essay on isaac newton in 100 words

30,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay on isaac newton in 100 words

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay on isaac newton in 100 words

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Isaac Newton: The Father of Modern Science

essay on isaac newton in 100 words

  • Updated on  
  • Mar 15, 2024

Essay on Isaac Newton

Did you know Isaac Newton almost gave up on his education before discovering the laws of motion? Born in 1642, Isaac Newton was an English mathematician , physicist , astronomer, and author who is widely recognized as one of the most influential scientists in history. He is known as the father of modern physics. He made significant contributions to various fields of science and mathematics, and his work laid the foundation for many scientific principles and discoveries. Let’s find out more about Isaac Newton with the essays written below.

Table of Contents

  • 1 Things to keep in Mind while Writing Essay on Isaac Newton
  • 2 Essay on Isaac Newton in 100 Words
  • 3 Essay on Isaac Newton in 200 Words
  • 4 Essay on Isaac Newton in 300 Words

Also Read – Essay on Chandrayaan-3

Things to keep in Mind while Writing Essay on Isaac Newton

  • Isaac Newton was born on 4th January 1643.
  • He is famous for discovering the phenomenon of white light integrated with colours which further presented as the foundation of modern physical optics.
  • He is known for formulating the three laws of motion and the laws of gravitation which changed the track of physics all across the globe.
  • In mathematics, he is known as the originator of calculus.
  • He was knighted in 1705 hence, he came to be known as “Sir Isaac Newton”.

Essay on Isaac Newton in 100 Words

Issac Newton was an English scientist who made some groundbreaking discoveries in the field of science and revolutionized physics and mathematics. revolutionized physics and mathematics. He formulated the three laws of motion , defining how objects move and interact with forces. His law of universal gravitation explained planetary motion. Newton independently developed calculus, a fundamental branch of mathematics. 

Everybody knows Newton because of the apply story, in which he was sitting under a tree when an apple fell on him. His ‘Philosophiæ Naturalis Principia Mathematica’ remains a cornerstone of scientific thought. Newton’s profound insights continue to shape our understanding of the natural world.

Also Read – Essay on Technology

Essay on Isaac Newton in 200 Words

Born in 1642, Isaac Newton is one of the most influential scientists of all time. His groundbreaking contributions in physics, astronomy and mathematics helped reshape the understanding of the natural world. Our science books mention Newton’s three laws of motion which brought a revolution in physics.

  • Newton’s first law of motion, also known as the law of inertia, states that an object will stay at rest unless acted upon by an outside force.
  • The second law of motion states that an object’s acceleration is produced by a net force that is directly proportional to the net force’s magnitude.
  • The third law of motion states that every action has an equal and opposite reaction.

All these laws laid the foundation for classical mechanics, revolutionizing the way we comprehend the physical world. He is known as the father of modern physics.

In mathematics, Newton developed calculus independently. His work in calculus was essential for solving complex mathematical problems, making it a cornerstone of modern mathematics and science.

His work ‘Philosophiæ Naturalis Principia Mathematica’ was published in 1687, and remains a monumental work that underpins modern science. His profound insights continue to shape our understanding of the universe, making Isaac Newton one of history’s most influential and celebrated scientists.

Essay on Isaac Newton in 300 Words

Isaac Newton was an English scientist who was known for his groundbreaking discoveries in the fields of Physics, Mathematics and Astronomy. Thanks to his discoveries of revolutionizing our understanding of the natural world. 

One of his well-known discoveries was the three laws of motion, also known as Newton’s three laws of motion. 

  • The first law, known as the law of inertia, states that objects at rest tend to stay at rest, and objects in motion tend to stay in motion unless acted upon by an external force.
  • The second law quantifies how forces affect an object’s motion, introducing the famous equation F = ma (force equals mass times acceleration). 
  • The third law, the law of action and reaction, explains that for every action, there is an equal and opposite reaction. 

These laws provided a comprehensive framework for understanding and predicting the behaviour of physical objects, from the motion of planets to the fall of an apple.

Another groundbreaking achievement of Newton was the discovery of the universal law of gravitation. This law states that every object in the universe attracts every other object with a force directly proportional to their masses and inversely proportional to the square of the distance between them.

It explained the mechanics of planetary motion and demonstrated that the same laws that govern objects on Earth also apply to celestial bodies, unifying the terrestrial and celestial realms.

In mathematics, Newton independently developed a powerful mathematical tool, called calculus, for analyzing rates of change and solving complex problems. His work laid the groundwork for modern calculus and transformed mathematics, physics, and engineering.

Newton’s magnum opus, “Philosophiæ Naturalis Principia Mathematica” (Mathematical Principles of Natural Philosophy), published in 1687, is a landmark work that brought together his laws of motion and the law of universal gravitation. 

Related Articles:

  • Essay on Rabindranath Tagore
  • Essay on Allama Iqbal
  • Essay on Technology
  • Essay on Mahatma Gandhi

Issac Newton was an English mathematician, astronomer, theologian, alchemist, author and physicist, was known for the discovery of the laws of gravity, and worked on the principles of visible light and the laws of motion.

Newton’s three laws of motion are: first law of motion (law of inertia), which states that an object will stay at rest unless acted upon by an outside force; The second law of motion states that an object’s acceleration is produced by a net force that is directly proportional to the net force’s magnitude; The third law of motion states that every action has an equal and opposite reaction.

Issac Newton is known as the father of modern physics and was associated with Cambridge University as a physicist and mathematician.

For more information on such interesting topics, visit our essay writing page and make sure to follow Leverage Edu .

' src=

Shiva Tyagi

With an experience of over a year, I've developed a passion for writing blogs on wide range of topics. I am mostly inspired from topics related to social and environmental fields, where you come up with a positive outcome.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

essay on isaac newton in 100 words

Connect With Us

essay on isaac newton in 100 words

30,000+ students realised their study abroad dream with us. Take the first step today.

essay on isaac newton in 100 words

Resend OTP in

essay on isaac newton in 100 words

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

essay on isaac newton in 100 words

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

essay on isaac newton in 100 words

Make your study abroad dream a reality in January 2022 with

essay on isaac newton in 100 words

India's Biggest Virtual University Fair

essay on isaac newton in 100 words

Essex Direct Admission Day

Why attend .

essay on isaac newton in 100 words

Don't Miss Out

Logo

Essay on Isaac Newton

Students are often asked to write an essay on Isaac Newton in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Isaac Newton

Isaac Newton was born on January 4, 1643, in England. He was a curious child who loved reading and exploring nature.

Discoveries

Newton is famous for discovering gravity. The story goes that an apple falling from a tree inspired him. He also developed the three laws of motion.

Contributions to Mathematics

Newton invented a type of math called calculus. It helps us understand things that change and is used in many areas today.

Newton died in 1727. His discoveries still impact science and mathematics, making him one of the greatest thinkers in history.

Also check:

  • Speech on Isaac Newton

250 Words Essay on Isaac Newton

Early life and education.

Isaac Newton, born on January 4, 1643, in Woolsthorpe, England, emerged as a pivotal figure in scientific revolution. His early education at King’s School, Grantham, laid the foundation for his future endeavors. Newton’s mother’s attempt to make him a farmer was thwarted by his evident intellectual curiosity, leading to his enrollment at Trinity College, Cambridge.

Developments in Mathematics and Physics

Newton’s most significant contributions lie in mathematics and physics. His work ‘Philosophiæ Naturalis Principia Mathematica’ is a testament to his genius, introducing the three laws of motion, forming the basis of classical mechanics. Additionally, he developed calculus, a branch of mathematics instrumental in understanding changes in quantities.

Optics and the Theory of Colour

Newton’s work in optics revolutionized understanding of light and colour. His experiments with prisms led to the discovery that white light is a composite of all colors in the spectrum, debunking the then-prevailing belief of color being a mixture of light and darkness.

Legacy and Impact

Newton’s legacy extends beyond his lifetime, with his principles still being fundamental to modern scientific thought. His laws of motion and universal gravitation shaped our understanding of the physical world, while his work in optics and mathematics has far-reaching implications in various scientific fields.

In conclusion, Isaac Newton’s contributions to science and mathematics have been monumental, influencing centuries of scientific thought and discovery. His life and work continue to inspire curiosity and innovation in the quest for knowledge.

500 Words Essay on Isaac Newton

Introduction.

Isaac Newton, born on January 4, 1643, in Woolsthorpe, England, was a renowned physicist and mathematician. He is often hailed as one of the most influential scientists of all time. His contributions to the fields of physics, mathematics, and astronomy have had a profound impact on our understanding of the natural world.

Newton’s Early Life and Education

Newton was born prematurely and was not expected to survive. His father had died three months before his birth, leaving him with his mother, who later remarried. Newton was then raised by his grandmother. Despite these early hardships, Newton’s intellectual curiosity led him to the University of Cambridge, where he studied from 1661 to 1665.

The Birth of Newtonian Physics

During his time at Cambridge, Newton developed the foundations of calculus, though it wasn’t until later that he fully developed and published his work. The university closed in 1665 due to the Great Plague, and Newton returned home. It was during this period, known as his annus mirabilis, or “year of wonders”, that he made some of his most significant discoveries.

Among these was the law of universal gravitation, inspired reportedly by the fall of an apple from a tree. He proposed that every particle of matter attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. This was a revolutionary concept that provided a unified explanation for terrestrial and celestial mechanics.

Newton’s Three Laws of Motion

In his work “Philosophiæ Naturalis Principia Mathematica”, Newton outlined his three laws of motion. The first law, often called the law of inertia, states that an object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force. The second law established the relationship between force, mass, and acceleration. The third law, known as the action-reaction law, states that for every action, there is an equal and opposite reaction.

Contributions to Optics

Newton’s contributions were not limited to physics and mathematics. He also made significant advancements in the field of optics. His experiments with prisms led to the discovery that white light is composed of a spectrum of colors, which he described in his work “Opticks”. He also built the first practical reflecting telescope, known as the Newtonian telescope.

Isaac Newton’s contributions to science have shaped our understanding of the physical world. His laws of motion and universal gravitation laid the groundwork for classical physics, and his work in optics expanded our understanding of light and color. Despite personal hardships and the tumultuous times in which he lived, Newton’s relentless curiosity and dedication to scientific exploration cemented his place in history as one of the greatest scientists of all time. His legacy continues to inspire scientists and researchers, reminding us of the boundless possibilities of human intellect.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Internet
  • Essay on Integrity
  • Essay on Inflation

Apart from these, you can look at all the essays by clicking here .

Happy studying!

The essay was so perfect but the date of birth is not same in 1st and 3rd essay.so may be the date of birth is wrong at in one essay.

Fixed, thanks.

Very nice and good essay

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

essay on isaac newton in 100 words

Isaac Newton, Mathematician and Scientist Essay (Biography)

Introduction.

Isaac Newton is one of the greatest historical figures who will remain the annals of history, because of his numerous contributions to different scientific fields such as mathematics and physics. As Hall (Para 1) argues, “Generally, people have always regarded Newton as one of the most influential theorists in the history of science”. Most of his scientific experiments and abstracts laid the foundation of the modern day scientific inventions, as he was able to prove and document different theoretical concepts.

For example, his publication “Mathematical Principles of Natural Philosophy,” is one of the best scientific reference materials in physics and mathematics. Newton is well remembered for his numerous scientific discoveries such the laws of gravity, differential and integral calculus, the working of a telescope, and the three laws of linear motion. In addition to science, Newton was also very religious, because of the numerous biblical hermeneutics and occult studies that he wrote in his late life (1).

Newton‘s Early Life, Middle and Late Life

Newton’s early life.

Newton was born to Puritan parents Isaac Newton and Hannah Ayscough in 1643 in the county of Lincolnshire, England. He spent most of his childhood days with his grandmother, because his dad had passed away three months before he was born and he could not get along with his stepfather.

As During his early years of school, Newton schooled at the King’s School, Grantham, although it never lasted for long, because the passing away of his stepfather in 1659 forced his family to relocate to Woolsthorpe-by-Colsterworth; hence, making him to drop out of school. His stay in Woolsthorpe-by-Colsterworth was short-lived, because through the influence of King’s school master Henry Strokes, his mother allowed him to go back to school and finish his studies.

As a result of his exemplary performance in the King’s School, Newton got a chance of joining Trinity College, Cambridge on a sizar basis. In college, Newton was a very hardworking and fast learner, because in addition to reading the normal college curriculum materials that were based on Aristotle’s works, he was interested in reading more philosophical and astronomical works written by other philosophers such as Descartes and astronomers such as Galileo, and Thomas Hobes .

To a large extent, this laid the foundation for his later discoveries, because four years later in 1665, Newton invented the binomial theorem and came up with a mathematical theory, which he later modified to be called the infinitesimal calculus. The closure of Trinity College, Cambridge in the late 1665, because of the plague did not prevent Newton from advancing his studies on his own, as he continued with private studies at home.

Through his private studies Newton was able to discover numerous theories the primary ones being calculus, optics, the foundation of the theory of light and color, and the law of gravitation. Newton was very proud of his advancements, something that was evident in his words “ All this was in the two plague years of 1665 and 1666, for in those days I was in my prime of age for invention, and minded mathematics and philosophy more than at any time since,’ when college reopened (O’Connor and Robertson 1).

Newton’s middle Life

Upon the re-opening of his college in 1667, he was chosen as a minor fellow, and later as senior fellow when he embarked on his masters of Arts degree. In 1969, he was selected to replace Professor Isaac Barrow, who was the outgoing professor of Mathematics.

His appointment gave him more opportunities of improving his early works in optics, which led to the release of his first project paper on the nature of color in 1672, after being elected to the Royal Society. This marked the start of the numerous publications that Newton released later, although he faced numerous challenges and oppositions from one the leading science researchers, Robert Hook. Between 1670 and 1672 Newton also taught optics at Trinity College, Cambridge.

This enabled him to do further researches on the concept of refraction of light using glass prisms leading to his discovery on refraction of light and development of the first Newtonian telescope using mirrors. Although the 1678 emotional breakdown suffered by Newton was a major setback to his work, after recovering, he continued with his early researches which led to the publication of the Principia; a publication that elaborated on the laws of motion and the universal law of gravity.

In addition to this, the publication elaborated on some calculus laws primarily on geometrical analysis and some more explanations of the heliocentric theory of the solar system. This publication was followed by another publication that was the second edition of the Principia in 1713. This publication provided more explanations on the force of gravity and the force which made objects to be attracted to one another (Hatch 1).

Newton’s Late Life

His works in the Principia made Newton to a very respected and famous scientist of the time; hence, the nature of appointments, which he received in his late life. For example, in 1689 he was selected as the parliamentary representative of Cambridge; one of the highest power seats of the time. As if this was not enough, in 1703 Newton become the president of the Royal Society, a seat he maintained until his death and Later on in 1704, Newton released a publication named “Opticks” (Fowler 1).

The dawn of 1690’was a transitional period for Newton, as he ventured into the Bible World. As Hatch (1) argues “during this period Newton ventured into writing religious tracts with literal interpretation of the Bible.” Some of his writings included some works which questioned the reality behind the Trinity and the Chronology of Ancient Kingdoms Amended.

Newton’s Scientific Achievements

Newton was one of the most successful historical scientists, because of his numerous contributions to different fields of science such as optics, mathematics, geography, and physics. In mathematics Newton’s discoveries included the binomial theorem of analytical geometry, new methods of solving infinite series in calculus, and the inverse methods of fluxions.

In optic, Newton was one of the first individuals to perform the first experiments on the decomposition of light and the working of the telescope, because of his early discovery on separation of the white light. This enabled Newton to formulate the Corpuscular Light Theory and discover other properties of the white light.

In addition to this, Newton also made numerous discoveries in Physics and mechanics such gravitational force, the centripetal force, the theory of fluids, and the revolution of planetary bodies. Further, Newton was made numerous discoveries in Alchemy and Chemistry, most of which are documented in his numerous publications on different areas of Alchemy, most of which were based on scientific experiments on matter (Hatch 1).

Although in his later life his level of wit his wit reduced, as Hatch (Para 13) argues, “Newton continued to exercise strong influence on the advancement of science, because of his position in the Royal Society. Newton died at the age of eighty fours in 1727, leaving behind a legacy will always remembered in the history of humankind, because of his scientific works.

Works Cited

Fowler, Michael. Isaac Newton: Newton’s life . 2010. Web.

Hall, Alfred. Isaac Newton’s life. Isaac Newton Institute of mathematical Sciences . 2011. Web.

Hatch, Robert. Sir Isaac Newton. 1998. Web.

O ’ Connor, John and Robertson, Ernest. Sir Isaac Newton . 2000. Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2018, August 23). Isaac Newton, Mathematician and Scientist. https://ivypanda.com/essays/the-biography-of-isaac-newton/

"Isaac Newton, Mathematician and Scientist." IvyPanda , 23 Aug. 2018, ivypanda.com/essays/the-biography-of-isaac-newton/.

IvyPanda . (2018) 'Isaac Newton, Mathematician and Scientist'. 23 August.

IvyPanda . 2018. "Isaac Newton, Mathematician and Scientist." August 23, 2018. https://ivypanda.com/essays/the-biography-of-isaac-newton/.

1. IvyPanda . "Isaac Newton, Mathematician and Scientist." August 23, 2018. https://ivypanda.com/essays/the-biography-of-isaac-newton/.

Bibliography

IvyPanda . "Isaac Newton, Mathematician and Scientist." August 23, 2018. https://ivypanda.com/essays/the-biography-of-isaac-newton/.

  • The Enlightenment Period in the Development of Culture
  • Isaac Newton and His Life
  • History of the Telescope
  • Malcolm Baldrige Jr.: Hero of Quality Improvement
  • Black Americans In The Westward Movement: The Key Figures
  • Alexander the Great and the Hellenistic Legacy
  • The Life and Music of Frederic Chopin
  • The Evolution of the American Hero

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Isaac Newton

Isaac Newton (1642–1727) is best known for having invented the calculus in the mid to late 1660s (most of a decade before Leibniz did so independently, and ultimately more influentially) and for having formulated the theory of universal gravity — the latter in his Principia , the single most important work in the transformation of early modern natural philosophy into modern physical science. Yet he also made major discoveries in optics beginning in the mid-1660s and reaching across four decades; and during the course of his 60 years of intense intellectual activity he put no less effort into chemical and alchemical research and into theology and biblical studies than he put into mathematics and physics. He became a dominant figure in Britain almost immediately following publication of his Principia in 1687, with the consequence that “Newtonianism” of one form or another had become firmly rooted there within the first decade of the eighteenth century. His influence on the continent, however, was delayed by the strong opposition to his theory of gravity expressed by such leading figures as Christiaan Huygens and Leibniz, both of whom saw the theory as invoking an occult power of action at a distance in the absence of Newton's having proposed a contact mechanism by means of which forces of gravity could act. As the promise of the theory of gravity became increasingly substantiated, starting in the late 1730s but especially during the 1740s and 1750s, Newton became an equally dominant figure on the continent, and “Newtonianism,” though perhaps in more guarded forms, flourished there as well. What physics textbooks now refer to as “Newtonian mechanics” and “Newtonian science” consists mostly of results achieved on the continent between 1740 and 1800.

1.1 Newton's Early Years

1.2 newton's years at cambridge prior to principia, 1.3 newton's final years at cambridge, 1.4 newton's years in london and his final years, 2. newton's work and influence, primary sources, secondary sources, other internet resources, related entries, 1. newton's life.

Newton's life naturally divides into four parts: the years before he entered Trinity College, Cambridge in 1661; his years in Cambridge before the Principia was published in 1687; a period of almost a decade immediately following this publication, marked by the renown it brought him and his increasing disenchantment with Cambridge; and his final three decades in London, for most of which he was Master of the Mint. While he remained intellectually active during his years in London, his legendary advances date almost entirely from his years in Cambridge. Nevertheless, save for his optical papers of the early 1670s and the first edition of the Principia , all his works published before he died fell within his years in London. [ 1 ]

Newton was born into a Puritan family in Woolsthorpe, a small village in Linconshire near Grantham, on 25 December 1642 (old calendar), a few days short of one year after Galileo died. Isaac's father, a farmer, died two months before Isaac was born. When his mother Hannah married the 63 year old Barnabas Smith three years later and moved to her new husband's residence, Isaac was left behind with his maternal grandparents. (Isaac learned to read and write from his maternal grandmother and mother, both of whom, unlike his father, were literate.) Hannah returned to Woolsthorpe with three new children in 1653, after Smith died. Two years later Isaac went to boarding school in Grantham, returning full time to manage the farm, not very successfully, in 1659. Hannah's brother, who had received an M.A. from Cambridge, and the headmaster of the Grantham school then persuaded his mother that Isaac should prepare for the university. After further schooling at Grantham, he entered Trinity College in 1661, somewhat older than most of his classmates.

These years of Newton's youth were the most turbulent in the history of England. The English Civil War had begun in 1642, King Charles was beheaded in 1649, Oliver Cromwell ruled as lord protector from 1653 until he died in 1658, followed by his son Richard from 1658 to 1659, leading to the restoration of the monarchy under Charles II in 1660. How much the political turmoil of these years affected Newton and his family is unclear, but the effect on Cambridge and other universities was substantial, if only through unshackling them for a period from the control of the Anglican Catholic Church. The return of this control with the restoration was a key factor inducing such figures as Robert Boyle to turn to Charles II for support for what in 1660 emerged as the Royal Society of London. The intellectual world of England at the time Newton matriculated to Cambridge was thus very different from what it was when he was born.

Newton's initial education at Cambridge was classical, focusing (primarily through secondary sources) on Aristotlean rhetoric, logic, ethics, and physics. By 1664, Newton had begun reaching beyond the standard curriculum, reading, for example, the 1656 Latin edition of Descartes's Opera philosophica , which included the Meditations , Discourse on Method , the Dioptrics , and the Principles of Philosophy . By early 1664 he had also begun teaching himself mathematics, taking notes on works by Oughtred, Viète, Wallis, and Descartes — the latter via van Schooten's Latin translation, with commentary, of the Géométrie . Newton spent all but three months from the summer of 1665 until the spring of 1667 at home in Woolsthorpe when the university was closed because of the plague. This period was his so-called annus mirabilis . During it, he made his initial experimental discoveries in optics and developed (independently of Huygens's treatment of 1659) the mathematical theory of uniform circular motion, in the process noting the relationship between the inverse-square and Kepler's rule relating the square of the planetary periods to the cube of their mean distance from the Sun. Even more impressively, by late 1666 he had become de facto the leading mathematician in the world, having extended his earlier examination of cutting-edge problems into the discovery of the calculus, as presented in his tract of October 1666. He returned to Trinity as a Fellow in 1667, where he continued his research in optics, constructing his first reflecting telescope in 1669, and wrote a more extended tract on the calculus “De Analysi per Æquations Numero Terminorum Infinitas” incorporating new work on infinite series. On the basis of this tract Isaac Barrow recommended Newton as his replacement as Lucasian Professor of Mathematics, a position he assumed in October 1669, four and a half years after he had received his Bachelor of Arts.

Over the course of the next fifteen years as Lucasian Professor Newton presented his lectures and carried on research in a variety of areas. By 1671 he had completed most of a treatise length account of the calculus, [ 2 ] which he then found no one would publish. This failure appears to have diverted his interest in mathematics away from the calculus for some time, for the mathematical lectures he registered during this period mostly concern algebra. (During the early 1680s he undertook a critical review of classical texts in geometry, a review that reduced his view of the importance of symbolic mathematics.) His lectures from 1670 to 1672 concerned optics, with a large range of experiments presented in detail. Newton went public with his work in optics in early 1672, submitting material that was read before the Royal Society and then published in the Philosophical Transactions of the Royal Society . This led to four years of exchanges with various figures who challenged his claims, including both Robert Hooke and Christiaan Huygens — exchanges that at times exasperated Newton to the point that he chose to withdraw from further public exchanges in natural philosophy. Before he largely isolated himself in the late 1670s, however, he had also engaged in a series of sometimes long exchanges in the mid 1670s, most notably with John Collins (who had a copy of “De Analysi”) and Leibniz, concerning his work on the calculus. So, though they remained unpublished, Newton's advances in mathematics scarcely remained a secret.

This period as Lucasian Professor also marked the beginning of his more private researches in alchemy and theology. Newton purchased chemical apparatus and treatises in alchemy in 1669, with experiments in chemistry extending across this entire period. The issue of the vows Newton might have to take in conjunction with the Lucasian Professorship also appears to have precipitated his study of the doctrine of the Trinity, which opened the way to his questioning the validity of a good deal more doctrine central to the Roman and Anglican Churches.

Newton showed little interest in orbital astronomy during this period until Hooke initiated a brief correspondence with him in an effort to solicit material for the Royal Society at the end of November 1679, shortly after Newton had returned to Cambridge following the death of his mother. Among the several problems Hooke proposed to Newton was the question of the trajectory of a body under an inverse-square central force:

It now remaines to know the proprietys of a curve Line (not circular nor concentricall) made by a centrall attractive power which makes the velocitys of Descent from the tangent Line or equall straight motion at all Distances in a Duplicate proportion to the Distances Reciprocally taken. I doubt not but that by your excellent method you will easily find out what the Curve must be, and it proprietys, and suggest a physicall Reason of this proportion. [ 3 ]

Newton apparently discovered the systematic relationship between conic-section trajectories and inverse-square central forces at the time, but did not communicate it to anyone, and for reasons that remain unclear did not follow up this discovery until Halley, during a visit in the summer of 1684, put the same question to him. His immediate answer was, an ellipse; and when he was unable to produce the paper on which he had made this determination, he agreed to forward an account to Halley in London. Newton fulfilled this commitment in November by sending Halley a nine-folio-page manuscript, “De Motu Corporum in Gyrum” (“On the Motion of Bodies in Orbit”), which was entered into the Register of the Royal Society in early December 1684. The body of this tract consists of ten deduced propositions — three theorems and seven problems — all of which, along with their corollaries, recur in important propositions in the Principia .

Save for a few weeks away from Cambridge, from late 1684 until early 1687, Newton concentrated on lines of research that expanded the short ten-proposition tract into the 500 page Principia , with its 192 derived propositions. Initially the work was to have a two book structure, but Newton subsequently shifted to three books, and replaced the original version of the final book with one more mathematically demanding. The manuscript for Book 1 was sent to London in the spring of 1686, and the manuscripts for Books 2 and 3, in March and April 1687, respectively. The roughly three hundred copies of the Principia came off the press in the summer of 1687, thrusting the 44 year old Newton into the forefront of natural philosophy and forever ending his life of comparative isolation.

The years between the publication of the Principia and Newton's permanent move to London in 1696 were marked by his increasing disenchantment with his situation in Cambridge. In January 1689, following the Glorious Revolution at the end of 1688, he was elected to represent Cambridge University in the Convention Parliament, which he did until January 1690. During this time he formed friendships with John Locke and Nicolas Fatio de Duillier, and in the summer of 1689 he finally met Christiaan Huygens face to face for two extended discussions. Perhaps because of disappointment with Huygens not being convinced by the argument for universal gravity, in the early 1690s Newton initiated a radical rewriting of the Principia . During these same years he wrote (but withheld) his principal treatise in alchemy, Praxis ; he corresponded with Richard Bentley on religion and allowed Locke to read some of his writings on the subject; he once again entered into an effort to put his work on the calculus in a form suitable for publication; and he carried out experiments on diffraction with the intent of completing his Opticks , only to withhold the manuscript from publication because of dissatisfaction with its treatment of diffraction. The radical revision of the Principia became abandoned by 1693, during the middle of which Newton suffered, by his own testimony, what in more recent times would be called a nervous breakdown. In the two years following his recovery that autumn, he continued his experiments in chymistry and he put substantial effort into trying to refine and extend the gravity-based theory of the lunar orbit in the Principia , but with less success than he had hoped.

Throughout these years Newton showed interest in a position of significance in London, but again with less success than he had hoped until he accepted the relatively minor position of Warden of the Mint in early 1696, a position he held until he became Master of the Mint at the end of 1699. He again represented Cambridge University in Parliament for 16 months, beginning in 1701, the year in which he resigned his Fellowship at Trinity College and the Lucasian Professorship. He was elected President of the Royal Society in 1703 and was knighted by Queen Anne in 1705.

Newton thus became a figure of imminent authority in London over the rest of his life, in face-to-face contact with individuals of power and importance in ways that he had not known in his Cambridge years. His everyday home life changed no less dramatically when his extraordinarily vivacious teenage niece, Catherine Barton, the daughter of his half-sister Hannah, moved in with him shortly after he moved to London, staying until she married John Conduitt in 1717, and after that remaining in close contact. (It was through her and her husband that Newton's papers came down to posterity.) Catherine was socially prominent among the powerful and celebrated among the literati for the years before she married, and her husband was among the wealthiest men of London.

The London years saw Newton embroiled in some nasty disputes, probably made the worse by the ways in which he took advantage of his position of authority in the Royal Society. In the first years of his Presidency he became involved in a dispute with John Flamsteed in which he and Halley, long ill-disposed toward the Flamsteed, violated the trust of the Royal Astronomer, turning him into a permanent enemy. Ill feelings between Newton and Leibniz had been developing below the surface from even before Huygens had died in 1695, and they finally came to a head in 1710 when John Keill accused Leibniz in the Philosophical Transactions of having plagiarized the calculus from Newton and Leibniz, a Fellow of the Royal Society since 1673, demanded redress from the Society. The Society's 1712 published response was anything but redress. Newton not only was a dominant figure in this response, but then published an outspoken anonymous review of it in 1715 in the Philosophical Transactions . Leibniz and his colleagues on the Continent had never been comfortable with the Principia and its implication of action at a distance. With the priority dispute this attitude turned into one of open hostility toward Newton's theory of gravity — a hostility that was matched in its blindness by the fervor of acceptance of the theory in England. The public elements of the priority dispute had the effect of expanding a schism between Newton and Leibniz into a schism between the English associated with the Royal Society and the group who had been working with Leibniz on the calculus since the 1690s, including most notably Johann Bernoulli, and this schism in turn transformed into one between the conduct of science and mathematics in England versus the Continent that persisted long after Leibniz died in 1716.

Although Newton obviously had far less time available to devote to solitary research during his London years than he had had in Cambridge, he did not entirely cease to be productive. The first (English) edition of his Opticks finally appeared in 1704, appended to which were two mathematical treatises, his first work on the calculus to appear in print. This edition was followed by a Latin edition in 1706 and a second English edition in 1717, each containing important Queries on key topics in natural philosophy beyond those in its predecessor. Other earlier work in mathematics began to appear in print, including a work on algebra, Arithmetica Universalis , in 1707 and “De Analysi” and a tract on finite differences, “Methodis differentialis” in 1711. The second edition of the Principia , on which Newton had begun work at the age of 66 in 1709, was published in 1713, with a third edition in 1726. Though the original plan for a radical restructuring had long been abandoned, the fact that virtually every page of the Principia received some modifications in the second edition shows how carefully Newton, often prodded by his editor Roger Cotes, reconsidered everything in it; and important parts were substantially rewritten not only in response to Continental criticisms, but also because of new data, including data from experiments on resistance forces carried out in London. Focused effort on the third edition began in 1723, when Newton was 80 years old, and while the revisions are far less extensive than in the second edition, it does contain substantive additions and modfications, and it surely has claim to being the edition that represents his most considered views.

Newton died on 20 March 1727 at the age of 84. His contemporaries' conception of him nevertheless continued to expand as a consequence of various posthumous publications, including The Chronology of Ancient Kingdoms Amended (1728); the work originally intended to be the last book of the Principia , The System of the World (1728, in both English and Latin); Observations upon the Prophecies of Daniel and the Apocalypse of St. John (1733); A Treatise of the Method of Fluxions and Infinite Series (1737); A Dissertation upon the Sacred Cubit of the Jews (1737), and Four Letters from Sir Isaac Newton to Doctor Bentley concerning Some Arguments in Proof of a Deity (1756). Even then, however, the works that had been published represented only a limited fraction of the total body of papers that had been left in the hands of Catherine and John Conduitt. The five volume collection of Newton's works edited by Samuel Horsley (1779–85) did not alter this situation. Through the marriage of the Conduitts' daughter Catherine and subsequent inheritance, this body of papers came into the possession of Lord Portsmouth, who agreed in 1872 to allow it to be reviewed by scholars at Cambridge University (John Couch Adams, George Stokes, H. R. Luard, and G. D. Liveing). They issued a catalogue in 1888, and the university then retained all the papers of a scientific character. With the notable exception of W. W. Rouse Ball, little work was done on the scientific papers before World War II. The remaining papers were returned to Lord Portsmouth, and then ultimately sold at auction in 1936 to various parties. Serious scholarly work on them did not get underway until the 1970s, and much remains to be done on them.

Three factors stand in the way of giving an account of Newton's work and influence. First is the contrast between the public Newton, consisting of publications in his lifetime and in the decade or two following his death, and the private Newton, consisting of his unpublished work in math and physics, his efforts in chymistry — that is, the 17th century blend of alchemy and chemistry — and his writings in radical theology — material that has become public mostly since World War II. Only the public Newton influenced the eighteenth and early nineteenth centuries, yet any account of Newton himself confined to this material can at best be only fragmentary. Second is the contrast, often shocking, between the actual content of Newton's public writings and the positions attributed to him by others, including most importantly his popularizers. The term “Newtonian” refers to several different intellectual strands unfolding in the eighteenth century, some of them tied more closely to Voltaire, Pemberton, and Maclaurin — or for that matter to those who saw themselves as extending his work, such as Clairaut, Euler, d'Alembert, Lagrange, and Laplace — than to Newton himself. Third is the contrast between the enormous range of subjects to which Newton devoted his full concentration at one time or another during the 60 years of his intellectual career — mathematics, optics, mechanics, astronomy, experimental chemistry, alchemy, and theology — and the remarkably little information we have about what drove him or his sense of himself. Biographers and analysts who try to piece together a unified picture of Newton and his intellectual endeavors often end up telling us almost as much about themselves as about Newton.

Compounding the diversity of the subjects to which Newton devoted time are sharp contrasts in his work within each subject. Optics and orbital mechanics both fall under what we now call physics, and even then they were seen as tied to one another, as indicated by Descartes' first work on the subject, Le Monde, ou Traité de la lumierè . Nevertheless, two very different “Newtonian” traditions in physics arose from Newton's Opticks and Principia : from his Opticks a tradition centered on meticulous experimentation and from his Principia a tradition centered on mathematical theory. The most important element common to these two was Newton's deep commitment to having the empirical world serve not only as the ultimate arbiter, but also as the sole basis for adopting provisional theory. Throughout all of this work he displayed distrust of what was then known as the method of hypotheses – putting forward hypotheses that reach beyond all known phenomena and then testing them by deducing observable conclusions from them. Newton insisted instead on having specific phenomena decide each element of theory, with the goal of limiting the provisional aspect of theory as much as possible to the step of inductively generalizing from the specific phenomena. This stance is perhaps best summarized in his fourth Rule of Reasoning, added in the third edition of the Principia , but adopted as early as his Optical Lectures of the 1670s:

In experimental philosophy, propositions gathered from phenomena by induction should be taken to be either exactly or very nearly true notwithstanding any contrary hypotheses, until yet other phenomena make such propositions either more exact or liable to exceptions. This rule should be followed so that arguments based on induction may not be nullified by hypotheses.

Such a commitment to empirically driven science was a hallmark of the Royal Society from its very beginnings, and one can find it in the research of Kepler, Galileo, Huygens, and in the experimental efforts of the Royal Academy of Paris. Newton, however, carried this commitment further first by eschewing the method of hypotheses and second by displaying in his Principia and Opticks how rich a set of theoretical results can be secured through well-designed experiments and mathematical theory designed to allow inferences from phenomena. The success of those after him in building on these theoretical results completed the process of transforming natural philosophy into modern empirical science.

Newton's commitment to having phenomena decide the elements of theory required questions to be left open when no available phenomena could decide them. Newton contrasted himself most strongly with Leibniz in this regard at the end of his anonymous review of the Royal Society's report on the priority dispute over the calculus:

It must be allowed that these two Gentlemen differ very much in Philosophy. The one proceeds upon the Evidence arising from Experiments and Phenomena, and stops where such Evidence is wanting; the other is taken up with Hypotheses, and propounds them, not to be examined by Experiments, but to be believed without Examination. The one for want of Experiments to decide the Question, doth not affirm whether the Cause of Gravity be Mechanical or not Mechanical; the other that it is a perpetual Miracle if it be not Mechanical.

Newton could have said much the same about the question of what light consists of, waves or particles, for while he felt that the latter was far more probable, he saw it still not decided by any experiment or phenomenon in his lifetime. Leaving questions about the ultimate cause of gravity and the constitution of light open was the other factor in his work driving a wedge between natural philosophy and empirical science.

The many other areas of Newton's intellectual endeavors made less of a difference to eighteenth century philosophy and science. In mathematics, Newton was the first to develop a full range of algorithms for symbolically determining what we now call integrals and derivatives, but he subsequently became fundamentally opposed to the idea, championed by Leibniz, of transforming mathematics into a discipline grounded in symbol manipulation. Newton thought the only way of rendering limits rigorous lay in extending geometry to incorporate them, a view that went entirely against the tide in the development of mathematics in the eighteenth and nineteenth ceturies. In chemistry Newton conducted a vast array of experiments, but the experimental tradition coming out of his Opticks , and not his experiments in chemistry, lay behind Lavoisier calling himself a Newtonian; indeed, one must wonder whether Lavoisier would even have associated his new form of chemistry with Newton had he been aware of Newton's fascination with writings in the alchemical tradition. And even in theology, there is Newton the anti-Trinitarian mild heretic who was not that much more radical in his departures from Roman and Anglican Christianity than many others at the time, and Newton, the wild religious zealot predicting the end of the Earth, who did not emerge to public view until quite recently.

There is surprisingly little cross-referencing of themes from one area of Newton's endeavors to another. The common element across almost all of them is that of a problem-solver extraordinaire , taking on one problem at a time and staying with it until he had found, usually rather promptly, a solution. All of his technical writings display this, but so too does his unpublished manuscript reconstructing Solomon's Temple from the biblical account of it and his posthumously published Chronology of the Ancient Kingdoms in which he attempted to infer from astronomical phenomena the dating of major events in the Old Testament. The Newton one encounters in his writings seems to compartmentalize his interests at any given moment. Whether he had a unified conception of what he was up to in all his intellectual efforts, and if so what this conception might be, has been a continuing source of controversy among Newton scholars.

Of course, were it not for the Principia , there would be no entry at all for Newton in an Encyclopedia of Philosophy. In science, he would have been known only for the contributions he made to optics, which, while notable, were no more so than those made by Huygens and Grimaldi, neither of whom had much impact on philosophy; and in mathematics, his failure to publish would have relegated his work to not much more than a footnote to the achievements of Leibniz and his school. Regardless of which aspect of Newton's endeavors “Newtonian” might be applied to, the word gained its aura from the Principia . But this adds still a further complication, for the Principia itself was substantially different things to different people. The press-run of the first edition (estimated to be around 300) was too small for it to have been read by all that many individuals. The second edition also appeared in two pirated Amsterdam editions, and hence was much more widely available, as was the third edition and its English (and later French) translation. The Principia , however, is not an easy book to read, so one must still ask, even of those who had access to it, whether they read all or only portions of the book and to what extent they grasped the full complexity of what they read. The detailed commentary provided in the three volume Jesuit edition (1739–42) made the work less daunting. But even then the vast majority of those invoking the word “Newtonian” were unlikely to have been much more conversant with the Principia itself than those in the first half of the 20th century who invoked ‘relativity’ were likely to have read Einstein's two special relativity papers of 1905 or his general relativity paper of 1916. An important question to ask of any philosophers commenting on Newton is, what primary sources had they read?

The 1740s witnessed a major transformation in the standing of the science in the Principia . The Principia itself had left a number of loose-ends, most of them detectable by only highly discerning readers. By 1730, however, some of these loose-ends had been cited in Bernard le Bovier de Fontenelle's elogium for Newton [ 4 ] and in John Machin's appendix to the 1729 English translation of the Principia , raising questions about just how secure Newton's theory of gravity was, empirically. The shift on the continent began in the 1730s when Maupertuis convinced the Royal Academy to conduct expeditions to Lapland and Peru to determine whether Newton's claims about the non-spherical shape of the Earth and the variation of surface gravity with latitude are correct. Several of the loose-ends were successfully resolved during the 1740's through such notable advances beyond the Principia as Clairaut's Théorie de la Figure de la Terre ; the return of the expedition from Peru; d'Alembert's 1749 rigid-body solution for the wobble of the Earth that produces the precession of the equinoxes; Clairaut's 1749 resolution of the factor of 2 discrepancy between theory and observation in the mean motion of the lunar apogee, glossed over by Newton but emphasized by Machin; and the prize-winning first ever successful description of the motion of the Moon by Tobias Mayer in 1753, based on a theory of this motion derived from gravity by Euler in the early 1750s taking advantage of Clairaut's solution for the mean motion of the apogee.

Euler was the central figure in turning the three laws of motion put forward by Newton in the Principia into Newtonian mechanics. These three laws, as Newton formulated them, apply to “point-masses,” a term Euler had put forward in his Mechanica of 1736. Most of the effort of eighteenth century mechanics was devoted to solving problems of the motion of rigid bodies, elastic strings and bodies, and fluids, all of which require principles beyond Newton's three laws. From the 1740s on this led to alternative approaches to formulating a general mechanics, employing such different principles as the conservation of vis viva , the principle of least action, and d'Alembert's principle. The “Newtonian” formulation of a general mechanics sprang from Euler's proposal in 1750 that Newton's second law, in an F=ma formulation that appears nowhere in the Principia , could be applied locally within bodies and fluids to yield differential equations for the motions of bodies, elastic and rigid, and fluids. During the 1750s Euler developed his equations for the motion of fluids, and in the 1760s, his equations of rigid-body motion. What we call Newtonian mechanics was accordingly something for which Euler was more responsible than Newton.

Although some loose-ends continued to defy resolution until much later in the eighteenth century, by the early 1750s Newton's theory of gravity had become the accepted basis for ongoing research among almost everyone working in orbital astronomy. Clairaut's successful prediction of the month of return of Halley's comet at the end of this decade made a larger segment of the educated public aware of the extent to which empirical grounds for doubting Newton's theory of gravity had largely disappeared. Even so, one must still ask of anyone outside active research in gravitational astronomy just how aware they were of the developments from ongoing efforts when they made their various pronouncements about the standing of the science of the Principia among the community of researchers. The naivety of these pronouncements cuts both ways: on the one hand, they often reflected a bloated view of how secure Newton's theory was at the time, and, on the other, they often underestimated how strong the evidence favoring it had become. The upshot is a need to be attentive to the question of what anyone, even including Newton himself, had in mind when they spoke of the science of the Principia .

To view the seventy years of research after Newton died as merely tying up the loose-ends of the Principia or as simply compiling more evidence for his theory of gravity is to miss the whole point. Research predicated on Newton's theory had answered a huge number of questions about the world dating from long before it. The motion of the Moon and the trajectories of comets were two early examples, both of which answered such questions as how one comet differs from another and what details make the Moon's motion so much more complicated than that of the satellites of Jupiter and Saturn. In the 1770s Laplace had developed a proper theory of the tides, reaching far beyond the suggestions Newton had made in the Principia by including the effects of the Earth's rotation and the non-radial components of the gravitational forces of the Sun and Moon, components that dominate the radial component that Newton had singled out. In 1786 Laplace identified a large 900 year fluctuation in the motions of Jupiter and Saturn arising from quite subtle features of their respective orbits. With this discovery, calculation of the motion of the planets from the theory of gravity became the basis for predicting planet positions, with observation serving primarily to identify further forces not yet taken into consideration in the calculation. These advances in our understanding of planetary motion led Laplace to produce the four principal volumes of his Traité de mécanique céleste from 1799 to 1805, a work collecting in one place all the theoretical and empirical results of the research predicated on Newton's Principia . From that time forward, Newtonian science sprang from Laplace's work, not Newton's.

The success of the research in celestial mechanics predicated on the Principia was unprecedented. Nothing of comparable scope and accuracy had ever occurred before in empirical research of any kind. That led to a new philosophical question: what was it about the science of the Principia that enabled it to achieve what it did? Philosophers like Locke and Berkeley began asking this question while Newton was still alive, but it gained increasing force as successes piled on one another over the decades after he died. This question had a practical side, as those working in other fields like chemistry pursued comparable success, and others like Hume and Adam Smith aimed for a science of human affairs. It had, of course, a philosophical side, giving rise to the subdiscipline of philosophy of science, starting with Kant and continuing throughout the nineteenth century as other areas of physical science began showing similar signs of success. The Einsteinian revolution in the beginning of the twentieth century, in which Newtonian theory was shown to hold only as a limiting case of the special and general theories of relativity, added a further twist to the question, for now all the successes of Newtonian science, which still remain in place, have to be seen as predicated on a theory that holds only to high approximation in parochial circumstances.

The extraordinary character of the Principia gave rise to a still continuing tendency to place great weight on everything Newton said. This, however, was, and still is, easy to carry to excess. One need look no further than Book 2 of the Principia to see that Newton had no more claim to being somehow in tune with nature and the truth than any number of his contemporaries. Newton's manuscripts do reveal an exceptional level of attention to detail of phrasing, from which we can rightly conclude that his pronouncements, especially in print, were generally backed by careful, self-critical reflection. But this conclusion does not automatically extend to every statement he ever made. We must constantly be mindful of the possibility of too much weight being placed, then or now, on any pronouncement that stands in relative isolation over his 60 year career; and, to counter the tendency to excess, we should be even more vigilant than usual in not losing sight of the context, circumstantial as well as historical and textual, of both Newton's statements and the eighteenth century reaction to them.

  • Westfall, Richard S., 1980, Never At Rest: A Biography of Isaac Newton , New York: Cambridge University Press.
  • Hall, A. Rupert, 1992 , Isaac Newton: Adventurer in Thought , Oxford: Blackwell.
  • Feingold, Mordechai, 2004 , The Newtonian Moment: Isaac Newton and the Making of Modern Culture , Oxford: Oxford University Press.
  • Iliffe, Rob, 2007, Newton: A Very Short Introduction Oxford: Oxford University Press.
  • Cohen, I. B. and Smith, G. E., 2002, The Cambridge Companion to Newton , Cambridge: Cambridge University Press.
  • Cohen, I. B. and Westfall, R. S., 1995, Newton: Texts, Backgrounds, and Commentaries , A Norton Critical Edition, New York: Norton.
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • MacTutor History of Mathematics Archive
  • The Newton Project
  • The Newton Project-Canada
  • The Chymistry of Isaac Newton , Digital Library at Indiana

Copernicus, Nicolaus | Descartes, René | Kant, Immanuel | Leibniz, Gottfried Wilhelm | Newton, Isaac: Philosophiae Naturalis Principia Mathematica | scientific revolutions | trinity | Whewell, William

Copyright © 2007 by George Smith < george . smith @ tufts . edu >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

How Isaac Newton Changed Our World

Sir Isaac Newton

He created the modern telescope

Isaac Newton and his telescope

Before Newton, standard telescopes provided magnification, but with drawbacks. Known as refracting telescopes, they used glass lenses that changed the direction of different colors at different angles. This caused “chromatic aberrations,” or fuzzy, out-of-focus areas around objects being viewed through the telescope.

After much tinkering and testing, including grinding his own lenses, Newton found a solution. He replaced the refracting lenses with mirrored ones, including a large, concave mirror to show the primary image and a smaller, flat, reflecting one, to display that image to the eye. Newton’s new “reflecting telescope” was more powerful than previous versions, and because he used the small mirror to bounce the image to the eye, he could build a much smaller, more practical telescope. In fact, his first model, which he built in 1668 and donated to England’s Royal Society, was just six inches long (some 10 times smaller than other telescopes of the era), but could magnify objects by 40x.

Newton’s simple telescope design is still used today, by both backyard astronomers and NASA scientists.

Newton helped develop spectral analysis

A drawing of Sir Isaac Newton dispersing light with a glass prism

The next time you look up at a rainbow in the sky, you can thank Newton for helping us first understand and identify its seven colors. He began working on his studies of light and color even before creating the reflecting telescope, although he presented much of his evidence several years later, in his 1704 book, Opticks .

Before Newton, scientists primarily adhered to ancient theories on color, including those of Aristotle , who believed that all colors came from lightness (white) and darkness (black). Some even believed that the colors of the rainbow were formed by rainwater that colored the sky’s rays. Newton disagreed. He performed a seemingly endless series of experiments to prove his theories.

Working in his darkened room, he directed white light through a crystal prism on a wall, which separated into the seven colors we now know as the color spectrum (red, orange, yellow, green, blue, indigo, and violet). Scientists already knew many of these colors existed, but they believed that the prism itself transformed white light into these colors. But when Newton refracted these same colors back onto another prism, they formed into a white light, proving that white light (and sunlight) was actually a combination of all the colors of the rainbow.

Newton’s laws of motion laid the groundwork for classical mechanics

Isaac Newton's Philosophiae Naturalis Principia Mathematica

In 1687, Newton published one of the most important scientific books in history, the Philosophiae Naturalis Principia Mathematica , commonly known as the Principa . It was in this work that he first laid out his three laws of motion.

The law of inertia states that at rest or in motion will remain at rest or in motion unless it’s acted upon by an external force. So, with this law, Newton helps us explain why a car will stop when it hits a wall, but the human bodies within the car will keep moving at the same, constant speed they had been until the bodies hit an external force, like a dashboard or airbag. It also explains why an object thrown in space is likely to continue at the same speed on the same path for infinity unless it comes into another object that exerts force to slow it down or change direction.

You can see an example of his second law of acceleration when you ride a bicycle. In his equation that force equals mass times acceleration, or F=ma , your pedaling of a bicycle creates the force necessary to accelerate. Newton’s law also explains why larger or heavier objects require more force to move or alter them, and why hitting a small object with a baseball bat would produce more damage than hitting a large object with that same bat.

His third law of action and reaction creates a simple symmetry to the understanding of the world around us: For every action, there is an equal and opposite reaction. When you sit in a chair, you are exerting force down upon the chair, but the chair is exerting equal force to keep you upright. And when a rocket is launched into space, it’s thanks to the backward force of the rocket upon gas and the forward thrust of the gas on the rocket.

He created the law of universal gravitation and calculus

The Principa also contained some of Newton’s first published works on the motion of the planets and gravity. According to a popular legend, a young Newton was sitting beneath a tree on his family’s farm when the falling of an apple inspired one of his most famous theories. It’s impossible to know if this is true (and Newton himself only began telling the story as an older man), but is a helpful story to explain the science behind gravity. It also remained the basis of classical mechanics until Albert Einstein’s theory of relativity.

Newton worked out that if the force of gravity pulled the apple from the tree, then it was also possible for gravity to exert its pull on objects much, much further away. Newton’s theory helped prove that all objects, as small as an apple and as large as a planet, are subject to gravity. Gravity helped keep the planets rotating around the sun and creates the ebbs and flows of rivers and tides. Newton’s law also states that larger bodies with heavier masses exert more gravitational pull, which is why those who walked on the much smaller moon experienced a sense of weightlessness, as it had a smaller gravitational pull.

To help explain his theories of gravity and motion, Newton helped create a new, specialized form of mathematics. Originally known as “fluxions,” and now calculus, it charted the constantly changing and variable state of nature (like force and acceleration), in a way that existing algebra and geometry could not. Calculus may have been the bane of many a high school and college student, but it has proved invaluable to centuries of mathematicians, engineers and scientists.

Famous Mathematicians

albert einstein sitting in front of a bookcase with his arms folded

Archimedes: The Mathematician Who Discovered Pi

black and white sketch of benjamin banneker

Benjamin Banneker

stephen hawking smiles at the camera while sitting in his wheelchair in front of a green chalkboard with written equations, he wears a dark suit jacket and blue collared shirt with white pinstripes

22 Famous Scientists You Should Know

Charles Babbage

Charles Babbage

Blaise Pascal

Blaise Pascal

leonhard euler

Leonhard Euler

ada lovelace

Ada Lovelace

portrait of valerie thomas

Valerie Thomas

Galileo

Mary Jackson

We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.

  • Essay Database >
  • Essay Examples >
  • Essays Topics >
  • Essay on Education

Essay On Isaac Newton

Type of paper: Essay

Topic: Education , Science , Students , Literature , Innovation , Violence , World , Isaac Newton

Published: 11/15/2019

ORDER PAPER LIKE THIS

Isaac Newton was an English scientist who not only studied but made stupendous discoveries in mathematics, physics, and chemistry. However, he is also a well-known astronomer, natural philosopher and theologian. Sir Isaac Newton was born in three months after the death of his father and when his mother remarried he moved to his grandparents. These were the people that raised him from his youth. On reaching the proper age, Newton attended Cambridge University where he stayed until the plague hit. Even though he called his age of the time of the plague "the prime of my age for invention", no natural disaster was able to stop him from his scientific studies.

It was after the university that he began his discoveries connected with optics. His invention of the reflecting telescope in 1668 finally drew the attention of other scientists. Isaac Newton conducted a number of experiments concerning light and its composition. That’s to this hard work he was able to put forward a number of discoveries. He proved that light can be measured by patterns. Moreover, he proved that white light consists of different colored rays which correspond to the colors of the rainbow. Each ray can be defined by the angle through which it is reflected. All this and much more was published in his book “Optics” in 1704.

Isaac Newton is mostly known for what is now something of a legend, a story told to kids. His discovery of the laws of gravity is what he is best known for among people who do not tie their lives with science. The story goes like this. Isaac was allegedly sitting under a tree. All of a sudden an apple fell on his head. A bit stumped at first, our great scientist started to think and analyze. By measuring the force needed to hold the moon in orbit he inevitably understood that there must be some other force, one which has not been studied before. And so there is – the force of gravity.

Isaac Newton was not only a scientist but also a powerful public figure. He was elected member of the parliament for the University of Cambridge to oppose the Kind James II’s attempts to make universities catholic. It should be noted that he also held the post of a Mint and was even knighted. This was a prominent figure in the scientific world and in the public world of his time. His work will not be forgotten.

double-banner

Cite this page

Share with friends using:

Removal Request

Removal Request

Finished papers: 1123

This paper is created by writer with

ID 279288625

If you want your paper to be:

Well-researched, fact-checked, and accurate

Original, fresh, based on current data

Eloquently written and immaculately formatted

275 words = 1 page double-spaced

submit your paper

Get your papers done by pros!

Other Pages

Bachelors degree personal statements, syndicate case studies, accounts receivable case studies, spider case studies, organising case studies, fob case studies, bun case studies, oblique case studies, emancipation case studies, stretching case studies, memory loss case studies, free research paper on is opec a cartel, dialectical behavior therapy for binge eating disorder article review sample, critical thinking on disaster recovery policies and procedures, was roosevelts approach to the great depression successful essays examples, example of wine variety and my wine grape is barbera research paper, free sex appeal essay example, leading and trust research paper sample, sample research paper on copd, ginkgo biloba and memory literature review sample, good role of social insects essay example, good example of essay on social determinants of health, free nikola teslas influence on the world essay sample, should tobacco companies be held responsible for smoking related illnesses and deaths research proposal samples, free sea world essay example, free ethics and professional practice essay example, good standards of care research paper example, good essay on coach knight, complete an assignment essay example, good critical thinking on water sanitation and hygiene, recitatif essays, blewett essays, bosco essays, epicardial essays, biguanides essays, betadine essays, cauter essays, cruciform essays, bilious essays, centrophenoxine essays, cristal essays, bimolecular essays.

Password recovery email has been sent to [email protected]

Use your new password to log in

You are not register!

By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .

Now you can download documents directly to your device!

Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.

or Use the QR code to Save this Paper to Your Phone

The sample is NOT original!

Short on a deadline?

Don't waste time. Get help with 11% off using code - GETWOWED

No, thanks! I'm fine with missing my deadline

  • Divisions and Offices
  • Grants Search
  • Manage Your Award
  • NEH's Application Review Process
  • Professional Development
  • Grantee Communications Toolkit
  • NEH Virtual Grant Workshops
  • Awards & Honors
  • American Tapestry
  • Humanities Magazine
  • NEH Resources for Native Communities
  • Search Our Work
  • Office of Communications
  • Office of Congressional Affairs
  • Office of Data and Evaluation
  • Budget / Performance
  • Contact NEH
  • Equal Employment Opportunity
  • Human Resources
  • Information Quality
  • National Council on the Humanities
  • Office of the Inspector General
  • Privacy Program
  • State and Jurisdictional Humanities Councils
  • Office of the Chair
  • NEH-DOI Federal Indian Boarding School Initiative Partnership
  • NEH Equity Action Plan
  • GovDelivery

Newton, The Last Magician

The great man of science had more than a passing interest in alchemy..

Black and white, drawn portrait of Sir Isaac Newton

Sir Isaac Newton, by Samuel Freeman, (1773–1857)

British Library / Art Resource, NY

Precisely at 1 p.m., just after luncheon on July 13, 1936, bidding opened on a remarkable lot at Sotheby’s auction house in London: a metal chest full of Isaac Newton’s private, hand-written papers and lab books, some almost three hundred years old, most never published.

When Cambridge University, Newton’s alma mater, had acquired the trove in 1872, a team of scholars had dedicated sixteen years to cataloging the contents. This was Newton, after all, and they were hungry for any insight into how he’d developed his theories of motion, gravity, light, and color—work that defines the very Newtonian universe we inhabit.

Strangely, after riffling through and picking out select papers, Cambridge returned virtually the entire bundle to the owner, the Earl of Portsmouth. Soon forgotten, the chest barely survived a house fire in 1891, and by 1936 one of the Earl’s descendents was selling it to make some quick cash. Sotheby’s itself barely publicized the sale—it was easily overshadowed that season by a spectacular, £140,000 auction of Rubens and Rembrandt paintings through rival house Christie’s. As the gavel fell for the last time at Sotheby’s on July 14, the bulk of Newton’s life’s work had been split up among three dozen book buyers for a pitiful £9,000.

Economist John Maynard Keynes, a Newton admirer, was one of those three dozen, though he’d heard about the auction too late to buy much. Disturbed by the “impiety” of the transactions, he began acquiring more of the papers piecemeal. In many cases, he had to play the slick antiquarian, swapping Newton papers with collectors, trying to out-connive them. Keynes later remembered, with a touch of Bloomsbury snobbery, “I managed gradually to reassemble about half of them. . . . The greater part of the rest were snatched out of my reach by a syndicate which hoped to sell them at a high price, probably in America.”

Keynes sought papers on any topic at first, but eventually concentrated on one niche—Newton’s alchemy. Few people knew the father of modern science had dabbled in alchemy; but the more Keynes collected and the more he “brood[ed] over these queer collections,” the clearer it became that alchemy wasn’t a niche to Newton at all. It was, in many ways, Newton’s life work—more vital to him than physics or mathematics ever was. This Newton “was not the first of the age of reason,” Keynes concluded. “He was the last of the magicians.”

Keynes’s findings threw the standard narrative of science history into confusion. Keynes re-donated the alchemical papers to Cambridge in 1946, but most historians, still nonplussed, either ignored them or tried to explain them away. In fact, only recently have scholars begun to systematically study the entire corpus, line by line, picture by picture, rune by rune. Those efforts are getting a big boost from Assistant Professor of Library and Information Science John Walsh and science historian William Newman, both at Indiana University, who head a project to digitize and post online the thousands of pages that Newton wrote on alchemy. One quarter has been posted so far, but Newman and Walsh say they’ve already gleaned insights into not only Newton the man, but into how alchemy shaped Newton’s science.

Early in life Newton turned to alchemy as a diversion. His father died before he was born (Newton, a sickly infant, almost joined him in the grave), and Newton grew up with a distant stepfather who kept the boy’s mother away from him. Nor did Newton, too precocious for his own good, make friends among his peers.

As compensation, he disappeared into books like  Mysteries of Nature and Art —fascinated by their odd mix of occult philosophy and practical engineering. Showing early ingenuity, Newton built a water clock and other contraptions described in  Mysteries ; showing an early mischievous streak, he also built a lantern described therein, tied it to a kite, and flew it at night near his home, a spectacle “which wonderfully affrighted all the neighboring inhabitants,” he recalled. At Cambridge, Newton further developed his interest in both the practical and theoretical sides of the field, devouring books by alchemist Robert Boyle.

Newton described such work as  chymistry . And the word is a useful reminder—with its echo of modern “chemistry,” yet archaic spelling—of what alchemy meant to people in Newton’s time. Today, most people think of alchemists as either foolish necromancers or lowlifes obsessed with  chrysopoeia —turning base metals into gold. That view comes down to us largely through the enemies of alchemy, Enlightenment thinkers, for example, who wanted to stamp out “magical” thinking and, ironically, install a mechanistic, “Newtonian” outlook instead. But alchemists were important for humankind’s intellectual development—the larvae that metamorphosed into Enlightenment philosophes and modern scientists. Especially important was the later alchemists’ willingness to test their theories with experiments, even theories that conflicted with accepted doctrines. Boyle was the primary example here, but John Locke, Gottfried Leibnitz, and others exchanged letters with and befriended alchemists, too, looking to chymistry for wisdom about the natural world.

Newton’s chymistry followed this tradition in many ways, Newman says, especially his view of nature as a riddle that only a gnostic brotherhood of alchemists could unravel. At the same time, Newton was unique among alchemists for uniting his chymistry with other, seemingly disconnected scientific obsessions of his, such as optics. Newman even argues that Newton’s famous demonstration that white light was merely a combination of colored light rays owes a significant debt to the alchemy of Boyle.

In the 1660s, Boyle got tangled up in a dispute with scholastic philosophers over the essence of matter. These adherents of Aristotle believed that once a substance dissolved into something else, it lost its identity forever. Boyle devised an experiment to dissolve camphor, an aromatic chemical, in acid, at which point the camphor lost its scent. This agreed with scholastic thought. But Boyle then added water to the solution—at which point the camphor reappeared, regaining its odor and all other properties. Boyle could pull similar tricks with dissolved metals like gold. This classic alchemy proved scholastics wrong, Boyle said: Dissolved substances don’t lose their identity.

The scholastics retorted that there was no proof it was really the same camphor. When the water was added, the solution might have created the camphor anew. But Boyle rejected this reasoning. Why, he argued, should the camphor’s essence be any different because it came from an experiment and not from nature? If it talked like camphor and walked like camphor, it  was  camphor, period.

Newton studied Boyle’s arguments, and soon devised a similar theory about color. While on leave from Cambridge during an outbreak of plague, Newton began separating sunlight into colors with a prism, among other experiments. He thought they proved that colored lights were “in” white light from the start. Colleagues like the eminent Robert Hooke disagreed, arguing that the prism itself could have produced the colors as light streamed through, the way an organ pipe produces sound when air rushes through. (No one would say that sharps and flats are “in” the pipe before they’re played.)

To counter this objection, Newton adopted Boyle’s tactics. He showed he could tease white light apart into reds, yellows, greens, and blues, then meld them back together. Crucially, this synthesized white light had all the properties of sunlight. Newton argued from this that the individual colors in light had a permanent, incorruptible existence, even if humans couldn’t always sense them. Boyle had made the exact same logical points about the permanence of camphor in acid. According to Newman, Newton’s fundamental theory of color was therefore midwifed by Boyle’s alchemy.

This success with color and chymistry must have thrilled Newton—he’d uncovered secrets in nature and a little magic of his own. And although Newton expanded his work into gravity and astronomy (not to mention Biblical prophecies, another obsession), he felt pulled back to chymistry his entire working life. Indeed, he dedicated six weeks to chymistry every fall and every spring for decades, the seasons when his unheated lab was bearable—and he often worked through the unbearable months, too. In all, Newton penned over one million words (five hundred times the length of this article) on chymistry.

Merely counting words doesn’t capture the richness of the chymical work. Like all alchemists, Newton peppered his prose with gnomic shorthand. Consider this line in a recipe for “sophic mercury,” which dissolved gold and allowed the precious metal to “vegetate” and mature into the philosopher’s stone: “Marry [sulfur] with , that is our [mercury] which is impregnated with must be espoused with our gold then hast thou two sulphurs married & two s of one of[f]spring whose father is the [gold] & [silver] the mother.”

Newton also included allegorical drawings, like a head with three faces or an elaborate caduceus crowned with a Holy Spirit dove, and verses copied verbatim from other alchemists. Moreover, those million words don’t capture the countless hours Newton spent running chymistry experiments on intriguing substances like antimony and mercury. Doctors in later eras have even speculated that Newton suffered from chronic mercury poisoning as a result, which could certainly explain his peculiar personal life.

Given how much labor went into Newton’s chymistry, why did none of it come to light until the Sotheby’s auction? It wasn’t all genteel scholarly embarrassment. English alchemists had to veil their true interests because alchemy had been illegal in England since 1404. The crown feared alchemy because transforming lead into gold would have destabilized the country’s economy, through counterfeit coins. The general ban on alchemy—the Act Against Multipliers—was lifted in 1689, thanks to Boyle’s lobbying, but alchemists were still tainted by association, and counterfeiting remained a capital crime in England. (When Newton took over as director of the Royal Mint in his dotage, in fact, he had one notorious counterfeiter hanged and publicly disemboweled—and took great delight in seeing it done.)

Still, the illicit nature of chymistry doesn’t completely explain why Newton concealed his research (Boyle didn’t). There’s no delicate way to put it: Almost everyone who knew him found him disarmingly weird. He had a mean temper, probably never had sex, and suffered at least one raving breakdown, during which he wished death on Locke, one of his few friends. Thoughts of sin tormented Newton. As a young man he wrote a letter addressed to God outlining every peccadillo he ever committed, faults ranging from the touchingly innocuous—“making pies on Sunday night”—to the abusive and creepy—“punching my sister” and “threating my [step]father and mother . . . to burne them and the house over them.”

This eccentricity spilled over into his science. Curious what would happen, Newton once stared into the sun for so long he had to lie in a dark room for several days before he stopped seeing spots. He also once wedged a needle into the socket behind his eye, to see how changing the curvature of the eyeball affected his vision. But for someone willing to experiment on just about anything, Newton was very guarded about discussing his experimental results, especially in chymistry. He loathed the thought of someone figuring something new out from his ideas, and he was obsessed with getting full credit for discoveries. (This desire bared its teeth in the 1680s when Leibnitz published a theory of calculus independent of Newton’s earlier but unpublished work, at which point Newton set out to destroy Leibnitz’s reputation.)

But really, can we blame Newton for being so secretive, for obsessing? For him, so much was at stake. He wouldn’t have recognized the distinction we draw today between “real” science full of experiments and equations and alchemical pseudoscience full of spells and bootless speculation. Chymistry was one grand body of work to him, the grandest, and he’d coveted knowing nature’s secrets since boyhood. He labored so long and so secretly because chymistry seemed the most promising path to obtaining near-magical powers and near-mystical insights into nature—discoveries that would, if only he could make them, vault him into the first rank of geniuses who ever lived.

Sam Kean is a writer in Washington, D.C., where he works as a correspondent for Science . He is the author of The Disappearing Spoon , an unconventional history of the periodic table.

Funding information

The Chymistry of Isaac Newton Project at Indiana University has received $200,000 in NEH funding to edit and publish online Newton’s writings in alchemy and chemistry.

Unidentified Civil War soldier in a New York Zouave uniform.

SUBSCRIBE FOR HUMANITIES MAGAZINE PRINT EDITION Browse all issues   Sign up for HUMANITIES Magazine newsletter

  • Scientific Methods
  • Famous Physicists
  • Isaac Newton

Sir Isaac Newton

Apart from discovering the cause of the fall of an apple from a tree, that is, the laws of gravity, Sir Isaac Newton was perhaps one of the most brilliant and greatest physicists of all time. He shaped dramatic and surprising discoveries in the laws of physics that we believe our universe obeys, and hence it changed the way we appreciate and relate to the world around us.

Table of Contents

About sir isaac newton, sir isaac newton’s education, awards and achievements, some achievements of isaac newton in brief.

  • Universal Law of Gravitation

Optics and Light

Sir Isaac Newton

Sir Isaac Newton was born on 4th January 1643 in a small village of England called Woolsthorpe-by-Colsterworth. He was an English physicist and mathematician, and one of the important thinkers in the Scientific Revolution.

He discovered the phenomenon of white light integrated with colours which further laid the foundation of modern physical optics. His famous three laws of Motion in mechanics and the formulation of the laws of gravitation completely changed the track of physics across the globe. He was the originator of calculus in mathematics. A scientist like him is considered an excellent gift by nature to the world of physics.

Isaac Newton studied at the Trinity College, Cambridge, in 1661. At 22 in 1665, a year after beginning his four-year scholarship, Newton finished his first significant discovery in mathematics, where he revealed the generalized binomial theorem. He was bestowed with his B.A. degree in the same year.

Isaac Newton held numerous positions throughout his life. In 1671, he was invited to join the Royal Society of London after developing a new and enhanced version of the reflecting telescope.

He was later elected President of the Royal Society (1703). Sir Isaac Newton ran for a seat in Parliament in 1689. He won the election and became a Member of Parliament for Cambridge University. He was also appointed as a Warden of the Mint in 1969. Due to his exemplary work and dedication to the mint, he was chosen Master of the Mint in 1700. After being knighted in 1705, he was known as “Sir Isaac Newton.”

His mind was ablaze with original ideas. He made significant progress in three distinct fields – with some of the most profound discoveries in:

  • Calculus, the mathematics of change, which is vital to our understanding of the world around us
  • Optics and the behaviour of light
  • He also built the first working reflecting telescope
  • He showed that Kepler’s laws of planetary motion are exceptional cases of Newton’s universal gravitation.

Sir Isaac Newton’s Contribution in Calculus

Sir Isaac Newton was the first individual to develop calculus. Modern physics and physical chemistry are almost impossible without calculus, as it is the mathematics of change.

The idea of differentiating calculus into differential calculus, integral calculus and differential equations came from Newton’s fertile mind. Today, most mathematicians give equal credit to Newton and Leibniz for calculus’s discovery.

Law of Universal Gravitation

The famous apple that he saw falling from a tree led him to discover the force of gravitation and its laws. Ultimately, he realised that the pressure causing the apple’s fall is responsible for the moon to orbit the earth, as well as comets and other planets to revolve around the sun. The force can be felt throughout the universe. Hence, Newton called it the Universal Law of Gravitation .

Newton discovered the equation that allows us to compute the force of gravity between two objects.

Newton’s Laws of Motion

  • First law of Motion
  • Second Law of Motion
  • Third law of Motion

Watch the video and learn about the history of the concept of Gravitation

essay on isaac newton in 100 words

Sir Isaac Newton also accomplished himself in experimental methods and working with equipment. He built the world’s first reflecting telescope . This telescope focuses all the light from a curved mirror. Here are some advantages of reflecting telescopes from optics and light –

  • They are inexpensive to make.
  • They are easier to make in large sizes, gathering lighter, allowing advanced magnification.
  • They don’t suffer focusing issues linked with lenses called chromatic aberration.

Isaac Newton also proved that white light is not a simple phenomenon with the help of a glass prism. He confirmed that it is made up of all of the colours of the rainbow, which could recombine to form white light again.

Watch the video and solve complete NCERT exercise questions in the chapter Gravitation

essay on isaac newton in 100 words

Frequently Asked Questions

How did newton discover gravity.

Seeing an apple fall from the tree made him think about the forces of nature.

What is Calculus in Mathematics?

Calculus is the study of differentiation and integration. Calculus explains the changes in values, on a small and large scale, related to any function.

Define Reflecting Telescope.

It’s a telescope invented by Newton that uses mirrors to collect and focus the light towards the eyepiece.

Name all the Kepler’s Laws of planetary motion.

Kepler’s three laws of planetary motion are:

  • The Law of Ellipses
  • The Law of Equal Areas
  • The Law of Harmonies

Who discovered Gravity?

Watch the full summary of the chapter gravitation class 9.

essay on isaac newton in 100 words

Stay tuned to BYJU’S and Fall in Love with Learning!

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click Start Quiz to begin!

Select the correct answer and click on the "Finish" button Check your score and explanations at the end of the quiz

Visit BYJU'S for all Physics related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

essay on isaac newton in 100 words

How isaac Newton interest developed in science?

essay on isaac newton in 100 words

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Home — Essay Samples — Science — Scientists & Inventors — Isaac Newton

one px

Essays on Isaac Newton

Isaac Newton was a pivotal figure in the scientific revolution, and writing an essay on him is important in order to understand his contributions to the field of physics and mathematics. Newton's laws of motion and universal gravitation have had a profound impact on our understanding of the natural world and continue to influence scientific thought to this day. By researching and writing about Newton, students can gain a deeper appreciation for the history of science and the power of human curiosity and intellect.

When writing an essay on Isaac Newton, it is important to start by conducting thorough research. This may involve reading primary sources, such as Newton's own writings, as well as secondary sources that provide context and analysis of his work. It is also important to consider the historical and cultural context in which Newton lived and worked, as this can provide valuable insights into his ideas and their impact.

Another important tip for writing an essay on Newton is to clearly outline the key points and arguments that will be addressed. This can help to ensure that the essay is well-organized and focused, and can also make the writing process more efficient. Additionally, it is important to use evidence and examples to support any claims or assertions made in the essay, as this can help to strengthen the overall argument.

Finally, when writing about Newton, it is important to consider the broader implications of his work and its relevance to contemporary scientific thought. By connecting Newton's ideas to modern scientific discoveries and theories, students can demonstrate the ongoing relevance of his work and its enduring impact on the world of science.

Best Isaac Newton Essay Topics

  • The impact of Isaac Newton's laws of motion on modern physics
  • Newton's role in the scientific revolution
  • The rivalry between Isaac Newton and Gottfried Leibniz over the invention of calculus
  • The lesser-known aspects of Isaac Newton's personal life and struggles
  • The influence of Isaac Newton's Principia Mathematica on the scientific community
  • Newton's contributions to the field of optics and light theory
  • The religious and alchemical beliefs of Isaac Newton
  • Newton's lasting legacy in the field of mathematics
  • The controversy surrounding Isaac Newton's work on alchemy and the occult
  • The significance of Isaac Newton's laws of gravitation in understanding the universe
  • Newton's impact on the field of astronomy
  • The role of Isaac Newton in the Royal Society of London
  • The connection between Isaac Newton's work and the Industrial Revolution
  • The portrayal of Isaac Newton in popular culture and literature
  • Newton's influence on the Enlightenment era
  • The reception and impact of Newton's work during his lifetime
  • Newton's contributions to the field of engineering
  • The relationship between Isaac Newton and his contemporaries in the scientific community
  • The cultural and historical context of Newton's contributions to science
  • The relevance of Isaac Newton's work in modern-day physics and mathematics

Isaac Newton Essay Topics Prompts

  • If Isaac Newton could time travel to the present day, what do you think would surprise him the most about modern physics and mathematics?
  • Write a letter from the perspective of Isaac Newton, reflecting on his greatest achievements and regrets.
  • Create a dialogue between Isaac Newton and a contemporary scientist, discussing their differing views on the nature of the universe.
  • Imagine a world where Isaac Newton's laws of motion were never discovered. How do you think this would have impacted the development of science and technology?
  • Write a biography of Isaac Newton, highlighting the lesser-known aspects of his life and work.

Newton’s Three Laws of Motion

Newtons influence on religion and science, made-to-order essay as fast as you need it.

Each essay is customized to cater to your unique preferences

+ experts online

Sir Isaac Newton The Leader of Scientific Revolution

Isaac newton's biography and discoveries, isaac newton and his accomplishments during the plague years, the impact of sir isaac newtons’ discoveries on science, let us write you an essay from scratch.

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Isaac Newton – The Greatest Scientific Genius in The History of Humanity

Story life of sir isaac newton, isaac newton and his three laws of motion, the effect of isaac newton’s discoveries on our society today, get a personalized essay in under 3 hours.

Expert-written essays crafted with your exact needs in mind

Sir Isaac Newton’s Life

Newton’s system of the world in the google era, application of newton’s laws of motion in sports, newton’s laws of motion, newton’s second law of motion: experiment report, physical principle of a catapult to the fire service, newton’s laws in space technology, research of applying newton’s laws of motion to the countermovement vertical jump, isaac newton: the life and legacy of a scientific pioneer, relevant topics.

  • Stephen Hawking
  • Charles Darwin
  • Nikola Tesla
  • Space Exploration
  • Natural Selection
  • Mathematics in Everyday Life
  • Mechanical Engineering

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

essay on isaac newton in 100 words

To revisit this article, visit My Profile, then View saved stories .

  • Backchannel
  • Newsletters
  • WIRED Insider
  • WIRED Consulting

The Strange, Secret History of Isaac Newton's Papers

Image may contain Text Handwriting and Diary

When Sir Isaac Newton died in 1727, he left behind no will and an enormous stack of papers. His surviving correspondences, notes, and manuscripts contain an estimated 10 million words, enough to fill up roughly 150 novel-length books. There are pages upon pages of scientific and mathematical brilliance. But there are also pages that reveal another side of Newton, a side his descendants tried to keep hidden from the public.

Even in his lifetime, Newton was hailed as an eminent scientist and mathematician of unparalleled genius. But Newton also studied alchemy and religion. He wrote a forensic analysis of the Bible in an effort to decode divine prophecies. He held unorthodox religious views, rejecting the doctrine of the Holy Trinity. After his death, Newton’s heir, John Conduitt, the husband of his half-niece Catherine Barton, feared that one of the fathers of the Enlightenment would be revealed as an obsessive heretic. And so for hundreds of years few people saw his work. It was only in the 1960s that some of Newton’s papers were widely published.

newtonpapers

The story of Newton’s writing and how it has survived to the modern day is the subject of a new book, The Newton Papers: The Strange and True Odyssey of Isaac Newton’s Manuscripts . Author Sarah Dry traces their mysterious and precarious history and reveals both the lucky twists and purposeful turns that kept the papers safe.

We spoke to Dry about the famous luminary, his beliefs both rational and not, and the different ways that people have thought about Newton throughout history.

WIRED: Why did you decide to trace what happened to Isaac Newton’s papers?

Sarah Dry: In the history of science there is no greater figure than Newton. He was this shining emblem of Enlightenment rationality. If you ask people to name a scientist they’re going to say Newton, Einstein, or Darwin. So he’s become an icon, both more and less than human.

But there’s always been a great mystery surrounding him. You tell people you’re working on Newton and they say, “Oh yeah, wasn’t he an alchemist?” And it makes them feel like they know something that changes our ideas about this great man. I think there’s a real draw to sort of have this cake and eat it too – to have this super rationalist saint, and also his secret obsessions.

One mystery was why there was no complete edited collection of his papers. There’s a section in the book where I talk about how the great Continental scientists had all had their due by the early 20th century. But nobody had gotten to Newton. And the question was why would there be this hole around Newton?

Then there’s the detective story of what happened to these papers that Newton left behind, and how has it taken so long for them to come to light. There’s no conspiracy, but there is some suppression, some neglect, and some confusion about the contents of the papers.

WIRED: How much of Newton’s writing has survived?

These Electric School Buses Are on Their Way to Save the Grid

Adrienne So

This Microsoft Add-On Is the Ultimate Windows 11 Customization Tool

David Nield

Despite Bird Flu Risk, Raw-Milk Drinkers Are Undaunted

Beth Mole, Ars Technica

Dry: A huge amount. There’s roughly 10 million words that Newton left. Around half of the writing is religious, and there are about 1 million words on alchemical material , most of which is copies of other people’s stuff. There are about 1 million words related to his work as Master of the Mint. And then roughly 3 million related to science and math.

WIRED: Did you read through all this work yourself?

Dry: [Laughs] The book isn’t really about the contents of the paper. It’s more about how others have made sense of all this work. And one of the messages of the book is that getting too involved in the papers can be hazardous to your health. One of the first editors of the papers said an older man should take up the task, because he’d have less to lose than a younger man.

This is highly technical stuff. The alchemical stuff is technical, the scientific stuff is technical, the religious stuff is technical. I was more interested in the papers and the characters that worked on them. One person was David Brewster, who wrote a biography of Newton during the Victorian Era. He fought long and hard to resuscitate Newton’s reputation. But he was also one of these Victorians that had to tell the truth. So when he published his biography [in 1855], it included much of the heresy and alchemy, despite the fact that Brewster was a good orthodox Protestant.

One of my hopes is that this book will inspire people to go and look at the papers. You will feel overwhelmed and confused. But that’s what people have felt in the past.

WIRED: Did you have any particular favorite episodes in the history of Newton’s papers?

Dry: When the papers came to Cambridge in the late 1800s, they were unsorted and chaotic. And the two men given to sorting them were John Couch Adams and George Stokes. Adams was the co-discoverer of Neptune. He famously never wrote anything down. And Stokes was just as great a physicist, but he wrote everything down. He in fact wrote 10,000 letters. So these two guys get the papers, and then they sit on them for 16 years; they basically procrastinate.

When actually confronted with Newton’s paper, they were horrified and dismayed. Here was this great scientific hero. But he also wrote about alchemy and even more about religious matters. Newton spent a long time writing a lot of unfinished treatises. Sometimes he would produce six or seven copies of the same thing. And I think it was disappointing to see your intellectual father copying this stuff over and over. So the way Adams and Stokes dealt with it was to say that, “His power of writing a beautiful hand was evidently a snare to him.” Basically, they said he didn’t like this stuff, he just liked his own writing.

There’s also Grace Babson, who created the largest collection of Newton objects and papers in America. She was married to a man who got rich predicting the crash of 1929. And Roger Babson [her husband] based his market research on Newtonian principles, using the idea that for every action there is an equal an opposite reaction. The market goes up so it must come down. Interestingly, he thought of gravity as an evil scourge. He had some relatives that drowned, and he thought that it was because gravity pulled them down. So he started the Gravity Research Foundation , which went on to do research into anti-gravity technology. It was completely wacky, but it still exists today. An interesting note, though, is that it funds an essay prize, and Stephen Hawking won that prize three times.

I think the highlight of the book is John Maynard Keynes buying the papers at auction [in 1936]. He’s an economist at the height of his powers, applying this hyper rational analysis to the economy. And he’s this cultured aesthete. He was wealthy and he was able to just sort of grab Newton’s alchemical writings. This had a major impact on what we know about Newton because Keynes kept the papers together. There’s the chance that, if the papers had been more widely dispersed, we might not have access to all of them today.

WIRED: What did people think about Newton in the past, and how has our conception of him changed in the modern day?

Dry: Right after Newton died, he was given a monument in Westminster Abbey. Newton was very famous during his life and after that he’s almost like a god. He had been sanctified. Part of history is this process of increasing humanization of Newton. And of making him a more complex person; Newton the man, as opposed to his created ideas.

Soon after he died, Newton’s religious views were the subject of much speculation and many hoped his papers would reveal the truth of what he really believed. His descendants made sure very few saw the papers because they were a treasure trove of dirt on the man. He had complex religious beliefs, subscribing to a heresy called anti-Trinitarianism. Basically, he didn’t believe that Christ was as powerful as God. His papers were bursting with evidence for just how heretical his views were.

Nowadays, we have a different appetite or tolerance for scientists who had mystical beliefs. We have become increasingly tolerant of his heretical views, which have seemed less problematic. Sometimes, people can still get very upset about the alchemy. But there’s actually very little that he left of his own work in alchemy. Most of it is copies of other people’s stuff that he indexed and made notes on. It’s hard to know what he thought about it, because we don’t know quite what he was doing.

WIRED: Now that nearly all the material is available online , do you think people will come to understand Newton better as a person?

__Dry: __It’s an interesting question. And, depending on how kind of postmodern you want to get, I think it comes down to this question of what it means to know a person. And what do we think counts as knowledge about a person. In a simple way, yes, the easy access to this material will make it impossible for serious scholars to ignore the fact that Newton spent a lot of time on non-scientific things. But the question is how much are all these things related.

In the 1960s and 70s, unity was a big issue. People wanted to show that the alchemy and the theology was related to the science. I think now there’s less of a need for that. Historians say that Newton, like us, could hold different thoughts in his head at different times. So he had his theological hat, and his scientific hat, and his alchemical hat.

But the more fundamental thing is this: Do we think that the things a person says in public or the things a person writes in private say more about them? I think that’s an interesting question, especially for our moment of Twitter and Facebook. We tend to feel the private is more true somehow. But people choose what to make public, and that says something about them too.

WIRED: Newton burned a few of his papers before his death. And of course he couldn’t have written down every single one of his thoughts. Are there important gaps in the writing?

Dry: One of the biggest gaps, I think, is that there’s no original draft of the Principia [Newton’s treatise on classical mechanics]. If scholars could have one document, it would be a working draft of the Principia .

How did Newton come to his discoveries? That’s what we want to know about any great thinker. That’s why we want to hear about this process of genius and creativity that we can see on this page. But he didn’t leave any working pages of the first edition of the Principia , just a clean copy that he sent to the printer when he was finished.

The Principia went through three editions, and there were many drafts between one and two and two and three. They show a lot, but he actually covered up his methods in his published works. He presented his discoveries of optics in a formal language that covered up the traces of the hard work that one assumes went into it. And it’s because Newton didn’t want people to know how he had come to his knowledge. I think that might relate to his religious beliefs regarding anti-Trinitariansim. He believed there was an elite cadre of people that were given the truth of religion. And the vulgar masses weren’t strong enough.

But then at the same time he left us 10 million words, which is one of the most extensive of any scientist, or even any one person. He wrote so much, and it’s incredible how much of it survived. Newton was famous when he died. But this was the stuff that nobody wanted to see. And the fact that it wasn’t lost is due to a combination of chance and care.

The Rise of the Carbon Farmer

Jessica Rawnsley

Doctors Combined a Heart Pump and Pig Kidney Transplant in Breakthrough Surgery

Emily Mullin

Get Ready for Monster Hurricanes This Summer

Matt Reynolds

The Earth Is About to Feast on Dead Cicadas

Maanvi Singh

We Finally Know Where Neuralink’s Brain Implant Trial Is Happening

IMAGES

  1. Isaac Newton Essay Example

    essay on isaac newton in 100 words

  2. Sir Isaac Newton.

    essay on isaac newton in 100 words

  3. Essay On Isaac Newton In 100 Words

    essay on isaac newton in 100 words

  4. Isaac Newton Essay In English 100 Words

    essay on isaac newton in 100 words

  5. Report on Sir Isaac Newton Free Essay Example

    essay on isaac newton in 100 words

  6. Essay On Isaac Newton In 100 Words

    essay on isaac newton in 100 words

VIDEO

  1. Sir Isaac Newton predicted WHAT about the year 2060?! #morbidfacts #shorts

  2. I tried Isaac Newton’s insane study routine for a day #shorts

  3. Plotting

  4. Who was Isaac Newton ? Newton Life Story in Urdu

  5. The Controversies and Facts about Sir Issac Newton

  6. Originality

COMMENTS

  1. Essay on Isaac Newton in 100 Words

    Conclusion of Essay on Isaac Newton in 100 Words. In conclusion, Sir Isaac Newton's contributions to science and mathematics are immeasurable. His laws of motion and universal gravitation transformed our understanding of the physical world and continue to inspire scientists today. Newton's genius and legacy remain a testament to the power ...

  2. Essay on Isaac Newton: The Father of Modern Science

    Essay on Isaac Newton in 100 Words. Issac Newton was an English scientist who made some groundbreaking discoveries in the field of science and revolutionized physics and mathematics. revolutionized physics and mathematics. He formulated the three laws of motion, defining how objects move and interact with forces. His law of universal ...

  3. Essay on Isaac Newton

    100 Words Essay on Isaac Newton Early Life. Isaac Newton was born on January 4, 1643, in England. He was a curious child who loved reading and exploring nature. Discoveries. Newton is famous for discovering gravity. The story goes that an apple falling from a tree inspired him. He also developed the three laws of motion.

  4. Isaac Newton

    Isaac Newton (born December 25, 1642 [January 4, 1643, New Style], Woolsthorpe, Lincolnshire, England—died March 20 [March 31], 1727, London) was an English physicist and mathematician who was the culminating figure of the Scientific Revolution of the 17th century. In optics, his discovery of the composition of white light integrated the phenomena of colours into the science of light and ...

  5. Isaac Newton, Mathematician and Scientist

    Isaac Newton is one of the greatest historical figures who will remain the annals of history, because of his numerous contributions to different scientific fields such as mathematics and physics. As Hall (Para 1) argues, "Generally, people have always regarded Newton as one of the most influential theorists in the history of science".

  6. Isaac Newton

    Name: Isaac Newton. Birth Year: 1643. Birth date: January 4, 1643. Birth City: Woolsthorpe, Lincolnshire, England. Birth Country: United Kingdom. Gender: Male. Best Known For: Isaac Newton was an ...

  7. Isaac Newton

    Isaac Newton (1642-1727) was an English mathematician and physicist widely regarded as the single most important figure in the Scientific Revolution for his three laws of motion and universal law of gravity. Newton's laws became a fundamental foundation of physics, while his discovery that white light is made up of a rainbow of colours revolutionised the field of optics.

  8. Isaac Newton: The Life and Legacy of a Scientific Pioneer

    This quote by Isaac Newton, one of the most influential scientists of his time, underscores the importance of education and collaboration in achieving groundbreaking scientific discoveries. Born in 1643 in England, Newton's contributions to mathematics, physics, and astronomy revolutionized our understanding of the universe.

  9. Isaac Newton

    Isaac Newton (1642-1727) is best known for having invented the calculus in the mid to late 1660s (most of a decade before Leibniz did so independently, and ultimately more influentially) and for having formulated the theory of universal gravity — the latter in his Principia, the single most important work in the transformation of early modern natural philosophy into modern physical science.

  10. How Isaac Newton Changed Our World

    Newton worked out that if the force of gravity pulled the apple from the tree, then it was also possible for gravity to exert its pull on objects much, much further away. Newton's theory helped ...

  11. Essay About Isaac Newton

    Published: 11/15/2019. Isaac Newton was an English scientist who not only studied but made stupendous discoveries in mathematics, physics, and chemistry. However, he is also a well-known astronomer, natural philosopher and theologian. Sir Isaac Newton was born in three months after the death of his father and when his mother remarried he moved ...

  12. Isaac Newton

    Sir Isaac Newton FRS (25 December 1642 - 20 March 1726/27) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosopher. He was a key figure in the Scientific Revolution and the Enlightenment that followed. His pioneering book Philosophiæ Naturalis Principia Mathematica (Mathematical ...

  13. Life and works of Isaac Newton

    Isaac Newton, portrait by Godfrey Kneller, 1689. Sir Isaac Newton, (born Jan. 4, 1643, Woolsthorpe, Lincolnshire, Eng.—died March 31, 1727, London), English physicist and mathematician. The son of a yeoman, he was raised by his grandmother. He was educated at Cambridge University (1661-65), where he discovered the work of René Descartes.

  14. Newton, The Last Magician

    Newton, The Last Magician. The great man of science had more than a passing interest in alchemy. Precisely at 1 p.m., just after luncheon on July 13, 1936, bidding opened on a remarkable lot at Sotheby's auction house in London: a metal chest full of Isaac Newton's private, hand-written papers and lab books, some almost three hundred years ...

  15. Sir Isaac Newton

    Sir Isaac Newton ran for a seat in Parliament in 1689. He won the election and became a Member of Parliament for Cambridge University. He was also appointed as a Warden of the Mint in 1969. Due to his exemplary work and dedication to the mint, he was chosen Master of the Mint in 1700. After being knighted in 1705, he was known as "Sir Isaac ...

  16. The Greatest Scientific Genius in The History of Humanity

    Sir Isaac Newton's intellect and contributions eclipsed the scientific contributions of an entire generation of his peers. While there are a number of great minds recorded in human history, many are from periods of questionable record keeping.

  17. Story Life of Sir Isaac Newton: [Essay Example], 1346 words

    Story Life of Sir Isaac Newton. Isaac Newton was born on January 4, 1642, in Lincolnshire, England. Newton's father, Isaac Newton who was a farmer, died 3 months before Newton was born. Newton was not expected to survive because he was born tiny, weak and feeble, but however he did, when he was 3 years old, his mother, Hannah Ayscough Newton ...

  18. Isaac Newton Essay

    Isaac Newton Essay; Isaac Newton Essay. Sort By: Page 1 of 50 - About 500 essays. Decent Essays. Isaac Newton. 669 Words ; 3 Pages ... This is going to be about newton's 3 laws of motion and his life story. Isaac Newton is a physicist, mathematician, scientist, philosopher, and an astronomer. He was born january 4, 1643, in woolsthorpe ...

  19. Isaac Newton's Biography and Discoveries

    Published: Jul 17, 2018. Isaac Newton was born on January 4, 1643. He was born in Woolsthorpe, Lincolnshire, England. His father, also Isaac Newton, was a farmer. Unfortunately, Isaac Newton's father died before he was born. Isaac Newton's father could not read or write. Three years later, Hannah Ayscough, Isaac Newton's mother, married a ...

  20. PDF ISAAC NEWTON: PHILOSOPHICAL WRITINGS

    - Isaac Newton1 Newton as natural philosopher Isaac Newton's influence is ubiquitous 300 years after his death. We employ Newtonian mechanics in a wide range of cases, students world-wide learn the calculus that he co-discovered with Leibniz, and the law of universal gravitation characterizes what is still considered a fundamental force.

  21. Essays on Isaac Newton

    2 pages / 1032 words. Isaac Newton was born on January 4, 1643. He was born in Woolsthorpe, Lincolnshire, England. His father, also Isaac Newton, was a farmer. Unfortunately, Isaac Newton's father died before he was born. Isaac Newton's father could not read or write. Three years later, Hannah Ayscough,...

  22. The Strange, Secret History of Isaac Newton's Papers

    When Sir Isaac Newton died in 1727, he left behind no will and an enormous stack of papers. His surviving correspondences, notes, and manuscripts contain an estimated 10 million words, enough to ...