• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How General Intelligence (G Factor) Is Determined

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

general problem solving ability refers to intelligence

Verywell / Emily Roberts

  • Measurement

General intelligence, also known as the general factor or g factor , refers to the existence of a broad mental capacity that influences performance on cognitive ability measures. Other terms such as intelligence, IQ , general cognitive ability, and general mental ability are also used interchangeably to mean the same thing as general intelligence.

This general mental ability is what underlies specific mental skills related to areas such as spatial, numerical, mechanical, and verbal abilities. The idea is that general intelligence influences performance on all cognitive tasks. So, general intelligence can be defined as a construct that is made up of different cognitive abilities. These abilities allow people to acquire knowledge and solve problems.

Spearman's Theory of General Intelligence

Psychologist Charles Spearman helped develop a statistical technique known as factor analysis, which allows researchers to use a number of different test items to measure common abilities. For example, researchers might find that people who score well on questions that measure vocabulary also perform better on questions related to reading comprehension.

In 1904, Spearman suggested that this g factor was responsible for overall performance on mental ability tests. He noted that while people certainly could and often did excel in certain areas, people who did well in one area tended also to do well in other areas.

Spearman's theory of general intelligence is known as the two-factor theory and states that general intelligence or "g" is correlated with specific abilities or "s" to some degree. All tasks on intelligence tests, whether related to verbal or mathematical abilities, were influenced by this underlying g factor.

General intelligence can be compared to athleticism. A person might be a very skilled runner, but this does not necessarily mean that they will also be an excellent figure skater.

However, because this person is athletic and fit, they will probably perform much better on other physical tasks than an individual who is less coordinated and more sedentary.

Types of General Intelligence

In the 1940s, Raymond Cattell theorized that there were two types of intelligence that affect human cognitive ability: fluid intelligence (Gf) and crystallized intelligence (Gc). Fluid intelligence refers to intelligence that we are born with and that we acquire through interacting with our environment. Crystalized intelligence is intelligence that we acquire through our culture.

Others suggest that there are more types of general intelligence, often referred to as the "g's of intelligence." Additional g's of intelligence include:

  • General memory and learning (Gy)
  • Broad visual perception (Gv)
  • Broad auditory perception (Gu)
  • Broad retrieval ability (Gr)
  • Broad cognitive speediness (Gs)
  • Reaction time (Gt)

Components of General Intelligence

There are several key components that are believed to make up general intelligence . These include:

  • Fluid reasoning : This involves the ability to think flexibly and solve problems.
  • Knowledge : This is a person's general understanding of a wide range of topics and can be equated with crystallized intelligence.
  • Quantitative reasoning : This is an individual's capacity to solve problems that involve numbers.
  • Visual-spatial processing : This relates to a person's abilities to interpret and manipulate visual information, such as putting together puzzles and copying complex shapes.
  • Working memory : This involves the use of short-term memory such as being able to repeat a list of items.

How General Intelligence Is Measured

Many modern intelligence tests measure some of the cognitive factors that are thought to make up general intelligence. Such tests propose that intelligence can be measured and expressed by a single number, such as an IQ score.

The Stanford-Binet, which is one of the most popular intelligence tests , aims to measure the g factor. In addition to providing an overall score, the current version of the test also offers a number of score composites as well as subtest scores in ten different areas.

What Do IQ Test Scores Mean?

While scoring systems vary, the average score on many is 100 and the following labels are often used for different scoring ranges:

  • 40 - 54 : Moderately impaired or delayed
  • 55 - 69 : Mildly impaired or delayed
  • 70 - 79 : Borderline impaired or delayed
  • 80 - 89 : Low average intelligence
  • 90 - 109 : Average
  • 110 - 119 : High average
  • 120 - 129 : Superior
  • 130 - 144 : Gifted or very advanced
  • 145 - 160 : Exceptionally gifted or highly advanced

Impact of General Intelligence

While the concept of intelligence is still the subject of debate within psychology, researchers believe that general intelligence is correlated with overall success in life.   Some of the effects that it may have on an individual's life include areas such as:

Academic Achievement

One of the most obvious effects of general intelligence is in the realm of academic performance. While intelligence plays a role in academics, there has been a great deal of debate over the extent to which it influences academic achievement.

Research has shown that there is a strong association between general mental ability and academic achievement, but it doesn't act on its own. Some research suggests that between 51% and 75% of achievement cannot be accounted for by the g factor alone.

This means that while general intelligence does affect how well kids do in school, other factors can play a major role.

Job Success

IQ scores have long been thought to correlate to career success. This is why psychological testing has become so prevalent for pre-employment screening and career placement. Many have questioned, however, whether a general mental ability was really more important than specific mental abilities.

A 2020 study published in the Journal of Applied Psychology concluded that both general intelligence and specific mental abilities play an important role in determining career success including income and job attainment.

The importance of the g factor for job success becomes greater as the complexity of the work increases. For occupations with a high degree of complexity, having a higher general intelligence becomes a greater asset.

Health and Longevity

The field of cognitive epidemiology looks at associations between general intelligence and health. Just as health can play a role in influencing intelligence , a person's intelligence may have an impact on their health. Studies have found that high-IQ individuals have a lower risk of:

  • Coronary heart disease
  • Hypertension
  • Some cancers

Research has found that people who have higher general intelligence also tend to be healthier and live longer, although the reasons for this are not entirely clear.  

Research also suggests that people with higher intelligence scores also tend to earn higher incomes. However, it is important to note that other factors play a mediating role including education, occupation, and socioeconomic background.

While the g factor has a number of effects, other variables are also important. Factors such as socioeconomic status and emotional intelligence , for example, can interact with general intelligence and play a major part in determining a person's success.

Challenges of General Intelligence

The notion that intelligence could be measured and summarized by a single number on an IQ test was controversial, even during Spearman's time. IQ and intelligence testing have remained topics of debate ever since. While influential, the g factor is just one way of thinking about intelligence.

Thurstone's Primary Mental Abilities

Some psychologists, including L.L. Thurstone, challenged the concept of a g-factor. Thurstone instead identified a number of what he referred to as primary mental abilities :

  • Associative memory
  • Number facility
  • Perceptual speed
  • Spatial visualization
  • Verbal comprehension

He suggested that all people possess these mental abilities, although to varying degrees. People could be low in some areas and high in others.

Gardner's Multiple Intelligences

More recently, psychologists such as Howard Gardner have argued against the notion that a single general intelligence can accurately capture all of human mental ability. Gardner instead proposed that multiple intelligences exist.

Each intelligence represents abilities in a certain domain such as visual-spatial intelligence, verbal-linguistic intelligence, and logical-mathematical intelligence.

Research today points to an underlying mental ability that contributes to performance on many cognitive tasks. IQ scores, which are designed to measure this general intelligence, are also thought to influence an individual's overall success in life.

However, while IQ can play a role in academic and life success , other factors such as childhood experiences, educational experiences, socioeconomic status, motivation , maturity, and personality also play a critical role in determining overall success.

Glanagan DP, Dixon SG. The Cattell-Horn-Carroll theory of cognitive abilities . Encyclopedia Spec Educ . 2014. doi:10.1002/9781118660584.ese0431

Gottfredson LS. Why g matters: The complexity of everyday life . Intelligence . 1997;24(1):79-132. doi:10.1016/S0160-2896(97)90014-3

Tikhomirova T, Malykh A, Malykh S. Predicting academic achievement with cognitive abilities: Cross-sectional study across school education .  Behav Sci (Basel) . 2020;10(10):158. doi:10.3390/bs10100158

Lang JWB, Kell HJ. General mental ability and specific abilities: Their relative importance for extrinsic career success .  Journal of Applied Psychology . 2020;105(9):1047-1061.doi:10.1037/apl0000472

Kanazawa S. Childhood intelligence and adult obesity . Obesity (Silver Spring). 2013;21(3):434-40. doi: 10.1002/oby.20018

Kajantie E, Räikkönen K, Henriksson M, et al. Stroke is predicted by low visuospatial in relation to other intellectual abilities and coronary heart disease by low general intelligence . PLoS ONE . 2012;7(11):e46841. doi:10.1371/journal.pone.0046841

Kanazawa S. General intelligence, disease heritability, and health: A preliminary test .  Personality and Individual Differences . 2014;71:83-85.doi:10.1016/j.paid.2014.07.028

Coon D, Mitterer JO. Introduction to Psychology: Gateways to Mind and Behavior With Concept Maps. Wadsworth; 2010.

Myers DG. Psychology, Seventh Edition . Worth Publishers; 2004.

Terman LM, Oden MH. Genetic Studies of Genius. Vol. V. The Gifted at Mid-Life: Thirty-Five Years' Follow-Up of the Superior Child. Stanford University Press; 1959.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

7.4 What Are Intelligence and Creativity?

Learning objectives.

By the end of this section, you will be able to:

  • Define intelligence
  • Explain the triarchic theory of intelligence
  • Identify the difference between intelligence theories
  • Explain emotional intelligence
  • Define creativity

A four-and-a-half-year-old boy sits at the kitchen table with his father, who is reading a new story aloud to him. He turns the page to continue reading, but before he can begin, the boy says, “Wait, Daddy!” He points to the words on the new page and reads aloud, “Go, Pig! Go!” The father stops and looks at his son. “Can you read that?” he asks. “Yes, Daddy!” And he points to the words and reads again, “Go, Pig! Go!”

This father was not actively teaching his son to read, even though the child constantly asked questions about letters, words, and symbols that they saw everywhere: in the car, in the store, on the television. The dad wondered about what else his son might understand and decided to try an experiment. Grabbing a sheet of blank paper, he wrote several simple words in a list: mom, dad, dog, bird, bed, truck, car, tree. He put the list down in front of the boy and asked him to read the words. “Dad, dog, bird, bed, truck, car, tree,” he read, slowing down to carefully pronounce bird and truck. Then, “Did I do it, Daddy?” “You sure did! That is very good.” The father gave his little boy a warm hug and continued reading the story about the pig, all the while wondering if his son’s abilities were an indication of exceptional intelligence or simply a normal pattern of linguistic development. Like the father in this example, psychologists have wondered what constitutes intelligence and how it can be measured.

Classifying Intelligence

What exactly is intelligence? The way that researchers have defined the concept of intelligence has been modified many times since the birth of psychology. British psychologist Charles Spearman believed intelligence consisted of one general factor, called g , which could be measured and compared among individuals. Spearman focused on the commonalities among various intellectual abilities and de-emphasized what made each unique. Long before modern psychology developed, however, ancient philosophers, such as Aristotle, held a similar view (Cianciolo & Sternberg, 2004).

Other psychologists believe that instead of a single factor, intelligence is a collection of distinct abilities. In the 1940s, Raymond Cattell proposed a theory of intelligence that divided general intelligence into two components: crystallized intelligence and fluid intelligence (Cattell, 1963). Crystallized intelligence is characterized as acquired knowledge and the ability to retrieve it. When you learn, remember, and recall information, you are using crystallized intelligence. You use crystallized intelligence all the time in your coursework by demonstrating that you have mastered the information covered in the course. Fluid intelligence encompasses the ability to see complex relationships and solve problems. Navigating your way home after being detoured onto an unfamiliar route because of road construction would draw upon your fluid intelligence. Fluid intelligence helps you tackle complex, abstract challenges in your daily life, whereas crystallized intelligence helps you overcome concrete, straightforward problems (Cattell, 1963).

Other theorists and psychologists believe that intelligence should be defined in more practical terms. For example, what types of behaviors help you get ahead in life? Which skills promote success? Think about this for a moment. Being able to recite all of the presidents of the United States in order is an excellent party trick, but will knowing this make you a better person?

Robert Sternberg developed another theory of intelligence, which he titled the triarchic theory of intelligence because it sees intelligence as comprised of three parts (Sternberg, 1988): practical, creative, and analytical intelligence ( Figure 7.12 ).

Practical intelligence , as proposed by Sternberg, is sometimes compared to “street smarts.” Being practical means you find solutions that work in your everyday life by applying knowledge based on your experiences. This type of intelligence appears to be separate from traditional understanding of IQ; individuals who score high in practical intelligence may or may not have comparable scores in creative and analytical intelligence (Sternberg, 1988).

Analytical intelligence is closely aligned with academic problem solving and computations. Sternberg says that analytical intelligence is demonstrated by an ability to analyze, evaluate, judge, compare, and contrast. When reading a classic novel for literature class, for example, it is usually necessary to compare the motives of the main characters of the book or analyze the historical context of the story. In a science course such as anatomy, you must study the processes by which the body uses various minerals in different human systems. In developing an understanding of this topic, you are using analytical intelligence. When solving a challenging math problem, you would apply analytical intelligence to analyze different aspects of the problem and then solve it section by section.

Creative intelligence is marked by inventing or imagining a solution to a problem or situation. Creativity in this realm can include finding a novel solution to an unexpected problem or producing a beautiful work of art or a well-developed short story. Imagine for a moment that you are camping in the woods with some friends and realize that you’ve forgotten your camp coffee pot. The person in your group who figures out a way to successfully brew coffee for everyone would be credited as having higher creative intelligence.

Multiple Intelligences Theory was developed by Howard Gardner, a Harvard psychologist and former student of Erik Erikson. In Gardner’s theory, each person possesses at least eight intelligences. The eight intelligences are linguistic intelligence, logical-mathematical intelligence, musical intelligence, bodily kinesthetic intelligence, spatial intelligence, interpersonal intelligence, intrapersonal intelligence, and naturalistic intelligence. Among cognitive psychologists, Gardner’s theory has been heavily criticized for lacking empirical evidence. However, educators continue to study and use Gardner’s theory, with some colleges even discussing how they integrate Gardner’s theory into their classrooms. Gottfredson describes one possible reason for the continued use of Gardner’s theory: “ . . . that there are multiple independent intelligences, suggesting that everyone can be smart in some way. This is, understandably, a very attractive idea in democratic societies” (2004).

Gardner’s inter- and intrapersonal intelligences are often combined into a single type: emotional intelligence. Emotional intelligence encompasses the ability to understand the emotions of yourself and others, show empathy, understand social relationships and cues, and regulate your own emotions and respond in culturally appropriate ways (Parker, Saklofske, & Stough, 2009). People with high emotional intelligence typically have well-developed social skills. Some researchers, including Daniel Goleman, the author of Emotional Intelligence: Why It Can Matter More than IQ , argue that emotional intelligence is a better predictor of success than traditional intelligence (Goleman, 1995). However, emotional intelligence has been widely debated, with researchers pointing out inconsistencies in how it is defined and described, as well as questioning results of studies on a subject that is difficult to measure and study empirically (Locke, 2005; Mayer, Salovey, & Caruso, 2004).

The most comprehensive theory of intelligence to date is the Cattell-Horn-Carroll (CHC) theory of cognitive abilities (Schneider & McGrew, 2018). In this theory, abilities are related and arranged in a hierarchy with general abilities at the top, broad abilities in the middle, and narrow (specific) abilities at the bottom. The narrow abilities are the only ones that can be directly measured; however, they are integrated within the other abilities. At the general level is general intelligence. Next, the broad level consists of general abilities such as fluid reasoning, short-term memory, and processing speed. Finally, as the hierarchy continues, the narrow level includes specific forms of cognitive abilities. For example, short-term memory would further break down into memory span and working memory capacity.

Intelligence can also have different meanings and values in different cultures. If you live on a small island, where most people get their food by fishing from boats, it would be important to know how to fish and how to repair a boat. If you were an exceptional angler, your peers would probably consider you intelligent. If you were also skilled at repairing boats, your intelligence might be known across the whole island. Think about your own family’s culture. What values are important for Latinx families? Italian families? In Irish families, hospitality and telling an entertaining story are marks of the culture. If you are a skilled storyteller, other members of Irish culture are likely to consider you intelligent.

Some cultures place a high value on working together as a collective. In these cultures, the importance of the group supersedes the importance of individual achievement. When you visit such a culture, how well you relate to the values of that culture exemplifies your cultural intelligence , sometimes referred to as cultural competence.

Link to Learning

Watch this video that compares different theories of intelligence to learn more.

Creativity is the ability to generate, create, or discover new ideas, solutions, and possibilities. Very creative people often have intense knowledge about something, work on it for years, look at novel solutions, seek out the advice and help of other experts, and take risks. Although creativity is often associated with the arts, it is actually a vital form of intelligence that drives people in many disciplines to discover something new. Creativity can be found in every area of life, from the way you decorate your residence to a new way of understanding how a cell works.

Creativity is often connected to a person’s ability to engage in divergent thinking . Divergent thinking can be described as thinking “outside the box;” it allows an individual to arrive at unique, multiple solutions to a given problem. In contrast, convergent thinking describes the ability to provide a correct or well-established answer or solution to a problem (Cropley, 2006; Gilford, 1967)

Everyday Connection

Dr. Tom Steitz, former Sterling Professor of Biochemistry and Biophysics at Yale University, spent his career looking at the structure and specific aspects of RNA molecules and how their interactions could help produce antibiotics and ward off diseases. As a result of his lifetime of work, he won the Nobel Prize in Chemistry in 2009. He wrote, “Looking back over the development and progress of my career in science, I am reminded how vitally important good mentorship is in the early stages of one's career development and constant face-to-face conversations, debate and discussions with colleagues at all stages of research. Outstanding discoveries, insights and developments do not happen in a vacuum” (Steitz, 2010, para. 39). Based on Steitz’s comment, it becomes clear that someone’s creativity, although an individual strength, benefits from interactions with others. Think of a time when your creativity was sparked by a conversation with a friend or classmate. How did that person influence you and what problem did you solve using creativity?

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/7-4-what-are-intelligence-and-creativity

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

8.1: Defining and Measuring Intelligence

  • Last updated
  • Save as PDF
  • Page ID 40782

Learning Objectives

  • Define intelligence and list the different types of intelligences psychologists study.
  • Summarize the characteristics of a scientifically valid intelligence test.
  • Outline the biological and environmental determinants of intelligence.

Psychologists have long debated how to best conceptualize and measure intelligence (Sternberg, 2003). These questions include how many types of intelligence there are, the role of nature versus nurture in intelligence, how intelligence is represented in the brain, and the meaning of group differences in intelligence.

General (g) Versus Specific (s) Intelligences

In the early 1900s, the French psychologist Alfred Binet (1857–1914) and his colleague Henri Simon (1872–1961) began working in Paris to develop a measure that would differentiate students who were expected to be better learners from students who were expected to be slower learners. The goal was to help teachers better educate these two groups of students. Binet and Simon developed what most psychologists today regard as the first intelligence test, which consisted of a wide variety of questions that included the ability to name objects, define words, draw pictures, complete sentences, compare items, and construct sentences.

Binet and Simon (Binet, Simon, & Town, 1915; Siegler, 1992) believed that the questions they asked their students, even though they were on the surface dissimilar, all assessed the basic abilities to understand, reason, and make judgments. And it turned out that the correlations among these different types of measures were in fact all positive; students who got one item correct were more likely to also get other items correct, even though the questions themselves were very different.

On the basis of these results, the psychologist Charles Spearman (1863–1945) hypothesized that there must be a single underlying construct that all of these items measure. He called the construct that the different abilities and skills measured on intelligence tests have in common the general intelligence factor (g). Virtually all psychologists now believe that there is a generalized intelligence factor, g, that relates to abstract thinking and that includes the abilities to acquire knowledge, to reason abstractly, to adapt to novel situations, and to benefit from instruction and experience (Gottfredson, 1997; Sternberg, 2003). People with higher general intelligence learn faster.

Soon after Binet and Simon introduced their test, the American psychologist Lewis Terman (1877–1956) developed an American version of Binet’s test that became known as the Stanford-Binet Intelligence Test . The Stanford-Binet is a measure of general intelligence made up of a wide variety of tasks including vocabulary, memory for pictures, naming of familiar objects, repeating sentences, and following commands.

Although there is general agreement among psychologists that g exists, there is also evidence for specific intelligence (s), a measure of specific skills in narrow domains . One empirical result in support of the idea of s comes from intelligence tests themselves. Although the different types of questions do correlate with each other, some items correlate more highly with each other than do other items; they form clusters or clumps of intelligences.

One distinction is between fluid intelligence , which refers to the capacity to learn new ways of solving problems and performing activities, and crystallized intelligence , which refers to the accumulated knowledge of the world we have acquired throughout our lives (Salthouse, 2004). These intelligences must be different because crystallized intelligence increases with age—older adults are as good as or better than young people in solving crossword puzzles—whereas fluid intelligence tends to decrease with age (Horn, Donaldson, & Engstrom, 1981; Salthouse, 2004).

Other researchers have proposed even more types of intelligences. L. L. Thurstone (1938) proposed that there were seven clusters of primary mental abilities , made up of word fluency, verbal comprehension, spatial ability, perceptual speed, numerical ability, inductive reasoning, and memory. But even these dimensions tend to be at least somewhat correlated, showing again the importance of g.

One advocate of the idea of multiple intelligences is the psychologist Robert Sternberg. Sternberg has proposed a triarchic (three-part) theory of intelligence that proposes that people may display more or less analytical intelligence, creative intelligence, and practical intelligence . Sternberg (1985, 2003) argued that traditional intelligence tests assess analytical intelligence, the ability to answer problems with a single right answer, but that they do not well assess creativity (the ability to adapt to new situations and create new ideas) or practicality (e.g., the ability to write good memos or to effectively delegate responsibility).

As Sternberg proposed, research has found that creativity is not highly correlated with analytical intelligence (Furnham & Bachtiar, 2008), and exceptionally creative scientists, artists, mathematicians, and engineers do not score higher on intelligence than do their less creative peers (Simonton, 2000). Furthermore, the brain areas that are associated with convergent thinking , thinking that is directed toward finding the correct answer to a given problem, are different from those associated with divergent thinking , the ability to generate many different ideas for or solutions to a single problem (Tarasova, Volf, & Razoumnikova, 2010). On the other hand, being creative often takes some of the basic abilities measured by g, including the abilities to learn from experience, to remember information, and to think abstractly (Bink & Marsh, 2000).

image185-300x201.jpg

Studies of creative people suggest at least five components that are likely to be important for creativity:

  • Expertise . Creative people have carefully studied and know a lot about the topic that they are working in. Creativity comes with a lot of hard work (Ericsson, 1998; Weisberg, 2006).
  • Imaginative thinking . Creative people often view a problem in a visual way, allowing them to see it from a new and different point of view.
  • Risk taking . Creative people are willing to take on new but potentially risky approaches.
  • Intrinsic interest . Creative people tend to work on projects because they love doing them, not because they are paid for them. In fact, research has found that people who are paid to be creative are often less creative than those who are not (Hennessey & Amabile, 2010).
  • Working in a creative environment . Creativity is in part a social phenomenon. Simonton (1992) found that the most creative people were supported, aided, and challenged by other people working on similar projects.

The last aspect of the triarchic model, practical intelligence, refers primarily to intelligence that cannot be gained from books or formal learning. Practical intelligence represents a type of “street smarts” or “common sense” that is learned from life experiences. Although a number of tests have been devised to measure practical intelligence (Sternberg, Wagner, & Okagaki, 1993; Wagner & Sternberg, 1985), research has not found much evidence that practical intelligence is distinct from g or that it is predictive of success at any particular tasks (Gottfredson, 2003). Practical intelligence may include, at least in part, certain abilities that help people perform well at specific jobs, and these abilities may not always be highly correlated with general intelligence (Sternberg, Wagner, & Okagaki, 1993). On the other hand, these abilities or skills are very specific to particular occupations and thus do not seem to represent the broader idea of intelligence.

Another champion of the idea of multiple intelligences is the psychologist Howard Gardner (1983, 1999). Gardner argued that it would be evolutionarily functional for different people to have different talents and skills, and proposed that there are eight intelligences that can be differentiated from each other (Table \(\PageIndex{1}\)). Gardner noted that some evidence for multiple intelligences comes from the abilities of autistic savants , people who score low on intelligence tests overall but who nevertheless may have exceptional skills in a given domain, such as math, music, art, or in being able to recite statistics in a given sport (Treffert & Wallace, 2004).

Source: Adapted from Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st century . New York, NY: Basic Books.

5-300x150.jpg

The idea of multiple intelligences has been influential in the field of education, and teachers have used these ideas to try to teach differently to different students. For instance, to teach math problems to students who have particularly good kinesthetic intelligence, a teacher might encourage the students to move their bodies or hands according to the numbers. On the other hand, some have argued that these “intelligences” sometimes seem more like “abilities” or “talents” rather than real intelligence. And there is no clear conclusion about how many intelligences there are. Are sense of humor, artistic skills, dramatic skills, and so forth also separate intelligences? Furthermore, and again demonstrating the underlying power of a single intelligence, the many different intelligences are in fact correlated and thus represent, in part, g (Brody, 2003).

Measuring Intelligence: Standardization and the Intelligence Quotient

The goal of most intelligence tests is to measure g, the general intelligence factor. Good intelligence tests are reliable , meaning that they are consistent over time, and also demonstrate construct validity , meaning that they actually measure intelligence rather than something else. Because intelligence is such an important individual difference dimension, psychologists have invested substantial effort in creating and improving measures of intelligence, and these tests are now the most accurate of all psychological tests. In fact, the ability to accurately assess intelligence is one of the most important contributions of psychology to everyday public life.

Intelligence changes with age. A 3-year-old who could accurately multiply 183 by 39 would certainly be intelligent, but a 25-year-old who could not do so would be seen as unintelligent. Thus understanding intelligence requires that we know the norms or standards in a given population of people at a given age. The standardization of a test involves giving it to a large number of people at different ages and computing the average score on the test at each age level .

It is important that intelligence tests be standardized on a regular basis, because the overall level of intelligence in a population may change over time. The Flynn effect refers to the observation that scores on intelligence tests worldwide have increased substantially over the past decades (Flynn, 1999). Although the increase varies somewhat from country to country, the average increase is about 3 IQ points every 10 years. There are many explanations for the Flynn effect, including better nutrition, increased access to information, and more familiarity with multiple-choice tests (Neisser, 1998). But whether people are actually getting smarter is debatable (Neisser, 1997).

Once the standardization has been accomplished, we have a picture of the average abilities of people at different ages and can calculate a person’s mental age, which is the age at which a person is performing intellectually . If we compare the mental age of a person to the person’s chronological age, the result is the intelligence quotient (IQ), a measure of intelligence that is adjusted for age . A simple way to calculate IQ is by using the following formula:

IQ = mental age ÷ chronological age × 100.

Thus a 10-year-old child who does as well as the average 10-year-old child has an IQ of 100 (10 ÷ 10 × 100), whereas an 8-year-old child who does as well as the average 10-year-old child would have an IQ of 125 (10 ÷ 8 × 100). Most modern intelligence tests are based the relative position of a person’s score among people of the same age, rather than on the basis of this formula, but the idea of an intelligence “ratio” or “quotient” provides a good description of the score’s meaning.

A number of scales are based on the IQ. The Wechsler Adult lntelligence Scale (WAIS) is the most widely used intelligence test for adults (Watkins, Campbell, Nieberding, & Hallmark, 1995). The current version of the WAIS, the WAIS-IV, was standardized on 2,200 people ranging from 16 to 90 years of age. It consists of 15 different tasks, each designed to assess intelligence, including working memory, arithmetic ability, spatial ability, and general knowledge about the world (Figure \(\PageIndex{4}\)). The WAIS-IV yields scores on four domains: verbal, perceptual, working memory, and processing speed. The reliability of the test is high (more than 0.95), and it shows substantial construct validity. The WAIS-IV is correlated highly with other IQ tests such as the Stanford-Binet, as well as with criteria of academic and life success, including college grades, measures of work performance, and occupational level. It also shows significant correlations with measures of everyday functioning among the mentally retarded.

The Wechsler scale has also been adapted for preschool children in the form of the Wechsler Primary and Preschool Scale of Intelligence (WPPSI-III) and for older children and adolescents in the form of the Wechsler Intelligence Scale for Children (WISC-IV) .

62f6964d18614fe74c40c8bef9d8070a.jpg

The intelligence tests that you may be most familiar with are aptitude tests , which are designed to measure one’s ability to perform a given task, for instance, to do well in college or in postgraduate training. Most U.S. colleges and universities require students to take the Scholastic Assessment Test (SAT) or the American College Test (ACT), and postgraduate schools require the Graduate Record Examination (GRE), Medical College Admissions Test (MCAT), or the Law School Admission Test (LSAT). These tests are useful for selecting students because they predict success in the programs that they are designed for, particularly in the first year of the program (Kuncel, Hezlett, & Ones, 2010). These aptitude tests also measure, in part, intelligence. Frey and Detterman (2004) found that the SAT correlated highly (between about r = .7 and r = .8) with standard measures of intelligence.

Intelligence tests are also used by industrial and organizational psychologists in the process of personnel selection . Personnel selection is the use of structured tests to select people who are likely to perform well at given jobs (Schmidt & Hunter, 1998). The psychologists begin by conducting a job analysis in which they determine what knowledge, skills, abilities, and personal characteristics ( KSAPs ) are required for a given job. This is normally accomplished by surveying and/or interviewing current workers and their supervisors. Based on the results of the job analysis, the psychologists choose selection methods that are most likely to be predictive of job performance. Measures include tests of cognitive and physical ability and job knowledge tests, as well as measures of IQ and personality.

The Biology of Intelligence

The brain processes underlying intelligence are not completely understood, but current research has focused on four potential factors: brain size, sensory ability, speed and efficience of neural transmission, and working memory capacity.

There is at least some truth to the idea that smarter people have bigger brains. Studies that have measured brain volume using neuroimaging techniques find that larger brain size is correlated with intelligence (McDaniel, 2005), and intelligence has also been found to be correlated with the number of neurons in the brain and with the thickness of the cortex (Haier, 2004; Shaw et al., 2006). It is important to remember that these correlational findings do not mean that having more brain volume causes higher intelligence. It is possible that growing up in a stimulating environment that rewards thinking and learning may lead to greater brain growth (Garlick, 2003), and it is also possible that a third variable, such as better nutrition, causes both brain volume and intelligence.

Another possibility is that the brains of more intelligent people operate faster or more efficiently than the brains of the less intelligent. Some evidence supporting this idea comes from data showing that people who are more intelligent frequently show less brain activity (suggesting that they need to use less capacity) than those with lower intelligence when they work on a task (Haier, Siegel, Tang, & Abel, 1992). And the brains of more intelligent people also seem to run faster than the brains of the less intelligent. Research has found that the speed with which people can perform simple tasks—such as determining which of two lines is longer or pressing, as quickly as possible, one of eight buttons that is lighted—is predictive of intelligence (Deary, Der, & Ford, 2001). Intelligence scores also correlate at about r = .5 with measures of working memory (Ackerman, Beier, & Boyle, 2005), and working memory is now used as a measure of intelligence on many tests.

Although intelligence is not located in a specific part of the brain, it is more prevalent in some brain areas than others. Duncan et al. (2000) administered a variety of intelligence tasks and observed the places in the cortex that were most active. Although different tests created different patterns of activation, as you can see in Figure \(\PageIndex{5}\), these activated areas were primarily in the outer parts of the cortex, the area of the brain most involved in planning, executive control, and short-term memory.

255e3e075d3d48a6c088d1a6814cfa4f.jpg

Is Intelligence Nature or Nurture?

Intelligence has both genetic and environmental causes, and these have been systematically studied through a large number of twin and adoption studies (Neisser et al., 1996; Plomin, DeFries, Craig, & McGuffin, 2003). These studies have found that between 40% and 80% of the variability in IQ is due to genetics, meaning that overall genetics plays a bigger role than does environment in creating IQ differences among individuals (Plomin & Spinath, 2004). The IQs of identical twins correlate very highly ( r = .86), much higher than do the scores of fraternal twins who are less genetically similar ( r = .60). And the correlations between the IQs of parents and their biological children ( r = .42) is significantly greater than the correlation between parents and adopted children ( r = .19). The role of genetics gets stronger as children get older. The intelligence of very young children (less than 3 years old) does not predict adult intelligence, but by age 7 it does, and IQ scores remain very stable in adulthood (Deary, Whiteman, Starr, Whalley, & Fox, 2004).

But there is also evidence for the role of nurture, indicating that individuals are not born with fixed, unchangeable levels of intelligence. Twins raised together in the same home have more similar IQs than do twins who are raised in different homes, and fraternal twins have more similar IQs than do nontwin siblings, which is likely due to the fact that they are treated more similarly than are siblings.

The fact that intelligence becomes more stable as we get older provides evidence that early environmental experiences matter more than later ones. Environmental factors also explain a greater proportion of the variance in intelligence for children from lower-class households than they do for children from upper-class households (Turkheimer, Haley, Waldron, D’Onofrio, & Gottesman, 2003). This is because most upper-class households tend to provide a safe, nutritious, and supporting environment for children, whereas these factors are more variable in lower-class households.

Social and economic deprivation can adversely affect IQ. Children from households in poverty have lower IQs than do children from households with more resources even when other factors such as education, race, and parenting are controlled (Brooks-Gunn & Duncan, 1997). Poverty may lead to diets that are undernourishing or lacking in appropriate vitamins, and poor children may also be more likely to be exposed to toxins such as lead in drinking water, dust, or paint chips (Bellinger & Needleman, 2003). Both of these factors can slow brain development and reduce intelligence.

If impoverished environments can harm intelligence, we might wonder whether enriched environments can improve it. Government-funded after-school programs such as Head Start are designed to help children learn. Research has found that attending such programs may increase intelligence for a short time, but these increases rarely last after the programs end (McLoyd, 1998; Perkins & Grotzer, 1997). But other studies suggest that Head Start and similar programs may improve emotional intelligence and reduce the likelihood that children will drop out of school or be held back a grade (Reynolds, Temple, Robertson, & Mann 2001).

Intelligence is improved by education; the number of years a person has spent in school correlates at about r = .6 with IQ (Ceci, 1991). In part this correlation may be due to the fact that people with higher IQ scores enjoy taking classes more than people with low IQ scores, and they thus are more likely to stay in school. But education also has a causal effect on IQ. Comparisons between children who are almost exactly the same age but who just do or just do not make a deadline for entering school in a given school year show that those who enter school a year earlier have higher IQ than those who have to wait until the next year to begin school (Baltes & Reinert, 1969; Ceci & Williams, 1997). Children’s IQs tend to drop significantly during summer vacations (Huttenlocher, Levine, & Vevea, 1998), a finding that suggests that a longer school year, as is used in Europe and East Asia, is beneficial.

It is important to remember that the relative roles of nature and nurture can never be completely separated. A child who has higher than average intelligence will be treated differently than a child who has lower than average intelligence, and these differences in behaviors will likely amplify initial differences. This means that modest genetic differences can be multiplied into big differences over time.

Psychology in Everyday Life: Emotional Intelligence

Although most psychologists have considered intelligence a cognitive ability, people also use their emotions to help them solve problems and relate effectively to others. Emotional intelligence refers to the ability to accurately identify, assess, and understand emotions, as well as to effectively control one’s own emotions (Feldman-Barrett & Salovey, 2002; Mayer, Salovey, & Caruso, 2000).

The idea of emotional intelligence is seen in Howard Gardner’s interpersonal intelligence (the capacity to understand the emotions, intentions, motivations, and desires of other people) and intrapersonal intelligence (the capacity to understand oneself, including one’s emotions). Public interest in, and research on, emotional intellgence became widely prevalent following the publication of Daniel Goleman’s best-selling book, Emotional Intelligence: Why It Can Matter More Than IQ (Goleman, 1998).

There are a variety of measures of emotional intelligence (Mayer, Salovey, & Caruso, 2008; Petrides & Furnham, 2000). One popular measure, the Mayer-Salovey-Caruso Emotional Intelligence Test ( http://www.emotionaliq.org ), includes items about the ability to understand, experience, and manage emotions, such as these:

  • What mood(s) might be helpful to feel when meeting in-laws for the very first time?
  • Tom felt anxious and became a bit stressed when he thought about all the work he needed to do. When his supervisor brought him an additional project, he felt ____ (fill in the blank).
  • anger and fear
  • fear and surprise
  • disgust and anger
  • surprise and disgust
  • Action 1: She started to make a list of things at home that she needed to do.
  • Action 2: She began thinking about where and when she would go on her next vacation.
  • Action 3: She decided it was best to ignore the feeling since it wouldn’t last anyway.

One problem with emotional intelligence tests is that they often do not show a great deal of reliability or construct validity (Føllesdal & Hagtvet, 2009).Although it has been found that people with higher emotional intelligence are also healthier (Martins, Ramalho, & Morin, 2010), findings are mixed about whether emotional intelligence predicts life success—for instance, job performance (Harms & Credé, 2010). Furthermore, other researchers have questioned the construct validity of the measures, arguing that emotional intelligence really measures knowledge about what emotions are, but not necessarily how to use those emotions (Brody, 2004), and that emotional intelligence is actually a personality trait, a part of g, or a skill that can be applied in some specific work situations—for instance, academic and work situations (Landy, 2005).

Although measures of the ability to understand, experience, and manage emotions may not predict effective behaviors, another important aspect of emotional intelligence— emotion regulation —does. Emotion regulation refers to the ability to control and productively use one’s emotions. Research has found that people who are better able to override their impulses to seek immediate gratification and who are less impulsive also have higher cognitive and social intelligence. They have better SAT scores, are rated by their friends as more socially adept, and cope with frustration and stress better than those with less skill at emotion regulation (Ayduk et al., 2000; Eigsti et al., 2006; Mischel & Ayduk, 2004).

Because emotional intelligence seems so important, many school systems have designed programs to teach it to their students. However, the effectiveness of these programs has not been rigorously tested, and we do not yet know whether emotional intelligence can be taught, or if learning it would improve the quality of people’s lives (Mayer & Cobb, 2000).

Key Takeaways

  • Intelligence is the ability to think, to learn from experience, to solve problems, and to adapt to new situations. Intelligence is important because it has an impact on many human behaviors.
  • Psychologists believe that there is a construct that accounts for the overall differences in intelligence among people, known as general intelligence (g).
  • There is also evidence for specific intelligences (s), measures of specific skills in narrow domains, including creativity and practical intelligence.
  • The intelligence quotient (IQ) is a measure of intelligence that is adjusted for age. The Wechsler Adult lntelligence Scale (WAIS) is the most widely used IQ test for adults.
  • Brain volume, speed of neural transmission, and working memory capacity are related to IQ.
  • Between 40% and 80% of the variability in IQ is due to genetics, meaning that overall genetics plays a bigger role than does environment in creating IQ differences among individuals.
  • Intelligence is improved by education and may be hindered by environmental factors such as poverty.
  • Emotional intelligence refers to the ability to identify, assess, manage, and control one’s emotions. People who are better able to regulate their behaviors and emotions are also more successful in their personal and social encounters.

Exercises and Critical Thinking

  • Consider your own IQ. Are you smarter than the average person? What specific intelligences do you think you excel in?
  • Did your parents try to improve your intelligence? Do you think their efforts were successful?
  • Consider the meaning of the Flynn effect. Do you think people are really getting smarter?
  • Give some examples of how emotional intelligence (or the lack of it) influences your everyday life and the lives of other people you know.

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131 (1), 30–60.

Ayduk, O., Mendoza-Denton, R., Mischel, W., Downey, G., Peake, P. K., & Rodriguez, M. (2000). Regulating the interpersonal self: Strategic self-regulation for coping with rejection sensitivity. Journal of Personality and Social Psychology, 79 (5), 776–792.

Baltes, P. B., & Reinert, G. (1969). Cohort effects in cognitive development of children as revealed by cross-sectional sequences. Developmental Psychology, 1 (2), 169–177.

Bellinger, D. C., & Needleman, H. L. (2003). Intellectual impairment and blood lead levels [Letter to the editor]. The New England Journal of Medicine, 349 (5), 500.

Binet, A., Simon, T., & Town, C. H. (1915). A method of measuring the development of the intelligence of young children (3rd ed.) Chicago, IL: Chicago Medical Book.

Bink, M. L., & Marsh, R. L. (2000). Cognitive regularities in creative activity. Review of General Psychology, 4 (1), 59–78.

Brody, N. (2003). Construct validation of the Sternberg Triarchic abilities test: Comment and reanalysis. Intelligence, 31 (4), 319–329.

Brody, N. (2004). What cognitive intelligence is and what emotional intelligence is not. Psychological Inquiry, 15, 234–238.

Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. The Future of Children, 7 (2), 55–71.

Ceci, S. J. (1991). How much does schooling influence general intelligence and its cognitive components? A reassessment of the evidence. Developmental Psychology, 27 (5), 703–722.

Ceci, S. J., & Williams, W. M. (1997). Schooling, intelligence, and income. American Psychologist, 52 (10), 1051–1058.

Deary, I. J., Der, G., & Ford, G. (2001). Reaction times and intelligence differences: A population-based cohort study. Intelligence, 29 (5), 389–399.

Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: Following up the Scottish mental surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86 (1), 130–147.

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A.,…Emslie, H. (2000). A neural basis for general intelligence. Science, 289 (5478), 457–460.

Eigsti, I.-M., Zayas, V., Mischel, W., Shoda, Y., Ayduk, O., Dadlani, M. B.,…Casey, B. J. (2006). Predicting cognitive control from preschool to late adolescence and young adulthood. Psychological Science, 17 (6), 478–484.

Ericsson, K. (1998). The scientific study of expert levels of performance: General implications for optimal learning and creativity. High Ability Studies, 9 (1), 75–100.

Feldman-Barrett, L., & Salovey, P. (Eds.). (2002). The wisdom in feeling: Psychological processes in emotional intelligence. New York, NY: Guilford Press.

Flynn, J. R. (1999). Searching for justice: The discovery of IQ gains over time. American Psychologist, 54 (1), 5–20.

Føllesdal, H., & Hagtvet, K. A. (2009). Emotional intelligence: The MSCEIT from the perspective of generalizability theory. Intelligence, 37 (1), 94–105.

Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15 (6), 373–378.

Furnham, A., & Bachtiar, V. (2008). Personality and intelligence as predictors of creativity. Personality and Individual Differences, 45 (7), 613–617.

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences . New York, NY: Basic Books;

Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st century . New York, NY: Basic Books.

Garlick, D. (2003). Integrating brain science research with intelligence research. Current Directions in Psychological Science, 12 (5), 185–189.

Goleman, D. (1998). Working with emotional intelligence. New York, NY: Bantam Books.

Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history and bibliography. Intelligence, 24 (1), 13–23.

Gottfredson, L. S. (2003). Dissecting practical intelligence theory: Its claims and evidence. Intelligence, 31 (4), 343–397.

Haier, R. J. (2004). Brain imaging studies of personality: The slow revolution. In R. M. Stelmack (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 329–340). New York, NY: Elsevier Science;

Haier, R. J., Siegel, B. V., Tang, C., & Abel, L. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16 (3–4), 415–426.

Harms, P. D., & Credé, M. (2010). Emotional intelligence and transformational and transactional leadership: A meta-analysis. Journal of Leadership & Organizational Studies, 17 (1), 5–17.

Hennessey, B. A., & Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61 , 569–598.

Horn, J. L., Donaldson, G., & Engstrom, R. (1981). Apprehension, memory, and fluid intelligence decline in adulthood. Research on Aging, 3 (1), 33–84.

Huttenlocher, J., Levine, S., & Vevea, J. (1998). Environmental input and cognitive growth: A study using time-period comparisons. Child Development, 69 (4), 1012–1029.

Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2010). A comprehensive meta-analysis of the predictive validity of the graduate record examinations: Implications for graduate student selection and performance. Psychological Bulletin, 127 (1), 162–181.

Landy, F. J. (2005). Some historical and scientific issues related to research on emotional intelligence. Journal of Organizational Behavior, 26 , 411–424.

Martins, A., Ramalho, N., & Morin, E. (2010). A comprehensive meta-analysis of the relationship between emotional intelligence and health. Personality and Individual Differences, 49 (6), 554–564.

Mayer, J. D., & Cobb, C. D. (2000). Educational policy on emotional intelligence: Does it make sense? Educational Psychology Review, 12 (2), 163–183.

Mayer, J. D., Salovey, P., & Caruso, D. (2000). Models of emotional intelligence. In R. J. Sternberg (Ed.), Handbook of intelligence (pp. 396–420). New York, NY: Cambridge University Press.

Mayer, J. D., Salovey, P., & Caruso, D. R. (2008). Emotional intelligence: New ability or eclectic traits. American Psychologist, 63 (6), 503–517.

McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33 (4), 337–346.

McLoyd, V. C. (1998). Children in poverty: Development, public policy and practice. In W. Damon, I. E. Sigel, & K. A. Renninger (Eds.), Handbook of child psychology: Child psychology in practice (5th ed., Vol. 4, pp. 135–208). Hoboken, NJ: John Wiley & Sons.

Mischel, W., & Ayduk, O. (Eds.). (2004). Willpower in a cognitive-affective processing system: The dynamics of delay of gratification . New York, NY: Guilford Press.

Neisser, U. (1997). Rising scores on intelligence tests. American Scientist, 85 , 440–447.

Neisser, U. (Ed.). (1998). The rising curve . Washington, DC: American Psychological Association.

Neisser, U., Boodoo, G., Bouchard, T. J., Jr., Boykin, A. W., Brody, N., Ceci, S. J.,…Urbina, S. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51 (2), 77–101.

Perkins, D. N., & Grotzer, T. A. (1997). Teaching intelligence. American Psychologist, 52 (10), 1125–1133.

Petrides, K. V., & Furnham, A. (2000). On the dimensional structure of emotional intelligence. Personality and Individual Differences, 29, 313–320.

Plomin, R. (2003). General cognitive ability. In R. Plomin, J. C. DeFries, I. W. Craig, & P. McGuffin (Eds.), Behavioral genetics in the postgenomic era (pp. 183–201). Washington, DC: American Psychological Association.

Plomin, R., & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics. Journal of Personality and Social Psychology, 86 (1), 112–129.

Reynolds, A. J., Temple, J. A., Robertson, D. L., & Mann, E. A. (2001). Long-term effects of an early childhood intervention on educational achievement and juvenile arrest: A 15-year follow-up of low-income children in public schools. Journal of the American Medical Association, 285 (18), 2339–2346.

Salthouse, T. A. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13 (4), 140–144.

Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124 , 262–274.

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N.,…Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440 (7084), 676–679.

Siegler, R. S. (1992). The other Alfred Binet. Developmental Psychology, 28 (2), 179–190.

Simonton, D. K. (1992). The social context of career success and course for 2,026 scientists and inventors. Personality and Social Psychology Bulletin, 18 (4), 452–463.

Simonton, D. K. (2000). Creativity: Cognitive, personal, developmental, and social aspects. American Psychologist, 55 (1), 151–158.

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence . New York, NY: Cambridge University Press.

Sternberg, R. J. (2003). Contemporary theories of intelligence. In W. M. Reynolds & G. E. Miller (Eds.), Handbook of psychology: Educational psychology (Vol. 7, pp. 23–45). Hoboken, NJ: John Wiley & Sons.

Sternberg, R. J. (2003). Our research program validating the triarchic theory of successful intelligence: Reply to Gottfredson. Intelligence, 31 (4), 399–413.

Sternberg, R. J., Wagner, R. K., & Okagaki, L. (1993). Practical intelligence: The nature and role of tacit knowledge in work and at school. In J. M. Puckett & H. W. Reese (Eds.), Mechanisms of everyday cognition (pp. 205–227). Hillsdale, NJ: Lawrence Erlbaum Associates.

Tarasova, I. V., Volf, N. V., & Razoumnikova, O. M. (2010). Parameters of cortical interactions in subjects with high and low levels of verbal creativity. Human Physiology, 36 (1), 80–85.

Thurstone, L. L. (1938). Primary mental abilities. Psychometric Monographs, No. 1 . Chicago, IL: University of Chicago Press.

Treffert, D. A., & Wallace, G. L. (2004, January 1). Islands of genius. Scientific American , 14–23. Retrieved from http://gordonresearch.com/articles_autism/SciAm-Islands_of_Genius.pdf

Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14 (6), 623–628.

Wagner, R., & Sternberg, R. (1985). Practical intelligence in real-world pursuits: The role of tacit knowledge. Journal of Personality and Social Psychology, 49 (2), 436–458.

Watkins, C. E., Campbell, V. L., Nieberding, R., & Hallmark, R. (1995). Contemporary practice of psychological assessment by clinical psychologists. Professional Psychology: Research and Practice, 26 (1), 54–60.

Weisberg, R. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: John Wiley & Sons.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

9.1 Defining and Measuring Intelligence

Learning objectives.

  • Define intelligence and list the different types of intelligences psychologists study.
  • Summarize the characteristics of a scientifically valid intelligence test.
  • Outline the biological and environmental determinants of intelligence.

Psychologists have long debated how to best conceptualize and measure intelligence (Sternberg, 2003). These questions include how many types of intelligence there are, the role of nature versus nurture in intelligence, how intelligence is represented in the brain, and the meaning of group differences in intelligence.

General (g) Versus Specific (s) Intelligences

In the early 1900s, the French psychologist Alfred Binet (1857–1914) and his colleague Henri Simon (1872–1961) began working in Paris to develop a measure that would differentiate students who were expected to be better learners from students who were expected to be slower learners. The goal was to help teachers better educate these two groups of students. Binet and Simon developed what most psychologists today regard as the first intelligence test, which consisted of a wide variety of questions that included the ability to name objects, define words, draw pictures, complete sentences, compare items, and construct sentences.

Binet and Simon (Binet, Simon, & Town, 1915; Siegler, 1992) believed that the questions they asked their students, even though they were on the surface dissimilar, all assessed the basic abilities to understand, reason, and make judgments. And it turned out that the correlations among these different types of measures were in fact all positive; students who got one item correct were more likely to also get other items correct, even though the questions themselves were very different.

On the basis of these results, the psychologist Charles Spearman (1863–1945) hypothesized that there must be a single underlying construct that all of these items measure. He called the construct that the different abilities and skills measured on intelligence tests have in common the general intelligence factor (g) . Virtually all psychologists now believe that there is a generalized intelligence factor, g, that relates to abstract thinking and that includes the abilities to acquire knowledge, to reason abstractly, to adapt to novel situations, and to benefit from instruction and experience (Gottfredson, 1997; Sternberg, 2003). People with higher general intelligence learn faster.

Soon after Binet and Simon introduced their test, the American psychologist Lewis Terman (1877–1956) developed an American version of Binet’s test that became known as the Stanford-Binet Intelligence Test . The Stanford-Binet is a measure of general intelligence made up of a wide variety of tasks including vocabulary, memory for pictures, naming of familiar objects, repeating sentences, and following commands.

Although there is general agreement among psychologists that g exists, there is also evidence for specific intelligence (s) , a measure of specific skills in narrow domains . One empirical result in support of the idea of s comes from intelligence tests themselves. Although the different types of questions do correlate with each other, some items correlate more highly with each other than do other items; they form clusters or clumps of intelligences.

One distinction is between fluid intelligence , which refers to the capacity to learn new ways of solving problems and performing activities, and crystallized intelligence , which refers to the accumulated knowledge of the world we have acquired throughout our lives (Salthouse, 2004). These intelligences must be different because crystallized intelligence increases with age—older adults are as good as or better than young people in solving crossword puzzles—whereas fluid intelligence tends to decrease with age (Horn, Donaldson, & Engstrom, 1981; Salthouse, 2004).

Other researchers have proposed even more types of intelligences. L. L. Thurstone (1938) proposed that there were seven clusters of primary mental abilities , made up of word fluency, verbal comprehension, spatial ability, perceptual speed, numerical ability, inductive reasoning, and memory. But even these dimensions tend to be at least somewhat correlated, showing again the importance of g.

One advocate of the idea of multiple intelligences is the psychologist Robert Sternberg. Sternberg has proposed a triarchic (three-part) theory of intelligence that proposes that people may display more or less analytical intelligence, creative intelligence, and practical intelligence . Sternberg (1985, 2003) argued that traditional intelligence tests assess analytical intelligence, the ability to answer problems with a single right answer, but that they do not well assess creativity (the ability to adapt to new situations and create new ideas) or practicality (e.g., the ability to write good memos or to effectively delegate responsibility).

As Sternberg proposed, research has found that creativity is not highly correlated with analytical intelligence (Furnham & Bachtiar, 2008), and exceptionally creative scientists, artists, mathematicians, and engineers do not score higher on intelligence than do their less creative peers (Simonton, 2000). Furthermore, the brain areas that are associated with convergent thinking , thinking that is directed toward finding the correct answer to a given problem, are different from those associated with divergent thinking , the ability to generate many different ideas for or solutions to a single problem (Tarasova, Volf, & Razoumnikova, 2010). On the other hand, being creative often takes some of the basic abilities measured by g, including the abilities to learn from experience, to remember information, and to think abstractly (Bink & Marsh, 2000).

A big pile of paper clips

Test your divergent thinking. How many uses for a paper clip can you think of?

Dead Hochman – paper clips – CC BY 2.0.

Studies of creative people suggest at least five components that are likely to be important for creativity:

  • Expertise . Creative people have carefully studied and know a lot about the topic that they are working in. Creativity comes with a lot of hard work (Ericsson, 1998; Weisberg, 2006).
  • Imaginative thinking . Creative people often view a problem in a visual way, allowing them to see it from a new and different point of view.
  • Risk taking . Creative people are willing to take on new but potentially risky approaches.
  • Intrinsic interest . Creative people tend to work on projects because they love doing them, not because they are paid for them. In fact, research has found that people who are paid to be creative are often less creative than those who are not (Hennessey & Amabile, 2010).
  • Working in a creative environment . Creativity is in part a social phenomenon. Simonton (1992) found that the most creative people were supported, aided, and challenged by other people working on similar projects.

The last aspect of the triarchic model, practical intelligence, refers primarily to intelligence that cannot be gained from books or formal learning. Practical intelligence represents a type of “street smarts” or “common sense” that is learned from life experiences. Although a number of tests have been devised to measure practical intelligence (Sternberg, Wagner, & Okagaki, 1993; Wagner & Sternberg, 1985), research has not found much evidence that practical intelligence is distinct from g or that it is predictive of success at any particular tasks (Gottfredson, 2003). Practical intelligence may include, at least in part, certain abilities that help people perform well at specific jobs, and these abilities may not always be highly correlated with general intelligence (Sternberg, Wagner, & Okagaki, 1993). On the other hand, these abilities or skills are very specific to particular occupations and thus do not seem to represent the broader idea of intelligence.

Another champion of the idea of multiple intelligences is the psychologist Howard Gardner (1983, 1999). Gardner argued that it would be evolutionarily functional for different people to have different talents and skills, and proposed that there are eight intelligences that can be differentiated from each other ( Table 9.1 “Howard Gardner’s Eight Specific Intelligences” ). Gardner noted that some evidence for multiple intelligences comes from the abilities of autistic savants , people who score low on intelligence tests overall but who nevertheless may have exceptional skills in a given domain, such as math, music, art, or in being able to recite statistics in a given sport (Treffert & Wallace, 2004).

Table 9.1 Howard Gardner’s Eight Specific Intelligences

Source: Adapted from Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st century . New York, NY: Basic Books.

Collage (someone playing piano, a track runner leaping to the finish line, a happy clown, a man making a painting, a man writing math equations on a black board

Although intelligence is often conceptualized in a general way (as the g factor), there is a variety of specific skills that can be useful for particular tasks.

Nayu Kim – Playing piano – CC BY 2.0; Helgi Halldórsson – Run faster, Jump higher – CC BY-SA 2.0; Thomas Hawk – Bahamian Clown – CC BY-NC 2.0; Sudipta Mallick – painter – CC BY 2.0; Blondinrikard Fröberg – Torsten, math teacher – CC BY 2.0.

The idea of multiple intelligences has been influential in the field of education, and teachers have used these ideas to try to teach differently to different students. For instance, to teach math problems to students who have particularly good kinesthetic intelligence, a teacher might encourage the students to move their bodies or hands according to the numbers. On the other hand, some have argued that these “intelligences” sometimes seem more like “abilities” or “talents” rather than real intelligence. And there is no clear conclusion about how many intelligences there are. Are sense of humor, artistic skills, dramatic skills, and so forth also separate intelligences? Furthermore, and again demonstrating the underlying power of a single intelligence, the many different intelligences are in fact correlated and thus represent, in part, g (Brody, 2003).

Measuring Intelligence: Standardization and the Intelligence Quotient

The goal of most intelligence tests is to measure g, the general intelligence factor. Good intelligence tests are reliable , meaning that they are consistent over time, and also demonstrate construct validity , meaning that they actually measure intelligence rather than something else. Because intelligence is such an important individual difference dimension, psychologists have invested substantial effort in creating and improving measures of intelligence, and these tests are now the most accurate of all psychological tests. In fact, the ability to accurately assess intelligence is one of the most important contributions of psychology to everyday public life.

Intelligence changes with age. A 3-year-old who could accurately multiply 183 by 39 would certainly be intelligent, but a 25-year-old who could not do so would be seen as unintelligent. Thus understanding intelligence requires that we know the norms or standards in a given population of people at a given age. The standardization of a test involves giving it to a large number of people at different ages and computing the average score on the test at each age level .

It is important that intelligence tests be standardized on a regular basis, because the overall level of intelligence in a population may change over time. The Flynn effect refers to the observation that scores on intelligence tests worldwide have increased substantially over the past decades (Flynn, 1999). Although the increase varies somewhat from country to country, the average increase is about 3 IQ points every 10 years. There are many explanations for the Flynn effect, including better nutrition, increased access to information, and more familiarity with multiple-choice tests (Neisser, 1998). But whether people are actually getting smarter is debatable (Neisser, 1997).

Once the standardization has been accomplished, we have a picture of the average abilities of people at different ages and can calculate a person’s mental age , which is the age at which a person is performing intellectually . If we compare the mental age of a person to the person’s chronological age, the result is the intelligence quotient (IQ) , a measure of intelligence that is adjusted for age . A simple way to calculate IQ is by using the following formula:

IQ = mental age ÷ chronological age × 100.

Thus a 10-year-old child who does as well as the average 10-year-old child has an IQ of 100 (10 ÷ 10 × 100), whereas an 8-year-old child who does as well as the average 10-year-old child would have an IQ of 125 (10 ÷ 8 × 100). Most modern intelligence tests are based the relative position of a person’s score among people of the same age, rather than on the basis of this formula, but the idea of an intelligence “ratio” or “quotient” provides a good description of the score’s meaning.

A number of scales are based on the IQ. The Wechsler Adult lntelligence Scale (WAIS) is the most widely used intelligence test for adults (Watkins, Campbell, Nieberding, & Hallmark, 1995). The current version of the WAIS, the WAIS-IV, was standardized on 2,200 people ranging from 16 to 90 years of age. It consists of 15 different tasks, each designed to assess intelligence, including working memory, arithmetic ability, spatial ability, and general knowledge about the world (see Figure 9.4 “Sample Items From the Wechsler Adult Intelligence Scale (WAIS)” ). The WAIS-IV yields scores on four domains: verbal, perceptual, working memory, and processing speed. The reliability of the test is high (more than 0.95), and it shows substantial construct validity. The WAIS-IV is correlated highly with other IQ tests such as the Stanford-Binet, as well as with criteria of academic and life success, including college grades, measures of work performance, and occupational level. It also shows significant correlations with measures of everyday functioning among the mentally retarded.

The Wechsler scale has also been adapted for preschool children in the form of the Wechsler Primary and Preschool Scale of Intelligence (WPPSI-III) and for older children and adolescents in the form of the Wechsler Intelligence Scale for Children (WISC-IV) .

Figure 9.4 Sample Items From the Wechsler Adult Intelligence Scale (WAIS)

Sample Items From the Wechsler Adult Intelligence Scale (WAIS)

Source: Adapted from Thorndike, R. L., & Hagen, E. P. (1997). Cognitive Abilities Test (Form 5): Research handbook . Chicago, IL: Riverside Publishing.

The intelligence tests that you may be most familiar with are aptitude tests , which are designed to measure one’s ability to perform a given task, for instance, to do well in college or in postgraduate training. Most U.S. colleges and universities require students to take the Scholastic Assessment Test (SAT) or the American College Test (ACT), and postgraduate schools require the Graduate Record Examination (GRE), Medical College Admissions Test (MCAT), or the Law School Admission Test (LSAT). These tests are useful for selecting students because they predict success in the programs that they are designed for, particularly in the first year of the program (Kuncel, Hezlett, & Ones, 2010). These aptitude tests also measure, in part, intelligence. Frey and Detterman (2004) found that the SAT correlated highly (between about r = .7 and r = .8) with standard measures of intelligence.

Intelligence tests are also used by industrial and organizational psychologists in the process of personnel selection . Personnel selection is the use of structured tests to select people who are likely to perform well at given jobs (Schmidt & Hunter, 1998). The psychologists begin by conducting a job analysis in which they determine what knowledge, skills, abilities, and personal characteristics ( KSAPs ) are required for a given job. This is normally accomplished by surveying and/or interviewing current workers and their supervisors. Based on the results of the job analysis, the psychologists choose selection methods that are most likely to be predictive of job performance. Measures include tests of cognitive and physical ability and job knowledge tests, as well as measures of IQ and personality.

The Biology of Intelligence

The brain processes underlying intelligence are not completely understood, but current research has focused on four potential factors: brain size, sensory ability, speed and efficience of neural transmission, and working memory capacity.

There is at least some truth to the idea that smarter people have bigger brains. Studies that have measured brain volume using neuroimaging techniques find that larger brain size is correlated with intelligence (McDaniel, 2005), and intelligence has also been found to be correlated with the number of neurons in the brain and with the thickness of the cortex (Haier, 2004; Shaw et al., 2006). It is important to remember that these correlational findings do not mean that having more brain volume causes higher intelligence. It is possible that growing up in a stimulating environment that rewards thinking and learning may lead to greater brain growth (Garlick, 2003), and it is also possible that a third variable, such as better nutrition, causes both brain volume and intelligence.

Another possibility is that the brains of more intelligent people operate faster or more efficiently than the brains of the less intelligent. Some evidence supporting this idea comes from data showing that people who are more intelligent frequently show less brain activity (suggesting that they need to use less capacity) than those with lower intelligence when they work on a task (Haier, Siegel, Tang, & Abel, 1992). And the brains of more intelligent people also seem to run faster than the brains of the less intelligent. Research has found that the speed with which people can perform simple tasks—such as determining which of two lines is longer or pressing, as quickly as possible, one of eight buttons that is lighted—is predictive of intelligence (Deary, Der, & Ford, 2001). Intelligence scores also correlate at about r = .5 with measures of working memory (Ackerman, Beier, & Boyle, 2005), and working memory is now used as a measure of intelligence on many tests.

Although intelligence is not located in a specific part of the brain, it is more prevalent in some brain areas than others. Duncan et al. (2000) administered a variety of intelligence tasks and observed the places in the cortex that were most active. Although different tests created different patterns of activation, as you can see in Figure 9.5 “Where Is Intelligence?” , these activated areas were primarily in the outer parts of the cortex, the area of the brain most involved in planning, executive control, and short-term memory.

Figure 9.5 Where Is Intelligence?

fMRI studies have found that the areas of the brain most related to intelligence are in the outer parts of the cortex.

fMRI studies have found that the areas of the brain most related to intelligence are in the outer parts of the cortex.

Source: Adapted from Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A.,…Emslie, H. (2000). A neural basis for general intelligence. Science, 289 (5478), 457–460.

Is Intelligence Nature or Nurture?

Intelligence has both genetic and environmental causes, and these have been systematically studied through a large number of twin and adoption studies (Neisser et al., 1996; Plomin, DeFries, Craig, & McGuffin, 2003). These studies have found that between 40% and 80% of the variability in IQ is due to genetics, meaning that overall genetics plays a bigger role than does environment in creating IQ differences among individuals (Plomin & Spinath, 2004). The IQs of identical twins correlate very highly ( r = .86), much higher than do the scores of fraternal twins who are less genetically similar ( r = .60). And the correlations between the IQs of parents and their biological children ( r = .42) is significantly greater than the correlation between parents and adopted children ( r = .19). The role of genetics gets stronger as children get older. The intelligence of very young children (less than 3 years old) does not predict adult intelligence, but by age 7 it does, and IQ scores remain very stable in adulthood (Deary, Whiteman, Starr, Whalley, & Fox, 2004).

But there is also evidence for the role of nurture, indicating that individuals are not born with fixed, unchangeable levels of intelligence. Twins raised together in the same home have more similar IQs than do twins who are raised in different homes, and fraternal twins have more similar IQs than do nontwin siblings, which is likely due to the fact that they are treated more similarly than are siblings.

The fact that intelligence becomes more stable as we get older provides evidence that early environmental experiences matter more than later ones. Environmental factors also explain a greater proportion of the variance in intelligence for children from lower-class households than they do for children from upper-class households (Turkheimer, Haley, Waldron, D’Onofrio, & Gottesman, 2003). This is because most upper-class households tend to provide a safe, nutritious, and supporting environment for children, whereas these factors are more variable in lower-class households.

Social and economic deprivation can adversely affect IQ. Children from households in poverty have lower IQs than do children from households with more resources even when other factors such as education, race, and parenting are controlled (Brooks-Gunn & Duncan, 1997). Poverty may lead to diets that are undernourishing or lacking in appropriate vitamins, and poor children may also be more likely to be exposed to toxins such as lead in drinking water, dust, or paint chips (Bellinger & Needleman, 2003). Both of these factors can slow brain development and reduce intelligence.

If impoverished environments can harm intelligence, we might wonder whether enriched environments can improve it. Government-funded after-school programs such as Head Start are designed to help children learn. Research has found that attending such programs may increase intelligence for a short time, but these increases rarely last after the programs end (McLoyd, 1998; Perkins & Grotzer, 1997). But other studies suggest that Head Start and similar programs may improve emotional intelligence and reduce the likelihood that children will drop out of school or be held back a grade (Reynolds, Temple, Robertson, & Mann 2001).

Intelligence is improved by education; the number of years a person has spent in school correlates at about r = .6 with IQ (Ceci, 1991). In part this correlation may be due to the fact that people with higher IQ scores enjoy taking classes more than people with low IQ scores, and they thus are more likely to stay in school. But education also has a causal effect on IQ. Comparisons between children who are almost exactly the same age but who just do or just do not make a deadline for entering school in a given school year show that those who enter school a year earlier have higher IQ than those who have to wait until the next year to begin school (Baltes & Reinert, 1969; Ceci & Williams, 1997). Children’s IQs tend to drop significantly during summer vacations (Huttenlocher, Levine, & Vevea, 1998), a finding that suggests that a longer school year, as is used in Europe and East Asia, is beneficial.

It is important to remember that the relative roles of nature and nurture can never be completely separated. A child who has higher than average intelligence will be treated differently than a child who has lower than average intelligence, and these differences in behaviors will likely amplify initial differences. This means that modest genetic differences can be multiplied into big differences over time.

Psychology in Everyday Life: Emotional Intelligence

Although most psychologists have considered intelligence a cognitive ability, people also use their emotions to help them solve problems and relate effectively to others. Emotional intelligence refers to the ability to accurately identify, assess, and understand emotions, as well as to effectively control one’s own emotions (Feldman-Barrett & Salovey, 2002; Mayer, Salovey, & Caruso, 2000).

The idea of emotional intelligence is seen in Howard Gardner’s interpersonal intelligence (the capacity to understand the emotions, intentions, motivations, and desires of other people) and intrapersonal intelligence (the capacity to understand oneself, including one’s emotions). Public interest in, and research on, emotional intellgence became widely prevalent following the publication of Daniel Goleman’s best-selling book, Emotional Intelligence: Why It Can Matter More Than IQ (Goleman, 1998).

There are a variety of measures of emotional intelligence (Mayer, Salovey, & Caruso, 2008; Petrides & Furnham, 2000). One popular measure, the Mayer-Salovey-Caruso Emotional Intelligence Test ( http://www.emotionaliq.org ), includes items about the ability to understand, experience, and manage emotions, such as these:

  • What mood(s) might be helpful to feel when meeting in-laws for the very first time?
  • Tom felt anxious and became a bit stressed when he thought about all the work he needed to do. When his supervisor brought him an additional project, he felt ____ (fill in the blank).

Contempt most closely combines which two emotions?

  • anger and fear
  • fear and surprise
  • disgust and anger
  • surprise and disgust

Debbie just came back from vacation. She was feeling peaceful and content. How well would each of the following actions help her preserve her good mood?

  • Action 1: She started to make a list of things at home that she needed to do.
  • Action 2: She began thinking about where and when she would go on her next vacation.
  • Action 3: She decided it was best to ignore the feeling since it wouldn’t last anyway.

One problem with emotional intelligence tests is that they often do not show a great deal of reliability or construct validity (Føllesdal & Hagtvet, 2009).Although it has been found that people with higher emotional intelligence are also healthier (Martins, Ramalho, & Morin, 2010), findings are mixed about whether emotional intelligence predicts life success—for instance, job performance (Harms & Credé, 2010). Furthermore, other researchers have questioned the construct validity of the measures, arguing that emotional intelligence really measures knowledge about what emotions are, but not necessarily how to use those emotions (Brody, 2004), and that emotional intelligence is actually a personality trait, a part of g, or a skill that can be applied in some specific work situations—for instance, academic and work situations (Landy, 2005).

Although measures of the ability to understand, experience, and manage emotions may not predict effective behaviors, another important aspect of emotional intelligence— emotion regulation —does. Emotion regulation refers to the ability to control and productively use one’s emotions. Research has found that people who are better able to override their impulses to seek immediate gratification and who are less impulsive also have higher cognitive and social intelligence. They have better SAT scores, are rated by their friends as more socially adept, and cope with frustration and stress better than those with less skill at emotion regulation (Ayduk et al., 2000; Eigsti et al., 2006; Mischel & Ayduk, 2004).

Because emotional intelligence seems so important, many school systems have designed programs to teach it to their students. However, the effectiveness of these programs has not been rigorously tested, and we do not yet know whether emotional intelligence can be taught, or if learning it would improve the quality of people’s lives (Mayer & Cobb, 2000).

Key Takeaways

  • Intelligence is the ability to think, to learn from experience, to solve problems, and to adapt to new situations. Intelligence is important because it has an impact on many human behaviors.
  • Psychologists believe that there is a construct that accounts for the overall differences in intelligence among people, known as general intelligence (g).
  • There is also evidence for specific intelligences (s), measures of specific skills in narrow domains, including creativity and practical intelligence.
  • The intelligence quotient (IQ) is a measure of intelligence that is adjusted for age. The Wechsler Adult lntelligence Scale (WAIS) is the most widely used IQ test for adults.
  • Brain volume, speed of neural transmission, and working memory capacity are related to IQ.
  • Between 40% and 80% of the variability in IQ is due to genetics, meaning that overall genetics plays a bigger role than does environment in creating IQ differences among individuals.
  • Intelligence is improved by education and may be hindered by environmental factors such as poverty.
  • Emotional intelligence refers to the ability to identify, assess, manage, and control one’s emotions. People who are better able to regulate their behaviors and emotions are also more successful in their personal and social encounters.

Exercises and Critical Thinking

  • Consider your own IQ. Are you smarter than the average person? What specific intelligences do you think you excel in?
  • Did your parents try to improve your intelligence? Do you think their efforts were successful?
  • Consider the meaning of the Flynn effect. Do you think people are really getting smarter?
  • Give some examples of how emotional intelligence (or the lack of it) influences your everyday life and the lives of other people you know.

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131 (1), 30–60.

Ayduk, O., Mendoza-Denton, R., Mischel, W., Downey, G., Peake, P. K., & Rodriguez, M. (2000). Regulating the interpersonal self: Strategic self-regulation for coping with rejection sensitivity. Journal of Personality and Social Psychology, 79 (5), 776–792.

Baltes, P. B., & Reinert, G. (1969). Cohort effects in cognitive development of children as revealed by cross-sectional sequences. Developmental Psychology, 1 (2), 169–177.

Bellinger, D. C., & Needleman, H. L. (2003). Intellectual impairment and blood lead levels [Letter to the editor]. The New England Journal of Medicine, 349 (5), 500.

Binet, A., Simon, T., & Town, C. H. (1915). A method of measuring the development of the intelligence of young children (3rd ed.) Chicago, IL: Chicago Medical Book.

Bink, M. L., & Marsh, R. L. (2000). Cognitive regularities in creative activity. Review of General Psychology, 4 (1), 59–78.

Brody, N. (2003). Construct validation of the Sternberg Triarchic abilities test: Comment and reanalysis. Intelligence, 31 (4), 319–329.

Brody, N. (2004). What cognitive intelligence is and what emotional intelligence is not. Psychological Inquiry, 15, 234–238.

Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. The Future of Children, 7 (2), 55–71.

Ceci, S. J. (1991). How much does schooling influence general intelligence and its cognitive components? A reassessment of the evidence. Developmental Psychology, 27 (5), 703–722.

Ceci, S. J., & Williams, W. M. (1997). Schooling, intelligence, and income. American Psychologist, 52 (10), 1051–1058.

Deary, I. J., Der, G., & Ford, G. (2001). Reaction times and intelligence differences: A population-based cohort study. Intelligence, 29 (5), 389–399.

Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: Following up the Scottish mental surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86 (1), 130–147.

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A.,…Emslie, H. (2000). A neural basis for general intelligence. Science, 289 (5478), 457–460.

Eigsti, I.-M., Zayas, V., Mischel, W., Shoda, Y., Ayduk, O., Dadlani, M. B.,…Casey, B. J. (2006). Predicting cognitive control from preschool to late adolescence and young adulthood. Psychological Science, 17 (6), 478–484.

Ericsson, K. (1998). The scientific study of expert levels of performance: General implications for optimal learning and creativity. High Ability Studies, 9 (1), 75–100.

Feldman-Barrett, L., & Salovey, P. (Eds.). (2002). The wisdom in feeling: Psychological processes in emotional intelligence. New York, NY: Guilford Press.

Flynn, J. R. (1999). Searching for justice: The discovery of IQ gains over time. American Psychologist, 54 (1), 5–20.

Føllesdal, H., & Hagtvet, K. A. (2009). Emotional intelligence: The MSCEIT from the perspective of generalizability theory. Intelligence, 37 (1), 94–105.

Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15 (6), 373–378.

Furnham, A., & Bachtiar, V. (2008). Personality and intelligence as predictors of creativity. Personality and Individual Differences, 45 (7), 613–617.

Gardner, H. (1983). Frames of mind: The theory of multiple intelligences . New York, NY: Basic Books;

Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st century . New York, NY: Basic Books.

Garlick, D. (2003). Integrating brain science research with intelligence research. Current Directions in Psychological Science, 12 (5), 185–189.

Goleman, D. (1998). Working with emotional intelligence. New York, NY: Bantam Books.

Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history and bibliography. Intelligence, 24 (1), 13–23.

Gottfredson, L. S. (2003). Dissecting practical intelligence theory: Its claims and evidence. Intelligence, 31 (4), 343–397.

Haier, R. J. (2004). Brain imaging studies of personality: The slow revolution. In R. M. Stelmack (Ed.), On the psychobiology of personality: Essays in honor of Marvin Zuckerman (pp. 329–340). New York, NY: Elsevier Science;

Haier, R. J., Siegel, B. V., Tang, C., & Abel, L. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16 (3–4), 415–426.

Harms, P. D., & Credé, M. (2010). Emotional intelligence and transformational and transactional leadership: A meta-analysis. Journal of Leadership & Organizational Studies, 17 (1), 5–17.

Hennessey, B. A., & Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61 , 569–598.

Horn, J. L., Donaldson, G., & Engstrom, R. (1981). Apprehension, memory, and fluid intelligence decline in adulthood. Research on Aging, 3 (1), 33–84.

Huttenlocher, J., Levine, S., & Vevea, J. (1998). Environmental input and cognitive growth: A study using time-period comparisons. Child Development, 69 (4), 1012–1029.

Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2010). A comprehensive meta-analysis of the predictive validity of the graduate record examinations: Implications for graduate student selection and performance. Psychological Bulletin, 127 (1), 162–181.

Landy, F. J. (2005). Some historical and scientific issues related to research on emotional intelligence. Journal of Organizational Behavior, 26 , 411–424.

Martins, A., Ramalho, N., & Morin, E. (2010). A comprehensive meta-analysis of the relationship between emotional intelligence and health. Personality and Individual Differences, 49 (6), 554–564.

Mayer, J. D., & Cobb, C. D. (2000). Educational policy on emotional intelligence: Does it make sense? Educational Psychology Review, 12 (2), 163–183.

Mayer, J. D., Salovey, P., & Caruso, D. (2000). Models of emotional intelligence. In R. J. Sternberg (Ed.), Handbook of intelligence (pp. 396–420). New York, NY: Cambridge University Press.

Mayer, J. D., Salovey, P., & Caruso, D. R. (2008). Emotional intelligence: New ability or eclectic traits. American Psychologist, 63 (6), 503–517.

McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33 (4), 337–346.

McLoyd, V. C. (1998). Children in poverty: Development, public policy and practice. In W. Damon, I. E. Sigel, & K. A. Renninger (Eds.), Handbook of child psychology: Child psychology in practice (5th ed., Vol. 4, pp. 135–208). Hoboken, NJ: John Wiley & Sons.

Mischel, W., & Ayduk, O. (Eds.). (2004). Willpower in a cognitive-affective processing system: The dynamics of delay of gratification . New York, NY: Guilford Press.

Neisser, U. (1997). Rising scores on intelligence tests. American Scientist, 85 , 440–447.

Neisser, U. (Ed.). (1998). The rising curve . Washington, DC: American Psychological Association.

Neisser, U., Boodoo, G., Bouchard, T. J., Jr., Boykin, A. W., Brody, N., Ceci, S. J.,…Urbina, S. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51 (2), 77–101.

Perkins, D. N., & Grotzer, T. A. (1997). Teaching intelligence. American Psychologist, 52 (10), 1125–1133.

Petrides, K. V., & Furnham, A. (2000). On the dimensional structure of emotional intelligence. Personality and Individual Differences, 29, 313–320.

Plomin, R. (2003). General cognitive ability. In R. Plomin, J. C. DeFries, I. W. Craig, & P. McGuffin (Eds.), Behavioral genetics in the postgenomic era (pp. 183–201). Washington, DC: American Psychological Association.

Plomin, R., & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics. Journal of Personality and Social Psychology, 86 (1), 112–129.

Reynolds, A. J., Temple, J. A., Robertson, D. L., & Mann, E. A. (2001). Long-term effects of an early childhood intervention on educational achievement and juvenile arrest: A 15-year follow-up of low-income children in public schools. Journal of the American Medical Association, 285 (18), 2339–2346.

Salthouse, T. A. (2004). What and when of cognitive aging. Current Directions in Psychological Science, 13 (4), 140–144.

Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124 , 262–274.

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N.,…Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440 (7084), 676–679.

Siegler, R. S. (1992). The other Alfred Binet. Developmental Psychology, 28 (2), 179–190.

Simonton, D. K. (1992). The social context of career success and course for 2,026 scientists and inventors. Personality and Social Psychology Bulletin, 18 (4), 452–463.

Simonton, D. K. (2000). Creativity: Cognitive, personal, developmental, and social aspects. American Psychologist, 55 (1), 151–158.

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence . New York, NY: Cambridge University Press.

Sternberg, R. J. (2003). Contemporary theories of intelligence. In W. M. Reynolds & G. E. Miller (Eds.), Handbook of psychology: Educational psychology (Vol. 7, pp. 23–45). Hoboken, NJ: John Wiley & Sons.

Sternberg, R. J. (2003). Our research program validating the triarchic theory of successful intelligence: Reply to Gottfredson. Intelligence, 31 (4), 399–413.

Sternberg, R. J., Wagner, R. K., & Okagaki, L. (1993). Practical intelligence: The nature and role of tacit knowledge in work and at school. In J. M. Puckett & H. W. Reese (Eds.), Mechanisms of everyday cognition (pp. 205–227). Hillsdale, NJ: Lawrence Erlbaum Associates.

Tarasova, I. V., Volf, N. V., & Razoumnikova, O. M. (2010). Parameters of cortical interactions in subjects with high and low levels of verbal creativity. Human Physiology, 36 (1), 80–85.

Thurstone, L. L. (1938). Primary mental abilities. Psychometric Monographs, No. 1 . Chicago, IL: University of Chicago Press.

Treffert, D. A., & Wallace, G. L. (2004, January 1). Islands of genius. Scientific American , 14–23. Retrieved from http://gordonresearch.com/articles_autism/SciAm-Islands_of_Genius.pdf

Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14 (6), 623–628.

Wagner, R., & Sternberg, R. (1985). Practical intelligence in real-world pursuits: The role of tacit knowledge. Journal of Personality and Social Psychology, 49 (2), 436–458.

Watkins, C. E., Campbell, V. L., Nieberding, R., & Hallmark, R. (1995). Contemporary practice of psychological assessment by clinical psychologists. Professional Psychology: Research and Practice, 26 (1), 54–60.

Weisberg, R. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: John Wiley & Sons.

Introduction to Psychology Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Logo for Maricopa Open Digital Press

6 Thinking and Intelligence

Three side by side images are shown. On the left is a person lying in the grass with a book, looking off into the distance. In the middle is a sculpture of a person sitting on rock, with chin rested on hand, and the elbow of that hand rested on knee. The third is a drawing of a person sitting cross-legged with his head resting on his hand, elbow on knee.

What is the best way to solve a problem? How does a person who has never seen or touched snow in real life develop an understanding of the concept of snow? How do young children acquire the ability to learn language with no formal instruction? Psychologists who study thinking explore questions like these and are called cognitive psychologists.

Cognitive psychologists also study intelligence. What is intelligence, and how does it vary from person to person? Are “street smarts” a kind of intelligence, and if so, how do they relate to other types of intelligence? What does an IQ test really measure? These questions and more will be explored in this chapter as you study thinking and intelligence.

In other chapters, we discussed the cognitive processes of perception, learning, and memory. In this chapter, we will focus on high-level cognitive processes. As a part of this discussion, we will consider thinking and briefly explore the development and use of language. We will also discuss problem solving and creativity before ending with a discussion of how intelligence is measured and how our biology and environments interact to affect intelligence. After finishing this chapter, you will have a greater appreciation of the higher-level cognitive processes that contribute to our distinctiveness as a species.

Learning Objectives

By the end of this section, you will be able to:

  • Describe cognition
  • Distinguish concepts and prototypes
  • Explain the difference between natural and artificial concepts
  • Describe how schemata are organized and constructed

Imagine all of your thoughts as if they were physical entities, swirling rapidly inside your mind. How is it possible that the brain is able to move from one thought to the next in an organized, orderly fashion? The brain is endlessly perceiving, processing, planning, organizing, and remembering—it is always active. Yet, you don’t notice most of your brain’s activity as you move throughout your daily routine. This is only one facet of the complex processes involved in cognition. Simply put,  cognition  is thinking, and it encompasses the processes associated with perception, knowledge, problem solving, judgment, language, and memory. Scientists who study cognition are searching for ways to understand how we integrate, organize, and utilize our conscious cognitive experiences without being aware of all of the unconscious work that our brains are doing (for example, Kahneman, 2011).

Upon waking each morning, you begin thinking—contemplating the tasks that you must complete that day. In what order should you run your errands? Should you go to the bank, the cleaners, or the grocery store first? Can you get these things done before you head to class or will they need to wait until school is done? These thoughts are one example of cognition at work. Exceptionally complex, cognition is an essential feature of human consciousness, yet not all aspects of cognition are consciously experienced.

Cognitive psychology  is the field of psychology dedicated to examining how people think. It attempts to explain how and why we think the way we do by studying the interactions among human thinking, emotion, creativity, language, and problem solving, in addition to other cognitive processes. Cognitive psychologists strive to determine and measure different types of intelligence, why some people are better at problem solving than others, and how emotional intelligence affects success in the workplace, among countless other topics. They also sometimes focus on how we organize thoughts and information gathered from our environments into meaningful categories of thought, which will be discussed later.

Concepts and Prototypes

The human nervous system is capable of handling endless streams of information. The senses serve as the interface between the mind and the external environment, receiving stimuli and translating it into nerve impulses that are transmitted to the brain. The brain then processes this information and uses the relevant pieces to create thoughts, which can then be expressed through language or stored in memory for future use. To make this process more complex, the brain does not gather information from external environments only. When thoughts are formed, the mind synthesizes information from emotions and memories ( Figure 7.2 ). Emotion and memory are powerful influences on both our thoughts and behaviors.

The outline of a human head is shown. There is a box containing “Information, sensations” in front of the head. An arrow from this box points to another box containing “Emotions, memories” located where the front of the person's brain would be. An arrow from this second box points to a third box containing “Thoughts” located where the back of the person's brain would be. There are two arrows coming from “Thoughts.” One arrow points back to the second box, “Emotions, memories,” and the other arrow points to a fourth box, “Behavior.”

In order to organize this staggering amount of information, the mind has developed a “file cabinet” of sorts in the mind. The different files stored in the file cabinet are called concepts.  Concepts  are categories or groupings of linguistic information, images, ideas, or memories, such as life experiences. Concepts are, in many ways, big ideas that are generated by observing details, and categorizing and combining these details into cognitive structures. You use concepts to see the relationships among the different elements of your experiences and to keep the information in your mind organized and accessible.

Concepts are informed by our semantic memory (you will learn more about semantic memory in a later chapter) and are present in every aspect of our lives; however, one of the easiest places to notice concepts is inside a classroom, where they are discussed explicitly. When you study United States history, for example, you learn about more than just individual events that have happened in America’s past. You absorb a large quantity of information by listening to and participating in discussions, examining maps, and reading first-hand accounts of people’s lives. Your brain analyzes these details and develops an overall understanding of American history. In the process, your brain gathers details that inform and refine your understanding of related concepts like democracy, power, and freedom.

Concepts can be complex and abstract, like justice, or more concrete, like types of birds. In psychology, for example, Piaget’s stages of development are abstract concepts. Some concepts, like tolerance, are agreed upon by many people because they have been used in various ways over many years. Other concepts, like the characteristics of your ideal friend or your family’s birthday traditions, are personal and individualized. In this way, concepts touch every aspect of our lives, from our many daily routines to the guiding principles behind the way governments function.

Another technique used by your brain to organize information is the identification of prototypes for the concepts you have developed. A  prototype  is the best example or representation of a concept. For example, what comes to your mind when you think of a dog? Most likely your early experiences with dogs will shape what you imagine. If your first pet was a Golden Retriever, there is a good chance that this would be your prototype for the category of dogs.

Natural and Artificial Concepts

In psychology, concepts can be divided into two categories, natural and artificial.  Natural concepts  are created “naturally” through your experiences and can be developed from either direct or indirect experiences. For example, if you live in Essex Junction, Vermont, you have probably had a lot of direct experience with snow. You’ve watched it fall from the sky, you’ve seen lightly falling snow that barely covers the windshield of your car, and you’ve shoveled out 18 inches of fluffy white snow as you’ve thought, “This is perfect for skiing.” You’ve thrown snowballs at your best friend and gone sledding down the steepest hill in town. In short, you know snow. You know what it looks like, smells like, tastes like, and feels like. If, however, you’ve lived your whole life on the island of Saint Vincent in the Caribbean, you may never have actually seen snow, much less tasted, smelled, or touched it. You know snow from the indirect experience of seeing pictures of falling snow—or from watching films that feature snow as part of the setting. Either way, snow is a natural concept because you can construct an understanding of it through direct observations, experiences with snow, or indirect knowledge (such as from films or books) ( Figure 7.3 ).

Photograph A shows a snow covered landscape with the sun shining over it. Photograph B shows a sphere shaped object perched atop the corner of a cube shaped object. There is also a triangular object shown.

An  artificial concept , on the other hand, is a concept that is defined by a specific set of characteristics. Various properties of geometric shapes, like squares and triangles, serve as useful examples of artificial concepts. A triangle always has three angles and three sides. A square always has four equal sides and four right angles. Mathematical formulas, like the equation for area (length × width), are artificial concepts defined by specific sets of characteristics that are always the same. Artificial concepts can enhance the understanding of a topic by building on one another. For example, before learning the concept of “area of a square” (and the formula to find it), you must understand what a square is. Once the concept of “area of a square” is understood, an understanding of area for other geometric shapes can be built upon the original understanding of area. The use of artificial concepts to define an idea is crucial to communicating with others and engaging in complex thought. According to Goldstone and Kersten (2003), concepts act as building blocks and can be connected in countless combinations to create complex thoughts.

A  schema  is a mental construct consisting of a cluster or collection of related concepts (Bartlett, 1932). There are many different types of schemata, and they all have one thing in common: schemata are a method of organizing information that allows the brain to work more efficiently. When a schema is activated, the brain makes immediate assumptions about the person or object being observed.

There are several types of schemata. A  role schema  makes assumptions about how individuals in certain roles will behave (Callero, 1994). For example, imagine you meet someone who introduces himself as a firefighter. When this happens, your brain automatically activates the “firefighter schema” and begins making assumptions that this person is brave, selfless, and community-oriented. Despite not knowing this person, already you have unknowingly made judgments about him. Schemata also help you fill in gaps in the information you receive from the world around you. While schemata allow for more efficient information processing, there can be problems with schemata, regardless of whether they are accurate: Perhaps this particular firefighter is not brave, he just works as a firefighter to pay the bills while studying to become a children’s librarian.

An  event schema , also known as a  cognitive script , is a set of behaviors that can feel like a routine. Think about what you do when you walk into an elevator ( Figure 7.4 ). First, the doors open and you wait to let exiting passengers leave the elevator car. Then, you step into the elevator and turn around to face the doors, looking for the correct button to push. You never face the back of the elevator, do you? And when you’re riding in a crowded elevator and you can’t face the front, it feels uncomfortable, doesn’t it? Interestingly, event schemata can vary widely among different cultures and countries. For example, while it is quite common for people to greet one another with a handshake in the United States, in Tibet, you greet someone by sticking your tongue out at them, and in Belize, you bump fists (Cairns Regional Council, n.d.)

A crowded elevator is shown. There are many people standing close to one another.

Because event schemata are automatic, they can be difficult to change. Imagine that you are driving home from work or school. This event schema involves getting in the car, shutting the door, and buckling your seatbelt before putting the key in the ignition. You might perform this script two or three times each day. As you drive home, you hear your phone’s ring tone. Typically, the event schema that occurs when you hear your phone ringing involves locating the phone and answering it or responding to your latest text message. So without thinking, you reach for your phone, which could be in your pocket, in your bag, or on the passenger seat of the car. This powerful event schema is informed by your pattern of behavior and the pleasurable stimulation that a phone call or text message gives your brain. Because it is a schema, it is extremely challenging for us to stop reaching for the phone, even though we know that we endanger our own lives and the lives of others while we do it (Neyfakh, 2013) ( Figure 7.5 ).

A person’s right hand is holding a cellular phone. The person is in the driver’s seat of an automobile while on the road.

Remember the elevator? It feels almost impossible to walk in and  not  face the door. Our powerful event schema dictates our behavior in the elevator, and it is no different with our phones. Current research suggests that it is the habit, or event schema, of checking our phones in many different situations that make refraining from checking them while driving especially difficult (Bayer & Campbell, 2012). Because texting and driving has become a dangerous epidemic in recent years, psychologists are looking at ways to help people interrupt the “phone schema” while driving. Event schemata like these are the reason why many habits are difficult to break once they have been acquired. As we continue to examine thinking, keep in mind how powerful the forces of concepts and schemata are to our understanding of the world.

  • Define language and demonstrate familiarity with the components of language
  • Understand the development of language
  • Explain the relationship between language and thinking

Language  is a communication system that involves using words and systematic rules to organize those words to transmit information from one individual to another. While language is a form of communication, not all communication is language. Many species communicate with one another through their postures, movements, odors, or vocalizations. This communication is crucial for species that need to interact and develop social relationships with their conspecifics. However, many people have asserted that it is language that makes humans unique among all of the animal species (Corballis & Suddendorf, 2007; Tomasello & Rakoczy, 2003). This section will focus on what distinguishes language as a special form of communication, how the use of language develops, and how language affects the way we think.

Components of Language

Language, be it spoken, signed, or written, has specific components: a lexicon and grammar.  Lexicon  refers to the words of a given language. Thus, lexicon is a language’s vocabulary.  Grammar  refers to the set of rules that are used to convey meaning through the use of the lexicon (Fernández & Cairns, 2011). For instance, English grammar dictates that most verbs receive an “-ed” at the end to indicate past tense.

Words are formed by combining the various phonemes that make up the language. A  phoneme  (e.g., the sounds “ah” vs. “eh”) is a basic sound unit of a given language, and different languages have different sets of phonemes. Phonemes are combined to form  morphemes , which are the smallest units of language that convey some type of meaning (e.g., “I” is both a phoneme and a morpheme). We use semantics and syntax to construct language. Semantics and syntax are part of a language’s grammar.  Semantics  refers to the process by which we derive meaning from morphemes and words.  Syntax  refers to the way words are organized into sentences (Chomsky, 1965; Fernández & Cairns, 2011).

We apply the rules of grammar to organize the lexicon in novel and creative ways, which allow us to communicate information about both concrete and abstract concepts. We can talk about our immediate and observable surroundings as well as the surface of unseen planets. We can share our innermost thoughts, our plans for the future, and debate the value of a college education. We can provide detailed instructions for cooking a meal, fixing a car, or building a fire. Through our use of words and language, we are able to form, organize, and express ideas, schema, and artificial concepts.

Language Development

Given the remarkable complexity of a language, one might expect that mastering a language would be an especially arduous task; indeed, for those of us trying to learn a second language as adults, this might seem to be true. However, young children master language very quickly with relative ease. B. F.  Skinner  (1957) proposed that language is learned through reinforcement. Noam  Chomsky  (1965) criticized this behaviorist approach, asserting instead that the mechanisms underlying language acquisition are biologically determined. The use of language develops in the absence of formal instruction and appears to follow a very similar pattern in children from vastly different cultures and backgrounds. It would seem, therefore, that we are born with a biological predisposition to acquire a language (Chomsky, 1965; Fernández & Cairns, 2011). Moreover, it appears that there is a critical period for language acquisition, such that this proficiency at acquiring language is maximal early in life; generally, as people age, the ease with which they acquire and master new languages diminishes (Johnson & Newport, 1989; Lenneberg, 1967; Singleton, 1995).

Children begin to learn about language from a very early age ( Table 7.1 ). In fact, it appears that this is occurring even before we are born. Newborns show a preference for their mother’s voice and appear to be able to discriminate between the language spoken by their mother and other languages. Babies are also attuned to the languages being used around them and show preferences for videos of faces that are moving in synchrony with the audio of spoken language versus videos that do not synchronize with the audio (Blossom & Morgan, 2006; Pickens, 1994; Spelke & Cortelyou, 1981).

DIG DEEPER: The Case of Genie

In the fall of 1970, a social worker in the Los Angeles area found a 13-year-old girl who was being raised in extremely neglectful and abusive conditions. The girl, who came to be known as Genie, had lived most of her life tied to a potty chair or confined to a crib in a small room that was kept closed with the curtains drawn. For a little over a decade, Genie had virtually no social interaction and no access to the outside world. As a result of these conditions, Genie was unable to stand up, chew solid food, or speak (Fromkin, Krashen, Curtiss, Rigler, & Rigler, 1974; Rymer, 1993). The police took Genie into protective custody.

Genie’s abilities improved dramatically following her removal from her abusive environment, and early on, it appeared she was acquiring language—much later than would be predicted by critical period hypotheses that had been posited at the time (Fromkin et al., 1974). Genie managed to amass an impressive vocabulary in a relatively short amount of time. However, she never developed a mastery of the grammatical aspects of language (Curtiss, 1981). Perhaps being deprived of the opportunity to learn language during a critical period impeded Genie’s ability to fully acquire and use language.

You may recall that each language has its own set of phonemes that are used to generate morphemes, words, and so on. Babies can discriminate among the sounds that make up a language (for example, they can tell the difference between the “s” in vision and the “ss” in fission); early on, they can differentiate between the sounds of all human languages, even those that do not occur in the languages that are used in their environments. However, by the time that they are about 1 year old, they can only discriminate among those phonemes that are used in the language or languages in their environments (Jensen, 2011; Werker & Lalonde, 1988; Werker & Tees, 1984).

After the first few months of life, babies enter what is known as the babbling stage, during which time they tend to produce single syllables that are repeated over and over. As time passes, more variations appear in the syllables that they produce. During this time, it is unlikely that the babies are trying to communicate; they are just as likely to babble when they are alone as when they are with their caregivers (Fernández & Cairns, 2011). Interestingly, babies who are raised in environments in which sign language is used will also begin to show babbling in the gestures of their hands during this stage (Petitto, Holowka, Sergio, Levy, & Ostry, 2004).

Generally, a child’s first word is uttered sometime between the ages of 1 year to 18 months, and for the next few months, the child will remain in the “one word” stage of language development. During this time, children know a number of words, but they only produce one-word utterances. The child’s early vocabulary is limited to familiar objects or events, often nouns. Although children in this stage only make one-word utterances, these words often carry larger meaning (Fernández & Cairns, 2011). So, for example, a child saying “cookie” could be identifying a cookie or asking for a cookie.

As a child’s lexicon grows, she begins to utter simple sentences and to acquire new vocabulary at a very rapid pace. In addition, children begin to demonstrate a clear understanding of the specific rules that apply to their language(s). Even the mistakes that children sometimes make provide evidence of just how much they understand about those rules. This is sometimes seen in the form of  overgeneralization . In this context, overgeneralization refers to an extension of a language rule to an exception to the rule. For example, in English, it is usually the case that an “s” is added to the end of a word to indicate plurality. For example, we speak of one dog versus two dogs. Young children will overgeneralize this rule to cases that are exceptions to the “add an s to the end of the word” rule and say things like “those two gooses” or “three mouses.” Clearly, the rules of the language are understood, even if the exceptions to the rules are still being learned (Moskowitz, 1978).

Language and Thought

When we speak one language, we agree that words are representations of ideas, people, places, and events. The given language that children learn is connected to their culture and surroundings. But can words themselves shape the way we think about things? Psychologists have long investigated the question of whether language shapes thoughts and actions, or whether our thoughts and beliefs shape our language. Two researchers, Edward Sapir and Benjamin Lee Whorf began this investigation in the 1940s. They wanted to understand how the language habits of a community encourage members of that community to interpret language in a particular manner (Sapir, 1941/1964). Sapir and Whorf proposed that language determines thought. For example, in some languages, there are many different words for love. However, in English, we use the word love for all types of love. Does this affect how we think about love depending on the language that we speak (Whorf, 1956)? Researchers have since identified this view as too absolute, pointing out a lack of empiricism behind what Sapir and Whorf proposed (Abler, 2013; Boroditsky, 2011; van Troyer, 1994). Today, psychologists continue to study and debate the relationship between language and thought.

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving and decision making

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe is doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A  problem-solving strategy  is a plan of action used to find a solution. Different strategies have different action plans associated with them ( Table 7.2 ). For example, a well-known strategy is  trial and error . The old adage, “If at first, you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An  algorithm  is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a  heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of the five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backward is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C., and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backward heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or a long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

EVERYDAY CONNECTION: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.7 ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle ( Figure 7.8 ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below ( Figure 7.9 ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A  mental set  is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness  is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. Duncker (1945) conducted foundational research on functional fixedness. He created an experiment in which participants were given a candle, a book of matches, and a box of thumbtacks. They were instructed to use those items to attach the candle to the wall so that it did not drip wax onto the table below. Participants had to use functional fixedness to solve the problem ( Figure 7.10 ). During the  Apollo 13  mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Figure a shows a book of matches, a box of thumbtacks, and a candle. Figure b shows the candle standing in the box that held the thumbtacks. A thumbtack attaches the box holding the candle to the wall.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An  anchoring bias  occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The  confirmation bias  is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis.  Hindsight bias  leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did.  Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the  availability heuristic  is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision .  Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in  Table 7.3 .

Were you able to determine how many marbles are needed to balance the scales in  Figure 7.9 ? You need nine. Were you able to solve the problems in  Figure 7.7  and  Figure 7.8 ? Here are the answers ( Figure 7.11 ).

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

  • Define intelligence
  • Explain the triarchic theory of intelligence
  • Identify the difference between intelligence theories
  • Explain emotional intelligence
  • Define creativity

Classifying Intelligence

What exactly is intelligence? The way that researchers have defined the concept of intelligence has been modified many times since the birth of psychology. British psychologist Charles Spearman believed intelligence consisted of one general factor, called  g , which could be measured and compared among individuals. Spearman focused on the commonalities among various intellectual abilities and de-emphasized what made each unique. Long before modern psychology developed, however, ancient philosophers, such as Aristotle, held a similar view (Cianciolo & Sternberg, 2004).

Other psychologists believe that instead of a single factor, intelligence is a collection of distinct abilities. In the 1940s, Raymond Cattell proposed a theory of intelligence that divided general intelligence into two components: crystallized intelligence and fluid intelligence (Cattell, 1963). Crystallized intelligence  is characterized as acquired knowledge and the ability to retrieve it. When you learn, remember, and recall information, you are using crystallized intelligence. You use crystallized intelligence all the time in your coursework by demonstrating that you have mastered the information covered in the course.  Fluid intelligence  encompasses the ability to see complex relationships and solve problems. Navigating your way home after being detoured onto an unfamiliar route because of road construction would draw upon your fluid intelligence. Fluid intelligence helps you tackle complex, abstract challenges in your daily life, whereas crystallized intelligence helps you overcome concrete, straightforward problems (Cattell, 1963).

Other theorists and psychologists believe that intelligence should be defined in more practical terms. For example, what types of behaviors help you get ahead in life? Which skills promote success? Think about this for a moment. Being able to recite all 45 presidents of the United States in order is an excellent party trick, but will knowing this make you a better person?

Robert Sternberg developed another theory of intelligence, which he titled the  triarchic theory of intelligence  because it sees intelligence as comprised of three parts (Sternberg, 1988): practical, creative, and analytical intelligence ( Figure 7.12 ).

Three boxes are arranged in a triangle. The top box contains “Analytical intelligence; academic problem solving and computation.” There is a line with arrows on both ends connecting this box to another box containing “Practical intelligence; street smarts and common sense.” Another line with arrows on both ends connects this box to another box containing “Creative intelligence; imaginative and innovative problem solving.” Another line with arrows on both ends connects this box to the first box described, completing the triangle.

Practical intelligence , as proposed by Sternberg, is sometimes compared to “street smarts.” Being practical means you find solutions that work in your everyday life by applying knowledge based on your experiences. This type of intelligence appears to be separate from the traditional understanding of IQ; individuals who score high in practical intelligence may or may not have comparable scores in creative and analytical intelligence (Sternberg, 1988).

Analytical intelligence is closely aligned with academic problem solving and computations. Sternberg says that analytical intelligence is demonstrated by an ability to analyze, evaluate, judge, compare, and contrast. When reading a classic novel for a literature class, for example, it is usually necessary to compare the motives of the main characters of the book or analyze the historical context of the story. In a science course such as anatomy, you must study the processes by which the body uses various minerals in different human systems. In developing an understanding of this topic, you are using analytical intelligence. When solving a challenging math problem, you would apply analytical intelligence to analyze different aspects of the problem and then solve it section by section.

Creative intelligence  is marked by inventing or imagining a solution to a problem or situation. Creativity in this realm can include finding a novel solution to an unexpected problem or producing a beautiful work of art or a well-developed short story. Imagine for a moment that you are camping in the woods with some friends and realize that you’ve forgotten your camp coffee pot. The person in your group who figures out a way to successfully brew coffee for everyone would be credited as having higher creative intelligence.

Multiple Intelligences Theory  was developed by Howard Gardner, a Harvard psychologist and former student of Erik Erikson. Gardner’s theory, which has been refined for more than 30 years, is a more recent development among theories of intelligence. In Gardner’s theory, each person possesses at least eight intelligences. Among these eight intelligences, a person typically excels in some and falters in others (Gardner, 1983).  Table 7.4  describes each type of intelligence.

Gardner’s theory is relatively new and needs additional research to better establish empirical support. At the same time, his ideas challenge the traditional idea of intelligence to include a wider variety of abilities, although it has been suggested that Gardner simply relabeled what other theorists called “cognitive styles” as “intelligences” (Morgan, 1996). Furthermore, developing traditional measures of Gardner’s intelligences is extremely difficult (Furnham, 2009; Gardner & Moran, 2006; Klein, 1997).

Gardner’s inter- and intrapersonal intelligences are often combined into a single type: emotional intelligence.  Emotional intelligence  encompasses the ability to understand the emotions of yourself and others, show empathy, understand social relationships and cues, and regulate your own emotions and respond in culturally appropriate ways (Parker, Saklofske, & Stough, 2009). People with high emotional intelligence typically have well-developed social skills. Some researchers, including Daniel Goleman, the author of  Emotional Intelligence: Why It Can Matter More than IQ , argue that emotional intelligence is a better predictor of success than traditional intelligence (Goleman, 1995). However, emotional intelligence has been widely debated, with researchers pointing out inconsistencies in how it is defined and described, as well as questioning results of studies on a subject that is difficult to measure and study empirically (Locke, 2005; Mayer, Salovey, & Caruso, 2004)

The most comprehensive theory of intelligence to date is the Cattell-Horn-Carroll (CHC) theory of cognitive abilities (Schneider & McGrew, 2018). In this theory, abilities are related and arranged in a hierarchy with general abilities at the top, broad abilities in the middle, and narrow (specific) abilities at the bottom. The narrow abilities are the only ones that can be directly measured; however, they are integrated within the other abilities. At the general level is general intelligence. Next, the broad level consists of general abilities such as fluid reasoning, short-term memory, and processing speed. Finally, as the hierarchy continues, the narrow level includes specific forms of cognitive abilities. For example, short-term memory would further break down into memory span and working memory capacity.

Intelligence can also have different meanings and values in different cultures. If you live on a small island, where most people get their food by fishing from boats, it would be important to know how to fish and how to repair a boat. If you were an exceptional angler, your peers would probably consider you intelligent. If you were also skilled at repairing boats, your intelligence might be known across the whole island. Think about your own family’s culture. What values are important for Latinx families? Italian families? In Irish families, hospitality and telling an entertaining story are marks of the culture. If you are a skilled storyteller, other members of Irish culture are likely to consider you intelligent.

Some cultures place a high value on working together as a collective. In these cultures, the importance of the group supersedes the importance of individual achievement. When you visit such a culture, how well you relate to the values of that culture exemplifies your  cultural intelligence , sometimes referred to as cultural competence.

Creativity  is the ability to generate, create, or discover new ideas, solutions, and possibilities. Very creative people often have intense knowledge about something, work on it for years, look at novel solutions, seek out the advice and help of other experts, and take risks. Although creativity is often associated with the arts, it is actually a vital form of intelligence that drives people in many disciplines to discover something new. Creativity can be found in every area of life, from the way you decorate your residence to a new way of understanding how a cell works.

Creativity is often assessed as a function of one’s ability to engage in  divergent thinking . Divergent thinking can be described as thinking “outside the box;” it allows an individual to arrive at unique, multiple solutions to a given problem. In contrast,  convergent thinking describes the ability to provide a correct or well-established answer or solution to a problem (Cropley, 2006; Gilford, 1967)

  • Explain how intelligence tests are developed
  • Describe the history of the use of IQ tests
  • Describe the purposes and benefits of intelligence testing

While you’re likely familiar with the term “IQ” and associate it with the idea of intelligence, what does IQ really mean? IQ stands for  intelligence quotient  and describes a score earned on a test designed to measure intelligence. You’ve already learned that there are many ways psychologists describe intelligence (or more aptly, intelligences). Similarly, IQ tests—the tools designed to measure intelligence—have been the subject of debate throughout their development and use.

When might an IQ test be used? What do we learn from the results, and how might people use this information? While there are certainly many benefits to intelligence testing, it is important to also note the limitations and controversies surrounding these tests. For example, IQ tests have sometimes been used as arguments in support of insidious purposes, such as the eugenics movement (Severson, 2011). The infamous Supreme Court Case,  Buck v. Bell , legalized the forced sterilization of some people deemed “feeble-minded” through this type of testing, resulting in about 65,000 sterilizations ( Buck v. Bell , 274 U.S. 200; Ko, 2016). Today, only professionals trained in psychology can administer IQ tests, and the purchase of most tests requires an advanced degree in psychology. Other professionals in the field, such as social workers and psychiatrists, cannot administer IQ tests. In this section, we will explore what intelligence tests measure, how they are scored, and how they were developed.

Measuring Intelligence

It seems that the human understanding of intelligence is somewhat limited when we focus on traditional or academic-type intelligence. How then, can intelligence be measured? And when we measure intelligence, how do we ensure that we capture what we’re really trying to measure (in other words, that IQ tests function as valid measures of intelligence)? In the following paragraphs, we will explore the how intelligence tests were developed and the history of their use.

The IQ test has been synonymous with intelligence for over a century. In the late 1800s, Sir Francis Galton developed the first broad test of intelligence (Flanagan & Kaufman, 2004). Although he was not a psychologist, his contributions to the concepts of intelligence testing are still felt today (Gordon, 1995). Reliable intelligence testing (you may recall from earlier chapters that reliability refers to a test’s ability to produce consistent results) began in earnest during the early 1900s with a researcher named Alfred Binet ( Figure 7.13 ). Binet was asked by the French government to develop an intelligence test to use on children to determine which ones might have difficulty in school; it included many verbally based tasks. American researchers soon realized the value of such testing. Louis Terman, a Stanford professor, modified Binet’s work by standardizing the administration of the test and tested thousands of different-aged children to establish an average score for each age. As a result, the test was normed and standardized, which means that the test was administered consistently to a large enough representative sample of the population that the range of scores resulted in a bell curve (bell curves will be discussed later).  Standardization  means that the manner of administration, scoring, and interpretation of results is consistent.  Norming  involves giving a test to a large population so data can be collected comparing groups, such as age groups. The resulting data provide norms, or referential scores, by which to interpret future scores. Norms are not expectations of what a given group  should  know but a demonstration of what that group  does  know. Norming and standardizing the test ensures that new scores are reliable. This new version of the test was called the Stanford-Binet Intelligence Scale (Terman, 1916). Remarkably, an updated version of this test is still widely used today.

Photograph A shows a portrait of Alfred Binet. Photograph B shows six sketches of human faces. Above these faces is the label “Guide for Binet-Simon Scale. 223” The faces are arranged in three rows of two, and these rows are labeled “1, 2, and 3.” At the bottom it reads: “The psychological clinic is indebted for the loan of these cuts and those on p. 225 to the courtesy of Dr. Oliver P. Cornman, Associate Superintendent of Schools of Philadelphia, and Chairman of Committee on Backward Children Investigation. See Report of Committee, Dec. 31, 1910, appendix.”

In 1939, David Wechsler, a psychologist who spent part of his career working with World War I veterans, developed a new IQ test in the United States. Wechsler combined several subtests from other intelligence tests used between 1880 and World War I. These subtests tapped into a variety of verbal and nonverbal skills because Wechsler believed that intelligence encompassed “the global capacity of a person to act purposefully, to think rationally, and to deal effectively with his environment” (Wechsler, 1958, p. 7). He named the test the Wechsler-Bellevue Intelligence Scale (Wechsler, 1981). This combination of subtests became one of the most extensively used intelligence tests in the history of psychology. Although its name was later changed to the Wechsler Adult Intelligence Scale (WAIS) and has been revised several times, the aims of the test remain virtually unchanged since its inception (Boake, 2002). Today, there are three intelligence tests credited to Wechsler, the Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV), the Wechsler Intelligence Scale for Children (WISC-V), and the Wechsler Preschool and Primary Scale of Intelligence—IV (WPPSI-IV) (Wechsler, 2012). These tests are used widely in schools and communities throughout the United States, and they are periodically normed and standardized as a means of recalibration. As a part of the recalibration process, the WISC-V was given to thousands of children across the country, and children taking the test today are compared with their same-age peers ( Figure 7.13 ).

The WISC-V is composed of 14 subtests, which comprise five indices, which then render an IQ score. The five indices are Verbal Comprehension, Visual Spatial, Fluid Reasoning, Working Memory, and Processing Speed. When the test is complete, individuals receive a score for each of the five indices and a Full Scale IQ score. The method of scoring reflects the understanding that intelligence is comprised of multiple abilities in several cognitive realms and focuses on the mental processes that the child used to arrive at his or her answers to each test item.

Interestingly, the periodic recalibrations have led to an interesting observation known as the Flynn effect. Named after James Flynn, who was among the first to describe this trend, the  Flynn effect  refers to the observation that each generation has a significantly higher IQ than the last. Flynn himself argues, however, that increased IQ scores do not necessarily mean that younger generations are more intelligent per se (Flynn, Shaughnessy, & Fulgham, 2012).

Ultimately, we are still left with the question of how valid intelligence tests are. Certainly, the most modern versions of these tests tap into more than verbal competencies, yet the specific skills that should be assessed in IQ testing, the degree to which any test can truly measure an individual’s intelligence, and the use of the results of IQ tests are still issues of debate (Gresham & Witt, 1997; Flynn, Shaughnessy, & Fulgham, 2012; Richardson, 2002; Schlinger, 2003).

The Bell Curve

The results of intelligence tests follow the bell curve, a graph in the general shape of a bell. When the bell curve is used in psychological testing, the graph demonstrates a normal distribution of a trait, in this case, intelligence, in the human population. Many human traits naturally follow the bell curve. For example, if you lined up all your female schoolmates according to height, it is likely that a large cluster of them would be the average height for an American woman: 5’4”–5’6”. This cluster would fall in the center of the bell curve, representing the average height for American women ( Figure 7.14 ). There would be fewer women who stand closer to 4’11”. The same would be true for women of above-average height: those who stand closer to 5’11”. The trick to finding a bell curve in nature is to use a large sample size. Without a large sample size, it is less likely that the bell curve will represent the wider population. A  representative sample  is a subset of the population that accurately represents the general population. If, for example, you measured the height of the women in your classroom only, you might not actually have a representative sample. Perhaps the women’s basketball team wanted to take this course together, and they are all in your class. Because basketball players tend to be taller than average, the women in your class may not be a good representative sample of the population of American women. But if your sample included all the women at your school, it is likely that their heights would form a natural bell curve.

A graph of a bell curve is labeled “Height of U.S. Women.” The x axis is labeled “Height” and the y axis is labeled “Frequency.” Between the heights of five feet tall and five feet and five inches tall, the frequency rises to a curved peak, then begins dropping off at the same rate until it hits five feet ten inches tall.

The same principles apply to intelligence test scores. Individuals earn a score called an intelligence quotient (IQ). Over the years, different types of IQ tests have evolved, but the way scores are interpreted remains the same. The average IQ score on an IQ test is 100. Standard deviations  describe how data are dispersed in a population and give context to large data sets. The bell curve uses the standard deviation to show how all scores are dispersed from the average score ( Figure 7.15 ). In modern IQ testing, one standard deviation is 15 points. So a score of 85 would be described as “one standard deviation below the mean.” How would you describe a score of 115 and a score of 70? Any IQ score that falls within one standard deviation above and below the mean (between 85 and 115) is considered average, and 68% of the population has IQ scores in this range. An IQ score of 130 or above is considered a superior level.

A graph of a bell curve is labeled “Intelligence Quotient Score.” The x axis is labeled “IQ,” and the y axis is labeled “Population.” Beginning at an IQ of 60, the population rises to a curved peak at an IQ of 100 and then drops off at the same rate ending near zero at an IQ of 140.

Only 2.2% of the population has an IQ score below 70 (American Psychological Association [APA], 2013). A score of 70 or below indicates significant cognitive delays. When these are combined with major deficits in adaptive functioning, a person is diagnosed with having an intellectual disability (American Association on Intellectual and Developmental Disabilities, 2013). Formerly known as mental retardation, the accepted term now is intellectual disability, and it has four subtypes: mild, moderate, severe, and profound ( Table 7.5 ).  The Diagnostic and Statistical Manual of Psychological Disorders  lists criteria for each subgroup (APA, 2013).

On the other end of the intelligence spectrum are those individuals whose IQs fall into the highest ranges. Consistent with the bell curve, about 2% of the population falls into this category. People are considered gifted if they have an IQ score of 130 or higher, or superior intelligence in a particular area. Long ago, popular belief suggested that people of high intelligence were maladjusted. This idea was disproven through a groundbreaking study of gifted children. In 1921, Lewis Terman began a longitudinal study of over 1500 children with IQs over 135 (Terman, 1925). His findings showed that these children became well-educated, successful adults who were, in fact, well-adjusted (Terman & Oden, 1947). Additionally, Terman’s study showed that the subjects were above average in physical build and attractiveness, dispelling an earlier popular notion that highly intelligent people were “weaklings.” Some people with very high IQs elect to join Mensa, an organization dedicated to identifying, researching, and fostering intelligence. Members must have an IQ score in the top 2% of the population, and they may be required to pass other exams in their application to join the group.

DIG DEEPER: What’s in a Name? 

In the past, individuals with IQ scores below 70 and significant adaptive and social functioning delays were diagnosed with mental retardation. When this diagnosis was first named, the title held no social stigma. In time, however, the degrading word “retard” sprang from this diagnostic term. “Retard” was frequently used as a taunt, especially among young people, until the words “mentally retarded” and “retard” became an insult. As such, the DSM-5 now labels this diagnosis as “intellectual disability.” Many states once had a Department of Mental Retardation to serve those diagnosed with such cognitive delays, but most have changed their name to the Department of Developmental Disabilities or something similar in language.

Erin Johnson’s younger brother Matthew has Down syndrome. She wrote this piece about what her brother taught her about the meaning of intelligence:

His whole life, learning has been hard. Entirely possible – just different. He has always excelled with technology – typing his thoughts was more effective than writing them or speaking them. Nothing says “leave me alone” quite like a text that reads, “Do Not Call Me Right Now.” He is fully capable of reading books up to about a third-grade level, but he didn’t love it and used to always ask others to read to him. That all changed when his nephew came along, because he willingly reads to him, and it is the most heart-swelling, smile-inducing experience I have ever had the pleasure of witnessing.

When it comes down to it, Matt can learn. He does learn. It just takes longer, and he has to work harder for it, which if we’re being honest, is not a lot of fun. He is extremely gifted in learning things he takes an interest in, and those things often seem a bit “strange” to others. But no matter. It just proves my point – he  can  learn. That does not mean he will learn at the same pace, or even to the same level. It also, unfortunately, does not mean he will be allotted the same opportunities to learn as many others.

Here’s the scoop. We are all wired with innate abilities to retain and apply our learning and natural curiosities and passions that fuel our desire to learn. But our abilities and curiosities may not be the same.

The world doesn’t work this way though, especially not for my brother and his counterparts. Have him read aloud a book about skunks, and you may not get a whole lot from him. But have him tell you about skunks straight out of his memory, and hold onto your hats. He can hack the school’s iPad system, but he can’t tell you how he did it. He can write out every direction for a drive to our grandparents’ home in Florida, but he can’t drive.

Society is quick to deem him disabled and use demeaning language like the r-word to describe him, but in reality, we haven’t necessarily given him opportunities to showcase the learning he can do. In my case, I can escape the need to memorize how to change the oil in my car without anyone assuming I can’t do it, or calling me names when they find out I can’t. But Matthew can’t get through a day at his job without someone assuming he needs help. He is bright. Brighter than most anyone would assume. Maybe we need to redefine what is smart.

My brother doesn’t fit in the narrow schema of intelligence that is accepted in our society. But intelligence is far more than being able to solve 525 x 62 or properly introduce yourself to another. Why can’t we assume the intelligence of someone who can recite all of a character’s lines in a movie or remember my birthday a year after I told him/her a single time? Why is it we allow a person’s diagnosis or appearance to make us not just wonder if, but entirely doubt that they are capable? Maybe we need to cut away the sides of the box we have created for people so everyone can fit.

My brother can learn. It may not be what you know. It may be knowledge you would deem unimportant. It may not follow a traditional learning trajectory. But the fact remains – he can learn. Everyone can learn. And even though it is harder for him and harder for others still, he is not a “retard.” Nobody is.

When you use the r-word, you are insinuating that an individual, whether someone with a disability or not, is unintelligent, foolish, and purposeless. This in turn tells a person with a disability that they too are unintelligent, foolish, and purposeless. Because the word was historically used to describe individuals with disabilities and twisted from its original meaning to fit a cruel new context, it is forevermore associated with people like my brother. No matter how a person looks or learns or behaves, the r-word is never a fitting term. It’s time we waved it goodbye.

Why Measure Intelligence?

The value of IQ testing is most evident in educational or clinical settings. Children who seem to be experiencing learning difficulties or severe behavioral problems can be tested to ascertain whether the child’s difficulties can be partly attributed to an IQ score that is significantly different from the mean for her age group. Without IQ testing—or another measure of intelligence—children and adults needing extra support might not be identified effectively. In addition, IQ testing is used in courts to determine whether a defendant has special or extenuating circumstances that preclude him from participating in some way in a trial. People also use IQ testing results to seek disability benefits from the Social Security Administration.

  • Describe how genetics and environment affect intelligence
  • Explain the relationship between IQ scores and socioeconomic status
  • Describe the difference between a learning disability and a developmental disorder

High Intelligence: Nature or Nurture?

Where does high intelligence come from? Some researchers believe that intelligence is a trait inherited from a person’s parents. Scientists who research this topic typically use twin studies to determine the  heritability  of intelligence. The Minnesota Study of Twins Reared Apart is one of the most well-known twin studies. In this investigation, researchers found that identical twins raised together and identical twins raised apart exhibit a higher correlation between their IQ scores than siblings or fraternal twins raised together (Bouchard, Lykken, McGue, Segal, & Tellegen, 1990). The findings from this study reveal a genetic component to intelligence ( Figure 7.15 ). At the same time, other psychologists believe that intelligence is shaped by a child’s developmental environment. If parents were to provide their children with intellectual stimuli from before they are born, it is likely that they would absorb the benefits of that stimulation, and it would be reflected in intelligence levels.

A chart shows correlations of IQs for people of varying relationships. The bottom is labeled “Percent IQ Correlation” and the left side is labeled “Relationship.” The percent IQ Correlation for relationships where no genes are shared, including adoptive parent-child pairs, similarly aged unrelated children raised together, and adoptive siblings are around 21 percent, 30 percent, and 32 percent, respectively. The percent IQ Correlation for relationships where 25 percent of genes are shared, as in half-siblings, is around 33 percent. The percent IQ Correlation for relationships where 50 percent of genes are shared, including parent-children pairs, and fraternal twins raised together, are roughly 44 percent and 62 percent, respectively. A relationship where 100 percent of genes are shared, as in identical twins raised apart, results in a nearly 80 percent IQ correlation.

The reality is that aspects of each idea are probably correct. In fact, one study suggests that although genetics seem to be in control of the level of intelligence, the environmental influences provide both stability and change to trigger manifestation of cognitive abilities (Bartels, Rietveld, Van Baal, & Boomsma, 2002). Certainly, there are behaviors that support the development of intelligence, but the genetic component of high intelligence should not be ignored. As with all heritable traits, however, it is not always possible to isolate how and when high intelligence is passed on to the next generation.

Range of Reaction  is the theory that each person responds to the environment in a unique way based on his or her genetic makeup. According to this idea, your genetic potential is a fixed quantity, but whether you reach your full intellectual potential is dependent upon the environmental stimulation you experience, especially in childhood. Think about this scenario: A couple adopts a child who has average genetic intellectual potential. They raise her in an extremely stimulating environment. What will happen to the couple’s new daughter? It is likely that the stimulating environment will improve her intellectual outcomes over the course of her life. But what happens if this experiment is reversed? If a child with an extremely strong genetic background is placed in an environment that does not stimulate him: What happens? Interestingly, according to a longitudinal study of highly gifted individuals, it was found that “the two extremes of optimal and pathological experience are both represented disproportionately in the backgrounds of creative individuals”; however, those who experienced supportive family environments were more likely to report being happy (Csikszentmihalyi & Csikszentmihalyi, 1993, p. 187).

Another challenge to determining the origins of high intelligence is the confounding nature of our human social structures. It is troubling to note that some ethnic groups perform better on IQ tests than others—and it is likely that the results do not have much to do with the quality of each ethnic group’s intellect. The same is true for socioeconomic status. Children who live in poverty experience more pervasive, daily stress than children who do not worry about the basic needs of safety, shelter, and food. These worries can negatively affect how the brain functions and develops, causing a dip in IQ scores. Mark Kishiyama and his colleagues determined that children living in poverty demonstrated reduced prefrontal brain functioning comparable to children with damage to the lateral prefrontal cortex (Kishyama, Boyce, Jimenez, Perry, & Knight, 2009).

The debate around the foundations and influences on intelligence exploded in 1969 when an educational psychologist named Arthur Jensen published the article “How Much Can We Boost I.Q. and Achievement” in the Harvard Educational Review . Jensen had administered IQ tests to diverse groups of students, and his results led him to the conclusion that IQ is determined by genetics. He also posited that intelligence was made up of two types of abilities: Level I and Level II. In his theory, Level I is responsible for rote memorization, whereas Level II is responsible for conceptual and analytical abilities. According to his findings, Level I remained consistent among the human race. Level II, however, exhibited differences among ethnic groups (Modgil & Routledge, 1987). Jensen’s most controversial conclusion was that Level II intelligence is prevalent among Asians, then Caucasians, then African Americans. Robert Williams was among those who called out racial bias in Jensen’s results (Williams, 1970).

Obviously, Jensen’s interpretation of his own data caused an intense response in a nation that continued to grapple with the effects of racism (Fox, 2012). However, Jensen’s ideas were not solitary or unique; rather, they represented one of many examples of psychologists asserting racial differences in IQ and cognitive ability. In fact, Rushton and Jensen (2005) reviewed three decades worth of research on the relationship between race and cognitive ability. Jensen’s belief in the inherited nature of intelligence and the validity of the IQ test to be the truest measure of intelligence are at the core of his conclusions. If, however, you believe that intelligence is more than Levels I and II, or that IQ tests do not control for socioeconomic and cultural differences among people, then perhaps you can dismiss Jensen’s conclusions as a single window that looks out on the complicated and varied landscape of human intelligence.

In a related story, parents of African American students filed a case against the State of California in 1979, because they believed that the testing method used to identify students with learning disabilities was culturally unfair as the tests were normed and standardized using white children ( Larry P. v. Riles ). The testing method used by the state disproportionately identified African American children as mentally retarded. This resulted in many students being incorrectly classified as “mentally retarded.”

What are Learning Disabilities?

Learning disabilities are cognitive disorders that affect different areas of cognition, particularly language or reading. It should be pointed out that learning disabilities are not the same thing as intellectual disabilities. Learning disabilities are considered specific neurological impairments rather than global intellectual or developmental disabilities. A person with a language disability has difficulty understanding or using spoken language, whereas someone with a reading disability, such as dyslexia, has difficulty processing what he or she is reading.

Often, learning disabilities are not recognized until a child reaches school age. One confounding aspect of learning disabilities is that they most often affect children with average to above-average intelligence. In other words, the disability is specific to a particular area and not a measure of overall intellectual ability. At the same time, learning disabilities tend to exhibit comorbidity with other disorders, like attention-deficit hyperactivity disorder (ADHD). Anywhere between 30–70% of individuals with diagnosed cases of ADHD also have some sort of learning disability (Riccio, Gonzales, & Hynd, 1994). Let’s take a look at three examples of common learning disabilities: dysgraphia, dyslexia, and dyscalculia.

Children with  dysgraphia  have a learning disability that results in a struggle to write legibly. The physical task of writing with a pen and paper is extremely challenging for the person. These children often have extreme difficulty putting their thoughts down on paper (Smits-Engelsman & Van Galen, 1997). This difficulty is inconsistent with a person’s IQ. That is, based on the child’s IQ and/or abilities in other areas, a child with dysgraphia should be able to write, but can’t. Children with dysgraphia may also have problems with spatial abilities.

Students with dysgraphia need academic accommodations to help them succeed in school. These accommodations can provide students with alternative assessment opportunities to demonstrate what they know (Barton, 2003). For example, a student with dysgraphia might be permitted to take an oral exam rather than a traditional paper-and-pencil test. Treatment is usually provided by an occupational therapist, although there is some question as to how effective such treatment is (Zwicker, 2005).

Dyslexia is the most common learning disability in children. An individual with  dyslexia  exhibits an inability to correctly process letters. The neurological mechanism for sound processing does not work properly in someone with dyslexia. As a result, dyslexic children may not understand sound-letter correspondence. A child with dyslexia may mix up letters within words and sentences—letter reversals, such as those shown in  Figure 7.17 , are a hallmark of this learning disability—or skip whole words while reading. A dyslexic child may have difficulty spelling words correctly while writing. Because of the disordered way that the brain processes letters and sounds, learning to read is a frustrating experience. Some dyslexic individuals cope by memorizing the shapes of most words, but they never actually learn to read (Berninger, 2008).

Two columns and five rows all containing the word “teapot” are shown. “Teapot” is written ten times with the letters jumbled, sometimes appearing backwards and upside down.

Dyscalculia

Dyscalculia  is difficulty in learning or comprehending arithmetic. This learning disability is often first evident when children exhibit difficulty discerning how many objects are in a small group without counting them. Other symptoms may include struggling to memorize math facts, organize numbers, or fully differentiate between numerals, math symbols, and written numbers (such as “3” and “three”).

Additional Supplemental Resources

  • Use Google’s QuickDraw web app on your phone to quickly draw 5 things for Google’s artificially intelligent neural net. When you are done, the app will show you what it thought each of the drawings was. How does this relate to the psychological idea of concepts, prototypes, and schemas? Check out here.  Works best in Chrome if used in a web browser
  • This article lists information about a variety of different topics relating to speech development, including how speech develops and what research is currently being done regarding speech development.
  • The Human intelligence site includes biographical profiles of people who have influenced the development of intelligence theory and testing, in-depth articles exploring current controversies related to human intelligence, and resources for teachers.

Preview the document

  • In 2000, psychologists Sheena Iyengar and Mark Lepper from Columbia and Stanford University published a study about the paradox of choice.  This is the original journal article.
  • Mensa , the high IQ society, provides a forum for intellectual exchange among its members. There are members in more than 100 countries around the world.  Anyone with an IQ in the top 2% of the population can join.
  • This test developed in the 1950s is used to refer to some kinds of behavioral tests for the presence of mind, or thought, or intelligence in putatively minded entities such as machines.
  • Your central “Hub” of information and products created for the network of Parent Centers serving families of children with disabilities.
  • How have average IQ levels changed over time? Hear James Flynn discuss the “Flynn Effect” in this Ted Talk. Closed captioning available.
  • We all want customized experiences and products — but when faced with 700 options, consumers freeze up. With fascinating new research, Sheena Iyengar demonstrates how businesses (and others) can improve the experience of choosing. This is the same researcher that is featured in your midterm exam.
  • What does an IQ Score distribution look like?  Where do most people fall on an IQ Score distribution?  Find out more in this video. Closed captioning available.
  • How do we solve problems?  How can data help us to do this?  Follow Amy Webb’s story of how she used algorithms to help her find her way to true love. Closed captioning available.
  • In this Ted-Ed video, explore some of the ways in which animals communicate, and determine whether or not this communication qualifies as language.  A variety of discussion and assessment questions are included with the video (free registration is required to access the questions). Closed captioning available.
  • Watch this Ted-Ed video to learn more about the benefits of speaking multiple languages, including how bilingualism helps the brain to process information, strengthens the brain, and keeps the speaker more engaged in their world.  A variety of discussion and assessment questions are included with the video (free registration is required to access the questions). Closed captioning available.
  • This video is on how your mind can amaze and betray you includes information on topics such as concepts, prototypes, problem-solving and mistakes in thinking. Closed captioning available.
  • This video on language includes information on topics such as the development of language, language theories, and brain areas involved in language, as well as language disorders. Closed captioning available.
  • This video on the controversy of intelligence includes information on topics such as theories of intelligence, emotional intelligence, and measuring intelligence. Closed captioning available.
  • This video on the brains vs. bias includes information on topics such as intelligence testing, testing bias, and stereotype threat. Closed captioning available.

Access for free at  https://openstax.org/books/psychology-2e/pages/1-introduction

Introduction to Psychology Copyright © 2020 by Julie Lazzara is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Thinking and Intelligence

What is intelligence, learning objectives.

  • Explain the triarchic theory of intelligence
  • Explain the multiple intelligences theory

A four-and-a-half-year-old boy sits at the kitchen table with his father, who is reading a new story aloud to him. He turns the page to continue reading, but before he can begin, the boy says, “Wait, Daddy!” He points to the words on the new page and reads aloud, “Go, Pig! Go!” The father stops and looks at his son. “Can you read that?” he asks. “Yes, Daddy!” And he points to the words and reads again, “Go, Pig! Go!”

This father was not actively teaching his son to read, even though the child constantly asked questions about letters, words, and symbols that they saw everywhere: in the car, in the store, on the television. The dad wondered about what else his son might understand and decided to try an experiment. Grabbing a sheet of blank paper, he wrote several simple words in a list: mom, dad, dog, bird, bed, truck, car, tree. He put the list down in front of the boy and asked him to read the words. “Mom, dad, dog, bird, bed, truck, car, tree,” he read, slowing down to carefully pronounce bird and truck. Then, “Did I do it, Daddy?” “You sure did! That is very good.” The father gave his little boy a warm hug and continued reading the story about the pig, all the while wondering if his son’s abilities were an indication of exceptional intelligence or simply a normal pattern of linguistic development. Like the father in this example, psychologists have wondered what constitutes intelligence and how it can be measured.

Classifying Intelligence

What exactly is intelligence? The way that researchers have defined the concept of intelligence has been modified many times since the birth of psychology. British psychologist Charles Spearman believed intelligence consisted of one general factor, called g , which could be measured and compared among individuals. Spearman focused on the commonalities among various intellectual abilities and de-emphasized what made each unique. Long before modern psychology developed, however, ancient philosophers, such as Aristotle, held a similar view (Cianciolo & Sternberg, 2004).

Others psychologists believe that instead of a single factor, intelligence is a collection of distinct abilities. In the 1940s, Raymond Cattell proposed a theory of intelligence that divided general intelligence into two components: crystallized intelligence and fluid intelligence (Cattell, 1963). Crystallized intelligence is characterized as acquired knowledge and the ability to retrieve it. When you learn, remember, and recall information, you are using crystallized intelligence. You use crystallized intelligence all the time in your coursework by demonstrating that you have mastered the information covered in the course. Fluid intelligence encompasses the ability to see complex relationships and solve problems. Navigating your way home after being detoured onto an unfamiliar route because of road construction would draw upon your fluid intelligence. Fluid intelligence helps you tackle complex, abstract challenges in your daily life, whereas crystallized intelligence helps you overcome concrete, straightforward problems (Cattell, 1963).

Other theorists and psychologists believe that intelligence should be defined in more practical terms. For example, what types of behaviors help you get ahead in life? Which skills promote success? Think about this for a moment. Being able to recite all the presidents of the United States in order is an excellent party trick, but will knowing this make you a better person?

Robert Sternberg developed another theory of intelligence, which he titled the triarchic theory of intelligence because it sees intelligence as comprised of three parts (Sternberg, 1988): practical, creative, and analytical intelligence (Figure 1).

Three boxes are arranged in a triangle. The top box contains “Analytical intelligence; academic problem solving and computation.” There is a line with arrows on both ends connecting this box to another box containing “Practical intelligence; street smarts and common sense.” Another line with arrows on both ends connects this box to another box containing “Creative intelligence; imaginative and innovative problem solving.” Another line with arrows on both ends connects this box to the first box described, completing the triangle.

Figure 1 . Sternberg’s theory identifies three types of intelligence: practical, creative, and analytical.

Practical intelligence , as proposed by Sternberg, is sometimes compared to “street smarts.” Being practical means you find solutions that work in your everyday life by applying knowledge based on your experiences. This type of intelligence appears to be separate from traditional understanding of IQ; individuals who score high in practical intelligence may or may not have comparable scores in creative and analytical intelligence (Sternberg, 1988).

This story about the 2007 Virginia Tech shootings illustrates both high and low practical intelligences. During the incident, one student left her class to go get a soda in an adjacent building. She planned to return to class, but when she returned to her building after getting her soda, she saw that the door she used to leave was now chained shut from the inside. Instead of thinking about why there was a chain around the door handles, she went to her class’s window and crawled back into the room. She thus potentially exposed herself to the gunman. Thankfully, she was not shot. On the other hand, a pair of students was walking on campus when they heard gunshots nearby. One friend said, “Let’s go check it out and see what is going on.” The other student said, “No way, we need to run away from the gunshots.” They did just that. As a result, both avoided harm. The student who crawled through the window demonstrated some creative intelligence but did not use common sense. She would have low practical intelligence. The student who encouraged his friend to run away from the sound of gunshots would have much higher practical intelligence.

Analytical intelligence is closely aligned with academic problem solving and computations. Sternberg says that analytical intelligence is demonstrated by an ability to analyze, evaluate, judge, compare, and contrast. When reading a classic novel for literature class, for example, it is usually necessary to compare the motives of the main characters of the book or analyze the historical context of the story. In a science course such as anatomy, you must study the processes by which the body uses various minerals in different human systems. In developing an understanding of this topic, you are using analytical intelligence. When solving a challenging math problem, you would apply analytical intelligence to analyze different aspects of the problem and then solve it section by section.

You can view the transcript for “Can you solve the prisoner hat riddle? – Alex Gendler” here (opens in new window) .

Creative intelligence is marked by inventing or imagining a solution to a problem or situation. Creativity in this realm can include finding a novel solution to an unexpected problem or producing a beautiful work of art or a well-developed short story. Imagine for a moment that you are camping in the woods with some friends and realize that you’ve forgotten your camp coffee pot. The person in your group who figures out a way to successfully brew coffee for everyone would be credited as having higher creative intelligence.

Multiple Intelligences Theory was developed by Howard Gardner, a Harvard psychologist and former student of Erik Erikson. Gardner’s theory, which has been refined for more than 30 years, is a more recent development among theories of intelligence. In Gardner’s theory, each person possesses at least eight intelligences. Among these eight intelligences, a person typically excels in some and falters in others (Gardner, 1983). The following table describes each type of intelligence.

Gardner’s theory is relatively new and needs additional research to better establish empirical support. At the same time, his ideas challenge the traditional idea of intelligence to include a wider variety of abilities, although it has been suggested that Gardner simply relabeled what other theorists called “cognitive styles” as “intelligences” (Morgan, 1996). Furthermore, developing traditional measures of Gardner’s intelligences is extremely difficult (Furnham, 2009; Gardner & Moran, 2006; Klein, 1997).

Gardner’s inter- and intrapersonal intelligences are often combined into a single type: emotional intelligence. Emotional intelligence encompasses the ability to understand the emotions of yourself and others, show empathy, understand social relationships and cues, regulate your own emotions, and respond in culturally appropriate ways (Parker, Saklofske, & Stough, 2009). People with high emotional intelligence typically have well-developed social skills. Some researchers, including Daniel Goleman, the author of Emotional Intelligence: Why It Can Matter More than IQ , argue that emotional intelligence is a better predictor of success than traditional intelligence (Goleman, 1995). However, emotional intelligence has been widely debated, with researchers pointing out inconsistencies in how it is defined and described, as well as questioning results of studies on a subject that is difficult to measure and study empirically (Locke, 2005; Mayer, Salovey, & Caruso, 2004)

The most comprehensive theory of intelligence to date is the Cattell-Horn-Carroll (CHC) theory of cognitive abilities (Schneider & McGrew, 2018). In this theory, abilities are related and arranged in a hierarchy with general abilities at the top, broad abilities in the middle, and narrow (specific) abilities at the bottom. The narrow abilities are the only ones that can be directly measured; however, they are integrated within the other abilities. At the general level is general intelligence. Next, the broad level consists of general abilities such as fluid reasoning, short-term memory, and processing speed. Finally, as the hierarchy continues, the narrow level includes specific forms of cognitive abilities. For example, short-term memory would further break down into memory span and working memory capacity.

Intelligence can also have different meanings and values in different cultures. If you live on a small island, where most people get their food by fishing from boats, it would be important to know how to fish and how to repair a boat. If you were an exceptional angler, your peers would probably consider you intelligent. If you were also skilled at repairing boats, your intelligence might be known across the whole island. Think about your own family’s culture. What values are important for Latino families? Italian families? In Irish families, hospitality and telling an entertaining story are marks of the culture. If you are a skilled storyteller, other members of Irish culture are likely to consider you intelligent.

Some cultures place a high value on working together as a collective. In these cultures, the importance of the group supersedes the importance of individual achievement. When you visit such a culture, how well you relate to the values of that culture exemplifies your cultural intelligence, sometimes referred to as cultural competence.

Think It Over

What influence do you think emotional intelligence plays in your personal life?

Contribute!

Improve this page Learn More

  • Modification and adaptation. Provided by : Lumen Learning. License : CC BY: Attribution
  • What Are Intelligence and Creativity?. Authored by : OpenStax College. Located at : https://openstax.org/books/psychology-2e/pages/7-4-what-are-intelligence-and-creativity . License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • You Think You Are Smart? There Are 9 Types of Intelligence!. Provided by : Sprouts. Located at : https://www.youtube.com/watch?v=Au0z3EtUiBg . License : Other . License Terms : Standard YouTube License
  • Can you solve the prisoner hat riddle? - Alex Gendler. Authored by : Ted-Ed. Located at : https://www.youtube.com/watch?v=N5vJSNXPEwA&index=1&list=PLUmyCeox8XCwB8FrEfDQtQZmCc2qYMS5a . License : Other . License Terms : Standard YouTube License

Footer Logo Lumen Waymaker

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Intelligence and Creativity in Problem Solving: The Importance of Test Features in Cognition Research

Associated data.

This paper discusses the importance of three features of psychometric tests for cognition research: construct definition, problem space, and knowledge domain. Definition of constructs, e.g., intelligence or creativity, forms the theoretical basis for test construction. Problem space, being well or ill-defined, is determined by the cognitive abilities considered to belong to the constructs, e.g., convergent thinking to intelligence, divergent thinking to creativity. Knowledge domain and the possibilities it offers cognition are reflected in test results. We argue that (a) comparing results of tests with different problem spaces is more informative when cognition operates in both tests on an identical knowledge domain, and (b) intertwining of abilities related to both constructs can only be expected in tests developed to instigate such a process. Test features should guarantee that abilities can contribute to self-generated and goal-directed processes bringing forth solutions that are both new and applicable. We propose and discuss a test example that was developed to address these issues.

The definition of the construct a test is to measure is most important in test construction and application, because cognitive processes reflect the possibilities a task offers. For instance, a test constructed to assess intelligence will operationalize the definition of this construct, being, in short, finding the correct answer. Also, the definition of a construct becomes important when selecting tests for the confirmation of a specific hypothesis. One can only find confirmation for a hypothesis if the chosen task instigates the necessary cognitive operations. For instance, in trying to confirm the assumed intertwining of certain cognitive abilities (e.g., convergent thinking and divergent thinking), tasks should be applied that have shown to yield the necessary cognitive process.

The second test feature, problem space , determines the degrees of freedom cognition has to its disposal in solving a problem. For instance, cognition will go through a wider search path when problem constraints are less well defined and, consequently, data will differ accordingly.

The third test feature, knowledge domain , is important when comparing results from two different tests. When tests differ in problem space, it is not advisable they should differ in knowledge domain. For instance, when studying the differences in cognitive abilities between tests constructed to asses convergent thinking (mostly defined problem space) and divergent thinking (mostly ill-defined problem space), in general test practice, both tests also differ in knowledge domain. Hence, data will reflect cognition operating not only in different problem spaces, but also operating on different knowledge domains, which makes the interpretation of results ambiguous.

The proposed approach for test development and test application holds the promise of, firstly, studying cognitive abilities in different problem spaces while operating on an identical knowledge domain. Although cognitions’ operations have been studied extensively and superbly in both contexts separately, they have rarely been studied in test situations where one or the other test feature is controlled for. The proposed approach also presents a unique method for studying thinking processes in which cognitive abilities intertwine. On the basis of defined abilities, tasks can be developed that have a higher probability of yielding the hypothesized results.

The construct of intelligence is defined as the ability to produce the single best (or correct) answer to a clearly defined question, such as a proof to a theorem ( Simon, 1973 ). It may also be seen as a domain-general ability ( g -factor; Spearman, 1904 ; Cattell, 1967 ) that has much in common with meta cognitive functions, such as metacognitive knowledge, metacognitive monitoring, and metacognitive control ( Saraç et al., 2014 ).

The construct of creativity, in contrast, is defined as the ability to innovate and move beyond what is already known ( Wertheimer , 1945/1968 ; Ghiselin , 1952/1985 ; Vernon, 1970 ). In other words, it emphasizes the aspect of innovation. This involves the ability to consider things from an uncommon perspective, transcend the old order ( Ghiselin , 1952/1985 ; Chi, 1997 ; Ward, 2007 ), and explore loosely associated ideas ( Guilford, 1950 ; Mednick, 1962 ; Koestler, 1964 ; Gentner, 1983 ; Boden, 1990 ; Christensen, 2007 ). Creativity could also be defined as the ability to generate a solution to problems with ill-defined problem spaces ( Wertheimer , 1945/1968 ; Getzels and Csikszentmihalyi, 1976 ). In this sense it involves the ability to identify problematic aspects of a given situation ( Ghiselin , 1952/1985 ) and, in a wider sense, the ability to define completely new problems ( Getzels, 1975 , 1987 ).

Guilford (1956) introduced the constructs of convergent thinking and divergent thinking abilities. Both thinking abilities are important because they allow us insights in human problem solving. On the basis of their definitions convergent and divergent thinking help us to structurally study human cognitive operations in different situations and over different developmental stages. Convergent thinking is defined as the ability to apply conventional and logical search, recognition, and decision-making strategies to stored information in order to produce an already known answer ( Cropley, 2006 ). Divergent thinking, by contrast, is defined as the ability to produce new approaches and original ideas by forming unexpected combinations from available information and by applying such abilities as semantic flexibility, and fluency of association, ideation, and transformation ( Guilford, 1959 , as cited in Cropley, 2006 , p. 1). Divergent thinking brings forth answers that may never have existed before and are often novel, unusual, or surprising ( Cropley, 2006 ).

Guilford (1967) introduced convergent and divergent thinking as part of a set of five operations that apply in his Structure of Intellect model (SOI model) on six products and four kinds of content, to produce 120 different factors of cognitive abilities. With the SOI model Guilford wanted to give the construct of intelligence a comprehensive model. He wanted the model to include all aspects of intelligence, many of which had been seriously neglected in traditional intelligence testing because of a persistent adherence to the belief in Spearman’s g ( Guilford, 1967 , p. vii). Hence, Guilford envisaged cognition to embrace, among other abilities, both convergent and divergent thinking abilities. After these new constructs were introduced and defined, tests for convergent and divergent thinking emerged. Despite the fact that Guilford reported significant loadings of tests for divergent production on tests constructed to measure convergent production ( Guilford, 1967 , p. 155), over the years, both modes of thinking were considered as separate identities where convergent thinking tests associated with intelligence and divergent thinking tests with creativity ( Cropley, 2006 ; Shye and Yuhas, 2004 ). Even intelligence tests that assess aspects of intelligence that supposedly reflect creative abilities do not actually measure creativity ( Kaufman, 2015 ).

The idea that both convergent and divergent thinking are important for solving problems, and that intelligence helps in the creative process, is not really new. In literature we find models of the creative process that define certain stages to convergent and divergent thinking; the stages of purposeful preparation at the start and those of critical verification at the end of the process, respectively ( Wallas, 1926 ; Webb Young , 1939/2003 ). In this view, divergent thinking enables the generation of new ideas whereas the exploratory activities of convergent thinking enable the conversion of ideas into something new and appropriate ( Cropley and Cropley, 2008 ).

We argue that studying the abilities of divergent and convergent thinking in isolation does not suffice to give us complete insight of all possible aspects of human problem solving, its constituent abilities and the structure of its processes. Processes that in a sequence of thoughts and actions lead to novel and adaptive productions ( Lubart, 2001 ) are more demanding of cognition for understanding the situation at hand and planning a path to a possible solution, than abilities involved in less complex situations ( Jaušovec, 1999 ). Processes that yield self-generated and goal-directed thought are the most complex cognitive processes that can be studied ( Beaty et al., 2016 ). Creative cognition literature is moving toward the view that especially in those processes that yield original and appropriate solutions within a specific context, convergent and divergent abilities intertwine ( Cropley, 2006 ; Ward, 2007 ; Gabora, 2010 ).

The approach of intertwining cognitive abilities is also developed within cognitive neuroscience by focusing on the intertwining of brain networks ( Beaty et al., 2016 ). In this approach divergent thinking relates to the default brain network. This network operates in defocused or associative mode of thought yielding spontaneous and self-generated cognition ( Beaty et al., 2015 ). Convergent thinking relates to the executive control network operating in focused or analytic modes of thought, yielding updating, shifting, and inhibition ( Benedek et al., 2014 ). Defocused attention theory ( Mendelssohn, 1976 ) states that less creative individuals operate with a more focused attention than do creative individuals. This theory argues that e.g., attending to two things at the same time, might result in one analogy, while attending to four things might yield six analogies ( Martindale, 1999 ).

In the process of shifting back and forth along the spectrum between associative and analytic modes of thinking, the fruits of associative thought become ingredients for analytic thought processes, and vice versa ( Gabora, 2010 ). In this process, mental imagery is involved as one sensory aspect of the human ability to gather and process information ( Jung and Haier, 2013 ). Mental imagery is fed by scenes in the environment that provide crucial visual clues for creative problem solving and actuates the need for sketching ( Verstijnen et al., 2001 ).

Creative problem solving processes often involve an interactive relationship between imagining, sketching, and evaluating the result of the sketch ( van Leeuwen et al., 1999 ). This interactive process evolves within a type of imagery called “visual reasoning” where forms and shapes are manipulated in order to specify the configurations and properties of the design entities ( Goldschmidt, 2013 ). The originality of inventions is predicted by the application of visualization, whereas their practicality is predicted by the vividness of imagery ( Palmiero et al., 2015 ). Imaginative thought processes emerge from our conceptual knowledge of the world that is represented in our semantic memory system. In constrained divergent thinking, the neural correlates of this semantic memory system partially overlap with those of the creative cognition system ( Abraham and Bubic, 2015 ).

Studies of convergent and divergent thinking abilities have yielded innumerable valuable insights on the cognitive and neurological aspects involved, e.g., reaction times, strategies, brain areas involved, mental representations, and short and long time memory components. Studies on the relationship between both constructs suggest that it is unlikely that individuals employ similar cognitive strategies when solving more convergent than more divergent thinking tasks ( Jaušovec, 2000 ). However, to arrive at a quality formulation the creative process cannot do without the application of both, convergent and divergent thinking abilities (e.g., Kaufmann, 2003 ; Runco, 2003 ; Sternberg, 2005 ; Dietrich, 2007 ; Cropley and Cropley, 2008 ; Silvia et al., 2013 ; Jung, 2014 ).

When it is our aim to study the networks addressed by the intertwining of convergent and divergent thinking processes that are considered to operate when new, original, and yet appropriate solutions are generated, then traditional thinking tests like intelligence tests and creativity tests are not appropriate; they yield processes related to the definition of one or the other type of construct.

Creative Reasoning Task

According to the new insights gained in cognition research, we need tasks that are developed with the aim to instigate precisely the kind of thinking processes we are looking for. Tasks should also provide a method of scoring independently the contribution of convergent and divergent thinking. As one possible solution for such tasks we present the Creative Reasoning Task (CRT; Jaarsveld, 2007 ; Jaarsveld et al., 2010 , 2012 , 2013 ).

The CRT presents participants with an empty 3 × 3 matrix and asks them to fill it out, as original and complex as possible, by creating components and the relationships that connect them. The created matrix can, in principle, be solved by another person. The creation of components is entirely free, as is the generation of the relationships that connects them into a completed pattern. Created matrices are scored with two sub scores; Relations , which scores the logical complexity of a matrix and is, therefore, considered a measure for convergent thinking, and Components and Specifications , which scores the originality, fluency, and flexibility and, therefore, is considered an indication for divergent thinking (for a more detailed description of the score method, see Appendix 1 in Supplementary Material).

Psychometric studies with the CRT showed, firstly, that convergent and divergent thinking abilities apply within this task and can be assessed independently. The CRT sub score Relations correlated with the Standard Progressive Matrices test (SPM) and the CRT sub score Components and Specifications correlated with a standard creativity test (TCT–DP, Test of Creative Thinking–Drawing Production; Urban and Jellen, 1995 ; Jaarsveld et al., 2010 , 2012 , 2013 ). Studies further showed that, although a correlation was observed for the intelligence and creativity test scores, no correlation was observed between the CRT sub scores relating to intelligent and creative performances ( Jaarsveld et al., 2012 , 2013 ; for further details about the CRT’s objectivity, validity, and reliability, see Appendix 2 in Supplementary Material).

Reasoning in creative thinking can be defined as the involvement of executive/convergent abilities in the inhibition of ideas and the updating of information ( Benedek et al., 2014 ). Jung (2014) describes a dichotomy for cognitive abilities with at one end the dedicated system that relies on explicit and conscious knowledge and at the other end the improvisational system that relies more upon implicit or unconscious knowledge systems. The link between explicit and implicit systems can actually be traced back to Kris’ psychoanalytic approach to creativity dating from the 1950s. The implicit system refers to Kris’ primary process of adaptive regression, where unmodulated thoughts intrude into consciousness; the explicit system refers to the secondary process, where the reworking and transformation of primary process material takes place through reality-oriented and ego-controlled thinking ( Sternberg and Lubart, 1999 ). The interaction between explicit and implicit systems can be seen to form the basis of creative reasoning, i.e., the cognitive ability to solve problems in an effective and adaptive way. This interaction evolved as a cognitive mechanism when human survival depended on finding effective solutions to both common and novel problem situations ( Gabora and Kaufman, 2010 ). Creative reasoning solves that minority of problems that are unforeseen and yet of high adaptability ( Jung, 2014 ).

Hence, common tests are insufficient when it comes to solving problems that are unforeseen and yet of high adaptability, because they present problems that are either unforeseen and measure certain abilities contained in the construct of creativity or they address adaptability and measure certain abilities contained in the construct of intelligence. The CRT presents participants with a problem that they could not have foreseen; the form is blank and offers no stimuli. All tests, even creativity tests, present participants with some kind of stimuli. The CRT addresses adaptability; to invent from scratch a coherent structure that can be solved by another person, like creating a crossword puzzle. Problems, that are unforeseen and of high adaptability, are solved by the application of abilities from both constructs.

Neuroscience of Creative Cognition

Studies in neuroscience showed that cognition operating in ill-defined problem space not only applies divergent thinking but also benefits from additional convergent operations ( Gabora, 2010 ; Jung, 2014 ). Understanding creative cognition may be advanced when we study the flow of information among brain areas ( Jung et al., 2010 ).

In a cognitive neuroscience study with the CRT we focused on the cognitive process evolving within this task. Participants performed the CRT while EEG alpha activity was registered. EEG alpha synchronization in frontal areas is understood as an indication of top-down control ( Cooper et al., 2003 ). When observed in frontal areas, for divergent and convergent thinking tasks, it may not reflect a brain state that is specific for creative cognition but could be attributed to the high processing demands typically involved in creative thinking ( Benedek et al., 2011 ). Top-down control, relates to volitionally focusing attention to task demands ( Buschman and Miller, 2007 ). That this control plays a role in tasks with an ill-defined problem space showed when electroencephalography (EEG) alpha synchronization was stronger for individuals engaged in creative ideation tasks compared to an intelligence related tasks ( Fink et al., 2007 , 2009 ; Fink and Benedek, 2014 ). This activation was also found for the CRT; task related alpha synchronization showed that convergent thinking was integrated in the divergent thinking processes. Analyzes of the stages in the CRT process showed that this alpha synchronization was especially visible at the start of the creative process at prefrontal and frontal sites when information processing was most demanding, i.e., due to multiplicity of ideas, and it was visible at the end of the process, due to narrowing down of alternatives ( Jaarsveld et al., 2015 ).

A functional magnetic resonance imaging (fMRI) study ( Beaty et al., 2015 ) with a creativity task in which cognition had to meet specific constraints, showed the networks involved. The default mode network which drives toward abstraction and metaphorical thinking and the executive control network driving toward certainty ( Jung, 2014 ). Control involves not only maintenance of patterns of activity that represent goals and the means to achieve those ( Miller and Cohen, 2001 ), but also their voluntary suppression when no longer needed, as well as the flexible shift between different goals and mental sets ( Abraham and Windmann, 2007 ). Attention can be focused volitionally by top-down signals derived from task demands and automatically by bottom-up signals from salient stimuli ( Buschman and Miller, 2007 ). Intertwining between top-down and bottom-up attention processes in creative cognition ensures a broadening of attention in free associative thinking ( Abraham and Windmann, 2007 ).

These studies support and enhance the findings of creative cognition research in showing that the generation of original and applicable ideas involves an intertwining between different abilities, networks, and attention processes.

Problem Space

A problem space is an abstract representation, in the mind of the problem solver, of the encountered problem and of the asked for solution ( Simon and Newell, 1971 ; Simon, 1973 ; Hayes and Flowers, 1986 ; Kulkarni and Simon, 1988 ; Runco, 2007 ). The space that comes with a certain problem can, according to the constraints that are formulated for the solution, be labeled well-defined or ill-defined ( Simon and Newell, 1971 ). Consequently, the original problems are labeled closed and open problems, respectively ( Jaušovec, 2000 ).

A problem space contains all possible states that are accessible to the problem solver from the initial state , through iterative application of transformation rules , to the goal state ( Newell and Simon, 1972 ; Anderson, 1983 ). The initial state presents the problem solver with a task description that defines which requirements a solution has to answer. The goal state represents the solution. The proposed solution is a product of the application of transformation rules (algorithms and heuristics) on a series of successive intermediate solutions. The proposed solution is also a product of the iterative evaluations of preceding solutions and decisions based upon these evaluations ( Boden, 1990 ; Gabora, 2002 ; Jaarsveld and van Leeuwen, 2005 ; Goldschmidt, 2014 ). Whether all possible states need to be passed through depends on the problem space being well or ill-defined and this, in turn, depends on the character of the task descriptions.

When task descriptions clearly state which requirements a solution has to answer then the inferences made will show little idiosyncratic aspects and will adhere to the task constraints. As a result, fewer options for alternative paths are open to the problem solver and search for a solution evolves in a well-defined space. Vice versa, when task or problem descriptions are fuzzy and under specified, the problem solver’s inferences are more idiosyncratic; the resulting process will evolve within an ill-defined space and will contain more generative-evaluative cycles in which new goals are set, and the cycle is repeated ( Dennett, 1978 , as cited in Gabora, 2002 , p. 126).

Tasks that evolve in defined problem space are, e.g., traditional intelligence tests (e.g., Wechsler Adult Intelligence Scale, WAIS; and SPM, Raven , 1938/1998 ). The above tests consist of different types of questions, each testing a different component of intelligence. They are used in test practice to assess reasoning abilities in diverse domains, such as, abstract, logical, spatial, verbal, numerical, and mathematical domains. These tests have clearly stated task descriptions and each item has one and only one correct solution that has to be generated from memory or chosen from a set of alternatives, like in multiple choice formats. Tests can be constructed to assess crystallized or fluid intelligence. Crystallized intelligence represents abilities acquired through learning, practice, and exposure to education, while fluid intelligence represents a more basic capacity that is valuable to reasoning and problem solving in contexts not necessarily related to school education ( Carroll, 1982 ).

Tasks that evolve in ill-defined problem space are, e.g., standard creativity tests. These types of test ask for a multitude of ideas to be generated in association with a given item or situation (e.g., “think of as many titles for this story”). Therefore, they are also labeled as divergent thinking test. Although they assess originality, fluency, flexibility of responses, and elaboration, they are not constructed, however, to score appropriateness or applicability. Divergent thinking tests assess one limited aspect of what makes an individual creative. Creativity depends also on variables like affect and intuition; therefore, divergent thinking can only be considered an indication of an individual’s creative potential ( Runco, 2008 ). More precisely, divergent thinking explains just under half of the variance in adult creative potential, which is more than three times that of the contribution of intelligence ( Plucker, 1999 , p. 103). Creative achievement , by contrast, is commonly assessed by means of self-reports such as biographical questionnaires in which participants indicate their achievement across various domains (e.g., literature, music, or theater).

Studies with the CRT showed that problem space differently affects processing of and comprehension of relationships between components. Problem space did not affect the ability to process complex information. This ability showed equal performance in well and ill-defined problem spaces ( Jaarsveld et al., 2012 , 2013 ). However, problem space did affect the comprehension of relationships, which showed in the different frequencies of relationships solved and created ( Jaarsveld et al., 2010 , 2012 ). Problem space also affected the neurological activity as displayed when individuals solve open or closed problems ( Jaušovec, 2000 ).

Problem space further affected trends over grade levels of primary school children for relationships solved in well-defined and applied in ill-defined problem space. Only one of the 12 relationships defined in the CRT, namely Combination, showed an increase with grade for both types of problem spaces ( Jaarsveld et al., 2013 ). In the same study, cognitive development in the CRT showed in the shifts of preference for a certain relationship. These shifts seem to correspond to Piaget’s developmental stages ( Piaget et al., 1977 ; Siegler, 1998 ) which are in evidence in the CRT, but not in the SPM ( Jaarsveld et al., 2013 ).

Design Problems

A sub category of problems with an ill-defined problem space are represented by design problems. In contrast to divergent thinking tasks that ask for the generation of a multitude of ideas, in design tasks interim ideas are nurtured and incrementally developed until they are appropriate for the task. Ideas are rarely discarded and replaced with new ideas ( Goel and Pirolli, 1992 ). The CRT could be considered a design problem because it yields (a) one possible solution and (b) an iterative thinking process that involves the realization of a vague initial idea. In the CRT a created matrix, which is a closed problem, is created within an ill-defined problem space. Design problems can be found, e.g., in engineering, industrial design, advertising, software design, and architecture ( Sakar and Chakrabarti, 2013 ), however, they can also be found in the arts, e.g., poetry, sculpting, and dance geography.

These complex problems are partly determined by unalterable needs, requirements and intentions but the major part of the design problem is undetermined ( Dorst, 2004 ). This author points out that besides containing an original and a functional value, these types of problems contain an aesthetic value. He further states that the interpretation of the design problem and the creation and selection of possible suitable solutions can only be decided during the design process on the basis of proposals made by the designer.

In design problems the generation stage may be considered a divergent thinking process. However, not in the sense that it moves in multiple directions or generates multiple possibilities as in a divergent thinking tests, but in the sense that it unrolls by considering an initially vague idea from different perspectives until it comes into focus and requires further processing to become viable. These processes can be characterized by a set of invariant features ( Goel and Pirolli, 1992 ), e.g., structuring. iteration , and coherence .

Structuring of the initial situation is required in design processes before solving can commence. The problem contains little structured and clear information about its initial state and about the requirements of its solution. Therefore, design problems allow or even require re-interpretation of transformation rules; for instance, rearranging the location of furniture in a room according to a set of desirable outcomes. Here one uncovers implicit requirements that introduce a set of new transformations and/or eliminate existing ones ( Barsalou, 1992 ; Goel and Pirolli, 1992 ) or, when conflicting requirements arise, one creates alternatives and/or introduces new trade-offs between the conflicting constraints ( Yamamoto et al., 2000 ; Dorst, 2011 ).

A second aspect of design processes is their iterative character. After structuring and planning a vague idea emerges, which is the result of the merging of memory items. A vague idea is a cognitive structure that, halfway the creative process is still ill defined and, therefore, can be said to exist in a state of potentiality ( Gabora and Saab, 2011 ). Design processes unroll in an iterative way by the inspection and adjustment of the generated ideas ( Goldschmidt, 2014 ). New meanings are created and realized while the creative mind imposes its own order and meaning on the sensory data and through creative production furthers its own understanding of the world ( Arnheim , 1962/1974 , as cited in Grube and Davis, 1988 , pp. 263–264).

A third aspect of design processes is coherence. Coherence theories characterize coherence in, for instance, philosophical problems and psychological processes, in terms of maximal satisfaction of multiple constraints and compute coherence by using, a.o., connectionist algorithms ( Thagard and Verbeurgt, 1998 ). Another measure of coherence is characterized as continuity in design processes. This measure was developed for a design task ( Jaarsveld and van Leeuwen, 2005 ) and calculated by the occurrence of a given pair of objects in a sketch, expressed as a percentage of all the sketches of a series. In a series of sketches participants designed a logo for a new soft drink. Design series strong in coherence also received a high score for their final design, as assessed by professionals in various domains. Indicating that participants with a high score for the creative quality of their final sketch seemed better in assessing their design activity in relation to the continuity in the process and, thereby, seemed better in navigating the ill-defined space of a design problem ( Jaarsveld and van Leeuwen, 2005 ). In design problems the quality of cognitive production depends, in part, on the abilities to reflect on one’s own creative behavior ( Boden, 1996 ) and to monitor how far along in the process one is in solving it ( Gabora, 2002 ). Hence, design problems are especially suited to study more complex problem solving processes.

Knowledge Domain

Knowledge domain represents disciplines or fields of study organized by general principles, e.g., domains of various arts and sciences. It contains accumulated knowledge that can be divided in diverse content domains, and the relevant algorithms and heuristics. We also speak of knowledge domains when referring to, e.g., visuo-spatial and verbal domains. This latter differentiation may refer to the method by which performance in a certain knowledge domain is assessed, e.g., a visuo-spatial physics task that assesses the content domain of the workings of mass and weights of objects.

In comparing tests results, we should keep in mind that apart from reflecting cognitive processes evolving in different problem spaces, the results also arise from cognition operating on different knowledge domains. We argue that, the still contradictory and inconclusive discussion about the relationship between intelligence and creativity ( Silvia, 2008 ), should involve the issue of knowledge domain.

Intelligence tests contain items that pertain to, e.g., verbal, abstract, mechanical and spatial reasoning abilities, while their content mostly operates on knowledge domains that are related to contents contained in school curricula. Items of creativity tests, by contrast, pertain to more idiosyncratic knowledge domains, their contents relating to associations between stored personal experiences ( Karmiloff-Smith, 1992 ). The influence of knowledge domain on the relationships between different test scores was already mentioned by Guilford (1956 , p. 169). This author expected a higher correlation between scores from a typical intelligence test and a divergent thinking test than between scores from two divergent thinking tests because the former pair operated on identical information and the latter pair on different information.

Studies with the CRT showed that when knowledge domain is controlled for, the development of intelligence operating in ill-defined problem space does not compare to that of traditional intelligence but develops more similarly to the development of creativity ( Welter et al., in press ).

Relationship Intelligence and Creativity

The Threshold theory ( Guilford, 1967 ) predicts a relationship between intelligence and creativity up to approximately an intelligence quotient (IQ) level of 120 but not beyond ( Lubart, 2003 ; Runco, 2007 ). Threshold theory was corroborated when creative potential was found to be related to intelligence up to certain IQ levels; however, the theory was refuted, when focusing on achievement in creative domains; it showed that creative achievement benefited from higher intelligence even at fairly high levels of intellectual ability ( Jauk et al., 2013 ).

Distinguishing between subtypes of general intelligence known as fluent and crystallized intelligence ( Cattell, 1967 ), Sligh et al. (2005) observed an inverse threshold effect with fluid IQ: a correlation with creativity test scores in the high IQ group but not in the average IQ group. Also creative achievement showed to be affected by fluid intelligence ( Beaty et al., 2014 ). Intelligence, defined as fluid IQ, verbal fluency, and strategic abilities, showed a higher correlation with creativity scores ( Silvia, 2008 ) than when defined as crystallized intelligence. Creativity tests, which involved convergent thinking (e.g., Remote Association Test; Mednick, 1962 ) showed higher correlations with intelligence than ones that involved only divergent thinking (e.g., the Alternate Uses Test; Guilford et al., 1978 ).

That the Remote Association test also involves convergent thinking follows from the instructions; one is asked, when presented with a stimulus word (e.g., table) to produce the first word one thinks of (e.g., chair). The word pair table–chair is a common association, more remote is the pair table–plate, and quite remote is table–shark. According to Mednick’s theory (a) all cognitive work is done essentially by combining or associating ideas and (b) individuals with more commonplace associations have an advantage in well-defined problem spaces, because the class of relevant associations is already implicit in the statement of the problem ( Eysenck, 2003 ).

To circumvent the problem of tests differing in knowledge domain, one can develop out of one task a more divergent and a more convergent thinking task by asking, on the one hand, for the generation of original responses, and by asking, on the other hand, for more common responses ( Jauk et al., 2012 ). By changing the instruction of a task, from convergent to divergent, one changes the constraints the solution has to answer and, thereby, one changes for cognition its freedom of operation ( Razumnikova et al., 2009 ; Limb, 2010 ; Jauk et al., 2012 ). However, asking for more common responses is still a divergent thinking task because it instigates a generative and ideational process.

Indeed, studying the relationship between intelligence and creativity with knowledge domain controlled for yielded different results as defined in the Threshold theory. A study in which knowledge domain was controlled for showed, firstly, that intelligence is no predictor for the development of creativity ( Welter et al., 2016 ). Secondly, that the relationship between scores of intelligence and creativity tests as defined under the Threshold theory was only observed in a small subset of primary school children, namely, female children in Grade 4 ( Welter et al., 2016 ). We state that relating results of operations yielded by cognitive abilities performing in defined and in ill-defined problem spaces can only be informative when it is ensured that cognitive processes also operate on an identical knowledge domain.

Intertwining of Cognitive Abilities

Eysenck (2003) observed that there is little justification for considering the constructs of divergent and convergent thinking in categorical terms in which one construct excludes the other. In processes that yield original and appropriate solutions convergent and divergent thinking both operate on the same large knowledge base and the underlying cognitive processes are not entirely dissimilar ( Eysenck, 2003 , p. 110–111).

Divergent thinking is especially effective when it is coupled with convergent thinking ( Runco, 2003 ; Gabora and Ranjan, 2013 ). A design problem study ( Jaarsveld and van Leeuwen, 2005 ) showed that divergent production was active throughout the design, as new meanings are continuously added to the evolving structure ( Akin, 1986 ), and that convergent production was increasingly important toward the end of the process, as earlier productions are wrapped up and integrated in the final design. These findings are in line with the assumptions of Wertheimer (1945/1968) who stated that thinking within ill-defined problem space is characterized by two points of focus; one is to work on the parts, the other to make the central idea clearer.

Parallel to the discussion about the intertwining of convergent and divergent thinking abilities in processes that evolve in ill-defined problem space we find the discussion about how intelligence may facilitate creative thought. This showed when top-down cognitive control advanced divergent processing in the generation of original ideas and a certain measure of cognitive inhibition advanced the fluency of idea generation ( Nusbaum and Silvia, 2011 ). Fluid intelligence and broad retrieval considered as intelligence factors in a structural equation study contributed both to the production of creative ideas in a metaphor generation task ( Beaty and Silvia, 2013 ). The notion that creative thought involves top-down, executive processes showed in a latent variable analysis where inhibition primarily promoted the fluency of ideas, and intelligence promoted their originality ( Benedek et al., 2012 ).

Definitions of the Constructs Intelligence and Creativity

The various definitions of the constructs of intelligence and creativity show a problematic overlap. This overlap stems from the enormous endeavor to unanimously agree on valid descriptions for each construct. Spearman (1927) , after having attended many symposia that aimed at defining intelligence, stated that “in truth, ‘intelligence’ has become a mere vocal sound, a word with so many meanings that finally it has none” (p. 14).

Intelligence is expressed in terms of adaptive, goal-directed behavior; and the subset of such behavior that is labeled “intelligent” seems to be determined in large part by cultural or societal norms ( Sternberg and Salter, 1982 ). The development of the IQ measure is discussed by Carroll (1982) : “Binet (around 1905) realized that intelligent behavior or mental ability can be ranged along a scale. Not much later, Stern (around 1912) noticed that, as chronological age increased, variation in mental age changes proportionally. He developed the IQ ratio, whose standard deviation would be approximately constant over chronological age if mental age was divided by chronological age. With the development of multiple-factor-analyses (Thurstone, around 1935) it could be shown that intelligence is not a simple unitary trait because at least seven somewhat independent factors of mental ability were identified.”

Creativity is defined as a combined manifestation of novelty and usefulness ( Jung et al., 2010 ). Although it is identified with divergent thinking, and performance on divergent thinking tasks predicts, e.g., quantity of creative achievements ( Torrance, 1988 , as cited in Beaty et al., 2014 ) and quality of creative performance ( Beaty et al., 2013 ), it cannot be identified uniquely with divergent thinking.

Divergent thinking often leads to highly original ideas that are honed to appropriate ideas by evaluative processes of critical thinking, and valuative and appreciative considerations ( Runco, 2008 ). Divergent thinking tests should be more considered as estimates of creative problem solving potential rather than of actual creativity ( Runco, 1991 ). Divergent thinking is not specific enough to help us understand what, exactly, are the mental processes—or the cognitive abilities—that yield creative thoughts ( Dietrich, 2007 ).

Although current definitions of intelligence and creativity try to determine for each separate construct a unique set of cognitive abilities, analyses show that definitions vary in the degree to which each includes abilities that are generally considered to belong to the other construct ( Runco, 2003 ; Jaarsveld et al., 2012 ). Abilities considered belonging to the construct of intelligence such as hypothesis testing, inhibition of alternative responses, and creating mental images of new actions or plans are also considered to be involved in creative thinking ( Fuster, 1997 , as cited in Colom et al., 2009 , p. 215). The ability, for instance, to evaluate , which is considered to belong to the construct of intelligence and assesses the match between a proposed solution and task constraints, has long been considered to play a role in creative processes that goes beyond the mere generation of a series of ideas as in creativity tasks ( Wallas, 1926 , as cited in Gabora, 2002 , p. 1; Boden, 1990 ).

The Geneplore model ( Finke et al., 1992 ) explicitly models this idea; after stages in which objects are merely generated, follow phases in which an object’s utility is explored and estimated. The generation phase brings forth pre inventive objects, imaginary objects that are generated without any constraints in mind. In exploration, these objects are evaluated for their possible functionalities. In anticipating the functional characteristics of generated ideas, convergent thinking is needed to apprehend the situation, make evaluations ( Kozbelt, 2008 ), and consider the consequences of a chosen solution ( Goel and Pirolli, 1992 ). Convergent reasoning in creativity tasks invokes criteria of functionality and appropriateness ( Halpern, 2003 ; Kaufmann, 2003 ), goal directedness and adaptive behavior ( Sternberg, 1982 ), as well as the abilities of planning and attention. Convergent thinking stages may even require divergent thinking sub processes to identify restrictions on proposed new ideas and suggest requisite revision strategies ( Mumford et al., 2007 ). Hence, evaluation, which is considered to belong to the construct of intelligence, is also functional in creative processes.

In contrast, the ability of flexibility , which is considered to belong to the construct of creativity and denotes an openness of mind that ensures the generation of ideas from different domains, showed, as a factor component for latent divergent thinking, a relationship with intelligence ( Silvia, 2008 ). Flexibility was also found to play an important role in intelligent behavior where it enables us to do novel things smartly in new situations ( Colunga and Smith, 2008 ). These authors studied children’s generalizations of novel nouns and concluded that if we are to understand human intelligence, we must understand the processes that make inventiveness. They propose to include the construct of flexibility within that of intelligence. Therefore, definitions of the constructs we are to measure affect test construction and the resulting data. However, an overlap between definitions, as discussed, yields a test diversity that makes it impossible to interpret the different findings across studies with any confidence ( Arden et al., 2010 ). Also Kim (2005) concluded that because of differences in tests and administration methods, the observed correlation between intelligence and creativity was negligible. As the various definitions of the constructs of intelligence and creativity show problematic overlap, we propose to circumvent the discussion about which cognitive abilities are assessed by which construct, and to consider both constructs as being involved in one design process. This approach allows us to study the contribution to this process of the various defined abilities, without one construct excluding the other.

Reasoning Abilities

The CRT is a psychometrical tool constructed on the basis of an alternative construct of human cognitive functioning that considers creative reasoning as a thinking process understood as the cooperation between cognitive abilities related to intelligent and creative thinking.

In generating relationships for a matrix, reasoning and more specifically the ability of rule invention is applied. The ability of rule invention could be considered as an extension of the sequence of abilities of rule learning, rule inference, and rule application, implying that creativity is an extension of intelligence ( Shye and Goldzweig, 1999 ). According to this model, we could expect different results between a task assessing abilities of rule learning and rule inference, and a task assessing abilities of rule application. In two studies rule learning and rule inference was assessed with the RPM and rule application was assessed with the CRT. Results showed that from Grades 1 to 4, the frequencies of relationships applied did not correlate with those solved ( Jaarsveld et al., 2010 , 2012 ). Results showed that performance in the CRT allows an insight of cognitive abilities operating on relationships among components that differs from the insight based on performance within the same knowledge domain in a matrix solving task. Hence, reasoning abilities lead to different performances when applied in solving closed as to open problems.

We assume that reasoning abilities are more clearly reflected when one formulates a matrix from scratch; in the process of thinking and drawing one has, so to speak, to solve one’s own matrix. In doing so one explains to oneself the relationship(s) realized so far and what one would like to attain. Drawing is thinking aloud a problem and aids the designer’s thinking processes in providing some “talk-back” ( Cross and Clayburn Cross, 1996 ). Explanatory activity enhances learning through increased depth of processing ( Siegler, 2005 ). Analyzing explanations of examples given with physics problems showed that they clarify and specify the conditions and consequences of actions, and that they explicate tacit knowledge; thereby enhancing and completing an individual’s understanding of principles relevant to the task ( Chi and VanLehn, 1991 ). Constraint of the CRT is that the matrix, in principle, can be solved by another person. Therefore, in a kind of inner explanatory discussion, the designer makes observations of progress, and uses evaluations and decisions to answer this constraint. Because of this, open problems where certain constraints have to be met, constitute a powerful mechanism for promoting understanding and conceptual advancement ( Chi and VanLehn, 1991 ; Mestre, 2002 ; Siegler, 2005 ).

Convergent and divergent thinking processes have been studied with a variety of intelligence and creativity tests, respectively. Relationships between performances on these tests have been demonstrated and a large number of research questions have been addressed. However, the fact that intelligence and creativity tests vary in the definition of their construct, in their problem space, and in their knowledge domain, poses methodological problems regarding the validity of comparisons of test results. When we want to focus on one cognitive process, e.g., intelligent thinking, and on its different performances in well or ill-defined problem situations, we need pairs of tasks that are constructed along identical definitions of the construct to be assessed, that differ, however, in the description of their constraints but are identical regarding their knowledge domain.

One such possible pair, the Progressive Matrices Test and the CRT was suggested here. The CRT was developed on the basis of creative reasoning , a construct that assumes the intertwining of intelligent and creativity related abilities when looking for original and applicable solutions. Matched with the Matrices test, results indicated that, besides similarities, intelligent thinking also yielded considerable differences for both problem spaces. Hence, with knowledge domain controlled, and only differences in problem space remaining, comparison of data yielded new results on intelligence’s operations. Data gathered from intelligence and creativity tests, whether they are performance scores or physiological measurements on the basis of, e.g., EEG, and fMRI methods, are reflections of cognitive processes performing on a certain test that was constructed on the basis of a certain definition of the construct it was meant to measure. Data are also reflections of the processes evolving within a certain problem space and of cognitive abilities operating on a certain knowledge domain.

Data can unhide brain networks that are involved in the performance of certain tasks, e.g., traditional intelligence and creativity tests, but data will always be related to the characteristics of the task. The characteristics of the task, such as problem space and knowledge domain originated at the construction of the task, and the construction, on its turn, is affected by the definition of the construct the task is meant to measure.

Here we present the CRT as one possible solution for the described problems in cognition research. However, for research on relationships among test scores other pairs of tests are imaginable, e.g., pairs of tasks operating on the same domain where one task has a defined problem space and the other one an ill-defined space. It is conceivable that pairs of test could operate, besides on the domain of mathematics, on content of e.g., visuo-spatial, verbal, and musical domains. Pairs of test have been constructed by changing the instruction of a task; instructions instigated a more convergent or a more a divergent mode of response ( Razumnikova et al., 2009 ; Limb, 2010 ; Jauk et al., 2012 ; Beaty et al., 2013 ).

The CRT involves the creation of components and their relationships for a 3 × 3 matrix. Hence, matrices created in the CRT are original in the sense that they all bear individual markers and they are applicable in the sense, that they can, in principle, be solved by another person. We showed that the CRT instigates a real design process; creators’ cognitive abilities are wrapped up in a process that should produce a closed problem within an ill-defined problem space.

For research on the relationship among convergent and divergent thinking, we need pairs of test that differ in the problem spaces related to each test but are identical in the knowledge domain on which cognition operates. The test pair of RPM and CRT provides such a pair. For research on the intertwining of convergent and divergent thinking, we need tasks that measure more than tests assessing each construct alone. We need tasks that are developed on the definition of intertwining cognitive abilities; the CRT is one such test.

Hence, we hope to have sufficiently discussed and demonstrated the importance of the three test features, construct definition, problem space, and knowledge domain, for research questions in creative cognition research.

Author Contributions

All authors listed, have made substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary Material

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpsyg.2017.00134/full#supplementary-material

  • Abraham A., Bubic A. (2015). Semantic memory as the root of imagination. Front. Psychol. 6 : 325 10.3389/fpsyg.2015.00325 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Abraham A., Windmann S. (2007). Creative cognition: the diverse operations and the prospect of applying a cognitive neuroscience perspective. Methods 42 38–48. 10.1016/j.ymeth.2006.12.007 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Akin O. (1986). Psychology of Architectural Design London: Pion. [ Google Scholar ]
  • Anderson J. R. (1983). The Architecture of Cognition Cambridge, MA: Harvard University Press. [ Google Scholar ]
  • Arden R., Chavez R. S., Grazioplene R., Jung R. E. (2010). Neuroimaging creativity: a psychometric view. Behav. Brain Res. 214 143–156. 10.1016/j.bbr.2010.05.015 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Arnheim R. (1962/1974). Picasso’s Guernica Berkeley: University of California Press. [ Google Scholar ]
  • Barsalou L. W. (1992). Cognitive Psychology: An Overview for Cognitive Scientists Hillsdale, NJ: LEA. [ Google Scholar ]
  • Beaty R. E., Benedek M., Silvia P. J., Schacter D. L. (2016). Creative cognition and brain network dynamics. Trends Cogn. Sci. 20 87–95. 10.1016/j.tics.2015.10.004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Kaufman S. B., Benedek M., Jung R. E., Kenett Y. N., Jauk E., et al. (2015). Personality and complex brain networks: the role of openness to experience in default network efficiency. Hum. Brain Mapp. 37 773–777. 10.1002/hbm.23065 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Nusbaum E. C., Silvia P. J. (2014). Does insight problem solving predict real-world creativity? Psychol. Aesthet. Creat. Arts 8 287–292. 10.1037/a0035727 [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Silvia R. E. (2013). Metaphorically speaking: cognitive abilities and the production of figurative language. Mem. Cognit. 41 255–267. 10.3758/s13421-012-0258-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beaty R. E., Smeekens B. A., Silvia P. J., Hodges D. A., Kane M. J. (2013). A first look at the role of domain-general cognitive and creative abilities in jazz improvisation. Psychomusicology 23 262–268. 10.1037/a0034968 [ CrossRef ] [ Google Scholar ]
  • Benedek M., Bergner S., Konen T., Fink A., Neubauer A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia 49 3505–3511. 10.1016/j.neuropsychologia.2011.09.004 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Benedek M., Franz F., Heene M., Neubauer A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Pers. Individ. Dif. 53 480–485. 10.1016/j.paid.2012.04.014 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Benedek M., Jauk E., Sommer M., Arendasy M., Neubauer A. C. (2014). Intelligence, creativity, and cognitive control: the common and differential involvement of executive functions in intelligence and creativity. Intelligence 46 73–83. 10.1016/j.intell.2014.05.007 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Boden M. A. (1990). The Creative Mind: Myths and Mechanisms London: Abacus. [ Google Scholar ]
  • Boden M. A. (1996). Artificial Intelligence New York, NY: Academic. [ Google Scholar ]
  • Buschman T. J., Miller E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315 1860–1862. 10.1126/science.1138071 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Carroll J. B. (1982). “The measurement of Intelligence,” in Handbook of Human Intelligence , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 29–120. [ Google Scholar ]
  • Cattell R. B. (1967). The theory of fluid and crystallized general intelligence checked at the 5-6 year-old level. Br. J. Educ. Psychol. 37 209–224. 10.1111/j.2044-8279.1967.tb01930.x [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chi M. T. H. (1997). “ Creativity: Shifting across ontological categories flexibly ,” in Creative Thought: An Investigation of Conceptual Structures and Processes , eds Ward T., Smith S., Vaid J. (Washington, DC: American Psychological Association; ), 209–234. [ Google Scholar ]
  • Chi M. T. H., VanLehn K. A. (1991). The content of physics self-explanations. J. Learn. Sci. 1 69–105. 10.1207/s15327809jls0101_4 [ CrossRef ] [ Google Scholar ]
  • Christensen B. T. (2007). The relationship of analogical distance to analogical function and preinventive structure: the case of engineering design. Mem. Cogn. 35 29–38. 10.3758/BF03195939 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Colom R., Haier R. J., Head K., Álvarez-Linera J., Quiroga M. A., Shih P. C., et al. (2009). Gray matter correlates of fluid, crystallized, and spatial intelligence: testing the P-FIT model. Intelligence 37 124–135. 10.1016/j.intell.2008.07.007 [ CrossRef ] [ Google Scholar ]
  • Colunga E., Smith L. B. (2008). Flexibility and variability: essential to human cognition and the study of human cognition. New Ideas Psychol. 26 158–192. 10.1016/j.newideapsych.2007.07.012 [ CrossRef ] [ Google Scholar ]
  • Cooper N. R., Croft R. J., Dominey S. J. J., Burgess A. P., Gruzelier J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 47 65–74. 10.1016/S0167-8760(02)00107-1 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cropley A. (2006). In praise of convergent thinking. Creat. Res. J. 18 391–404. 10.1207/s15326934crj1803_13 [ CrossRef ] [ Google Scholar ]
  • Cropley A., Cropley D. (2008). Resolving the paradoxes of creativity: an extended phase model. Camb. J. Educ. 38 355–373. 10.1080/03057640802286871 [ CrossRef ] [ Google Scholar ]
  • Cross N., Clayburn Cross A. (1996). Winning by design: the methods of Gordon Murray, racing car designer. Des. Stud. 17 91–107. 10.1016/0142-694X(95)00027-O [ CrossRef ] [ Google Scholar ]
  • Dennett D. (1978). Brainstorms: Philosophical Essays on Mind and Psychology Montgomery, VT: Bradford Books. [ Google Scholar ]
  • Dietrich A. (2007). Who’s afraid of a cognitive neuroscience of creativity? Methods 42 22–27. 10.1016/j.ymeth.2006.12.009 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dorst K. (2004). The problem of design problems: Problem solving and design expertise. J. Design Res. 4 10.1504/JDR.2004.009841 [ CrossRef ] [ Google Scholar ]
  • Dorst K. (2011). The core of ‘design thinking’ and its application. Des. Stud. 32 521–532. 10.1016/j.destud.2011.07.006 [ CrossRef ] [ Google Scholar ]
  • Eysenck H. J. (2003). “Creativity, personality and the convergent-divergent continuum,” in Critical Creative Processes , ed. Runco M. A. (Cresskill, NJ: Hampton Press; ), 95–114. [ Google Scholar ]
  • Fink A., Benedek M. (2014). EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 44 111–123. 10.1016/j.neubiorev.2012.12.002 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fink A., Benedek M., Grabner R. H., Staudt B., Neubauer A. C. (2007). Creativity meets neuroscience: experimental tasks for the neuroscientific study of creative thinking. Methods 42 68–76. 10.1016/j.ymeth.2006.12.001 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fink A., Grabner R. H., Benedek M., Reishofer G., Hauswirth V., Fally M., et al. (2009). The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI. Hum. Brain Mapp. 30 734–748. 10.1002/hbm.20538 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Finke R. A., Ward T. B., Smith S. M. (1992). Creative Cognition: Theory, Research, and Applications Cambridge, MA: MIT Press. [ Google Scholar ]
  • Fuster J. M. (1997). Network memory. Trends Neurosci. 20 451–459. 10.1016/S0166-2236(97)01128-4 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gabora L. (2002). “Cognitive mechanisms underlying the creative process,” in Proceedings of the Fourth International Conference on Creativity and Cognition , eds Hewett T., Kavanagh T. (Loughborough: Loughborough University; ), 126–133. [ Google Scholar ]
  • Gabora L. (2010). Revenge of the ‘neurds’: Characterizing creative thought in terms of the structure and dynamics of human memory. Creat. Res. J. 22 1–13. 10.1080/10400410903579494 [ CrossRef ] [ Google Scholar ]
  • Gabora L., Kaufman S. B. (2010). “Evolutionary approaches to creativity,” in The Cambridge Handbook of Creativity , eds Kaufman J. S., Sternberg R. J. (Cambridge: Cambridge University Press; ), 279–300. [ Google Scholar ]
  • Gabora L., Ranjan A. (2013). “How insight emerges in a distributed, content-addressable memory,” in The Neuroscience of Creativity , eds Bristol A., Vartanian O., Kaufman J. (Cambridge: MIT Press; ), 19–43. [ Google Scholar ]
  • Gabora L., Saab A. (2011). “Creative inference and states of potentiality in analogy problem solving,” in Proceedings of the Annual Meeting of the Cognitive Science Society , Boston, MA, 3506–3511. [ Google Scholar ]
  • Gentner D. (1983). Structure mapping: a theoretical framework for analogy. Cogn. Sci. 7 155–170. 10.1207/s15516709cog0702_3 [ CrossRef ] [ Google Scholar ]
  • Getzels J. W. (1975). Problem finding and the inventiveness of solutions. J. Creat. Behav. 9 12–18. 10.1002/j.2162-6057.1975.tb00552.x [ CrossRef ] [ Google Scholar ]
  • Getzels J. W. (1987). “Creativity, intelligence, and problem finding: retrospect and prospect,” in Frontiers of Creativity Research: Beyond the Basics , ed. Isaksen S. G. (Buffalo, NY: Bearly Limited; ), 88–102. [ Google Scholar ]
  • Getzels J. W., Csikszentmihalyi M. (1976). The Creative Vision: A Longitudinal Study of Problem Finding in Art New York, NY: Wiley. [ Google Scholar ]
  • Ghiselin B. (ed.) (1952/1985). The Creative Process Los Angeles: University of California. [ Google Scholar ]
  • Goel V., Pirolli P. (1992). The structure of design problem spaces. Cogn. Sci. 16 395–429. 10.1207/s15516709cog1603_3 [ CrossRef ] [ Google Scholar ]
  • Goldschmidt G. (2013). “A micro view of design reasoning: two-way shifts between embodiment and rationale,” in Creativity and Rationale: Enhancing Human Experience by Design, Human-Computer Interaction Series , ed. Carroll J. M. (London: Springer Verlag; ). 10.1007/978-1-4471-2_3 [ CrossRef ] [ Google Scholar ]
  • Goldschmidt G. (2014). Linkography: Unfolding the Design Process Cambridge, MA: MIT Press. [ Google Scholar ]
  • Grube H. E., Davis S. N. (1988). “Inching our way up mount Olympus: The evolving-systems approach to creative thinking,” in The Nature of Creativity , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 243–270. [ Google Scholar ]
  • Guilford J. P. (1950). Creativity. Am. Psychol. 5 444–454. 10.1037/h0063487 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1956). The structure of intellect model. Psychol. Bull. 53 267–293. 10.1037/h0040755 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1959). “Traits of creativity,” in Creativity and its Cultivation , ed. Anderson H. H. (New York: Harper; ), 142–161. [ Google Scholar ]
  • Guilford J. P. (1967). The Nature of Human Intelligence New York, NY: McGraw-Hill, Inc. [ Google Scholar ]
  • Guilford J. P., Christensen P. R., Merrifield P. R., Wilson R. C. (1978). Alternate Uses: Manual of Instructions and Interpretation Orange, CA: Sheridan Psychological Services. [ Google Scholar ]
  • Halpern D. F. (2003). “Thinking critically about creative thinking,” in Critical Creative Processes , ed. Runco M. A. (Cresskill, NJ: Hampton Press; ), 189–208. [ Google Scholar ]
  • Hayes J. R., Flowers L. S. (1986). Writing research and the writer. Am. Psychol. 41 1106–1113. 10.1037/0003-066X.41.10.1106 [ CrossRef ] [ Google Scholar ]
  • Jaarsveld S. (2007). Creative Cognition: New Perspectives on Creative Thinking Kaiserslautern: University of Kaiserslautern Press. [ Google Scholar ]
  • Jaarsveld S., Fink A., Rinner M., Schwab D., Benedek M., Lachmann T. (2015). Intelligence in creative processes; an EEG study. Intelligence 49 171–178. 10.1016/j.ijpsycho.2012.02.012 [ CrossRef ] [ Google Scholar ]
  • Jaarsveld S., Lachmann T., Hamel R., van Leeuwen C. (2010). Solving and creating Raven Progressive Matrices: reasoning in well and ill defined problem spaces. Creat. Res. J. 22 304–319. 10.1080/10400419.2010.503541 [ CrossRef ] [ Google Scholar ]
  • Jaarsveld S., Lachmann T., van Leeuwen C. (2012). Creative reasoning across developmental levels: convergence and divergence in problem creation. Intelligence 40 172–188. 10.1016/j.intell.2012.01.002 [ CrossRef ] [ Google Scholar ]
  • Jaarsveld S., Lachmann T., van Leeuwen C. (2013). “The impact of problem space on reasoning: Solving versus creating matrices,” in Proceedings of the 35th Annual Conference of the Cognitive Science Society , eds Knauff M., Pauen M., Sebanz N., Wachsmuth I. (Austin, TX: Cognitive Science Society; ), 2632–2638. [ Google Scholar ]
  • Jaarsveld S., van Leeuwen C. (2005). Sketches from a design process: creative cognition inferred from intermediate products. Cogn. Sci. 29 79–101. 10.1207/s15516709cog2901_4 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jauk E., Benedek M., Dunst B., Neubauer A. C. (2013). The relationship between intelligence and creativity: new support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence 41 212–221. 10.1016/j.intell.2013.03.003 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jauk E., Benedek M., Neubauer A. C. (2012). Tackling creativity at its roots: evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. Int. J. Psychophysiol. 84 219–225. 10.1016/j.ijpsycho.2012.02.012 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jaušovec N. (1999). “Brain biology and brain functioning,” in Encyclopedia of Creativity , eds Runco M. A., Pritzker S. R. (San Diego, CA: Academic Press; ), 203–212. [ Google Scholar ]
  • Jaušovec N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: an EEG Study. Intelligence 28 213–237. 10.1016/S0160-2896(00)00037-4 [ CrossRef ] [ Google Scholar ]
  • Jung R. E. (2014). Evolution, creativity, intelligence, and madness: “here be dragons”. Front. Psychol 5 : 784 10.3389/fpsyg.2014.00784 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jung R. E., Haier R. J. (2013). “Creativity and intelligence,” in Neuroscience of Creativity , eds Vartanian O., Bristol A. S., Kaufman J. C. (Cambridge, MA: MIT Press; ), 233–254. [ Google Scholar ]
  • Jung R. E., Segall J. M., Bockholt H. J., Flores R. A., Smith S. M., Chavez R. S., et al. (2010). Neuroanatomy of creativity. Hum. Brain Mapp. 31 398–409. 10.1002/hbm.20874 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Karmiloff-Smith A. (1992). Beyond Modularity: A Developmental Perspective on Cognitive Science Cambridge, MA: MIT Press. [ Google Scholar ]
  • Kaufman J. C. (2015). Why creativity isn’t in IQ tests, why it matters, and why it won’t change anytime soon probably. Intelligence 3 59–72. 10.3390/jintelligence303005 [ CrossRef ] [ Google Scholar ]
  • Kaufmann G. (2003). What to measure? A new look at the concept of creativity. Scand. J. Educ. Res. 47 235–251. 10.1080/00313830308604 [ CrossRef ] [ Google Scholar ]
  • Kim K. H. (2005). Can only intelligent people be creative? J. Second. Gift. Educ. 16 57–66. [ Google Scholar ]
  • Koestler A. (1964). The Act of Creation London: Penguin. [ Google Scholar ]
  • Kozbelt A. (2008). Hierarchical linear modeling of creative artists’ problem solving behaviors. J. Creat. Behav. 42 181–200. 10.1002/j.2162-6057.2008.tb01294.x [ CrossRef ] [ Google Scholar ]
  • Kulkarni D., Simon H. A. (1988). The processes of scientific discovery: the strategy of experimentation. Cogn. Sci. 12 139–175. 10.1016/j.coph.2009.08.004 [ CrossRef ] [ Google Scholar ]
  • Limb C. J. (2010). Your Brain on Improve Available at: http://www.ted.com/talks/charles_limb_your_brain_on_improv [ Google Scholar ]
  • Lubart T. I. (2001). Models of the creative process: past, present and future. Creat. Res. J. 13 295–308. 10.1207/S15326934CRJ1334_07 [ CrossRef ] [ Google Scholar ]
  • Lubart T. I. (2003). Psychologie de la Créativité. Cursus. Psychologie Paris: Armand Colin. [ Google Scholar ]
  • Martindale C. (1999). “Biological basis of creativity,” in Handbook of Creativity , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 137–152. [ Google Scholar ]
  • Mednick S. A. (1962). The associative basis of the creative process. Psychol. Rev. 69 220–232. 10.1037/h0048850 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mendelssohn G. A. (1976). Associational and attentional processes in creative performance. J. Pers. 44 341–369. 10.1111/j.1467-6494.1976.tb00127.x [ CrossRef ] [ Google Scholar ]
  • Mestre J. P. (2002). Probing adults’ conceptual understanding and transfer of learning via problem posing. Appl. Dev. Psychol. 23 9–50. 10.1016/S0193-3973(01)00101-0 [ CrossRef ] [ Google Scholar ]
  • Miller E. K., Cohen J. D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24 167–202. 10.1146/annurev.neuro.24.1.167 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mumford M. D., Hunter S. T., Eubanks D. L., Bedell K. E., Murphy S. T. (2007). Developing leaders for creative efforts: a domain-based approach to leadership development. Hum. Res. Manag. Rev. 17 402–417. 10.1016/j.hrmr.2007.08.002 [ CrossRef ] [ Google Scholar ]
  • Newell A., Simon H. A. (1972). “The theory of human problem solving,” in Human Problem Solving , eds Newell A., Simon H. (Englewood Cliffs, NJ: Prentice Hall; ), 787–868. [ Google Scholar ]
  • Nusbaum E. C., Silvia P. J. (2011). Are intelligence and creativity really so different? Intelligence 39 36–40. 10.1016/j.intell.2010.11.002 [ CrossRef ] [ Google Scholar ]
  • Palmiero M., Nori R., Aloisi V., Ferrara M., Piccardi L. (2015). Domain-specificity of creativity: a study on the relationship between visual creativity and visual mental imagery. Front. Psychol. 6 : 1870 10.3389/fpsyg.2015.01870 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Piaget J., Montangero J., Billeter J. (1977). “La formation des correlats,” in Recherches sur L’abstraction Reflechissante I , ed. Piaget J. (Paris: Presse Universitaires de France; ), 115–129. [ Google Scholar ]
  • Plucker J. (1999). Is the proof in the pudding? Reanalyses of torrance’s (1958 to present) longitudinal study data. Creat. Res. J. 12 103–114. 10.1207/s15326934crj1202_3 [ CrossRef ] [ Google Scholar ]
  • Raven J. C. (1938/1998). Standard Progressive Matrices, Sets A, B, C, D & E Oxford: Oxford Psychologists Press. [ Google Scholar ]
  • Razumnikova O. M., Volf N. V., Tarasova I. V. (2009). Strategy and results: sex differences in electrographic correlates of verbal and figural creativity. Hum. Physiol. 35 285–294. 10.1134/S0362119709030049 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Runco M. A. (1991). The evaluative, valuative, and divergent thinking of children. J. Creat. Behav. 25 311–319. 10.1177/1073858414568317 [ CrossRef ] [ Google Scholar ]
  • Runco M. A. (2003). “Idea evaluation, divergent thinking, and creativity,” in Critical Creative Processes , ed. Runco M. A. (Cresskill, NJ: Hampton Press; ), 69–94. [ Google Scholar ]
  • Runco M. A. (2007). Creativity, Theories and Themes: Research, Development, and Practice New York, NY: Elsevier. [ Google Scholar ]
  • Runco M. A. (2008). Commentary: divergent thinking is not synonymous with creativity. Psychol. Aesthet. Creat. Arts 2 93–96. 10.1037/1931-3896.2.2.93 [ CrossRef ] [ Google Scholar ]
  • Sakar P., Chakrabarti A. (2013). Support for protocol analyses in design research. Des. Issues 29 70–81. 10.1162/DESI_a_00231 [ CrossRef ] [ Google Scholar ]
  • Saraç S., Önder A., Karakelle S. (2014). The relations among general intelligence, metacognition and text learning performance. Educ. Sci. 39 40–53. [ Google Scholar ]
  • Shye S., Goldzweig G. (1999). Creativity as an extension of intelligence: Faceted definition and structural hypotheses. Megamot 40 31–53. [ Google Scholar ]
  • Shye S., Yuhas I. (2004). Creativity in problem solving. Tech. Rep. 10.13140/2.1.1940.0643 [ CrossRef ] [ Google Scholar ]
  • Siegler R. S. (1998). Children’s Thinking , 3rd Edn Upper Saddle River, NJ: Prentice Hall, 28–50. [ Google Scholar ]
  • Siegler R. S. (2005). Children’s learning. Am. Psychol. 60 769–778. 10.1037/0003-066X.60.8.769 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Silvia P. J. (2008). Creativity and intelligence revisited: a reanalysis of Wallach and Kogan (1965). Creat. Res. J. 20 34–39. 10.1080/10400410701841807 [ CrossRef ] [ Google Scholar ]
  • Silvia P. J., Beaty R. E., Nussbaum E. C. (2013). Verbal fluency and creativity: general and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence 41 328–340. 10.1016/j.intell.2013.05.004 [ CrossRef ] [ Google Scholar ]
  • Simon H. A. (1973). The structure of ill structured problems. Artif. Intell. 4 1012–1021. 10.1016/0004-3702(73)90011-8 [ CrossRef ] [ Google Scholar ]
  • Simon H. A., Newell A. (1971). Human problem solving: state of theory in 1970. Am. Psychol. 26 145–159. 10.1037/h0030806 [ CrossRef ] [ Google Scholar ]
  • Sligh A. C., Conners F. A., Roskos-Ewoldsen B. (2005). Relation of creativity to fluid and crystallized intelligence. J. Creat. Behav. 39 123–136. 10.1002/j.2162-6057.2005.tb01254.x [ CrossRef ] [ Google Scholar ]
  • Spearman C. (1904). ‘General intelligence,’ objectively determined and measured. Am. J. Psychol. 15 201–293. 10.2307/1412107 [ CrossRef ] [ Google Scholar ]
  • Spearman C. (1927). The Abilities of Man London: Macmillan. [ Google Scholar ]
  • Sternberg R. J. (1982). “Conceptions of intelligence,” in Handbook of Human Intelligence , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 3–28. [ Google Scholar ]
  • Sternberg R. J. (2005). “The WICS model of giftedness,” in Conceptions of Giftedness , 2nd Edn, eds Sternberg R. J., Davidson J. E. (New York, NY: Cambridge University Press; ), 237–243. [ Google Scholar ]
  • Sternberg R. J., Lubart T. I. (1999). “The concept of creativity: Prospects and paradigms,” in Handbook of Creativity , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 3–15. [ Google Scholar ]
  • Sternberg R. J., Salter W. (1982). “The nature of intelligence and its measurements,” in Handbook of Human Intelligence , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 3–24. [ Google Scholar ]
  • Thagard P., Verbeurgt K. (1998). Coherence as constraint satisfaction. Cogn. Sci. 22 l–24. 10.1207/s15516709cog2201_1 [ CrossRef ] [ Google Scholar ]
  • Torrance E. P. (1988). “The nature of creativity as manifest in its testing,” in The Nature of Creativity: Contemporary Psychological Perspectives , ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 43–75. [ Google Scholar ]
  • Urban K. K., Jellen H. G. (1995). Test of Creative Thinking – Drawing Production Frankfurt: Swets Test Services. [ Google Scholar ]
  • van Leeuwen C., Verstijnen I. M., Hekkert P. (1999). “Common unconscious dynamics underlie uncommon conscious effect: a case study in the iterative nature of perception and creation,” in Modeling Consciousness Across the Disciplines , ed. Jordan J. S. (Lanham, MD: University Press of America; ), 179–218. [ Google Scholar ]
  • Vernon P. E. (ed.) (1970). Creativity London: Penguin. [ Google Scholar ]
  • Verstijnen I. M., Heylighen A., Wagemans J., Neuckermans H. (2001). “Sketching, analogies, and creativity,” in Visual and Spatial Reasoning in Design, II. Key Centre of Design Computing and Cognition , eds Gero J. S., Tversky B., Purcell T. (Sydney, NSW: University of Sydney; ). [ Google Scholar ]
  • Wallas G. (1926). The Art of Thought New York, NY: Harcourt, Brace & World. [ Google Scholar ]
  • Ward T. B. (2007). Creative cognition as a window on creativity. Methods 42 28–37. 10.1016/j.ymeth.2006.12.002 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Webb Young J. (1939/2003). A Technique for Producing Ideas New York, NY: McGraw-Hill. [ Google Scholar ]
  • Welter M. M., Jaarsveld S., Lachmann T. Problem space matters: development of creativity and intelligence in primary school children. Creat. Res. J. (in press) [ Google Scholar ]
  • Welter M. M., Jaarsveld S., van Leeuwen C., Lachmann T. (2016). Intelligence and creativity; over the threshold together? Creat. Res. J. 28 212–218. 10.1080/10400419.2016.1162564 [ CrossRef ] [ Google Scholar ]
  • Wertheimer M. (1945/1968). Productive Thinking (Enlarged Edition) London: Tavistock. [ Google Scholar ]
  • Yamamoto Y., Nakakoji K., Takada S. (2000). Hand on representations in two dimensional spaces for early stages of design. Knowl. Based Syst. 13 357–384. 10.1016/S0950-7051(00)00078-2 [ CrossRef ] [ Google Scholar ]

Howard Gardner’s Theory of Multiple Intelligences

Michele Marenus

Research Scientist

B.A., Psychology, Ed.M., Harvard Graduate School of Education

Michele Marenus is a Ph.D. candidate at the University of Michigan with over seven years of experience in psychology research.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Howard Gardner first proposed the theory of multiple intelligences in his 1983 book “Frames of Mind”, where he broadens the definition of intelligence and outlines several distinct types of intellectual competencies.

Gardner developed a series of eight inclusion criteria while evaluating each “candidate” intelligence that was based on a variety of scientific disciplines.

He writes that we may all have these intelligences, but our profile of these intelligences may differ individually based on genetics or experience.

Gardner defines intelligence as a “biopsychological potential to process information that can be activated in a cultural setting to solve problems or create products that are of value in a culture” (Gardner, 2000, p.28).

Howard Gardner

What is Multiple Intelligences Theory?

  • Howard Gardner’s theory of multiple intelligences proposes that people are not born with all of the intelligence they will ever have.
  • This theory challenged the traditional notion that there is one single type of intelligence, sometimes known as “g” for general intelligence, that only focuses on cognitive abilities.
  • To broaden this notion of intelligence, Gardner introduced eight different types of intelligences consisting of: Linguistic, Logical/Mathematical, Spatial, Bodily-Kinesthetic, Musical, Interpersonal, Intrapersonal, and Naturalist.
  • Gardner notes that the linguistic and logical-mathematical modalities are most typed valued in school and society.
  • Gardner also suggests that there may other “candidate” intelligences—such as spiritual intelligence, existential intelligence, and moral intelligence—but does not believe these meet his original inclusion criteria. (Gardner, 2011).

Linguistic Intelligence (word smart)

Linguistic Intelligence is a part of Howard Gardner’s multiple intelligence theory that deals with sensitivity to the spoken and written language, ability to learn languages, and capacity to use language to accomplish certain goals.

Linguistic intelligence involves the ability to use language masterfully to express oneself rhetorically or poetically. It includes the ability to manipulate syntax, structure, semantics, and phonology of language.

People with linguistic intelligence, such as William Shakespeare and Oprah Winfrey, have the ability to analyze information and create products involving oral and written language, such as speeches, books, and memos.

Potential Career Choices

Careers you could dominate with your linguistic intelligence:

Lawyer Speaker / Host Author Journalist Curator

Logical-Mathematical Intelligence (number/reasoning smart)

Logical-mathematical intelligence refers to the capacity to analyze problems logically, carry out mathematical operations, and investigate issues scientifically.

Logical-mathematical intelligence involves the ability to use logic, abstractions, reasoning, and critical thinking to solve problems. It includes the capacity to understand the underlying principles of some kind of causal system.

People with logical-mathematical intelligence, such as Albert Einstein and Bill Gates, have an ability to develop equations and proofs, make calculations, and solve abstract problems.

Careers you could dominate with your logical-mathematical intelligence:

Mathematician Accountant Statistician Scientist Computer Analyst

Spatial Intelligence (picture smart)

Spatial intelligence involves the ability to perceive the visual-spatial world accurately. It includes the ability to transform, modify, or manipulate visual information. People with high spatial intelligence are good at visualization, drawing, sense of direction, puzzle building, and reading maps.

Spatial intelligence features the potential to recognize and manipulate the patterns of wide space (those used, for instance, by navigators and pilots) as well as the patterns of more confined areas, such as those of importance to sculptors, surgeons, chess players, graphic artists, or architects.

People with spatial intelligence, such as Frank Lloyd Wright and Amelia Earhart, have the ability to recognize and manipulate large-scale and fine-grained spatial images.

Careers you could dominate with your spatial intelligence:

Pilot Surgeon Architect Graphic Artist Interior Decorator

Bodily-Kinesthetic Intelligence (body smart)

Bodily-kinesthetic intelligence is the potential of using one’s whole body or parts of the body (like the hand or the mouth) to solve problems or to fashion products.

Bodily-kinesthetic intelligence involves using the body with finesse, grace, and skill. It includes physical coordination, balance, dexterity, strength, and flexibility. People with high bodily-kinesthetic intelligence are good at sports, dance, acting, and physical crafts.

People with bodily-kinesthetic intelligence, such as Michael Jordan and Simone Biles, can use one’s own body to create products, perform skills, or solve problems through mind–body union.

Careers you could dominate with your bodily-kinesthetic intelligence:

Dancer Athlete Surgeon Mechanic Carpenter Physical Therapist

Musical Intelligence (music smart)

Musical intelligence refers to the skill in the performance, composition, and appreciation of musical patterns.

Musical intelligence involves the ability to perceive, discriminate, create, and express musical forms. It includes sensitivity to rhythm, pitch, melody, and tone color. People with high musical intelligence are good at singing, playing instruments, and composing music.

People with musical intelligence, such as Beethoven and Ed Sheeran, have the ability to recognize and create musical pitch, rhythm, timbre, and tone.

Careers you could dominate with your musical intelligence:

Singer Composer DJ Musician

Interpersonal Intelligence (people smart)

Interpersonal intelligence is the capacity to understand the intentions, motivations, and desires of other people and, consequently, to work effectively with others.

Interpersonal intelligence involves the ability to understand and interact effectively with others. It includes sensitivity to other people’s moods, temperaments, motivations, and desires. People with high interpersonal intelligence communicate well and can build rapport.

People with interpersonal intelligence, such as Mahatma Gandhi and Mother Teresa, have the ability to recognize and understand other people’s moods, desires, motivations, and intentions.

Careers you could dominate with your interpersonal intelligence:

Teacher Psychologist Manager Salespeople Public Relations

Intrapersonal Intelligence (self-smart)

Intrapersonal intelligence is the capacity to understand oneself, to have an effective working model of oneself, including one’s desires, fears, and capacities—and to use such information effectively in regulating one’s own life.

It includes self-awareness, personal cognizance, and the ability to refine, analyze, and articulate one’s emotional life.

People with intrapersonal intelligence, such as Aristotle and Maya Angelou, have the ability to recognize and understand his or her own moods, desires, motivations, and intentions.

This type of intelligence can help a person understand which life goals are important and how to achieve them.

Careers you could dominate with your intrapersonal intelligence:

Therapist Psychologist Counselor Entrepreneur Clergy

Naturalist intelligence (nature smart)

Naturalist intelligence involves the ability to recognize, categorize, and draw upon patterns in the natural environment. It includes sensitivity to the flora, fauna, and phenomena in nature. People with high naturalist intelligence are good at classifying natural forms.

Naturalistic intelligence involves expertise in recognizing and classifying the numerous species—the flora and fauna—of his or her environment.

People with naturalistic intelligence, such as Charles Darwin and Jane Goddall, have the ability to identify and distinguish among different types of plants, animals, and weather formations that are found in the natural world.

Careers you could dominate with your naturalist intelligence:

Botanist Biologist Astronomer Meteorologist Geologist

Critical Evaluation

Most resistance to multiple intelligences theory has come from cognitive psychologists and psychometricians. Cognitive psychologists such as Waterhouse (2006) claimed that there is no empirical evidence to the validity of the theory of multiple intelligences.

Psychometricians, or psychologists involved in testing, argue that intelligence tests support the concept for a single general intelligence, “g”, rather than the eight distinct competencies (Gottfredson, 2004). Other researchers argue that Gardner’s intelligences comes second or third to the “g” factor (Visser, Ashton, & Vernon, 2006).

Some responses to this criticism include that the multiple intelligences theory doesn’t dispute the existence of the “g” factor; it proposes that it is equal along with the other intelligences. Many critics overlook the inclusion criteria Gardner set forth.

These criteria are strongly supported by empirical evidence in psychology, biology, neuroscience, among others. Gardner admits that traditional psychologists were valid in criticizing the lack of operational definitions for the intelligences, that is, to figure out how to measure and test the various competencies (Davis et al., 2011).

Gardner was surprised to find that Multiple Intelligences theory has been used most widely in educational contexts. He developed this theory to challenge academic psychologists, and therefore, he did not present many educational suggestions. For this reason, teachers and educators were able to take the theory and apply it as they saw fit.

As it gained popularity in this field, Gardner has maintained that practitioners should determine the theory’s best use in classrooms. He has often declined opportunities to aid in curriculum development that uses multiple intelligences theory, opting to only provide feedback at most (Gardner, 2011).

Most of the criticism has come from those removed from the classroom, such as journalists and academics. Educators are not typically tied to the same standard of evidence and are less concerned with abstract inconsistencies, which has given them the freedom to apply it with their students and let the results speak for itself (Armstrong, 2019).

Shearer (2020) provides extensive empirical evidence from neuroscience research supporting MI theory.

Shearer reviewed evidence from over 500 functional neuroimaging studies that associate patterns of brain activation with the cognitive components of each intelligence.

The visual network was associated with the visual-spatial intelligence, somatomotor networks with kinesthetic intelligence, fronto-parietal networks with logical and general intelligence, auditory networks with musical intelligence, and default mode networks with intra- and interpersonal intelligences. The coherence and distinctiveness of these networks provides robust support for the neural validity of MI theory

He concludes that human intelligence is best characterized as being multiple rather than singular, with each person possessing unique neural potentials aligned with specific intelligences.

Implications for Learning

The most important educational implications of the theory of multiple intelligences can be summed up through individuation and pluralization. Individuation posits that because each person differs from other another there is no logical reason to teach and assess students identically.

Individualized education has typically been reserved for the wealthy and others who could afford to hire tutors to address individual student’s needs.

Technology has now made it possible for more people to access a variety of teachings and assessments depending on their needs. Pluralization, the idea that topics and skills should be taught in more than one way, activates an individual’s multiple intelligences.

Presenting a variety of activities and approaches to learning helps reach all students and encourages them to be able to think about the subjects from various perspectives, deepening their knowledge of that topic (Gardner, 2011b).

A common misconception about the theory of multiple intelligences is that it is synonymous with learning styles. Gardner states that learning styles refer to the way an individual is most comfortable approaching a range of tasks and materials.

Multiple intelligences theory states that everyone has all eight intelligences at varying degrees of proficiency and an individual’s learning style is unrelated to the areas in which they are the most intelligent.

For example, someone with linguistic intelligence may not necessarily learn best through writing and reading. Classifying students by their learning styles or intelligences alone may limit their potential for learning.

Research shows that students are more engaged and learn best when they are given various ways to demonstrate their knowledge and skills, which also helps teachers more accurately assess student learning (Darling-Hammond, 2010).

Therapeutic Benefits of Incorporating Multiple Intelligences Within Therapy

Pearson et al. (2015) investigated the experiences of 8 counselors who introduced multiple intelligences (MI) theory and activities into therapy sessions with adult clients. The counselors participated in a 1-day MI training intervention and were interviewed 3 months later about their experiences using MI in practice.

The major themes that emerged from qualitative analysis of the interviews were:

  • MI helped enhance therapeutic alliances. Counselors felt incorporating MI strengthened their connections with clients, increased counselor and client comfort, and reduced client suspicion/resistance.
  • MI led to more effective professional work. Counselors felt MI provided more tools and flexibility in responding to clients. This matches findings from education research on the benefits of MI.
  • Clients responded positively to identifying strengths through MI. The MI survey helped clients recognize talents/abilities, which counselors saw as identity-building. This aligns with the literature on strength-based approaches.
  • Clients appreciated the MI preference survey. It provided conversation starters, increased self-reflection, and was sometimes a catalyst for using music therapeutically.
  • Counselors felt comfortable with MI. They experienced increased confidence and professional comfort. Counselor confidence contributes to alliance building (Ackerman & Hilsenroth, 2003).
  • Music use stood out as impactful. In-session and extratherapeutic music use improved client well-being after identifying musicality through the MI survey. This matches the established benefits of music therapy (Koelsch, 2009).
  • MI training opened up therapeutic possibilities. Counselors valued the experiential MI training. MI appeared to expand their skills and activities.

The authors conclude that MI may enhance alliances, effectiveness, and counselor confidence. They recommend further research on long-term impacts and optimal training approaches. Counselor education could teach MI theory, assessment, and tailored interventions.

Frequently Asked Questions

How can understanding the theory of multiple intelligences contribute to self-awareness and personal growth.

Understanding the theory of multiple intelligences can contribute to self-awareness and personal growth by providing a framework for recognizing and valuing different strengths and abilities.

By identifying their own unique mix of intelligences, individuals can gain a greater understanding of their own strengths and limitations and develop a more well-rounded sense of self.

Additionally, recognizing and valuing the diverse strengths and abilities of others can promote empathy , respect, and cooperation in personal and professional relationships.

Why is multiple intelligence theory important?

Understanding multiple intelligences is important because it helps individuals recognize that intelligence is not just about academic achievement or IQ scores, but also includes a range of different abilities and strengths.

By identifying their own unique mix of intelligences, individuals can develop a greater sense of self-awareness and self-esteem, as well as pursue career paths that align with their strengths and interests.

Additionally, understanding multiple intelligences can promote more inclusive and personalized approaches to education and learning that recognize and value the diverse strengths and abilities of all students.

Are certain types of intelligence more valued or prioritized in society than others?

Yes, certain types of intelligence, such as linguistic and logical-mathematical intelligence, are often prioritized in traditional education and assessment methods.

However, the theory of multiple intelligences challenges this narrow definition of intelligence and recognizes the value of a diverse range of strengths and abilities.

By promoting a more inclusive and personalized approach to education and learning, the theory of multiple intelligences can help individuals recognize and develop their unique mix of intelligences, regardless of whether they align with traditional societal expectations.

What is the difference between multiple intelligences and learning styles?

The theory of multiple intelligences proposes that individuals possess a range of different types of intelligence. In contrast, learning styles refer to an individual’s preferred way of processing information, such as visual, auditory, or kinesthetic.

While both theories emphasize the importance of recognizing and valuing individual differences in learning and development, multiple intelligence theory proposes a broader and more diverse range of intelligences beyond traditional academic abilities, while learning styles are focused on preferences for processing information.

Armstrong, T. (2009). Multiple intelligences in the classroom . Ascd.

Darling-Hammond, L. (2010). Performance Counts: Assessment Systems That Support High-Quality Learning . Council of Chief State School Officers .

Davis, K., Christodoulou, J., Seider, S., & Gardner, H. E. (2011). The theory of multiple intelligences.  Davis, K., Christodoulou, J., Seider, S., & Gardner, H.(2011). The theory of multiple intelligences . In RJ Sternberg & SB Kaufman (Eds.), Cambridge Handbook of Intelligence , 485-503.

Edutopia. (2013, March 8). Multiple Intelligences: What Does the Research Say? https://www.edutopia.org/multiple-intelligences-research

Gardner, H. E. (2000). Intelligence reframed: Multiple intelligences for the 21st century . Hachette UK.

Gardner, H. (2011a). Frames of mind: The theory of multiple intelligences . Hachette Uk.

Gardner, H. (2011b). The theory of multiple intelligences: As psychology, as education, as social science. Address delivered at José Cela University on October, 29, 2011.

Gottfredson, L. S. (2004). Schools and the g factor . The Wilson Quarterly (1976-), 28 (3), 35-45.

Pearson, M., O’Brien, P., & Bulsara, C. (2015). A multiple intelligences approach to counseling: Enhancing alliances with a focus on strengths.  Journal of Psychotherapy Integration, 25 (2), 128–142

Shearer, C. B. (2020). A resting state functional connectivity analysis of human intelligence: Broad theoretical and practical implications for multiple intelligences theory.  Psychology & Neuroscience, 13 (2), 127–148.

Visser, B. A., Ashton, M. C., & Vernon, P. A. (2006). Beyond g: Putting multiple intelligences theory to the test . Intelligence, 34 (5), 487-502.

Waterhouse, L. (2006). Inadequate evidence for multiple intelligences, Mozart effect, and emotional intelligence theories . Educational Psychologist, 41 (4), 247-255.

Further Information

  • Multiple Intelligences Criticisms
  • The Theory of Multiple Intelligences
  • Multiple Intelligences FAQ
  • “In a Nutshell,” the first chapter of Multiple Intelligences: New Horizons
  • Multiple Intelligences After Twenty Years”
  • Intelligence: Definition, Theories and Testing
  • Fluid vs Crystallized Intelligence

Print Friendly, PDF & Email

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    general problem solving ability refers to intelligence

  2. problem solving technique in ai

    general problem solving ability refers to intelligence

  3. 5 step problem solving method

    general problem solving ability refers to intelligence

  4. Top 10 Skills Of Problem Solving With Examples

    general problem solving ability refers to intelligence

  5. Developing Problem-Solving Skills for Kids

    general problem solving ability refers to intelligence

  6. General Problem Solving ProcessWentz Wu

    general problem solving ability refers to intelligence

VIDEO

  1. Problem Solving

  2. A Journey to Mind Mastery

  3. Exhaustive Search in Design and Analysis of Algorithm

  4. مبادئ البرمجة وحل المشكلات، Chapter 1: General Problem-Solving Concepts

  5. General Problem Solving in problem solving steps in computer

  6. Vector addition by the parallelogram law

COMMENTS

  1. Theories Of Intelligence In Psychology

    General intelligence, also known as g factor, refers to a general mental ability that, according to Spearman, underlies multiple specific skills, including verbal, spatial, numerical, and mechanical. ... Fluid intelligence is the ability to problem solve in novel situations without referencing prior knowledge, but rather through the use of ...

  2. PDF 23 Problem-Solving and Intelligence

    David Z. Hambrick, Alexander P. Burgoyne, and Erik M. Altmann. The ability to solve complex problems is a defining feature of what most laypeople think of as intelligence. This is also a common theme in how intelligence researchers describe intelligence (Sternberg, 1985a; Sternberg et al., 1981). Over a century ago, the German psychologist ...

  3. 23

    Summary. In this chapter we discuss the link between intelligence and problem-solving. To preview, we argue that the ability to solve problems is not just an aspect or feature of intelligence - it is the essence of intelligence. We briefly review evidence from psychometric research concerning the nature of individual differences in ...

  4. How General Intelligence (G Factor) Is Determined

    Fluid reasoning: This involves the ability to think flexibly and solve problems.; Knowledge: This is a person's general understanding of a wide range of topics and can be equated with crystallized intelligence.; Quantitative reasoning: This is an individual's capacity to solve problems that involve numbers.; Visual-spatial processing: This relates to a person's abilities to interpret and ...

  5. Human intelligence

    See all videos for this article. human intelligence, mental quality that consists of the abilities to learn from experience, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one 's environment. Much of the excitement among investigators in the field of intelligence derives from their attempts ...

  6. 7.4 What Are Intelligence and Creativity?

    In developing an understanding of this topic, you are using analytical intelligence. When solving a challenging math problem, you would apply analytical intelligence to analyze different aspects of the problem and then solve it section by section. Creative intelligence is marked by inventing or imagining a solution to a problem or situation ...

  7. 8.1: Defining and Measuring Intelligence

    Intelligence is the ability to think, to learn from experience, to solve problems, and to adapt to new situations. Intelligence is important because it has an impact on many human behaviors. Psychologists believe that there is a construct that accounts for the overall differences in intelligence among people, known as general intelligence (g).

  8. Problem-solving and intelligence.

    In this chapter, we discuss the link between intelligence and problem solving in terms of contemporary ideas concerning both. To preview, we argue that the ability to solve problems is not just an aspect or feature of intelligence—it is the essence of intelligence. The chapter is organized into five major sections. In the first section, we consider the question of what a problem is and argue ...

  9. 9.1 Defining and Measuring Intelligence

    Intelligence is the ability to think, to learn from experience, to solve problems, and to adapt to new situations. Intelligence is important because it has an impact on many human behaviors. Psychologists believe that there is a construct that accounts for the overall differences in intelligence among people, known as general intelligence (g).

  10. Problem Solving and Intelligence

    Fluid intelligence refers to the ability to deal with new and unusual problems; crystallized intelligence refers to your acquired knowledge and skills. General intelligence, or g, can be understood in part in terms of mental speed, on the idea that people we call smart are literally faster in their intellectual functioning.

  11. Intelligence

    Intelligence has been defined in many ways: the capacity for abstraction, logic, understanding, self-awareness, learning, emotional knowledge, reasoning, planning, creativity, critical thinking, and problem-solving.It can be described as the ability to perceive or infer information; and to retain it as knowledge to be applied to adaptive behaviors within an environment or context.

  12. Chapter 10: Intelligence, Problem Solving, and Creativity

    Chapter 10: Intelligence, Problem Solving, and Creativity. Get a hint. intelligence. Click the card to flip 👆. a set of cognitive skills that includes abstract thinking, reasoning, problem solving, and the ability to acquire knowledge. Other, less-agreed-on qualities of intelligence include mathematical ability, general knowledge, and ...

  13. Thinking and Intelligence

    Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below is a 4×4 grid. To solve the puzzle, fill in the empty ...

  14. What Is Intelligence?

    In the 1940s, Raymond Cattell proposed a theory of intelligence that divided general intelligence into two components: crystallized intelligence and fluid intelligence (Cattell, 1963). Crystallized intelligence is characterized as acquired knowledge and the ability to retrieve it. When you learn, remember, and recall information, you are using ...

  15. Intelligence and Creativity in Problem Solving: The Importance of Test

    The relations among general intelligence, metacognition and text learning performance. Educ. Sci. 39 40-53. [Google Scholar] Shye S., Goldzweig G. (1999). Creativity as an extension of intelligence: Faceted definition and structural hypotheses. Megamot 40 31-53. [Google Scholar] Shye S., Yuhas I. (2004). Creativity in problem solving. Tech.

  16. AP Psychology- Chapter 11: Intelligence Flashcards

    mental retardation. a condition of limited mental ability, indicated by an intelligence score of 70 or below and difficulty in adapting to the demands of life; varies from mild to profound. Down syndrome. a condition of retardation and associated physical disorders caused by an extra chromosome in one's genetic makeup.

  17. Gardner's Theory Of Multiple Intelligences

    Howard Gardner's Theory of Multiple Intelligences posits that individuals possess various distinct types of intelligences, rather than a single general intelligence. These types encompass areas like linguistic, logical-mathematical, musical, spatial, bodily-kinesthetic, interpersonal, intrapersonal, and naturalistic intelligences, emphasizing a broader understanding of human capability.

  18. General Problem Solving Ability Refers To Intelligence ? archive.nafc

    General Problem Solving Ability Refers To Intelligence Fundamentals of Cognitive Psychology Ronald T. Kellogg 2015-01-07 With its reader-friendly style, this concise text offers a solid introduction to the fundamental concepts of cognitive psychology. ... The Dictionary of Artificial Intelligence, embracing a compendium of 3,300 meticulously ...

  19. CHAPTER 10: Intelligence, Problem Solving, and Creativity

    Intelligence consists of 7 primary mental abilities, including spatial ability, memory, perceptual speed, and word fluency. Intelligence can be broken down into 3 levels of ability: general, broad, and narrow. Intelligence is made up of 3 abilities (analytical, creative, and practical) necessary for success.

  20. Psychology

    Study with Quizlet and memorize flashcards containing terms like ___ can be defined as a set of cognitive skills that includes abstract thinking, reasoning, problem solving, and the ability to acquire knowledge., jennifer says that she is good at solving problems which require her to navigate and visualize objects from different angles. jennifer has a high level of...., ____ is the ability to ...

  21. chapter 10 Flashcards

    Study with Quizlet and memorize flashcards containing terms like is a set of cognitive skills that includes abstract thinking, reasoning, problem solving, and the ability to acquire knowledge., Two distinct views dominate our understanding of intelligence. One view says that intelligence _____, while the other says that intelligence _____., The individual responsible for developing the first ...