mnemosyne , the mother of the muses (the nine Muses, whose father was Zeus , were the sources of knowledge in the arts, sciences, and literature). In modern education there has been less emphasis on teaching students how to remember than on what to remember, though some recent textbooks include sections on how to learn the book's content (e.g., Nolen-Hoeksema et al., 2015 ).

External aides have also been used to facilitate learning and memory. For example, Yates (1966) describes several theaters that were designed to help enhance memory (e.g., Giulio Camillo's Memory Theater, the Globe Theater). These were designed so that the actors could mentally place what they later would need to recall in different parts of the theater. Many also believed that these theaters were designed to provide some additional magical value for memory. Usually technology should be considered an external aide, but it is important for students to be trained to use the technology. Distinguishing internal and external memory aides can be complicated. Clark (2008) argues that if a technology is always available and always relied upon that it is only biological prejudice that prevents someone saying that the technology is part of the person's mind. With technologies like Google Glass, neural implants, and nootropics, differentiating internal and external is complicated.

Language and writing are social (inter-personal) technologies that are important for education. Small (1997) describes how these were used in the creation of the first books. In oral traditions stories waned and flowed with the orator's and contemporary society's influence, but with books the story could remain unaltered for generations. People no longer had to rely on stories passed through many people as accurate representations of the original events. Human knowledge of Atlantis will have gone through many iterations before Plato wrote about it, but since then his writings have become record.

With the printing press, more people could read the same book. Most books are not personalized for each individual, but individuals with the economic means could choose which books they read. There have been attempts to personalize books and to introduce some control for the reader. Borges (1941/1998) describes this approach when critiquing Herbert Quain's fictitious novel April March . Borges (1941/1998 , p. 109) used the schematic in Figure 1 to show how a reader could navigate through Quain's novel. After a shared introduction ( z ) the reader chooses one of three y options, and for each of these the reader chooses one of three x options. An example of a complete story would be z → y 2 → x 5 . This branching became popular in the 1970s with a genre of literature called gamebooks , where readers chose a path through the book by skipping pages. Two people could read the same book, but have different stories. Quain's novel, if it had existed, would have allowed readers to choose twice among three alternatives for nine possible paths. Borges (1941/1998 , p. 110) said “gods and demiurges” could create systems with infinite paths. Near infinite branching is at the heart of many digital first person adventure games. Within education, so-called serious games also often use this branching to create different stories for different readers. One question is whether any positive aspects of allowing students the autonomy to choose their path outweigh any negative aspects of missing out on educational information from the paths that are missed.

www.frontiersin.org

Figure 1 . Borges' schematic of Quain's novel April March . The reader can choose among nine different paths.

Three other important technologies for education are radio, film, and television (e.g., Cuban, 1986 ; Ferster, 2014 , 2016 ). These allowed what became known as edutainment to be heard and seen by millions. Initially there was much optimism. Thomas Edison declared in 1913 that “Books will soon be obsolete in our schools …. Our school system will be completely changed in 10 years” (as cited in Ferster, 2014 , p. 32). Optimism is repeated by some with the introduction of every new technology. There have been successes, but books are not obsolete. These media allow one production of a lecture to be provided to thousands of students, and the lecture is preserved for future students. These are mass media versions of the “sage-on-the-stage” approach to education ( Ferster, 2014 ). Television meant users could simply switch on their edutainment. Over 500 million people did this for Carl Sagan's Cosmos in the 1980s. Shows for children, like Sesame Street , also have had large impacts.

The choice of content–when left to the whims of viewing statistics and advertisers' target markets–often will not lead to positive educational messages being broadcast. Sagan notes how society's choice for what to present via a variety of social media is unfortunate:

An extraterrestrial being, newly arrived on Earth–scrutinizing what we mainly present to our children in television, radio, movies, newspaper, magazines, the comics, and many books–might easily conclude that we are intent on teaching them murder, rape, cruelty, superstition, credulity, and consumerism. We keep at it, and through constant repetition many of them finally get it. What kind of society could we create if, instead, we drummed into them science and a sense of hope?

( Sagan, 1996 , p. 39)

He would find little solace with the content of the internet.

There are practical issues linking massed produced material onto formal courses. This can be done more easily when the material is for just a single course. In the United Kingdom, where the Open University has pioneered large-scale well-respected distance education since 1969, lectures were often on radio and television, and sometimes late at night. Nowadays students download their materials and this is also done with many massive open online courses (MOOCs). The Open University is a good example of an education system adapting their methods for distance learning with advances in technology. Home schooling has seen similar changes in relation to technology. The International Association for K–12 Online Learning (iNACOL, http://www.inacol.org/ , “K–12” refers to the US grades kindergarten through 12th grade, which corresponds approximately to 5–17 years old), which began focused on home schooling, is now one of the main EdTech societies in the US. There are many large-scale courses available via the internet like Coursera, edX, Udemy, and Udacity, and stand-alone bits of knowledge that are available and used as part of educational courses including material from the Khan Academy, Wikipedia, and several YouTube (and YouTube-like) channels.

Another educational technology that pre-dates modern computers is teaching machines. In the 1920s and 1930s Pressey began creating machines to help to teach students. Figure 2 shows a schematic of one of this teaching machines taken from a 1930 patent (submitted in 1928). Pressey presented these machines at American Psychological Association conferences and began selling them with the promise of “the freeing of teacher and pupil from educational drudgery and incompetence” ( Pressey, 1933 , p. 583). His teaching machines did not become popular. Benjamin (1988) and Skinner (1958) say part of the reason was the culture in the US at the time: “the world of education was not ready for them” ( Skinner, 1958 , p. 969). At the time Pressey was marketing these machines there was a surplus of teachers so there was less need for time-saving technology. Pressey blamed lack of sales on the overall economic depression ( Ferster, 2014 , p. 60).

www.frontiersin.org

Figure 2 . From a 1930 patent by Pressey. The answer is D. James Ogle(thorpe) founded the colony in Georgia. From US patent “Machine for intelligence tests” (US 1749226 A).

When Skinner re-introduced teaching machines with some modifications in the late 1950s and US culture was more receptive. More teachers were needed to cope with the baby-boom and the US had just seen the Soviets launch Sputnik . There was a realization that the US needed to catch up with other countries particularly with respect to science education. President Eisenhower coined the phrase the Sputnik Crisis to describe this.

Skinner's (1958) approach differed from Pressey's, though they both assumed student-centered learning. Some of the differences were due to advances in learning theory within behaviorism as well as other areas of psychological research (e.g., Vygotsky's, 1978 work suggests a step-by-step approach through each individual student's zone of proximal development), and part Skinner's own nuanced approach. While Pressey was careful to say his machines would be a tool to help the teacher, Skinner was more comfortable saying his machines could do tasks formerly reserved for teachers: “the effect upon each student is surprisingly like that of a private tutor” ( Skinner, 1958 , p. 971). His claim lead to the popular press suggesting that his machines could lead to robots teaching students in classrooms like the research assistants taught pigeons in Skinner's lab.

Despite initial commercial success for some of the teaching machines of this era, their popularity faded. Benjamin (1988) , Ferster (2014) , and others discuss many of the factors that negatively affected their popularity. Three stand out: fear of technology, costs, and effectiveness. The first is that some people worried about students being taught by machines. While the Sputnik Crisis lead some to embrace technology, many feared that machines could create a dystopian future. These teaching machines were being marketed at around the time that Ginsberg (1955/2014 , p. 17) tapped into this fear referencing the Canaanite god of child sacrifice in his classic poem Howl : “Moloch whose mind is pure machinery!” Ginsberg was describing the dark-side of over-industrialization. The second reason is economic. These machines were expensive and more important for today's arguments, building each new machine was expensive so these did not scale-up as well as today's software solutions. Third, much of the research was showing that these machines were not as effective as initially promised.

Education With Computers

Papert (1993) began The Children's Machine by asking readers to imagine two groups of time travelers from the nineteenth century. The first are surgeons who are shown a modern surgery. Almost everything will appear new. The other group of time travelers are teachers who are shown classrooms of students sitting in rows listening to a teacher. While they would notice some differences in the classrooms, much would appear familiar. Ferster (2014 , p. 1) repeated this thought-experiment two decades later: “a nineteenth-century visitor would feel quite at home in a modern classroom, even at our most elite institutions of higher learning.” Why would modern classrooms seem so familiar to the nineteenth century guests? Is it that education got it right back then and that further advances were not necessary? Papert argued in letter to President Carter that education can be radically different and better if technology is embraced. He said: “Unless we do this, tomorrow will continue to be the prisoner of the primitivity of yesterday” ( Papert, 1980 ).

There are several ways to classify different types of interactions students can have with an educational computer system. Atkinson (1968) and Suppes (1966) describe three: drill and practice, tutorial systems, and dialogue systems. Drill and practice can be seen as computer extensions of most of the early teaching machines. Students could take, at their leisure, practice quizzes and be provided with immediate feedback. Given the value of practice, testing, and feedback (e.g., Roediger et al., 2010 ), that different students will be best served by items that vary in difficulty and pertain to different competencies ( Metcalfe, 2002 ), and that this is a monotonous task for teachers to do, drill and practice is an obvious part of the curriculum for computers to assist. Drill and practice systems allow students to evaluate their own knowledge efficiently.

The goal of tutorial systems goes beyond just allowing students to evaluate their knowledge. The goal is to teach students how to solve problems. The computer system can offer more interaction and feedback than a textbook or sage-on-the-stage edutainment, and more individualization than a teacher in front of a large class. For example, if most of a class has mastered calculating the area of a triangle, the remaining students could use a tutorial system to provide them with an alternative mode of teaching while the rest of the class learn a new task (which the students re-learning about triangles may or may not eventually be taught). While the teaching machines of the 1950s and 1960s could guide students, step-by-step, through different exercises, the computer allows many more steps and allows the student to progress down multiple pathways ( Ritter et al., 2016 ).

Dialogue systems allow a greater amount of interaction between the student and the system. Suppes ( 1966 , p. 219) gives the example of a student asking: “Why are demand curves always convex with respect to the origin?” Fifty years on there have been many advances in natural language processing. I entered this phrase into Google and it suggested several web pages, including quora.com , where the question:

What are the conditions under which a demand curve is convex? Explain with a few real life examples of goods with convex demand curves.

was asked and answered. Dialogue systems require some natural language processing. AutoTutor by Graesser and colleagues (for a review see Nye et al., 2014 ) is an excellent example of using language processing.

Papert (1980) describes another way to differentiate technology uses in education: auxiliary and fundamental computer uses. Auxiliary uses are where the computer is not changing the educational processes. The same (or very similar) activities are simply being presented in a different medium. These can be helpful, perhaps allowing individuals to work on their own activities and at their own pace, or making feedback more rapid. Using computers changes how the lesson is taught and the physical implementation of it, but there is not a major pedagogical shift. Fundamental uses change what is being taught and why . They enable students to learn information that they might not learn in a traditional classroom and learning is done in a manner that is a departure from the traditional pedagogy. Fundamental uses change the curriculum rather than implementing the same curriculum differently. While auxiliary uses can be beneficial and efficient, Papert argues that the fundamental uses have the potential to revolutionize education. In an essay written with former West Virginia governor Gaston Caperton, Papert describes how technology should be used not just to solve problems of “schools-as-they-are,” but to build schools into “schools-as-they-can-be” ( Papert and Caperton, 1999 ). This idea is at the core of the XQ Super School Project ( https://xqsuperschool.org/ ), who fund proposals to create innovative schools.

Because computers are part of modern society, they will remain in students' homes and classrooms. However, the progress for educational software is neither straight-forward nor without impediments. A common comparison is made with the wild west (e.g., Reingold, 2015 ). In the wild west people could make wild claims about the curing powers of anything (e.g., heroin was marketed as a cure for cancer, sluggishness, colds, tuberculosis, etc., www.narconon.org/drug-information/heroin-history.html , Accessed June 21, 2017). If a vendor sold a lot of the product, a lot of money could be made, and in that era some people viewed making a lot of money as an important indicator of success. It was difficult for the public then to verify any of the these claims. A customer might be choosing a remedy for a sick child based on hope and desperation. Cuban's (2001) book title, Oversold & Underused , summarizes the view of many about the impact of EwT. Schools want a computer system that will cover their entire curriculum and for all grades, and to improve scores on standardized tests immediately. They hope that there is just a switch to flip much like those in the wild west hoped a sip of a magical elixir would be a cure-all for any ailment. They hear a sales pitch that seems to offer this. It is important that those making decisions about EwT do not feel like they are making decisions out of desperation like the parents of a sick child in the wild west, but there is pressure on school administrators to have their schools move up in the rankings ( Foley and Goldstein, 2012 ; Muller, 2018 ) and offering hope without evidence is a popular and persuasive sales technique in unregulated markets.

Technology is advancing. The time traveling teachers from Papert's and Ferster's examples would be amazed to see the number of students with cell phones, the capabilities of these devices, the amounts the devices get used, the ubiquity of social media (and its impact), and in general the technology related behavior of these Digital Natives . Some aspects of these affect EwT. For example, the small screens put constraints on the amount of text that can be shown at any one time just as writing on paper vs. animal skin affected what was written ( Small, 1997 ). Detailed plots, long tables, and lengthy well-constructed arguments have been replaced by tweets .

Greenfield (2015) describes the phenomenon of Mind Change . The mind and the brain are adaptive to their environment. Many aspects of using computers (e.g., rapidly accessing lots of information in small pieces, social networking, “likes” on Facebook) make different demands on humans than traditional environments. She argues that it is important to research possible changes–some may be positive and some may negative–on the brains/minds of Digital Natives caused by new technologies. The EwT industry is betting that the positive effects greatly outweigh the negative effects, but consider the EwT approach of “asking Google.” Does the rapid access to (possibly accurate) related information change the way people create questions and evaluate answers? Does the impersonal way that people get feedback from electronic tutors affect how the graduates would handle workplace criticism? Does the anonymity of the internet affect us as social animals? EwT can be implemented in different ways and each of these may affect students in different ways.

In order to predict future use of EwT accurately and to develop EwT well it is necessary to understand how EwT and education in general are situated within political, social, and economic climates. Convincing people to change their behaviors can be difficult. Pressey argued that the poor economic period in which he was creating his teaching machines meant that they were not financially successful. In the late 1950s and 1960s, when Skinner and others were creating teaching machines, the economic situation was better. Further, in the aftermath of Sputnik there was a societal drive to increase education. Still, the teaching machines of this time failed to have a lasting impact.

Currently, while the US is in fairly good financial shape, there is uncertainty about Federal funding of education research. Further, the decision making about buying specific products is non-centralized. This means that an attractive sales pitch is critical to the product's success. The start-up mentality is also evident. Many products are being developed with the backing of venture capitalists who hope that they have bet on some successful ones. Success of a single product that a venture capitalist bets on usually is greater in financial terms than the amount lost by several failed bets. Whether this gambling ratio is appropriate for education is debatable. In this climate Papert's (1980) notion of having a few centers of research is welcomed, though how they are funded and if they can maintain independence are uncertain.

The political climate in the US and elsewhere is divided with respect to scientific evidence based decision making and argumentation. While people benefit from science (e.g., the popularity of cell phones), many people are not interested in the science itself. If the magazines at supermarket checkouts are any indication, then the public has more interest in where reality stars vacation than scientific progress. The division between decision making based on science and based on superstition has long existed ( MacKay, 1841/2012 ). Advanced technology has the potential for positive change, but it is necessary to make sure that the people embrace science over mysticism.

… people use electricity and still believe in the magic power of signs and exorcisms. The Pope of Rome broadcasts over the radio about the miraculous transformation of water into wine. Movie stars go to mediums. Aviators who pilot miraculous mechanisms created by man's genius wear amulets on their sweaters. What inexhaustible reserves they possess of darkness, ignorance, and savagery!

( Trotsky, 1933 , October, 1933)

Trotsky was talking about how the scientific conditions among much of the population in Germany helped Hitler come to power, but parallels can be made with other places and time periods when a sizable proportion of the population lacks trust in the scientific method and when leaders who do not use valid evidence for their decision making come to power. These are not good circumstances to use scientific results to convince many in the public of the value of using technology in education.

Importantly, some people do value technology and do believe in its potential. There will continue to be investment on EwT. It is important for the research and the education communities to help target this investment. There are lots of products, many without much evidence of effectiveness. To prevent survival of the loudest dictating the evolution of EwT, it is important to think carefully about a potential EwT research framework. In the interest of children's education decisions should be based on the available science, rather than on, using Trotsky's phrase, “darkness, ignorance, and savagery!”

A Research Framework

Billions of dollars are spent each year on technology for education. However, the current landscape is problematic. It is important to go beyond the wild west metaphor ( Reingold, 2015 ). This section is divided into three parts. The first section describes an attempt to discover whether a particular type of EwT is effective. The conclusion from this section is that identifying effective products is difficult. While many view a randomized controlled trial (RCT) of a product as the gold standard for evaluation research, here it is argued that there is a time and a place for RCTs, but that other research methods should also be used. The second section describes different levels of explanation. It is argued that EwT research should focus on the goals of the system and whether the underlying rules used to build the system effectively achieve these goals. These levels are based on an influential neuroscience framework put forward by Marr and Poggio (1977) . The third section provides more detail about how research could progress, and provides some examples.

Testing the Effectiveness of Any EwT System Is Difficult

The US Institute of Education Sciences (IES) rightly states that “well-designed and implemented randomized controlled trials are considered the “gold standard” for evaluating an intervention's effectiveness” ( https://ies.ed.gov/ncee/pubs/evidence_based/randomized.asp , Accessed June 22, 2017). However, it is often difficult to conduct an RCT of a product or any complex educational innovation in development. Many studies described as RCTs by their authors have significant problems and probably should not be called RCTs ( Ginsburg and Smith, 2016 ). Sullivan (2011) discusses how forcing a research question into an RCT can distance the study from the intended experiences of the product/system. The argument here is not to avoid full-program evaluations. These can be very important in providing evidence for the effectiveness of well-established products. A good example is Pane et al. (2014) study of Carnegie Learning ( Ritter et al., 2016 ). Randomization is useful, but is neither necessary nor sufficient for making causal inference ( Wright, 2006 ; Pearl, 2009 ; Deaton and Cartwright, in press ).

Performing experiments on components of the product can often be done more easily than evaluating whether and entire program works or not, and this approach can be beneficial for product development and may generalize to other products. Quasi-experiments still have their place, particularly with archival data. In the remainder of this section a study with the goal of evaluating the effectiveness of personalized learning (PL) is discussed to illustrate the difficulties of program evaluation.

The phrase “personalized learning” is often used to describe a wide variety of approaches ( Arney, 2015 ; Horn and Staker, 2015 ; Taylor and Gebre, 2016 ). The core elements are that individual students decide some of the content and pace of their own learning, and that the system (usually a computer) guides and may restrict choices. This has the important consequence of freeing up time and resources so that the teacher can work one-on-one with each student or with small groups of students when they are not working on computers.

The study has achieved much press and optimism from investors (e.g., www.chalkbeat.org/posts/us/2017/05/22/as-ed-reformers-urge-a-big-bet-on-personalized-learning-research-points-to-potential-rewards-and-risks/ . Accessed June 22, 2017). Pane et al. (2015) were funded to evaluate whether, in a nutshell, PL works. I describe several hypothetical “what ifs” and conclude that even if they had performed an RCT the results would have been difficult to interpret.

The authors highlighted how difficult a task it is to design a study to measure the effectiveness of PL and cautioned others not to over-interpret their results. Here is what they did. The schools in their PL condition had about 2 years of PL. These schools are described as those which “embrace personalized learning,” “have a high degree of integrated technology as part of their school designs,” are among “the country's best public charter schools,” and have gone “through a series of competitive selection processes” ( Pane et al., 2015 , p. 36). These descriptions make these schools sound great! From these descriptions it might be expected that if a random selection of students were sent to these schools overall this group would perform better (i.e., raise their test scores by more) than if these students had been sent to a random selection of other schools. Rather than choosing a comparison group of schools with similar positive characteristics, Pane et al. (2015) had the test vendor (NWEA) match each student in these select schools with students at a variety of schools that presumably, on the whole, do not have all the positive characteristics described above for the PL group.

Given that interest is in school effects on student outcomes the decision not to compare similar schools is problematic. Even without an intervention the expectation would be that the PL group's scores should increase more because according to the authors' descriptions these are better schools than most. A good analogy would be if you were comparing restaurants. In one condition you have restaurants that are “the country's best” and in the control condition you have a random sample of restaurants (the schools were matched on urban, suburban, and rural, so restaurants might be matched on serving French, Italian, or Spanish cuisines). You gave each restaurant the same set of ingredients. For the “best” group you also gave them a recently published cookbook. The restaurants prepare meals using only the ingredients that they were given. Judges grade these meals and the “best” restaurants get higher marks. The question is whether you would conclude the cookbook was the cause?

If the PL group of schools were shown to have a positive effect in a study with properly matched group of schools (or if schools were randomly allocated either to have PL for 2 years or to be in a control group), what would this tell us and what would be the next steps? The norm in science when trying to establish causation is to have the treatment nearly identical for all units. In this study, however, “innovation was encouraged” for the PL schools. The schools were “not adopting a single standardized model of personalized learning” ( Pane et al., 2015 , p. 3). While this may or may not be beneficial for the education of the students in these schools, it makes it difficult for the researchers. Because of the variation in what PL means to people and how it was implemented among the PL schools, coupled with variation in teaching philosophies among the set of control schools, it would be difficult to conclude anything other than these hodge podges of difficult to characterize pedagogies may differ. While the “positive” outcome on performance reported in Pane et al. (2015) would be predicted just because of how schools were sampled (there are also issues with respect to how students are allocated to schools), an RCT of a complex intervention would be unlikely to shed much light on why the intervention works. If an RCT (or a well designed matched-group study) showed substantial positive results, the next step would be to try to understand which components of the curriculum may be effective and research these components. An alternative is to begin with this research while these approaches are still being developed.

The purpose of the preceding paragraphs was not to criticize Pane et al. (2015) . They did well in their attempt to answer a difficult question: “Does the set of things called PL work in the schools that are funded to do it?” Consider a simpler research question:

What is the evidence that an EwT approach should work?

The remainder of this paper will explain what this question means in more detail and will argue for why it is a useful question for those seeking to purchase EwT and why it is a useful approach for developing research.

Levels of Explanation

Marr (1982/2010) reviewed vision research from the 1960s and 1970s. He marveled at research examining the physiology of vision, for example neuron firing patterns, but felt this did not provide a complete understanding of vision. To understand a system as complex as vision he argued that it was necessary to understand the system at multiple levels. He said that it was necessary to understand the goals of the system and the rules that the system used to achieve these goals in order to understand the system. Poggio (in the Afterword of Marr, 1982/2010 and in Poggio, 2012 ) discusses some changes that he recommends to the levels that he and Marr and had originally proposed ( Marr and Poggio, 1977 ). He discusses how any classification system is somewhat arbitrary and that alternative levels and labels may be more appropriate in other contexts. He also stressed the importance of understanding the relationships among levels. This is particularly important for developing EwT. Here are five levels proposed for understanding EwT that are adapted from Marr and Poggio's (1977) framework.

1. Decide the top-level GOALS of the system. These will often be related to student learning, but may also be skills acquisition, behavior modification, etc.

2. Decide WHAT is to be learned. This might be something specific like the physics of volcanoes or a specific component of socio-emotional learning, or it may be broad like all academic subjects included in state tests or improving maladaptive behavior. Once these top two levels are decided researchers and developers can concentrate on how to achieve the goals for what is to be learned.

3. The CORE features of the theory for how the goals can be achieved. These will likely be from pedagogical or learning science theories. These features would include a “soft core” that can be evaluated, refuted, and adapted. Researchers should continue to question whether these features produce the stated goals at the top level.

4. Decide the RULES or algorithm that will be used to set up the conditions that the core features of the theory predict will achieve the goals. These rules should be written in enough detail to allow them to be programmed into a computer language, to allow a carpenter to build a mechanical teaching machine, etc.

5. Decide the physical IMPLEMENTATION. For computer technology this would include choosing among tablets, smartphones, and desktops. The physical implementation will dictate, to some extent, how the rules are represented. With computers, this usually means the computer language used.

Once it is decided, for example, that the goal is for students to learn the physics of volcanoes, the researchers and developers would list some core features of the theory that they believe account for learning. Specific rules are developed that set up the conditions that these core features predict should increase learning. These are translated into a representation compatible with the physical implementation. This would be a top-down way to develop a product. Bottom-up development can also occur. Because of the widespread availability of computers and the scalability of software, some investors may only invest in computer software technology. The developers might then decide what they can build with this technology that may be profitable. The choice, for example, between building a product for foreign language learning vs. for learning physics may be based on what can be built with the physical device (e.g., foreign language tutorials usually require audio input/output and physics tutorials can be helped by allowing the user to manipulate diagrams).

Table 1 shows how the Pressey's and Skinner's teaching machines might fit within the proposed levels. At the top two levels the goal of the proposed technology is to increase student learning of the meanings of biology terms (other “whats” could be used). The teaching machines were built assuming the core features from the learning theories of behaviorism, developed by many of the psychologists of the time (e.g., Hull, Pavlov, Skinner, Thorndike, Watson). A rule that would increase the associations between biology terms and their definitions would be to present the definition to the students and have them respond with the term, until they are correct on each item. This is a “drill and practice” procedure as described before. How to represent this rule will depend on how it is physically implemented. Suppose that the accuracy of a student's response does not require perfect spelling of a term; it would be necessary to have that described in the rules. With teaching machines the students might be presented with the correct answer and have to judge whether they were correct. With computers it is possible to use approximate matching algorithms to allow for mis-spellings, but the designer would still need to state how close a spelling could be (for example, the Levenshtein distance [LD]). Partial credit could be given for some answers, and details of this rubric would be required. The choice of physical implementation could also be constrained by higher levels. For example, if it were necessary to show a video or play audio, then flashcards could not be used.

www.frontiersin.org

Table 1 . Levels for Teaching Machines.

The rules should be written out in detail. Consider a simple algorithm:

Let there be a set of items to be learned.

Let R j be the number of times the student “correctly” answers the j th item.

Loop until R j = 2 for all j .

  Sample one item from set of items such that R j < 2 and ask student.

  If the student is correct add one to R j .

Move onto next task.

These rules are simple enough that they could be implemented with different technologies, some of which are listed in the bottom row of Table 1 . The different implementations should all use the same rules as specified, but could differ on aspects that are not specified. For example, how the sampling of items with R j < 2 is done would vary depending on the implementation. Constructing a mechanical teaching machine for this purpose could be done, and the sampling would depend on how the gears work. A student using flashcards might have separate piles for the number of times the item was correctly answered (a pile for R j = 0, a pile for R j = 1, and a pile for R j = 2) and the student might progress through the R j = 0 then the R j = 1 piles in the order the cards are in, placing a card on the bottom of the appropriate pile after its use. Computer software might use a pseudo-random process to shuffle all R j < 2 items or create an order to optimize learning by spreading out semantically related items. If the sampling method turns out to be important for achieving the computational goals, then it should be specified by the rules, and this could constrain the choice of physical implementation.

These implementations can be judged on how well they implement the rules and the system's cost. Given the simplicity of this example all of these technologies should implement the rules accurately, though gears in teaching machines can break, flashcards get wet, and computers crash. Some implementations may have additional benefits built in, like making flashcards requires the student to write each item or that the computer can display information in innovative ways. The cost varies considerably among the different implementations. Creating mechanical teaching machines for each student would be expensive and would be limited in what else they could do. The flashcards would be cheap to produce. They are often produced by the students themselves. Assuming the student already has a computer, making the software for a good “drill and practice” task can be expensive for the original prototype, but making copies available for additional users can be done inexpensively.

It is worth stressing that there will be important issues constructing the input and output for computers vs. tablets vs. smartphones. Research to make sure these modes are compatible is necessary, but these likely could implement the underlying rules in a similar way, perhaps changing how information is displayed. Further, this type of research (called human computer interaction, human centered technology, or user design) is well known by software companies so most EdTech companies have people in place for this. Compatibility research to examine, for example, if there is an advantage taking the SAT on a computer or a tablet, is already done by testing organizations.

Papert's auxiliary-fundamental (or “school-as-it-is” vs. “school-as-it-can-be”) distinction is also interesting from the perspective of these levels. The auxilary uses would have the same upper levels as their traditional classroom counterparts. They might also assume the same core features of the learning theory and may even use the same rules. The physical implementation would differ from the traditional teaching curriculum. Auxiliary uses can still be valuable as the new technology may mean students learn more efficiently (e.g., by rapid feedback, having more one-on-one time with the teacher), but WHAT they learn would be the same. An example would be taking a well-constructed textbook, an item bank for each chapter, videos of excellent lectures, and changing the physical implementation of these so that they are delivered on a computer screen and through headphones. For fundamental uses WHAT students learn is different from the traditional curriculum. They may even introduce new GOALS.

As discussed earlier, PL is currently receiving a lot of attention. While there is not a single PL approach, Table 2 shows a generic PL approach. Often PL is designed to improve student learning, broadly defined. The WHAT is often most of the academic curriculum. This was true for the sample of PL schools in Pane et al. (2015) . Table 2 shows three of the core features for why PL is assumed to increase student learning. The first feature, individualization, is that students are taught what is optimal for them. What is best for one person is not best for everyone. For example, the information should not be too easy or too difficult; it should be within what is called the zone of proximal development ( Vygotsky, 1978 ) or the region of proximal learning ( Metcalfe, 2002 ). The material might also be individualized to the students' interests and learning styles. The second core feature is that allowing students choice in itself is important for their growth. However, because students do not generally choose the items that will maximize learning (e.g., Metcalfe, 2002 ), this feature can conflict with the first feature. The third feature is what is often called competency based education, where students progress based on their performance rather than their age.

www.frontiersin.org

Table 2 . Levels for Personalized Learning.

The rules for achieving these core features (which in turn are assumed to achieve the over-arching goal) with PL are often: allowing the student some control over the pace and content of their curriculum and using feedback to help them make good choices. A more detailed set of rules would be necessary to describe any specific approach. Suppose the system allowed students to choose a module and once within a module the students could decide (with feedback from the computer) whether they knew the module well enough to move onto the next module. Students would use the computer to try to learn the tasks, receive feedback on their progress, and then decide if they think they know the information well enough to move to the next task.

  Study information (amount and method determined by student)

  Take assessment

  Computer estimates student achievement

  Receive feedback

    If achievement estimate less than proficient, do not allow student to leave loop.

    If achievement estimate at least proficient, allow student to leave loop.

     Student decides whether to leave loop or repeat. Move to next task.

It can be beneficial to draw causal diagrams, which are called directed graphs in the branch of mathematics called graph theory, as in Figure 3 . This is just a single module. It would be nested with many others into a course. This module may have pre-requisites or be a pre-requisite for other modules. It is important to consider how a localized causal diagram like Figure 3 fits within a larger causal network (for more details about using graphs to attribute causality see Pearl, 2009 ; Pearl et al., 2016 ).

www.frontiersin.org

Figure 3 . A single module. The student can go back to look at content and then repeat the test, over and over. This is called a directed cyclical graph.

It is worth noting that this particular set of rules is compatible with different procedures being inside the box labeled “Look At.” This might involve using drill and practice, watching instructional videos (edutainment), reading web pages, natural language tutors, etc. A student might also choose not to review the information and just re-take the test. There are also many options for how to produce a score. Often this will be a percentage correct, but educational measurement experts discuss many alternatives. There are advantages and disadvantages to not constrain the rule specifics, particularly when the system is designed to cover many different academic subjects. If these specifics are not stated in the rules then they can be varied. Evaluations should, however, take into account this variability. The implementation level in Table 2 lists three possibilities. It is possible to implement the rules without a computer, using for example professional human tutors (peers can sometimes also be used). This might be practical for some tasks, like learning to drive, but this would be prohibitively expensive to educate all students throughout their curricula. This is why most people view computers as the most practical way to implement the rules listed in Table 2 and thereby to achieve the goals. For this reason PL has become closely associated with EwT.

An Approach to EwT

The purpose of this section is to provide recommendations for two groups of people and some example research questions. The groups are: (a) individual researchers, and (b) people buying EwT products.

Individual Researchers

Figure 3 isolates a small number of relationships so that they can be more easily understood in isolation. This is a common approach to science: examine the phenomenon “in the simplest possible context that is not entirely trivial, and later generalize” ( Cox and Donnelly, 2011 , p. 5). This allows researchers to identify causal relationships. The difficulty of this approach is that how things operate in complex contexts can be different than how they operate in a simple context. McGuire (1973 , p. 452) discusses this as his second Kōan for research: “In this nettle chaos, we discern this pattern, truth.” In most naturally occurring situations the variables in which the researchers are interested will likely covary with many other variables. Untangling these relations (and “nettle chaos” seems a good metaphor for having many relationships among variables) is statistically difficult. McGuire describes how this approach requires statistical expertise, but that it should be guided by theory. The following is a list, influenced by McGuire's (1973) , for researchers to consider.

1. For researchers focusing just on a small part of the system, like that depicted in Figure 3, the relationship between just two variables can be complex. Often the relationships are non-linear and vary depending on so called moderator variables.

2. If your theory predicts that some intervention affects test scores, describe what else it should affect and what it should not affect. And then measure these. The famous geneticist and statistician, Ronald Fisher, summed this up nicely: “Make your theories elaborate” (see Cochran, 1965 , p. 252).

3. If your primary effect of interest is long-term, like graduating high school, it can be useful to include mediator or proxy variables. These are variables that if affected signal that the long term variables should also be affected. For example, with graduating high school, mediator variables would include lower delinquency which has a causal influence on graduation. Proxy variables are common in medicine. If you are interested in whether some drug given to people in their forties reduces the risk of heart attacks later in life, you might measure blood pressure in the weeks after giving the drug to subjects and extrapolate that by reducing blood pressure in the short term this drug also reduces the probability of a heart attack in the long term.

4. When trying to show how a single “nettle plant” works within “nettle chaos” it may be useful to draw all the variables/constructs that you are interested in and use arrows to show how they may be connected. When many variables are all inter-related, trying to understand causal and associative relationships from a complex graph can be difficult. Pearl (2009) is a key reference for identifying causes from graphs (see also Morgan and Winship, 2007 ; Imbens and Rubin, 2015 ; Pearl et al., 2016 ; Steiner et al., 2017 ). Simulation methods can also be useful to show the predicted outcomes from these diagrams.

5. The focus of much science is on causal relationships, but in some cases associative relationships are also important. Researchers should not confuse these and should use appropriate methods for investigating each of these. It is important to avoid causal words, like “influence,” “effect,” and “impact,” when the study was not designed to estimate causal relations ( Wright, 2003 ).

6. Particularly when studying a complex system it is necessary to have theory guide analyses to avoid data fishing/mining problems. The relationships assumed for the rules and core features should help to constrain the statistical analyses.

Caveat Emptor : What the Buyer Should Know

Modern EwT consumers face the difficult situation when deciding whether to acquire EwT products and if so which ones. One solution would be to have regulations on what can be sold, but this seems unlikely in the current political climate in the US. An alternative is to have consumers demand more verifiable information from vendors before they spend money. If EwT research is done well and consumers expect vendors to provide certain information, then we can move beyond the wild west situation without further regulations. The following list are aspects of the product that ideally a consumer should be told. At present most vendors will not have answers to all of these, but hopefully future research will provide them with answers. This list is based on how judges in the US are told to decide whether to accept expert testimony on scientific and technical matters. These guidelines are adapted from the Federal Rules of Evidence and primarily from three US Supreme Court decisions. These are collectively called the Daubert Trilogy ( Daubert, 1993 ; Joiner, 1997 ; Kumho, 1999 ).

1. The evidence supporting the product's effectiveness should be generally agreed upon by those in the relevant field (e.g., learning scientists).

2. The studies that provide the evidence should be based on sound scientific principles. Daubert discusses Popper's (1959/2002) use of falsification to demarcate science from non-science. According to Popper a good scientific theory should have withstood studies that could have falsified it. If so, it is said to have attained a degree of corroboration. Additional aspects of the scientific value of the supporting evidence should also be considered.

3. The effect sizes (or error rates) of any effects should be known. The vendor should be able to predict effect sizes for your school, should reference the uncertainty of these estimates, and should be able to say how these estimates were calculated. The variables (e.g., school and student variables) that moderate efficacy should be known and the situations where it is not predicted to be effective should be discussed. The intervals for the estimates may be very broad, but the uncertainty of estimates should not be hidden.

4. The evidence that the vendor uses to support their claims should be published in peer-reviewed journals that adhere to scientific principles. It is important for consumers to realize that that being published in a good journal does not imply the finding is accurate. There are many inaccurate findings in good journals ( Ioannidis, 2005 ). However, the peer review process does prevent much junk science from being disseminated.

5. The distance between the research and the conclusions should not be too great. This might relate to how well the rules match with core features and these with goals, whether the conditions used for the supporting evidence are very different from the school setting, or whether the sample in the studies is very different from the intended group of students.

One of the arguments against the Daubert Trilogy is that it requires judges to make complex judgments about the value of scientific research when they do not receive much training on this. Differentiating junk science from reputable science can be difficult. Those making IT decisions for school systems are in a similar situation. They may face enthusiastic vendors and need to differentiate circumstance from pomp.

Example Research Questions

A few example research questions are presented to provide a flavor of the type of research that can address whether a product should work. For illustration the following list will focus on the type of EwT depicted Figure 3 .

How does the software estimate whether the student is likely to have reached the desired performance level? Is the assessment fair, valid, and reliable? How do the scores given to students affect how they decide to navigate the system and how do they affect students' beliefs about how much they know?

Bad choices

People learn from making errors ( Metcalfe, 2017 ) and given that many EwT systems require students to make choices, some of these will be bad choices. Can these be identified and types of bad choices classified? Can students be taught to make better choices and are there ways to ensure that students will learn as much as possible from their bad choices?

Computer software can provide a large amount of data (i.e., the log files). While exploratory data mining might suggest some associations, the data are messy and exploratory atheoretical mining can be problematic (massive “nettle chaos” with statistical analyses with many researcher degrees of freedom). Analysis based on theories of the students' cognitive processes could direct specific statistical questions.

How does choosing one's own path affect confidence? Are students happier with the task if they believe that they have chosen it? Are they likely to engage in the task more? Is there less mind-wandering? These could all mediate the effect of agency.

“Modern technology will dramatically improve education!” attracts headlines, but educators have read headlines like this before. Technology has the potential to improve education and it might someday revolutionize education, but to date research evidence has failed to keep pace with optimistic rhetoric. The computer is different than past technologies because students are already learning about computers and many have computers at home (and in their pockets). Even compared with a decade ago, children are more immersed in computing technologies (i.e., many are Digital Natives ). There are still pitfalls and it is possible (though unlikely) that EwT could fade as some other technologies have. It is important to learn from the history of EwT so that the field does not succumb to the same problems and to understand the current environment so that other potential problems can be addressed. There is much investment both financially and by many schools changing how they teach students, so there are many people wanting this to work. The goal of this paper was to put forward a research framework to increase the likelihood of success and to maximize positive impacts.

The best way to avoid pitfalls is to accumulate evidence about the effectiveness of products, submit the research for peer-review, and show how continued improvements to products are helping students. It is important to show those contemplating EwT that its adoption is a good investment. This requires more evidence–of the type described in the list for what consumers should ask vendors–to show that using these new technologies is financially responsible.

A research framework was put forward that will help with these goals. The focus should be to show that the different components of the system work. Studies should not just look at whether an innovative program improves end-of-year test scores, but whether the individual parts of this program influence many of the facets that co-vary with and influence test scores. This will help the field to evolve and to show why products work. The focus should not be on specific products, because new versions of them will arrive with new technologies (at the implementation level), but on the rules that the products implement and on whether these rules lead to the goals of the system. It is important for EwT to have evidence to withstand criticism. It is important that researchers and developers continue to strive for Suppes' goal to provide Aristotle-like EwT tutors for all students.

Author Contributions

The author confirms being the sole contributor of this work and approved it for publication.

My position is funded in part by the Chan Zuckerberg Initiative.

Conflict of Interest Statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The author's work on personalized learning is funded by the Chan Zuckerberg Initiative (CZI). The conclusions presented here are the author's, and do not represent those of CZI. Thanks to Heather Kirkpatrick and Kristin Smith Alvarez for much discussion and valuable comments on previous drafts.

André, E., Baker, R., Hu, X., Rodrigo, M. T., and du Boulay, B. (eds.). (2017). Artificial Intelligence in Education . Gewerbestrasse: Springer.

Google Scholar

Arney, L. (2015). Go Blended! A Handbook for Blending Technology in Schools . San Francisco, CA: Jossey-Bass.

Atkinson, R. C. (1968). Computerized instruction and the learning process. Amer. Psychol. 23, 225–239. doi: 10.1037/h0020791

PubMed Abstract | CrossRef Full Text | Google Scholar

Benjamin, L. T. Jr. (1988). A history of teaching machines. Am. Psychol. 43, 703–712. doi: 10.1037/0003-066X.43.9.703

CrossRef Full Text | Google Scholar

Borges, J. L. (1941/1998). Collected Fictions . New York, NY: Penguin Books.

Carruthers, M. (1990). The Book of Memory: A Study of Memory in Medieval Culture . New York, NY: Cambridge University Press.

Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension . New York, NY: Oxford University Press.

Cochran, W. G. (1965). The planning of observational studies of human populations. J. R. Stat. Soc. Ser. A 128, 234–266. doi: 10.2307/2344179

Conati, C., Heffernan, N., Mitrovic, A., and Verdejo, M. (eds.). (2015). Artificial Intelligence in Education . Gewerbestrasse: Springer.

Cox, D. R., and Donnelly, C. A. (2011). Principles of Applied Statistics . Cambridge: Cambridge University Press.

Cuban, L. (1986). Teachers and Machines: The Classroom use of Technology Since 1920 . New York, NY: Teachers College Press.

Cuban, L. (2001). Oversold and Underused: Computers in the Classroom . Cambridge, MA: Harvard University Press.

Daubert (1993). Daubert v. Merrell Dow Pharmaceuticals, Inc . 509 US 579, 589.

Deaton, A., and Cartwright, N. (in press). Understanding misunderstanding randomized controlled trials. Soc. Sci. Med . doi: 10.1016/j.socscimed.2017.12.005

Ferster, B. (2014). Teaching Machines: Learning From the Intersection of Education and Technology . Baltimore, MD: Johns Hopkins Press.

Ferster, B. (2016). Sage on the Screen: Education, Media, and How We Learn . Baltimore, MD: Johns Hopkins Press.

Foley, B., and Goldstein, H. (2012). Measuring Success: League Tables in the Public Sector . London: British Academy.

Ginsberg, A. (1955/2014). Howl and Other Poems . Mansefield Centre, CT: Martino Publishing.

Ginsburg, A., and Smith, M. S. (2016). Do Randomized Controlled Trials Meet the “Gold Standard”? A Study of the Usefulness of RCTS in the What Works Clearinghouse . Technical report. American Enterprise Institute.

Greenfield, S. (2015). Mind Change: How Digital Technologies Are Leaving Their Mark on Our Brains . New York, NY: Random House.

Horn, M. B., and Staker, H. (2015). Blended: Using Disruptive Innovation to Improve Schools . San Francisco, CA: Jossey-Bass.

Imbens, G. W., and Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction . New York, NY: Cambridge University Press.

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Med. 2:e124. doi: 10.1371/journal.pmed.0020124

Joiner (1997). General Electric Co. v. Joiner . 522 U.S. 136.

Kumho (1999). Kumho Tire Co. v. Carmichael . 526 U.S. 137.

MacKay, C. (1841/2012). Extraordinary Popular Delusions and the Madness of Crowds . San Bernardino, CA: Renaissance Classics.

Marr, D. (1982/2010). Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information . Cambridge, MA: MIT Press.

Marr, D., and Poggio, T. (1977). From understanding computation to understanding neural circuitry. Neurosci. Res. Prog. Bull. 15, 470–488.

McGuire, W. J. (1973). The yin and yang of progress in social psychology: seven koan. J. Pers. Soc. Psychol. 26, 446–456. doi: 10.1037/h0034345

Metcalfe, J. (2002). Is study time allocated selectively to a region of proximal learning? J. Exp. Psychol. Gen. 131, 349–363. doi: 10.1037/0096-3445.131.3.349

Metcalfe, J. (2017). Learning from errors. Annu. Rev. Psychol. 68, 465–489. doi: 10.1146/annurev-psych-010416-044022

Morgan, S. L., and Winship, C. (2007). Counterfactuals and Causal Inference: Methods and Principles for Social Research . Cambridge: Cambridge University Press.

Muller, J. Z. (2018). The Tyranny of Metrics . Princeton, NJ: Princeton University Press.

Nolen-Hoeksema, S., Fredrickson, B. L., Loftus, G. R., and Lutz, C. (2015). Atkinson and Hilgard's Introduction to Psychology, 16th Edn . Wadsworth: Cengage Learning.

Nye, B. D., Graesser, A. C., and Hu, X. (2014). AutoTutor and family: a review of 17 years of natural language tutoring. Int. J. Artif. Intell. Educ. 24, 427–469. doi: 10.1007/s40593-014-0029-5

Pane, J. F., Griffin, B., McCaffrey, D. F., and Karam, R. (2014). Effectiveness of cognitive tutor algebra I at scale. Educ. Eval. Pol. Anal. 36, 127–144. doi: 10.3102/0162373713507480

Pane, J. F., Steiner, E. D., Baird, M. D., and Hamilton, L. S. (2015). Continued Progress: Promising Evidence on Personalized Learning . Technical Report RR-1365-BMGF, RAND Corporation.

Papert, S. (1980). Paper for the president's commission for a national agenda for the 80s . Available online at: http://www.papert.org/articles/president_paper.html

Papert, S. (1993). The Children's Machine: Rethinking School in the Age of the Computer . New York, NY: Basic Books.

Papert, S., and Caperton, G. (1999). Vision for Education: The Caperton-Papert Platform . St. Louis, MO: Essay written 91st Annual National Governors' Association.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference, 2nd Edn . New York, NY: Cambridge University Press.

Pearl, J., Glymour, M., and Jewell, N. P. (2016). Causal Inference in Statistics: A Primer . Chichester: Wiley.

Poggio, T. (2012). The Levels of Understanding Framework, Revised . Technical Report MIT-CSAIL-TR-2012-014, CBCL-308, MIT, Cambridge, MA.

Popper, K. (1959/2002). The Logic of Scientific Discovery . Milton Park: Routledge.

Pressey, S. L. (1933). Psychology and the New Education . New York, NY: Harper and Brothers Publishers.

Reingold, J. (2015). Why ed tech is currently ‘the wild wild west’. Fortune . Available online at: http://fortune.com/2015/11/04/ed-tech-at-fortune-global-forum-2015

Ritter, S., Yudelson, M., Fancsali, S. E., and Berman, S. R. (2016). “Mastery learning works at scale,” in Proceedings of the Third ACM Conference on Learning @ Scale (Edinburgh: ACM), 71–79.

Roediger, H. L. III. (1980). Memory metaphors in cognitive psychology. Mem. Cogn. 8, 231–246.

PubMed Abstract | Google Scholar

Roediger, H. L. III., Agarwal, P. K., Kang, S. H. K., and Marsh, E. J. (2010). “Benefits of testing memory: best practices and boundary conditions,” in New Frontiers in Applied Memory , eds G. M. Davies and D. B. Wright (Brighton: Psychology Press), 13–49.

Rubin, D. C. (1995). Memory in Oral Traditions: The Cognitive Psychology of Epic, Ballads, and Counting-out Rhymes . New York, NY: Oxford University Press.

Sagan, C. (1996). The Demon-Haunted World: Science as a Candle in the Dark . New York, NY: Ballantine Books.

Skinner, B. F. (1958). Teaching machines. Science 128, 969–977. doi: 10.1126/science.128.3330.969

Small, J. P. (1997). Wax Tablets of the Mind: Cognitive Studies of Memory and Literacy in Classical Antiquity . London: Routledge.

Steiner, P. M., Kim, Y., Hall, C. E., and Su, D. (2017). Graphical models for quasi-experimental designs. Sociol. Methods Res . 46, 155–188. doi: 10.1177/0049124115582272

Sullivan, G. M. (2011). Getting off the “gold standard”: randomized controlled trials and education research. J. Grad. Med. Educ. 3, 285–289. doi: 10.4300/JGME-D-11-00147.1

Suppes, P. (1966). The uses of computers in education. Sci. Am. 215, 20–220. doi: 10.1038/scientificamerican0966-206

Taylor, R. D., and Gebre, A. (2016). “Teacher–student relationships and personalized learning: implications of person and contextual variables,” in Handbook on Personalized Learning for States, Districts, and Schools , eds M. Murphy, S. Redding, and J. S. Twyman (Charlotte, NC: Information Age Publishing, Inc.), 205–220.

Thornburg, D. (2014). From the Campfire to the Holodeck: Creating Engaging and Powerful 21st Century Learning Environments . San Francisco, CA: Jossey-Bass.

Trotsky, L. (1933). “What is national socialism? [English translation],” in Trotsky Internet Archive, originally The Modern Thinker . Available online at: https://www.marxists.org/archive/trotsky/germany/1933/330610.htm

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes . Boston, MA: Harvard University Press.

Wright, D. B. (2003). Making friends with your data: improving how statistics are conducted and reported. Brit. J. Educ. Psychol. 73, 123–136. doi: 10.1348/000709903762869950

Wright, D. B. (2006). Causal and associative hypotheses in psychology: examples from eyewitness testimony research. Psychol. Public Policy Law 12, 190–213. doi: 10.1037/1076-8971.12.2.190

Yates, F. A. (1966). The Art of Memory . Chicago, IL: University of Chicago Press.

Keywords: technology, CAI, EdTech, cognition, personalized learning, blended learning, cognitive tutor

Citation: Wright DB (2018) A Framework for Research on Education With Technology. Front. Educ . 3:21. doi: 10.3389/feduc.2018.00021

Received: 30 October 2017; Accepted: 20 March 2018; Published: 12 April 2018.

Reviewed by:

Copyright © 2018 Wright. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Daniel B. Wright, [email protected]

How Has Technology Changed Education?

Technology has impacted almost every aspect of life today, and education is no exception. Or is it? In some ways, education seems much the same as it has been for many years. A 14th century illustration by Laurentius de Voltolina depicts a university lecture in medieval Italy. The scene is easily recognizable because of its parallels to the modern day. The teacher lectures from a podium at the front of the room while the students sit in rows and listen. Some of the students have books open in front of them and appear to be following along. A few look bored. Some are talking to their neighbors. One appears to be sleeping. Classrooms today do not look much different, though you might find modern students looking at their laptops, tablets, or smart phones instead of books (though probably open to Facebook). A cynic would say that technology has done nothing to change education.

However, in many ways, technology has profoundly changed education. For one, technology has greatly expanded access to education. In medieval times, books were rare and only an elite few had access to educational opportunities. Individuals had to travel to centers of learning to get an education. Today, massive amounts of information (books, audio, images, videos) are available at one’s fingertips through the Internet, and opportunities for formal learning are available online worldwide through the Khan Academy, MOOCs, podcasts, traditional online degree programs, and more. Access to learning opportunities today is unprecedented in scope thanks to technology.

Opportunities for communication and collaboration have also been expanded by technology. Traditionally, classrooms have been relatively isolated, and collaboration has been limited to other students in the same classroom or building. Today, technology enables forms of communication and collaboration undreamt of in the past. Students in a classroom in the rural U.S., for example, can learn about the Arctic by following the expedition of a team of scientists in the region, read scientists’ blog posting, view photos, e-mail questions to the scientists, and even talk live with the scientists via a videoconference. Students can share what they are learning with students in other classrooms in other states who are tracking the same expedition. Students can collaborate on group projects using technology-based tools such as wikis and Google docs. The walls of the classrooms are no longer a barrier as technology enables new ways of learning, communicating, and working collaboratively.

Technology has also begun to change the roles of teachers and learners. In the traditional classroom, such as what we see depicted in de Voltolina’s illustration, the teacher is the primary source of information, and the learners passively receive it. This model of the teacher as the “sage on the stage” has been in education for a long time, and it is still very much in evidence today. However, because of the access to information and educational opportunity that technology has enabled, in many classrooms today we see the teacher’s role shifting to the “guide on the side” as students take more responsibility for their own learning using technology to gather relevant information. Schools and universities across the country are beginning to redesign learning spaces to enable this new model of education, foster more interaction and small group work, and use technology as an enabler.

Technology is a powerful tool that can support and transform education in many ways, from making it easier for teachers to create instructional materials to enabling new ways for people to learn and work together. With the worldwide reach of the Internet and the ubiquity of smart devices that can connect to it, a new age of anytime anywhere education is dawning. It will be up to instructional designers and educational technologies to make the most of the opportunities provided by technology to change education so that effective and efficient education is available to everyone everywhere.

You can help shape the influence of technology in education with an Online Master of Science in Education in Learning Design and Technology from Purdue University Online. This accredited program offers studies in exciting new technologies that are shaping education and offers students the opportunity to take part in the future of innovation.

Learn more about the online MSEd in Learning Design and Technology at Purdue University today and help redefine the way in which individuals learn. Call (877) 497-5851 to speak with an admissions advisor or to request more information.

Modern Technology’s Impact on Society Essay

Introduction, disadvantages and advantages of technology.

Modern technology has changed the world beyond recognition. Thanks to technology in the twentieth and twenty-first centuries, advances have been made that have revolutionized our lives. Modern man can hardly imagine his life without machines. Every day, new devices either appear, or existing ones are improved. Technology has made the world a better place, bringing people additional conveniences and opportunities for healthy living through advances in science. I believe that the changes that technology has brought to our lives are incredibly positive in many areas.

One of the fields where computing and the Web have introduced improvements is education. Machines can keep large volumes of information in a tiny space, reducing entire library shelves of literature to a single CD-ROM of content (Garsten & Wulff, 2020). The Web also acts as a huge learning tool, linking together data sites and enabling inquisitive individuals to seek out just about any subject conceivable. A single personal computer can hold hundreds of instructional programs, visual and audio tutorials, and provide learners with exposure to an immense quantity of content. In the classroom, virtual whiteboards are replacing conventional whiteboards, allowing teachers to provide interactive content for students and play instructional movies without the need for a projector.

Advanced technology has also dramatically and favorably changed the medical care sector. Developments in diagnostic instruments allow doctors to detect hidden diseases, improving the likelihood of successful therapy and saving lives. Advances in drugs and vaccines have been extremely influential, nearly eradicating diseases such as measles, diphtheria, and smallpox, which once caused massive epidemics (Garsten & Wulff, 2020). Modern medicine allows patients to treat chronic diseases that were once debilitating and life-threatening, such as diabetes and hypertension. Technological advances in medicine have helped improve the lives of people around the world. In addition, the latest technology has dramatically increased the productivity of various techniques.

The computers’ capability to resolve complicated mathematical calculations enables them to accelerate any problem that involves metrics or other calculations. Simulating physical processes on a computer can save time and money in any production situation, giving engineers the ability to simulate any design. Modern technology in transportation allows large distances to be traveled quickly. Electric trains, airplanes, cars, and even rockets are used for this purpose (Garsten & Wulff, 2020). In this way, technology brings positive change for people who love to travel.

Despite all the positive changes, there are also disadvantages to the active development of technology. For example, more and more people are becoming dependent on the computer, TV, or cell phone. They ignore their household chores, studies, or work and spend all their time in front of a laptop or TV screen (Garsten & Wulff, 2020). Because of this, people may become inactive and less willing to work, hoping that technology will do everything for them.

In conclusion, I believe that despite some of the disadvantages, the advantages of gadgets are much more significant. Modern technology saves time and allows people to enjoy life. Moreover, new technologies in medicine also contribute to a longer life expectancy of the population and the cure of diseases that were previously beyond the reach of doctors. In addition to medicine, technology has brought significant positive changes to the fields of communication, education, and engineering. Therefore, I believe that the positive impact of technological progress on human lives cannot be denied.

Garsten, C., & Wulff, H. (2020). New technologies at work: People, screens, and social virtuality . Routledge. Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, May 30). Modern Technology's Impact on Society. https://ivypanda.com/essays/modern-technologys-impact-on-society/

"Modern Technology's Impact on Society." IvyPanda , 30 May 2023, ivypanda.com/essays/modern-technologys-impact-on-society/.

IvyPanda . (2023) 'Modern Technology's Impact on Society'. 30 May.

IvyPanda . 2023. "Modern Technology's Impact on Society." May 30, 2023. https://ivypanda.com/essays/modern-technologys-impact-on-society/.

1. IvyPanda . "Modern Technology's Impact on Society." May 30, 2023. https://ivypanda.com/essays/modern-technologys-impact-on-society/.

Bibliography

IvyPanda . "Modern Technology's Impact on Society." May 30, 2023. https://ivypanda.com/essays/modern-technologys-impact-on-society/.

  • Interactive Whiteboard Use During a Meeting
  • Interactive Whiteboards in Teachers' Perception
  • Interactive Whiteboard Technology
  • The Use of Interactive Whiteboards in Guided Inquiry-Based Learning in Early Childhood Education
  • Saudi Primary Teachers and Interactive Whiteboards
  • Interactive Whiteboards in Saudi Arabian Schools
  • The Whiteboard App Marketing and Advertising Models
  • Interactive Smartboard: Advantages & Disadvantages
  • Quality Improvement Initiative
  • Integration of the Modern Technological Solutions Into the Academic Field
  • The Covid-19 Registry Importance
  • Impact of Computer Technology on Economy and Social Life
  • Technology Effect on the Disappearance of Specific Jobs
  • Modern Communication Impacted by Technology
  • Human Existence in Age of Informational Knowledge Work

MIT Technology Review

  • Newsletters

Modernizing data with strategic purpose

Data strategies and modernization initiatives misaligned with the overall business strategy—or too narrowly focused on AI—leave substantial business value on the table.

  • MIT Technology Review Insights archive page

In partnership with Thoughtworks

Data modernization is squarely on the corporate agenda. In our survey of 350 senior data and technology executives, just over half say their organization has either undertaken a modernization project in the past two years or is implementing one today. An additional one-quarter plan to do so in the next two years. Other studies also consistently point to businesses’ increased investment in modernizing their data estates.

research paper about modern technology

It is no coincidence that this heightened attention to improving data capabilities coincides with interest in AI, especially generative AI, reaching a fever pitch. Indeed, supporting the development of AI models is among the top reasons the organizations in our research seek to modernize their data capabilities. But AI is not the only reason, or even the main one.

This report seeks to understand organizations’ objectives for their data modernization projects and how they are implementing such initiatives. To do so, it surveyed senior data and technology executives across industries. The research finds that many have made substantial progress and investment in data modernization. Alignment on data strategy and the goals of modernization appear to be far from complete in many organizations, however, leaving a disconnect between data and technology teams and the rest of the business. Data and technology executives and their teams can still do more to understand their colleagues’ data needs and actively seek their input on how to meet them.

Following are the study’s key findings:

AI isn’t the only reason companies are modernizing the data estate. Better decision-making is the primary aim of data modernization, with nearly half (46%) of executives citing this among their three top drivers. Support for AI models (40%) and for decarbonization (38%) are also major drivers of modernization, as are improving regulatory compliance (33%) and boosting operational efficiency (32%).

Data strategy is too often siloed from business strategy. Nearly all surveyed organizations recognize the importance of taking a strategic approach to data. Only 22% say they lack a fully developed data strategy. When asked if their data strategy is completely aligned with key business objectives, however, only 39% agree. Data teams can also do more to bring other business units and functions into strategy discussions: 42% of respondents say their data strategy was developed exclusively by the data or technology team.

research paper about modern technology

Data strategy paves the road to modernization. It is probably no coincidence that most organizations (71%) that have embarked on data modernization in the past two years have had a data strategy in place for longer than that. Modernization goals require buy-in from the business, and implementation decisions need strategic guidance, lest they lead to added complexity or duplication.

Top data pain points are data quality and timeliness. Executives point to substandard data (cited by 41%) and untimely delivery (33%) as the facets of their data operations most in need of improvement. Incomplete or inaccurate data leads enterprise users to question data trustworthiness. This helps explain why the most common modernization measure taken by our respondents’ organizations in the past two years has been to review and upgrade data governance (cited by 45%).

Cross-functional teams and DataOps are key levers to improve data quality. Modern data engineering practices are taking root in many businesses. Nearly half of organizations (48%) are empowering cross-functional data teams to enforce data quality standards, and 47% are prioritizing implementing DataOps (cited by 47%). These sorts of practices, which echo the agile methodologies and product thinking that have become standard in software engineering, are only starting to make their way into the data realm.

Compliance and security considerations often hinder modernization. Compliance and security concerns are major impediments to modernization, each cited by 44% of the respondents. Regulatory compliance is mentioned particularly frequently by those working in energy, public sector, transport, and financial services organizations. High costs are another oft-cited hurdle (40%), especially among the survey’s smaller organizations.

Inside the hunt for new physics at the world’s largest particle collider

The Large Hadron Collider hasn’t seen any new particles since the discovery of the Higgs boson in 2012. Here’s what researchers are trying to do about it.

  • Dan Garisto archive page

How ASML took over the chipmaking chessboard

MIT Technology Review sat down with outgoing CTO Martin van den Brink to talk about the company’s rise to dominance and the life and death of Moore’s Law.

  • Mat Honan archive page
  • James O'Donnell archive page

How Wi-Fi sensing became usable tech

After a decade of obscurity, the technology is being used to track people’s movements.

  • Meg Duff archive page

Algorithms are everywhere

Three new books warn against turning into the person the algorithm thinks you are.

  • Bryan Gardiner archive page

Stay connected

Get the latest updates from mit technology review.

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at [email protected] with a list of newsletters you’d like to receive.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of molecules

Nanotechnology: A Revolution in Modern Industry

Shiza malik.

1 Bridging Health Foundation, Rawalpindi 46000, Pakistan

Khalid Muhammad

2 Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates

Yasir Waheed

3 Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan

4 Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon

Associated Data

Not applicable.

Nanotechnology, contrary to its name, has massively revolutionized industries around the world. This paper predominantly deals with data regarding the applications of nanotechnology in the modernization of several industries. A comprehensive research strategy is adopted to incorporate the latest data driven from major science platforms. Resultantly, a broad-spectrum overview is presented which comprises the diverse applications of nanotechnology in modern industries. This study reveals that nanotechnology is not limited to research labs or small-scale manufacturing units of nanomedicine, but instead has taken a major share in different industries. Companies around the world are now trying to make their innovations more efficient in terms of structuring, working, and designing outlook and productivity by taking advantage of nanotechnology. From small-scale manufacturing and processing units such as those in agriculture, food, and medicine industries to larger-scale production units such as those operating in industries of automobiles, civil engineering, and environmental management, nanotechnology has manifested the modernization of almost every industrial domain on a global scale. With pronounced cooperation among researchers, industrialists, scientists, technologists, environmentalists, and educationists, the more sustainable development of nano-based industries can be predicted in the future.

1. Introduction

Nanotechnology has slowly yet deeply taken over different industries worldwide. This rapid pace of technological revolution can especially be seen in the developed world, where nano-scale markets have taken over rapidly in the past decade. Nanotechnology is not a new concept since it has now become a general-purpose technology. Four generations of nanomaterials have emerged on the surface and are used in interdisciplinary scientific fields; these are active and passive nanoassemblies, general nanosystems, and small-scale molecular nanosystems [ 1 ].

This rapid development of nanoscience is proof that, soon, nano-scale manufacturing will be incorporated into almost every domain of science and technology. This review article will cover the recent advanced applications of nanotechnology in different industries, mainly agriculture, food, cosmetics, medicine, healthcare, automotive, oil and gas industries, chemical, and mechanical industries [ 2 , 3 ]. Moreover, a brief glimpse of the drawbacks of nanotechnology will be highlighted for each industry to help the scientific community become aware of the ills and benefits of nanotechnology side by side. Nanotechnology is a process that combines the basic attributes of biological, physical, and chemical sciences. These processes occur at the minute scale of nanometers. Physically, the size is reduced; chemically, new bonds and chemical properties are governed; and biological actions are produced at the nano scale, such as drug bonding and delivery at particular sites [ 4 , 5 ].

Nanotechnology provides a link between classical and quantum mechanics in a gray area called a mesoscopic system. This mesoscopic system is being used to manufacture nanoassemblies of nature such as agricultural products, nanomedicine, and nanotools for treatment and diagnostic purposes in the medical industry [ 6 ]. Diseases that were previously untreatable are now being curtailed via nano-based medications and diagnostic kits. This technology has greatly affected bulk industrial manufacturing and production as well. Instead of manufacturing materials by cutting down on massive amounts of material, nanotechnology uses the reverse engineering principle, which operates in nature. It allows the manufacturing of products at the nano scale, such as atoms, and then develops products to work at a deeper scale [ 7 ].

Worldwide, millions and billions of dollars and euros are being spent in nanotechnology to utilize the great potential of this new science, especially in the developed world in Europe, China, and America [ 8 ]. However, developing nations are still lagging behind as they are not even able to meet the industrial progression of the previous decade [ 9 ]. This lag is mainly because these countries are still fighting economically, and they need some time to walk down the road of nanotechnology. However, it is pertinent to say that both the developed and developing world’s scientific communities agree that nanotechnology will be the next step in technological generation [ 10 ]. This will make further industrial upgrading and investment in the field of nanotechnology indispensable in the coming years.

With advances in science and technology, the scientific community adopts technologies and products that are relatively cheap, safe, and cleaner than previous technologies. Moreover, they are concerned about the financial standing of technologies, as natural resources in the world are shrinking excessively [ 11 ]. Nanotechnology thus provides a gateway to this problem. This technology is clear, cleaner, and more affordable compared to previous mass bulking and heavy machinery. Moreover, nanotechnology holds the potential to be implemented in every aspect of life. This will mainly include nanomaterial sciences, nanoelectronics, and nanomedicine, being inculcated in all dimensions of chemistry and the physical and biological world [ 12 ]. Thus, it is not wrong to predict that nanotechnology will become a compulsory field of study for future generations [ 13 ]. This review inculcates the basic applications of nanotechnology in vital industries worldwide and their implications for future industrial progress [ 14 ].

2. Nanotechnology Applications

2.1. applications of nanotechnology in different industries.

After thorough and careful analyses, a wide range of industries—in which nanotechnology is producing remarkable applications—have been studied, reviewed, and selected to be made part of this review. It should be notified that multiple subcategories of industrial links may be discussed under one heading to elaborate upon the wide-scale applications of nanotechnology in different industries. A graphical abstract at the beginning of this article indicates the different industries in which nanotechnology is imparting remarkable implications, details of which are briefly discussed under different headings in the next session.

2.2. Nanotechnology and Computer Industry

Nanotechnology has taken its origins from microengineering concepts in physics and material sciences [ 15 ]. Nanoscaling is not a new concept in the computer industry, as technologists and technicians have been working for a long time to design such modified forms of computer-based technologies that require minimum space for the most efficient work. Resultantly, the usage of nanotubes instead of silicon chips is being increasingly experimented upon in computer devices. Feynman and Drexler’s work has greatly inspired computer scientists to design revolutionary nanocomputers from which wide-scale advantages could be attained [ 13 ]. A few years ago, it was an unimaginable to consider laptops, mobiles, and other handy gadgets as thin as we have today, and it is impossible for even the common man to think that with the passage of time, more advanced, sophisticated, and lighter computer devices will be commonly used. Nanotechnology holds the potential to make this possible [ 16 ].

Energy-efficient, sustainable, and urbanized technologies have been emerging since the beginning of the 21st century. The improvement via nanotechnology in information and communication technology (ICT) is noteworthy in terms of the improvements achieved in interconnected communities, economic competitiveness, environmental stability during demographic shifts, and global development [ 17 ]. The major implications of renewable technology incorporate the roles of ICT and nanotechnology as enablers of environmental sustainability. The traditional methods of product resizing, re-functioning, and enhanced computational capabilities, due to their expensiveness and complicated manufacturing traits, have slowly been replaced by nanotechnological renovations. Novel technologies such as smart sensors logic elements, nanochips, memory storage nanodevices, optoelectronics, quantum computing, and lab-on-a-chip technologies are important in this regard [ 18 ].

Both private and public spending are increasing in the field of nanocomputing. The growth of marketing and industrialization in the biotechnology and computer industries are running in parallel, and their expected growth rates for the coming years are far higher. Researchers and technologists believe that by linking the advanced field of nanotechnology and informatics and computational industries, various problems in human society such as basic need fulfillment can be easily accomplished in line with the establishment of sustainable goals by the end of this decade [ 19 ]. The fourth industrial revolution is based upon the supporting pillars derived from hyperphysical systems including artificial intelligence, machine learning, the internet of things, robots, drones, cloud computing, fast internet technologies (5G and 6G), 3D printing, and block chain technologies [ 20 ].

Most of these technologies have a set basis in computing, nanotechnology, biotechnology, material science renovations, and satellite technologies. Nanotechnology offers useful alterations in the physiochemical, mechanical, magnetic, electrical, and optical properties of computing materials which enable innovative and newer products [ 21 ]. Thus, nanotechnology is providing a pathway for another broad-spectrum revolution in the field of automotive, aerospace, renewable energy, information technology, bioinformatics, and environmental management, all of which have root origins from nanotechnological improvements in computers. Sensors involved in software and data algorithms employ nanomaterials to induce greater sensitivity and processabilities with minimal margin-to-machine errors [ 22 ]. Nanomaterials provide better characteristics and robustness to sensor technologies which mean they are chemically inert, corrosion-resistant, and have greater tolerance profiles toward temperature and alkalinity [ 22 ].

Moreover, the use of semiconductor nanomaterials in the field of quantum computing has increased overall processing speeds with better accuracy and transmissibility. These technologies offer the creation of different components and communication protocols at the nano level, which is often called the internet of nano things [ 23 ]. This area is still in a continuous development and improvement phase with the potential for telecommunication, industrial, and medical applications. This field has taken its origin from the internet of things, which is a hyperphysical world of sensors, software, and other related technologies which allow broad-scale communication via internet operating devices [ 17 ]. The applications of these technologies range from being on the simple home scale to being on the complex industrial scale. The internet of things is mainly capable of gathering and distributing large-scale data via internet-based equipment and modern gadgets. In short, the internet of nano things is applicable to software, hardware, and network connection which could be used for data manipulation, collection, and sharing across the globe [ 24 ].

Another application of nanotechnology in the computer and information industry comes in the form of artificial intelligence, machine learning, and big data platforms which have set the basis for the fourth industrial revolution. Vast amounts of raw data are collected through interconnected robotic devices, sensors, and machines which have properties of nanomaterials [ 18 ]. After wide-scale data gathering, the next step is the amalgamation of the internet of things and the internet of people to prepare a greater analysis, understanding, and utilization of the gathered information for human benefit [ 4 ]. Such data complications can be easily understood through the use of big data in the medical industry, in which epidemiological data provide benefits for disease management [ 2 ]. Yet another example is the applications in business, where sales and retail-related data help to elucidate the target markets, sales industry, and consumer behavioral inferences for greater market consumption patterns [ 19 ].

Similarly, an important dimension of nanotechnology and computer combination comes in the form of drone and robotics technology. These technologies have a rising number of applications in maintenance, inspections, transportation, deliverability, and data inspection [ 25 ]. Drones, robots, and the internet of things are being perfectly amalgamated with the industrial sector to achieve greater goals. Drones tend to be more mobile but rely more on human control as compared to robots, which are less mobile but have larger potential for self-operation [ 26 ]. However, now, more mobile drones with better autonomous profiles are being developed to help out in the domain of manufacturing industries. These devices intensify and increase the pace of automation and precision in industries along with providing the benefits of lower costs and fewer errors [ 24 ]. The integrated fields of robotics, the internet of things, and nanotechnology are often called the internet of robotics and nano things. This field of nanorobotics is increasing the flexibility and dexterity in manufacturing processes compared to traditional robotics [ 25 ].

Drones, on the contrary, help to manage tasks that are otherwise difficult or dangerous to be managed by humans, such as working from a far distance or in dangerous regions. Nanosensors help to equip drones with the qualities of improved detection and sensation more precisely than previous sensor technologies [ 21 , 27 ]. Moreover, the over-potential of working hours, battery, and maintenance have also been improved with the operationalization of nano-based sensors in drone technology. These drones are inclusively used for various purposes such as maintaining operations, employing safety profiling, security surveys, and mapping areas [ 18 ]. However, limitations such as high speed, legal and ethical limitations, safety concerns, and greater automobility are some of the drawbacks of aerial and robotic drone technologies [ 26 ].

Three-dimensional printing is yet another important application of the nanocomputer industry, in which an integrated modus operandi works to help in production management [ 28 ]. Nanotechnology-based 3D printing offers the benefits of an autonomous, integrated, intelligent exchange network of information which enables wide-scale production benefits. These technologies have enabled a lesser need for industrial infrastructure, minimized post-processing operations, reduced waste material generation, and reduced need for human presence for overall industrial management [ 28 , 29 ]. Moreover, the benefits of 3D printing and similar technologies have potentially increased flexibility in terms of customized items, minimal environmental impacts, and sustainable practices with lower resource and energy consumption. The use of nano-scale and processed resins, metallic raw material, and thermoplastics along with other raw materials allow for customized properties of 3D printing technology [ 29 ].

The application of nanotechnology in computers cannot be distinguished from other industrial applications, because everything in modern industries is controlled by a systemic network in association with a network of computers and similar technologies. Thus, the fields of electronics, manufacturing, processing, and packaging, among several others, are interlinked with nanocomputer science [ 11 , 15 ]. Silicon tubes have had immense applications that revolutionized the industrial revolution in the 20th century; now, the industrial revolution is in yet another revolutionary phase based on nanostructures [ 16 ]. Silicon tubes have been slowly replaced with nanotubes, which are allowing a great deal of improvement and efficiency in computing technology. Similarly, lab-on-a-chip technology and memory chips are being formulated at nano scales to lessen the storage space but increase the storage volume within a small, flexible, and easily workable chip in computers for their subsequent applications in multiple other industries.

Hundreds of nanotechnology computer-related products have been marketed in the last 20 years of the nanotechnological revolution [ 30 ]. Modern industries such as textiles, automotive, civil engineering, construction, solar technologies, environmental applications, medicine, transportation agriculture, and food processing, among others are largely reaping the benefits of nano-scale computer chips and other devices. In simple terms, everything out there in nanoindustrial applications has something to do with computer-based applications in the nanoindustry [ 31 , 32 , 33 ]. Thus, all the applications discussed in this review more or less originate from nanocomputers. These applications are enabling considerable improvement and positive reports within the industrial sector. Having said that, it is hoped that computer scientists will remain engaged and will keep on collaborating with scientists in other fields to further explore the opportunities associated with nanocomputer sciences.

2.3. Nanotechnology and Bioprocessing Industries

Scientific and engineering rigor is being carried out to the link fields of nanotechnology with contributions to the bioprocessing industry. Researchers are interested in how the basics of nanomaterials could be used for the high-quality manufacturing of food and other biomaterials [ 15 , 34 ]. Pathogenic identification, food monitoring, biosensor devices, and smart packaging materials, especially those that are reusable and biodegradable, and the nanoencapsulation of active food compounds are only a few nanotechnological applications which have been the prime focus of the research community in recent years. Eventually, societal acceptability and dealing with social, cultural, and ethical concerns will allow the successful delivery of nano-based bio-processed products into the common markets for public usage [ 20 , 35 ].

With the increasing population worldwide, food requirements are increasing in addition to the concerns regarding the production of safe, healthy, and recurring food options. Sensors and diagnostic devices will help improve the sensitivity in food quality monitoring [ 36 ]. Moreover, the fake industrial application of food products could be easily scanned out of a system with the application of nanotechnology which could control brand protection throughout bio-processing [ 6 ]. The power usage in food production might also be controlled after a total nanotechnological application in the food industry. The decrease in power consumption would ultimately be positive for the environment. This could directly bring in the interplay of environment, food, and nanotechnology and would help to reduce environmental concerns in future [ 37 ].

One of the important implications of nanotechnology in bioprocessing industries can be accustomed to fermentation processes; these technologies are under usage for greater industrial demand and improved biomolecule production at a very low cost, unlike traditional fermentation processes [ 35 ]. The successful implementation and integration of fermentation and nanotechnology have allowed the development of biocompatible, safe, and nontoxic substances and nanostructures with wide-scale application in the field of food, bioprocessing, and winemaking industries [ 38 ]. Another important application is in the food monitoring and food supply chain management, present in various subsectors such as production, storage, distribution, and toxicity management. Nanodevices and nanomaterials are incorporated into chemical and biological sensor technologies to improve overall analytical performance with regard to parameters such as response time, sensitivity, selectivity, accuracy, and reliability [ 39 ]. The conventional methods of food monitoring are slowly being replaced with modern nano-based materials such as nanowires, nanocomposites, nanotubes, nanorods, nanosheets, and other materials that function to immobilize and label components [ 40 ]. These methods are either electrochemically or optically managed. For food monitoring, several assays are proposed and implemented with their roots in nano-based technologies; they may include molecular and diagnostic assays, immunological assays, and electrochemical and optical assays such as surface-enhanced Raman scattering and colorimetry technologies [ 34 ]. Materials ranging from heavy materials to microorganisms, pesticides, allergens, and antibiotics are easily monitored during commercial processing and bioprocessing in industries.

Additionally, nanotechnology has presented marvelous transformations in bio-composting materials. With the rising demand for biodegradable composites worldwide to reduce the environmental impact and increase the efficiency of industrial output, there is an increasing need for sustainable technologies [ 41 ]. Nanocomposites are thus being formulated with valuable mechanical properties better than conventional polymers, thus establishing their applicability in industries. The improved properties include optical, mechanical, catalytic, electrochemical, and electrical ones [ 42 ]. These biodegradable polymers are not only used in bioprocessing industries to create food products with relevant benefits but are also being deployed in the biomedical field, therapeutic industries, biotechnology base tissue engineering field, packing, sensor industries, drug delivery technology, water remediation, food industries, and cosmetics industries as well [ 2 , 24 , 34 , 43 ]. These nanocomposites have outstanding characteristics of biocompatibility, lower toxicities, antimicrobial activity, thermal resistance, and overall improved biodegradation properties which make them worthy of applications in products [ 44 ]. However, it is still imperative to conduct wide-scale toxicity and safety profiling for these and other nanomaterials to ensure the safety requirements, customer satisfaction, and public benefit are met [ 44 ].

Moreover, the advancement of nanotechnology has also been conferred to the development of functional food items. The exposure and integration of nanotechnology and the food industry have resulted in larger quantities of sustainable, safer, and healthier food products for human consumption, which is a growing need for the rising population worldwide [ 45 ]. The overall positive impact of nanotechnology in food processing, manufacturing, packing, pathogenic detection, monitoring, and production profiles necessitates the wide-scale application of this technology in the food industry worldwide [ 4 , 41 ]. Recent research has shown how the delivery of bioactive compounds and essential ingredients is and can be improved by the application of nanomaterials (nanoencapsulation) in food products [ 46 ]. These technologies improve the protection performance and sensitivity of bioactive ingredients while preventing unnecessary interaction with other constituents of foods, thus establishing clear-cut improved bioactivity and solubility profiles of nanofoods, thereby improving human health benefits. However, it should be kept in mind that the safety regards of these food should be carefully regulated with safety profiling, as they directly interact with human bodies [ 47 ].

2.4. Nanotechnology and Agri-Industries

Agriculture is the backbone of the economies of various nations around the globe. It is a major contributing factor to the world economy in general and plays a critical role in population maintenance by providing nutritional needs to them. As global weather patterns are changing owing to the dramatic changes caused by global warming, it is accepted that agriculture will be greatly affected [ 48 ]. Under this scenario, it is always better to take proactive measures to make agricultural practices more secure and sustainable than before. Modern technology is thus being employed worldwide. Nanotechnology has also come to play an effective role in this interplay of sustainable technologies. It plays an important role during the production, processing, storing, packaging, and transport of agricultural industrial products [ 49 ].

Nanotechnology has introduced certain precision farming techniques to enhance plant nutrients’ absorbance, alongside better pathogenic detection against agricultural diseases. Fertilizers are being improved by the application of nanoclays and zeolites which play effective roles in soil nutrient broths and in the restoration soil fertility [ 49 ]. Modern concepts of smart seeds and seed banks are also programmed to germinate under favorable conditions for their survival; nanopolymeric mixtures are used for coating in these scenarios [ 50 ]. Herbicides, pesticides, fungicides, and insecticides are also being revolutionized through nanotechnology applications. It has also been considered to upgrade linked fields of poultry and animal husbandry via the application of nanotechnology in treatment and disinfection practices.

2.5. Nanotechnology and Food Industry

The applications of nanotechnology in the food industry are immense and include food manufacturing, packaging, safety measures, drug delivery to specific sites [ 51 ], smart diets, and other modern preservatives, as summarized in Figure 1 . Nanomaterials such as polymer/clay nanocomposites are used in packing materials due to their high barrier properties against environmental impacts [ 52 ]. Similarly, nanoparticle mixtures are used as antimicrobial agents to protect stored food products against rapid microbial decay, especially in canned products. Similarly, several nanosensor and nano-assembly-based assays are used for microbial detection processes in food storage and manufacturing industries [ 53 ].

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g001.jpg

Nanotechnology applications in food and interconnected industries.

Nanoassemblies hold the potential to detect small gasses and organic and inorganic residues alongside microscopic pathogenic entities [ 54 ]. It should, however, be kept in mind that most of these nanoparticles are not directly added to food species because of the risk of toxicity that may be attached to such metallic nanoparticles. Work is being carried out to predict the toxicity attached, so that in the future, these products’ market acceptability could be increased [ 55 ]. With this, it is pertinent to say that nanotechnology is rapidly taking steps into the food industry for packing, sensing, storage, and antimicrobial applications [ 56 ].

Nanotechnology is also revolutionizing the dairy industry worldwide [ 57 ]. An outline of potential applications of nanotechnology in the dairy industry may include: improved processing methods, improved food contact and mixing, better yields, the increased shelf life and safety of dairy-based products, improved packaging, and antimicrobial resistance [ 58 ]. Additionally, nanocarriers are increasingly applied to transfer biologically active substances, drugs, enhanced flavors, colors, odors, and other food characteristics to dairy products [ 59 ].

These compounds exhibit higher delivery, solubility, and absorption properties to their targeted system. However, the problem of public acceptability due to the fear of unknown or potential side effects associated with nano-based dairy and food products needs to be addressed for the wider-scale commercialization of these products [ 60 ].

2.5.1. Nanotechnology, Poultry and Meat Industry

The poultry industry is a big chunk of the food industry and contributes millions of dollars every year to food industries around the world. Various commercial food chains are running throughout the world, the bases of which start from healthy poultry industries. The incidence of widespread foodborne diseases that originate from poultry, milk, and meat farms is a great concern for the food industry. Nanobiotechnology is certainly playing a productive role in tackling food pathogens such as those which procreate from Salmonella and Campylobacter infections by allowing increased poultry consumption while maintaining the affordability and safety of manufactured chicken products [ 61 ]. Several nano-based tools and materials such as nano-enabled disinfectants, surface biocides, protective clothing, air and water filters, packaging materials, biosensors, and detective devices are being used to confirm the authenticity and traceability of poultry products [ 62 ]. Moreover, nano-based materials are used to reduce foodborne pathogens and spoilage organisms before the food becomes part of the supply chain [ 63 ].

2.5.2. Nanotechnology—Fruit and Vegetable Industry

As already described, nanotechnology has made its way far ahead in the food industry. The agricultural, medicinal, and fruit and vegetable industries cannot remain unaffected under this scenario. Scientists are trying to increase the shelf life of fresh organic products to fulfill the nutritional needs of a growing population. From horticulture to food processing, packaging, and pathogenic detection technology, nanotechnology plays a vital role in the safety and production of vegetables and fruits [ 64 ].

Conventional technologies are now being replaced with nanotechnology due to their benefits of cost-effectiveness, satisfactory results, and overall shelf life improvement compared to past practices. Although some risks may be attached, nanotechnology has not yet reported high-grade toxicity to organic fresh green products. These technologies serve the purpose of providing safe and sufficient food sources to customers while reducing postharvest wastage, which is a major concern in developing nations [ 55 ]. Nanopackaging provides the benefits of lower humidity, oxygen passage, and optimal water vapor transmission rates. Hence, in the longer run, the shelf life of such products is increased to the desired level using nanotechnology [ 65 ].

2.5.3. Nanotechnology and Winemaking Industry

The winemaking industry is a big commercial application of the food industry worldwide. The usage of nanotechnology is also expanding in this industry. Nanotechnology serves the purpose of sensing technology through employment as nanoelectronics, nanoelectrochemical, and biological, amperometric, or fluorimetric sensors. These nanomaterials help to analyze the wine components, including polyphenols, organic acids, biogenic amines, or sulfur dioxide, and ensure they are at appropriate levels during the production of wine and complete processing [ 66 ].

Efforts are being made to further improve sensing nanotechnology to increase the accuracy, selectivity, sensitivity, and rapid response rate for wine sampling, production, and treatment procedures [ 53 ]. Specific nanoassemblies that are used in winemaking industries include carbon nanorods, nanodots, nanotubes, and metallic nanoparticles such as gold, silver, zinc oxide, iron oxide, and other types of nanocomposites. Recent research studies have introduced the concept of electronic tongues, nanoliquid chromatography, mesoporous silica, and applications of magnetic nanoparticles in winemaking products [ 67 ]. An elaborative account of these nanomaterials is out of the scope of the present study; however, on a broader scale, it is not wrong to say that nanotechnology is successfully reaping in the field of enology.

2.6. Nanotechnology and Packaging Industries

The packaging industry is continuously under improvement since the issue of environmentalism has been raised around the globe. Several different concerns are linked to the packaging industry; primarily, packaging should provide food safety to deliver the best quality to the consumer end. In addition, packaging needs to be environmentally friendly to reduce the food-waste-related pollution concern and to make the industrial processes more sustainable. Trials are being carried out to reduce the burden by replacing non-biodegradable plastic packaging materials with eco-friendly organic biopolymer-based materials which are processed at the nano scale to incur the beneficial properties of nanotechnology [ 68 ].

The nanomanufacturing of packaging biomaterials has proven effective in food packaging industries, as nanomanufacturing not only contributes to increasing food safety and production but also tackles environmental issues [ 69 ]. Some examples of these packaging nanomaterials may include anticaking agents, nanoadditives, delivery systems for nutraceuticals, and many more. The nanocompositions of packing materials are formed by mixing nanofillers and biopolymers to enhance packaging’s functionality [ 70 ]. Nanomaterials with antimicrobial properties are preferred in these cases, and they are mixed with a polymer to prevent the contamination of the packaged material. It is important to mention here that this technology is not only limited to food packaging; instead, packaging nanotechnology is now also being introduced in certain other industries such as textile, leather, and cosmetic industries in which it is providing large benefits to those industries [ 64 ].

2.7. Nanotechnology and Construction Industry and Civil Engineering

Efficient construction is the new normal application for sustainable development. The incorporation of nanomaterials in the construction industry is increasing to further the sustainability concern [ 71 ]. Nanomaterials are added to act as binding agents in cement. These nanoparticles enhance the chemical and physical properties of strength, durability, and workability for the long-lasting potential of the construction industry. Materials such as silicon dioxide which were previously also in use are now manufactured at the nano scale [ 71 ]. These nanostructures along with polymeric additives increase the density and stability of construction suspension [ 72 ]. The aspect of sustainable development is being applied to the manufacture of modern technologies coupled with beneficial applications of nanotechnology. This concept has produced novel isolative and smart window technologies which have driven roots in nanoengineering, such as vacuum insulation panels (VIPs) and phase change materials (PCMs), which provide thermal insulation effects and thus save energy and improve indoor air quality in homes [ 73 ].

A few of the unique properties of nanomaterials in construction include light structure, strengthened structural composition, low maintenance requirements, resistant coatings, improved pipe and bridge joining materials, improved cementitious materials, extensive fire resistance, sound absorption, and insulation properties, as well as the enhanced reflectivity of glass surfaces [ 74 ]. As elaborated under the heading of civil engineering applications, concrete’s properties are the most commonly discussed and widely changing in the construction industry because of concrete’s minute structure, which can be easily converted to the nano scale [ 75 ]. More specifically, the combination of nano-SiO 2 in cement could improve its performance in terms of compressiveness, large volumes with increased compressiveness, improved pore size distribution, and texture strength [ 76 ].

Moreover, some studies are also being carried out to improve the cracking properties of concrete by the application of microencapsulated healing polymers, which reduce the cracking properties of cement [ 77 ]. Moreover, some other construction materials, such as steel, are undergoing research to change their structural composites through nano-scale manufacturing. This nanoscaling improves steel’s properties such as improved corrosion resistance, increased weldability, the ease of handling for designing building materials, and construction work [ 78 ]. Additionally, coating materials have been improved by being manufactured at the nano scale. This has led to different improved coating properties such as functional improvement; anticorrosive action; high-temperature, fire, scratch, and abrasion resistance; antibacterial and antifouling self-healing capabilities; and self-assembly, among other useful applications [ 79 ].

Nanotechnology improves the compressive flexural properties of cement and reduces its porosity, making it absorb less water compared to traditional cementation preparations. This is because of the high surface-to-volume ratio of nanosized particles. Such an approach helps in reducing the amount of cement in concrete, making it more cost-effective, more strengthening, and eco-friendly, known as ‘green concrete’. Besides concrete, the revolutionary characteristics of nanotechnology are now also being adopted in other construction materials such as steel, glass, paper, wood, and multiple other engineering materials to upgrade the construction industry [ 80 ].

Similarly, carbon nanotubes, nanorods, and nanofibers are rapidly replacing steel constructions. These nanostructures along with nanoclay formations increase the mechanical properties and thus have paved the way for a new branch of civil engineering in terms of nanoengineering [ 80 ]. Apart from cement formulations, nanoparticles are included in repair mortars and concrete with healing properties that help in crack recovery in buildings. Furthermore, nanostructures, titanium dioxide, zinc, and other metallic oxides are being employed for the production of photocatalytic products with antipathogenic, self-cleaning, and water- and germ-repellent built-in technologies [ 33 ]. Similarly, quantum dot technologies are progressively employed for solar energy generation (a concept discussed later). These photovoltaic cells contribute to saving the maximum amount of solar energy [ 81 ].

2.8. Nanotechnology and Textiles Industry

The textile industry achieved glory in the 21st century with enormous outgrowth through social media platforms. Large brands have taken over the market worldwide, and millions are earned every year through textile industries. With the passing of time, nanotechnology is being slowly incorporated into the textile fiber industry owing to its unique and valuable properties. Previously, fabrics manufactured via conventional methods often curtailed the temporary effects of durability and quality [ 82 ]. However, the age of nanotechnology has allowed these fabric industries to employ nanotechnology to provide high durability, flexibility, and quality to clothes which is not lost upon laundering and wearing. The high surface-to-volume ratio of nanomaterials keeps high surface energy and thus provides better affinity to their fabrics, leading to long-term durability [ 82 ]. Moreover, a thin layering and coating of nanoparticles on the fabric make them breathable and make them smooth to the touch. This layering is carried out by processes such as printing, washing, padding, rinsing, drying, and curing to attach nanoparticles on the fabric surface. These processes are carried out to impart the properties of water repellence, soil resistance, flame resistance, hydrophobicity, wrinkle resistance, antibacterial and antistatic properties, and increased dyeability to the clothes [ 83 ].

The unique properties of nanomaterials in textile industries have attracted large-scale businesses for the financial benefits attached to their application. For this reason, competitors are increasing in nanotextile industry speedily, which may make the conventional textile industry sidelined in the near future [ 84 ]. Some benefits associated with nanotextile engineering and industry may include: improved cleaning surfaces, soil, wrinkle, stain, and color damage resistance, higher wettability and strike-through characteristics, malodor- and soil-removal abilities, abrasion resistance, a modified version of surface friction, and color enhancement through nanomaterials [ 85 ].

These characteristics have hugely improved the functionality and performance characteristics of textile and fiber materials [ 86 ]. Based upon the numerous advantages, nanotextile technology is increasingly being used in various inter-related fields, including in medical clothes, geotextiles, shock-resistant textiles, and fire-resistant and water-resistant textiles [ 87 ]. These textiles and fibers help overcome severe environmental conditions in special industries where high temperatures, pressure, and other conditions are adjusted for manufacturing purposes. These textiles are now increasingly called smart clothes due to renewed nanotechnological application to traditional methods [ 88 ].

The increasing demand for durable, appealing, and functionally outstanding textile products with a couple of factors of sustainability has allowed science to incorporate nanotechnology in the textile sector. These nano-based materials offer textile properties such as stain-repellent, wrinkle-free textures and fibers’ electrical conductivity alongside guaranteeing comfort and flexibility in clothing [ 82 ]. The characteristics of nanomaterials are also exhibited in the form of connected garments creation that undergo sensations to respond to external stimuli through electrical, colorant, or physiological signals. Thus, a kind of interconnection develops between the fields of photonic, electrical, textile and nanotechnologies [ 89 ]. Their interconnected applications confer the properties of high-scale performance, lasting durability, and connectivity in textile fibers. However, the concerns of nanotoxicity, the chances of the release of nanomaterials during washing, and the overall environmental impact of nanotextiles are important challenges that need to be ascertained and dealt with successfully in the coming years to ensure wide-scale acceptance and the global broad-spectrum application of nanotextiles [ 90 ].

The global market for the textile industry is constantly on the rise; with so many new brands, the competition is rising in regard to pricing, material, product outlook, and market exposure. Under this scenario, nanotechnology has contributed in terms of value addition to textiles by contributing the properties of water repellence, self-cleaning, and protection from radiation and UV light, along with safety against flames and microorganisms [ 82 ]. A whole new market of smart clothes is slowly taking our international markets along with improvements in textile machinery and economic standing. These advances have effectively established the sustainable character of the textile industry and have created grounds to meet the customer’s demand [ 91 ]. Some important examples of smart clothing originating from the nanotextile industry can be seen in products such as bulletproof jackets, fabric coatings, and advanced nanofibers. Fabric coatings and pressure pads can exhibit characteristics of invisibility and entail a silver, nickel, or gold nanoparticle-based material with inherent antimicrobial properties [ 92 ]. Such materials are effectively being utilized and introduced into the medical industry for bandages, dressings, etc. [ 92 ].

Similarly, woven optical fibers are already making progress in the textile and IT industry. With the incorporation of nanomaterials, optical fibers are being utilized for a range of purposes such as light transmission, sensing technologies, deformation, improved formational characteristic detection, and long-range data transmission. These optical fibers with phase-changing material properties can also be utilized for thermostability maintenance in the fiber industry. Thus, these fibers have combined applications in the computer, IT, and textile sectors [ 93 ]. In addition, the nano cellulosic material that is naturally obtained from plants confers properties of stiffness, strength, durability, and large surface area to volume ratios, which is acquired through the large number of surface hydroxyl groups embedded in nanocellulose particles [ 94 ]. Moreover, the characteristics of high resistance, lower weight, cost-effectiveness, and electrical conductivity are some additional benefits which are also linked to these nanocellulosic fibers [ 93 ]. The aforementioned technologies will allow industrialists to manufacture fabrics based on nanomaterials through a variety of chemical, physical, and biological processes. The scope of improvement in the textile properties, cost, and production methods is making the nanotextile industry a strong field of interest for future industrial investments.

2.9. Nanotechnology and Transport and Automobile Industry

The automotive industry is always improving its production. Nanotechnology is one such tool that could impart the automotive industry with a totally new approach to manufacturing. Automobile shaping could be improved greatly without any changes to the raw materials used. The replacement of conventional fabrication procedures with advanced nanomanufacturing is required to achieve the required outcome. Nanotechnology intends to partly renovate the automobile industry by enhancing the technical performance and reducing production costs excessively. However, there is a gap in fully harnessing the potential of nanomaterials in the automotive industry. Industrialists who were previously strict about automotive industrial principles are ready to employ novelties attached to nanotechnology to create successful applications to automobiles in the future [ 95 ]. Nanotechnology could provide assistance in manufacturing methods with an impartment of extended life properties. Cars that have been manufactured with nanotechnology applications have shown lower failure rates and enhanced self-repairing properties. Although the initial investment in the nanoautomated industry is high, the outcomes are enormous.

The concept of sustainable transport could also be applied to the manufacturing of such nano-based technology which is CO 2 free and imparts safe driving and quiet, clean, and wider-screen cars, which, in the future, may be called nanocars. The major interplay of nanotechnology and the automotive industry comes in the manufacturing of car parts, engines, paints, coating materials, suspensions, breaks, lubrication, and exhaust systems [ 32 ]. These properties are largely imparted via carbon nanotubes and carbon black, which renders new functionalities to automobiles. These products were previously in use, but nanoscaling and nanocoating allow for enhanced environmental, thermal, and mechanical stability to be imparted to the new generation of automobiles. In simple terms, automobiles manufactured with principal nanonovelties could result in cars with less wearing risk, better gliding potential, thinner coating lubrication requirements, and long service bodies with weight reductions [ 31 ]. These properties will ultimately reduce costs and will impart more space for improved automobile manufacturing in the future. Similarly, the development of electric cars and cars built on super capacitor technology is increasingly based on nanotechnology. The implications of nanotechnology in the form of rubber fillers, body frames made of light alloys, nanoelectronic components, nanocoatings of the interior and exterior of cars, self-repairing materials against external pressure, nanotextiles for interiors, and nanosensors are some of the nanotechnological-based implications of the automotive industry [ 96 ]. Owing to these properties, nanotechnology ventures are rapidly progressing in the automobile industry. It is expected that, soon, the automobile industry will commercialize nanotechnological perspectives on their branding strategies.

2.10. Nanotechnology, Healthcare, and Medical Industry

The genesis of nanomedicine simply cannot be ignored when we talk about the large fields of biological sciences, biotechnology, and medicine. Nanotechnology is already making its way beyond the imagination in the broader vision of nanobiotechnology. The quality of human life is continuously improved by the successful applications of nanotechnology in medicine, and resultantly, the entire new field of nanomedicine has come to the surface, which has allowed scientists to create upgraded versions of diagnostics, treatment, screening, sequencing, disease prevention, and proactive actions for healthcare [ 97 ]. These practices may also involve drug manufacturing, designing, conjugation, and efficient delivery options with advances in nano-based genomics, tissue engineering, and gene therapy. With this, it could be predicted that soon, nanomedicine will be the foremost research interest for the coming generation of biologists to study the useful impacts and risks that might be associated with them [ 98 ]. As illustrated in Figure 2 , we summarized the applications of nanotechnology in different subfields of the medical industry.

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g002.jpg

Nanotechnology applications in medical industry. Nanotechnology has a broad range of applications in various diagnostics and treatments using nanorobotics and drug delivery systems.

In various medical procedures, scientists are exploring the potential benefits of nanotechnology. In the field of medical tools, various robotic characters have been applied which have their origins in nano-scale computers, such as diagnostic surfaces, sensor technologies, and sample purification kits [ 99 ]. Similarly, some modifications are being accepted in diagnostics with the development of devices that are capable of working, responding, and modifying within the human body with the sole purpose of early diagnosis and treatment. Regenerative medicine has led to nanomanufacturing applications in addition to cell therapy and tissue engineering [ 100 ]. Similarly, some latest technologies in the form of ‘lab-on-a-chip’, as elaborated upon earlier, are being introduced with large implications in different fields such as nanomedicine, diagnostics, dentistry, and cosmetics industries [ 101 ]. Some updated nanotechnology applications in genomics and proteomics fields have developed molecular insights into antimicrobial diseases. Moreover, medicine, programming, nanoengineering, and biotechnology are being merged to create applications such as surgical nanorobotics, nanobioelectrics, and drug delivery methods [ 102 ]. All of these together help scientists and clinicians to better understand the pathophysiology of diseases and to bring about better treatment solutions in the future.

Specifically, the field of nanocomputers and linked devices help to control activation responses and their rates in mechanical procedures [ 2 ]. Through these mechanical devices, specific actions of medical and dental procedures are executed accurately. Moreover, programmed nanomachines and nanorobots allow medical practitioners to carry out medical procedures precisely at even sub-cellular levels [ 4 ]. In diagnostics fields, the use of such nanodevices is expanding rapidly, which allows predictions to be made about disease etiology and helps to regulate treatment options [ 103 ]. The use of in vitro diagnosis allows increased efficiency in disease apprehension. Meanwhile, in in vivo diagnoses, such devices have been made which carry out the screening of diseased states and respond to any kind of toxicities or carcinogenic or pathological irregularities that the body faces [ 104 ].

Similarly, the field of regenerative medicine is employing nanomaterials in various medical procedures such as cell therapy, tissue engineering, and gene sequencing for the greater outlook of treatment and reparation of cells, tissues, and organs. Nanoassemblies have been recorded in research for applications in powerful tissue regeneration technologies with properties of cell adhesion, migration, and cellular differentiation [ 102 ]. Additionally, nanotechnology is being applied in antimicrobial (antibacterial and antiviral) fields. The microscopic abilities of these pathogens are determined through nano-scale technologies [ 100 ]. Greek medicinal practices have long been using metals to cure pathogenic diseases, but the field of nanotechnology has presented a new method to improve such traditional medical practices; for example, nanosized silver nanomaterials are being used to cure burn wounds owing to the easy penetration of nanomaterials at the cellular level [ 102 , 105 ].

In the field of bioinformatics and computational biology, genomic and proteomic technologies are elucidating molecular insights into disease management [ 106 ]. The scope of targeted and personalized therapies related to pathogenic and pathophysiological diseases have greatly provided spaces for nanotechnological innovative technologies [ 107 , 108 ]. They also incorporate the benefits of cost-effectiveness and time saving [ 109 ]. Similarly, nanosensors and nanomicrobivores are utilized for military purposes such as the detection of airborne chemical agents which could cause serious toxic outcomes otherwise [ 102 ]. Some nanosensors also serve a purpose similar to phagocytes to clear toxic pathogens from the bloodstream without causing septic shock conditions, especially due to the inhalation of prohibited drugs and banned substances [ 100 , 105 , 110 ]. These technologies are also used for dose specifications and to neutralize overdosing incidences [ 110 ] Nano-scale molecules work as anticancer and antiviral nucleoside analogs with or without other adjuvants [ 21 ].

Another application of nanotechnology in the medical industry is in bone regeneration technology. Scientists are working on bone graft technology for bone reformation and muscular re-structuring [ 111 , 112 ]. Principle investigations of biomineralization, collagen mimic coatings, collagen fibers, and artificial muscles and joints are being conducted to revolutionize the field of osteology and bone tissue engineering [ 113 , 114 ]. Similarly, drug delivery technologies are excessively considering nanoscaling options to improve drug delivery stability and pharmacodynamic and pharmacokinetic profiles at a large scale [ 110 ]. The use of nanorobots is an important step that allows drugs to travel across the circulatory system and deliver drug entities to specifically targeted sites [ 99 , 115 ]. Scientists are even working on nanorobots-based wireless intracellular and intra-nucleolar nano-scale surgeries for multiple malignancies, which otherwise remain incurable [ 102 ]. These nanorobotics can work at such a minute level that they can even cut a single neuronic dendrite without causing harm to complex neuronal networks [ 116 ].

Another important application of nanotechnology in the medical field is oncology. Nanotechnology is providing a good opportunity for researchers to develop such nanoagents, fluorescent materials, molecular diagnostics kits, and specific targeted drugs that may help to diagnose and cure carcinogenesis [ 104 ]. Scientists are trying various protocols of adjoining already-available drugs with nanoparticulate conjugation to enhance drug specificity and targeting in organs [ 104 , 107 , 117 ]. Nanomedicine acts as the carrier of hundreds of specific anticancerous molecules that could be projected at tumor sites; moreover, the tumor imaging and immunotherapy approaches linked with nanomedicine are also a potential field of interest when it comes to cancer treatment management [ 112 , 117 ]. A focus is also being drawn toward lessening the impact of chemotherapeutic drugs by increasing their tumor-targeting efficiency and improving their pharmacokinetic and pharmacodynamic properties [ 112 ]. Similarly, heat-induced ablation treatment against cancer cells alongside gene therapy protocols is also being coupled with nanorobotics [ 99 , 118 ]. Anticancerous drugs may utilize the Enhanced Permeation and Retention Effect (EPR effect) by applications of nano assemblies such as liposomes, albumin nanospheres, micelles, and gold nanoparticles, which confirms effective treatment strategies against cancer [ 119 ]. Such advances in nanomedicine will bring about a more calculated, outlined, and technically programmed field of nanomedicine through association and cooperation between physicians, clinicians, researchers, and technologies.

2.10.1. Nanoindustry and Dentistry

Nanodentistry is yet another subfield of nanomedicine that involves broad-scale applications of nanotechnology ranging from diagnosis, prevention, cure, prognosis, and treatment options for dental care [ 120 ]. Some important applications in oral nanotechnology include dentition denaturalization, hypersensitivity cure, orthodontic realignment problems, and modernized enameling options for the maintenance of oral health [ 2 , 121 ]. Similarly, mechanical dentifrobots work to sensitize nerve impulse traffic at the core of a tooth in real-time calculation and hence could regulate tooth tissue penetration and maintenance for normal functioning [ 122 ]. The functioning is coupled with programmed nanocomputers to execute an action from external stimuli via connection with localized internal nerve stimuli. Similarly, there are other broad-range applications of nanotechnology in tooth repair, hypersensitivity treatment, tooth repositioning, and denaturalization technologies [ 4 , 118 , 120 , 121 ]. Some of the applications of nanotechnology in the field of dentistry are elaborated upon in Figure 3 .

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g003.jpg

Nanotechnology applications in field of dentistry. Nanotechnology can be largely used in dentistry to repair and treat dental issues.

2.10.2. Nanotechnology and Cosmetics Industry

The cosmetics industry, as part of the greater healthcare industry, is continuously evolving. Nanotechnology-based renovations are progressively incorporated into cosmetics industries as well. Products are designed with novel formulations, therapeutic benefits, and aesthetic output [ 123 ]. The nanocosmetics industry employs the usage of lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, nanosponges, nanoemulsions, nanogels, liposomes, aquasomes, niosomes, dendrimers, and fullerenes, etc., among other such nanoparticles [ 101 ]. These nanomaterials bring about specific characteristics such as drug delivery, enhanced absorption, improved esthetic value, and enhanced shelf life. The benefits of nanotechnology are greatly captured in the improvement of skin, hair, nail, lip, and dental care products, and those associated with hygienic concerns. Changes to the skin barrier have been largely curtailed owing to the function of the nano scale of materials. The nanosize of active ingredients allows them to easily permeate skin barriers and generate the required dermal effect [ 124 ].

More profoundly, nanomaterials’ application is encouraged in the production of sun-protective cosmetics products such as sunblock lotions and creams. The main ingredient used is the rational combination of cinnamates (derived from carnauba wax) and titanium dioxide nanosuspensions which provide sun-protective effects in cosmetics products [ 125 ]. Similarly, nanoparticle suspensions are being applied in nanostructured lipid carriers (NLCs) for dermal and pharmaceutical applications [ 126 ]. They exhibit the properties of controlled drug-carrying and realizing properties, along with direct drug targeting, occlusion, and increased penetration and absorption to the skin surface. Moreover, these carrier nanoemulsions exhibit excellent tolerability to intense environmental and body conditions [ 127 ]. Moreover, these lipid nanocarriers have been researched and declared safe for potential cosmetic and pharmaceutical applications. However, more research is still required to assess the risk/benefit ratio of their excessive application [ 128 ].

2.11. Nanotechnology Industries and Environment

The environment, society, and technology are becoming excessively linked under a common slogan of sustainable development. Nanotechnology plays a key role in the 21st century to modify the technical and experimental outlook of various industries. Environmental applications cannot stand still against revolutionary applications of nanotechnology. Since the environment has much to do with the physical and chemical world around a living being, the nano scale of products greatly changes and affects environmental sustainability [ 129 ]. The subsequent introduction of nanomaterials in chemistry, physics, biotechnology, computer science, and space, food, and chemical industries, in general, directly impacts environmental sciences.

With regard to environmental applications, the remarkable research and applications of nanotechnology are increasing in the processing of raw materials, product manufacturing, contaminate treatment, soil and wastewater treatment, energy storage, and hazardous waste management [ 130 ]. In developed nations, it is now widely suggested that nanotechnology could play an effective role in tackling environmental issues. In fact, the application of nanotechnology could be implemented for water and cell cleaning technologies, drinking safety measures, and the detoxification of contaminants and pollutants from the environment such as heavy metals, organochlorine pesticides, and solvents, etc., which may involve reprocessing although nanofiltration. Moreover, the efficiency and durability of materials can be increased with mechanical stress and weathering phenomena. Similarly, the use of nanocage-based emulsions is being used for optical imaging techniques [ 131 ].

In short, the literature provides immense relevance to how nanotechnology is proving itself through groundbreaking innovative technologies in environmental sciences. The focus, for now, is kept on remediation technologies with prime attention on water treatment, since water scarcity is being faced worldwide and is becoming critical with time. There is a need for the scientific community to actively conduct research on comprehending the properties of nanomaterials for their high surface area, related chemical properties, high mobility, and unique mechanical and magnetic properties which could be used for to achieve a sustainable environment [ 132 ].

2.12. Nanotechnology—Oil and Gas Industry

The oil and gas industry makes up a big part of the fossil industry, which is slowly depleting with the rising consumption. Although nanotechnology has been successfully applied to the fields of construction, medicine, and computer science, its application in the oil and gas industry is still limited, especially in exploration and production technologies [ 133 ]. The major issue in this industry is to improve oil recovery and the further exploitation of alternative energy sources. This is because the cost of oil production and further purification is immense compared to crude oil prices. Nanotechnologists believe that they could overcome the technological barriers to developing such nanomaterials that would help in curtailing these problems.

Governments are putting millions of dollars into the exploration, drilling, production, refining, wastewater treatment, and transport of crude oil and gas. Nanotechnology can provide assistance in the precise measurement of reservoir conditions. Similarly, nanofluids have been proven to exhibit better performance in oil production industries. Nanocatalyses enhance the separation processing of oil, water, and gases, thus bringing an efficient impurity removal process to the oil and gas industry. Nanofabrication and nanomembrane technologies are excessively being utilized for the separation and purification of fossil materials [ 134 ]. Finally, functional and modified nanomaterials can produce smart, cost-effective, and durable equipment for the processing and manufacturing of oil and gas. In short, there is immense ground for the improvement of the fossil fuel industry if nanotechnology could be correctly directed in this industry [ 135 ].

2.13. Nanotechnology and Renewable Energy (Solar) Industry

Renewable energy sources are the solutions to many environmental problems in today’s world. This makes the renewable energy industry a major part of the environmental industry. Subsequently, nanotechnology needs to be considered in the energy affairs of the world. Nanotechnologies are increasingly applied in solar, hydrogen, biomass, geothermal, and tidal wave energy production. Although, scientists are convinced that much more needs to be discovered before enhancing the benefits of coupled nanotechnology and renewable energy [ 136 ].

Nanotechnology has procured its application way down the road of renewable energy sources. Solar collectors have been specifically given much importance since their usage is encouraged throughout the world, and with events of intense solar radiation, the production and dependence of solar energy will be helpful for fulfilling future energy needs. Research data are available regarding the theoretical, numerical, and experimental approaches adopted for upgrading solar collectors with the employment of nanotechnologies [ 137 ].

These applications include the nanoengineering of flat solar plates, direct absorption plates, parabolic troughs, and wavy plates and heat pipes. In most of these instruments and solar collection devices, the use of nanofluids is becoming common and plays a crucial role in increasing the working efficiency of these devices. A gap, however, exists concerning the usage of nanomaterials in the useful manufacturing design of solar panels and their associated possible efficiencies which could be brought to the solar panel industry. Moreover, work needs to be done regarding the cost-effectiveness and efficiency analyses of traditional and nanotechnology-based solar devices so that appropriate measures could be adopted for the future generation of nanosolar collectors [ 138 ].

2.14. Nanotechnology and Wood Industry

The wood industry is one of the main economic drivers in various countries where forest growth is immense and heavy industrial setups rely on manufacturing and selling wood-based products [ 139 ]. However, the rising environmental concerns against deforestation are a major cause for researchers to think about a method for the sustainable usage of wood products. Hence, nanotechnology has set its foot in the wood industry in various applications such as the production of biodegradable materials in the paper and pulp industry, timber and furniture industry, wood preservatives, wood composites, and applications in lignocellulosic-based materials [ 140 ]. Resultantly, new products are introduced into the market with enhanced performance (stronger yet lighter products), increased economic potential, and reduced environmental impact.

One method of nano-based application in the wood industry is the derivation of nanomaterials directly from the forest, which is now called nanocellulose material, known broadly for its sustainable characteristics [ 141 ]. This factor has pushed the wood industry to convert cellulosic material to nanocellulose with increased strength, low weight, and increased electromagnetic response along with a larger surface area [ 142 ]. These characteristics are then further used as reinforcing agents in different subcategories of wood-based industries, including substrate, stabilizer, electronics, batteries, sensor technologies, food, medicine, and cosmetics industries [ 143 ]. Moreover, functional characteristics such as the durability, UV absorption, fire resistance, and decreased water absorption of wood-based biodegradable products are also being improved with the application of nanomaterials such as nanozinc oxide or nanotitanium oxide [ 144 ]. Similarly, wood biodegradable properties are reduced through the application of nanoencapsulated preservatives to improve the impregnation of wood with the increasing penetration of applied chemicals and a reduced leaching effect.

Cellulosic nanomaterials exhibit nanofibrillar structures which can be made multifunctional for application in construction, furniture, food, pharmaceuticals, and other wood-based industries [ 145 ]. Research is emerging in which promising results are predicted in different industries in which nanofibers, nanofillers, nanoemulsions, nanocomposites, and nano-scaled chemical materials are used to increase the potential advantages of manufactured wood products [ 146 ]. The outstanding properties of nanocellulusice materials have largely curtailed the environmental concerns in the wood industry in the form of their potential renewable characteristics, self-assembling properties, and well-defined architecture. However, there are a few challenges related to such industries, such as cost/benefit analyses, a lack of compatibility and acceptability from the public owing to a lack of proper commercialization, and a persistent knowledge gap in some places [ 145 ]. Therefore, more effort is required to increase the applications and acceptability of nano-based wood products in the market worldwide.

2.15. Nanotechnology and Chemical Industries

Nanotechnology can be easily applied to various chemical compositions such as polymeric substances; this application can bring about structural and functional changes in those chemical materials and can address various industrial applications including medicine, physics, electronics, chemical, and material industries, among others [ 76 , 132 , 138 ]. One such industrial application is in electricity production, in which different nanomaterials driven from silver, golden, and organic sources could be utilized to make the overall production process cheaper and effective [ 147 ]. Another effective application is in the coatings and textile industry, which has already been discussed briefly. In these industries, enzymatic catalysis in combination with nanotechnology accelerates reaction times, saving money and bringing about high-quality final products. Similarly, the water cleaning industry can utilize the benefits of nanomaterials in the form of silver and magnetic nanoparticles to create strong forces of attraction that easily separate heavy material from untreated water [ 148 ]. Similarly, there is a wide range of chemicals that can be potentially upgraded, although the nano scale for application in biomedical industries is discussed under the heading of nanotechnology and medicine.

Another major application of nanotechnology in the chemical industry includes the surfactant industry, which is used for cleaning paper, inks, agrochemicals, drugs, pharmaceuticals, and some food products [ 149 ]. The traditional surfactant application was of great environmental and health concern, but with the newer and improved manufacturing and nanoscaling of surfactants, environmentally friendly applications have been made possible. These newer types may include biosurfactants obtained via the process of fermentation and bio-based surfactants produced through organic manufacturing. More research is required to establish the risks and side effects of these nanochemical agents [ 3 ].

3. Closing Remarks

Nanotechnology, within a short period, has taken over all disciplinary fields of science, whether it is physics, biology, or chemistry. Now, it is predicted to enormously impact manufacturing technology owing to the evidential and proven benefits of micro scaling. Every field of industry, such as computing, information technology, engineering, medicine, agriculture, and food, among others, is now originating an entire new field in association with nanotechnology. These industries are widely known as nanocomputer, nanoengineering, nanoinformatics, nanobiotechnology, nanomedicine, nanoagriculture, and nanofood industries. The most brilliant discoveries are being made in nanomedicine, while the most cost-effective and vibrant technologies are being introduced in materials and mechanical sciences.

The very purpose of nanotechnology, in layman’s terms, is to ease out the manufacturing process and improve the quality of end products and processes. In this regard, it is easy and predictable that it is not difficult for nanotechnology to slowly take out most of the manufacturing process for industrial improvement. With every coming year, more high-tech and more effective-looking nanotechnologies are being introduced. This is smoothing out the basis of a whole new era of nanomindustries. However, the constructive need is to expand the research basis of nanoapplications to entail the rigorous possible pros of this technology and simultaneously figure out a method to deal with the cons of the said technology.

The miniaturization of computer devices has continued for many years and is now being processed at the nanometer scale. However, a gap remains to explore further options for the nanoscaling of computers and complex electronic devices, including computer processors. Moreover, there is an immense need to enable the controlled production and usage of such nanotechnologies in the real world, because if not, they could threaten the world of technology. Scientists should keep on working on producing nanoelectronic devices with more power and energy efficiency. This is important in order to extract the maximum benefits from the hands of nanotechnology and computer sciences [ 5 ].

Under the influence of nanotechnology, food bioprocessing is showing improvement, as proven by several scientific types of research and industrial applications in food chain and agricultural fields. Moreover, the aspect of sustainability is being introduced to convert the environment, food chains, processing industries, and production methods to save some resources for future generations. The usage of precision farming technologies based upon nanoengineering, modern nano-scale fertilizers, and pesticides are of great importance in this regard. Moreover, a combined nanotechnological aspect is also being successfully applied to the food industry, affecting every dimension of packing, sensing, storage, manufacturing, and antimicrobial applications. It is pertinent to say that although the applications of nanotechnology in the food, agriculture, winemaking, poultry, and associated packaging industries are immense, the need is to accurately conduct the risk assessment and potential toxicity of nanomaterials to avoid any damage to the commercial food chains and animal husbandry practices [ 63 ].

The exposure of the nano-based building industry is immense for civil and mechanical engineers; now, we need to use these technologies to actually bring about changes in those countries in which the population is immense, construction material is depleting, and environmental sustainability problems are hovering upon the state. By carefully assessing the sustainability potential of these nanomaterials, their environmental, hazardous, and health risks could be controlled, and they could likely be removed from the construction and automobile industry all over the world with sincere scientific and technical rigor [ 150 ]. It is expected that soon, the construction and automobile industry will commercialize the nanotechnological perspectives alongside sustainability features in their branding strategies. These nano-scale materials could allow the lifecycle management of automotive and construction industries with the provision of sustainable, safe, comfortable, cost-effective, and more eco-friendly automobiles [ 32 ]. The need is to explore the unacknowledged and untapped potential of nanotechnology applications in these industry industries.

Similarly, nanotechnology-based applications in consumer products such as textile and esthetics industries are immense and impressive. Professional development involves the application of nanotechnology-based UV-protective coatings in clothes which are of utmost need with climatic changes [ 73 ]. The application of nanotechnology overcomes the limitations of conventional production methods and makes the process more suitable and green-technology-based. These properties have allowed the textile companies to effectively apply nanotechnology for the manufacture of better products [ 90 ]. With greater consumer acceptability and market demand, millions are spent in the cosmetic industry to enable the further usage of nanotechnology. Researchers are hopeful that nanotechnology would be used to further upgrade the cosmetics industry in the near future [ 123 ].

Furthermore, the breakthrough applications of nanomedicine are not hidden from the scientific community. If nanomedicine is accepted worldwide in the coming years, then the hope is that the domain of diagnosis and treatment will become more customized, personalized, and genetically targeted for individual patients. Treatment options will ultimately become excessive in number and more successful in accomplishment. However, these assumptions will stay a dream if the research remains limited to scientific understanding.

The real outcome will be the application of this research into the experimental domain and clinical practices to make them more productive and beneficial for the medical industry. For this cause, a combined effort of technical ability, professional skills, research, experimentation, and the cooperation of clinicians, physicians, researchers, and technology is imperative. However, despite all functional beneficial characteristics, work needs to be done and more exploration is required to learn more about nanotechnology and its potential in different industries, especially nanomedicine, and to take into account and curtail the risks and harms attached to the said domain of science.

Additionally, climatic conditions, as mentioned before, along with fossil fuel depletion, have pushed scientists to realize a low-energy-consuming and more productive technological renovation in the form of nanoengineered materials [ 48 ]. Now, they are employing nanomaterials to save energy and harvest the maximum remaining natural resources. There is immense ground for the improvement of the fossil fuel industry if nanotechnology could be correctly directed in this industry [ 135 ]. The beneficial applications within the solar industry, gas and oil industry, and conversion fields require comparative cost-effectiveness and efficiency analyses of traditional and nano-based technologies so that appropriate measures could be adopted for the future generation of nano-based products in said industries [ 138 ].

As every new technology is used in industries, linked social, ethical, environmental, and human safety issues arise to halt the pace of progress. These issues need to be addressed and analyzed along with improving nanotechnology so that this technology easily incorporates into different industries without creating social, moral, and ethical concerns. Wide-scale collaboration is needed among technologists, engineers, biologists, and industrials for a prospective future associated with the wide-scale application of nanotechnology in diversified fields.

4. Conclusions

Highly cost-effective and vibrant nanotechnologies are being introduced in materials and mechanical sciences. A comprehensive overview of such technologies has been covered in this study. This review will help researchers and professionals from different fields to delve deeper into the applications of nanotechnology in their particular areas of interest. Indeed, the applications of nanotechnology are immense, yet the risks attached to unlimited applications remain unclear and unpronounced. Thus, more work needs to be linked and carefully ascertained so that further solutions can be determined in the realm of nanotoxicology. Moreover, it is recommended that researchers, technicians, and industrialists should cooperate at the field and educational level to explore options and usefully exploit nanotechnology in field experiments. Additionally, more developments should be made and carefully assessed at the nano scale for a future world, so that we are aware of this massive technology. The magnificent applications of nanotechnology in the industrial world makes one think that soon, the offerings of nanotechnology will be incorporated into every possible industry. However, there is a need to take precautionary measures to be aware of and educate ourselves about the environmental and pollution concerns alongside health-related harms to living things that may arise due to the deviant use of nanotechnology. This is important because the aspect of sustainability is being increasingly considered throughout the world. So, by coupling the aspect of sustainability with nanotechnology, a prosperous future of nanotechnology can be guaranteed.

Funding Statement

K.M.’s work is supported by United Arab Emirates University-UPAR-Grant#G3458, SURE plus Grant#3908 and SDG research programme grant#4065.

Author Contributions

Conceptualization, Y.W. methodology, S.M. validation, S.M., K.M. and Y.W. formal analysis, S.M., K.M. and Y.W. investigation, S.M., K.M. and Y.W. resources, K.M. and Y.W. data curation, S.M., K.M. and Y.W. writing—original draft preparation, S.M. writing—review and editing, S.M., K.M. and Y.W. supervision, Y.W. project administration, K.M. and Y.W. funding acquisition, Y.W. and K.M. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

research paper about modern technology

  • Login To RMS System
  • About JETIR URP
  • About All Approval and Licence
  • Conference/Special Issue Proposal
  • Book and Dissertation/Thesis Publication
  • How start New Journal & Software
  • Best Papers Award
  • Mission and Vision
  • Reviewer Board
  • Join JETIR URP
  • Call For Paper
  • Research Areas
  • Publication Guidelines
  • Sample Paper Format
  • Submit Paper Online
  • Processing Charges
  • Hard Copy and DOI Charges
  • Check Your Paper Status
  • Current Issue
  • Past Issues
  • Special Issues
  • Conference Proposal
  • Recent Conference
  • Published Thesis

Contact Us Click Here

Whatsapp contact click here, published in:.

Volume 6 Issue 1 January-2019 eISSN: 2349-5162

UGC and ISSN approved 7.95 impact factor UGC Approved Journal no 63975

Unique identifier.

Published Paper ID: JETIREO06025

Registration ID: 307883

Page Number

Post-publication.

  • Downlaod eCertificate, Confirmation Letter
  • editor board member
  • JETIR front page
  • Journal Back Page
  • UGC Approval 14 June W.e.f of CARE List UGC Approved Journal no 63975

Share This Article

Important links:.

  • Call for Paper
  • Submit Manuscript online

research paper about modern technology

  • Arvindhan M

Cite This Article

2349-5162 | Impact Factor 7.95 Calculate by Google Scholar An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 7.95 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator

Publication Details

Download paper / preview article.

research paper about modern technology

Download Paper

Preview this article, download pdf, print this page.

research paper about modern technology

Impact Factor:

Impact factor calculation click here current call for paper, call for paper cilck here for more info important links:.

  • Follow Us on

research paper about modern technology

  • Developed by JETIR

IMAGES

  1. (PDF) IMPACT OF MODERN TECHNOLOGY ON THE STUDENT PERFORMANCE IN HIGHER

    research paper about modern technology

  2. (PDF) The modern technology are using education for adolescents

    research paper about modern technology

  3. Reflection paper(about the ict)

    research paper about modern technology

  4. 😂 Research paper about technology. Research Paper on Medical Technology

    research paper about modern technology

  5. The Importance Of Modern Technology In Our Life

    research paper about modern technology

  6. Best Essay On Technology [& Its Impacts]

    research paper about modern technology

VIDEO

  1. Top 5 Emerging Technologies and their Use Cases in 2023: Discover the Future of Technology

  2. पशुपालन की एडवांस मशीनें

  3. Science and Technology 212 2024 Exam Solved Question Paper Class-10th NIOS. Fully Solved Questions

COMMENTS

  1. How Is Technology Changing the World, and How Should the World Change

    Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing ...

  2. (PDF) Impact of modern technology in education

    This research paper is a study of the efficacy of the flipped learning approach in teaching 'Wh' questions to first-year undergraduate ESL learners. ... modern technology has been very helpful ...

  3. (PDF) IMPACT OF MODERN TECHNOLOGY ON THE STUDENT ...

    study the impact of technology on the student per formance of the higher education. The da ta for the. 112 students. Correlation and regression is used to study the influence of Computer aided ...

  4. Understanding the role of digital technologies in education: A review

    Technology is pervasive and intertwined in many aspects of modern life and society. The digital revolution that is sweeping the world has begun to infiltrate the realm of education. It is rapidly transforming the way students learn, and as a result, technology is expected to improve the face of education by making it more inexpensive and ...

  5. The impact of modern technology in the teaching and ...

    Purpose: This research paper aims to explore the impact of technology on society in various areas, including social interactions, education, the economy, and the environment.

  6. Impacts of digital technologies on education and factors influencing

    Introduction. Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol ...

  7. Full article: What is technology?

    A returning signal produces new data on another screen in Pasadena. This is the reach of modern science and the scales of intervention of modern technology: intervening and representing at scales human but also at what the philosopher Alfred Nordmann calls the 'uncanny' scales of the very very small and the very very large. Footnote 5

  8. A comprehensive study of technological change

    New research from MIT aims to assist in the prediction of technology performance improvement using U.S. patents as a dataset. The study describes 97 percent of the U.S. patent system as a set of 1,757 discrete technology domains, and quantitatively assesses each domain for its improvement potential. "The rate of improvement can only be ...

  9. Science, technology and innovation in a 21st century context

    The first is the frontier of complexity, where physics, chemistry, materials science, biology, and mathematics all come together. This is where nanotechnology and biotechnology reside. These are huge fields that form the core of basic science policy in most developed nations. The basic science of the twenty-first century is neither biology nor ...

  10. Understanding Technology, Changing the World

    Understanding Technology, Changing the World. Largely due to the continuing difficulties caused by and connected with the pandemic, there was no time to write editorials for this year's two earlier issues of our journal NanoEthics: Studies of New and Emerging Technologies. The present editorial for the third issue thus constitutes a kind of ...

  11. Full article: The rise of technology and impact on skills

    There are two key trends from the literature on technology's impact on jobs and skills. First, alarmist views on technology-induced job losses have been revised to a more optimistic outlook predicting a net increase in jobs. However, new jobs may emerge in different industries and require workers to learn new skills.

  12. Emerging Health Technologies and How They Can Transform Healthcare

    The World Health Organization (WHO) defines health technology as the application of organised knowledge and skills in the form of medicines, medical devices, vaccines, procedures and systems developed to solve a health problem and improve quality of life (World Health Organization, Health technology assessment).The Organisation for Economic Co-operation and Development (OECD) defines health ...

  13. A Framework for Research on Education With Technology

    Educational software offers the potential for greatly enhanced student learning. The current availability and political will for trying new approaches means that there is currently much interest in and expenditure on technology for education. After reviewing some of the relevant issues, a framework that builds upon Marr and Poggio's (1977) levels of explanation is presented. The research ...

  14. Modern Times: The Technology Connection and its Implications for Social

    Abstract. Modernity and technology are mutually defining. Each one necessarily and fundamentally implies the other. The dominant time mode within this conjunction is the legacy of Newtonian science and the attendant machine time of the clock. Deeply taken for granted in our daily lives and our social theories, it is not easily accessible to ...

  15. The Effect and Importance of Technology in the Research Process

    Abstract. From elementary schooling to doctoral-level education, technology has become an integral part of the learning process in and out of the classroom. With the implementation of the Common Core Learning Standards, the skills required for research are more valuable than ever, for they are required to succeed in a college setting, as well ...

  16. PDF 1:1 Technology and its Effect on Student Academic Achievement and ...

    This study set out to determine whether one to one technology (1:1 will be used hereafter) truly impacts and effects the academic achievement of students. This study's second goal was to determine whether 1:1 Technology also effects student motivation to learn. Data was gathered from students participating in this study through the Pearson ...

  17. Analytical study on the impact of technology in higher education during

    Exposure to tech: incorporating technology into education exposes students to modern and relevant technologies. This helps both students and academic staff close the technological literacy gap while also fostering expertise in online and digital media, thereby preparing students for the job market in an increasingly technology-reliant world of ...

  18. PDF © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349

    A Research Paper on Modern Technology Arvindhan M, Department Of Computer Science and Engineering Galgotias University, Yamuna Expressway Greater Noida, Uttar Pradesh E-mail id - [email protected] Abstract: God's gift is science. It may be the best of God's blessings after the gift of life.

  19. How Has Technology Changed Education?

    Technology has also begun to change the roles of teachers and learners. In the traditional classroom, such as what we see depicted in de Voltolina's illustration, the teacher is the primary source of information, and the learners passively receive it. This model of the teacher as the "sage on the stage" has been in education for a long ...

  20. (PDF) Technology and Transformation in Communication

    Technology is. the fuel that enables these trends to grow. Mobile devices, the cloud, collaborative software, and. other advances allow for greater flexibility inside and outside of the physical ...

  21. Modern Technology's Impact on Society

    Modern technology in transportation allows large distances to be traveled quickly. Electric trains, airplanes, cars, and even rockets are used for this purpose (Garsten & Wulff, 2020). In this way, technology brings positive change for people who love to travel. Despite all the positive changes, there are also disadvantages to the active ...

  22. Impacts of technology on children's health: a systematic review

    Nowadays, information and communication technologies increasingly make up children's daily routines. Data from the Brazilian Institute of Geography and Statistics (IBGE) state that, among Brazilian children aged 10 years and over, internet use rose from 69.8% in 2017 to 74.7% in 2018.

  23. Modernizing data with strategic purpose

    by MIT Technology Review Insights. Data modernization is squarely on the corporate agenda. In our survey of 350 senior data and technology executives, just over half say their organization has ...

  24. Nanotechnology: A Revolution in Modern Industry

    Abstract. Nanotechnology, contrary to its name, has massively revolutionized industries around the world. This paper predominantly deals with data regarding the applications of nanotechnology in the modernization of several industries. A comprehensive research strategy is adopted to incorporate the latest data driven from major science platforms.

  25. A Research Paper on Modern Technology

    God's gift is science. It may be the best of God's blessings after the gift of life. He has been the mother of civilizations, of science and of arts. Technology definitely changed our way of living. It has influenced different aspects of life and redefined culture. In all spheres of life, technology definitely plays an important role. Thanks to technology, several repetitive activities can be ...