The Genius Blog

Hypothesis Testing Solved Examples(Questions and Solutions)

Here is a list hypothesis testing exercises and solutions. Try to solve a question by yourself first before you look at the solution.

Question 1 In the population, the average IQ is 100 with a standard deviation of 15. A team of scientists want to test a new medication to see if it has either a positive or negative effect on intelligence, or not effect at all. A sample of 30 participants who have taken the medication  has a mean of 140. Did the medication affect intelligence? View Solution to Question 1

A professor wants to know if her introductory statistics class has a good grasp of basic math. Six students are chosen at random from the class and given a math proficiency test. The professor wants the class to be able to score above 70 on the test. The six students get the following scores:62, 92, 75, 68, 83, 95. Can the professor have 90% confidence that the mean score for the class on the test would be above 70. Solution to Question 2

Question 3 In a packaging plant, a machine packs cartons with jars. It is supposed that a new machine would pack faster on the average than the machine currently used. To test the hypothesis, the time it takes each machine to pack ten cartons are recorded. The result in seconds is as follows.

Do the data provide sufficient evidence to conclude that, on the average, the new machine packs faster? Perform  the required hypothesis test at the 5% level of significance. Solution to Question 3 

Question 4 We want to compare the heights in inches of two groups of individuals. Here are the measurements: X: 175, 168, 168, 190, 156, 181, 182, 175, 174, 179 Y:  120, 180, 125, 188, 130, 190, 110, 185, 112, 188 Solution to Question 4 

Question 5 A clinic provides a program to help their clients lose weight and asks a consumer agency to investigate the effectiveness of the program. The agency takes a sample of 15 people, weighing each person in the sample before the program begins and 3 months later. The results a tabulated below

Determine is the program is effective. Solution to Question 5

Question 6 A sample of 20 students were selected and given a diagnostic module prior to studying for a test. And then they were given the test again after completing the module. . The result of the students scores in the test before and after the test is tabulated below.

We want to see if there is significant improvement in the student’s performance due to this teaching method Solution to Question 6 

Question 7 A study was performed to test wether cars get better mileage on premium gas than on regular gas. Each of 10 cars was first filled with regular or premium gas, decided by a coin toss, and the mileage for the tank was recorded. The mileage was recorded again for the same cars using other kind of gasoline. Determine wether cars get significantly better mileage with premium gas.

Mileage with regular gas: 16,20,21,22,23,22,27,25,27,28 Mileage with premium gas: 19, 22,24,24,25,25,26,26,28,32 Solution to Question 7 

Question 8  An automatic cutter machine must cut steel strips of 1200 mm length. From a preliminary data, we checked that the lengths of the pieces produced by the machine can be considered as normal random variables  with a 3mm standard deviation. We want to make sure that the machine is set correctly. Therefore 16 pieces of the products are randomly selected and weight. The figures were in mm: 1193,1196,1198,1195,1198,1199,1204,1193,1203,1201,1196,1200,1191,1196,1198,1191 Examine wether there is any significant deviation from the required size Solution to Question 8

Question 9 Blood pressure reading of ten patients before and after medication for reducing the blood pressure are as follows

Patient: 1,2,3,4,5,6,7,8,9,10 Before treatment: 86,84,78,90,92,77,89,90,90,86 After treatment:    80,80,92,79,92,82,88,89,92,83

Test the null hypothesis of no effect agains the alternate hypothesis that medication is effective. Execute it with Wilcoxon test Solution to Question 9

Question on ANOVA Sussan Sound predicts that students will learn most effectively with a constant background sound, as opposed to an unpredictable sound or no sound at all. She randomly divides 24 students into three groups of 8 each. All students study a passage of text for 30 minutes. Those in group 1 study with background sound at a constant volume in the background. Those in group 2 study with nose that changes volume periodically. Those in group 3 study with no sound at all. After studying, all students take a 10 point multiple choice test over the material. Their scores are tabulated below.

Group1: Constant sound: 7,4,6,8,6,6,2,9 Group 2: Random sound: 5,5,3,4,4,7,2,2 Group 3: No sound at all: 2,4,7,1,2,1,5,5 Solution to Question 10

Question 11 Using the following three groups of data, perform a one-way analysis of variance using α  = 0.05.

Solution to Question 11

Question 12 In a packaging plant, a machine packs cartons with jars. It is supposed that a new machine would pack faster on the average than the machine currently used. To test the hypothesis, the time it takes each machine to pack ten cartons are recorded. The result in seconds is as follows.

New Machine: 42,41,41.3,41.8,42.4,42.8,43.2,42.3,41.8,42.7 Old Machine:  42.7,43.6,43.8,43.3,42.5,43.5,43.1,41.7,44,44.1

Perform an F-test to determine if the null hypothesis should be accepted. Solution to Question 12

Question 13 A random sample 500 U.S adults are questioned about their political affiliation and opinion on a tax reform bill. We need to test if the political affiliation and their opinon on a tax reform bill are dependent, at 5% level of significance. The observed contingency table is given below.

Solution to Question 13

Question 14 Can a dice be considered regular which is showing the following frequency distribution during 1000 throws?

Solution to Question 14

Solution to Question 15

Question 16 A newly developed muesli contains five types of seeds (A, B, C, D and E). The percentage of which is 35%, 25%, 20%, 10% and 10% according to the product information. In a randomly selected muesli, the following volume distribution was found.

Lets us decide about the null hypothesis whether the composition of the sample corresponds to the distribution indicated on the packaging at alpha = 0.1 significance level. Solution to Question 16

Question 17 A research team investigated whether there was any significant correlation between the severity of a certain disease runoff and the age of the patients. During the study, data for n = 200 patients were collected and grouped according to the severity of the disease and the age of the patient. The table below shows the result

Let us decided about the correlation between the age of the patients and the severity of disease progression. Solution to Question 17

Question 18 A publisher is interested in determine which of three book cover is most attractive. He interviews 400 people in each of the three states (California, Illinois and New York), and asks each person which of the  cover he or she prefers. The number of preference for each cover is as follows:

Do these data indicate that there are regional differences in people’s preferences concerning these covers? Use the 0.05 level of significance. Solution to Question 18

Question 19 Trees planted along the road were checked for which ones are healthy(H) or diseased (D) and the following arrangement of the trees were obtained:

H H H H D D D H H H H H H H D D H H D D D

Test at the    = 0.05 significance wether this arrangement may be regarded as random

Solution to Question 19 

Question 20 Suppose we flip a coin n = 15 times and come up with the following arrangements

H T T T H H T T T T H H T H H

(H = head, T = tail)

Test at the alpha = 0.05 significance level whether this arrangement may be regarded as random.

Solution to Question 20

kindsonthegenius

You might also like, chi-square goodness of fit test – question 16 ( a newly developed muesli…), hypothesis testing question 19 – run test ( trees were planted…), hypothesis testing question 9 – wilcoxon signed rank test.

I am really impressed with your writing abilities as well as with the structure to your weblog. Is this a paid subject matter or did you modify it yourself?

Either way stay up the excellent high quality writing, it’s uncommon to look a great blog like this one these days..

Below are given the gain in weights (in lbs.) of pigs fed on two diet A and B Dieta 25 32 30 34 24 14 32 24 30 31 35 25 – – DietB 44 34 22 10 47 31 40 30 32 35 18 21 35 29

9.4 Full Hypothesis Test Examples

Tests on means, example 9.8.

Jeffrey, as an eight-year old, established a mean time of 16.43 seconds for swimming the 25-yard freestyle, with a standard deviation of 0.8 seconds . His dad, Frank, thought that Jeffrey could swim the 25-yard freestyle faster using goggles. Frank bought Jeffrey a new pair of expensive goggles and timed Jeffrey for 15 25-yard freestyle swims . For the 15 swims, Jeffrey's mean time was 16 seconds. Frank thought that the goggles helped Jeffrey to swim faster than the 16.43 seconds. Conduct a hypothesis test using a preset α = 0.05. Assume that the swim times for the 25-yard freestyle are normal.

Set up the Hypothesis Test:

Since the problem is about a mean, this is a test of a single population mean .

H 0 : μ = 16.43   H a : μ < 16.43

For Jeffrey to swim faster, his time will be less than 16.43 seconds. The "<" tells you this is left-tailed.

Determine the distribution needed:

Random variable: X ¯ X ¯ = the mean time to swim the 25-yard freestyle.

Distribution for the test: X ¯ X ¯ is normal (population standard deviation is known: σ = 0.8)

X ¯ ~ N ( μ , σ X n ) X ¯ ~ N ( μ , σ X n ) Therefore, X ¯ ~ N ( 16.43 , 0.8 15 ) X ¯ ~ N ( 16.43 , 0.8 15 )

μ = 16.43 comes from H 0 and not the data. σ = 0.8, and n = 15.

Calculate the p -value using the normal distribution for a mean:

p -value = P ( x ¯ x ¯ < 16) = 0.0187 where the sample mean in the problem is given as 16.

p -value = 0.0187 (This is called the actual level of significance .) The p -value is the area to the left of the sample mean is given as 16.

μ = 16.43 comes from H 0 . Our assumption is μ = 16.43.

Interpretation of the p -value: If H 0 is true , there is a 0.0187 probability (1.87%)that Jeffrey's mean time to swim the 25-yard freestyle is 16 seconds or less. Because a 1.87% chance is small, the mean time of 16 seconds or less is unlikely to have happened randomly. It is a rare event.

Compare α and the p -value:

α = 0.05 p -value = 0.0187 α > p -value

Make a decision: Since α > α > p -value, reject H 0 .

This indicates that you reject the null hypothesis that the mean time to swim the 25-yard freestyle is at least 16.43 seconds.

Conclusion: At the 5% significance level, there is sufficient evidence that Jeffrey's mean time to swim the 25-yard freestyle is less than 16.43 seconds. Thus, based on the sample data, we conclude that Jeffrey swims faster using the new goggles.

The Type I and Type II errors for this problem are as follows: The Type I error is to conclude that Jeffrey swims the 25-yard freestyle, on average, in less than 16.43 seconds when, in fact, he actually swims the 25-yard freestyle, on average, in at least 16.43 seconds. (Reject the null hypothesis when the null hypothesis is true.)

The Type II error is that there is not evidence to conclude that Jeffrey swims the 25-yard freestyle, on average, in less than 16.43 seconds when, in fact, he actually does swim the 25-yard free-style, on average, in less than 16.43 seconds. (Do not reject the null hypothesis when the null hypothesis is false.)

The mean throwing distance of a football for Marco, a high school quarterback, is 40 yards, with a standard deviation of two yards. The team coach tells Marco to adjust his grip to get more distance. The coach records the distances for 20 throws. For the 20 throws, Marco’s mean distance was 45 yards. The coach thought the different grip helped Marco throw farther than 40 yards. Conduct a hypothesis test using a preset α = 0.05. Assume the throw distances for footballs are normal.

First, determine what type of test this is, set up the hypothesis test, find the p -value, sketch the graph, and state your conclusion.

Example 9.9

Jasmine has just begun her new job on the sales force of a very competitive company. In a sample of 16 sales calls it was found that she closed the contract for an average value of 108 dollars with a standard deviation of 12 dollars. Test at 5% significance that the population mean is at least 100 dollars against the alternative that it is less than 100 dollars. Company policy requires that new members of the sales force must exceed an average of $100 per contract during the trial employment period. Can we conclude that Jasmine has met this requirement at the significance level of 95%?

  • H 0 : µ ≤ 100 H a : µ > 100 The null and alternative hypothesis are for the parameter µ because the number of dollars of the contracts is a continuous random variable. Also, this is a one-tailed test because the company has only an interested if the number of dollars per contact is below a particular number not "too high" a number. This can be thought of as making a claim that the requirement is being met and thus the claim is in the alternative hypothesis.
  • Test statistic: t c = x ¯ − µ 0 s n = 108 − 100 ( 12 16 ) = 2.67 t c = x ¯ − µ 0 s n = 108 − 100 ( 12 16 ) = 2.67
  • Critical value: t a = 1.753 t a = 1.753 with n-1 degrees of freedom= 15

The test statistic is a Student's t because the sample size is below 30; therefore, we cannot use the normal distribution. Comparing the calculated value of the test statistic and the critical value of t t ( t a ) ( t a ) at a 5% significance level, we see that the calculated value is in the tail of the distribution. Thus, we conclude that 108 dollars per contract is significantly larger than the hypothesized value of 100 and thus we cannot accept the null hypothesis. There is evidence that supports Jasmine's performance meets company standards.

It is believed that a stock price for a particular company will grow at a rate of $5 per week with a standard deviation of $1. An investor believes the stock won’t grow as quickly. The changes in stock price is recorded for ten weeks and are as follows: $4, $3, $2, $3, $1, $7, $2, $1, $1, $2. Perform a hypothesis test using a 5% level of significance. State the null and alternative hypotheses, state your conclusion, and identify the Type I errors.

Example 9.10

A manufacturer of salad dressings uses machines to dispense liquid ingredients into bottles that move along a filling line. The machine that dispenses salad dressings is working properly when 8 ounces are dispensed. Suppose that the average amount dispensed in a particular sample of 35 bottles is 7.91 ounces with a variance of 0.03 ounces squared, s 2 s 2 . Is there evidence that the machine should be stopped and production wait for repairs? The lost production from a shutdown is potentially so great that management feels that the level of significance in the analysis should be 99%.

Again we will follow the steps in our analysis of this problem.

STEP 1 : Set the Null and Alternative Hypothesis. The random variable is the quantity of fluid placed in the bottles. This is a continuous random variable and the parameter we are interested in is the mean. Our hypothesis therefore is about the mean. In this case we are concerned that the machine is not filling properly. From what we are told it does not matter if the machine is over-filling or under-filling, both seem to be an equally bad error. This tells us that this is a two-tailed test: if the machine is malfunctioning it will be shutdown regardless if it is from over-filling or under-filling. The null and alternative hypotheses are thus:

STEP 2 : Decide the level of significance and draw the graph showing the critical value.

This problem has already set the level of significance at 99%. The decision seems an appropriate one and shows the thought process when setting the significance level. Management wants to be very certain, as certain as probability will allow, that they are not shutting down a machine that is not in need of repair. To draw the distribution and the critical value, we need to know which distribution to use. Because this is a continuous random variable and we are interested in the mean, and the sample size is greater than 30, the appropriate distribution is the normal distribution and the relevant critical value is 2.575 from the normal table or the t-table at 0.005 column and infinite degrees of freedom. We draw the graph and mark these points.

STEP 3 : Calculate sample parameters and the test statistic. The sample parameters are provided, the sample mean is 7.91 and the sample variance is .03 and the sample size is 35. We need to note that the sample variance was provided not the sample standard deviation, which is what we need for the formula. Remembering that the standard deviation is simply the square root of the variance, we therefore know the sample standard deviation, s, is 0.173. With this information we calculate the test statistic as -3.07, and mark it on the graph.

STEP 4 : Compare test statistic and the critical values Now we compare the test statistic and the critical value by placing the test statistic on the graph. We see that the test statistic is in the tail, decidedly greater than the critical value of 2.575. We note that even the very small difference between the hypothesized value and the sample value is still a large number of standard deviations. The sample mean is only 0.08 ounces different from the required level of 8 ounces, but it is 3 plus standard deviations away and thus we cannot accept the null hypothesis.

STEP 5 : Reach a Conclusion

Three standard deviations of a test statistic will guarantee that the test will fail. The probability that anything is within three standard deviations is almost zero. Actually it is 0.0026 on the normal distribution, which is certainly almost zero in a practical sense. Our formal conclusion would be “ At a 99% level of significance we cannot accept the hypothesis that the sample mean came from a distribution with a mean of 8 ounces” Or less formally, and getting to the point, “At a 99% level of significance we conclude that the machine is under filling the bottles and is in need of repair”.

Try It 9.10

A company records the mean time of employees working in a day. The mean comes out to be 475 minutes, with a standard deviation of 45 minutes. A manager recorded times of 20 employees. The times of working were (frequencies are in parentheses) 460(3); 465(2); 470(3); 475(1); 480(6); 485(3); 490(2).

Conduct a hypothesis test using a 2.5% level of significance to determine if the mean time is more than 475 .

Hypothesis Test for Proportions

Just as there were confidence intervals for proportions, or more formally, the population parameter p of the binomial distribution, there is the ability to test hypotheses concerning p .

The population parameter for the binomial is p . The estimated value (point estimate) for p is p′ where p′ = x/n , x is the number of successes in the sample and n is the sample size.

When you perform a hypothesis test of a population proportion p , you take a simple random sample from the population. The conditions for a binomial distribution must be met, which are: there are a certain number n of independent trials meaning random sampling, the outcomes of any trial are binary, success or failure, and each trial has the same probability of a success p . The shape of the binomial distribution needs to be similar to the shape of the normal distribution. To ensure this, the quantities np′ and nq′ must both be greater than five ( np′ > 5 and nq′ > 5). In this case the binomial distribution of a sample (estimated) proportion can be approximated by the normal distribution with μ = np μ = np and σ = npq σ = npq . Remember that q = 1 – p q = 1 – p . There is no distribution that can correct for this small sample bias and thus if these conditions are not met we simply cannot test the hypothesis with the data available at that time. We met this condition when we first were estimating confidence intervals for p .

Again, we begin with the standardizing formula modified because this is the distribution of a binomial.

Substituting p 0 p 0 , the hypothesized value of p , we have:

This is the test statistic for testing hypothesized values of p , where the null and alternative hypotheses take one of the following forms:

The decision rule stated above applies here also: if the calculated value of Z c shows that the sample proportion is "too many" standard deviations from the hypothesized proportion, the null hypothesis cannot be accepted. The decision as to what is "too many" is pre-determined by the analyst depending on the level of significance required in the test.

Example 9.11

The mortgage department of a large bank is interested in the nature of loans of first-time borrowers. This information will be used to tailor their marketing strategy. They believe that 50% of first-time borrowers take out smaller loans than other borrowers. They perform a hypothesis test to determine if the percentage is the same or different from 50% . They sample 100 first-time borrowers and find 53 of these loans are smaller that the other borrowers. For the hypothesis test, they choose a 5% level of significance.

STEP 1 : Set the null and alternative hypothesis.

H 0 : p = 0.50   H a : p ≠ 0.50

The words "is the same or different from" tell you this is a two-tailed test. The Type I and Type II errors are as follows: The Type I error is to conclude that the proportion of borrowers is different from 50% when, in fact, the proportion is actually 50%. (Reject the null hypothesis when the null hypothesis is true). The Type II error is there is not enough evidence to conclude that the proportion of first time borrowers differs from 50% when, in fact, the proportion does differ from 50%. (You fail to reject the null hypothesis when the null hypothesis is false.)

STEP 2 : Decide the level of significance and draw the graph showing the critical value

The level of significance has been set by the problem at the 5% level. Because this is two-tailed test one-half of the alpha value will be in the upper tail and one-half in the lower tail as shown on the graph. The critical value for the normal distribution at the 95% level of confidence is 1.96. This can easily be found on the student’s t-table at the very bottom at infinite degrees of freedom remembering that at infinity the t-distribution is the normal distribution. Of course the value can also be found on the normal table but you have go looking for one-half of 95 (0.475) inside the body of the table and then read out to the sides and top for the number of standard deviations.

STEP 3 : Calculate the sample parameters and critical value of the test statistic.

The test statistic is a normal distribution, Z, for testing proportions and is:

For this case, the sample of 100 found 53 of these loans were smaller than those of other borrowers. The sample proportion, p′ = 53/100= 0.53 The test question, therefore, is : “Is 0.53 significantly different from .50?” Putting these values into the formula for the test statistic we find that 0.53 is only 0.60 standard deviations away from .50. This is barely off of the mean of the standard normal distribution of zero. There is virtually no difference from the sample proportion and the hypothesized proportion in terms of standard deviations.

STEP 4 : Compare the test statistic and the critical value.

The calculated value is well within the critical values of ± 1.96 standard deviations and thus we cannot reject the null hypothesis. To reject the null hypothesis we need significant evident of difference between the hypothesized value and the sample value. In this case the sample value is very nearly the same as the hypothesized value measured in terms of standard deviations.

STEP 5 : Reach a conclusion

The formal conclusion would be “At a 5% level of significance we cannot reject the null hypothesis that 50% of first-time borrowers take out smaller loans than other borrowers.” Notice the length to which the conclusion goes to include all of the conditions that are attached to the conclusion. Statisticians, for all the criticism they receive, are careful to be very specific even when this seems trivial. Statisticians cannot say more than they know, and the data constrain the conclusion to be within the metes and bounds of the data.

Try It 9.11

A teacher believes that 85% of students in the class will want to go on a field trip to the local zoo. The teacher performs a hypothesis test to determine if the percentage is the same or different from 85%. The teacher samples 50 students and 39 reply that they would want to go to the zoo. For the hypothesis test, use a 1% level of significance.

Example 9.12

Suppose a consumer group suspects that the proportion of households that have three or more cell phones is 30%. A cell phone company has reason to believe that the proportion is not 30%. Before they start a big advertising campaign, they conduct a hypothesis test. Their marketing people survey 150 households with the result that 43 of the households have three or more cell phones.

Here is an abbreviate version of the system to solve hypothesis tests applied to a test on a proportions.

Try It 9.12

Marketers believe that 92% of adults in the United States own a cell phone. A cell phone manufacturer believes that number is actually lower. 200 American adults are surveyed, of which, 174 report having cell phones. Use a 5% level of significance. State the null and alternative hypothesis, find the p -value, state your conclusion, and identify the Type I and Type II errors.

Example 9.13

The National Institute of Standards and Technology provides exact data on conductivity properties of materials. Following are conductivity measurements for 11 randomly selected pieces of a particular type of glass.

1.11; 1.07; 1.11; 1.07; 1.12; 1.08; .98; .98; 1.02; .95; .95 Is there convincing evidence that the average conductivity of this type of glass is greater than one? Use a significance level of 0.05.

Let’s follow a four-step process to answer this statistical question.

  • H 0 : μ ≤ 1
  • H a : μ > 1
  • Plan : We are testing a sample mean without a known population standard deviation with less than 30 observations. Therefore, we need to use a Student's-t distribution. Assume the underlying population is normal.
  • Do the calculations and draw the graph .
  • State the Conclusions : We cannot accept the null hypothesis. It is reasonable to state that the data supports the claim that the average conductivity level is greater than one.

Try It 9.13

The boiling point of a specific liquid is measured for 15 samples, and the boiling points are obtained as follows:

205; 206; 206; 202; 199; 194; 197; 198; 198; 201; 201; 202; 207; 211; 205

Is there convincing evidence that the average boiling point is greater than 200? Use a significance level of 0.1. Assume the population is normal.

Example 9.14

In a study of 420,019 cell phone users, 172 of the subjects developed brain cancer. Test the claim that cell phone users developed brain cancer at a greater rate than that for non-cell phone users (the rate of brain cancer for non-cell phone users is 0.0340%). Since this is a critical issue, use a 0.005 significance level. Explain why the significance level should be so low in terms of a Type I error.

  • H 0 : p ≤ 0.00034
  • H a : p > 0.00034

If we commit a Type I error, we are essentially accepting a false claim. Since the claim describes cancer-causing environments, we want to minimize the chances of incorrectly identifying causes of cancer.

  • We will be testing a sample proportion with x = 172 and n = 420,019. The sample is sufficiently large because we have np' = 420,019(0.00034) = 142.8, nq' = 420,019(0.99966) = 419,876.2, two independent outcomes, and a fixed probability of success p' = 0.00034. Thus we will be able to generalize our results to the population.

Try It 9.14

In a study of 390,000 moisturizer users, 138 of the subjects developed skin diseases. Test the claim that moisturizer users developed skin diseases at a greater rate than that for non-moisturizer users (the rate of skin diseases for non-moisturizer users is 0.041%). Since this is a critical issue, use a 0.005 significance level. Explain why the significance level should be so low in terms of a Type I error.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/introductory-business-statistics-2e/pages/1-introduction
  • Authors: Alexander Holmes, Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Introductory Business Statistics 2e
  • Publication date: Dec 13, 2023
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/introductory-business-statistics-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/introductory-business-statistics-2e/pages/9-4-full-hypothesis-test-examples

© Dec 6, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

hypothesis test questions and answers

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

S.3.3 hypothesis testing examples.

  • Example: Right-Tailed Test
  • Example: Left-Tailed Test
  • Example: Two-Tailed Test

Brinell Hardness Scores

An engineer measured the Brinell hardness of 25 pieces of ductile iron that were subcritically annealed. The resulting data were:

The engineer hypothesized that the mean Brinell hardness of all such ductile iron pieces is greater than 170. Therefore, he was interested in testing the hypotheses:

H 0 : μ = 170 H A : μ > 170

The engineer entered his data into Minitab and requested that the "one-sample t -test" be conducted for the above hypotheses. He obtained the following output:

Descriptive Statistics

$\mu$: mean of Brinelli

Null hypothesis    H₀: $\mu$ = 170 Alternative hypothesis    H₁: $\mu$ > 170

The output tells us that the average Brinell hardness of the n = 25 pieces of ductile iron was 172.52 with a standard deviation of 10.31. (The standard error of the mean "SE Mean", calculated by dividing the standard deviation 10.31 by the square root of n = 25, is 2.06). The test statistic t * is 1.22, and the P -value is 0.117.

If the engineer set his significance level α at 0.05 and used the critical value approach to conduct his hypothesis test, he would reject the null hypothesis if his test statistic t * were greater than 1.7109 (determined using statistical software or a t -table):

t distribution graph for df = 24 and a right tailed test of .05 significance level

Since the engineer's test statistic, t * = 1.22, is not greater than 1.7109, the engineer fails to reject the null hypothesis. That is, the test statistic does not fall in the "critical region." There is insufficient evidence, at the \(\alpha\) = 0.05 level, to conclude that the mean Brinell hardness of all such ductile iron pieces is greater than 170.

If the engineer used the P -value approach to conduct his hypothesis test, he would determine the area under a t n - 1 = t 24 curve and to the right of the test statistic t * = 1.22:

t distribution graph of right tailed test showing the p-value of 0117 for a t-value of 1.22

In the output above, Minitab reports that the P -value is 0.117. Since the P -value, 0.117, is greater than \(\alpha\) = 0.05, the engineer fails to reject the null hypothesis. There is insufficient evidence, at the \(\alpha\) = 0.05 level, to conclude that the mean Brinell hardness of all such ductile iron pieces is greater than 170.

Note that the engineer obtains the same scientific conclusion regardless of the approach used. This will always be the case.

Height of Sunflowers

A biologist was interested in determining whether sunflower seedlings treated with an extract from Vinca minor roots resulted in a lower average height of sunflower seedlings than the standard height of 15.7 cm. The biologist treated a random sample of n = 33 seedlings with the extract and subsequently obtained the following heights:

The biologist's hypotheses are:

H 0 : μ = 15.7 H A : μ < 15.7

The biologist entered her data into Minitab and requested that the "one-sample t -test" be conducted for the above hypotheses. She obtained the following output:

$\mu$: mean of Height

Null hypothesis    H₀: $\mu$ = 15.7 Alternative hypothesis    H₁: $\mu$ < 15.7

The output tells us that the average height of the n = 33 sunflower seedlings was 13.664 with a standard deviation of 2.544. (The standard error of the mean "SE Mean", calculated by dividing the standard deviation 13.664 by the square root of n = 33, is 0.443). The test statistic t * is -4.60, and the P -value, 0.000, is to three decimal places.

Minitab Note. Minitab will always report P -values to only 3 decimal places. If Minitab reports the P -value as 0.000, it really means that the P -value is 0.000....something. Throughout this course (and your future research!), when you see that Minitab reports the P -value as 0.000, you should report the P -value as being "< 0.001."

If the biologist set her significance level \(\alpha\) at 0.05 and used the critical value approach to conduct her hypothesis test, she would reject the null hypothesis if her test statistic t * were less than -1.6939 (determined using statistical software or a t -table):s-3-3

Since the biologist's test statistic, t * = -4.60, is less than -1.6939, the biologist rejects the null hypothesis. That is, the test statistic falls in the "critical region." There is sufficient evidence, at the α = 0.05 level, to conclude that the mean height of all such sunflower seedlings is less than 15.7 cm.

If the biologist used the P -value approach to conduct her hypothesis test, she would determine the area under a t n - 1 = t 32 curve and to the left of the test statistic t * = -4.60:

t-distribution for left tailed test with significance level of 0.05 shown in left tail

In the output above, Minitab reports that the P -value is 0.000, which we take to mean < 0.001. Since the P -value is less than 0.001, it is clearly less than \(\alpha\) = 0.05, and the biologist rejects the null hypothesis. There is sufficient evidence, at the \(\alpha\) = 0.05 level, to conclude that the mean height of all such sunflower seedlings is less than 15.7 cm.

t-distribution graph for left tailed test with a t-value of -4.60 and left tail area of 0.000

Note again that the biologist obtains the same scientific conclusion regardless of the approach used. This will always be the case.

Gum Thickness

A manufacturer claims that the thickness of the spearmint gum it produces is 7.5 one-hundredths of an inch. A quality control specialist regularly checks this claim. On one production run, he took a random sample of n = 10 pieces of gum and measured their thickness. He obtained:

The quality control specialist's hypotheses are:

H 0 : μ = 7.5 H A : μ ≠ 7.5

The quality control specialist entered his data into Minitab and requested that the "one-sample t -test" be conducted for the above hypotheses. He obtained the following output:

$\mu$: mean of Thickness

Null hypothesis    H₀: $\mu$ = 7.5 Alternative hypothesis    H₁: $\mu \ne$ 7.5

The output tells us that the average thickness of the n = 10 pieces of gums was 7.55 one-hundredths of an inch with a standard deviation of 0.1027. (The standard error of the mean "SE Mean", calculated by dividing the standard deviation 0.1027 by the square root of n = 10, is 0.0325). The test statistic t * is 1.54, and the P -value is 0.158.

If the quality control specialist sets his significance level \(\alpha\) at 0.05 and used the critical value approach to conduct his hypothesis test, he would reject the null hypothesis if his test statistic t * were less than -2.2616 or greater than 2.2616 (determined using statistical software or a t -table):

t-distribution graph of two tails with a significance level of .05 and t values of -2.2616 and 2.2616

Since the quality control specialist's test statistic, t * = 1.54, is not less than -2.2616 nor greater than 2.2616, the quality control specialist fails to reject the null hypothesis. That is, the test statistic does not fall in the "critical region." There is insufficient evidence, at the \(\alpha\) = 0.05 level, to conclude that the mean thickness of all of the manufacturer's spearmint gum differs from 7.5 one-hundredths of an inch.

If the quality control specialist used the P -value approach to conduct his hypothesis test, he would determine the area under a t n - 1 = t 9 curve, to the right of 1.54 and to the left of -1.54:

t-distribution graph for a two tailed test with t values of -1.54 and 1.54, the corresponding p-values are 0.0789732 on both tails

In the output above, Minitab reports that the P -value is 0.158. Since the P -value, 0.158, is greater than \(\alpha\) = 0.05, the quality control specialist fails to reject the null hypothesis. There is insufficient evidence, at the \(\alpha\) = 0.05 level, to conclude that the mean thickness of all pieces of spearmint gum differs from 7.5 one-hundredths of an inch.

Note that the quality control specialist obtains the same scientific conclusion regardless of the approach used. This will always be the case.

In our review of hypothesis tests, we have focused on just one particular hypothesis test, namely that concerning the population mean \(\mu\). The important thing to recognize is that the topics discussed here — the general idea of hypothesis tests, errors in hypothesis testing, the critical value approach, and the P -value approach — generally extend to all of the hypothesis tests you will encounter.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Unit 12: Significance tests (hypothesis testing)

About this unit.

Significance tests give us a formal process for using sample data to evaluate the likelihood of some claim about a population value. Learn how to conduct significance tests and calculate p-values to see how likely a sample result is to occur by random chance. You'll also see how we use p-values to make conclusions about hypotheses.

The idea of significance tests

  • Simple hypothesis testing (Opens a modal)
  • Idea behind hypothesis testing (Opens a modal)
  • Examples of null and alternative hypotheses (Opens a modal)
  • P-values and significance tests (Opens a modal)
  • Comparing P-values to different significance levels (Opens a modal)
  • Estimating a P-value from a simulation (Opens a modal)
  • Using P-values to make conclusions (Opens a modal)
  • Simple hypothesis testing Get 3 of 4 questions to level up!
  • Writing null and alternative hypotheses Get 3 of 4 questions to level up!
  • Estimating P-values from simulations Get 3 of 4 questions to level up!

Error probabilities and power

  • Introduction to Type I and Type II errors (Opens a modal)
  • Type 1 errors (Opens a modal)
  • Examples identifying Type I and Type II errors (Opens a modal)
  • Introduction to power in significance tests (Opens a modal)
  • Examples thinking about power in significance tests (Opens a modal)
  • Consequences of errors and significance (Opens a modal)
  • Type I vs Type II error Get 3 of 4 questions to level up!
  • Error probabilities and power Get 3 of 4 questions to level up!

Tests about a population proportion

  • Constructing hypotheses for a significance test about a proportion (Opens a modal)
  • Conditions for a z test about a proportion (Opens a modal)
  • Reference: Conditions for inference on a proportion (Opens a modal)
  • Calculating a z statistic in a test about a proportion (Opens a modal)
  • Calculating a P-value given a z statistic (Opens a modal)
  • Making conclusions in a test about a proportion (Opens a modal)
  • Writing hypotheses for a test about a proportion Get 3 of 4 questions to level up!
  • Conditions for a z test about a proportion Get 3 of 4 questions to level up!
  • Calculating the test statistic in a z test for a proportion Get 3 of 4 questions to level up!
  • Calculating the P-value in a z test for a proportion Get 3 of 4 questions to level up!
  • Making conclusions in a z test for a proportion Get 3 of 4 questions to level up!

Tests about a population mean

  • Writing hypotheses for a significance test about a mean (Opens a modal)
  • Conditions for a t test about a mean (Opens a modal)
  • Reference: Conditions for inference on a mean (Opens a modal)
  • When to use z or t statistics in significance tests (Opens a modal)
  • Example calculating t statistic for a test about a mean (Opens a modal)
  • Using TI calculator for P-value from t statistic (Opens a modal)
  • Using a table to estimate P-value from t statistic (Opens a modal)
  • Comparing P-value from t statistic to significance level (Opens a modal)
  • Free response example: Significance test for a mean (Opens a modal)
  • Writing hypotheses for a test about a mean Get 3 of 4 questions to level up!
  • Conditions for a t test about a mean Get 3 of 4 questions to level up!
  • Calculating the test statistic in a t test for a mean Get 3 of 4 questions to level up!
  • Calculating the P-value in a t test for a mean Get 3 of 4 questions to level up!
  • Making conclusions in a t test for a mean Get 3 of 4 questions to level up!

More significance testing videos

  • Hypothesis testing and p-values (Opens a modal)
  • One-tailed and two-tailed tests (Opens a modal)
  • Z-statistics vs. T-statistics (Opens a modal)
  • Small sample hypothesis test (Opens a modal)
  • Large sample proportion hypothesis testing (Opens a modal)

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

8.4: Hypothesis Test Examples for Proportions

  • Last updated
  • Save as PDF
  • Page ID 11533

  • In a hypothesis test problem, you may see words such as "the level of significance is 1%." The "1%" is the preconceived or preset \(\alpha\).
  • The statistician setting up the hypothesis test selects the value of α to use before collecting the sample data.
  • If no level of significance is given, a common standard to use is \(\alpha = 0.05\).
  • When you calculate the \(p\)-value and draw the picture, the \(p\)-value is the area in the left tail, the right tail, or split evenly between the two tails. For this reason, we call the hypothesis test left, right, or two tailed.
  • The alternative hypothesis, \(H_{a}\), tells you if the test is left, right, or two-tailed. It is the key to conducting the appropriate test.
  • \(H_{a}\) never has a symbol that contains an equal sign.
  • Thinking about the meaning of the \(p\)-value: A data analyst (and anyone else) should have more confidence that he made the correct decision to reject the null hypothesis with a smaller \(p\)-value (for example, 0.001 as opposed to 0.04) even if using the 0.05 level for alpha. Similarly, for a large p -value such as 0.4, as opposed to a \(p\)-value of 0.056 (\(\alpha = 0.05\) is less than either number), a data analyst should have more confidence that she made the correct decision in not rejecting the null hypothesis. This makes the data analyst use judgment rather than mindlessly applying rules.

Full Hypothesis Test Examples

Example \(\PageIndex{7}\)

Joon believes that 50% of first-time brides in the United States are younger than their grooms. She performs a hypothesis test to determine if the percentage is the same or different from 50% . Joon samples 100 first-time brides and 53 reply that they are younger than their grooms. For the hypothesis test, she uses a 1% level of significance.

Set up the hypothesis test:

The 1% level of significance means that α = 0.01. This is a test of a single population proportion .

\(H_{0}: p = 0.50\)  \(H_{a}: p \neq 0.50\)

The words "is the same or different from" tell you this is a two-tailed test.

Calculate the distribution needed:

Random variable: \(P′ =\) the percent of of first-time brides who are younger than their grooms.

Distribution for the test: The problem contains no mention of a mean. The information is given in terms of percentages. Use the distribution for P′ , the estimated proportion.

\[P' - N\left(p, \sqrt{\frac{p-q}{n}}\right)\nonumber \]

\[P' - N\left(0.5, \sqrt{\frac{0.5-0.5}{100}}\right)\nonumber \]

where \(p = 0.50, q = 1−p = 0.50\), and \(n = 100\)

Calculate the p -value using the normal distribution for proportions:

\[p\text{-value} = P(p′ < 0.47 or p′ > 0.53) = 0.5485\nonumber \]

where \[x = 53, p' = \frac{x}{n} = \frac{53}{100} = 0.53\nonumber \].

Interpretation of the \(p\text{-value})\: If the null hypothesis is true, there is 0.5485 probability (54.85%) that the sample (estimated) proportion \(p'\) is 0.53 or more OR 0.47 or less (see the graph in Figure).

Normal distribution curve of the percent of first time brides who are younger than the groom with values of 0.47, 0.50, and 0.53 on the x-axis. Vertical upward lines extend from 0.47 and 0.53 to the curve. 1/2(p-values) are calculated for the areas on outsides of 0.47 and 0.53.

\(\mu = p = 0.50\) comes from \(H_{0}\), the null hypothesis.

\(p′ = 0.53\). Since the curve is symmetrical and the test is two-tailed, the \(p′\) for the left tail is equal to \(0.50 – 0.03 = 0.47\) where \(\mu = p = 0.50\). (0.03 is the difference between 0.53 and 0.50.)

Compare \(\alpha\) and the \(p\text{-value}\):

Since \(\alpha = 0.01\) and \(p\text{-value} = 0.5485\). \(\alpha < p\text{-value}\).

Make a decision: Since \(\alpha < p\text{-value}\), you cannot reject \(H_{0}\).

Conclusion: At the 1% level of significance, the sample data do not show sufficient evidence that the percentage of first-time brides who are younger than their grooms is different from 50%.

The \(p\text{-value}\) can easily be calculated.

Press STAT and arrow over to TESTS . Press 5:1-PropZTest . Enter .5 for \(p_{0}\), 53 for \(x\) and 100 for \(n\). Arrow down to Prop and arrow to not equals \(p_{0}\). Press ENTER . Arrow down to Calculate and press ENTER . The calculator calculates the \(p\text{-value}\) (\(p = 0.5485\)) and the test statistic (\(z\)-score). Prop not equals .5 is the alternate hypothesis. Do this set of instructions again except arrow to Draw (instead of Calculate ). Press ENTER . A shaded graph appears with \(\(z\) = 0.6\) (test statistic) and \(p = 0.5485\) (\(p\text{-value}\)). Make sure when you use Draw that no other equations are highlighted in \(Y =\) and the plots are turned off.

The Type I and Type II errors are as follows:

The Type I error is to conclude that the proportion of first-time brides who are younger than their grooms is different from 50% when, in fact, the proportion is actually 50%. (Reject the null hypothesis when the null hypothesis is true).

The Type II error is there is not enough evidence to conclude that the proportion of first time brides who are younger than their grooms differs from 50% when, in fact, the proportion does differ from 50%. (Do not reject the null hypothesis when the null hypothesis is false.)

Exercise \(\PageIndex{7}\)

A teacher believes that 85% of students in the class will want to go on a field trip to the local zoo. She performs a hypothesis test to determine if the percentage is the same or different from 85%. The teacher samples 50 students and 39 reply that they would want to go to the zoo. For the hypothesis test, use a 1% level of significance.

First, determine what type of test this is, set up the hypothesis test, find the \(p\text{-value}\), sketch the graph, and state your conclusion.

Since the problem is about percentages, this is a test of single population proportions.

  • \(H_{0} : p = 0.85\)
  • \(H_{a}: p \neq 0.85\)
  • \(p = 0.7554\)

9.6.13.png

Because \(p > \alpha\), we fail to reject the null hypothesis. There is not sufficient evidence to suggest that the proportion of students that want to go to the zoo is not 85%.

Example \(\PageIndex{8}\)

Suppose a consumer group suspects that the proportion of households that have three cell phones is 30%. A cell phone company has reason to believe that the proportion is not 30%. Before they start a big advertising campaign, they conduct a hypothesis test. Their marketing people survey 150 households with the result that 43 of the households have three cell phones.

Set up the Hypothesis Test:

\(H_{0}: p = 0.30, H_{a}: p \neq 0.30\)

Determine the distribution needed:

The random variable is \(P′ =\) proportion of households that have three cell phones.

The distribution for the hypothesis test is \(P' - N\left(0.30, \sqrt{\frac{(0.30 \cdot 0.70)}{150}}\right)\)

Exercise 9.6.8.2

a. The value that helps determine the \(p\text{-value}\) is \(p′\). Calculate \(p′\).

a. \(p' = \frac{x}{n}\) where \(x\) is the number of successes and \(n\) is the total number in the sample.

\(x = 43, n = 150\)

\(p′ = 43150\)

Exercise 9.6.8.3

b. What is a success for this problem?

b. A success is having three cell phones in a household.

Exercise 9.6.8.4

c. What is the level of significance?

c. The level of significance is the preset \(\alpha\). Since \(\alpha\) is not given, assume that \(\alpha = 0.05\).

Exercise 9.6.8.5

d. Draw the graph for this problem. Draw the horizontal axis. Label and shade appropriately.

Calculate the \(p\text{-value}\).

d. \(p\text{-value} = 0.7216\)

Exercise 9.6.8.6

e. Make a decision. _____________(Reject/Do not reject) \(H_{0}\) because____________.

e. Assuming that \(\alpha = 0.05, \alpha < p\text{-value}\). The decision is do not reject \(H_{0}\) because there is not sufficient evidence to conclude that the proportion of households that have three cell phones is not 30%.

Exercise \(\PageIndex{8}\)

Marketers believe that 92% of adults in the United States own a cell phone. A cell phone manufacturer believes that number is actually lower. 200 American adults are surveyed, of which, 174 report having cell phones. Use a 5% level of significance. State the null and alternative hypothesis, find the p -value, state your conclusion, and identify the Type I and Type II errors.

  • \(H_{0}: p = 0.92\)
  • \(H_{a}: p < 0.92\)
  • \(p\text{-value} = 0.0046\)

Because \(p < 0.05\), we reject the null hypothesis. There is sufficient evidence to conclude that fewer than 92% of American adults own cell phones.

  • Type I Error: To conclude that fewer than 92% of American adults own cell phones when, in fact, 92% of American adults do own cell phones (reject the null hypothesis when the null hypothesis is true).
  • Type II Error: To conclude that 92% of American adults own cell phones when, in fact, fewer than 92% of American adults own cell phones (do not reject the null hypothesis when the null hypothesis is false).

The next example is a poem written by a statistics student named Nicole Hart. The solution to the problem follows the poem. Notice that the hypothesis test is for a single population proportion. This means that the null and alternate hypotheses use the parameter \(p\). The distribution for the test is normal. The estimated proportion \(p′\) is the proportion of fleas killed to the total fleas found on Fido. This is sample information. The problem gives a preconceived \(\alpha = 0.01\), for comparison, and a 95% confidence interval computation. The poem is clever and humorous, so please enjoy it!

Example \(\PageIndex{9}\)

My dog has so many fleas,

They do not come off with ease. As for shampoo, I have tried many types Even one called Bubble Hype, Which only killed 25% of the fleas, Unfortunately I was not pleased.

I've used all kinds of soap, Until I had given up hope Until one day I saw An ad that put me in awe.

A shampoo used for dogs Called GOOD ENOUGH to Clean a Hog Guaranteed to kill more fleas.

I gave Fido a bath And after doing the math His number of fleas Started dropping by 3's! Before his shampoo I counted 42.

At the end of his bath, I redid the math And the new shampoo had killed 17 fleas. So now I was pleased.

Now it is time for you to have some fun With the level of significance being .01, You must help me figure out

Use the new shampoo or go without?

\(H_{0}: p \leq 0.25\)   \(H_{a}: p > 0.25\)

In words, CLEARLY state what your random variable \(\bar{X}\) or \(P′\) represents.

\(P′ =\) The proportion of fleas that are killed by the new shampoo

State the distribution to use for the test.

\[N\left(0.25, \sqrt{\frac{(0.25){1-0.25}}{42}}\right)\nonumber \]

Test Statistic: \(z = 2.3163\)

Calculate the \(p\text{-value}\) using the normal distribution for proportions:

\[p\text{-value} = 0.0103\nonumber \]

In one to two complete sentences, explain what the p -value means for this problem.

If the null hypothesis is true (the proportion is 0.25), then there is a 0.0103 probability that the sample (estimated) proportion is 0.4048 \(\left(\frac{17}{42}\right)\) or more.

Use the previous information to sketch a picture of this situation. CLEARLY, label and scale the horizontal axis and shade the region(s) corresponding to the \(p\text{-value}\).

Normal distribution graph of the proportion of fleas killed by the new shampoo with values of 0.25 and 0.4048 on the x-axis. A vertical upward line extends from 0.4048 to the curve and the area to the left of this is shaded in. The test statistic of the sample proportion is listed.

Indicate the correct decision (“reject” or “do not reject” the null hypothesis), the reason for it, and write an appropriate conclusion, using complete sentences.

Conclusion: At the 1% level of significance, the sample data do not show sufficient evidence that the percentage of fleas that are killed by the new shampoo is more than 25%.

Construct a 95% confidence interval for the true mean or proportion. Include a sketch of the graph of the situation. Label the point estimate and the lower and upper bounds of the confidence interval.

Normal distribution graph of the proportion of fleas killed by the new shampoo with values of 0.26, 17/42, and 0.55 on the x-axis. A vertical upward line extends from 0.26 and 0.55. The area between these two points is equal to 0.95.

Confidence Interval: (0.26,0.55) We are 95% confident that the true population proportion p of fleas that are killed by the new shampoo is between 26% and 55%.

This test result is not very definitive since the \(p\text{-value}\) is very close to alpha. In reality, one would probably do more tests by giving the dog another bath after the fleas have had a chance to return.

Example \(\PageIndex{11}\)

In a study of 420,019 cell phone users, 172 of the subjects developed brain cancer. Test the claim that cell phone users developed brain cancer at a greater rate than that for non-cell phone users (the rate of brain cancer for non-cell phone users is 0.0340%). Since this is a critical issue, use a 0.005 significance level. Explain why the significance level should be so low in terms of a Type I error.

We will follow the four-step process.

  • \(H_{0}: p \leq 0.00034\)
  • \(H_{a}: p > 0.00034\)

If we commit a Type I error, we are essentially accepting a false claim. Since the claim describes cancer-causing environments, we want to minimize the chances of incorrectly identifying causes of cancer.

  • We will be testing a sample proportion with \(x = 172\) and \(n = 420,019\). The sample is sufficiently large because we have \(np = 420,019(0.00034) = 142.8\), \(nq = 420,019(0.99966) = 419,876.2\), two independent outcomes, and a fixed probability of success \(p = 0.00034\). Thus we will be able to generalize our results to the population.

Figure 9.6.11.

Figure 9.6.12.

  • Since the \(p\text{-value} = 0.0073\) is greater than our alpha value \(= 0.005\), we cannot reject the null. Therefore, we conclude that there is not enough evidence to support the claim of higher brain cancer rates for the cell phone users.

Example \(\PageIndex{12}\)

According to the US Census there are approximately 268,608,618 residents aged 12 and older. Statistics from the Rape, Abuse, and Incest National Network indicate that, on average, 207,754 rapes occur each year (male and female) for persons aged 12 and older. This translates into a percentage of sexual assaults of 0.078%. In Daviess County, KY, there were reported 11 rapes for a population of 37,937. Conduct an appropriate hypothesis test to determine if there is a statistically significant difference between the local sexual assault percentage and the national sexual assault percentage. Use a significance level of 0.01.

We will follow the four-step plan.

  • We need to test whether the proportion of sexual assaults in Daviess County, KY is significantly different from the national average.
  • \(H_{0}: p = 0.00078\)
  • \(H_{a}: p \neq 0.00078\)

Figure 9.6.13.

Figure 9.6.14.

  • Since the \(p\text{-value}\), \(p = 0.00063\), is less than the alpha level of 0.01, the sample data indicates that we should reject the null hypothesis. In conclusion, the sample data support the claim that the proportion of sexual assaults in Daviess County, Kentucky is different from the national average proportion.

The hypothesis test itself has an established process. This can be summarized as follows:

  • Determine \(H_{0}\) and \(H_{a}\). Remember, they are contradictory.
  • Determine the random variable.
  • Determine the distribution for the test.
  • Draw a graph, calculate the test statistic, and use the test statistic to calculate the \(p\text{-value}\). (A z -score and a t -score are examples of test statistics.)
  • Compare the preconceived α with the p -value, make a decision (reject or do not reject H 0 ), and write a clear conclusion using English sentences.

Notice that in performing the hypothesis test, you use \(\alpha\) and not \(\beta\). \(\beta\) is needed to help determine the sample size of the data that is used in calculating the \(p\text{-value}\). Remember that the quantity \(1 – \beta\) is called the Power of the Test . A high power is desirable. If the power is too low, statisticians typically increase the sample size while keeping α the same.If the power is low, the null hypothesis might not be rejected when it should be.

  • Data from Amit Schitai. Director of Instructional Technology and Distance Learning. LBCC.
  • Data from Bloomberg Businessweek . Available online at http://www.businessweek.com/news/2011- 09-15/nyc-smoking-rate-falls-to-record-low-of-14-bloomberg-says.html.
  • Data from energy.gov. Available online at http://energy.gov (accessed June 27. 2013).
  • Data from Gallup®. Available online at www.gallup.com (accessed June 27, 2013).
  • Data from Growing by Degrees by Allen and Seaman.
  • Data from La Leche League International. Available online at www.lalecheleague.org/Law/BAFeb01.html.
  • Data from the American Automobile Association. Available online at www.aaa.com (accessed June 27, 2013).
  • Data from the American Library Association. Available online at www.ala.org (accessed June 27, 2013).
  • Data from the Bureau of Labor Statistics. Available online at http://www.bls.gov/oes/current/oes291111.htm .
  • Data from the Centers for Disease Control and Prevention. Available online at www.cdc.gov (accessed June 27, 2013)
  • Data from the U.S. Census Bureau, available online at quickfacts.census.gov/qfd/states/00000.html (accessed June 27, 2013).
  • Data from the United States Census Bureau. Available online at www.census.gov/hhes/socdemo/language/.
  • Data from Toastmasters International. Available online at http://toastmasters.org/artisan/deta...eID=429&Page=1 .
  • Data from Weather Underground. Available online at www.wunderground.com (accessed June 27, 2013).
  • Federal Bureau of Investigations. “Uniform Crime Reports and Index of Crime in Daviess in the State of Kentucky enforced by Daviess County from 1985 to 2005.” Available online at http://www.disastercenter.com/kentucky/crime/3868.htm (accessed June 27, 2013).
  • “Foothill-De Anza Community College District.” De Anza College, Winter 2006. Available online at research.fhda.edu/factbook/DA...t_da_2006w.pdf.
  • Johansen, C., J. Boice, Jr., J. McLaughlin, J. Olsen. “Cellular Telephones and Cancer—a Nationwide Cohort Study in Denmark.” Institute of Cancer Epidemiology and the Danish Cancer Society, 93(3):203-7. Available online at http://www.ncbi.nlm.nih.gov/pubmed/11158188 (accessed June 27, 2013).
  • Rape, Abuse & Incest National Network. “How often does sexual assault occur?” RAINN, 2009. Available online at www.rainn.org/get-information...sexual-assault (accessed June 27, 2013).

Contributors and Attributions

Barbara Illowsky and Susan Dean (De Anza College) with many other contributing authors. Content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/[email protected] .

Statology

Statistics Made Easy

Two-Tailed Hypothesis Tests: 3 Example Problems

In statistics, we use hypothesis tests to determine whether some claim about a population parameter is true or not.

Whenever we perform a hypothesis test, we always write a null hypothesis and an alternative hypothesis, which take the following forms:

H 0 (Null Hypothesis): Population parameter = ≤, ≥ some value

H A (Alternative Hypothesis): Population parameter <, >, ≠ some value

There are two types of hypothesis tests:

  • One-tailed test : Alternative hypothesis contains either < or > sign
  • Two-tailed test : Alternative hypothesis contains the ≠ sign

In a two-tailed test , the alternative hypothesis always contains the not equal ( ≠ ) sign.

This indicates that we’re testing whether or not some effect exists, regardless of whether it’s a positive or negative effect.

Check out the following example problems to gain a better understanding of two-tailed tests.

Example 1: Factory Widgets

Suppose it’s assumed that the average weight of a certain widget produced at a factory is 20 grams. However, one engineer believes that a new method produces widgets that weigh less than 20 grams.

To test this, he can perform a one-tailed hypothesis test with the following null and alternative hypotheses:

  • H 0 (Null Hypothesis): μ = 20 grams
  • H A (Alternative Hypothesis): μ ≠ 20 grams

This is an example of a two-tailed hypothesis test because the alternative hypothesis contains the not equal “≠” sign. The engineer believes that the new method will influence widget weight, but doesn’t specify whether it will cause average weight to increase or decrease.

To test this, he uses the new method to produce 20 widgets and obtains the following information:

  • n = 20 widgets
  • x = 19.8 grams
  • s = 3.1 grams

Plugging these values into the One Sample t-test Calculator , we obtain the following results:

  • t-test statistic: -0.288525
  • two-tailed p-value: 0.776

Since the p-value is not less than .05, the engineer fails to reject the null hypothesis.

He does not have sufficient evidence to say that the true mean weight of widgets produced by the new method is different than 20 grams.

Example 2: Plant Growth

Suppose a standard fertilizer has been shown to cause a species of plants to grow by an average of 10 inches. However, one botanist believes a new fertilizer causes this species of plants to grow by an average amount different than 10 inches.

To test this, she can perform a one-tailed hypothesis test with the following null and alternative hypotheses:

  • H 0 (Null Hypothesis): μ = 10 inches
  • H A (Alternative Hypothesis): μ ≠ 10 inches

This is an example of a two-tailed hypothesis test because the alternative hypothesis contains the not equal “≠” sign. The botanist believes that the new fertilizer will influence plant growth, but doesn’t specify whether it will cause average growth to increase or decrease.

To test this claim, she applies the new fertilizer to a simple random sample of 15 plants and obtains the following information:

  • n = 15 plants
  • x = 11.4 inches
  • s = 2.5 inches
  • t-test statistic: 2.1689
  • two-tailed p-value: 0.0478

Since the p-value is less than .05, the botanist rejects the null hypothesis.

She has sufficient evidence to conclude that the new fertilizer causes an average growth that is different than 10 inches.

Example 3: Studying Method

A professor believes that a certain studying technique will influence the mean score that her students receive on a certain exam, but she’s unsure if it will increase or decrease the mean score, which is currently 82.

To test this, she lets each student use the studying technique for one month leading up to the exam and then administers the same exam to each of the students.

She then performs a hypothesis test using the following hypotheses:

  • H 0 : μ = 82
  • H A : μ ≠ 82

This is an example of a two-tailed hypothesis test because the alternative hypothesis contains the not equal “≠” sign. The professor believes that the studying technique will influence the mean exam score, but doesn’t specify whether it will cause the mean score to increase or decrease.

To test this claim, the professor has 25 students use the new studying method and then take the exam. He collects the following data on the exam scores for this sample of students:

  • t-test statistic: 3.6586
  • two-tailed p-value: 0.0012

Since the p-value is less than .05, the professor rejects the null hypothesis.

She has sufficient evidence to conclude that the new studying method produces exam scores with an average score that is different than 82.

Additional Resources

The following tutorials provide additional information about hypothesis testing:

Introduction to Hypothesis Testing What is a Directional Hypothesis? When Do You Reject the Null Hypothesis?

Featured Posts

5 Statistical Biases to Avoid

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

One Reply to “Two-Tailed Hypothesis Tests: 3 Example Problems”

i owe u my first born child

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

easybiologyclass, Easybiologyclass, EBC, ebc

Hypothesis Testing: Questions and Answers (Biostatistics Notes)

(1). what is hypothesis.

A hypothesis is a statement or an assumption about a phenomenon or a relationship between variables. It is a proposed explanation for a set of observations or an answer to a research question.

In research, hypotheses are tested through experiments or data analysis using a test statistic . The aim of hypothesis testing is to determine if the evidence supports or rejects the hypothesis. If the evidence supports the hypothesis, it provides evidence for the validity of the hypothesis. If the evidence does not support the hypothesis, it may need to be revised or rejected and a new hypothesis may be proposed.

Learn more: Testing of Hypothesis: Theory and Steps

They hypotheses may be directional or non-directional . Directional hypotheses specify the direction of the relationship between the variables , whereas the non-directional hypotheses only state the presence of a relationship without specifying the direction.

(2). What is Hypothesis Testing in Statistics?

It is a method used to make a decision about the validity of the hypothesis concerning a population parameter based on a random sample from that population. It involves the calculation of a test statistic, and the comparison of this test statistic to a critical value determined from the distribution of that test statistic. The decision is made by comparing the p-value (p-value is described below) with a significance level, typically 0.05. If the p-value is less than the significance level, the null hypothesis is rejected and the alternative hypothesis is accepted.

Learn more: Graphical Representation of Data

(3). What is Test-Statistic?

A test statistic is a numerical value calculated from the sample data. It is used to test the hypothesis about a population parameter. Test-statistic summarizes the sample information in to a single value and helps to determine the significance of the results. The choice of test statistic depends on the specific hypothesis test being conducted and the type of data. Commonly used test statistics are t-statistic (t-test), z-statistic (z-test), F-statistic (F-test) and the chi-squared statistic ( Chi-square test ). The test statistic is used in conjunction with a critical value and a p-value to make inferences about the population parameter and determine whether the null hypothesis should be rejected or not.

(4). What is null hypothesis?

The null hypothesis is a statement in statistical testing that assumes no significant difference exists between the tested variables or parameters. It is usually denoted as H0 and serves as a starting point for statistical analysis. The null hypothesis is tested against an alternative hypothesi s, which is the opposite of the null hypothesis and represents the researchers’ research question or prediction of an effect. The aim of statistical testing is to determine whether the evidence in the sample data supports the rejection of the null hypothesis in favor of the alternative hypothesis. If the null hypothesis can’t be rejected, it doesn’t mean it’s proven to be true, it just means that the data do not provide enough evidence to support the alternative hypothesis.

(5). What is alternate hypothesis?

The alternative hypothesis is a statement in statistical testing that contradicts or negates the null hypothesis and represents the researchers’ research hypothesis. Alternate hypothesis is denoted as H1 or Ha .  The alternative hypothesis is what the researcher is hoping to prove through the statistical analysis. If the results of the analysis provide strong evidence, the null hypothesis is rejected in favor of the alternative hypothesis. The alternative hypothesis typically represents a non-zero difference or a relationship between variables, whereas the null hypothesis assumes no difference or relationship.

What is hypothesis testing

(6). What is Level of Significance in Statistics?

The level of significance in statistics refers to the threshold of probability or p-value below which a result or finding is considered statistically significant. It means that, it is unlikely to have occurred by chance. Level of significance is usually set at 5% (0.05) and indicates the maximum probability of accepting the null hypothesis when it is actually false (Type I error).

Learn more: Difference between Type-I and Type-II Errors

(7). What are statistical errors?

Statistical errors are mistakes can occur during the process of statistical analysis. There are two types of statistical errors: Type I errors and Type II errors.

(8). What is type-I error in statistics?

The type I error, also known as a false positive, is a statistical error that occurs when the null hypothesis is rejected when it is actually true. In other words, a Type I error occurs when a significant result is obtained by chance, leading to the incorrect conclusion that there is a real effect or relationship present.

In hypothesis testing, the level of significance (alpha) is used to control the probability of making a Type I error. A level of significance of 0.05, for example, means that there is a 5% chance of rejecting the null hypothesis when it is actually true. The level of significance is a threshold that is used to determine whether the observed result is significant enough to reject the null hypothesis. Minimizing Type I errors is important in statistical analysis because a false positive can lead to incorrect conclusions and misguided decisions.

(9). How to reduce the chance of committing a type-I error?

There are several ways to reduce the chance of committing a Type I error, they are:

Ø   Increasing the sample size: Increasing the sample size increases the precision and power of the statistical test. High sample size reduces the probability of observing a significant result by chance.

Ø   Decreasing the level of significance (alpha) : Decreasing the level of significance reduces the probability of rejecting the null hypothesis when it is actually true. A lower level of significance increases the threshold for rejecting the null hypothesis, making it less likely that a Type I error will occur.

Ø   Conducting a replication study : Replicating the study with a new sample of data helps to confirm or refute the results and reduces the chance of observing a false positive result by chance.

Ø   Using more stringent statistical methods : More sophisticated statistical methods, such as Bayesian analysis, can provide additional information to help reduce the probability of making a Type I error.

Ø   Careful interpretation of results : Proper interpretation of results and thorough understanding of the underlying statistical methods used can also help reduce the chance of making a Type I error.

It is very important have a balance in reducing Type I errors with the risk of increasing the chance of making a Type II error. The statistical analysis implemented with an aim of reducing the chance of a Type I error may also the chance of a Type II error.

(10). What is type-II error in statistics?

Type II error, also known as a false negative , is a statistical error that occurs when the null hypothesis is not rejected when it is actually false. In other words, a Type II error occurs when a significant difference or relationship is not detected in the data, despite its existence in the population.

In hypothesis testing, the probability of making a Type II error is represented by beta ( beta error ) and is related to the sample size and the magnitude of the effect being tested. The larger the sample size or the larger the effect, the lower the probability of making a Type II error.

Minimizing Type II errors is important because a false negative can lead to incorrect conclusions and missed opportunities for discovery. To reduce the probability of a Type II error, researchers may use larger sample sizes, increase the level of significance (alpha), or use more powerful statistical methods.

(11). How to reduce the chance of committing the type-II error in statistics?

There are several ways to reduce the chance of committing a Type II error in statistics, they are:

Ø   Increasing the sample size : Increasing the sample size increases the precision and power of the statistical test. Increased sample size reduces the probability of failing to detect a significant result.

Ø   Increasing the level of significance (alpha): Increasing the level of significance reduces the probability of failing to reject the null hypothesis when it is actually false. A higher level of significance decreases the threshold for rejecting the null hypothesis, making it more likely that a significant result will be detected.

Ø   Using a more powerful statistical test : More powerful statistical tests, such as a two-sample t-test or ANOVA, can increase the ability to detect a significant difference or relationship in the data.

Ø   Increasing the magnitude of the effect being tested: A larger effect size makes it more likely that a significant result will be detected, reducing the probability of a Type II error.

Ø   Conducting a pilot study: A pilot study can provide an estimate of the sample size needed for the main study, increasing the ability to detect a significant result.

It’s important to balance reducing the probability of a Type II error with the risk of increasing the chance of making a Type I error. A statistical analysis that offers to reduce the chance of a Type II error may also increase the chance of a Type I error.

(12). What is p-value?

The p-value is a statistical measure that represents the probability of obtaining a result as extreme or more extreme than the one observed, given that the null hypothesis is true. In other words, the p-value is the probability of observing the data if the null hypothesis is true.

In hypothesis testing, the p-value is compared to the level of significance (alpha) to determine whether the null hypothesis should be rejected in favor of the alternative hypothesis. If the p-value is less than the level of significance, the null hypothesis is rejected, and the result is considered statistically significant. A small p-value indicates that it is unlikely that the result was obtained by chance, and provides evidence against the null hypothesis.

It’s important to note that the p-value does not indicate the magnitude of the effect or the likelihood of the alternative hypothesis being true. It only provides information about the strength of the evidence against the null hypothesis. A low p-value is not proof of the alternative hypothesis, but it does provide evidence against the null hypothesis and supports the conclusion that the effect or relationship is real.

(13). What is the importance of hypothesis testing in research?

Hypothesis testing is an important tool in research as it allows researchers to test their ideas and make inferences about a population based on a sample of data. It provides a systematic and objective approach for evaluating the evidence and making decisions about the validity of a claim.

Evaluating claims : Hypothesis testing provides a way to evaluate claims and determine if they are supported by the data. By testing hypotheses and comparing the results to a predetermined level of significance, researchers can determine if their ideas are supported by the data.

Making decisions : Hypothesis testing helps researchers make decisions about the validity of their ideas and the direction of their research. It provides a way to determine if a claim is supported by the data.

Enhancing the quality of research : Hypothesis testing ensures that research is conducted in a systematic and rigorous manner, which enhances the quality and validity of the research findings. By using a hypothesis testing framework, researchers can ensure that their results are not due to chance and that their conclusions are based on valid evidence.

Understanding the phenomena : By testing hypotheses and evaluating the evidence, hypothesis testing helps researchers gain a better understanding of the phenomena they are studying. It provides a way to determine if a claim is supported by the data and to gain insights into the underlying relationships and patterns in the data.

(14). What are the different types of hypothesis testing tools (test-statistics) available in statistics?

There are several different types of hypothesis testing tools available in statistics which are summarized below. The choice of which tool to use depends on the research question, the type of data being analyzed, and the underlying assumptions of the test.

Z-test: A Z-test is used to test the mean of a population when the population standard deviation is known. It is commonly used to test the difference between two means.

t-test: A t-test is used to test the mean of a population when the population standard deviation is unknown. It is commonly used to test the difference between two means. t-test is performed when the sample size is small (n<30).

ANOVA : Analysis of Variance (ANOVA) is a hypothesis testing tool used to test the equality of means for two or more groups. It is used to determine if there are significant differences among the means of multiple groups. Here comparison between and within groups are done to find out the significance.

Chi-Square Test : The Chi-Square Test the discrepancies between the observed and expected data. It is used to test the independence of two categorical variables. It is commonly used to test if there is a relationship between two categorical variables.

F-test: F-test is variance ratio test. An F-test is used to test the equality of variances for two or more groups. It is commonly used in ANOVA to determine if the variances of the groups are equal.

Non-Parametric Tests : Non-parametric tests are hypothesis tests that do not assume a normal distribution of the data. Examples include the Wilcoxon rank-sum test, the Kruskal-Wallis test, and the Mann-Whitney U test.

(15). What is statistical power?

Statistical power is the probability of correctly rejecting a false null hypothesis in a statistical hypothesis test. It is the complement of the probability of making a type II error, which is failing to reject a false null hypothesis.

The power of a hypothesis test is determined by several factors such as sample size, the effect size, the level of significance and the variability of the data. Increasing the sample size, reducing the variability of the data, or increasing the effect size will generally increase the power of the test.

The power of a hypothesis test is an important consideration in the design of experiments and the selection of sample sizes, as it affects the ability of the test to detect meaningful differences between groups or to reject false null hypotheses. It is also important to consider the trade-off between the power of the test and the level of significance, as increasing the power of the test typically requires a decrease in the level of significance.

Learn more: Principles of Experimental Designs

Learn More : Different Types of Experimental Designs

(16). What is one-tailed and two-tailed test in statistics?

A one-tailed test and a two-tailed test are two types of statistical hypothesis tests used to determine if there is a significant difference between two groups or if a relationship exists between two variables.

A one-tailed test is a hypothesis test that tests the direction of the relationship between two variables. For example, if a researcher wants to determine if a new drug is better than a placebo, a one-tailed test would be used. In a one-tailed test, the alternative hypothesis specifies the direction of the difference, either the new drug is better than the placebo or it is not.

A two-tailed test , on the other hand, does not specify the direction of the difference between the two groups or variables. It only tests if there is a significant difference between the two groups or variables in either direction. For example, if a researcher wants to determine if a new drug is different from a placebo, a two-tailed test would be used. In a two-tailed test, the alternative hypothesis states that the new drug is different from the placebo but does not specify in which direction the difference lies (example- the efficiency may be less or more).

Testing of Hypothesis, Biostatistics Notes

The choice between a one-tailed and a two-tailed test depends on the research question, the data, and the underlying assumptions of the test. One-tailed tests are typically used when the direction of the difference is already known or when the research question is very specific, while two-tailed tests are used when the direction of the difference is not known or when the research question is more general.

(17). What is critical region?

In statistical hypothesis testing, a critical region is the set of values of a test statistic for which the null hypothesis is rejected. The critical region is determined by the level of significance, which is the probability of making a type I error, or incorrectly rejecting a true null hypothesis.

The critical region is often defined as the region of the distribution of the test statistic that is beyond a certain threshold. The threshold is determined by the level of significance and the type of test being conducted (one-tailed or two-tailed). If the calculated test statistic falls within the critical region, the null hypothesis is rejected and the alternative hypothesis is accepted. If the calculated test statistic falls outside of the critical region, the null hypothesis is not rejected. Thus, the critical region is a key component of hypothesis testing, as it determines the decision rule for accepting or rejecting the null hypothesis.

<<< Back to Biostatistics Notes Page

Dear readers

I hope you have enjoyed reading this article and finding the content informative. We believe that this article helped you to understand the Hypothesis Testing Questions and Answers . I would like to take this opportunity to request your COMMENTS on the topics I have covered. Whether you have a suggestion, a question about the topic, or simply want to share your thoughts, I would love to hear from you. Your comments provide me with the opportunity to engage in meaningful discussion and continue to write with the best possible content in Biology.

So, please don’t hesitate to leave a comment below. I appreciate your support and look forward to hearing from you. Best regards, [Admin, EasyBiologyClass]

Related posts:

  • Hypothesis Testing in Statistics – Short Notes + PPT
  • Graphical Representation of Data (Frequency Polygon, Frequency Curve, Ogive and Pie Diagram)
  • What is Data in Statistics?
  • Principles of Experimental Designs in Statistics – Replication, Randomization & Local Control
  • Types of Experimental Designs in Statistics (RBD, CRD, LSD, Factorial Designs)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Privacy Overview

  • Physics Concept Questions And Answers

Hypothesis Questions

In physics, a hypothesis is a probable explanation for a physical phenomenon. Researchers usually base scientific hypotheses on earlier experiments or observations that cannot evidently be described with the existing scientific theories. At times the words “theory” and hypothesis are used interchangeably. However, a scientific theory is not the same as a scientific hypothesis.

Important Hypothesis Questions with Answers

1) What is a hypothesis?

In science, a hypothesis is a structured assumption that is constructed based on some theoretical or experimental evidence. This is the first step during any research that transforms the investigation queries into predictions. It comprises components like population, variables and the relationship among the variables. Generally, a research hypothesis is a type of hypothesis that is employed to test the connection between multiple variables. For concrete evaluation, the developer of a hypothesis must be able to put forward specifics in functional terms. A hypothesis demands more work by the investigator for both confirming or disproving it. In this process, a confirmed hypothesis could become part of a probable theory or develop into a theory itself. Typically, a scientific hypothesis has the architecture of a mathematical model.

2) Give the fundamental types of hypotheses.

There are mainly six types of hypotheses:

  • Simple hypothesis
  • Complex hypothesis
  • Directional hypothesis
  • Non-directional hypothesis
  • Null hypothesis
  • Associative and causal hypothesis

3) What is meant by a directional hypothesis?

A directional hypothesis is a construct assumption derived by a researcher regarding a negative or positive change, difference, or relationship between two variables among a population. Typically, this prediction is based on previous research, extensive experience or accepted theory. The connection between the variables can also forecast its characteristics. For example, a middle-aged man exercising daily over time has a much lower chance of cardiac arrest than a man who does not follow any exercise routine.

4) What is meant by a non-directional hypothesis?

It is developed when there is no existing theory involved. In most cases, it is a statement that a connection lies between two variables without assuming the exact characteristics (direction) of the inherent connection.

5) What is a theory?

A theory is a scientific method that tries to explain the natural phenomena of the Universe by applying a consistent, systematic, logical way of investigation, data extraction, data scrutiny, experimenting, and refinement to reach a well-tested, thorough explanation that is concretely supported by proofs and evidence.

6) What are the main steps to developing a scientific theory?

Below is a generalised sequence of steps taken to develop a scientific theory:

  • Choose and define the natural phenomenon that you need to figure out and describe. Gather data about this phenomenon by examining the source of the phenomena and analysing observations. We can also replicate this phenomenon by an experiment or simulation under a controlled environment (typically inside a laboratory) that removes interference from outside variables.
  • After extracting sufficient data, analyse for repeating patterns in the data. Try to describe these recurring patterns by constructing a provisional explanation (hypothesis).
  • Test the hypothesis by deriving more information to examine if the hypothesis stays true to exhibit the probable pattern. If the available data does not support the hypothesis, it must be altered or removed for a better one. During the collection of data, we must not ignore information that conflicts with the hypothesis in favour of only supportive information (known as “cherry-picking”). This is frequently misused by pseudo-scientists trying to scam people who are not familiar with scientific methodologies.
  • If a concrete hypothesis stands true after all the scrutiny and is the most sound explanation for the phenomenon, then it is considered a valid theory. An established theory may undergo modifications and rejection if there exist enough pieces of evidence that contradict it. Thus, a theory is not a perpetual or absolute truth.

6) What are the main outcomes of a valid hypothesis?

Any valid hypothesis will allow us to make predictions by simple or deductive reasoning. In some scenarios, it could predict the result of a test in a laboratory or the probable observation of a natural process in the Universe. The prediction may give rise to statistics that further point to other extended probabilities or patterns. The scientific method comprises experimentation to validate the hypothesis to sufficiently explain the reasons under thorough investigation.

7) What are the main criteria for formulating a legitimate hypothesis?

During the development of a hypothesis, the researcher must not currently have an absolute prejudice over the probable result of the test or experiment. It should stay reasonably under the scope of the investigation. Then only the experiment or examination increases the probability of deriving a valid, true side of the hypothesis. If the investigator already knows the result, it is only considered a “consequence” (the investigator should have already taken this during the construction of the hypothesis). If the researcher cannot examine the predictions by experience or observation, the hypothesis must be tested by other qualified investigators providing observations.

Investigators examining alternative hypotheses may consider the following:

  • Testability
  • Parsimony – discouraging the postulation of unrestricted numbers of entities.
  • Scope – the apparent application of the hypothesis to many scenarios of the phenomena.
  • Fruitfulness – the potential that a hypothesis may help further explain phenomena in the future
  • Conservatism – the compatibility with existing recognised knowledge systems.

8) What is a working hypothesis?

A working hypothesis is a type of hypothesis that is scientifically accepted as a foundation for further study in the hope that a plausible theory will be derived, even if the hypothesis eventually fails. Just like most hypotheses, a working hypothesis is created as a statement of assumptions, which can be connected to the exploratory investigation purpose in empirical analysis. They are often employed as an abstract foundation in qualitative research.

Practice Questions

1) What is a postulate? 2) What is the difference between a hypothesis and a theory? 3) What is a pseudo-hypothesis? 4) Define a scientific theory.

Stay tuned to BYJU’S and Fall in Love with Learning!

hypothesis test questions and answers

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

IMAGES

  1. hypothesis test formula statistics

    hypothesis test questions and answers

  2. Hypothesis Testing Questions: A Level TYS Answers

    hypothesis test questions and answers

  3. Sample Questions Hypothesis Testing Statistics

    hypothesis test questions and answers

  4. Hypothesis Testing Questions and Answers

    hypothesis test questions and answers

  5. Hypothesis Testing Statistics Formula Sheet

    hypothesis test questions and answers

  6. Hypothesis Testing Solved Problems

    hypothesis test questions and answers

VIDEO

  1. Hypothesis Test about the Mean

  2. Hypothesis Test

  3. Hypothesis Testing of Normal Variables- examples

  4. Hypothesis test for a proportion default

  5. week 3 Hypothesis test

  6. Hypothesis Test for a Population Mean, Sigma Known, One-Tailed Test

COMMENTS

  1. 9.E: Hypothesis Testing with One Sample (Exercises)

    For each of the word problems, use a solution sheet to do the hypothesis test. The solution sheet is found in . Please feel free to make copies of the solution sheets. ... Answer any other questions asked in the problem. Q 9.6.34. According to the Center for Disease Control website, in 2011 at least 18% of high school students have smoked a ...

  2. PDF Unit 7

    Carry out an appropriate statistical test and interpret your findings. ANSWER . Yes, a paired t-test suggests that the average difference in hours slept (Dalmane - Halcion) = 0.32 is statistically significant (one sided p-value = .018). SOLUTION . This question is asking for a hypothesis test of the equality of two means in the setting of ...

  3. Hypothesis Testing Solved Examples(Questions and Solutions)

    View Solution to Question 1. Question 2. A professor wants to know if her introductory statistics class has a good grasp of basic math. Six students are chosen at random from the class and given a math proficiency test. The professor wants the class to be able to score above 70 on the test. The six students get the following scores:62, 92, 75 ...

  4. 9.4 Full Hypothesis Test Examples

    An investor believes the stock won't grow as quickly. The changes in stock price is recorded for ten weeks and are as follows: $4, $3, $2, $3, $1, $7, $2, $1, $1, $2. Perform a hypothesis test using a 5% level of significance. State the null and alternative hypotheses, state your conclusion, and identify the Type I errors.

  5. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  6. Simple hypothesis testing (practice)

    Simple hypothesis testing. Niels has a Magic 8 -Ball, which is a toy used for fortune-telling or seeking advice. To consult the ball, you ask the ball a question and shake it. One of 5 different possible answers then appears at random in the ball. Niels sensed that the ball answers " Ask again later " too frequently.

  7. PDF Hypothesis Testing

    the proportions who would answer yes or no are each 0.50. Alternative hypothesis: Fewer than 0.50, or 50%, of the population would answer yes to this question. The majority do not think Clinton has the honesty and integrity to be president. Step 2. Collect and summarize data into a test statistic. Sample proportion is: 233/518 = 0.45.

  8. S.3.3 Hypothesis Testing Examples

    If the biologist set her significance level \(\alpha\) at 0.05 and used the critical value approach to conduct her hypothesis test, she would reject the null hypothesis if her test statistic t* were less than -1.6939 (determined using statistical software or a t-table):s-3-3. Since the biologist's test statistic, t* = -4.60, is less than -1.6939, the biologist rejects the null hypothesis.

  9. Significance tests (hypothesis testing)

    Unit test. Significance tests give us a formal process for using sample data to evaluate the likelihood of some claim about a population value. Learn how to conduct significance tests and calculate p-values to see how likely a sample result is to occur by random chance. You'll also see how we use p-values to make conclusions about hypotheses.

  10. PDF Stats 2 Hypothesis Testing Questions

    the hypothesis test in part (a). Give a reason for your answer. (2 marks) 3 David is the professional coach at the golf club where Becki is a member. He claims that, after having a series of lessons with him, the mean number of putts that Becki takes per round of golf will reduce from her present mean of 36.

  11. Hypothesis Testing Practice Questions Flashcards

    Study with Quizlet and memorize flashcards containing terms like A method for testing a claim or hypothesis about a parameter in a population, using data measured in a sample, is called: A) the central limit theorem B) hypothesis testing C) significance testing D) both b and c, The _____ hypothesis is a statement about a population parameter, such as the population mean, that is assumed to be ...

  12. 10.E: Hypothesis Testing with Two Samples (Exercises)

    Use the following information to answer the next 15 exercises: Indicate if the hypothesis test is for. independent group means, population standard deviations, and/or variances known. independent group means, population standard deviations, and/or variances unknown. matched or paired samples. single mean.

  13. 8.4: Hypothesis Test Examples for Proportions

    She performs a hypothesis test to determine if the percentage is the same or different from 50%. Joon samples 100 first-time brides and 53 reply that they are younger than their grooms. For the hypothesis test, she uses a 1% level of significance. Answer. Set up the hypothesis test: The 1% level of significance means that α = 0.01.

  14. Edexcel A Level Maths: Statistics

    A hypothesis test is carried out at the 5% level of significance to test if a normal coin is fair or not. (i) Describe what the population parameter could be for the hypothesis test. (ii) State whether the hypothesis test should be a one-tailed test or a two-tailed test, give a reason for your answer. (iii)

  15. Two-Tailed Hypothesis Tests: 3 Example Problems

    To test this, he can perform a one-tailed hypothesis test with the following null and alternative hypotheses: H 0 (Null Hypothesis): μ = 20 grams; H A (Alternative Hypothesis): μ ≠ 20 grams; This is an example of a two-tailed hypothesis test because the alternative hypothesis contains the not equal "≠" sign. The engineer believes that ...

  16. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  17. Hypothesis Testing Questions and Answers

    This set of Probability and Statistics Multiple Choice Questions & Answers (MCQs) focuses on "Testing of Hypothesis". 1. A statement made about a population for testing purpose is called? a) Statistic. b) Hypothesis. c) Level of Significance. d) Test-Statistic. View Answer. 2.

  18. PDF hypothesis testing introduction

    The teacher claims that children use more gold beads during the activity and checks a random sample of 20 beads out of the bag, after the end of the activity. She finds just two gold beads in the sample. Test, at the 5% level of significance, whether or not there is evidence to support the teacher's claim. significant evidence, 3.55% 5%<.

  19. Exam Questions

    4000+ Exam Questions. GCSE A-Level. Tutorial Contents / Maths / Exam Questions - Hypothesis tests: binomial distribution. Exam Questions - Hypothesis tests: binomial distribution. 1) View Solution. ... View Solution. Method 1 - Probability Method: Method 2 - Critical Value Method: 4) View Solution Helpful Tutorials. Test for a binomial ...

  20. 378 questions with answers in HYPOTHESIS TESTING

    Jul 8, 2023. Answer. Yes, hypothesis testing is commonly applied in deep learning research and applications. Hypothesis testing is a statistical technique used to make inferences and draw ...

  21. Hypothesis Testing Questions and Answers

    A hypothesis is a statement or an assumption about a phenomenon or a relationship between variables. It is a proposed explanation for a set of observations or an answer to a research question. In research, hypotheses are tested through experiments or data analysis using a test statistic. The aim of hypothesis testing is to determine if the ...

  22. PDF Hypothesis Testing

    Hypothesis Testing www.naikermaths.com 12. A student takes a multiple choice test. The test is made up of 10 questions each with 5 possible answers. The student gets 4 questions correct. Her teacher claims she was guessing the answers. Using a one tailed test, at the 5% level of significance, test whether or not there is evidence to

  23. Hypothesis Questions

    Important Hypothesis Questions with Answers. 1) What is a hypothesis? In science, a hypothesis is a structured assumption that is constructed based on some theoretical or experimental evidence. This is the first step during any research that transforms the investigation queries into predictions. It comprises components like population ...