Your Modern Business Guide To Data Analysis Methods And Techniques

Data analysis methods and techniques blog post by datapine

Table of Contents

1) What Is Data Analysis?

2) Why Is Data Analysis Important?

3) What Is The Data Analysis Process?

4) Types Of Data Analysis Methods

5) Top Data Analysis Techniques To Apply

6) Quality Criteria For Data Analysis

7) Data Analysis Limitations & Barriers

8) Data Analysis Skills

9) Data Analysis In The Big Data Environment

In our data-rich age, understanding how to analyze and extract true meaning from our business’s digital insights is one of the primary drivers of success.

Despite the colossal volume of data we create every day, a mere 0.5% is actually analyzed and used for data discovery , improvement, and intelligence. While that may not seem like much, considering the amount of digital information we have at our fingertips, half a percent still accounts for a vast amount of data.

With so much data and so little time, knowing how to collect, curate, organize, and make sense of all of this potentially business-boosting information can be a minefield – but online data analysis is the solution.

In science, data analysis uses a more complex approach with advanced techniques to explore and experiment with data. On the other hand, in a business context, data is used to make data-driven decisions that will enable the company to improve its overall performance. In this post, we will cover the analysis of data from an organizational point of view while still going through the scientific and statistical foundations that are fundamental to understanding the basics of data analysis. 

To put all of that into perspective, we will answer a host of important analytical questions, explore analytical methods and techniques, while demonstrating how to perform analysis in the real world with a 17-step blueprint for success.

What Is Data Analysis?

Data analysis is the process of collecting, modeling, and analyzing data using various statistical and logical methods and techniques. Businesses rely on analytics processes and tools to extract insights that support strategic and operational decision-making.

All these various methods are largely based on two core areas: quantitative and qualitative research.

To explain the key differences between qualitative and quantitative research, here’s a video for your viewing pleasure:

Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it’s worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

Apart from qualitative and quantitative categories, there are also other types of data that you should be aware of before dividing into complex data analysis processes. These categories include: 

  • Big data: Refers to massive data sets that need to be analyzed using advanced software to reveal patterns and trends. It is considered to be one of the best analytical assets as it provides larger volumes of data at a faster rate. 
  • Metadata: Putting it simply, metadata is data that provides insights about other data. It summarizes key information about specific data that makes it easier to find and reuse for later purposes. 
  • Real time data: As its name suggests, real time data is presented as soon as it is acquired. From an organizational perspective, this is the most valuable data as it can help you make important decisions based on the latest developments. Our guide on real time analytics will tell you more about the topic. 
  • Machine data: This is more complex data that is generated solely by a machine such as phones, computers, or even websites and embedded systems, without previous human interaction.

Why Is Data Analysis Important?

Before we go into detail about the categories of analysis along with its methods and techniques, you must understand the potential that analyzing data can bring to your organization.

  • Informed decision-making : From a management perspective, you can benefit from analyzing your data as it helps you make decisions based on facts and not simple intuition. For instance, you can understand where to invest your capital, detect growth opportunities, predict your income, or tackle uncommon situations before they become problems. Through this, you can extract relevant insights from all areas in your organization, and with the help of dashboard software , present the data in a professional and interactive way to different stakeholders.
  • Reduce costs : Another great benefit is to reduce costs. With the help of advanced technologies such as predictive analytics, businesses can spot improvement opportunities, trends, and patterns in their data and plan their strategies accordingly. In time, this will help you save money and resources on implementing the wrong strategies. And not just that, by predicting different scenarios such as sales and demand you can also anticipate production and supply. 
  • Target customers better : Customers are arguably the most crucial element in any business. By using analytics to get a 360° vision of all aspects related to your customers, you can understand which channels they use to communicate with you, their demographics, interests, habits, purchasing behaviors, and more. In the long run, it will drive success to your marketing strategies, allow you to identify new potential customers, and avoid wasting resources on targeting the wrong people or sending the wrong message. You can also track customer satisfaction by analyzing your client’s reviews or your customer service department’s performance.

What Is The Data Analysis Process?

Data analysis process graphic

When we talk about analyzing data there is an order to follow in order to extract the needed conclusions. The analysis process consists of 5 key stages. We will cover each of them more in detail later in the post, but to start providing the needed context to understand what is coming next, here is a rundown of the 5 essential steps of data analysis. 

  • Identify: Before you get your hands dirty with data, you first need to identify why you need it in the first place. The identification is the stage in which you establish the questions you will need to answer. For example, what is the customer's perception of our brand? Or what type of packaging is more engaging to our potential customers? Once the questions are outlined you are ready for the next step. 
  • Collect: As its name suggests, this is the stage where you start collecting the needed data. Here, you define which sources of data you will use and how you will use them. The collection of data can come in different forms such as internal or external sources, surveys, interviews, questionnaires, and focus groups, among others.  An important note here is that the way you collect the data will be different in a quantitative and qualitative scenario. 
  • Clean: Once you have the necessary data it is time to clean it and leave it ready for analysis. Not all the data you collect will be useful, when collecting big amounts of data in different formats it is very likely that you will find yourself with duplicate or badly formatted data. To avoid this, before you start working with your data you need to make sure to erase any white spaces, duplicate records, or formatting errors. This way you avoid hurting your analysis with bad-quality data. 
  • Analyze : With the help of various techniques such as statistical analysis, regressions, neural networks, text analysis, and more, you can start analyzing and manipulating your data to extract relevant conclusions. At this stage, you find trends, correlations, variations, and patterns that can help you answer the questions you first thought of in the identify stage. Various technologies in the market assist researchers and average users with the management of their data. Some of them include business intelligence and visualization software, predictive analytics, and data mining, among others. 
  • Interpret: Last but not least you have one of the most important steps: it is time to interpret your results. This stage is where the researcher comes up with courses of action based on the findings. For example, here you would understand if your clients prefer packaging that is red or green, plastic or paper, etc. Additionally, at this stage, you can also find some limitations and work on them. 

Now that you have a basic understanding of the key data analysis steps, let’s look at the top 17 essential methods.

17 Essential Types Of Data Analysis Methods

Before diving into the 17 essential types of methods, it is important that we go over really fast through the main analysis categories. Starting with the category of descriptive up to prescriptive analysis, the complexity and effort of data evaluation increases, but also the added value for the company.

a) Descriptive analysis - What happened.

The descriptive analysis method is the starting point for any analytic reflection, and it aims to answer the question of what happened? It does this by ordering, manipulating, and interpreting raw data from various sources to turn it into valuable insights for your organization.

Performing descriptive analysis is essential, as it enables us to present our insights in a meaningful way. Although it is relevant to mention that this analysis on its own will not allow you to predict future outcomes or tell you the answer to questions like why something happened, it will leave your data organized and ready to conduct further investigations.

b) Exploratory analysis - How to explore data relationships.

As its name suggests, the main aim of the exploratory analysis is to explore. Prior to it, there is still no notion of the relationship between the data and the variables. Once the data is investigated, exploratory analysis helps you to find connections and generate hypotheses and solutions for specific problems. A typical area of ​​application for it is data mining.

c) Diagnostic analysis - Why it happened.

Diagnostic data analytics empowers analysts and executives by helping them gain a firm contextual understanding of why something happened. If you know why something happened as well as how it happened, you will be able to pinpoint the exact ways of tackling the issue or challenge.

Designed to provide direct and actionable answers to specific questions, this is one of the world’s most important methods in research, among its other key organizational functions such as retail analytics , e.g.

c) Predictive analysis - What will happen.

The predictive method allows you to look into the future to answer the question: what will happen? In order to do this, it uses the results of the previously mentioned descriptive, exploratory, and diagnostic analysis, in addition to machine learning (ML) and artificial intelligence (AI). Through this, you can uncover future trends, potential problems or inefficiencies, connections, and casualties in your data.

With predictive analysis, you can unfold and develop initiatives that will not only enhance your various operational processes but also help you gain an all-important edge over the competition. If you understand why a trend, pattern, or event happened through data, you will be able to develop an informed projection of how things may unfold in particular areas of the business.

e) Prescriptive analysis - How will it happen.

Another of the most effective types of analysis methods in research. Prescriptive data techniques cross over from predictive analysis in the way that it revolves around using patterns or trends to develop responsive, practical business strategies.

By drilling down into prescriptive analysis, you will play an active role in the data consumption process by taking well-arranged sets of visual data and using it as a powerful fix to emerging issues in a number of key areas, including marketing, sales, customer experience, HR, fulfillment, finance, logistics analytics , and others.

Top 17 data analysis methods

As mentioned at the beginning of the post, data analysis methods can be divided into two big categories: quantitative and qualitative. Each of these categories holds a powerful analytical value that changes depending on the scenario and type of data you are working with. Below, we will discuss 17 methods that are divided into qualitative and quantitative approaches. 

Without further ado, here are the 17 essential types of data analysis methods with some use cases in the business world: 

A. Quantitative Methods 

To put it simply, quantitative analysis refers to all methods that use numerical data or data that can be turned into numbers (e.g. category variables like gender, age, etc.) to extract valuable insights. It is used to extract valuable conclusions about relationships, differences, and test hypotheses. Below we discuss some of the key quantitative methods. 

1. Cluster analysis

The action of grouping a set of data elements in a way that said elements are more similar (in a particular sense) to each other than to those in other groups – hence the term ‘cluster.’ Since there is no target variable when clustering, the method is often used to find hidden patterns in the data. The approach is also used to provide additional context to a trend or dataset.

Let's look at it from an organizational perspective. In a perfect world, marketers would be able to analyze each customer separately and give them the best-personalized service, but let's face it, with a large customer base, it is timely impossible to do that. That's where clustering comes in. By grouping customers into clusters based on demographics, purchasing behaviors, monetary value, or any other factor that might be relevant for your company, you will be able to immediately optimize your efforts and give your customers the best experience based on their needs.

2. Cohort analysis

This type of data analysis approach uses historical data to examine and compare a determined segment of users' behavior, which can then be grouped with others with similar characteristics. By using this methodology, it's possible to gain a wealth of insight into consumer needs or a firm understanding of a broader target group.

Cohort analysis can be really useful for performing analysis in marketing as it will allow you to understand the impact of your campaigns on specific groups of customers. To exemplify, imagine you send an email campaign encouraging customers to sign up for your site. For this, you create two versions of the campaign with different designs, CTAs, and ad content. Later on, you can use cohort analysis to track the performance of the campaign for a longer period of time and understand which type of content is driving your customers to sign up, repurchase, or engage in other ways.  

A useful tool to start performing cohort analysis method is Google Analytics. You can learn more about the benefits and limitations of using cohorts in GA in this useful guide . In the bottom image, you see an example of how you visualize a cohort in this tool. The segments (devices traffic) are divided into date cohorts (usage of devices) and then analyzed week by week to extract insights into performance.

Cohort analysis chart example from google analytics

3. Regression analysis

Regression uses historical data to understand how a dependent variable's value is affected when one (linear regression) or more independent variables (multiple regression) change or stay the same. By understanding each variable's relationship and how it developed in the past, you can anticipate possible outcomes and make better decisions in the future.

Let's bring it down with an example. Imagine you did a regression analysis of your sales in 2019 and discovered that variables like product quality, store design, customer service, marketing campaigns, and sales channels affected the overall result. Now you want to use regression to analyze which of these variables changed or if any new ones appeared during 2020. For example, you couldn’t sell as much in your physical store due to COVID lockdowns. Therefore, your sales could’ve either dropped in general or increased in your online channels. Through this, you can understand which independent variables affected the overall performance of your dependent variable, annual sales.

If you want to go deeper into this type of analysis, check out this article and learn more about how you can benefit from regression.

4. Neural networks

The neural network forms the basis for the intelligent algorithms of machine learning. It is a form of analytics that attempts, with minimal intervention, to understand how the human brain would generate insights and predict values. Neural networks learn from each and every data transaction, meaning that they evolve and advance over time.

A typical area of application for neural networks is predictive analytics. There are BI reporting tools that have this feature implemented within them, such as the Predictive Analytics Tool from datapine. This tool enables users to quickly and easily generate all kinds of predictions. All you have to do is select the data to be processed based on your KPIs, and the software automatically calculates forecasts based on historical and current data. Thanks to its user-friendly interface, anyone in your organization can manage it; there’s no need to be an advanced scientist. 

Here is an example of how you can use the predictive analysis tool from datapine:

Example on how to use predictive analytics tool from datapine

**click to enlarge**

5. Factor analysis

The factor analysis also called “dimension reduction” is a type of data analysis used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. The aim here is to uncover independent latent variables, an ideal method for streamlining specific segments.

A good way to understand this data analysis method is a customer evaluation of a product. The initial assessment is based on different variables like color, shape, wearability, current trends, materials, comfort, the place where they bought the product, and frequency of usage. Like this, the list can be endless, depending on what you want to track. In this case, factor analysis comes into the picture by summarizing all of these variables into homogenous groups, for example, by grouping the variables color, materials, quality, and trends into a brother latent variable of design.

If you want to start analyzing data using factor analysis we recommend you take a look at this practical guide from UCLA.

6. Data mining

A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.  When considering how to analyze data, adopting a data mining mindset is essential to success - as such, it’s an area that is worth exploring in greater detail.

An excellent use case of data mining is datapine intelligent data alerts . With the help of artificial intelligence and machine learning, they provide automated signals based on particular commands or occurrences within a dataset. For example, if you’re monitoring supply chain KPIs , you could set an intelligent alarm to trigger when invalid or low-quality data appears. By doing so, you will be able to drill down deep into the issue and fix it swiftly and effectively.

In the following picture, you can see how the intelligent alarms from datapine work. By setting up ranges on daily orders, sessions, and revenues, the alarms will notify you if the goal was not completed or if it exceeded expectations.

Example on how to use intelligent alerts from datapine

7. Time series analysis

As its name suggests, time series analysis is used to analyze a set of data points collected over a specified period of time. Although analysts use this method to monitor the data points in a specific interval of time rather than just monitoring them intermittently, the time series analysis is not uniquely used for the purpose of collecting data over time. Instead, it allows researchers to understand if variables changed during the duration of the study, how the different variables are dependent, and how did it reach the end result. 

In a business context, this method is used to understand the causes of different trends and patterns to extract valuable insights. Another way of using this method is with the help of time series forecasting. Powered by predictive technologies, businesses can analyze various data sets over a period of time and forecast different future events. 

A great use case to put time series analysis into perspective is seasonality effects on sales. By using time series forecasting to analyze sales data of a specific product over time, you can understand if sales rise over a specific period of time (e.g. swimwear during summertime, or candy during Halloween). These insights allow you to predict demand and prepare production accordingly.  

8. Decision Trees 

The decision tree analysis aims to act as a support tool to make smart and strategic decisions. By visually displaying potential outcomes, consequences, and costs in a tree-like model, researchers and company users can easily evaluate all factors involved and choose the best course of action. Decision trees are helpful to analyze quantitative data and they allow for an improved decision-making process by helping you spot improvement opportunities, reduce costs, and enhance operational efficiency and production.

But how does a decision tree actually works? This method works like a flowchart that starts with the main decision that you need to make and branches out based on the different outcomes and consequences of each decision. Each outcome will outline its own consequences, costs, and gains and, at the end of the analysis, you can compare each of them and make the smartest decision. 

Businesses can use them to understand which project is more cost-effective and will bring more earnings in the long run. For example, imagine you need to decide if you want to update your software app or build a new app entirely.  Here you would compare the total costs, the time needed to be invested, potential revenue, and any other factor that might affect your decision.  In the end, you would be able to see which of these two options is more realistic and attainable for your company or research.

9. Conjoint analysis 

Last but not least, we have the conjoint analysis. This approach is usually used in surveys to understand how individuals value different attributes of a product or service and it is one of the most effective methods to extract consumer preferences. When it comes to purchasing, some clients might be more price-focused, others more features-focused, and others might have a sustainable focus. Whatever your customer's preferences are, you can find them with conjoint analysis. Through this, companies can define pricing strategies, packaging options, subscription packages, and more. 

A great example of conjoint analysis is in marketing and sales. For instance, a cupcake brand might use conjoint analysis and find that its clients prefer gluten-free options and cupcakes with healthier toppings over super sugary ones. Thus, the cupcake brand can turn these insights into advertisements and promotions to increase sales of this particular type of product. And not just that, conjoint analysis can also help businesses segment their customers based on their interests. This allows them to send different messaging that will bring value to each of the segments. 

10. Correspondence Analysis

Also known as reciprocal averaging, correspondence analysis is a method used to analyze the relationship between categorical variables presented within a contingency table. A contingency table is a table that displays two (simple correspondence analysis) or more (multiple correspondence analysis) categorical variables across rows and columns that show the distribution of the data, which is usually answers to a survey or questionnaire on a specific topic. 

This method starts by calculating an “expected value” which is done by multiplying row and column averages and dividing it by the overall original value of the specific table cell. The “expected value” is then subtracted from the original value resulting in a “residual number” which is what allows you to extract conclusions about relationships and distribution. The results of this analysis are later displayed using a map that represents the relationship between the different values. The closest two values are in the map, the bigger the relationship. Let’s put it into perspective with an example. 

Imagine you are carrying out a market research analysis about outdoor clothing brands and how they are perceived by the public. For this analysis, you ask a group of people to match each brand with a certain attribute which can be durability, innovation, quality materials, etc. When calculating the residual numbers, you can see that brand A has a positive residual for innovation but a negative one for durability. This means that brand A is not positioned as a durable brand in the market, something that competitors could take advantage of. 

11. Multidimensional Scaling (MDS)

MDS is a method used to observe the similarities or disparities between objects which can be colors, brands, people, geographical coordinates, and more. The objects are plotted using an “MDS map” that positions similar objects together and disparate ones far apart. The (dis) similarities between objects are represented using one or more dimensions that can be observed using a numerical scale. For example, if you want to know how people feel about the COVID-19 vaccine, you can use 1 for “don’t believe in the vaccine at all”  and 10 for “firmly believe in the vaccine” and a scale of 2 to 9 for in between responses.  When analyzing an MDS map the only thing that matters is the distance between the objects, the orientation of the dimensions is arbitrary and has no meaning at all. 

Multidimensional scaling is a valuable technique for market research, especially when it comes to evaluating product or brand positioning. For instance, if a cupcake brand wants to know how they are positioned compared to competitors, it can define 2-3 dimensions such as taste, ingredients, shopping experience, or more, and do a multidimensional scaling analysis to find improvement opportunities as well as areas in which competitors are currently leading. 

Another business example is in procurement when deciding on different suppliers. Decision makers can generate an MDS map to see how the different prices, delivery times, technical services, and more of the different suppliers differ and pick the one that suits their needs the best. 

A final example proposed by a research paper on "An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment Word of Movie Review Data". Researchers picked a two-dimensional MDS map to display the distances and relationships between different sentiments in movie reviews. They used 36 sentiment words and distributed them based on their emotional distance as we can see in the image below where the words "outraged" and "sweet" are on opposite sides of the map, marking the distance between the two emotions very clearly.

Example of multidimensional scaling analysis

Aside from being a valuable technique to analyze dissimilarities, MDS also serves as a dimension-reduction technique for large dimensional data. 

B. Qualitative Methods

Qualitative data analysis methods are defined as the observation of non-numerical data that is gathered and produced using methods of observation such as interviews, focus groups, questionnaires, and more. As opposed to quantitative methods, qualitative data is more subjective and highly valuable in analyzing customer retention and product development.

12. Text analysis

Text analysis, also known in the industry as text mining, works by taking large sets of textual data and arranging them in a way that makes it easier to manage. By working through this cleansing process in stringent detail, you will be able to extract the data that is truly relevant to your organization and use it to develop actionable insights that will propel you forward.

Modern software accelerate the application of text analytics. Thanks to the combination of machine learning and intelligent algorithms, you can perform advanced analytical processes such as sentiment analysis. This technique allows you to understand the intentions and emotions of a text, for example, if it's positive, negative, or neutral, and then give it a score depending on certain factors and categories that are relevant to your brand. Sentiment analysis is often used to monitor brand and product reputation and to understand how successful your customer experience is. To learn more about the topic check out this insightful article .

By analyzing data from various word-based sources, including product reviews, articles, social media communications, and survey responses, you will gain invaluable insights into your audience, as well as their needs, preferences, and pain points. This will allow you to create campaigns, services, and communications that meet your prospects’ needs on a personal level, growing your audience while boosting customer retention. There are various other “sub-methods” that are an extension of text analysis. Each of them serves a more specific purpose and we will look at them in detail next. 

13. Content Analysis

This is a straightforward and very popular method that examines the presence and frequency of certain words, concepts, and subjects in different content formats such as text, image, audio, or video. For example, the number of times the name of a celebrity is mentioned on social media or online tabloids. It does this by coding text data that is later categorized and tabulated in a way that can provide valuable insights, making it the perfect mix of quantitative and qualitative analysis.

There are two types of content analysis. The first one is the conceptual analysis which focuses on explicit data, for instance, the number of times a concept or word is mentioned in a piece of content. The second one is relational analysis, which focuses on the relationship between different concepts or words and how they are connected within a specific context. 

Content analysis is often used by marketers to measure brand reputation and customer behavior. For example, by analyzing customer reviews. It can also be used to analyze customer interviews and find directions for new product development. It is also important to note, that in order to extract the maximum potential out of this analysis method, it is necessary to have a clearly defined research question. 

14. Thematic Analysis

Very similar to content analysis, thematic analysis also helps in identifying and interpreting patterns in qualitative data with the main difference being that the first one can also be applied to quantitative analysis. The thematic method analyzes large pieces of text data such as focus group transcripts or interviews and groups them into themes or categories that come up frequently within the text. It is a great method when trying to figure out peoples view’s and opinions about a certain topic. For example, if you are a brand that cares about sustainability, you can do a survey of your customers to analyze their views and opinions about sustainability and how they apply it to their lives. You can also analyze customer service calls transcripts to find common issues and improve your service. 

Thematic analysis is a very subjective technique that relies on the researcher’s judgment. Therefore,  to avoid biases, it has 6 steps that include familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. It is also important to note that, because it is a flexible approach, the data can be interpreted in multiple ways and it can be hard to select what data is more important to emphasize. 

15. Narrative Analysis 

A bit more complex in nature than the two previous ones, narrative analysis is used to explore the meaning behind the stories that people tell and most importantly, how they tell them. By looking into the words that people use to describe a situation you can extract valuable conclusions about their perspective on a specific topic. Common sources for narrative data include autobiographies, family stories, opinion pieces, and testimonials, among others. 

From a business perspective, narrative analysis can be useful to analyze customer behaviors and feelings towards a specific product, service, feature, or others. It provides unique and deep insights that can be extremely valuable. However, it has some drawbacks.  

The biggest weakness of this method is that the sample sizes are usually very small due to the complexity and time-consuming nature of the collection of narrative data. Plus, the way a subject tells a story will be significantly influenced by his or her specific experiences, making it very hard to replicate in a subsequent study. 

16. Discourse Analysis

Discourse analysis is used to understand the meaning behind any type of written, verbal, or symbolic discourse based on its political, social, or cultural context. It mixes the analysis of languages and situations together. This means that the way the content is constructed and the meaning behind it is significantly influenced by the culture and society it takes place in. For example, if you are analyzing political speeches you need to consider different context elements such as the politician's background, the current political context of the country, the audience to which the speech is directed, and so on. 

From a business point of view, discourse analysis is a great market research tool. It allows marketers to understand how the norms and ideas of the specific market work and how their customers relate to those ideas. It can be very useful to build a brand mission or develop a unique tone of voice. 

17. Grounded Theory Analysis

Traditionally, researchers decide on a method and hypothesis and start to collect the data to prove that hypothesis. The grounded theory is the only method that doesn’t require an initial research question or hypothesis as its value lies in the generation of new theories. With the grounded theory method, you can go into the analysis process with an open mind and explore the data to generate new theories through tests and revisions. In fact, it is not necessary to collect the data and then start to analyze it. Researchers usually start to find valuable insights as they are gathering the data. 

All of these elements make grounded theory a very valuable method as theories are fully backed by data instead of initial assumptions. It is a great technique to analyze poorly researched topics or find the causes behind specific company outcomes. For example, product managers and marketers might use the grounded theory to find the causes of high levels of customer churn and look into customer surveys and reviews to develop new theories about the causes. 

How To Analyze Data? Top 17 Data Analysis Techniques To Apply

17 top data analysis techniques by datapine

Now that we’ve answered the questions “what is data analysis’”, why is it important, and covered the different data analysis types, it’s time to dig deeper into how to perform your analysis by working through these 17 essential techniques.

1. Collaborate your needs

Before you begin analyzing or drilling down into any techniques, it’s crucial to sit down collaboratively with all key stakeholders within your organization, decide on your primary campaign or strategic goals, and gain a fundamental understanding of the types of insights that will best benefit your progress or provide you with the level of vision you need to evolve your organization.

2. Establish your questions

Once you’ve outlined your core objectives, you should consider which questions will need answering to help you achieve your mission. This is one of the most important techniques as it will shape the very foundations of your success.

To help you ask the right things and ensure your data works for you, you have to ask the right data analysis questions .

3. Data democratization

After giving your data analytics methodology some real direction, and knowing which questions need answering to extract optimum value from the information available to your organization, you should continue with democratization.

Data democratization is an action that aims to connect data from various sources efficiently and quickly so that anyone in your organization can access it at any given moment. You can extract data in text, images, videos, numbers, or any other format. And then perform cross-database analysis to achieve more advanced insights to share with the rest of the company interactively.  

Once you have decided on your most valuable sources, you need to take all of this into a structured format to start collecting your insights. For this purpose, datapine offers an easy all-in-one data connectors feature to integrate all your internal and external sources and manage them at your will. Additionally, datapine’s end-to-end solution automatically updates your data, allowing you to save time and focus on performing the right analysis to grow your company.

data connectors from datapine

4. Think of governance 

When collecting data in a business or research context you always need to think about security and privacy. With data breaches becoming a topic of concern for businesses, the need to protect your client's or subject’s sensitive information becomes critical. 

To ensure that all this is taken care of, you need to think of a data governance strategy. According to Gartner , this concept refers to “ the specification of decision rights and an accountability framework to ensure the appropriate behavior in the valuation, creation, consumption, and control of data and analytics .” In simpler words, data governance is a collection of processes, roles, and policies, that ensure the efficient use of data while still achieving the main company goals. It ensures that clear roles are in place for who can access the information and how they can access it. In time, this not only ensures that sensitive information is protected but also allows for an efficient analysis as a whole. 

5. Clean your data

After harvesting from so many sources you will be left with a vast amount of information that can be overwhelming to deal with. At the same time, you can be faced with incorrect data that can be misleading to your analysis. The smartest thing you can do to avoid dealing with this in the future is to clean the data. This is fundamental before visualizing it, as it will ensure that the insights you extract from it are correct.

There are many things that you need to look for in the cleaning process. The most important one is to eliminate any duplicate observations; this usually appears when using multiple internal and external sources of information. You can also add any missing codes, fix empty fields, and eliminate incorrectly formatted data.

Another usual form of cleaning is done with text data. As we mentioned earlier, most companies today analyze customer reviews, social media comments, questionnaires, and several other text inputs. In order for algorithms to detect patterns, text data needs to be revised to avoid invalid characters or any syntax or spelling errors. 

Most importantly, the aim of cleaning is to prevent you from arriving at false conclusions that can damage your company in the long run. By using clean data, you will also help BI solutions to interact better with your information and create better reports for your organization.

6. Set your KPIs

Once you’ve set your sources, cleaned your data, and established clear-cut questions you want your insights to answer, you need to set a host of key performance indicators (KPIs) that will help you track, measure, and shape your progress in a number of key areas.

KPIs are critical to both qualitative and quantitative analysis research. This is one of the primary methods of data analysis you certainly shouldn’t overlook.

To help you set the best possible KPIs for your initiatives and activities, here is an example of a relevant logistics KPI : transportation-related costs. If you want to see more go explore our collection of key performance indicator examples .

Transportation costs logistics KPIs

7. Omit useless data

Having bestowed your data analysis tools and techniques with true purpose and defined your mission, you should explore the raw data you’ve collected from all sources and use your KPIs as a reference for chopping out any information you deem to be useless.

Trimming the informational fat is one of the most crucial methods of analysis as it will allow you to focus your analytical efforts and squeeze every drop of value from the remaining ‘lean’ information.

Any stats, facts, figures, or metrics that don’t align with your business goals or fit with your KPI management strategies should be eliminated from the equation.

8. Build a data management roadmap

While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on a more sustainable basis. These roadmaps, if developed properly, are also built so they can be tweaked and scaled over time.

Invest ample time in developing a roadmap that will help you store, manage, and handle your data internally, and you will make your analysis techniques all the more fluid and functional – one of the most powerful types of data analysis methods available today.

9. Integrate technology

There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.

Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will also present them in a digestible, visual, interactive format from one central, live dashboard . A data methodology you can count on.

By integrating the right technology within your data analysis methodology, you’ll avoid fragmenting your insights, saving you time and effort while allowing you to enjoy the maximum value from your business’s most valuable insights.

For a look at the power of software for the purpose of analysis and to enhance your methods of analyzing, glance over our selection of dashboard examples .

10. Answer your questions

By considering each of the above efforts, working with the right technology, and fostering a cohesive internal culture where everyone buys into the different ways to analyze data as well as the power of digital intelligence, you will swiftly start to answer your most burning business questions. Arguably, the best way to make your data concepts accessible across the organization is through data visualization.

11. Visualize your data

Online data visualization is a powerful tool as it lets you tell a story with your metrics, allowing users across the organization to extract meaningful insights that aid business evolution – and it covers all the different ways to analyze data.

The purpose of analyzing is to make your entire organization more informed and intelligent, and with the right platform or dashboard, this is simpler than you think, as demonstrated by our marketing dashboard .

An executive dashboard example showcasing high-level marketing KPIs such as cost per lead, MQL, SQL, and cost per customer.

This visual, dynamic, and interactive online dashboard is a data analysis example designed to give Chief Marketing Officers (CMO) an overview of relevant metrics to help them understand if they achieved their monthly goals.

In detail, this example generated with a modern dashboard creator displays interactive charts for monthly revenues, costs, net income, and net income per customer; all of them are compared with the previous month so that you can understand how the data fluctuated. In addition, it shows a detailed summary of the number of users, customers, SQLs, and MQLs per month to visualize the whole picture and extract relevant insights or trends for your marketing reports .

The CMO dashboard is perfect for c-level management as it can help them monitor the strategic outcome of their marketing efforts and make data-driven decisions that can benefit the company exponentially.

12. Be careful with the interpretation

We already dedicated an entire post to data interpretation as it is a fundamental part of the process of data analysis. It gives meaning to the analytical information and aims to drive a concise conclusion from the analysis results. Since most of the time companies are dealing with data from many different sources, the interpretation stage needs to be done carefully and properly in order to avoid misinterpretations. 

To help you through the process, here we list three common practices that you need to avoid at all costs when looking at your data:

  • Correlation vs. causation: The human brain is formatted to find patterns. This behavior leads to one of the most common mistakes when performing interpretation: confusing correlation with causation. Although these two aspects can exist simultaneously, it is not correct to assume that because two things happened together, one provoked the other. A piece of advice to avoid falling into this mistake is never to trust just intuition, trust the data. If there is no objective evidence of causation, then always stick to correlation. 
  • Confirmation bias: This phenomenon describes the tendency to select and interpret only the data necessary to prove one hypothesis, often ignoring the elements that might disprove it. Even if it's not done on purpose, confirmation bias can represent a real problem, as excluding relevant information can lead to false conclusions and, therefore, bad business decisions. To avoid it, always try to disprove your hypothesis instead of proving it, share your analysis with other team members, and avoid drawing any conclusions before the entire analytical project is finalized.
  • Statistical significance: To put it in short words, statistical significance helps analysts understand if a result is actually accurate or if it happened because of a sampling error or pure chance. The level of statistical significance needed might depend on the sample size and the industry being analyzed. In any case, ignoring the significance of a result when it might influence decision-making can be a huge mistake.

13. Build a narrative

Now, we’re going to look at how you can bring all of these elements together in a way that will benefit your business - starting with a little something called data storytelling.

The human brain responds incredibly well to strong stories or narratives. Once you’ve cleansed, shaped, and visualized your most invaluable data using various BI dashboard tools , you should strive to tell a story - one with a clear-cut beginning, middle, and end.

By doing so, you will make your analytical efforts more accessible, digestible, and universal, empowering more people within your organization to use your discoveries to their actionable advantage.

14. Consider autonomous technology

Autonomous technologies, such as artificial intelligence (AI) and machine learning (ML), play a significant role in the advancement of understanding how to analyze data more effectively.

Gartner predicts that by the end of this year, 80% of emerging technologies will be developed with AI foundations. This is a testament to the ever-growing power and value of autonomous technologies.

At the moment, these technologies are revolutionizing the analysis industry. Some examples that we mentioned earlier are neural networks, intelligent alarms, and sentiment analysis.

15. Share the load

If you work with the right tools and dashboards, you will be able to present your metrics in a digestible, value-driven format, allowing almost everyone in the organization to connect with and use relevant data to their advantage.

Modern dashboards consolidate data from various sources, providing access to a wealth of insights in one centralized location, no matter if you need to monitor recruitment metrics or generate reports that need to be sent across numerous departments. Moreover, these cutting-edge tools offer access to dashboards from a multitude of devices, meaning that everyone within the business can connect with practical insights remotely - and share the load.

Once everyone is able to work with a data-driven mindset, you will catalyze the success of your business in ways you never thought possible. And when it comes to knowing how to analyze data, this kind of collaborative approach is essential.

16. Data analysis tools

In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. Here we leave you a small summary of four fundamental categories of data analysis tools for your organization.

  • Business Intelligence: BI tools allow you to process significant amounts of data from several sources in any format. Through this, you can not only analyze and monitor your data to extract relevant insights but also create interactive reports and dashboards to visualize your KPIs and use them for your company's good. datapine is an amazing online BI software that is focused on delivering powerful online analysis features that are accessible to beginner and advanced users. Like this, it offers a full-service solution that includes cutting-edge analysis of data, KPIs visualization, live dashboards, reporting, and artificial intelligence technologies to predict trends and minimize risk.
  • Statistical analysis: These tools are usually designed for scientists, statisticians, market researchers, and mathematicians, as they allow them to perform complex statistical analyses with methods like regression analysis, predictive analysis, and statistical modeling. A good tool to perform this type of analysis is R-Studio as it offers a powerful data modeling and hypothesis testing feature that can cover both academic and general data analysis. This tool is one of the favorite ones in the industry, due to its capability for data cleaning, data reduction, and performing advanced analysis with several statistical methods. Another relevant tool to mention is SPSS from IBM. The software offers advanced statistical analysis for users of all skill levels. Thanks to a vast library of machine learning algorithms, text analysis, and a hypothesis testing approach it can help your company find relevant insights to drive better decisions. SPSS also works as a cloud service that enables you to run it anywhere.
  • SQL Consoles: SQL is a programming language often used to handle structured data in relational databases. Tools like these are popular among data scientists as they are extremely effective in unlocking these databases' value. Undoubtedly, one of the most used SQL software in the market is MySQL Workbench . This tool offers several features such as a visual tool for database modeling and monitoring, complete SQL optimization, administration tools, and visual performance dashboards to keep track of KPIs.
  • Data Visualization: These tools are used to represent your data through charts, graphs, and maps that allow you to find patterns and trends in the data. datapine's already mentioned BI platform also offers a wealth of powerful online data visualization tools with several benefits. Some of them include: delivering compelling data-driven presentations to share with your entire company, the ability to see your data online with any device wherever you are, an interactive dashboard design feature that enables you to showcase your results in an interactive and understandable way, and to perform online self-service reports that can be used simultaneously with several other people to enhance team productivity.

17. Refine your process constantly 

Last is a step that might seem obvious to some people, but it can be easily ignored if you think you are done. Once you have extracted the needed results, you should always take a retrospective look at your project and think about what you can improve. As you saw throughout this long list of techniques, data analysis is a complex process that requires constant refinement. For this reason, you should always go one step further and keep improving. 

Quality Criteria For Data Analysis

So far we’ve covered a list of methods and techniques that should help you perform efficient data analysis. But how do you measure the quality and validity of your results? This is done with the help of some science quality criteria. Here we will go into a more theoretical area that is critical to understanding the fundamentals of statistical analysis in science. However, you should also be aware of these steps in a business context, as they will allow you to assess the quality of your results in the correct way. Let’s dig in. 

  • Internal validity: The results of a survey are internally valid if they measure what they are supposed to measure and thus provide credible results. In other words , internal validity measures the trustworthiness of the results and how they can be affected by factors such as the research design, operational definitions, how the variables are measured, and more. For instance, imagine you are doing an interview to ask people if they brush their teeth two times a day. While most of them will answer yes, you can still notice that their answers correspond to what is socially acceptable, which is to brush your teeth at least twice a day. In this case, you can’t be 100% sure if respondents actually brush their teeth twice a day or if they just say that they do, therefore, the internal validity of this interview is very low. 
  • External validity: Essentially, external validity refers to the extent to which the results of your research can be applied to a broader context. It basically aims to prove that the findings of a study can be applied in the real world. If the research can be applied to other settings, individuals, and times, then the external validity is high. 
  • Reliability : If your research is reliable, it means that it can be reproduced. If your measurement were repeated under the same conditions, it would produce similar results. This means that your measuring instrument consistently produces reliable results. For example, imagine a doctor building a symptoms questionnaire to detect a specific disease in a patient. Then, various other doctors use this questionnaire but end up diagnosing the same patient with a different condition. This means the questionnaire is not reliable in detecting the initial disease. Another important note here is that in order for your research to be reliable, it also needs to be objective. If the results of a study are the same, independent of who assesses them or interprets them, the study can be considered reliable. Let’s see the objectivity criteria in more detail now. 
  • Objectivity: In data science, objectivity means that the researcher needs to stay fully objective when it comes to its analysis. The results of a study need to be affected by objective criteria and not by the beliefs, personality, or values of the researcher. Objectivity needs to be ensured when you are gathering the data, for example, when interviewing individuals, the questions need to be asked in a way that doesn't influence the results. Paired with this, objectivity also needs to be thought of when interpreting the data. If different researchers reach the same conclusions, then the study is objective. For this last point, you can set predefined criteria to interpret the results to ensure all researchers follow the same steps. 

The discussed quality criteria cover mostly potential influences in a quantitative context. Analysis in qualitative research has by default additional subjective influences that must be controlled in a different way. Therefore, there are other quality criteria for this kind of research such as credibility, transferability, dependability, and confirmability. You can see each of them more in detail on this resource . 

Data Analysis Limitations & Barriers

Analyzing data is not an easy task. As you’ve seen throughout this post, there are many steps and techniques that you need to apply in order to extract useful information from your research. While a well-performed analysis can bring various benefits to your organization it doesn't come without limitations. In this section, we will discuss some of the main barriers you might encounter when conducting an analysis. Let’s see them more in detail. 

  • Lack of clear goals: No matter how good your data or analysis might be if you don’t have clear goals or a hypothesis the process might be worthless. While we mentioned some methods that don’t require a predefined hypothesis, it is always better to enter the analytical process with some clear guidelines of what you are expecting to get out of it, especially in a business context in which data is utilized to support important strategic decisions. 
  • Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves, intentionally or unintentionally, directing the results toward an outcome that they want. To avoid this, always question your assumptions and avoid confusing facts with opinions. You can also show your findings to a research partner or external person to confirm that your results are objective. 
  • Data representation: A fundamental part of the analytical procedure is the way you represent your data. You can use various graphs and charts to represent your findings, but not all of them will work for all purposes. Choosing the wrong visual can not only damage your analysis but can mislead your audience, therefore, it is important to understand when to use each type of data depending on your analytical goals. Our complete guide on the types of graphs and charts lists 20 different visuals with examples of when to use them. 
  • Flawed correlation : Misleading statistics can significantly damage your research. We’ve already pointed out a few interpretation issues previously in the post, but it is an important barrier that we can't avoid addressing here as well. Flawed correlations occur when two variables appear related to each other but they are not. Confusing correlations with causation can lead to a wrong interpretation of results which can lead to building wrong strategies and loss of resources, therefore, it is very important to identify the different interpretation mistakes and avoid them. 
  • Sample size: A very common barrier to a reliable and efficient analysis process is the sample size. In order for the results to be trustworthy, the sample size should be representative of what you are analyzing. For example, imagine you have a company of 1000 employees and you ask the question “do you like working here?” to 50 employees of which 49 say yes, which means 95%. Now, imagine you ask the same question to the 1000 employees and 950 say yes, which also means 95%. Saying that 95% of employees like working in the company when the sample size was only 50 is not a representative or trustworthy conclusion. The significance of the results is way more accurate when surveying a bigger sample size.   
  • Privacy concerns: In some cases, data collection can be subjected to privacy regulations. Businesses gather all kinds of information from their customers from purchasing behaviors to addresses and phone numbers. If this falls into the wrong hands due to a breach, it can affect the security and confidentiality of your clients. To avoid this issue, you need to collect only the data that is needed for your research and, if you are using sensitive facts, make it anonymous so customers are protected. The misuse of customer data can severely damage a business's reputation, so it is important to keep an eye on privacy. 
  • Lack of communication between teams : When it comes to performing data analysis on a business level, it is very likely that each department and team will have different goals and strategies. However, they are all working for the same common goal of helping the business run smoothly and keep growing. When teams are not connected and communicating with each other, it can directly affect the way general strategies are built. To avoid these issues, tools such as data dashboards enable teams to stay connected through data in a visually appealing way. 
  • Innumeracy : Businesses are working with data more and more every day. While there are many BI tools available to perform effective analysis, data literacy is still a constant barrier. Not all employees know how to apply analysis techniques or extract insights from them. To prevent this from happening, you can implement different training opportunities that will prepare every relevant user to deal with data. 

Key Data Analysis Skills

As you've learned throughout this lengthy guide, analyzing data is a complex task that requires a lot of knowledge and skills. That said, thanks to the rise of self-service tools the process is way more accessible and agile than it once was. Regardless, there are still some key skills that are valuable to have when working with data, we list the most important ones below.

  • Critical and statistical thinking: To successfully analyze data you need to be creative and think out of the box. Yes, that might sound like a weird statement considering that data is often tight to facts. However, a great level of critical thinking is required to uncover connections, come up with a valuable hypothesis, and extract conclusions that go a step further from the surface. This, of course, needs to be complemented by statistical thinking and an understanding of numbers. 
  • Data cleaning: Anyone who has ever worked with data before will tell you that the cleaning and preparation process accounts for 80% of a data analyst's work, therefore, the skill is fundamental. But not just that, not cleaning the data adequately can also significantly damage the analysis which can lead to poor decision-making in a business scenario. While there are multiple tools that automate the cleaning process and eliminate the possibility of human error, it is still a valuable skill to dominate. 
  • Data visualization: Visuals make the information easier to understand and analyze, not only for professional users but especially for non-technical ones. Having the necessary skills to not only choose the right chart type but know when to apply it correctly is key. This also means being able to design visually compelling charts that make the data exploration process more efficient. 
  • SQL: The Structured Query Language or SQL is a programming language used to communicate with databases. It is fundamental knowledge as it enables you to update, manipulate, and organize data from relational databases which are the most common databases used by companies. It is fairly easy to learn and one of the most valuable skills when it comes to data analysis. 
  • Communication skills: This is a skill that is especially valuable in a business environment. Being able to clearly communicate analytical outcomes to colleagues is incredibly important, especially when the information you are trying to convey is complex for non-technical people. This applies to in-person communication as well as written format, for example, when generating a dashboard or report. While this might be considered a “soft” skill compared to the other ones we mentioned, it should not be ignored as you most likely will need to share analytical findings with others no matter the context. 

Data Analysis In The Big Data Environment

Big data is invaluable to today’s businesses, and by using different methods for data analysis, it’s possible to view your data in a way that can help you turn insight into positive action.

To inspire your efforts and put the importance of big data into context, here are some insights that you should know:

  • By 2026 the industry of big data is expected to be worth approximately $273.4 billion.
  • 94% of enterprises say that analyzing data is important for their growth and digital transformation. 
  • Companies that exploit the full potential of their data can increase their operating margins by 60% .
  • We already told you the benefits of Artificial Intelligence through this article. This industry's financial impact is expected to grow up to $40 billion by 2025.

Data analysis concepts may come in many forms, but fundamentally, any solid methodology will help to make your business more streamlined, cohesive, insightful, and successful than ever before.

Key Takeaways From Data Analysis 

As we reach the end of our data analysis journey, we leave a small summary of the main methods and techniques to perform excellent analysis and grow your business.

17 Essential Types of Data Analysis Methods:

  • Cluster analysis
  • Cohort analysis
  • Regression analysis
  • Factor analysis
  • Neural Networks
  • Data Mining
  • Text analysis
  • Time series analysis
  • Decision trees
  • Conjoint analysis 
  • Correspondence Analysis
  • Multidimensional Scaling 
  • Content analysis 
  • Thematic analysis
  • Narrative analysis 
  • Grounded theory analysis
  • Discourse analysis 

Top 17 Data Analysis Techniques:

  • Collaborate your needs
  • Establish your questions
  • Data democratization
  • Think of data governance 
  • Clean your data
  • Set your KPIs
  • Omit useless data
  • Build a data management roadmap
  • Integrate technology
  • Answer your questions
  • Visualize your data
  • Interpretation of data
  • Consider autonomous technology
  • Build a narrative
  • Share the load
  • Data Analysis tools
  • Refine your process constantly 

We’ve pondered the data analysis definition and drilled down into the practical applications of data-centric analytics, and one thing is clear: by taking measures to arrange your data and making your metrics work for you, it’s possible to transform raw information into action - the kind of that will push your business to the next level.

Yes, good data analytics techniques result in enhanced business intelligence (BI). To help you understand this notion in more detail, read our exploration of business intelligence reporting .

And, if you’re ready to perform your own analysis, drill down into your facts and figures while interacting with your data on astonishing visuals, you can try our software for a free, 14-day trial .

  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Is Data Analysis? (With Examples)

Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions.

[Featured image] A female data analyst takes notes on her laptop at a standing desk in a modern office space

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims in Sir Arthur Conan Doyle's A Scandal in Bohemia.

This idea lies at the root of data analysis. When we can extract meaning from data, it empowers us to make better decisions. And we’re living in a time when we have more data than ever at our fingertips.

Companies are wisening up to the benefits of leveraging data. Data analysis can help a bank to personalize customer interactions, a health care system to predict future health needs, or an entertainment company to create the next big streaming hit.

The World Economic Forum Future of Jobs Report 2023 listed data analysts and scientists as one of the most in-demand jobs, alongside AI and machine learning specialists and big data specialists [ 1 ]. In this article, you'll learn more about the data analysis process, different types of data analysis, and recommended courses to help you get started in this exciting field.

Read more: How to Become a Data Analyst (with or Without a Degree)

Beginner-friendly data analysis courses

Interested in building your knowledge of data analysis today? Consider enrolling in one of these popular courses on Coursera:

In Google's Foundations: Data, Data, Everywhere course, you'll explore key data analysis concepts, tools, and jobs.

In Duke University's Data Analysis and Visualization course, you'll learn how to identify key components for data analytics projects, explore data visualization, and find out how to create a compelling data story.

Data analysis process

As the data available to companies continues to grow both in amount and complexity, so too does the need for an effective and efficient process by which to harness the value of that data. The data analysis process typically moves through several iterative phases. Let’s take a closer look at each.

Identify the business question you’d like to answer. What problem is the company trying to solve? What do you need to measure, and how will you measure it? 

Collect the raw data sets you’ll need to help you answer the identified question. Data collection might come from internal sources, like a company’s client relationship management (CRM) software, or from secondary sources, like government records or social media application programming interfaces (APIs). 

Clean the data to prepare it for analysis. This often involves purging duplicate and anomalous data, reconciling inconsistencies, standardizing data structure and format, and dealing with white spaces and other syntax errors.

Analyze the data. By manipulating the data using various data analysis techniques and tools, you can begin to find trends, correlations, outliers, and variations that tell a story. During this stage, you might use data mining to discover patterns within databases or data visualization software to help transform data into an easy-to-understand graphical format.

Interpret the results of your analysis to see how well the data answered your original question. What recommendations can you make based on the data? What are the limitations to your conclusions? 

You can complete hands-on projects for your portfolio while practicing statistical analysis, data management, and programming with Meta's beginner-friendly Data Analyst Professional Certificate . Designed to prepare you for an entry-level role, this self-paced program can be completed in just 5 months.

Or, L earn more about data analysis in this lecture by Kevin, Director of Data Analytics at Google, from Google's Data Analytics Professional Certificate :

Read more: What Does a Data Analyst Do? A Career Guide

Types of data analysis (with examples)

Data can be used to answer questions and support decisions in many different ways. To identify the best way to analyze your date, it can help to familiarize yourself with the four types of data analysis commonly used in the field.

In this section, we’ll take a look at each of these data analysis methods, along with an example of how each might be applied in the real world.

Descriptive analysis

Descriptive analysis tells us what happened. This type of analysis helps describe or summarize quantitative data by presenting statistics. For example, descriptive statistical analysis could show the distribution of sales across a group of employees and the average sales figure per employee. 

Descriptive analysis answers the question, “what happened?”

Diagnostic analysis

If the descriptive analysis determines the “what,” diagnostic analysis determines the “why.” Let’s say a descriptive analysis shows an unusual influx of patients in a hospital. Drilling into the data further might reveal that many of these patients shared symptoms of a particular virus. This diagnostic analysis can help you determine that an infectious agent—the “why”—led to the influx of patients.

Diagnostic analysis answers the question, “why did it happen?”

Predictive analysis

So far, we’ve looked at types of analysis that examine and draw conclusions about the past. Predictive analytics uses data to form projections about the future. Using predictive analysis, you might notice that a given product has had its best sales during the months of September and October each year, leading you to predict a similar high point during the upcoming year.

Predictive analysis answers the question, “what might happen in the future?”

Prescriptive analysis

Prescriptive analysis takes all the insights gathered from the first three types of analysis and uses them to form recommendations for how a company should act. Using our previous example, this type of analysis might suggest a market plan to build on the success of the high sales months and harness new growth opportunities in the slower months. 

Prescriptive analysis answers the question, “what should we do about it?”

This last type is where the concept of data-driven decision-making comes into play.

Read more : Advanced Analytics: Definition, Benefits, and Use Cases

What is data-driven decision-making (DDDM)?

Data-driven decision-making, sometimes abbreviated to DDDM), can be defined as the process of making strategic business decisions based on facts, data, and metrics instead of intuition, emotion, or observation.

This might sound obvious, but in practice, not all organizations are as data-driven as they could be. According to global management consulting firm McKinsey Global Institute, data-driven companies are better at acquiring new customers, maintaining customer loyalty, and achieving above-average profitability [ 2 ].

Get started with Coursera

If you’re interested in a career in the high-growth field of data analytics, consider these top-rated courses on Coursera:

Begin building job-ready skills with the Google Data Analytics Professional Certificate . Prepare for an entry-level job as you learn from Google employees—no experience or degree required.

Practice working with data with Macquarie University's Excel Skills for Business Specialization . Learn how to use Microsoft Excel to analyze data and make data-informed business decisions.

Deepen your skill set with Google's Advanced Data Analytics Professional Certificate . In this advanced program, you'll continue exploring the concepts introduced in the beginner-level courses, plus learn Python, statistics, and Machine Learning concepts.

Frequently asked questions (FAQ)

Where is data analytics used ‎.

Just about any business or organization can use data analytics to help inform their decisions and boost their performance. Some of the most successful companies across a range of industries — from Amazon and Netflix to Starbucks and General Electric — integrate data into their business plans to improve their overall business performance. ‎

What are the top skills for a data analyst? ‎

Data analysis makes use of a range of analysis tools and technologies. Some of the top skills for data analysts include SQL, data visualization, statistical programming languages (like R and Python),  machine learning, and spreadsheets.

Read : 7 In-Demand Data Analyst Skills to Get Hired in 2022 ‎

What is a data analyst job salary? ‎

Data from Glassdoor indicates that the average base salary for a data analyst in the United States is $75,349 as of March 2024 [ 3 ]. How much you make will depend on factors like your qualifications, experience, and location. ‎

Do data analysts need to be good at math? ‎

Data analytics tends to be less math-intensive than data science. While you probably won’t need to master any advanced mathematics, a foundation in basic math and statistical analysis can help set you up for success.

Learn more: Data Analyst vs. Data Scientist: What’s the Difference? ‎

Article sources

World Economic Forum. " The Future of Jobs Report 2023 , https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf." Accessed March 19, 2024.

McKinsey & Company. " Five facts: How customer analytics boosts corporate performance , https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/five-facts-how-customer-analytics-boosts-corporate-performance." Accessed March 19, 2024.

Glassdoor. " Data Analyst Salaries , https://www.glassdoor.com/Salaries/data-analyst-salary-SRCH_KO0,12.htm" Accessed March 19, 2024.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Data Analysis in Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

Book cover

  • Yong Moon Jung 2  

1750 Accesses

1 Citations

Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility. Conducting quantitative data analysis requires a prerequisite understanding of the statistical knowledge and skills. It also requires rigor in the choice of appropriate analysis model and the interpretation of the analysis outcomes. Basically, the choice of appropriate analysis techniques is determined by the type of research question and the nature of the data. In addition, different analysis techniques require different assumptions of data. This chapter provides introductory guides for readers to assist them with their informed decision-making in choosing the correct analysis models. To this end, it begins with discussion of the levels of measure: nominal, ordinal, and scale. Some commonly used analysis techniques in univariate, bivariate, and multivariate data analysis are presented for practical examples. Example analysis outcomes are produced by the use of SPSS (Statistical Package for Social Sciences).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Armstrong JS. Significance tests harm progress in forecasting. Int J Forecast. 2007;23(2):321–7.

Article   Google Scholar  

Babbie E. The practice of social research. 14th ed. Belmont: Cengage Learning; 2016.

Google Scholar  

Brockopp DY, Hastings-Tolsma MT. Fundamentals of nursing research. Boston: Jones & Bartlett; 2003.

Creswell JW. Research design: qualitative, quantitative, and mixed methods approaches. Thousand Oaks: Sage; 2014.

Fawcett J. The relationship of theory and research. Philadelphia: F. A. Davis; 1999.

Field A. Discovering statistics using IBM SPSS statistics. London: Sage; 2013.

Grove SK, Gray JR, Burns N. Understanding nursing research: building an evidence-based practice. 6th ed. St. Louis: Elsevier Saunders; 2015.

Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RD. Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall; 2006.

Katz MH. Multivariable analysis: a practical guide for clinicians. Cambridge: Cambridge University Press; 2006.

Book   Google Scholar  

McHugh ML. Scientific inquiry. J Specialists Pediatr Nurs. 2007; 8 (1):35–7. Volume 8, Issue 1, Version of Record online: 22 FEB 2007

Pallant J. SPSS survival manual: a step by step guide to data analysis using IBM SPSS. Sydney: Allen & Unwin; 2016.

Polit DF, Beck CT. Nursing research: principles and methods. Philadelphia: Lippincott Williams & Wilkins; 2004.

Trochim WMK, Donnelly JP. Research methods knowledge base. 3rd ed. Mason: Thomson Custom Publishing; 2007.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Boston: Pearson Education.

Wells CS, Hin JM. Dealing with assumptions underlying statistical tests. Psychol Sch. 2007;44(5):495–502.

Download references

Author information

Authors and affiliations.

Centre for Business and Social Innovation, University of Technology Sydney, Ultimo, NSW, Australia

Yong Moon Jung

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Yong Moon Jung .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Jung, Y.M. (2019). Data Analysis in Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_109

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_109

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Basic statistical tools in research and data analysis

Zulfiqar ali.

Department of Anaesthesiology, Division of Neuroanaesthesiology, Sheri Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India

S Bala Bhaskar

1 Department of Anaesthesiology and Critical Care, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India

Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

INTRODUCTION

Statistics is a branch of science that deals with the collection, organisation, analysis of data and drawing of inferences from the samples to the whole population.[ 1 ] This requires a proper design of the study, an appropriate selection of the study sample and choice of a suitable statistical test. An adequate knowledge of statistics is necessary for proper designing of an epidemiological study or a clinical trial. Improper statistical methods may result in erroneous conclusions which may lead to unethical practice.[ 2 ]

Variable is a characteristic that varies from one individual member of population to another individual.[ 3 ] Variables such as height and weight are measured by some type of scale, convey quantitative information and are called as quantitative variables. Sex and eye colour give qualitative information and are called as qualitative variables[ 3 ] [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g001.jpg

Classification of variables

Quantitative variables

Quantitative or numerical data are subdivided into discrete and continuous measurements. Discrete numerical data are recorded as a whole number such as 0, 1, 2, 3,… (integer), whereas continuous data can assume any value. Observations that can be counted constitute the discrete data and observations that can be measured constitute the continuous data. Examples of discrete data are number of episodes of respiratory arrests or the number of re-intubations in an intensive care unit. Similarly, examples of continuous data are the serial serum glucose levels, partial pressure of oxygen in arterial blood and the oesophageal temperature.

A hierarchical scale of increasing precision can be used for observing and recording the data which is based on categorical, ordinal, interval and ratio scales [ Figure 1 ].

Categorical or nominal variables are unordered. The data are merely classified into categories and cannot be arranged in any particular order. If only two categories exist (as in gender male and female), it is called as a dichotomous (or binary) data. The various causes of re-intubation in an intensive care unit due to upper airway obstruction, impaired clearance of secretions, hypoxemia, hypercapnia, pulmonary oedema and neurological impairment are examples of categorical variables.

Ordinal variables have a clear ordering between the variables. However, the ordered data may not have equal intervals. Examples are the American Society of Anesthesiologists status or Richmond agitation-sedation scale.

Interval variables are similar to an ordinal variable, except that the intervals between the values of the interval variable are equally spaced. A good example of an interval scale is the Fahrenheit degree scale used to measure temperature. With the Fahrenheit scale, the difference between 70° and 75° is equal to the difference between 80° and 85°: The units of measurement are equal throughout the full range of the scale.

Ratio scales are similar to interval scales, in that equal differences between scale values have equal quantitative meaning. However, ratio scales also have a true zero point, which gives them an additional property. For example, the system of centimetres is an example of a ratio scale. There is a true zero point and the value of 0 cm means a complete absence of length. The thyromental distance of 6 cm in an adult may be twice that of a child in whom it may be 3 cm.

STATISTICS: DESCRIPTIVE AND INFERENTIAL STATISTICS

Descriptive statistics[ 4 ] try to describe the relationship between variables in a sample or population. Descriptive statistics provide a summary of data in the form of mean, median and mode. Inferential statistics[ 4 ] use a random sample of data taken from a population to describe and make inferences about the whole population. It is valuable when it is not possible to examine each member of an entire population. The examples if descriptive and inferential statistics are illustrated in Table 1 .

Example of descriptive and inferential statistics

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g002.jpg

Descriptive statistics

The extent to which the observations cluster around a central location is described by the central tendency and the spread towards the extremes is described by the degree of dispersion.

Measures of central tendency

The measures of central tendency are mean, median and mode.[ 6 ] Mean (or the arithmetic average) is the sum of all the scores divided by the number of scores. Mean may be influenced profoundly by the extreme variables. For example, the average stay of organophosphorus poisoning patients in ICU may be influenced by a single patient who stays in ICU for around 5 months because of septicaemia. The extreme values are called outliers. The formula for the mean is

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g003.jpg

where x = each observation and n = number of observations. Median[ 6 ] is defined as the middle of a distribution in a ranked data (with half of the variables in the sample above and half below the median value) while mode is the most frequently occurring variable in a distribution. Range defines the spread, or variability, of a sample.[ 7 ] It is described by the minimum and maximum values of the variables. If we rank the data and after ranking, group the observations into percentiles, we can get better information of the pattern of spread of the variables. In percentiles, we rank the observations into 100 equal parts. We can then describe 25%, 50%, 75% or any other percentile amount. The median is the 50 th percentile. The interquartile range will be the observations in the middle 50% of the observations about the median (25 th -75 th percentile). Variance[ 7 ] is a measure of how spread out is the distribution. It gives an indication of how close an individual observation clusters about the mean value. The variance of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g004.jpg

where σ 2 is the population variance, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The variance of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g005.jpg

where s 2 is the sample variance, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. The formula for the variance of a population has the value ‘ n ’ as the denominator. The expression ‘ n −1’ is known as the degrees of freedom and is one less than the number of parameters. Each observation is free to vary, except the last one which must be a defined value. The variance is measured in squared units. To make the interpretation of the data simple and to retain the basic unit of observation, the square root of variance is used. The square root of the variance is the standard deviation (SD).[ 8 ] The SD of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g006.jpg

where σ is the population SD, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The SD of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g007.jpg

where s is the sample SD, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. An example for calculation of variation and SD is illustrated in Table 2 .

Example of mean, variance, standard deviation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g008.jpg

Normal distribution or Gaussian distribution

Most of the biological variables usually cluster around a central value, with symmetrical positive and negative deviations about this point.[ 1 ] The standard normal distribution curve is a symmetrical bell-shaped. In a normal distribution curve, about 68% of the scores are within 1 SD of the mean. Around 95% of the scores are within 2 SDs of the mean and 99% within 3 SDs of the mean [ Figure 2 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g009.jpg

Normal distribution curve

Skewed distribution

It is a distribution with an asymmetry of the variables about its mean. In a negatively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the right of Figure 1 . In a positively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the left of the figure leading to a longer right tail.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g010.jpg

Curves showing negatively skewed and positively skewed distribution

Inferential statistics

In inferential statistics, data are analysed from a sample to make inferences in the larger collection of the population. The purpose is to answer or test the hypotheses. A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. Hypothesis tests are thus procedures for making rational decisions about the reality of observed effects.

Probability is the measure of the likelihood that an event will occur. Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).

In inferential statistics, the term ‘null hypothesis’ ( H 0 ‘ H-naught ,’ ‘ H-null ’) denotes that there is no relationship (difference) between the population variables in question.[ 9 ]

Alternative hypothesis ( H 1 and H a ) denotes that a statement between the variables is expected to be true.[ 9 ]

The P value (or the calculated probability) is the probability of the event occurring by chance if the null hypothesis is true. The P value is a numerical between 0 and 1 and is interpreted by researchers in deciding whether to reject or retain the null hypothesis [ Table 3 ].

P values with interpretation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g011.jpg

If P value is less than the arbitrarily chosen value (known as α or the significance level), the null hypothesis (H0) is rejected [ Table 4 ]. However, if null hypotheses (H0) is incorrectly rejected, this is known as a Type I error.[ 11 ] Further details regarding alpha error, beta error and sample size calculation and factors influencing them are dealt with in another section of this issue by Das S et al .[ 12 ]

Illustration for null hypothesis

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g012.jpg

PARAMETRIC AND NON-PARAMETRIC TESTS

Numerical data (quantitative variables) that are normally distributed are analysed with parametric tests.[ 13 ]

Two most basic prerequisites for parametric statistical analysis are:

  • The assumption of normality which specifies that the means of the sample group are normally distributed
  • The assumption of equal variance which specifies that the variances of the samples and of their corresponding population are equal.

However, if the distribution of the sample is skewed towards one side or the distribution is unknown due to the small sample size, non-parametric[ 14 ] statistical techniques are used. Non-parametric tests are used to analyse ordinal and categorical data.

Parametric tests

The parametric tests assume that the data are on a quantitative (numerical) scale, with a normal distribution of the underlying population. The samples have the same variance (homogeneity of variances). The samples are randomly drawn from the population, and the observations within a group are independent of each other. The commonly used parametric tests are the Student's t -test, analysis of variance (ANOVA) and repeated measures ANOVA.

Student's t -test

Student's t -test is used to test the null hypothesis that there is no difference between the means of the two groups. It is used in three circumstances:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g013.jpg

where X = sample mean, u = population mean and SE = standard error of mean

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g014.jpg

where X 1 − X 2 is the difference between the means of the two groups and SE denotes the standard error of the difference.

  • To test if the population means estimated by two dependent samples differ significantly (the paired t -test). A usual setting for paired t -test is when measurements are made on the same subjects before and after a treatment.

The formula for paired t -test is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g015.jpg

where d is the mean difference and SE denotes the standard error of this difference.

The group variances can be compared using the F -test. The F -test is the ratio of variances (var l/var 2). If F differs significantly from 1.0, then it is concluded that the group variances differ significantly.

Analysis of variance

The Student's t -test cannot be used for comparison of three or more groups. The purpose of ANOVA is to test if there is any significant difference between the means of two or more groups.

In ANOVA, we study two variances – (a) between-group variability and (b) within-group variability. The within-group variability (error variance) is the variation that cannot be accounted for in the study design. It is based on random differences present in our samples.

However, the between-group (or effect variance) is the result of our treatment. These two estimates of variances are compared using the F-test.

A simplified formula for the F statistic is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g016.jpg

where MS b is the mean squares between the groups and MS w is the mean squares within groups.

Repeated measures analysis of variance

As with ANOVA, repeated measures ANOVA analyses the equality of means of three or more groups. However, a repeated measure ANOVA is used when all variables of a sample are measured under different conditions or at different points in time.

As the variables are measured from a sample at different points of time, the measurement of the dependent variable is repeated. Using a standard ANOVA in this case is not appropriate because it fails to model the correlation between the repeated measures: The data violate the ANOVA assumption of independence. Hence, in the measurement of repeated dependent variables, repeated measures ANOVA should be used.

Non-parametric tests

When the assumptions of normality are not met, and the sample means are not normally, distributed parametric tests can lead to erroneous results. Non-parametric tests (distribution-free test) are used in such situation as they do not require the normality assumption.[ 15 ] Non-parametric tests may fail to detect a significant difference when compared with a parametric test. That is, they usually have less power.

As is done for the parametric tests, the test statistic is compared with known values for the sampling distribution of that statistic and the null hypothesis is accepted or rejected. The types of non-parametric analysis techniques and the corresponding parametric analysis techniques are delineated in Table 5 .

Analogue of parametric and non-parametric tests

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g017.jpg

Median test for one sample: The sign test and Wilcoxon's signed rank test

The sign test and Wilcoxon's signed rank test are used for median tests of one sample. These tests examine whether one instance of sample data is greater or smaller than the median reference value.

This test examines the hypothesis about the median θ0 of a population. It tests the null hypothesis H0 = θ0. When the observed value (Xi) is greater than the reference value (θ0), it is marked as+. If the observed value is smaller than the reference value, it is marked as − sign. If the observed value is equal to the reference value (θ0), it is eliminated from the sample.

If the null hypothesis is true, there will be an equal number of + signs and − signs.

The sign test ignores the actual values of the data and only uses + or − signs. Therefore, it is useful when it is difficult to measure the values.

Wilcoxon's signed rank test

There is a major limitation of sign test as we lose the quantitative information of the given data and merely use the + or – signs. Wilcoxon's signed rank test not only examines the observed values in comparison with θ0 but also takes into consideration the relative sizes, adding more statistical power to the test. As in the sign test, if there is an observed value that is equal to the reference value θ0, this observed value is eliminated from the sample.

Wilcoxon's rank sum test ranks all data points in order, calculates the rank sum of each sample and compares the difference in the rank sums.

Mann-Whitney test

It is used to test the null hypothesis that two samples have the same median or, alternatively, whether observations in one sample tend to be larger than observations in the other.

Mann–Whitney test compares all data (xi) belonging to the X group and all data (yi) belonging to the Y group and calculates the probability of xi being greater than yi: P (xi > yi). The null hypothesis states that P (xi > yi) = P (xi < yi) =1/2 while the alternative hypothesis states that P (xi > yi) ≠1/2.

Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test was designed as a generic method to test whether two random samples are drawn from the same distribution. The null hypothesis of the KS test is that both distributions are identical. The statistic of the KS test is a distance between the two empirical distributions, computed as the maximum absolute difference between their cumulative curves.

Kruskal-Wallis test

The Kruskal–Wallis test is a non-parametric test to analyse the variance.[ 14 ] It analyses if there is any difference in the median values of three or more independent samples. The data values are ranked in an increasing order, and the rank sums calculated followed by calculation of the test statistic.

Jonckheere test

In contrast to Kruskal–Wallis test, in Jonckheere test, there is an a priori ordering that gives it a more statistical power than the Kruskal–Wallis test.[ 14 ]

Friedman test

The Friedman test is a non-parametric test for testing the difference between several related samples. The Friedman test is an alternative for repeated measures ANOVAs which is used when the same parameter has been measured under different conditions on the same subjects.[ 13 ]

Tests to analyse the categorical data

Chi-square test, Fischer's exact test and McNemar's test are used to analyse the categorical or nominal variables. The Chi-square test compares the frequencies and tests whether the observed data differ significantly from that of the expected data if there were no differences between groups (i.e., the null hypothesis). It is calculated by the sum of the squared difference between observed ( O ) and the expected ( E ) data (or the deviation, d ) divided by the expected data by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g018.jpg

A Yates correction factor is used when the sample size is small. Fischer's exact test is used to determine if there are non-random associations between two categorical variables. It does not assume random sampling, and instead of referring a calculated statistic to a sampling distribution, it calculates an exact probability. McNemar's test is used for paired nominal data. It is applied to 2 × 2 table with paired-dependent samples. It is used to determine whether the row and column frequencies are equal (that is, whether there is ‘marginal homogeneity’). The null hypothesis is that the paired proportions are equal. The Mantel-Haenszel Chi-square test is a multivariate test as it analyses multiple grouping variables. It stratifies according to the nominated confounding variables and identifies any that affects the primary outcome variable. If the outcome variable is dichotomous, then logistic regression is used.

SOFTWARES AVAILABLE FOR STATISTICS, SAMPLE SIZE CALCULATION AND POWER ANALYSIS

Numerous statistical software systems are available currently. The commonly used software systems are Statistical Package for the Social Sciences (SPSS – manufactured by IBM corporation), Statistical Analysis System ((SAS – developed by SAS Institute North Carolina, United States of America), R (designed by Ross Ihaka and Robert Gentleman from R core team), Minitab (developed by Minitab Inc), Stata (developed by StataCorp) and the MS Excel (developed by Microsoft).

There are a number of web resources which are related to statistical power analyses. A few are:

  • StatPages.net – provides links to a number of online power calculators
  • G-Power – provides a downloadable power analysis program that runs under DOS
  • Power analysis for ANOVA designs an interactive site that calculates power or sample size needed to attain a given power for one effect in a factorial ANOVA design
  • SPSS makes a program called SamplePower. It gives an output of a complete report on the computer screen which can be cut and paste into another document.

It is important that a researcher knows the concepts of the basic statistical methods used for conduct of a research study. This will help to conduct an appropriately well-designed study leading to valid and reliable results. Inappropriate use of statistical techniques may lead to faulty conclusions, inducing errors and undermining the significance of the article. Bad statistics may lead to bad research, and bad research may lead to unethical practice. Hence, an adequate knowledge of statistics and the appropriate use of statistical tests are important. An appropriate knowledge about the basic statistical methods will go a long way in improving the research designs and producing quality medical research which can be utilised for formulating the evidence-based guidelines.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Grad Coach

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

data analysis in research tools

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations.

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

data analysis in research tools

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Narrative analysis explainer

74 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Illustrated graphics showing different ways to map data.

Data Analysis: Techniques, Tools, and Processes

Big or small, companies now expect their decisions to be data-driven. The world is growing and relying more on data. There is a greater need for professionals who know data analysis techniques.

Data analysis is a valuable skill that empowers you to make better decisions. This skill serves as a powerful catalyst in your professional and personal life. From personal budgeting to analyzing customer experiences , data analysis is the stepping stone to your career advancement.

So, whether you’re looking to upskill at work or kickstart a career in data analytics, this article is for you. We will discuss the best data analysis techniques in detail. To put all that into perspective, we’ll also discuss the step-by-step data analysis process. 

Let’s begin.

What is Data Analysis?

Data analysis is collecting, cleansing, analyzing, presenting, and interpreting data to derive insights. This process aids decision-making by providing helpful insights and statistics. 

The history of data analysis dates back to the 1640s. John Grant, a hatmaker, started collecting the number of deaths in London. He was the first person to use data analysis to solve a problem. Also, Florence Nightingale, best known as a nurse from 1854, made significant contributions to medicine through data analysis, particularly in public health and sanitation.

This simple practice of data analysis has evolved and broadened over time. “ Data analytics ” is the bigger picture. It employs data, tools, and techniques (covered later in this article) to discover new insights and make predictions.  

Why is Data Analysis so Important Now?

How do businesses make better decisions, analyze trends, or invent better products and services ?

The simple answer: Data Analysis. The distinct methods of analysis reveal insights that would otherwise get lost in the mass of information. Big data analytics is getting even more prominent owing to the below reasons.

1. Informed Decision-making

The modern business world relies on facts rather than intuition. Data analysis serves as the foundation of informed decision-making. 

Consider the role of data analysis in UX design , specifically when dealing with non-numerical, subjective information. Qualitative research delves into the 'why' and 'how' behind user behavior , revealing nuanced insights. It provides a foundation for making well-informed decisions regarding color , layout, and typography . Applying these insights allows you to create visuals that deeply resonate with your target audience.

2. Better Customer Targeting and Predictive Capabilities

Data has become the lifeblood of successful marketing . Organizations rely on data science techniques to create targeted strategies and marketing campaigns. 

Big data analytics helps uncover deep insights about consumer behavior. For instance, Google collects and analyzes many different data types. It examines search history, geography, and trending topics to deduce what consumers want.

3. Improved Operational Efficiencies and Reduced Costs

Data analytics also brings the advantage of streamlining operations and reducing organizational costs. It makes it easier for businesses to identify bottlenecks and improvement opportunities. This enables them to optimize resource allocation and ultimately reduce costs.

Procter & Gamble (P&G) , a leading company, uses data analytics to optimize their supply chain and inventory management. Data analytics helps the company reduce excess inventory and stockouts, achieving cost savings.  

4. Better Customer Satisfaction and Retention

Customer behavior patterns enable you to understand how they feel about your products, services, and brand. Also, different data analysis models help uncover future trends. These trends allow you to personalize the customer experience and improve satisfaction.

The eCommerce giant Amazon learns from what each customer wants and likes. It then recommends the same or similar products when they return to the shopping app. Data analysis helps create personalized experiences for Amazon customers and improves user experience . 

Enhance your knowledge by understanding “when” and “why” to use data analytics.

  • Transcript loading…

Types of Data Analysis Methods

“We are surrounded by data, but starved for insights.” — Jay Baer, Customer Experience Expert & Speaker

The above quote summarizes that strategic analysis must support data to produce meaningful insights. 

Before discussing the top data analytics techniques , let’s first understand the two types of data analysis methods.

1. Quantitative Data Analysis

As the name suggests, quantitative analysis involves looking at the complex data, the actual numbers, or the rows and columns. Let’s understand this with the help of a scenario.

Your e-commerce company wants to assess the sales team’s performance. You gather quantitative data on various key performance indicators (KPIs). These KPIs include

The number of units sold.

Sales revenue.

Conversion rates.

Customer acquisition costs.

By analyzing these numeric data points, the company can calculate:

Monthly sales growth.

Average order value.

Return on investment (ROI) for each sales representative.

How does it help?

The quantitative analysis can help you identify:

Top-performing sales reps

Best-selling products. 

Most cost-effective customer acquisition channels.

The above metrics help the company make data-driven decisions and improve its sales strategy.

2. Qualitative Data Analysis

There are situations where numbers in rows and columns are impossible to fit. This is where qualitative research can help you understand the data’s underlying factors, patterns, and meanings via non-numerical means. Let’s take an example to understand this.

Imagine you’re a product manager for an online shopping app. You want to improve the app’s user experience and boost user engagement. You have quantitative data that tells you what's going on but not why . Here’s what to do:

Collect customer feedback through interviews, open-ended questions, and online reviews. 

Conduct in-depth interviews to explore their experiences. 

Watch this instructional video to elevate your interview preparation to a more professional level.

By reading and summarizing the comments, you can identify issues, sentiments, and areas that need improvement. This qualitative insight can guide you to identify and work on areas of frustration or confusion. 

Learn more about quantitative and qualitative user research in this video.

10 Best Data Analysis and Modeling Techniques

We generate over 120 zettabytes daily. That’s about 120 billion copies of the entire Internet in 2020, daily . Without the best data analysis techniques, businesses of all sizes will never be able to collect, analyze, and interpret data into real, actionable insights .  

Now that you have an overarching picture of data analysis , let’s move on to the nitty-gritty: top data analysis methods .

An infographic showcasing the best quantitative and qualitative data analysis techniques.

© Interaction Design Foundation, CC BY-SA 4.0

Quantitative Methods

1. cluster analysis.

Also called segmentation or taxonomy analysis, this method identifies structures within a dataset. It’s like sorting objects into different boxes (clusters) based on their similarities. The data points within a similar group are similar to each other (homogeneous). Likewise, they’re dissimilar to data points in another cluster(heterogeneous).  

Cluster analysis aims to find hidden patterns in the data. It can be your go-to approach if you require additional context to a trend or dataset.

Let’s say you own a retail store. You want to understand your customers better to tailor your marketing strategies. You collect customer data, including their shopping behavior and preferences. 

Here, cluster analysis can help you group customers with similar behaviors and preferences. Customers who visit your store frequently and shop a lot may form one cluster. Customers who shop infrequently and spend less may form another cluster.

With the help of cluster analysis, you can target your marketing efforts more efficiently.

2. Regression Analysis

Regression analysis is a powerful data analysis technique. It is quite popular in economics, biology, biology, and psychology. This technique helps you understand how one thing (or more) influences another. 

Suppose you’re a manager trying to predict next month’s sales. Many factors, like the weather, promotions, or the buzz about a better product, can affect these figures.

In addition, some people in your organization might have their own theory on what might impact sales the most. For instance, one colleague might confidently say, “When winter starts, our sales go up.” And another insists, “Sales will spike two weeks after we launch a promotion.”

All the above factors are “variables.” Now, the “dependent variable” will always be the factor being measured. In our example—the monthly sales. 

Next, you have your independent variables. These are the factors that might impact your dependent variable.

Regression analysis can mathematically sort out which variables have an impact. This statistical analysis identifies trends and patterns to make predictions and forecast possible future directions. 

There are many types of regression analysis, including linear regression, non-linear regression, binary logistic regression, and more. The model you choose will highly depend upon the type of data you have

3. Monte Carlo Simulation

This mathematical technique is an excellent way to estimate an uncertain event’s possible outcomes. Interestingly, the method derives its name from the Monte Carlo Casino in Monaco. The casino is famous for its games of chance. 

Let’s say you want to know how much money you might make from your investments in the stock market. So, you make thousands of guesses instead of one guess. Then, you consider several scenarios . The scenarios can be a growing economy or an unprecedented catastrophe like Covid-19. 

The idea is to test many random situations to estimate the potential outcomes.

4. Time Series Analysis

The time series method analyzes data collected over time. You can identify trends and cycles over time with this technique. Here, one data set recorded at different intervals helps understand patterns and make forecasts. 

Industries like finance, retail, and economics leverage time-series analysis to predict trends. It is so because they deal with ever-changing currency exchange rates and sales data. 

Using time series analysis in the stock market is an excellent example of this technique in action. Many stocks exhibit recurring patterns in their underlying businesses due to seasonality or cyclicality. Time series analysis can uncover these patterns. Hence, investors can take advantage of seasonal trading opportunities or adjust their portfolios accordingly.

Time series analysis is part of predictive analytics . It can show likely changes in the data to provide a better understanding of data variables and better forecasting. 

5. Cohort Analysis

Cohort analysis also involves breaking down datasets into relative groups (or cohorts), like cluster analysis. However, in this method, you focus on studying the behavior of specific groups over time. This aims to understand different groups’ performance within a larger population.

This technique is popular amongst marketing, product development, and user experience research teams. 

Let’s say you’re an app developer and want to understand user engagement over time. Using this method, you define cohorts based on a familiar identifier. This identifier can be the demographics, app download date, or users making an in-app purchase. In this way, your cohort represents a group of users who had a similar starting point. 

With the data in hand, you analyze how each cohort behaves over time. Do users from the US use your app more frequently than people in the UK? Are there any in-app purchases from a specific cohort?

This iterative approach can reveal insights to refine your marketing strategies and improve user engagement. 

Qualitative Methods

6. content analysis.

When you think of “data” or “analysis,” do you think of text, audio, video, or images? Probably not, but these forms of communication are an excellent way to uncover patterns, themes, and insights. 

Widely used in marketing, content analysis can reveal public sentiment about a product or brand. For instance, analyzing customer reviews and social media mentions can help brands discover hidden insights. 

There are two further categories in this method:

Conceptual analysis: It focuses on explicit data. For example, the number of times a word repeats in a content. 

Relational analysis: It examines the relationship between different concepts or words and how they connect. It's not about counting but about understanding how things fit together. A user experience technique called card sorting can help with this.

This technique involves counting and measuring the frequency of categorical data. It also studies the meaning and context of the content. This is why content analysis can be both quantitative and qualitative. 

How to Improve Your Design with Task Analysis

7. Sentiment Analysis

Also known as opinion mining, this technique is a valuable business intelligence tool. It can assist you to enhance your products and services. The modern business landscape has substantial textual data, including emails, social media comments, website chats, and reviews. You often need to know whether this text data conveys a positive, negative, or neutral sentiment.

Sentiment Analysis tools help scan this text to determine the emotional tone of the message automatically. The insights from sentiment analysis are highly helpful in improving customer service and elevating brand reputation.

8. Thematic Analysis

Whether you’re an entrepreneur, a UX researcher, or a customer relationship manager— thematic analysis can help you better understand user behaviors and needs. 

The thematic technique analyzes large chunks of text data such as transcripts or interviews. It then groups them into themes or categories that come up frequently within the text. While this may sound similar to content analysis, it’s worth noting that the thematic method purely uses qualitative data. 

Moreover, it is a very subjective technique since it depends upon the researcher’s experience to derive insights. 

9. Grounded Theory Analysis

Think of grounded theory as something you, as a researcher, might do. Instead of starting with a hypothesis and trying to prove or disprove it, you gather information and construct a theory as you go along.

It's like a continuous loop. You collect and examine data and then create a theory based on your discovery. You keep repeating this process until you've squeezed out all the insights possible from the data. This method allows theories to emerge naturally from the information, making it a flexible and open way to explore new ideas.

Grounded theory is the basis of a popular user-experience research technique called contextual enquiry .

10. Discourse Analysis

Discourse analysis is popular in linguistics, sociology, and communication studies. It aims to understand the meaning behind written texts, spoken conversations, or visual and multimedia communication. It seeks to uncover:

How individuals structure a specific language

What lies behind it; and 

How social and cultural practices influence it

For instance, as a social media manager, if you analyze social media posts, you go beyond the text itself. You would consider the emojis, hashtags, and even the timing of the posts. You might find that a particular hashtag is used to mobilize a social movement. 

The Data Analysis Process: Step-by-Step Guide

You must follow a step-by-step data analytics process to derive meaningful conclusions from your data. Here is a rundown of five main data analysis steps :

A graphical representation of data analysis steps. 

1. Problem Identification

The first step in the data analysis process is “identification.” What problem are you trying to solve? In other words, what research question do you want to address with your data analysis?

Let’s say you’re an analyst working for an e-commerce company. There has been a recent decline in sales. Now, the company wants to understand why this is happening. Our problem statement is to find the reason for the decline in sales. 

2. Data Collection

The next step is to collect data. You can do this through various internal and external sources. For example, surveys , questionnaires, focus groups , interviews , etc.

Delve deeper into the intricacies of data collection with Ann Blandford in this video:

The key here is to collect and aggregate the appropriate statistical data. By “appropriate,” we mean the data that could help you understand the problem and build a forecasting model. The data can be quantitative (sales figures) or qualitative (customer reviews). 

All types of data can fit into one of three categories:

First-party data : Data that you, or your company, can collect directly from customers.

Second-party data : The first-party data of other organizations. For instance, sales figures of your competition company. 

Third-party data : Data that a third-party organization can collect and aggregate from numerous sources. For instance, government portals or open data repositories. 

3. Data Cleaning

Now that you have acquired the necessary data, the next step is to prepare it for analysis. That means you must clean or scrub it. This is essential since acquired data can be in different formats. Cleaning ensures you’re not dealing with bad data and your results are dependable. 

Here are some critical data-cleaning steps:

Remove white spaces, duplicates, and formatting errors.

Delete unwanted data points.

Bring structure to your data.

For survey data, you also need to do consistency analysis. Some of this relies on good questionnaire design, but you also need to ensure that:

Respondents are not “straight-lining” (all answers in a single column).

Similar questions are answered consistently.

Open-ended questions contain plausible responses.

4. Data Analysis

This is the stage where you’d be ready to leverage any one or more of the data analysis and research techniques mentioned above. The choice of technique depends upon the data you’re dealing with and the desired results. 

All types of data analysis fit into the following four categories:

An illustration depicting the four data analysis processes. These types further represent their respective objectives.

A. Descriptive Analysis

Descriptive analysis focuses on what happened. It is the starting point for any research before proceeding with deeper explorations. As the first step, it involves breaking down data and summarizing its key characteristics.   

B. Diagnostic Analysis

This analysis focuses on why something has happened. Just as a doctor uses a patient’s diagnosis to uncover a disease, you can use diagnostic analysis to understand the underlying cause of the problem. 

C. Predictive Analysis

This type of analysis allows you to identify future trends based on historical data. It generally uses the results from the above analysis, machine learning (ML), and artificial intelligence (AI) to forecast future growth. 

D. Prescriptive Analysis

Now you know what to do, you must also understand how you’ll do it. The prescriptive analysis aims to determine your research’s best course of action.  

5. Data Interpretation

The step is like connecting the dots in a puzzle. This is where you start making sense of all the data and analysis done in the previous steps. You dig deeper into your data analysis findings and visualize the data to present insights in meaningful and understandable ways. 

Explore this comprehensive video resource to understand the complete user research data analysis process:

The Best Tools and Resources to Use for Data Analysis in 2023

You’ve got data in hand, mastered the process, and understood all the ways to analyze data . So, what comes next?

Well, parsing large amounts of data inputs can make it increasingly challenging to uncover hidden insights. Data analysis tools can track and analyze data through various algorithms, allowing you to create actionable reports and dashboards.

We’ve compiled a handy list of the best tools for you with their pros and cons. 

1. Microsoft Excel

The world’s best and most user-friendly spreadsheet software features calculations and graphing functions. It is ideal for non-techies to perform basic data analysis and create charts and reports.

No coding is required.

User-friendly interface.

Runs slow with complex data analysis.

Less automation compared to specialized tools.

2. Google Sheets

Similar to Microsoft Excel, Google Sheets stands out as a remarkable and cost-effective tool for fundamental data analysis. It handles everyday data analysis tasks, including sorting, filtering, and simple calculations. Besides, it is known for its seamless collaboration capabilities. 

Easily accessible .

Compatible with Microsoft Excel.

Seamless integration with other Google Workspace tools.

Lacks advanced features such as in Microsoft Excel.

May not be able to handle large datasets.

3. Google Analytics

Widely used by digital marketers and web analysts, this tool helps businesses understand how people interact with their websites and apps. It provides insights into website traffic, user behavior, and performance to make data-driven business decisions .

Free version available.

Integrates with Google services.

Limited customization for specific business needs.

May not support non-web data sources.

4. RapidMiner

RapidMiner is ideal for data mining and model development. This platform offers remarkable machine learning and predictive analytics capabilities. It allows professionals to work with data at many stages, including preparation, information visualization , and analysis.

Excellent support for machine learning.

Large library of pre-built models.

Can be expensive for advanced features.

Limited data integration capabilities.

Being one of the best commercial data analysis tools, Tableau is famous for its interactive dashboards and data exploration capabilities. Data teams can create visually appealing and interactive data representations through its easy-to-use interface and powerful capabilities. 

Intuitive drag-and-drop interface.

Interactive and dynamic data visualization.

Backed by Salesforce.

Expensive than competition.

Steeper learning curve for advanced features.

6. Power BI

This is an excellent choice for creating insightful business dashboards. It boasts incredible data integration features and interactive reporting, making it ideal for enterprises. 

Short for Konstanz Information Miner, KNIME is an outstanding tool for data mining. Its user-friendly graphical interface makes it accessible even to non-technical users, enabling them to create data workflows easily. Additionally, KNIME is a cost-effective choice. Hence, it is ideal for small businesses operating on a limited budget. 

Visual workflow for data blending and automation.

Active community and user support.

Complex for beginners.

Limited real-time data processing.

8. Zoho Analytics

Fueled by artificial intelligence and machine learning, Zoho Analytics is a robust data analysis platform. Its data integration capabilities empower you to seamlessly connect and import data from diverse sources while offering an extensive array of analytical functions.

Affordable pricing options.

User-friendly interface

Limited scalability for very large datasets.

Not as widely adopted as some other tools.

9. Qlik Sense

Qlik Sense offers a wide range of augmented capabilities. It has everything from AI-generated analysis and insights to automated creation and data prep, machine learning, and predictive analytics. 

Impressive data exploration and visualization features.

Can handle large datasets.

Steep learning curve for new users.

How to Pick the Right Tool?

Consider the below factors to find the perfect data analysis tool for your organization:

Your organization’s business needs.

Who needs to use the data analysis tools?

The tool’s data modeling capabilities.

The tool’s pricing. 

Besides the above tools, additional resources like a Service Design certification can empower you to provide sustainable solutions and optimal customer experiences. 

How to Become a Data Analyst? 

Data analysts are in high demand owing to the soaring data boom across various sectors. As per the US Bureau of Labor Statistics , the demand for data analytics jobs will grow by 23% between 2021 and 2031. What’s more, roles offer excellent salaries and career progression. As you gain experience and climb the ranks, your pay scales up, making it one of the most competitive fields in the job market. 

Learning data analytics methodology can help you give an all-new boost to your career. Here are some tips to become a data analyst:

1. Take an Online Course

You do not necessarily need a degree to become a data analyst. A degree can give you solid foundational knowledge in relevant quantitative skills. But so can certificate programs or university courses. 

2. Gain the Necessary Technical Skills

Having a set of specific technical skills will help you deepen your analytical capabilities. You must explore and understand the data analysis tools to deal with large datasets and comprehend the analysis. 

3. Gain Practical Knowledge

You can work on data analysis projects to showcase your skills. Then, create a portfolio highlighting your ability to handle real-world data and provide insights. You can also seek internship opportunities that provide valuable exposure and networking opportunities. 

4. Keep Up to Date with the Trends

Since data analysis is rapidly evolving, keep pace with cutting-edge analytics tools, methods, and trends. You can do this through exploration, networking, and continuous learning.

5. Search for the Ideal Job

The job titles and responsibilities continue to change and expand in data analytics. Beyond “Data Analyst,” explore titles like Business Analyst, Data Scientist, Data Engineer, Data Architect, and Marketing Analyst. Your knowledge, education, and experience can guide your path to the right data job. 

The Take Away

Whether you’re eager to delve into a personal area of interest or upgrade your skills to advance your data career, we’ve covered all the relevant aspects in this article. 

Now that you have a clear understanding of what data analysis is, and a grasp of the best data analysis techniques , it’s time to roll up your sleeves and put your knowledge into practice.

We have designed The IxDF courses and certifications to align with your intellectual and professional objectives. If you haven’t already, take the initial step toward enriching your data analytics skills by signing up today. Your journey to expertise in data analysis awaits.

Where to Learn More

1. Learn the most sought-after tool, Microsoft Excel, from basic to advanced in this LinkedIn Microsoft Excel Online Training Course .

2. Ensure all the touchpoints of your service are perfect through this certification in Service Design .

3. Learn more about the analytics data types we encounter daily in this video.

Author: Stewart Cheifet. Appearance time: 0:22 - 0:24. Copyright license and terms: CC / Fair Use. Modified: Yes. Link: https://archive.org/details/CC1218 greatestgames

4. Read this free eBook, The Elements of Statistical Learning , to boost your statistical analysis skills.

5. Check out Python for Data Analysis to learn how to solve statistical problems with Python. 

6. Join this beginner-level course and launch your career in data analytics. Data-Driven Design: Quantitative UX Research Course

Mobile UX Design: The Beginner's Guide

data analysis in research tools

Get Weekly Design Insights

Topics in this article, what you should read next, user research: what it is and why you should do it.

data analysis in research tools

  • 1.1k shares
  • 2 years ago

Emotional Drivers for User and Consumer Behavior

data analysis in research tools

  • 7 years ago

Habits: Five ways to help users change them

data analysis in research tools

  • 3 years ago

How to Moderate User Interviews

data analysis in research tools

  • 4 years ago

5 Ways to Use Behavioral Science to Create Better Products

data analysis in research tools

Positive Friction: How You Can Use It to Create Better Experiences

data analysis in research tools

User Experience (UX) Surveys: The Ultimate Guide

data analysis in research tools

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this article , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this article.

New to UX Design? We’re giving you a free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

New to UX Design? We’re Giving You a Free ebook!

Enago Academy

Effective Use of Statistics in Research – Methods and Tools for Data Analysis

' src=

Remember that impending feeling you get when you are asked to analyze your data! Now that you have all the required raw data, you need to statistically prove your hypothesis. Representing your numerical data as part of statistics in research will also help in breaking the stereotype of being a biology student who can’t do math.

Statistical methods are essential for scientific research. In fact, statistical methods dominate the scientific research as they include planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of research findings. Furthermore, the results acquired from research project are meaningless raw data unless analyzed with statistical tools. Therefore, determining statistics in research is of utmost necessity to justify research findings. In this article, we will discuss how using statistical methods for biology could help draw meaningful conclusion to analyze biological studies.

Table of Contents

Role of Statistics in Biological Research

Statistics is a branch of science that deals with collection, organization and analysis of data from the sample to the whole population. Moreover, it aids in designing a study more meticulously and also give a logical reasoning in concluding the hypothesis. Furthermore, biology study focuses on study of living organisms and their complex living pathways, which are very dynamic and cannot be explained with logical reasoning. However, statistics is more complex a field of study that defines and explains study patterns based on the sample sizes used. To be precise, statistics provides a trend in the conducted study.

Biological researchers often disregard the use of statistics in their research planning, and mainly use statistical tools at the end of their experiment. Therefore, giving rise to a complicated set of results which are not easily analyzed from statistical tools in research. Statistics in research can help a researcher approach the study in a stepwise manner, wherein the statistical analysis in research follows –

1. Establishing a Sample Size

Usually, a biological experiment starts with choosing samples and selecting the right number of repetitive experiments. Statistics in research deals with basics in statistics that provides statistical randomness and law of using large samples. Statistics teaches how choosing a sample size from a random large pool of sample helps extrapolate statistical findings and reduce experimental bias and errors.

2. Testing of Hypothesis

When conducting a statistical study with large sample pool, biological researchers must make sure that a conclusion is statistically significant. To achieve this, a researcher must create a hypothesis before examining the distribution of data. Furthermore, statistics in research helps interpret the data clustered near the mean of distributed data or spread across the distribution. These trends help analyze the sample and signify the hypothesis.

3. Data Interpretation Through Analysis

When dealing with large data, statistics in research assist in data analysis. This helps researchers to draw an effective conclusion from their experiment and observations. Concluding the study manually or from visual observation may give erroneous results; therefore, thorough statistical analysis will take into consideration all the other statistical measures and variance in the sample to provide a detailed interpretation of the data. Therefore, researchers produce a detailed and important data to support the conclusion.

Types of Statistical Research Methods That Aid in Data Analysis

statistics in research

Statistical analysis is the process of analyzing samples of data into patterns or trends that help researchers anticipate situations and make appropriate research conclusions. Based on the type of data, statistical analyses are of the following type:

1. Descriptive Analysis

The descriptive statistical analysis allows organizing and summarizing the large data into graphs and tables . Descriptive analysis involves various processes such as tabulation, measure of central tendency, measure of dispersion or variance, skewness measurements etc.

2. Inferential Analysis

The inferential statistical analysis allows to extrapolate the data acquired from a small sample size to the complete population. This analysis helps draw conclusions and make decisions about the whole population on the basis of sample data. It is a highly recommended statistical method for research projects that work with smaller sample size and meaning to extrapolate conclusion for large population.

3. Predictive Analysis

Predictive analysis is used to make a prediction of future events. This analysis is approached by marketing companies, insurance organizations, online service providers, data-driven marketing, and financial corporations.

4. Prescriptive Analysis

Prescriptive analysis examines data to find out what can be done next. It is widely used in business analysis for finding out the best possible outcome for a situation. It is nearly related to descriptive and predictive analysis. However, prescriptive analysis deals with giving appropriate suggestions among the available preferences.

5. Exploratory Data Analysis

EDA is generally the first step of the data analysis process that is conducted before performing any other statistical analysis technique. It completely focuses on analyzing patterns in the data to recognize potential relationships. EDA is used to discover unknown associations within data, inspect missing data from collected data and obtain maximum insights.

6. Causal Analysis

Causal analysis assists in understanding and determining the reasons behind “why” things happen in a certain way, as they appear. This analysis helps identify root cause of failures or simply find the basic reason why something could happen. For example, causal analysis is used to understand what will happen to the provided variable if another variable changes.

7. Mechanistic Analysis

This is a least common type of statistical analysis. The mechanistic analysis is used in the process of big data analytics and biological science. It uses the concept of understanding individual changes in variables that cause changes in other variables correspondingly while excluding external influences.

Important Statistical Tools In Research

Researchers in the biological field find statistical analysis in research as the scariest aspect of completing research. However, statistical tools in research can help researchers understand what to do with data and how to interpret the results, making this process as easy as possible.

1. Statistical Package for Social Science (SPSS)

It is a widely used software package for human behavior research. SPSS can compile descriptive statistics, as well as graphical depictions of result. Moreover, it includes the option to create scripts that automate analysis or carry out more advanced statistical processing.

2. R Foundation for Statistical Computing

This software package is used among human behavior research and other fields. R is a powerful tool and has a steep learning curve. However, it requires a certain level of coding. Furthermore, it comes with an active community that is engaged in building and enhancing the software and the associated plugins.

3. MATLAB (The Mathworks)

It is an analytical platform and a programming language. Researchers and engineers use this software and create their own code and help answer their research question. While MatLab can be a difficult tool to use for novices, it offers flexibility in terms of what the researcher needs.

4. Microsoft Excel

Not the best solution for statistical analysis in research, but MS Excel offers wide variety of tools for data visualization and simple statistics. It is easy to generate summary and customizable graphs and figures. MS Excel is the most accessible option for those wanting to start with statistics.

5. Statistical Analysis Software (SAS)

It is a statistical platform used in business, healthcare, and human behavior research alike. It can carry out advanced analyzes and produce publication-worthy figures, tables and charts .

6. GraphPad Prism

It is a premium software that is primarily used among biology researchers. But, it offers a range of variety to be used in various other fields. Similar to SPSS, GraphPad gives scripting option to automate analyses to carry out complex statistical calculations.

This software offers basic as well as advanced statistical tools for data analysis. However, similar to GraphPad and SPSS, minitab needs command over coding and can offer automated analyses.

Use of Statistical Tools In Research and Data Analysis

Statistical tools manage the large data. Many biological studies use large data to analyze the trends and patterns in studies. Therefore, using statistical tools becomes essential, as they manage the large data sets, making data processing more convenient.

Following these steps will help biological researchers to showcase the statistics in research in detail, and develop accurate hypothesis and use correct tools for it.

There are a range of statistical tools in research which can help researchers manage their research data and improve the outcome of their research by better interpretation of data. You could use statistics in research by understanding the research question, knowledge of statistics and your personal experience in coding.

Have you faced challenges while using statistics in research? How did you manage it? Did you use any of the statistical tools to help you with your research data? Do write to us or comment below!

Frequently Asked Questions

Statistics in research can help a researcher approach the study in a stepwise manner: 1. Establishing a sample size 2. Testing of hypothesis 3. Data interpretation through analysis

Statistical methods are essential for scientific research. In fact, statistical methods dominate the scientific research as they include planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of research findings. Furthermore, the results acquired from research project are meaningless raw data unless analyzed with statistical tools. Therefore, determining statistics in research is of utmost necessity to justify research findings.

Statistical tools in research can help researchers understand what to do with data and how to interpret the results, making this process as easy as possible. They can manage large data sets, making data processing more convenient. A great number of tools are available to carry out statistical analysis of data like SPSS, SAS (Statistical Analysis Software), and Minitab.

' src=

nice article to read

Holistic but delineating. A very good read.

Rate this article Cancel Reply

Your email address will not be published.

data analysis in research tools

Enago Academy's Most Popular Articles

Research Interviews for Data Collection

  • Reporting Research

Research Interviews: An effective and insightful way of data collection

Research interviews play a pivotal role in collecting data for various academic, scientific, and professional…

Planning Your Data Collection

Planning Your Data Collection: Designing methods for effective research

Planning your research is very important to obtain desirable results. In research, the relevance of…

best plagiarism checker

  • Language & Grammar

Best Plagiarism Checker Tool for Researchers — Top 4 to choose from!

While common writing issues like language enhancement, punctuation errors, grammatical errors, etc. can be dealt…

Year

  • Industry News
  • Publishing News

2022 in a Nutshell — Reminiscing the year when opportunities were seized and feats were achieved!

It’s beginning to look a lot like success! Some of the greatest opportunities to research…

data analysis in research tools

  • Manuscript Preparation
  • Publishing Research

Qualitative Vs. Quantitative Research — A step-wise guide to conduct research

A research study includes the collection and analysis of data. In quantitative research, the data…

2022 in a Nutshell — Reminiscing the year when opportunities were seized and feats…

data analysis in research tools

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

data analysis in research tools

What should universities' stance be on AI tools in research and academic writing?

PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

data analysis techniques in research

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

Data Analytics Course

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language:

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

  • Best Courses For Data Analytics: Top 10 Courses For Your Career in Trend

best courses for data analytics

Best courses for data analytics: If you are looking for the best courses for data analytics, then go through this…

  • Why is Data Analytics Skills Important?

data analytics skills

Data analytics skills are important for candidates to stand out from other candidates during a job interview and better their…

  • Which Course is Best for Business Analyst? (Business Analysts Online Courses)

business analysts online courses

Many reputed platforms and institutions offer online certification courses which can help you land job offers in relevant companies. In…

right adv

Related Articles

  • What is Data Analytics in Database?
  • Finance Data Analysis: What is a Financial Data Analysis?
  • What are Data Analysis Tools?
  • Big Data: What Do You Mean By Big Data?
  • Top 20 Big Data Tools Used By Professionals
  • 10 Most Popular Big Data Analytics Tools
  • Top Best Big Data Analytics Classes 2024

bottom banner

A data analyst in side profile, looking at a laptop screen

The 7 Most Useful Data Analysis Methods and Techniques

data analysis in research tools

Data analytics is the process of analyzing raw data to draw out meaningful insights. These insights are then used to determine the best course of action.

When is the best time to roll out that marketing campaign? Is the current team structure as effective as it could be? Which customer segments are most likely to purchase your new product?

Ultimately, data analytics is a crucial driver of any successful business strategy. But how do data analysts actually turn raw data into something useful? There are a range of methods and techniques that data analysts use depending on the type of data in question and the kinds of insights they want to uncover.

You can get a hands-on introduction to data analytics in this free short course .

In this post, we’ll explore some of the most useful data analysis techniques. By the end, you’ll have a much clearer idea of how you can transform meaningless data into business intelligence. We’ll cover:

  • What is data analysis and why is it important?
  • What is the difference between qualitative and quantitative data?
  • Regression analysis
  • Monte Carlo simulation
  • Factor analysis
  • Cohort analysis
  • Cluster analysis
  • Time series analysis
  • Sentiment analysis
  • The data analysis process
  • The best tools for data analysis
  •  Key takeaways

The first six methods listed are used for quantitative data , while the last technique applies to qualitative data. We briefly explain the difference between quantitative and qualitative data in section two, but if you want to skip straight to a particular analysis technique, just use the clickable menu.

1. What is data analysis and why is it important?

Data analysis is, put simply, the process of discovering useful information by evaluating data. This is done through a process of inspecting, cleaning, transforming, and modeling data using analytical and statistical tools, which we will explore in detail further along in this article.

Why is data analysis important? Analyzing data effectively helps organizations make business decisions. Nowadays, data is collected by businesses constantly: through surveys, online tracking, online marketing analytics, collected subscription and registration data (think newsletters), social media monitoring, among other methods.

These data will appear as different structures, including—but not limited to—the following:

The concept of big data —data that is so large, fast, or complex, that it is difficult or impossible to process using traditional methods—gained momentum in the early 2000s. Then, Doug Laney, an industry analyst, articulated what is now known as the mainstream definition of big data as the three Vs: volume, velocity, and variety. 

  • Volume: As mentioned earlier, organizations are collecting data constantly. In the not-too-distant past it would have been a real issue to store, but nowadays storage is cheap and takes up little space.
  • Velocity: Received data needs to be handled in a timely manner. With the growth of the Internet of Things, this can mean these data are coming in constantly, and at an unprecedented speed.
  • Variety: The data being collected and stored by organizations comes in many forms, ranging from structured data—that is, more traditional, numerical data—to unstructured data—think emails, videos, audio, and so on. We’ll cover structured and unstructured data a little further on.

This is a form of data that provides information about other data, such as an image. In everyday life you’ll find this by, for example, right-clicking on a file in a folder and selecting “Get Info”, which will show you information such as file size and kind, date of creation, and so on.

Real-time data

This is data that is presented as soon as it is acquired. A good example of this is a stock market ticket, which provides information on the most-active stocks in real time.

Machine data

This is data that is produced wholly by machines, without human instruction. An example of this could be call logs automatically generated by your smartphone.

Quantitative and qualitative data

Quantitative data—otherwise known as structured data— may appear as a “traditional” database—that is, with rows and columns. Qualitative data—otherwise known as unstructured data—are the other types of data that don’t fit into rows and columns, which can include text, images, videos and more. We’ll discuss this further in the next section.

2. What is the difference between quantitative and qualitative data?

How you analyze your data depends on the type of data you’re dealing with— quantitative or qualitative . So what’s the difference?

Quantitative data is anything measurable , comprising specific quantities and numbers. Some examples of quantitative data include sales figures, email click-through rates, number of website visitors, and percentage revenue increase. Quantitative data analysis techniques focus on the statistical, mathematical, or numerical analysis of (usually large) datasets. This includes the manipulation of statistical data using computational techniques and algorithms. Quantitative analysis techniques are often used to explain certain phenomena or to make predictions.

Qualitative data cannot be measured objectively , and is therefore open to more subjective interpretation. Some examples of qualitative data include comments left in response to a survey question, things people have said during interviews, tweets and other social media posts, and the text included in product reviews. With qualitative data analysis, the focus is on making sense of unstructured data (such as written text, or transcripts of spoken conversations). Often, qualitative analysis will organize the data into themes—a process which, fortunately, can be automated.

Data analysts work with both quantitative and qualitative data , so it’s important to be familiar with a variety of analysis methods. Let’s take a look at some of the most useful techniques now.

3. Data analysis techniques

Now we’re familiar with some of the different types of data, let’s focus on the topic at hand: different methods for analyzing data. 

a. Regression analysis

Regression analysis is used to estimate the relationship between a set of variables. When conducting any type of regression analysis , you’re looking to see if there’s a correlation between a dependent variable (that’s the variable or outcome you want to measure or predict) and any number of independent variables (factors which may have an impact on the dependent variable). The aim of regression analysis is to estimate how one or more variables might impact the dependent variable, in order to identify trends and patterns. This is especially useful for making predictions and forecasting future trends.

Let’s imagine you work for an ecommerce company and you want to examine the relationship between: (a) how much money is spent on social media marketing, and (b) sales revenue. In this case, sales revenue is your dependent variable—it’s the factor you’re most interested in predicting and boosting. Social media spend is your independent variable; you want to determine whether or not it has an impact on sales and, ultimately, whether it’s worth increasing, decreasing, or keeping the same. Using regression analysis, you’d be able to see if there’s a relationship between the two variables. A positive correlation would imply that the more you spend on social media marketing, the more sales revenue you make. No correlation at all might suggest that social media marketing has no bearing on your sales. Understanding the relationship between these two variables would help you to make informed decisions about the social media budget going forward. However: It’s important to note that, on their own, regressions can only be used to determine whether or not there is a relationship between a set of variables—they don’t tell you anything about cause and effect. So, while a positive correlation between social media spend and sales revenue may suggest that one impacts the other, it’s impossible to draw definitive conclusions based on this analysis alone.

There are many different types of regression analysis, and the model you use depends on the type of data you have for the dependent variable. For example, your dependent variable might be continuous (i.e. something that can be measured on a continuous scale, such as sales revenue in USD), in which case you’d use a different type of regression analysis than if your dependent variable was categorical in nature (i.e. comprising values that can be categorised into a number of distinct groups based on a certain characteristic, such as customer location by continent). You can learn more about different types of dependent variables and how to choose the right regression analysis in this guide .

Regression analysis in action: Investigating the relationship between clothing brand Benetton’s advertising expenditure and sales

b. Monte Carlo simulation

When making decisions or taking certain actions, there are a range of different possible outcomes. If you take the bus, you might get stuck in traffic. If you walk, you might get caught in the rain or bump into your chatty neighbor, potentially delaying your journey. In everyday life, we tend to briefly weigh up the pros and cons before deciding which action to take; however, when the stakes are high, it’s essential to calculate, as thoroughly and accurately as possible, all the potential risks and rewards.

Monte Carlo simulation, otherwise known as the Monte Carlo method, is a computerized technique used to generate models of possible outcomes and their probability distributions. It essentially considers a range of possible outcomes and then calculates how likely it is that each particular outcome will be realized. The Monte Carlo method is used by data analysts to conduct advanced risk analysis, allowing them to better forecast what might happen in the future and make decisions accordingly.

So how does Monte Carlo simulation work, and what can it tell us? To run a Monte Carlo simulation, you’ll start with a mathematical model of your data—such as a spreadsheet. Within your spreadsheet, you’ll have one or several outputs that you’re interested in; profit, for example, or number of sales. You’ll also have a number of inputs; these are variables that may impact your output variable. If you’re looking at profit, relevant inputs might include the number of sales, total marketing spend, and employee salaries. If you knew the exact, definitive values of all your input variables, you’d quite easily be able to calculate what profit you’d be left with at the end. However, when these values are uncertain, a Monte Carlo simulation enables you to calculate all the possible options and their probabilities. What will your profit be if you make 100,000 sales and hire five new employees on a salary of $50,000 each? What is the likelihood of this outcome? What will your profit be if you only make 12,000 sales and hire five new employees? And so on. It does this by replacing all uncertain values with functions which generate random samples from distributions determined by you, and then running a series of calculations and recalculations to produce models of all the possible outcomes and their probability distributions. The Monte Carlo method is one of the most popular techniques for calculating the effect of unpredictable variables on a specific output variable, making it ideal for risk analysis.

Monte Carlo simulation in action: A case study using Monte Carlo simulation for risk analysis

 c. Factor analysis

Factor analysis is a technique used to reduce a large number of variables to a smaller number of factors. It works on the basis that multiple separate, observable variables correlate with each other because they are all associated with an underlying construct. This is useful not only because it condenses large datasets into smaller, more manageable samples, but also because it helps to uncover hidden patterns. This allows you to explore concepts that cannot be easily measured or observed—such as wealth, happiness, fitness, or, for a more business-relevant example, customer loyalty and satisfaction.

Let’s imagine you want to get to know your customers better, so you send out a rather long survey comprising one hundred questions. Some of the questions relate to how they feel about your company and product; for example, “Would you recommend us to a friend?” and “How would you rate the overall customer experience?” Other questions ask things like “What is your yearly household income?” and “How much are you willing to spend on skincare each month?”

Once your survey has been sent out and completed by lots of customers, you end up with a large dataset that essentially tells you one hundred different things about each customer (assuming each customer gives one hundred responses). Instead of looking at each of these responses (or variables) individually, you can use factor analysis to group them into factors that belong together—in other words, to relate them to a single underlying construct. In this example, factor analysis works by finding survey items that are strongly correlated. This is known as covariance . So, if there’s a strong positive correlation between household income and how much they’re willing to spend on skincare each month (i.e. as one increases, so does the other), these items may be grouped together. Together with other variables (survey responses), you may find that they can be reduced to a single factor such as “consumer purchasing power”. Likewise, if a customer experience rating of 10/10 correlates strongly with “yes” responses regarding how likely they are to recommend your product to a friend, these items may be reduced to a single factor such as “customer satisfaction”.

In the end, you have a smaller number of factors rather than hundreds of individual variables. These factors are then taken forward for further analysis, allowing you to learn more about your customers (or any other area you’re interested in exploring).

Factor analysis in action: Using factor analysis to explore customer behavior patterns in Tehran

d. Cohort analysis

Cohort analysis is a data analytics technique that groups users based on a shared characteristic , such as the date they signed up for a service or the product they purchased. Once users are grouped into cohorts, analysts can track their behavior over time to identify trends and patterns.

So what does this mean and why is it useful? Let’s break down the above definition further. A cohort is a group of people who share a common characteristic (or action) during a given time period. Students who enrolled at university in 2020 may be referred to as the 2020 cohort. Customers who purchased something from your online store via the app in the month of December may also be considered a cohort.

With cohort analysis, you’re dividing your customers or users into groups and looking at how these groups behave over time. So, rather than looking at a single, isolated snapshot of all your customers at a given moment in time (with each customer at a different point in their journey), you’re examining your customers’ behavior in the context of the customer lifecycle. As a result, you can start to identify patterns of behavior at various points in the customer journey—say, from their first ever visit to your website, through to email newsletter sign-up, to their first purchase, and so on. As such, cohort analysis is dynamic, allowing you to uncover valuable insights about the customer lifecycle.

This is useful because it allows companies to tailor their service to specific customer segments (or cohorts). Let’s imagine you run a 50% discount campaign in order to attract potential new customers to your website. Once you’ve attracted a group of new customers (a cohort), you’ll want to track whether they actually buy anything and, if they do, whether or not (and how frequently) they make a repeat purchase. With these insights, you’ll start to gain a much better understanding of when this particular cohort might benefit from another discount offer or retargeting ads on social media, for example. Ultimately, cohort analysis allows companies to optimize their service offerings (and marketing) to provide a more targeted, personalized experience. You can learn more about how to run cohort analysis using Google Analytics .

Cohort analysis in action: How Ticketmaster used cohort analysis to boost revenue

e. Cluster analysis

Cluster analysis is an exploratory technique that seeks to identify structures within a dataset. The goal of cluster analysis is to sort different data points into groups (or clusters) that are internally homogeneous and externally heterogeneous. This means that data points within a cluster are similar to each other, and dissimilar to data points in another cluster. Clustering is used to gain insight into how data is distributed in a given dataset, or as a preprocessing step for other algorithms.

There are many real-world applications of cluster analysis. In marketing, cluster analysis is commonly used to group a large customer base into distinct segments, allowing for a more targeted approach to advertising and communication. Insurance firms might use cluster analysis to investigate why certain locations are associated with a high number of insurance claims. Another common application is in geology, where experts will use cluster analysis to evaluate which cities are at greatest risk of earthquakes (and thus try to mitigate the risk with protective measures).

It’s important to note that, while cluster analysis may reveal structures within your data, it won’t explain why those structures exist. With that in mind, cluster analysis is a useful starting point for understanding your data and informing further analysis. Clustering algorithms are also used in machine learning—you can learn more about clustering in machine learning in our guide .

Cluster analysis in action: Using cluster analysis for customer segmentation—a telecoms case study example

f. Time series analysis

Time series analysis is a statistical technique used to identify trends and cycles over time. Time series data is a sequence of data points which measure the same variable at different points in time (for example, weekly sales figures or monthly email sign-ups). By looking at time-related trends, analysts are able to forecast how the variable of interest may fluctuate in the future.

When conducting time series analysis, the main patterns you’ll be looking out for in your data are:

  • Trends: Stable, linear increases or decreases over an extended time period.
  • Seasonality: Predictable fluctuations in the data due to seasonal factors over a short period of time. For example, you might see a peak in swimwear sales in summer around the same time every year.
  • Cyclic patterns: Unpredictable cycles where the data fluctuates. Cyclical trends are not due to seasonality, but rather, may occur as a result of economic or industry-related conditions.

As you can imagine, the ability to make informed predictions about the future has immense value for business. Time series analysis and forecasting is used across a variety of industries, most commonly for stock market analysis, economic forecasting, and sales forecasting. There are different types of time series models depending on the data you’re using and the outcomes you want to predict. These models are typically classified into three broad types: the autoregressive (AR) models, the integrated (I) models, and the moving average (MA) models. For an in-depth look at time series analysis, refer to our guide .

Time series analysis in action: Developing a time series model to predict jute yarn demand in Bangladesh

g. Sentiment analysis

When you think of data, your mind probably automatically goes to numbers and spreadsheets.

Many companies overlook the value of qualitative data, but in reality, there are untold insights to be gained from what people (especially customers) write and say about you. So how do you go about analyzing textual data?

One highly useful qualitative technique is sentiment analysis , a technique which belongs to the broader category of text analysis —the (usually automated) process of sorting and understanding textual data.

With sentiment analysis, the goal is to interpret and classify the emotions conveyed within textual data. From a business perspective, this allows you to ascertain how your customers feel about various aspects of your brand, product, or service.

There are several different types of sentiment analysis models, each with a slightly different focus. The three main types include:

Fine-grained sentiment analysis

If you want to focus on opinion polarity (i.e. positive, neutral, or negative) in depth, fine-grained sentiment analysis will allow you to do so.

For example, if you wanted to interpret star ratings given by customers, you might use fine-grained sentiment analysis to categorize the various ratings along a scale ranging from very positive to very negative.

Emotion detection

This model often uses complex machine learning algorithms to pick out various emotions from your textual data.

You might use an emotion detection model to identify words associated with happiness, anger, frustration, and excitement, giving you insight into how your customers feel when writing about you or your product on, say, a product review site.

Aspect-based sentiment analysis

This type of analysis allows you to identify what specific aspects the emotions or opinions relate to, such as a certain product feature or a new ad campaign.

If a customer writes that they “find the new Instagram advert so annoying”, your model should detect not only a negative sentiment, but also the object towards which it’s directed.

In a nutshell, sentiment analysis uses various Natural Language Processing (NLP) algorithms and systems which are trained to associate certain inputs (for example, certain words) with certain outputs.

For example, the input “annoying” would be recognized and tagged as “negative”. Sentiment analysis is crucial to understanding how your customers feel about you and your products, for identifying areas for improvement, and even for averting PR disasters in real-time!

Sentiment analysis in action: 5 Real-world sentiment analysis case studies

4. The data analysis process

In order to gain meaningful insights from data, data analysts will perform a rigorous step-by-step process. We go over this in detail in our step by step guide to the data analysis process —but, to briefly summarize, the data analysis process generally consists of the following phases:

Defining the question

The first step for any data analyst will be to define the objective of the analysis, sometimes called a ‘problem statement’. Essentially, you’re asking a question with regards to a business problem you’re trying to solve. Once you’ve defined this, you’ll then need to determine which data sources will help you answer this question.

Collecting the data

Now that you’ve defined your objective, the next step will be to set up a strategy for collecting and aggregating the appropriate data. Will you be using quantitative (numeric) or qualitative (descriptive) data? Do these data fit into first-party, second-party, or third-party data?

Learn more: Quantitative vs. Qualitative Data: What’s the Difference? 

Cleaning the data

Unfortunately, your collected data isn’t automatically ready for analysis—you’ll have to clean it first. As a data analyst, this phase of the process will take up the most time. During the data cleaning process, you will likely be:

  • Removing major errors, duplicates, and outliers
  • Removing unwanted data points
  • Structuring the data—that is, fixing typos, layout issues, etc.
  • Filling in major gaps in data

Analyzing the data

Now that we’ve finished cleaning the data, it’s time to analyze it! Many analysis methods have already been described in this article, and it’s up to you to decide which one will best suit the assigned objective. It may fall under one of the following categories:

  • Descriptive analysis , which identifies what has already happened
  • Diagnostic analysis , which focuses on understanding why something has happened
  • Predictive analysis , which identifies future trends based on historical data
  • Prescriptive analysis , which allows you to make recommendations for the future

Visualizing and sharing your findings

We’re almost at the end of the road! Analyses have been made, insights have been gleaned—all that remains to be done is to share this information with others. This is usually done with a data visualization tool, such as Google Charts, or Tableau.

Learn more: 13 of the Most Common Types of Data Visualization

To sum up the process, Will’s explained it all excellently in the following video:

5. The best tools for data analysis

As you can imagine, every phase of the data analysis process requires the data analyst to have a variety of tools under their belt that assist in gaining valuable insights from data. We cover these tools in greater detail in this article , but, in summary, here’s our best-of-the-best list, with links to each product:

The top 9 tools for data analysts

  • Microsoft Excel
  • Jupyter Notebook
  • Apache Spark
  • Microsoft Power BI

6. Key takeaways and further reading

As you can see, there are many different data analysis techniques at your disposal. In order to turn your raw data into actionable insights, it’s important to consider what kind of data you have (is it qualitative or quantitative?) as well as the kinds of insights that will be useful within the given context. In this post, we’ve introduced seven of the most useful data analysis techniques—but there are many more out there to be discovered!

So what now? If you haven’t already, we recommend reading the case studies for each analysis technique discussed in this post (you’ll find a link at the end of each section). For a more hands-on introduction to the kinds of methods and techniques that data analysts use, try out this free introductory data analytics short course. In the meantime, you might also want to read the following:

  • The Best Online Data Analytics Courses for 2024
  • What Is Time Series Data and How Is It Analyzed?
  • What is Spatial Analysis?

Educate 360

  • Resources / Blog

The Power of Data Analysis in Research

The Power of Data Analysis in Research

For as long as humans have existed, we've been conducting research. We do it to solve problems, advance technology, understand diseases and develop treatments, inform policymaking, and, most fundamentally, expand human knowledge. At the heart of all research is data. Data, whether observations, statistics, surveys, or interviews, serves as the building blocks for all research.

The more we research, the more data we collect, and the more thorough our analysis will be. Data analysis illuminates patterns, trends, and relationships within the data and plays a pivotal role in shaping the outcomes and conclusions of research. In the sections below, we'll look at different data analysis methods, popular tools researchers use today, and how to make the most of your data.

On this page:

Understanding Data Analysis

The data analysis process, data analysis methods, tools and software for data analysis.

  • Choosing the Right Tools for Your Research
  • Applications for Data Analysis in Research

Challenges in Data Analysis

Future trends in data analysis, getting started with data analysis.

Data analysis is the most crucial part of any research. It allows researchers to understand the information gathered, test hypotheses, and draw conclusions. Analysis is the process of interpreting raw data through logical reasoning and applying various statistical and analytical techniques to understand patterns, relationships, and trends within the data.

Researchers must follow a methodical data analysis approach to ensure accurate results. Skipping steps can skew the outcomes and leave research findings vulnerable to scrutiny.

  • Plan and Design the Analysis: Determine the problem you want to solve before analyzing data. Defining the objectives of the analysis is crucial because it establishes the research direction and identifies the data you need to use to solve the problem.
  • Collecting and Preparing Data: Once the proper data is identified to use, it must be cleaned by checking for missing, inconsistent, and outlier data, ensuring accurate results from the analysis.
  • Analyzing Data: Once cleaned, apply statistical and mathematical to find patterns, relationships, or trends in the data.
  • Interpreting Data: After analysis, interpret the results and report actionable insights in ways non-data analysts can easily understand, e.g., using graphs or tables.

There are so many different reasons to conduct research and so many types of data that there is no one-size-fits-all approach to analysis. Instead, there are many methods, each with its unique purpose.

As digital technology has advanced, the number of data analysis tools available to researchers has exploded. Some of the most well-known data analysis tools include:

Choosing the Right Tools For Your Research.

There is no universal data analytics tool that will address all your needs. Everyone who works with data at some point needs secondary tools and plugins. Here are some things to consider when looking for data analysis software:

  • What is your budget?
  • Is there a viable free version, or do you need a subscription?
  • What is your technical expertise?
  • What is the scalability and flexibility?
  • Can the tool integrate with your existing data sources?
  • Can it handle the volume of data you’re working with?
  • Do you require a tool with modeling capabilities?

Applications of Data Analysis in Research

Data analysis is in high demand across industries, driving innovation that improves an organization's business outcomes and the lives of employees and customers. To understand how data analysis applies to different types of research, let's look at some real-world examples:

  • Environmental studies

Example #1: Healthcare

Data analysis in the medical field has dramatically improved healthcare outcomes. For example, epidemiologists investigate patterns and determinants of disease occurrence and distribution within populations. Through data analysis, they've made great strides in identifying associations between lifestyle factors (e.g., smoking, diet, and physical activity) and chronic diseases like cardiovascular disease, diabetes, and cancer.

Example #2: Finance

Data analysis plays a central role in assessing and managing financial risks. Analyzing historical data and using techniques like value-at-risk (VaR) and stress testing allows risk managers to quantify the potential impact of adverse events on investment portfolios and implement risk mitigation strategies.

Example #3: Environmental studies

The world's leading climate scientists use data analysis in their research. They analyze large datasets of temperature records, atmospheric CO2 concentrations, sea level measurements, and other climate variables to detect trends and patterns over time. This climate data allows researchers to understand global warming better, assess its impacts on ecosystems and human societies, and inform climate policy decisions.

The insights you gain from analyzing data are only as good as the data they are based on. Knowing the common challenges associated with data analytics is essential for data analysts, both new and experienced. Some of the common challenges data analysts face are:

  • Setting clear hypotheses and goals
  • Understanding the data being analyzed
  • Knowing the correct source data to use
  • Determining the integrity and trustworthiness of the source data
  • Maintaining the privacy and ethical use of data
  • Communicating data insights using easily understood methods
  • Remaining objective throughout the analysis

Any of these challenges can lead to incorrect analysis, impacting organizational decision-making. There are several ways in which data analysts can overcome these challenges , including seeking advice from fellow data analysts or taking self-paced or online training. By overcoming these data analysis challenges, data analysts can ensure they provide correct insights to improve an organization’s business outcomes.

Many future trends will impact data analysis, especially from a technology and regulatory standpoint. These trends will allow data analysts to work with more data that can provide deeper business insights for organizations while ensuring that it is used ethically and remains private and secure. Some of the future trends that will impact data analysis include:

  • Artificial intelligence (AI) and machine learning (ML) are changing data analysis by automating complex data processing tasks. These tools can identify patterns in massive data sets and provide highly accurate insights and predictions.
  • Regulation : The European Union's General Data Protection Regulation (GDPR) went into effect in 2018, heralding a new era for data privacy. It levies harsh fines against any person or organization that violates its privacy and security standards, aiming to protect consumer data. As the volume of global data increases, other international governments will follow suit. 
  • Quantum Computing : As organizations generate more significant amounts of data, the need for computers that can store it grows. Demand for more powerful computers to process vast amounts of data is rising. Quantum computing may be the answer, with its ability to store vast amounts of information using qubits and much less energy.
  • Data Democratization : As analytics platforms evolve to become more powerful and intuitive, it will allow anyone, regardless of data analysis experience, to harness and analyze data. Self-service analytics significantly reduces the time and effort required to retrieve insights from data so that data analysts can focus on more specialized work.

The typical starting point for a career in data analysis is through collegiate programs such as computer science, mathematics, and programming. However, you don't have to attend college to become a data analyst. Professional training courses on data analysis are a viable option if you want to start your data analysis career. For example, New Horizons offers online training courses in Data and Analytics , which fall into three categories:

  • No-Code is appropriate for individuals who want to improve their data analytics skills without learning a programming language.
  • Low-Code: Appropriate for those with limited programming skills or data analysis experience.
  • Traditional Data & Analytics: Appropriate for those with programming and data analysis experience looking for courses for specific job roles.

New Horizons offers several Python training courses , as well as vendor-specific data analytics courses, such as:

  • A WS Data Analytics Bootcamp : Four one-day AWS courses, including Building Data Lakes on AWS, Building Batch Data Analytics Solutions on AWS, Building Data Analytics Solutions Using Amazon Redshift, and Building Streaming Data Analytics Solutions on AWS.
  • Microsoft Power Platform : Our subject matter experts show you how to do more with your data, including manipulating, visualizing, automating, and analyzing it using PowerBI, PowerApps, Power Automate, and Power Virtual Agents.

For beginners, completing small projects using public datasets can provide a great way to gain practical data analysis experience. Platforms like Kaggle, GitHub, and Data.gov offer publicly available datasets, providing a great way to apply theoretical knowledge and develop technical skills.

Organizations will always look for ways to improve and innovate; data analysts can help define and solve problems to help the organization move forward. By pinpointing patterns and extracting actionable insights from large quantities of data, data analysts can help guide organizations toward more innovative and customer-centric solutions. As data analytics tools evolve, they will allow even those with little to no data analysis experience to work with data and make better decisions that will help their organization reach and surpass its goals.

  • Expand/Collapse Microsoft Office 38 RSS
  • Expand/Collapse Training Trends 106 RSS
  • Expand/Collapse CyberSecurity 58 RSS
  • Expand/Collapse DevOps 2 RSS
  • Expand/Collapse Modern Workplace 32 RSS
  • Expand/Collapse Cloud 14 RSS
  • Expand/Collapse Programming 9 RSS
  • Expand/Collapse Artificial Intelligence (AI) 4 RSS
  • Expand/Collapse ITIL 17 RSS
  • Expand/Collapse Data & Analytics 21 RSS
  • Expand/Collapse Business Analyst 12 RSS
  • Expand/Collapse Training By Job Role 1 RSS
  • Expand/Collapse Leadership and Professional Development 14 RSS
  • Expand/Collapse Managed Learning Services 3 RSS
  • Expand/Collapse Design & Multi-Media 1 RSS
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

data analysis in research tools

Home Market Research

Exploring Top 15 Data Analysis Tools to Elevate Your Insights

data analysis tools

Data is everywhere, and understanding it can be a superpower. Imagine having a friend who helps you make sense of all the information around you. Well, that’s what data analysis tools do!

These tools act as your friendly assistants, making the complex world of data understandable and actionable. Whether you’re a seasoned data scientist crunching numbers for insights, a business analyst making strategic decisions, or someone new to the data game, these top 15 data analysis tools bring diverse features to the table.

From creating visual stories to unraveling patterns in data, these tools empower you to gain valuable insights. Picture them as your digital sidekicks, simplifying data and turning it into actionable intelligence. 

So, whether you’re thinking of boosting business strategies or just curious about the stories your data can tell, these tools are here to guide you through the fascinating journey of data exploration. Let’s dive into the details and discover how each tool can enhance your analytical superpowers!

What is Data Analysis?

Data analysis is the process of inspecting, cleaning, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It involves a variety of techniques and methods to uncover patterns, trends, correlations, and insights from raw data.

It is widely used in various fields, including business, finance, healthcare, science, and social sciences, to make informed decisions and drive improvements based on evidence and insights derived from data. It plays a crucial role in extracting valuable knowledge from the vast amounts of data generated in today’s digital age.

What are Data Analysis Tools?

Data analysis tools refer to software and applications designed to collect, clean, process, analyze, and visualize data. These tools help individuals and organizations make informed decisions by extracting meaningful insights from raw data. Data analysis tools can vary widely in their features, capabilities, and complexity.

The choice of a data analysis tool depends on factors such as the data’s nature, the analysis’s complexity, user expertise, and specific requirements. Analysts and data scientists often use a combination of tools to address different aspects of the data analysis workflow.

Why are Data Analysis Tools Important for Your Business?

Data analysis tools are essential for your business for several reasons, as they play a pivotal role in extracting valuable insights from your data. Here are some key reasons why data analysis tools are important for your business:

Informed Decision-Making

Data analysis tools serve as your compass in decision-making. By thoroughly examining historical data and current data, these tools provide a solid foundation for making choices that are rooted in evidence and data insights. This ensures that your decisions are well-informed, reducing reliance on intuition and increasing the likelihood of successful outcomes.

Competitive Advantage

Data analysis tools act as your strategic companion, uncovering market trends, deciphering customer preferences, and identifying industry benchmarks. This wealth of information enables your business to adapt proactively, capitalize on emerging opportunities, and maintain a competitive advantage over others in the market.

Efficient Operations

Data analysis tools are like efficiency boosters for business operations. By delving into internal data, they help pinpoint areas of inefficiency, streamline workflows, and optimize resource allocation. The result is a finely tuned operational machine that maximizes output while minimizing unnecessary costs and efforts.

Customer Insights

Understanding your customers is at the heart of successful business strategies. Data analysis tools offer a magnifying glass into customer behavior, preferences, and feedback. Armed with these insights, you can tailor your marketing strategies, personalize customer experiences, and ultimately enhance overall satisfaction. This deeper connection with your customer base can build loyalty and drive business growth.

Risk Management

Navigating the business landscape involves dealing with uncertainties and risks. Data analysis tools function as risk detectors. By proactively managing risks, your business is better positioned to weather challenges, seize opportunities, and maintain a resilient and adaptive stance in the market.

Types of Data Analytics Tools

A data analytics tool comes in various forms, each designed to serve specific needs within the data analysis process. Here are some common types of data analytics tools:

  • Statistical Analysis Tools: Conducting statistical analyses, hypothesis testing, and regression analysis to extract insights from data.
  • Data Visualization Tools: Creating visual representations of data through charts, graphs, and dashboards for easier interpretation.
  • Programming Languages: Writing custom code for data analysis, manipulation, and visualization. Libraries like Pandas and Matplotlib enhance functionality.
  • Database Management Systems (DBMS): Storing, managing, and retrieving structured data efficiently for analysis.
  • Business Intelligence (BI) Tools: Translating raw data into actionable insights through interactive dashboards and reports for strategic decision-making.
  • Text Analytics Tools: Extracting insights and patterns from textual data through techniques like sentiment analysis and language processing.
  • Big Data Tools: Processing and analyzing large volumes of structured and unstructured data in a distributed computing environment.
  • Data Wrangling Tools: Cleaning, transforming, and preparing raw data for analysis.

These tools cater to different stages of the data analysis process and offer diverse functionalities. Depending on the specific requirements of a data analysis task, analysts may choose a combination of these tools to achieve their objectives efficiently.

What are The Factors to Consider When Choosing a Data Analysis Tool?

Choosing a data analysis software requires careful consideration of your specific needs, the nature of your data, and your team’s skills. Here’s a step-by-step guide to help you make an informed decision:

Define Your Objectives

  • Clearly outline your goals and objectives for data analysis.
  • Identify the specific tasks and analyses you need to perform.

Understand Your Data

  • Consider the size, complexity, and format of your data.
  • Evaluate the types of data sources you’ll be working with (structured, unstructured, semi-structured).

Consider Your Technical Environment

  • Assess the compatibility of the tool with your existing systems and technologies.
  • Check if the tool supports your organization’s programming languages and frameworks.

Ease of Use

  • Evaluate the user-friendliness of the tool, especially if your team includes non-technical users.
  • Look for tools with intuitive interfaces and good documentation.

Scalability

  • Consider the scalability of the tool to handle growing datasets and increasing analysis complexity.
  • Check if the tool supports parallel processing and distributed computing.

Supported Analysis Techniques

  • Ensure the tool supports the statistical and machine learning techniques relevant to your analysis requirements.
  • Check for the availability of libraries and packages for advanced analytics.

Integration Capabilities

  • Assess how well the tool integrates with other tools and platforms in your data ecosystem.
  • Consider the ability to connect to different data sources.

Cost and Licensing

  • Evaluate the cost structure, including licensing fees, maintenance, and support costs.
  • Consider open-source options if budget constraints are a concern.

Community and Support

  • Check the user community and support resources for the tool.
  • Look for active forums, documentation, and the availability of training materials.

Top 15 Data Analysis Tools to Elevate Your Insights

Whether you’re an experienced data scientist or a business professional interested in unlocking the potential of data, the tools listed below shine as outstanding options to enhance your analytical pursuits. Let’s explore:

1. QuestionPro

QuestionPro is a versatile platform known for its survey and research capabilities. While traditionally recognized for its survey functionalities, it has expanded to offer basic data analysis tools. It also provides a user-friendly interface for users to analyze and visualize survey data.

How it Works:

QuestionPro simplifies the data analysis process by allowing users to create surveys, collect responses, and analyze the gathered data. The platform provides basic tools for generating reports and visualizations based on survey responses.

  • Survey customization options.
  • Real-time reporting features.
  • Integration capabilities.
  • Export data in various formats.
  • Rich visualizations.
  • Limited advanced analytics features.

QuestionPro provides a variety of pricing plans tailored to suit businesses of different sizes. Starting at $99 per user per month. The platform also offers custom pricing options for enterprise-level solutions. To allow users to explore its features before committing, QuestionPro offers a free trial.

Tableau is a powerhouse in data visualization and business intelligence. Renowned for its ability to turn complex datasets into interactive visualizations, it is a go-to tool for professionals seeking to make data-driven decisions.

Tableau connects to various data sources, allowing users to create interactive visualizations and dashboards. Its drag-and-drop interface makes it accessible, while its extensive range of visualization options caters to diverse analytical needs.

  • Excellent for data exploration and presentation.
  • Strong community and support.
  • Integrates with various data sources.
  • Cost may be a barrier for smaller organizations.

Tableau offers a monthly pricing plan at $75, providing users with access to its powerful data visualization and business intelligence tools.

3. Google Data Studio

Google Data Studio is a free and intuitive tool for creating interactive dashboards and reports. Developed by Google, it seamlessly integrates with other Google products and external data sources.

Google Data Studio enables users to connect to various data sources, design customizable reports and dashboards, and share insights with team members. Its drag-and-drop interface makes it easy for users to create visually appealing data presentations.

  • Free to use with basic features.
  • Seamless integration with Google products.
  • User-friendly drag-and-drop interface.
  • Easy sharing options.

4. Microsoft Power BI

Microsoft Power BI is a comprehensive business analytics tool that empowers users to visualize and share insights across organizations or embed them in applications and websites.

Power BI connects to various data sources, including Microsoft services. Users can create interactive reports and dashboards, share insights, and leverage AI-powered analytics for advanced data exploration.

  • Seamless integration with Microsoft products.
  • Robust analytics capabilities.
  • Scalable for enterprise use.
  • Extensive visualization options.
  • Licensing costs can be high.

Microsoft Power BI offers a customized pricing model. It allows businesses to tailor their investment based on specific needs and requirements.

5. Qlik Sense

Qlik Sense is a data analytics software and business intelligence platform known for its associative data modeling. It offers users flexibility in data exploration and visualization.

Qlik Sense allows users to load data from various sources, associate and visualize data without predefined queries, create interactive dashboards, and share insights for collaborative decision-making.

  • Associative data model for flexible exploration.
  • Powerful data visualization capabilities.
  • Collaborative features for team analysis.
  • Qlik DataMarket for external data integration.
  • Limited customization options for certain visual elements.

Qlik Sense employs a customized pricing model, allowing businesses to structure their investments according to their distinct analytical needs.

6. Zoho Analytics

Zoho Analytics is a cloud-based business intelligence and analytics platform designed to help users create reports and dashboards for informed decision-making.

Users can import data from various sources, build reports and dashboards using a drag-and-drop interface, analyze data with AI-powered insights, and collaborate with team members.

  • Extensive integration options.
  • AI-powered insights.
  • Collaboration and sharing features.
  • It may not be as feature-rich as some premium tools.
  • Zoho Analytics offers various pricing plans, starting from free for basic usage. Paid plans range from affordable options suitable for small businesses to more extensive plans for larger enterprises, providing flexibility based on organizational needs.

SAS (Statistical Analysis System) is a software suite known for advanced analytics, business intelligence, and data management. It offers powerful statistical analysis capabilities.

SAS allows users to import and manage data from various sources, perform advanced statistical analyses, generate reports and visualizations, and deploy models for predictive analytics.

  • Comprehensive statistical analysis capabilities.
  • Handles large datasets efficiently.
  • Advanced analytics and machine learning features.
  • Strong data security measures.
  • Extensive industry usage.
  • Limited integration options with certain data sources.
  • SAS pricing is often customized based on specific business needs, so organizations must contact SAS directly for a tailored quote.

8. Google Analytics

Google Analytics is a web analytics service that provides insights into website and app usage. While not a traditional data analysis tool, it is valuable for understanding user behavior.

By implementing tracking code on the website or app, users can collect data on user interactions, analyze user behavior through reports, and make data-driven decisions for website optimization.

  • Free basic version available.
  • Integrates with other Google products.
  • Real-time reporting.
  • Customizable reporting.
  • Limited to web and app analytics.
  • Google Analytics offers a free version with basic features. Advanced features are available through Google Analytics 360, with pricing based on user requirements.

Splunk is a powerful platform designed to search, monitor, and analyze machine-generated data. It is valuable for IT operations, security, and business analytics.

Users can ingest machine data from various sources, search and analyze data in real-time, create dashboards for monitoring and visualization, and gain insights into system performance and security.

  • Real-time data analysis and monitoring.
  • Scalable for large-scale data environments.
  • Powerful search and visualization capabilities.
  • App ecosystem for extended functionality.
  • Effective for IT and security analytics.
  • The GUI-based interface may require adaptation for certain users.
  • Splunk pricing varies based on factors such as data volume and features required. Organizations can contact Splunk for a personalized quote.

Looker is a business intelligence and data exploration platform that allows users to create and share reports and dashboards. It also provides a unified view of data across an organization.

Looker operates on a model-centric approach, where users define a semantic layer (LookML) to abstract data complexities. Users can then create and customize interactive dashboards and reports using a web-based interface.

  • Cohesive data experience.
  • Real-time data exploration and analysis.
  • Powerful collaboration and sharing features.
  • Looker’s pricing model is flexible, and organizations need to contact Looker directly for a customized quote based on their specific requirements.

Python is the adventurous explorer in the world of coding. While not exclusive to data analysis, it has become a popular language for a data scientist and data analyst. With its simplicity and versatility, Python opens up a world of possibilities for those who want to take their data analysis skills to the next level.

Users can leverage Python’s extensive libraries to import, clean, analyze, and visualize data. Jupyter Notebooks, an interactive coding environment, enhances collaboration and documentation, making it a popular choice among data analysts and scientists.

  • Open-source and widely used.
  • Extensive libraries for data analysis and machine learning algorithms.
  • High flexibility and customization.
  • Strong community support.
  • Limited native reporting features.
  • It may lack the user-friendly interface of some GUI-based tools.
  • Python is an open-source language, and its libraries are freely available for use. There are no licensing costs associated with Python itself.

R is a programming language and environment specifically designed for statistical computing and graphics. R is widely used in academia and industry and offers a vast array of statistical and data analysis packages.

R packages allow users to perform statistical analyses, manipulate data, and visualize data. RStudio, a popular integrated development environment (IDE), enhances the coding experience and facilitates the creation of reproducible reports.

  • Robust data visualization options.
  • Strong support for reproducible research.
  • Active and engaged user community.
  • It may not be as versatile as general-purpose languages.
  • Limited scalability for big data.
  • R is open-source, and R packages are freely available. RStudio, while offering a free version, has a commercial version with additional features.

13. Jupyter Notebook

Jupyter Notebook is an open-source web application that allows users to create and share documents containing live code, equations, visualizations, and narrative text. It supports various programming languages, including Python and R.

Users can create interactive documents containing code cells that can be executed sequentially. Jupyter Notebooks are widely used in data analysis, machine learning, and collaborative research, offering a flexible and accessible environment.

  • Supports multiple programming languages.
  • Interactive and collaborative coding environment.
  • Allows integration of code, visualizations, and narrative.
  • Easily shareable and reproducible.
  • It may not be as feature-rich as specialized tools.
  • Jupyter Notebook is open-source and freely available. Users can install it locally or use cloud-based platforms.

KNIME (Konstanz Information Miner) is an open-source data analytics, reporting, and integration platform. It allows users to visually design data workflows, incorporating various data processing and analysis tasks.

Users can drag and drop nodes to design workflows, incorporating data preprocessing, analysis, and visualization tasks. KNIME supports various plugins and integrations with other tools, providing flexibility in data analysis.

  • Visual workflow design for easy understanding.
  • Active community and extensive documentation.
  • Integrates with numerous data sources and formats.
  • Suitable for users with varying technical expertise.
  • Limited scalability for very large datasets.
  • KNIME Analytics Platform is open-source, and additional commercial extensions are available for advanced functionalities.

15. RapidMiner

RapidMiner is an integrated data science platform that combines data preparation, machine learning, and predictive modeling. It aims to simplify complex data science processes for users with varying skill levels.

Users can design data pipelines by visually connecting pre-built operators. RapidMiner provides machine learning and analytics capabilities, making it suitable for tasks ranging from data preprocessing to predictive modeling.

  • Visual workflow design for simplicity.
  • An extensive set of pre-built operators for common tasks.
  • Machine learning and predictive modeling capabilities.
  • Licensing costs can be high for certain features.
  • RapidMiner offers a free version with limited functionalities. Commercial licenses are available for additional features and support.

Why QuestionPro is The Best Choice for Your Business?

While QuestionPro is primarily known as a survey and feedback platform, it does offer some features that can aid in the initial stages of data analysis. Here’s how QuestionPro can help in a data analysis process:

  • Survey Design and Data Collection : QuestionPro allows you to design surveys with various question types, including multiple-choice, open-ended, Likert scales, and more.

It facilitates the collection of data from respondents through online surveys, mobile surveys, email surveys, and offline surveys.

  • Data Export: You can export the collected survey data in different formats, such as Excel, CSV, or SPSS. This is essential for further analysis of external tools.
  • Basic Analysis Features: QuestionPro provides basic analysis tools within the platform, such as summary statistics, frequency distribution, and cross-tabulation.

Users can generate charts and graphs to visualize survey data directly on the platform.

  • Reporting: The platform offers to report features that allow users to create and share reports based on survey results. Customizable dashboards may be available for a quick overview of key metrics.
  • Integration: QuestionPro may integrate with other data analysis tools or platforms, enabling users to export data for more in-depth analysis using tools like Excel, SPSS, R, or Python.
  • Advanced Survey Logic: Advanced survey logic features within QuestionPro allow for dynamic question branching and skip logic, ensuring that respondents are directed to relevant questions based on their previous answers.

These top 15 data analysis tools are your companions on the journey to elevate your insights. Whether you’re a novice or an experienced data explorer, there’s a tool created for your needs. Each tool brings its unique strengths, turning data analysis into an adventure rather than a daunting task. 

Additionally, it’s worth mentioning the role of QuestionPro, a comprehensive survey and analytics platform that empowers users to gather valuable insights directly from their target audience. 

Integrating tools like QuestionPro into your data analysis toolkit allows you to explore the power of surveys and feedback to complement quantitative data analysis. It will help you better understand your audience’s preferences, behaviors, and sentiments.

So, grab your data hat, put on your analysis glasses, and let the exploration begin. Your insights are waiting to be uncovered! Happy exploring!

LEARN MORE         FREE TRIAL

MORE LIKE THIS

customer advocacy software

21 Best Customer Advocacy Software for Customers in 2024

Apr 19, 2024

quantitative data analysis software

10 Quantitative Data Analysis Software for Every Data Scientist

Apr 18, 2024

Enterprise Feedback Management software

11 Best Enterprise Feedback Management Software in 2024

online reputation management software

17 Best Online Reputation Management Software in 2024

Apr 17, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

28 February - 1 March, 2024, Berlin, Germany

The #1 qualitative data analysis software with the best AI integration

Streamline your data analysis with automatic transcription, powerful analysis tools, ease of use, and smart AI integration. Explore the possibilities now.

data analysis in research tools

Start your free trial

Free MAXQDA trial for Windows and Mac

Discover AI Assist

Efficient, secure and always at your fingertips. Try it now.

Organize. Analyze. Visualize. Present.

data analysis in research tools

One software, many solutions

Qualitative data analysis meets AI. Discover how the new virtual research assistant can simplify your work.

Interview Analysis

Transcribe and code interviews. MAXQDA has powerful functions to support the analysis and visualization of your results.

Literature Review

Organize and analyze literature. MAXQDA comes with many features to make your literature review faster and easier.

Mixed Methods

MAXQDA is the best choice for your mixed methods analysis. It works with a wide range of data types and offers powerful tools.

Content Analysis

Use MAXQDA to manage your entire research project. Easily import and organize your data. Link relevant quotes to each other, and share your work.

Questionnaire Analysis

Whether your survey contains standardized or open-ended questions, with MAXQDA you can easily import and analyze both types.

Why MAXQDA ?

World-leading mixed methods software.

Do you want to include quantitative analysis methods in your qualitative data analysis? MAXQDA offers you an unbeatable variety of mixed methods functions for this purpose.

Intuitive and easy to learn

Thanks to the self-explaining interface, you will quickly find your way around. Numerous tutorials, guides, and webinars, as well as an active community, help you dive deeper into MAXQDA.

Efficient teamwork

It has always been easy to collaborate with MAXQDA. The new TeamCloud makes it even easier. It takes care of file management and team communication for you.

Comprehensive customer support

If you have any questions, our customer service is happy to help – by phone, e-mail or chat. In addition, helpful FAQs and practical online manuals are available.

Identical on Windows & macOS

One license, two operating systems. The identical interface and functions make teamwork and teaching with MAXQDA easy. Decide flexibly what you want to work with.

Take it from researchers who work with MAXQDA

We consult with our worldwide stakeholders in free-form letter and survey format and analyze feedback to inform our standard setting processes. We found the software and expert services from MAXQDA invaluable in conducting a smooth and efficient analysis process, even where the volume of data to be analyzed was significant.

Chad Chandramohan

Chief Technology Officer, IFRS Foundation

Having used several qualitative data analysis software programs, there is no doubt in my mind that MAXQDA has advantages over all the others. In addition to its remarkable analytical features for harnessing data, MAXQDA’s stellar customer service, online tutorials, and global learning community make it a user friendly and top-notch product.

qualitative datenanalyse mit MAXQDA an der NYU

Sally S. Cohen

NYU Rory Meyers College of Nursing

I spent several months researching the options, and ultimately decided to trial MAXQDA. We brought in a MAXQDA certified trainer, and bought a network license so that our large team at Microsoft could use the tool. We were not disappointed[…] I was so convinced in its efficacy in the applied qualitative field that I bought MAXQDA for my team when I joined Amazon. I was especially delighted when they added the Stats package, which allows us to avoid the extra expense of buying SPSS.

qualitative datenanalyse mit MAXQDA bei Amazon

Sam Ladner, Ph.D.

Former Senior Principal Researcher at Workday

I have been fascinated by qualitative research as it makes us reconsider reality from a new perspective. For such reconsideration, it is essential to read data from various viewpoints and write your ideas in notes and memos, continuing to renew your perspective. I have found MAXQDA to be an excellent tool for readily recording and organizing ideas that come up with at various stages of research […]. More than that, however, I feel the potential of MAXQDA is to promote dialogue within the researcher and facilitate new discoveries.

qualitative datenanalyse mit MAXQDA an der University of Tokyo

Masahiro Nochi

Graduate School of Education, The University of Tokyo

Understanding and analyzing production and work processes is an important part of my work at the Fraunhofer Institute for Factory Operation and Automation IFF, and MAXQDA supports me in this. MAXQDA has convinced me in every respect with its versatility, intuitive design, and the ability to work together as a team. In our interdisciplinary projects with innovative companies, this allows us to work effectively and efficiently.

qualitative datenanalyse mit MAXQDA am Fraunhofer IFF

Sebastian Häberer, M.Sc.

Expert Engineer, Fraunhofer IFF

With MAXQDA I saved a lot of time coding my research interviews, and with the Visual Tools I was able to show the results in a clear and simple way.MAXQDA has the advantage that it is very intuitive and therefore easy to learn and handle. In addition, they listen to users and provide continuous updates to improve the experience.

qualitative datenanalyse mit MAXQDA an der University of Mexico

Luis Daniel Vazquez Cancino

PhD candidate in Architecture from the National Autonomous University of Mexico

data analysis in research tools

Learn / Guides / Qualitative data analysis guide

Back to guides

10 best qualitative data analysis tools

A lot of teams spend a lot of time collecting qualitative customer experience data—but how do you make sense of it, and how do you turn insights into action?

Qualitative data analysis tools help you make sense of customer feedback so you can focus on improving the user and product experience and creating customer delight.

Last updated

Reading time.

data analysis in research tools

This chapter of Hotjar's qualitative data analysis (QDA) guide covers the ten best QDA tools that will help you make sense of your customer insights and better understand your users.

Collect qualitative customer data with Hotjar

Use Hotjar’s Surveys and Feedback widget to collect user insights and better understand your customers.

10 tools for qualitative data analysis 

Qualitative data analysis involves gathering, structuring, and interpreting contextual data to identify key patterns and themes in text, audio, and video.

Qualitative data analysis software automates this process, allowing you to focus on interpreting the results—and make informed decisions about how to improve your product—rather than wading through pages of often subjective, text-based data.

Pro tip: before you can analyze qualitative data, you need to gather it. 

One way to collect qualitative customer insights is to place Hotjar Surveys on key pages of your site . Surveys make it easy to capture voice-of-the-customer (VoC) feedback about product features, updated designs, and customer satisfaction—or to perform user and market research.

Need some ideas for your next qualitative research survey? Check out our Hotjar Survey Templates for inspiration.

Example product discovery questions from Hotjar’s bank of survey templates

Example product discovery questions from Hotjar’s bank of survey templates

1. Cauliflower

Cauliflower is a no-code qualitative data analysis tool that gives researchers, product marketers, and developers access to AI-based analytics without dealing with complex interfaces.

#Cauliflower analytics dashboard

How Cauliflower analyzes qualitative data

Cauliflower’s AI-powered analytics help you understand the differences and similarities between different pieces of customer feedback. Ready-made visualizations help identify themes in customers’ words without reading through every review, and make it easy to:

Analyze customer survey data and answers to open-ended questions

Process and understand customer reviews

Examine your social media channels

Identify and prioritize product testing initiatives

Visualize results and share them with your team

One of Cauliflower’s customers says, “[Cauliflower is] great for visualizing the output, particularly finding relevant patterns in comparing breakouts and focussing our qualitative analysis on the big themes emerging.”

NVivo is one of the most popular qualitative data analysis tools on the market—and probably the most expensive. It’s a more technical solution than Cauliflower, and requires more training. NVivo is best for tech-savvy customer experience and product development teams at mid-sized companies and enterprises.

#Coding research materials with NVivo

How NVivo analyzes qualitative data

NVivo’s Transcription tool transcribes and analyzes audio and video files from recorded calls—like sales calls, customer interviews, and product demos—and lets you automatically transfer text files into NVivo for further analysis to:

Find recurring themes in customer feedback

Analyze different types of qualitative data, like text, audio, and video

Code and visualize customer input

Identify market gaps based on qualitative and consumer-focused research

Dylan Hazlett from Adial Pharmaceuticals says, “ We needed a reliable software to perform qualitative text analysis. The complexity and features of [Nvivo] have created great value for our team.”

3. ​​Quirkos

Quirkos is a simple and affordable qualitative data analysis tool. Its text analyzer identifies common keywords within text documents to help businesses quickly and easily interpret customer reviews and interviews.

#Quirkos analytics report

How Quirkos analyzes qualitative data

Quirkos displays side-by-side comparison views to help you understand the difference between feedback shared by different audience groups (by age group, location, gender, etc.). You can also use it to:

Identify keywords and phrases in survey responses and customer interviews

Visualize customer insights

Collaborate on projects

Color code texts effortlessly

One of Quirkos's users says, “ The interface is intuitive, easy to use, and follows quite an intuitive method of assigning codes to documents.”

4. Qualtrics

Qualtrics is a sophisticated experience management platform. The platform offers a range of tools, but we’ll focus on Qualtrics CoreXM here.  

Qualtrics CoreXM lets you collect and analyze insights to remove uncertainty from product development. It helps validate product ideas, spot gaps in the market, and identify broken product experiences, and the tool uses predictive intelligence and analytics to put your customer opinion at the heart of your decision-making.

#Qualtrics customer data dashboard

How Qualtrics analyzes qualitative data

Qualtrics helps teams streamline multiple processes in one interface. You can gather and analyze qualitative data, then immediately share results and hypotheses with stakeholders. The platform also allows you to:

Collect customer feedback through various channels

Understand emotions and sentiment behind customers’ words

Predict what your customers will do next

Act immediately based on the results provided through various integrations

A user in project management shares, “The most useful part of Qualtrics is the depth of analytics you receive on your surveys, questionnaires, and other tools. In real-time, as you develop your surveys, you are given insights into how your data can be analyzed. It is designed to help you get the data you need without asking unnecessary questions.”

5. Dovetail

Dovetail is a customer research platform for growing businesses. It offers three core tools: Playback, Markup, and Backstage. For qualitative data analysis, you’ll need Markup.

Markup offers tools for transcription and analysis of all kinds of qualitative data, and is a great way to consolidate insights.

#Transcription and analysis of an interview with Dovetail

How Dovetail analyzes qualitative data

Dovetail’s charts help you easily quantify qualitative data. If you need to present your findings to the team, the platform makes it easy to loop in your teammates, manage access rights, and collaborate through the interface. You can:

Transcribe recordings automatically

Discover meaningful patterns in textual data

Highlight and tag customer interviews

Run sentiment analysis

Collaborate on customer research through one interface

Kathryn Rounding , Senior Product Designer at You Need A Budget, says, “Dovetail is a fantastic tool for conducting and managing qualitative research. It helps bring all your research planning, source data, analysis, and reporting together, so you can not only share the final results but all the supporting work that helped you get there.”

6. Thematic

Thematic's AI-driven text feedback analysis platform helps you understand what your customers are saying—and why they’re saying it.

#Text analysis in action, with Thematic

How Thematic analyzes qualitative data

Thematic helps you connect feedback from different channels, uncover themes in customer experience data, and run sentiment analysis—all to make better product decisions. Thematic is helpful when you need to:

Analyze unstructured feedback data from across channels

Discover relationships and patterns in feedback

Reveal emerging trends in customer feedback

Split insights by customer segment

Use resulting data in predictive analytics

Emma Glazer , Director of Marketing at DoorDash, says, “Thematic empowers us with information to help make the right decisions, and I love seeing themes as they emerge. We get real-time signals on issues our customers are experiencing and early feedback on new features they love. I love looking at the week-over-week breakdowns and comparing segments of our audience (market, tenure, etc.) Thematic helps me understand what’s driving our metrics and what steps we need to take next.” 

Delve is cloud-based qualitative data analysis software perfect for coding large volumes of textual data, and is best for analyzing long-form customer interviews.

#Qualitative data coding with Delve

How Delve analyzes qualitative data

Delve helps reveal the core themes and narratives behind transcripts from sales calls and customer interviews. It also helps to:

Find, group, and refine themes in customer feedback

Analyze long-form customer interviews

Categorize your data by code, pattern, and demographic information

Perform thematic analysis, narrative analysis, and grounded theory analysis

One Delve user says, “Using Delve, it is easier to focus just on coding to start, without getting sidetracked analyzing what I am reading. Once coding is finished, the selected excerpts are already organized based on my own custom outline and I can begin analyzing right away, rather than spending time organizing my notes before I can begin the analysis and writing process.”

8. ATLAS.ti

ATLAS.ti is a qualitative data analysis tool that brings together customer and product research data. It has a range of helpful features for marketers, product analysts, UX professionals, and product designers.

#Survey analysis with ATLAS.ti

How ATLAS.ti analyzes qualitative data

ATLAS.ti helps product teams collect, structure, and evaluate user feedback before realizing new product ideas. To enhance your product design process with ATLAS.ti, you can:

Generate qualitative insights from surveys

Apply any method of qualitative research

Analyze open-ended questions and standardized surveys

Perform prototype testing

Visualize research results with charts

Collaborate with your team through a single platform

One of the ATLAS.ti customers shares,“ATLAS.ti is innovating in the handling of qualitative data. It gives the user total freedom and the possibility of connecting with other software, as it has many export options.” 

MAXQDA is a data analysis software that can analyze and organize a wide range of data, from handwritten texts, to video recordings, to Tweets.

#Audience analysis with MAXQDA

How MAXQDA analyzes qualitative data

MAWQDA organizes your customer interviews and turns the data into digestible statistics by enabling you to:

Easily transcribe audio or video interviews

Structure standardized and open-ended survey responses

Categorize survey data

Combine qualitative and quantitative methods to get deeper insights into customer data

Share your work with team members

One enterprise-level customer says MAXQDA has “lots of useful features for analyzing and reporting interview and survey data. I really appreciated how easy it was to integrate SPSS data and conduct mixed-method research. The reporting features are high-quality and I loved using Word Clouds for quick and easy data representation.”

10. MonkeyLearn

MonkeyLearn is no-code analytics software for CX and product teams.

#MonkeyLearn qualitative data analytics dashboard

How MonkeyLearn analyzes qualitative data

MonkeyLearn automatically sorts, visualizes, and prioritizes customer feedback with its AI-powered algorithms. Along with organizing your data into themes, the tool will split it by intent—allowing you to promptly distinguish positive reviews from issues and requests and address them immediately.

One MonkeyLearn user says, “I like that MonkeyLearn helps us pull data from our tickets automatically and allows us to engage with our customers properly. As our tickets come in, the AI classifies data through keywords and high-end text analysis. It highlights specific text and categorizes it for easy sorting and processing.”

The next step in automating qualitative data analysis 

Qualitative data analysis tools help you uncover actionable insights from customer feedback, reviews, interviews, and survey responses—without getting lost in data.

But there's no one tool to rule them all: each solution has specific functionality, and your team might need to use the tools together depending on your objectives.

With the right qualitative data analysis software, you can make sense of what your customers really want and create better products for them, achieving customer delight and loyalty.

FAQs about qualitative data analysis software

What is qualitative data analysis software.

Qualitative data analysis software is technology that compiles and organizes contextual, non-quantifiable data, making it easy to interpret qualitative customer insights and information.

Which software is used for qualitative data analysis?

The best software used for qualitative data analysis is:

Cauliflower

MonkeyLearn

Is NVivo the only tool for qualitative data analysis?

NVivo isn’t the only tool for qualitative data analysis, but it’s one of the best (and most popular) software providers for qualitative and mixed-methods research.

QDA examples

Previous chapter

Guide index

IMAGES

  1. 5 Steps of the Data Analysis Process

    data analysis in research tools

  2. Top 14 Data Analysis Tools For Research (Explained)

    data analysis in research tools

  3. ¿Qué es Data Analytics y por qué es importante?

    data analysis in research tools

  4. Quantitative research tools for data analysis

    data analysis in research tools

  5. Top 4 Data Analysis Techniques

    data analysis in research tools

  6. Top 14 Qualitative Data Analysis Software in 2022

    data analysis in research tools

VIDEO

  1. How to Assess the Quantitative Data Collected from Questionnaire

  2. Module 3: Data Import and Package Installation in R Studio

  3. NVIVO 14 Training Day-13: Thematic & Content Analysis

  4. Why collect the data through Questionnaires || The Power of Questionnaires in Data Collection

  5. DATA ANALYSIS

  6. Module 4: Mastering Data Manipulation and Wrangling. Unlocking the Power of dplyr in R Studio

COMMENTS

  1. What is Data Analysis? An Expert Guide With Examples

    Data analysis is a comprehensive method of inspecting, cleansing, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It is a multifaceted process involving various techniques and methodologies to interpret data from various sources in different formats, both structured and unstructured.

  2. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  3. 10 Data Analysis Tools and When to Use Them

    Whether you are part of a small or large organization, learning how to effectively utilize data analytics can help you take advantage of the wide range of data-driven benefits. 1. RapidMiner. Primary use: Data mining. RapidMiner is a comprehensive package for data mining and model development.

  4. What is data analysis? Methods, techniques, types & how-to

    Data analysis tools. In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. ... Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves ...

  5. What Is Data Analysis? (With Examples)

    Written by Coursera Staff • Updated on Apr 19, 2024. Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock ...

  6. Data analysis

    data analysis, the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data, generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making.Data analysis techniques are used to gain useful insights from datasets, which ...

  7. Data Analysis in Quantitative Research

    Abstract. Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility.

  8. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations. To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process. You need to specify ...

  9. Basic statistical tools in research and data analysis

    The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies.

  10. Quantitative Data Analysis Methods & Techniques 101

    Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...

  11. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  12. The 11 Best Data Analytics Tools for Data Analysts in 2024

    As a data analytics tool, it's great for showcasing work: Jupyter Notebook runs in the browser and supports over 40 languages, including Python and R. It also integrates with big data analysis tools, like Apache Spark (see below) and offers various outputs from HTML to images, videos, and more.

  13. Data Analysis: Techniques, Tools, and Processes

    Data analysis is collecting, cleansing, analyzing, presenting, and interpreting data to derive insights. This process aids decision-making by providing helpful insights and statistics. The history of data analysis dates back to the 1640s. John Grant, a hatmaker, started collecting the number of deaths in London.

  14. Role of Statistics in Research

    The descriptive statistical analysis allows organizing and summarizing the large data into graphs and tables. Descriptive analysis involves various processes such as tabulation, measure of central tendency, measure of dispersion or variance, skewness measurements etc. 2. Inferential Analysis.

  15. Data Analysis Techniques In Research

    Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations.

  16. Research Methods

    To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations). Meta-analysis. Quantitative. To statistically analyze the results of a large collection of studies. Can only be applied to studies that collected data in a statistically valid manner.

  17. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  18. The 7 Most Useful Data Analysis Techniques [2024 Guide]

    4. The data analysis process. In order to gain meaningful insights from data, data analysts will perform a rigorous step-by-step process. We go over this in detail in our step by step guide to the data analysis process —but, to briefly summarize, the data analysis process generally consists of the following phases: Defining the question

  19. The Power of Data Analysis in Research

    Data analysis illuminates patterns, trends, and relationships within the data and plays a pivotal role in shaping the outcomes and conclusions of research. In the sections below, we'll look at different data analysis methods, popular tools researchers use today, and how to make the most of your data. On this page:

  20. Exploring Top 15 Data Analysis Tools to Elevate Your Insights

    Here are some common types of data analytics tools: Statistical Analysis Tools: Conducting statistical analyses, hypothesis testing, and regression analysis to extract insights from data. Data Visualization Tools: Creating visual representations of data through charts, graphs, and dashboards for easier interpretation.

  21. Choosing digital tools for qualitative data analysis

    Until the mid-1980s we either had to use pen-and-paper methods (highlighters, whiteboards, scissors, sticky notes, blue tac etc.) or general purpose software (word processors, spreadsheets, etc.). Since they first emerged, dedicated digital tools for qualitative analysis have mushroomed and there are now literally dozens to choose from.

  22. MAXQDA

    MAXQDA is the world-leading software package for qualitative and mixed methods research and the only leading QDA software to offer identical features on Windows and Mac. It is one of the most comprehensive qualitative data analysis programs and is used by thousands of researchers in more than 150 countries.

  23. 10 Best Qualitative Data Analysis Tools and Software

    5. Dovetail. Dovetail is a customer research platform for growing businesses. It offers three core tools: Playback, Markup, and Backstage. For qualitative data analysis, you'll need Markup. Markup offers tools for transcription and analysis of all kinds of qualitative data, and is a great way to consolidate insights.