loading

How it works

For Business

Join Mind Tools

Article • 5 min read

Using the Scientific Method to Solve Problems

How the scientific method and reasoning can help simplify processes and solve problems.

By the Mind Tools Content Team

The processes of problem-solving and decision-making can be complicated and drawn out. In this article we look at how the scientific method, along with deductive and inductive reasoning can help simplify these processes.

one possible first step in scientific problem solving is to

‘It is a capital mistake to theorize before one has information. Insensibly one begins to twist facts to suit our theories, instead of theories to suit facts.’ Sherlock Holmes

The Scientific Method

The scientific method is a process used to explore observations and answer questions. Originally used by scientists looking to prove new theories, its use has spread into many other areas, including that of problem-solving and decision-making.

The scientific method is designed to eliminate the influences of bias, prejudice and personal beliefs when testing a hypothesis or theory. It has developed alongside science itself, with origins going back to the 13th century. The scientific method is generally described as a series of steps.

  • observations/theory
  • explanation/conclusion

The first step is to develop a theory about the particular area of interest. A theory, in the context of logic or problem-solving, is a conjecture or speculation about something that is not necessarily fact, often based on a series of observations.

Once a theory has been devised, it can be questioned and refined into more specific hypotheses that can be tested. The hypotheses are potential explanations for the theory.

The testing, and subsequent analysis, of these hypotheses will eventually lead to a conclus ion which can prove or disprove the original theory.

Applying the Scientific Method to Problem-Solving

How can the scientific method be used to solve a problem, such as the color printer is not working?

1. Use observations to develop a theory.

In order to solve the problem, it must first be clear what the problem is. Observations made about the problem should be used to develop a theory. In this particular problem the theory might be that the color printer has run out of ink. This theory is developed as the result of observing the increasingly faded output from the printer.

2. Form a hypothesis.

Note down all the possible reasons for the problem. In this situation they might include:

  • The printer is set up as the default printer for all 40 people in the department and so is used more frequently than necessary.
  • There has been increased usage of the printer due to non-work related printing.
  • In an attempt to reduce costs, poor quality ink cartridges with limited amounts of ink in them have been purchased.
  • The printer is faulty.

All these possible reasons are hypotheses.

3. Test the hypothesis.

Once as many hypotheses (or reasons) as possible have been thought of, then each one can be tested to discern if it is the cause of the problem. An appropriate test needs to be devised for each hypothesis. For example, it is fairly quick to ask everyone to check the default settings of the printer on each PC, or to check if the cartridge supplier has changed.

4. Analyze the test results.

Once all the hypotheses have been tested, the results can be analyzed. The type and depth of analysis will be dependant on each individual problem, and the tests appropriate to it. In many cases the analysis will be a very quick thought process. In others, where considerable information has been collated, a more structured approach, such as the use of graphs, tables or spreadsheets, may be required.

5. Draw a conclusion.

Based on the results of the tests, a conclusion can then be drawn about exactly what is causing the problem. The appropriate remedial action can then be taken, such as asking everyone to amend their default print settings, or changing the cartridge supplier.

Inductive and Deductive Reasoning

The scientific method involves the use of two basic types of reasoning, inductive and deductive.

Inductive reasoning makes a conclusion based on a set of empirical results. Empirical results are the product of the collection of evidence from observations. For example:

‘Every time it rains the pavement gets wet, therefore rain must be water’.

There has been no scientific determination in the hypothesis that rain is water, it is purely based on observation. The formation of a hypothesis in this manner is sometimes referred to as an educated guess. An educated guess, whilst not based on hard facts, must still be plausible, and consistent with what we already know, in order to present a reasonable argument.

Deductive reasoning can be thought of most simply in terms of ‘If A and B, then C’. For example:

  • if the window is above the desk, and
  • the desk is above the floor, then
  • the window must be above the floor

It works by building on a series of conclusions, which results in one final answer.

Social Sciences and the Scientific Method

The scientific method can be used to address any situation or problem where a theory can be developed. Although more often associated with natural sciences, it can also be used to develop theories in social sciences (such as psychology, sociology and linguistics), using both quantitative and qualitative methods.

Quantitative information is information that can be measured, and tends to focus on numbers and frequencies. Typically quantitative information might be gathered by experiments, questionnaires or psychometric tests. Qualitative information, on the other hand, is based on information describing meaning, such as human behavior, and the reasons behind it. Qualitative information is gathered by way of interviews and case studies, which are possibly not as statistically accurate as quantitative methods, but provide a more in-depth and rich description.

The resultant information can then be used to prove, or disprove, a hypothesis. Using a mix of quantitative and qualitative information is more likely to produce a rounded result based on the factual, quantitative information enriched and backed up by actual experience and qualitative information.

In terms of problem-solving or decision-making, for example, the qualitative information is that gained by looking at the ‘how’ and ‘why’ , whereas quantitative information would come from the ‘where’, ‘what’ and ‘when’.

It may seem easy to come up with a brilliant idea, or to suspect what the cause of a problem may be. However things can get more complicated when the idea needs to be evaluated, or when there may be more than one potential cause of a problem. In these situations, the use of the scientific method, and its associated reasoning, can help the user come to a decision, or reach a solution, secure in the knowledge that all options have been considered.

Join Mind Tools and get access to exclusive content.

This resource is only available to Mind Tools members.

Already a member? Please Login here

one possible first step in scientific problem solving is to

Team Management

Learn the key aspects of managing a team, from building and developing your team, to working with different types of teams, and troubleshooting common problems.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article amtbj63

SWOT Analysis

Article a4wo118

SMART Goals

Mind Tools Store

About Mind Tools Content

Discover something new today

How to stop procrastinating.

Overcoming the Habit of Delaying Important Tasks

What Is Time Management?

Working Smarter to Enhance Productivity

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

The addie model.

Developing Learning Sessions from the Ground Up

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, the 6 scientific method steps and how to use them.

author image

General Education

feature_microscope-1

When you’re faced with a scientific problem, solving it can seem like an impossible prospect. There are so many possible explanations for everything we see and experience—how can you possibly make sense of them all? Science has a simple answer: the scientific method.

The scientific method is a method of asking and answering questions about the world. These guiding principles give scientists a model to work through when trying to understand the world, but where did that model come from, and how does it work?

In this article, we’ll define the scientific method, discuss its long history, and cover each of the scientific method steps in detail.

What Is the Scientific Method?

At its most basic, the scientific method is a procedure for conducting scientific experiments. It’s a set model that scientists in a variety of fields can follow, going from initial observation to conclusion in a loose but concrete format.

The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation, as well as examining your thinking through rigorous study.

There are in fact multiple scientific methods, as the basic structure can be easily modified.  The one we typically learn about in school is the basic method, based in logic and problem solving, typically used in “hard” science fields like biology, chemistry, and physics. It may vary in other fields, such as psychology, but the basic premise of making observations, testing, and continuing to improve a theory from the results remain the same.

body_history

The History of the Scientific Method

The scientific method as we know it today is based on thousands of years of scientific study. Its development goes all the way back to ancient Mesopotamia, Greece, and India.

The Ancient World

In ancient Greece, Aristotle devised an inductive-deductive process , which weighs broad generalizations from data against conclusions reached by narrowing down possibilities from a general statement. However, he favored deductive reasoning, as it identifies causes, which he saw as more important.

Aristotle wrote a great deal about logic and many of his ideas about reasoning echo those found in the modern scientific method, such as ignoring circular evidence and limiting the number of middle terms between the beginning of an experiment and the end. Though his model isn’t the one that we use today, the reliance on logic and thorough testing are still key parts of science today.

The Middle Ages

The next big step toward the development of the modern scientific method came in the Middle Ages, particularly in the Islamic world. Ibn al-Haytham, a physicist from what we now know as Iraq, developed a method of testing, observing, and deducing for his research on vision. al-Haytham was critical of Aristotle’s lack of inductive reasoning, which played an important role in his own research.

Other scientists, including Abū Rayhān al-Bīrūnī, Ibn Sina, and Robert Grosseteste also developed models of scientific reasoning to test their own theories. Though they frequently disagreed with one another and Aristotle, those disagreements and refinements of their methods led to the scientific method we have today.

Following those major developments, particularly Grosseteste’s work, Roger Bacon developed his own cycle of observation (seeing that something occurs), hypothesis (making a guess about why that thing occurs), experimentation (testing that the thing occurs), and verification (an outside person ensuring that the result of the experiment is consistent).

After joining the Franciscan Order, Bacon was granted a special commission to write about science; typically, Friars were not allowed to write books or pamphlets. With this commission, Bacon outlined important tenets of the scientific method, including causes of error, methods of knowledge, and the differences between speculative and experimental science. He also used his own principles to investigate the causes of a rainbow, demonstrating the method’s effectiveness.

Scientific Revolution

Throughout the Renaissance, more great thinkers became involved in devising a thorough, rigorous method of scientific study. Francis Bacon brought inductive reasoning further into the method, whereas Descartes argued that the laws of the universe meant that deductive reasoning was sufficient. Galileo’s research was also inductive reasoning-heavy, as he believed that researchers could not account for every possible variable; therefore, repetition was necessary to eliminate faulty hypotheses and experiments.

All of this led to the birth of the Scientific Revolution , which took place during the sixteenth and seventeenth centuries. In 1660, a group of philosophers and physicians joined together to work on scientific advancement. After approval from England’s crown , the group became known as the Royal Society, which helped create a thriving scientific community and an early academic journal to help introduce rigorous study and peer review.

Previous generations of scientists had touched on the importance of induction and deduction, but Sir Isaac Newton proposed that both were equally important. This contribution helped establish the importance of multiple kinds of reasoning, leading to more rigorous study.

As science began to splinter into separate areas of study, it became necessary to define different methods for different fields. Karl Popper was a leader in this area—he established that science could be subject to error, sometimes intentionally. This was particularly tricky for “soft” sciences like psychology and social sciences, which require different methods. Popper’s theories furthered the divide between sciences like psychology and “hard” sciences like chemistry or physics.

Paul Feyerabend argued that Popper’s methods were too restrictive for certain fields, and followed a less restrictive method hinged on “anything goes,” as great scientists had made discoveries without the Scientific Method. Feyerabend suggested that throughout history scientists had adapted their methods as necessary, and that sometimes it would be necessary to break the rules. This approach suited social and behavioral scientists particularly well, leading to a more diverse range of models for scientists in multiple fields to use.

body_experiment-3

The Scientific Method Steps

Though different fields may have variations on the model, the basic scientific method is as follows:

#1: Make Observations 

Notice something, such as the air temperature during the winter, what happens when ice cream melts, or how your plants behave when you forget to water them.

#2: Ask a Question

Turn your observation into a question. Why is the temperature lower during the winter? Why does my ice cream melt? Why does my toast always fall butter-side down?

This step can also include doing some research. You may be able to find answers to these questions already, but you can still test them!

#3: Make a Hypothesis

A hypothesis is an educated guess of the answer to your question. Why does your toast always fall butter-side down? Maybe it’s because the butter makes that side of the bread heavier.

A good hypothesis leads to a prediction that you can test, phrased as an if/then statement. In this case, we can pick something like, “If toast is buttered, then it will hit the ground butter-first.”

#4: Experiment

Your experiment is designed to test whether your predication about what will happen is true. A good experiment will test one variable at a time —for example, we’re trying to test whether butter weighs down one side of toast, making it more likely to hit the ground first.

The unbuttered toast is our control variable. If we determine the chance that a slice of unbuttered toast, marked with a dot, will hit the ground on a particular side, we can compare those results to our buttered toast to see if there’s a correlation between the presence of butter and which way the toast falls.

If we decided not to toast the bread, that would be introducing a new question—whether or not toasting the bread has any impact on how it falls. Since that’s not part of our test, we’ll stick with determining whether the presence of butter has any impact on which side hits the ground first.

#5: Analyze Data

After our experiment, we discover that both buttered toast and unbuttered toast have a 50/50 chance of hitting the ground on the buttered or marked side when dropped from a consistent height, straight down. It looks like our hypothesis was incorrect—it’s not the butter that makes the toast hit the ground in a particular way, so it must be something else.

Since we didn’t get the desired result, it’s back to the drawing board. Our hypothesis wasn’t correct, so we’ll need to start fresh. Now that you think about it, your toast seems to hit the ground butter-first when it slides off your plate, not when you drop it from a consistent height. That can be the basis for your new experiment.

#6: Communicate Your Results

Good science needs verification. Your experiment should be replicable by other people, so you can put together a report about how you ran your experiment to see if other peoples’ findings are consistent with yours.

This may be useful for class or a science fair. Professional scientists may publish their findings in scientific journals, where other scientists can read and attempt their own versions of the same experiments. Being part of a scientific community helps your experiments be stronger because other people can see if there are flaws in your approach—such as if you tested with different kinds of bread, or sometimes used peanut butter instead of butter—that can lead you closer to a good answer.

body_toast-1

A Scientific Method Example: Falling Toast

We’ve run through a quick recap of the scientific method steps, but let’s look a little deeper by trying again to figure out why toast so often falls butter side down.

#1: Make Observations

At the end of our last experiment, where we learned that butter doesn’t actually make toast more likely to hit the ground on that side, we remembered that the times when our toast hits the ground butter side first are usually when it’s falling off a plate.

The easiest question we can ask is, “Why is that?”

We can actually search this online and find a pretty detailed answer as to why this is true. But we’re budding scientists—we want to see it in action and verify it for ourselves! After all, good science should be replicable, and we have all the tools we need to test out what’s really going on.

Why do we think that buttered toast hits the ground butter-first? We know it’s not because it’s heavier, so we can strike that out. Maybe it’s because of the shape of our plate?

That’s something we can test. We’ll phrase our hypothesis as, “If my toast slides off my plate, then it will fall butter-side down.”

Just seeing that toast falls off a plate butter-side down isn’t enough for us. We want to know why, so we’re going to take things a step further—we’ll set up a slow-motion camera to capture what happens as the toast slides off the plate.

We’ll run the test ten times, each time tilting the same plate until the toast slides off. We’ll make note of each time the butter side lands first and see what’s happening on the video so we can see what’s going on.

When we review the footage, we’ll likely notice that the bread starts to flip when it slides off the edge, changing how it falls in a way that didn’t happen when we dropped it ourselves.

That answers our question, but it’s not the complete picture —how do other plates affect how often toast hits the ground butter-first? What if the toast is already butter-side down when it falls? These are things we can test in further experiments with new hypotheses!

Now that we have results, we can share them with others who can verify our results. As mentioned above, being part of the scientific community can lead to better results. If your results were wildly different from the established thinking about buttered toast, that might be cause for reevaluation. If they’re the same, they might lead others to make new discoveries about buttered toast. At the very least, you have a cool experiment you can share with your friends!

Key Scientific Method Tips

Though science can be complex, the benefit of the scientific method is that it gives you an easy-to-follow means of thinking about why and how things happen. To use it effectively, keep these things in mind!

Don’t Worry About Proving Your Hypothesis

One of the important things to remember about the scientific method is that it’s not necessarily meant to prove your hypothesis right. It’s great if you do manage to guess the reason for something right the first time, but the ultimate goal of an experiment is to find the true reason for your observation to occur, not to prove your hypothesis right.

Good science sometimes means that you’re wrong. That’s not a bad thing—a well-designed experiment with an unanticipated result can be just as revealing, if not more, than an experiment that confirms your hypothesis.

Be Prepared to Try Again

If the data from your experiment doesn’t match your hypothesis, that’s not a bad thing. You’ve eliminated one possible explanation, which brings you one step closer to discovering the truth.

The scientific method isn’t something you’re meant to do exactly once to prove a point. It’s meant to be repeated and adapted to bring you closer to a solution. Even if you can demonstrate truth in your hypothesis, a good scientist will run an experiment again to be sure that the results are replicable. You can even tweak a successful hypothesis to test another factor, such as if we redid our buttered toast experiment to find out whether different kinds of plates affect whether or not the toast falls butter-first. The more we test our hypothesis, the stronger it becomes!

What’s Next?

Want to learn more about the scientific method? These important high school science classes will no doubt cover it in a variety of different contexts.

Test your ability to follow the scientific method using these at-home science experiments for kids !

Need some proof that science is fun? Try making slime

author image

Melissa Brinks graduated from the University of Washington in 2014 with a Bachelor's in English with a creative writing emphasis. She has spent several years tutoring K-12 students in many subjects, including in SAT prep, to help them prepare for their college education.

Student and Parent Forum

Our new student and parent forum, at ExpertHub.PrepScholar.com , allow you to interact with your peers and the PrepScholar staff. See how other students and parents are navigating high school, college, and the college admissions process. Ask questions; get answers.

Join the Conversation

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

one possible first step in scientific problem solving is to

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

Lucidly exploring and applying philosophy

  • Fun Quizzes
  • Logic Course
  • Ethics Course
  • Philosophy Course

Chapter 6: Scientific Problem Solving

If you prefer a video, click this button:

Scientific Problem Solving Video

Science is a method to discover empirical truths and patterns. Roughly speaking, the scientific method consists of

1) Observing

2) Forming a hypothesis

3) Testing the hypothesis and

4) Interpreting the data to confirm or disconfirm the hypothesis.

The beauty of science is that any scientific claim can be tested if you have the proper knowledge and equipment.

You can also use the scientific method to solve everyday problems: 1) Observe and clearly define the problem, 2) Form a hypothesis, 3) Test it, and 4) Confirm the hypothesis... or disconfirm it and start over.

So, the next time you are cursing in traffic or emotionally reacting to a problem, take a few deep breaths and then use this rational and scientific approach. Slow down, observe, hypothesize, and test.

Explain how you would solve these problems using the four steps of the scientific process.

Example: The fire alarm is not working.

1) Observe/Define the problem: it does not beep when I push the button.

2) Hypothesis: it is caused by a dead battery.

3) Test: try a new battery.

4) Confirm/Disconfirm: the alarm now works. If it does not work, start over by testing another hypothesis like “it has a loose wire.”  

  • My car will not start.
  • My child is having problems reading.
  • I owe $20,000, but only make $10 an hour.
  • My boss is mean. I want him/her to stop using rude language towards me.
  • My significant other is lazy. I want him/her to help out more.

6-8. Identify three problems where you can apply the scientific method.

*Answers will vary.

Application and Value

Science is more of a process than a body of knowledge. In our daily lives, we often emotionally react and jump to quick solutions when faced with problems, but following the four steps of the scientific process can help us slow down and discover more intelligent solutions.

In your study of philosophy, you will explore deeper questions about science. For example, are there any forms of knowledge that are nonscientific? Can science tell us what we ought to do? Can logical and mathematical truths be proven in a scientific way? Does introspection give knowledge even though I cannot scientifically observe your introspective thoughts? Is science truly objective?  These are challenging questions that should help you discover the scope of science without diminishing its awesome power.

But the first step in answering these questions is knowing what science is, and this chapter clarifies its essence. Again, Science is not so much a body of knowledge as it is a method of observing, hypothesizing, and testing. This method is what all the sciences have in common.

Perhaps too science should involve falsifiability, which is a concept explored in the next chapter.

Return to Logic Home                            Next (Chapter 7, Falsifiability)

one possible first step in scientific problem solving is to

Click on my affiliate link above (Logic Book Image) to explore the most popular introduction to logic. If you purchase it, I recommend buying a less expensive older edition.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.1.6: Scientific Problem Solving

  • Last updated
  • Save as PDF
  • Page ID 419240

How can we use problem solving in our everyday routines?

One day you wake up and realize your clock radio did not turn on to get you out of bed. You are puzzled, so you decide to find out what happened. You list three possible explanations:

  • There was a power failure and your radio cannot turn on.
  • Your little sister turned it off as a joke.
  • You did not set the alarm last night.

Upon investigation, you find that the clock is on, so there is no power failure. Your little sister was spending the night with a friend and could not have turned the alarm off. You notice that the alarm is not set—your forgetfulness made you late. You have used the scientific method to answer a question.

Scientific Problem Solving

Humans have always wondered about the world around them. One of the questions of interest was (and still is): what is this world made of? Chemistry has been defined in various ways as the study of matter. What matter consists of has been a source of debate over the centuries. One of the key areas for this debate in the Western world was Greek philosophy.

The basic approach of the Greek philosophers was to discuss and debate the questions they had about the world. There was no gathering of information to speak of, just talking. As a result, several ideas about matter were put forth, but never resolved. The first philosopher to carry out the gathering of data was Aristotle (384-322 B.C.). He recorded many observations on the weather, on plant and animal life and behavior, on physical motions, and a number of other topics. Aristotle could probably be considered the first "real" scientist, because he made systematic observations of nature and tried to understand what he was seeing.

Picture of Aristotle

Inductive and Deductive Reasoning

Two approaches to logical thinking developed over the centuries. These two methods are inductive reasoning and deductive reasoning . Inductive reasoning involves getting a collection of specific examples and drawing a general conclusion from them. Deductive reasoning takes a general principle and then draws a specific conclusion from the general concept. Both are used in the development of scientific ideas.

Inductive reasoning first involves the collection of data: "If I add sodium metal to water, I observe a very violent reaction. Every time I repeat the process, I see the same thing happen." A general conclusion is drawn from these observations: the addition of sodium to water results in a violent reaction.

In deductive reasoning, a specific prediction is made based on a general principle. One general principle is that acids turn blue litmus paper red. Using the deductive reasoning process, one might predict: "If I have a bottle of liquid labeled 'acid', I expect the litmus paper to turn red when I immerse it in the liquid."

1.1: The Scientific Method

  • Last updated
  • Save as PDF
  • Page ID 123904

  • Teresa Friedrich Finnern
  • Norco College

Learning Objectives

  • Identify the shared characteristics of the natural sciences.
  • Summarize the steps of the scientific method.
  • Compare inductive reasoning with deductive reasoning.
  • Describe the goals of basic science and applied science.

The Process of Science

Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics (Figure \(\PageIndex{1}\)). However, those fields of science related to the physical world and its phenomena and processes are considered natural sciences . Natural sciences could be categorized as astronomy, biology, chemistry, earth science, and physics. One can divide natural sciences further into life sciences, which study living things and include biology, and physical sciences, which study nonliving matter and include astronomy, geology, physics, and chemistry. Some disciplines such as biophysics and biochemistry build on both life and physical sciences and are interdisciplinary. Natural sciences are sometimes referred to as “hard science” because they rely on the use of quantitative data; social sciences that study society and human behavior are more likely to use qualitative assessments to drive investigations and findings.

Not surprisingly, the natural science of biology has many branches or subdisciplines. Cell biologists study cell structure and function, while biologists who study anatomy investigate the structure of an entire organism. Those biologists studying physiology, however, focus on the internal functioning of an organism. Some areas of biology focus on only particular types of living things. For example, botanists explore plants, while zoologists specialize in animals.

A collage displaying examples of various fields of science

Scientific Reasoning

One thing is common to all forms of science: an ultimate goal “to know.” Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. To do this, they use two methods of logical thinking: inductive reasoning and deductive reasoning.

Inductive reasoning is a form of logical thinking that uses related observations to arrive at a general conclusion. This type of reasoning is common in descriptive science. A life scientist such as a biologist makes observations and records them. These data can be qualitative (descriptive) or quantitative (numeric), and the raw data can be supplemented with drawings, pictures, photos, or videos. From many observations, the scientist can infer conclusions (inductions) based on evidence. Inductive reasoning involves formulating generalizations inferred from careful observation and the analysis of a large amount of data.

Deductive reasoning ,   or deduction, is the type of logic used in hypothesis-based science. In deductive reason, the pattern of thinking moves in the opposite direction as compared to inductive reasoning; that is, specific results are predicted from a general premise. Deductive reasoning is a form of logical thinking that uses a general principle or law to forecast specific results. From those general principles, a scientist can extrapolate and predict the specific results that would be valid as long as the general principles are valid. Studies in climate change can illustrate this type of reasoning. For example, scientists may predict that if the climate becomes warmer in a particular region, then the distribution of plants and animals should change. These predictions have been made and tested, and many such changes have been found, such as the modification of arable areas for agriculture, with change based on temperature averages. 

Inductive and deductive reasoning are often used in tandem to advance scientific knowledge (Example \(\PageIndex{1}\)) . Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science. Descriptive (or discovery) science , which is usually inductive, aims to observe, explore, and discover, while hypothesis-based science , which is usually deductive, begins with a specific question or problem and a potential answer or solution that one can test. The boundary between these two forms of study is often blurred, and most scientific endeavors combine both approaches.

Example \(\PageIndex{1}\)

Here is an example of how the two types of reasoning might be used in similar situations.

In inductive reasoning, where a conclusion is drawn from a number of observations, one might observe that members of a species are not all the same, individuals compete for resources, and species are generally adapted to their environment. This observation could then lead to the conclusion that individuals most adapted to their environment are more likely to survive and pass their traits to the next generation.

In deductive reasoning, which uses a general premise to predict a specific result, one might start with that conclusion as a general premise, then predict the results. For example, from that premise, one might predict that if the average temperature in an ecosystem increases due to climate change, individuals better adapted to warmer temperatures will outcompete those that are not. A scientist could then design a study to test this prediction.

The Scientific Method

Biologists study the living world by posing questions about it and seeking science-based responses. The scientific method is a method of research with defined steps that include experiments and careful observation. The scientific method was used even in ancient times, but it was first documented by England’s Sir Francis Bacon (1561–1626; Figure \(\PageIndex{2}\)), who set up inductive methods for scientific inquiry. The scientific method is not exclusively used by biologists but can be applied to almost all fields of study as a logical, rational problem-solving method.

It is important to note that even though there are specific steps to the scientific method, the process of science is often more fluid, with scientists going back and forth between steps until they reach their conclusions.

Painting depicts Sir Francis Bacon in a long robe.

Observation and Question

Scientists are good observers. In the field of biology, naturalists will often will make an observation that leads to a question. A naturalist is a person who studies nature. Naturalists often describe structures, processes, and behavior, either with their eyes or with the use of a tool such as a microscope. A naturalist may not conduct experiments, but they may ask many good questions that can lead to experimentation. Scientists are also very curious. They will research for known answers to their questions or run experiments to learn the answer to their questions.

Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: “Why is the classroom so warm?”

Proposing a Hypothesis

A hypothesis is an educated guess or a suggested explanation for an event, which can be tested. Sometimes, more than one hypothesis may be proposed. Once a hypothesis has been selected, the student can make a prediction. A prediction is similar to a hypothesis but it typically has the format “If . . . then . . . .”.

For example, one hypothesis might be, “The classroom is warm because no one turned on the air conditioning.” However, there could be other responses to the question, and therefore one may propose other hypotheses. A second hypothesis might be, “The classroom is warm because there is a power failure, and so the air conditioning doesn’t work.” In this case, you would have to test both hypotheses to see if either one could be supported with data.

A hypothesis may become a verified theory . This can happen if it has been repeatedly tested and confirmed, is general, and has inspired many other hypotheses, facts, and experimentations. Not all hypotheses will become theories.

Testing a Hypothesis

A valid hypothesis must be testable. It should also be falsifiable , meaning that it can be disproven by experimental results. Importantly, science does not claim to “prove” anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Each experiment will have one or more variables and one or more controls. A variable is any part of the experiment that can vary or change during the experiment. The control group contains every feature of the experimental group except that it was not manipulated. Therefore, if the results of the experimental group differ from the control group, the difference must be due to the hypothesized manipulation, rather than some outside factor. Look for the variables and controls in the examples that follow. To test the first hypothesis, the student would find out if the air conditioning is on. If the air conditioning is turned on but does not work, there should be another reason, and this hypothesis should be rejected. To test the second hypothesis, the student could check if the lights in the classroom are functional. If so, there is no power failure, and this hypothesis should be rejected. Each hypothesis should be tested by carrying out appropriate experiments. Be aware that rejecting one hypothesis does not determine whether or not the other hypotheses can be accepted; it simply eliminates one hypothesis that is not valid (Figure \(\PageIndex{3}\)). Using the scientific method, the hypotheses that are inconsistent with experimental data are rejected.

While this “warm classroom” example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One observation to explain this occurrence might be, “When I eat breakfast before class, I am better able to pay attention.” The student could then design an experiment with a control to test this hypothesis.

Visual Connection

A flow chart with the steps in the scientific method.

The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach; often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion; instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that the scientific method can be applied to solving problems that aren’t necessarily scientific in nature (Example \(\PageIndex{2}\)).

Example \(\PageIndex{2}\)

In the example below, the scientific method is used to solve an everyday problem. Match the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses.

Steps of the Scientific Method

  • Observation
  • Hypothesis (answer)

Process of Solving an Everyday Problem

  • There is something wrong with the electrical outlet.
  • If something is wrong with the outlet, my coffee maker also won’t work when plugged into it.
  • My toaster doesn’t toast my bread.
  • I plug my coffee maker into the outlet.
  • My coffee maker works.
  • Why doesn’t my toaster work?

Two Types of Science: Basic Science and Applied Science

The scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or to bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.

Basic science or “pure” science seeks to expand knowledge regardless of the short-term application of that knowledge. It is not focused on developing a product or a service of immediate public or commercial value. The immediate goal of basic science is knowledge for knowledge’s sake, though this does not mean that, in the end, it may not result in a practical application.

In contrast, applied science or “technology,” aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield or find a cure for a particular disease. In applied science, the problem is usually defined for the researcher.

Some individuals may perceive applied science as “useful” and basic science as “useless.” A question these people might pose to a scientist advocating knowledge acquisition would be, “What for?” A careful look at the history of science, however, reveals that basic knowledge has resulted in many remarkable applications of great value. Many scientists think that a basic understanding of science is necessary before an application is developed; therefore, applied science relies on the results generated through basic science. Other scientists think that it is time to move on from basic science and instead to find solutions to actual problems. Both approaches are valid. It is true that there are problems that demand immediate attention; however, few solutions would be found without the help of the wide knowledge foundation generated through basic science.

One example of how basic and applied science can work together to solve practical problems occurred after the discovery of DNA structure led to an understanding of the molecular mechanisms governing DNA replication. Strands of DNA, unique in every human, are found in our cells, where they provide the instructions necessary for life. During DNA replication, DNA makes new copies of itself, shortly before a cell divides. Understanding the mechanisms of DNA replication enabled scientists to develop laboratory techniques that are now used to identify genetic diseases, pinpoint individuals who were at a crime scene, and determine paternity. Without basic science, it is unlikely that applied science would exist.

Another example of the link between basic and applied research is the Human Genome Project, a study in which each human chromosome was analyzed and mapped to determine the precise sequence of DNA subunits and the exact location of each gene. (The gene is the basic unit of heredity; an individual’s complete collection of genes is their genome.) Other less complex organisms have also been studied as part of this project in order to gain a better understanding of human chromosomes. The Human Genome Project (Figure \(\PageIndex{4}\)) relied on basic research carried out with simple organisms and, later, with the human genome. An important end goal eventually became using the data for applied research, seeking cures and early diagnoses for genetically related diseases.

The human genome project’s logo is shown, depicting a human being inside a DNA double helix.

While research efforts in both basic science and applied science are usually carefully planned, it is important to note that some discoveries are made by serendipity , that is, by means of a fortunate accident or a lucky surprise. Penicillin was discovered when biologist Alexander Fleming accidentally left a petri dish of Staphylococcus bacteria open. An unwanted mold grew on the dish, killing the bacteria. The mold turned out to be Penicillium , and a new antibiotic was discovered. Even in the highly organized world of science, luck—when combined with an observant, curious mind—can lead to unexpected breakthroughs.

Reporting Scientific Work

Whether scientific research is basic science or applied science, scientists must share their findings in order for other researchers to expand and build upon their discoveries. Collaboration with other scientists—when planning, conducting, and analyzing results—are all important for scientific research. For this reason, important aspects of a scientist’s work are communicating with peers and disseminating results to peers. Scientists can share results by presenting them at a scientific meeting or conference (Figure \(\PageIndex{5}\)), but this approach can reach only the select few who are present. Instead, most scientists present their results in peer-reviewed manuscripts that are published in scientific journals. Peer-reviewed manuscripts are scientific papers that are reviewed by a scientist’s colleagues, or peers. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist’s work is suitable for publication. The process of peer review helps to ensure that the research described in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings. The experimental results must be consistent with the findings of other scientists.

A group of undergraduate students at the BOTANY 2018 conference

A scientific paper is very different from creative writing. Although creativity is required to design experiments, there are fixed guidelines when it comes to presenting scientific results. First, scientific writing must be brief, concise, and accurate. A scientific paper needs to be succinct but detailed enough to allow peers to reproduce the experiments.

The scientific paper consists of several specific sections—introduction, materials and methods, results, and discussion. This structure is sometimes called the “IMRaD” format, an acronym for Introduction, Method, Results, and Discussion. There are usually acknowledgment and reference sections as well as an abstract (a concise summary) at the beginning of the paper. There might be additional sections depending on the type of paper and the journal where it will be published; for example, some review papers require an outline.

The introduction starts with brief, but broad, background information about what is known in the field. A good introduction also gives the rationale of the work; it justifies the work carried out and also briefly mentions the end of the paper, where the hypothesis or research question driving the research will be presented. The introduction refers to the published scientific work of others and therefore requires citations following the style of the journal. Using the work or ideas of others without proper citation is considered plagiarism .

The materials and methods section includes a complete and accurate description of the substances used, and the method and techniques used by the researchers to gather data. The description should be thorough enough to allow another researcher to repeat the experiment and obtain similar results, but it does not have to be verbose. This section will also include information on how measurements were made and what types of calculations and statistical analyses were used to examine raw data. Although the materials and methods section gives an accurate description of the experiments, it does not discuss them.

Some journals require a results section followed by a discussion section, but it is more common to combine both. If the journal does not allow the combination of both sections, the results section simply narrates the findings without any further interpretation. The results are presented by means of tables or graphs, but no duplicate information should be presented. In the discussion section, the researcher will interpret the results, describe how variables may be related, and attempt to explain the observations. It is indispensable to conduct an extensive literature search to put the results in the context of previously published scientific research. Therefore, proper citations are included in this section as well.

Finally, the conclusion section summarizes the importance of the experimental findings. While the scientific paper almost certainly answered one or more scientific questions that were stated, any good research should lead to more questions. Therefore, a well-done scientific paper leaves doors open for the researcher and others to continue and expand on the findings.

Review articles do not follow the IMRaD format because they do not present original scientific findings (they are not primary literature); instead, they summarize and comment on findings that were published as primary literature and typically include extensive reference sections.

Attributions

Curated and authored by Kammy Algiers using  1.2 (The Process of Science)  from Biology 2e  by OpenStax (licensed CC-BY ).

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

one possible first step in scientific problem solving is to

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

one possible first step in scientific problem solving is to

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of springeropen

Identifying problems and solutions in scientific text

Kevin heffernan.

Department of Computer Science and Technology, University of Cambridge, 15 JJ Thomson Avenue, Cambridge, CB3 0FD UK

Simone Teufel

Research is often described as a problem-solving activity, and as a result, descriptions of problems and solutions are an essential part of the scientific discourse used to describe research activity. We present an automatic classifier that, given a phrase that may or may not be a description of a scientific problem or a solution, makes a binary decision about problemhood and solutionhood of that phrase. We recast the problem as a supervised machine learning problem, define a set of 15 features correlated with the target categories and use several machine learning algorithms on this task. We also create our own corpus of 2000 positive and negative examples of problems and solutions. We find that we can distinguish problems from non-problems with an accuracy of 82.3%, and solutions from non-solutions with an accuracy of 79.7%. Our three most helpful features for the task are syntactic information (POS tags), document and word embeddings.

Introduction

Problem solving is generally regarded as the most important cognitive activity in everyday and professional contexts (Jonassen 2000 ). Many studies on formalising the cognitive process behind problem-solving exist, for instance (Chandrasekaran 1983 ). Jordan ( 1980 ) argues that we all share knowledge of the thought/action problem-solution process involved in real life, and so our writings will often reflect this order. There is general agreement amongst theorists that state that the nature of the research process can be viewed as a problem-solving activity (Strübing 2007 ; Van Dijk 1980 ; Hutchins 1977 ; Grimes 1975 ).

One of the best-documented problem-solving patterns was established by Winter ( 1968 ). Winter analysed thousands of examples of technical texts, and noted that these texts can largely be described in terms of a four-part pattern consisting of Situation, Problem, Solution and Evaluation. This is very similar to the pattern described by Van Dijk ( 1980 ), which consists of Introduction-Theory, Problem-Experiment-Comment and Conclusion. The difference is that in Winter’s view, a solution only becomes a solution after it has been evaluated positively. Hoey changes Winter’s pattern by introducing the concept of Response in place of Solution (Hoey 2001 ). This seems to describe the situation in science better, where evaluation is mandatory for research solutions to be accepted by the community. In Hoey’s pattern, the Situation (which is generally treated as optional) provides background information; the Problem describes an issue which requires attention; the Response provides a way to deal with the issue, and the Evaluation assesses how effective the response is.

An example of this pattern in the context of the Goldilocks story can be seen in Fig.  1 . In this text, there is a preamble providing the setting of the story (i.e. Goldilocks is lost in the woods), which is called the Situation in Hoey’s system. A Problem in encountered when Goldilocks becomes hungry. Her first Response is to try the porridge in big bear’s bowl, but she gives this a negative Evaluation (“too hot!”) and so the pattern returns to the Problem. This continues in a cyclic fashion until the Problem is finally resolved by Goldilocks giving a particular Response a positive Evaluation of baby bear’s porridge (“it’s just right”).

An external file that holds a picture, illustration, etc.
Object name is 11192_2018_2718_Fig1_HTML.jpg

Example of problem-solving pattern when applied to the Goldilocks story.

Reproduced with permission from Hoey ( 2001 )

It would be attractive to detect problem and solution statements automatically in text. This holds true both from a theoretical and a practical viewpoint. Theoretically, we know that sentiment detection is related to problem-solving activity, because of the perception that “bad” situations are transformed into “better” ones via problem-solving. The exact mechanism of how this can be detected would advance the state of the art in text understanding. In terms of linguistic realisation, problem and solution statements come in many variants and reformulations, often in the form of positive or negated statements about the conditions, results and causes of problem–solution pairs. Detecting and interpreting those would give us a reasonably objective manner to test a system’s understanding capacity. Practically, being able to detect any mention of a problem is a first step towards detecting a paper’s specific research goal. Being able to do this has been a goal for scientific information retrieval for some time, and if successful, it would improve the effectiveness of scientific search immensely. Detecting problem and solution statements of papers would also enable us to compare similar papers and eventually even lead to automatic generation of review articles in a field.

There has been some computational effort on the task of identifying problem-solving patterns in text. However, most of the prior work has not gone beyond the usage of keyword analysis and some simple contextual examination of the pattern. Flowerdew ( 2008 ) presents a corpus-based analysis of lexio-grammatical patterns for problem and solution clauses using articles from professional and student reports. Problem and solution keywords were used to search their corpora, and each occurrence was analysed to determine grammatical usage of the keyword. More interestingly, the causal category associated with each keyword in their context was also analysed. For example, Reason–Result or Means-Purpose were common causal categories found to be associated with problem keywords.

The goal of the work by Scott ( 2001 ) was to determine words which are semantically similar to problem and solution, and to determine how these words are used to signal problem-solution patterns. However, their corpus-based analysis used articles from the Guardian newspaper. Since the domain of newspaper text is very different from that of scientific text, we decided not to consider those keywords associated with problem-solving patterns for use in our work.

Instead of a keyword-based approach, Charles ( 2011 ) used discourse markers to examine how the problem-solution pattern was signalled in text. In particular, they examined how adverbials associated with a result such as “thus, therefore, then, hence” are used to signal a problem-solving pattern.

Problem solving also has been studied in the framework of discourse theories such as Rhetorical Structure Theory (Mann and Thompson 1988 ) and Argumentative Zoning (Teufel et al. 2000 ). Problem- and solutionhood constitute two of the original 23 relations in RST (Mann and Thompson 1988 ). While we concentrate solely on this aspect, RST is a general theory of discourse structure which covers many intentional and informational relations. The relationship to Argumentative Zoning is more complicated. The status of certain statements as problem or solutions is one important dimension in the definitions of AZ categories. AZ additionally models dimensions other than problem-solution hood (such as who a scientific idea belongs to, or which intention the authors might have had in stating a particular negative or positive statement). When forming categories, AZ combines aspects of these dimensions, and “flattens” them out into only 7 categories. In AZ it is crucial who it is that experiences the problems or contributes a solution. For instance, the definition of category “CONTRAST” includes statements that some research runs into problems, but only if that research is previous work (i.e., not if it is the work contributed in the paper itself). Similarly, “BASIS” includes statements of successful problem-solving activities, but only if they are achieved by previous work that the current paper bases itself on. Our definition is simpler in that we are interested only in problem solution structure, not in the other dimensions covered in AZ. Our definition is also more far-reaching than AZ, in that we are interested in all problems mentioned in the text, no matter whose problems they are. Problem-solution recognition can therefore be seen as one aspect of AZ which can be independently modelled as a “service task”. This means that good problem solution structure recognition should theoretically improve AZ recognition.

In this work, we approach the task of identifying problem-solving patterns in scientific text. We choose to use the model of problem-solving described by Hoey ( 2001 ). This pattern comprises four parts: Situation, Problem, Response and Evaluation. The Situation element is considered optional to the pattern, and so our focus centres on the core pattern elements.

Goal statement and task

Many surface features in the text offer themselves up as potential signals for detecting problem-solving patterns in text. However, since Situation is an optional element, we decided to focus on either Problem or Response and Evaluation as signals of the pattern. Moreover, we decide to look for each type in isolation. Our reasons for this are as follows: It is quite rare for an author to introduce a problem without resolving it using some sort of response, and so this is a good starting point in identifying the pattern. There are exceptions to this, as authors will sometimes introduce a problem and then leave it to future work, but overall there should be enough signal in the Problem element to make our method of looking for it in isolation worthwhile. The second signal we look for is the use of Response and Evaluation within the same sentence. Similar to Problem elements, we hypothesise that this formulation is well enough signalled externally to help us in detecting the pattern. For example, consider the following Response and Evaluation: “One solution is to use smoothing”. In this statement, the author is explicitly stating that smoothing is a solution to a problem which must have been mentioned in a prior statement. In scientific text, we often observe that solutions implicitly contain both Response and Evaluation (positive) elements. Therefore, due to these reasons there should be sufficient external signals for the two pattern elements we concentrate on here.

When attempting to find Problem elements in text, we run into the issue that the word “problem” actually has at least two word senses that need to be distinguished. There is a word sense of “problem” that means something which must be undertaken (i.e. task), while another sense is the core sense of the word, something that is problematic and negative. Only the latter sense is aligned with our sense of problemhood. This is because the simple description of a task does not predispose problemhood, just a wish to perform some act. Consider the following examples, where the non-desired word sense is being used:

  • “Das and Petrov (2011) also consider the problem of unsupervised bilingual POS induction”. (Chen et al. 2011 ).
  • “In this paper, we describe advances on the problem of NER in Arabic Wikipedia”. (Mohit et al. 2012 ).

Here, the author explicitly states that the phrases in orange are problems, they align with our definition of research tasks and not with what we call here ‘problematic problems’. We will now give some examples from our corpus for the desired, core word sense:

  • “The major limitation of supervised approaches is that they require annotations for example sentences.” (Poon and Domingos 2009 ).
  • “To solve the problem of high dimensionality we use clustering to group the words present in the corpus into much smaller number of clusters”. (Saha et al. 2008 ).

When creating our corpus of positive and negative examples, we took care to select only problem strings that satisfy our definition of problemhood; “ Corpus creation ” section will explain how we did that.

Corpus creation

Our new corpus is a subset of the latest version of the ACL anthology released in March, 2016 1 which contains 22,878 articles in the form of PDFs and OCRed text. 2

The 2016 version was also parsed using ParsCit (Councill et al. 2008 ). ParsCit recognises not only document structure, but also bibliography lists as well as references within running text. A random subset of 2500 papers was collected covering the entire ACL timeline. In order to disregard non-article publications such as introductions to conference proceedings or letters to the editor, only documents containing abstracts were considered. The corpus was preprocessed using tokenisation, lemmatisation and dependency parsing with the Rasp Parser (Briscoe et al. 2006 ).

Definition of ground truth

Our goal was to define a ground truth for problem and solution strings, while covering as wide a range as possible of syntactic variations in which such strings naturally occur. We also want this ground truth to cover phenomena of problem and solution status which are applicable whether or not the problem or solution status is explicitly mentioned in the text.

To simplify the task, we only consider here problem and solution descriptions that are at most one sentence long. In reality, of course, many problem descriptions and solution descriptions go beyond single sentence, and require for instance an entire paragraph. However, we also know that short summaries of problems and solutions are very prevalent in science, and also that these tend to occur in the most prominent places in a paper. This is because scientists are trained to express their contribution and the obstacles possibly hindering their success, in an informative, succinct manner. That is the reason why we can afford to only look for shorter problem and solution descriptions, ignoring those that cross sentence boundaries.

To define our ground truth, we examined the parsed dependencies and looked for a target word (“problem/solution”) in subject position, and then chose its syntactic argument as our candidate problem or solution phrase. To increase the variation, i.e., to find as many different-worded problem and solution descriptions as possible, we additionally used semantically similar words (near-synonyms) of the target words “problem” or “solution” for the search. Semantic similarity was defined as cosine in a deep learning distributional vector space, trained using Word2Vec (Mikolov et al. 2013 ) on 18,753,472 sentences from a biomedical corpus based on all full-text Pubmed articles (McKeown et al. 2016 ). From the 200 words which were semantically closest to “problem”, we manually selected 28 clear synonyms. These are listed in Table  1 . From the 200 semantically closest words to “solution” we similarly chose 19 (Table  2 ). Of the sentences matching our dependency search, a subset of problem and solution candidate sentences were randomly selected.

Selected words for use in problem candidate phrase extraction

Selected words for use in solution candidate phrase extraction

An example of this is shown in Fig.  2 . Here, the target word “drawback” is in subject position (highlighted in red), and its clausal argument (ccomp) is “(that) it achieves low performance” (highlighted in purple). Examples of other arguments we searched for included copula constructions and direct/indirect objects.

An external file that holds a picture, illustration, etc.
Object name is 11192_2018_2718_Fig2_HTML.jpg

Example of our extraction method for problems using dependencies. (Color figure online)

If more than one candidate was found in a sentence, one was chosen at random. Non-grammatical sentences were excluded; these might appear in the corpus as a result of its source being OCRed text.

800 candidates phrases expressing problems and solutions were automatically extracted (1600 total) and then independently checked for correctness by two annotators (the two authors of this paper). Both authors found the task simple and straightforward. Correctness was defined by two criteria:

  • An unexplained phenomenon or a problematic state in science; or
  • A research question; or
  • An artifact that does not fulfil its stated specification.
  • The phrase must not lexically give away its status as problem or solution phrase.

The second criterion saves us from machine learning cues that are too obvious. If for instance, the phrase itself contained the words “lack of” or “problematic” or “drawback”, our manual check rejected it, because it would be too easy for the machine learner to learn such cues, at the expense of many other, more generally occurring cues.

Sampling of negative examples

We next needed to find negative examples for both cases. We wanted them not to stand out on the surface as negative examples, so we chose them so as to mimic the obvious characteristics of the positive examples as closely as possible. We call the negative examples ‘non-problems’ and ‘non-solutions’ respectively. We wanted the only differences between problems and non-problems to be of a semantic nature, nothing that could be read off on the surface. We therefore sampled a population of phrases that obey the same statistical distribution as our problem and solution strings while making sure they really are negative examples. We started from sentences not containing any problem/solution words (i.e. those used as target words). From each such sentence, we at random selected one syntactic subtree contained in it. From these, we randomly selected a subset of negative examples of problems and solutions that satisfy the following conditions:

  • The distribution of the head POS tags of the negative strings should perfectly match the head POS tags 3 of the positive strings. This has the purpose of achieving the same proportion of surface syntactic constructions as observed in the positive cases.
  • The average lengths of the negative strings must be within a tolerance of the average length of their respective positive candidates e.g., non-solutions must have an average length very similar (i.e. + / -  small tolerance) to solutions. We chose a tolerance value of 3 characters.

Again, a human quality check was performed on non-problems and non-solutions. For each candidate non-problem statement, the candidate was accepted if it did not contain a phenomenon, a problematic state, a research question or a non-functioning artefact. If the string expressed a research task, without explicit statement that there was anything problematic about it (i.e., the ‘wrong’ sense of “problem”, as described above), it was allowed as a non-problem. A clause was confirmed as a non-solution if the string did not represent both a response and positive evaluation.

If the annotator found that the sentence had been slightly mis-parsed, but did contain a candidate, they were allowed to move the boundaries for the candidate clause. This resulted in cleaner text, e.g., in the frequent case of coordination, when non-relevant constituents could be removed.

From the set of sentences which passed the quality-test for both independent assessors, 500 instances of positive and negative problems/solutions were randomly chosen (i.e. 2000 instances in total). When checking for correctness we found that most of the automatically extracted phrases which did not pass the quality test for problem-/solution-hood were either due to obvious learning cues or instances where the sense of problem-hood used is relating to tasks (cf. “ Goal statement and task ” section).

Experimental design

In our experiments, we used three classifiers, namely Naïve Bayes, Logistic Regression and a Support Vector Machine. For all classifiers an implementation from the WEKA machine learning library (Hall et al. 2009 ) was chosen. Given that our dataset is small, tenfold cross-validation was used instead of a held out test set. All significance tests were conducted using the (two-tailed) Sign Test (Siegel 1956 ).

Linguistic correlates of problem- and solution-hood

We first define a set of features without taking the phrase’s context into account. This will tell us about the disambiguation ability of the problem/solution description’s semantics alone. In particular, we cut out the rest of the sentence other than the phrase and never use it for classification. This is done for similar reasons to excluding certain ‘give-away’ phrases inside the phrases themselves (as explained above). As the phrases were found using templates, we know that the machine learner would simply pick up on the semantics of the template, which always contains a synonym of “problem” or “solution”, thus drowning out the more hidden features hopefully inherent in the semantics of the phrases themselves. If we allowed the machine learner to use these stronger features, it would suffer in its ability to generalise to the real task.

ngrams Bags of words are traditionally successfully used for classification tasks in NLP, so we included bags of words (lemmas) within the candidate phrases as one of our features (and treat it as a baseline later on). We also include bigrams and trigrams as multi-word combinations can be indicative of problems and solutions e.g., “combinatorial explosion”.

Polarity Our second feature concerns the polarity of each word in the candidate strings. Consider the following example of a problem taken from our dataset: “very conservative approaches to exact and partial string matches overgenerate badly”. In this sentence, words such as “badly” will be associated with negative polarity, therefore being useful in determining problem-hood. Similarly, solutions will often be associated with a positive sentiment e.g. “smoothing is a good way to overcome data sparsity” . To do this, we perform word sense disambiguation of each word using the Lesk algorithm (Lesk 1986 ). The polarity of the resulting synset in SentiWordNet (Baccianella et al. 2010 ) was then looked up and used as a feature.

Syntax Next, a set of syntactic features were defined by using the presence of POS tags in each candidate. This feature could be helpful in finding syntactic patterns in problems and solutions. We were careful not to base the model directly on the head POS tag and the length of each candidate phrase, as these are defining characteristics used for determining the non-problem and non-solution candidate set.

Negation Negation is an important property that can often greatly affect the polarity of a phrase. For example, a phrase containing a keyword pertinent to solution-hood may be a good indicator but with the presence of negation may flip the polarity to problem-hood e.g., “this can’t work as a solution”. Therefore, presence of negation is determined.

Exemplification and contrast Problems and solutions are often found to be coupled with examples as they allow the author to elucidate their point. For instance, consider the following solution: “Once the translations are generated, an obvious solution is to pick the most fluent alternative, e.g., using an n-gram language model”. (Madnani et al. 2012 ). To acknowledge this, we check for presence of exemplification. In addition to examples, problems in particular are often found when contrast is signalled by the author (e.g. “however, “but”), therefore we also check for presence of contrast in the problem and non-problem candidates only.

Discourse Problems and solutions have also been found to have a correlation with discourse properties. For example, problem-solving patterns often occur in the background sections of a paper. The rationale behind this is that the author is conventionally asked to objectively criticise other work in the background (e.g. describing research gaps which motivate the current paper). To take this in account, we examine the context of each string and capture the section header under which it is contained (e.g. Introduction, Future work). In addition, problems and solutions are often found following the Situation element in the problem-solving pattern (cf. “ Introduction ” section). This preamble setting up the problem or solution means that these elements are likely not to be found occurring at the beginning of a section (i.e. it will usually take some sort of introduction to detail how something is problematic and why a solution is needed). Therefore we record the distance from the candidate string to the nearest section header.

Subcategorisation and adverbials Solutions often involve an activity (e.g. a task). We also model the subcategorisation properties of the verbs involved. Our intuition was that since problematic situations are often described as non-actions, then these are more likely to be intransitive. Conversely solutions are often actions and are likely to have at least one argument. This feature was calculated by running the C&C parser (Curran et al. 2007 ) on each sentence. C&C is a supertagger and parser that has access to subcategorisation information. Solutions are also associated with resultative adverbial modification (e.g. “thus, therefore, consequently”) as it expresses the solutionhood relation between the problem and the solution. It has been seen to occur frequently in problem-solving patterns, as studied by Charles ( 2011 ). Therefore, we check for presence of resultative adverbial modification in the solution and non-solution candidate only.

Embeddings We also wanted to add more information using word embeddings. This was done in two different ways. Firstly, we created a Doc2Vec model (Le and Mikolov 2014 ), which was trained on  ∼  19  million sentences from scientific text (no overlap with our data set). An embedding was created for each candidate sentence. Secondly, word embeddings were calculated using the Word2Vec model (cf. “ Corpus creation ” section). For each candidate head, the full word embedding was included as a feature. Lastly, when creating our polarity feature we query SentiWordNet using synsets assigned by the Lesk algorithm. However, not all words are assigned a sense by Lesk, so we need to take care when that happens. In those cases, the distributional semantic similarity of the word is compared to two words with a known polarity, namely “poor” and “excellent”. These particular words have traditionally been consistently good indicators of polarity status in many studies (Turney 2002 ; Mullen and Collier 2004 ). Semantic similarity was defined as cosine similarity on the embeddings of the Word2Vec model (cf. “ Corpus creation ” section).

Modality Responses to problems in scientific writing often express possibility and necessity, and so have a close connection with modality. Modality can be broken into three main categories, as described by Kratzer ( 1991 ), namely epistemic (possibility), deontic (permission / request / wish) and dynamic (expressing ability).

Problems have a strong relationship to modality within scientific writing. Often, this is due to a tactic called “hedging” (Medlock and Briscoe 2007 ) where the author uses speculative language, often using Epistemic modality, in an attempt to make either noncommital or vague statements. This has the effect of allowing the author to distance themselves from the statement, and is often employed when discussing negative or problematic topics. Consider the following example of Epistemic modality from Nakov and Hearst ( 2008 ): “A potential drawback is that it might not work well for low-frequency words”.

To take this linguistic correlate into account as a feature, we replicated a modality classifier as described by (Ruppenhofer and Rehbein 2012 ). More sophisticated modality classifiers have been recently introduced, for instance using a wide range of features and convolutional neural networks, e.g, (Zhou et al. 2015 ; Marasović and Frank 2016 ). However, we wanted to check the effect of a simpler method of modality classification on the final outcome first before investing heavily into their implementation. We trained three classifiers using the subset of features which Ruppenhofer et al. reported as performing best, and evaluated them on the gold standard dataset provided by the authors 4 . The results of the are shown in Table  3 . The dataset contains annotations of English modal verbs on the 535 documents of the first MPQA corpus release (Wiebe et al. 2005 ).

Modality classifier results (precision/recall/f-measure) using Naïve Bayes (NB), logistic regression, and a support vector machine (SVM)

Italicized results reflect highest f-measure reported per modal category

Logistic Regression performed best overall and so this model was chosen for our upcoming experiments. With regards to the optative and concessive modal categories, they can be seen to perform extremely poorly, with the optative category receiving a null score across all three classifiers. This is due to a limitation in the dataset, which is unbalanced and contains very few instances of these two categories. This unbalanced data also is the reason behind our decision of reporting results in terms of recall, precision and f-measure in Table  3 .

The modality classifier was then retrained on the entirety of the dataset used by Ruppenhofer and Rehbein ( 2012 ) using the best performing model from training (Logistic Regression). This new model was then used in the upcoming experiment to predict modality labels for each instance in our dataset.

As can be seen from Table  4 , we are able to achieve good results for distinguishing a problematic statement from non-problematic one. The bag-of-words baseline achieves a very good performance of 71.0% for the Logistic Regression classifier, showing that there is enough signal in the candidate phrases alone to distinguish them much better than random chance.

Results distinguishing problems from non-problems using Naïve Bayes (NB), logistic regression (LR) and a support vector machine (SVM)

Each feature set’s performance is shown in isolation followed by combinations with other features. Tenfold stratified cross-validation was used across all experiments. Statistical significance with respect to the baseline at the p  < 0.05 , 0.01, 0.001 levels is denoted by *, ** and *** respectively

Taking a look at Table  5 , which shows the information gain for the top lemmas,

Information gain (IG) in bits of top lemmas from the bag-of-words baseline in Table  4

we can see that the top lemmas are indeed indicative of problemhood (e.g. “limit”,“explosion”). Bigrams achieved good performance on their own (as did negation and discourse) but unfortunately performance deteriorated when using trigrams, particularly with the SVM and LR. The subcategorisation feature was the worst performing feature in isolation. Upon taking a closer look at our data, we saw that our hypothesis that intransitive verbs are commonly used in problematic statements was true, with over 30% of our problems (153) using them. However, due to our sampling method for the negative cases we also picked up many intransitive verbs (163). This explains the almost random chance performance (i.e.  50%) given that the distribution of intransitive verbs amongst the positive and negative candidates was almost even.

The modality feature was the most expensive to produce, but also didn’t perform very well is isolation. This surprising result may be partly due to a data sparsity issue

where only a small portion (169) of our instances contained modal verbs. The breakdown of how many types of modal senses which occurred is displayed in Table  6 . The most dominant modal sense was epistemic. This is a good indicator of problemhood (e.g. hedging, cf. “ Linguistic correlates of problem- and solution-hood ” section) but if the accumulation of additional data was possible, we think that this feature may have the potential to be much more valuable in determining problemhood. Another reason for the performance may be domain dependence of the classifier since it was trained on text from different domains (e.g. news). Additionally, modality has also shown to be helpful in determining contextual polarity (Wilson et al. 2005 ) and argumentation (Becker et al. 2016 ), so using the output from this modality classifier may also prove useful for further feature engineering taking this into account in future work.

Number of instances of modal senses

Polarity managed to perform well but not as good as we hoped. However, this feature also suffers from a sparsity issue resulting from cases where the Lesk algorithm (Lesk 1986 ) is not able to resolve the synset of the syntactic head.

Knowledge of syntax provides a big improvement with a significant increase over the baseline results from two of the classifiers.

Examining this in greater detail, POS tags with high information gain mostly included tags from open classes (i.e. VB-, JJ-, NN- and RB-). These tags are often more associated with determining polarity status than tags such as prepositions and conjunctions (i.e. adverbs and adjectives are more likely to be describing something with a non-neutral viewpoint).

The embeddings from Doc2Vec allowed us to obtain another significant increase in performance (72.9% with Naïve Bayes) over the baseline and polarity using Word2Vec provided the best individual feature result (77.2% with SVM).

Combining all features together, each classifier managed to achieve a significant result over the baseline with the best result coming from the SVM (81.8%). Problems were also better classified than non-problems as shown in the confusion matrix in Table  7 . The addition of the Word2Vec vectors may be seen as a form of smoothing in cases where previous linguistic features had a sparsity issue i.e., instead of a NULL entry, the embeddings provide some sort of value for each candidate. Particularly wrt. the polarity feature, cases where Lesk was unable to resolve a synset meant that a ZERO entry was added to the vector supplied to the machine learner. Amongst the possible combinations, the best subset of features was found by combining all features with the exception of bigrams, trigrams, subcategorisation and modality. This subset of features managed to improve results in both the Naïve Bayes and SVM classifiers with the highest overall result coming from the SVM (82.3%).

Confusion matrix for problems

The results for disambiguation of solutions from non-solutions can be seen in Table  8 . The bag-of-words baseline performs much better than random, with the performance being quite high with regard to the SVM (this result was also higher than any of the baseline performances from the problem classifiers). As shown in Table  9 , the top ranked lemmas from the best performing model (using information gain) included “use” and “method”. These lemmas are very indicative of solutionhood and so give some insight into the high baseline returned from the machine learners. Subcategorisation and the result adverbials were the two worst performing features. However, the low performance for subcategorisation is due to the sampling of the non-solutions (the same reason for the low performance of the problem transitivity feature). When fitting the POS-tag distribution for the negative samples, we noticed that over 80% of the head POS-tags were verbs (much higher than the problem heads). The most frequent verb type being the infinite form.

Results distinguishing solutions from non-solutions using Naïve Bayes (NB), logistic regression (LR) and a support vector machine (SVM)

Each feature set’s performance is shown in isolation followed by combinations with other features. Tenfold stratified cross-validation was used across all experiments

Information gain (IG) in bits of top lemmas from the bag-of-words baseline in Table  8

This is not surprising given that a very common formulation to describe a solution is to use the infinitive “TO” since it often describes a task e.g., “One solution is to find the singletons and remove them”. Therefore, since the head POS tags of the non-solutions had to match this high distribution of infinitive verbs present in the solution, the subcategorisation feature is not particularly discriminatory. Polarity, negation, exemplification and syntactic features were slightly more discriminate and provided comparable results. However, similar to the problem experiment, the embeddings from Word2Vec and Doc2Vec proved to be the best features, with polarity using Word2Vec providing the best individual result (73.4% with SVM).

Combining all features together managed to improve over each feature in isolation and beat the baseline using all three classifiers. Furthermore, when looking at the confusion matrix in Table  10 the solutions were classified more accurately than the non-solutions. The best subset of features was found by combining all features without adverbial of result, bigrams, exemplification, negation, polarity and subcategorisation. The best result using this subset of features was achieved by the SVM with 79.7%. It managed to greatly improve upon the baseline but was just shy of achieving statistical significance ( p = 0.057 ).

Confusion matrix for solutions

In this work, we have presented new supervised classifiers for the task of identifying problem and solution statements in scientific text. We have also introduced a new corpus for this task and used it for evaluating our classifiers. Great care was taken in constructing the corpus by ensuring that the negative and positive samples were closely matched in terms of syntactic shape. If we had simply selected random subtrees for negative samples without regard for any syntactic similarity with our positive samples, the machine learner may have found easy signals such as sentence length. Additionally, since we did not allow the machine learner to see the surroundings of the candidate string within the sentence, this made our task even harder. Our performance on the corpus shows promise for this task, and proves that there are strong signals for determining both the problem and solution parts of the problem-solving pattern independently.

With regard to classifying problems from non-problems, features such as the POS tag, document and word embeddings provide the best features, with polarity using the Word2Vec embeddings achieving the highest feature performance. The best overall result was achieved using an SVM with a subset of features (82.3%). Classifying solutions from non-solutions also performs well using the embedding features, with the best feature also being polarity using the Word2Vec embeddings, and the highest result also coming from the SVM with a feature subset (79.7%).

In future work, we plan to link problem and solution statements which were found independently during our corpus creation. Given that our classifiers were trained on data solely from the ACL anthology, we also hope to investigate the domain specificity of our classifiers and see how well they can generalise to domains other than ACL (e.g. bioinformatics). Since we took great care at removing the knowledge our classifiers have of the explicit statements of problem and solution (i.e. the classifiers were trained only on the syntactic argument of the explicit statement of problem-/solution-hood), our classifiers should in principle be in a good position to generalise, i.e., find implicit statements too. In future work, we will measure to which degree this is the case.

To facilitate further research on this topic, all code and data used in our experiments can be found here: www.cl.cam.ac.uk/~kh562/identifying-problems-and-solutions.html

Acknowledgements

The first author has been supported by an EPSRC studentship (Award Ref: 1641528). We thank the reviewers for their helpful comments.

1 http://acl-arc.comp.nus.edu.sg/ .

2 The corpus comprises 3,391,198 sentences, 71,149,169 words and 451,996,332 characters.

3 The head POS tags were found using a modification of the Collins’ Head Finder. This modified algorithm addresses some of the limitations of the head finding heuristics described by Collins ( 2003 ) and can be found here: http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/trees/ModCollinsHeadFinder.html .

4 https://www.uni-hildesheim.de/ruppenhofer/data/modalia_release1.0.tgz.

Contributor Information

Kevin Heffernan, Email: [email protected] .

Simone Teufel, Email: [email protected] .

  • Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. LREC. 2010; 10 :2200–2204. [ Google Scholar ]
  • Becker, M., Palmer, A., & Frank, A. (2016). Clause types and modality in argumentative microtexts. In Workshop on foundations of the language of argumentation (in conjunction with COMMA) .
  • Briscoe, T., Carroll, J., & Watson, R. (2006). The second release of the rasp system. In Proceedings of the COLING/ACL on interactive presentation sessions, association for computational linguistics pp. 77–80.
  • Chandrasekaran B. Towards a taxonomy of problem solving types. AI Magazine. 1983; 4 (1):9. [ Google Scholar ]
  • Charles M. Adverbials of result: Phraseology and functions in the problem-solution pattern. Journal of English for Academic Purposes. 2011; 10 (1):47–60. doi: 10.1016/j.jeap.2011.01.002. [ CrossRef ] [ Google Scholar ]
  • Chen, D., Dyer, C., Cohen, S. B., & Smith, N. A. (2011). Unsupervised bilingual pos tagging with markov random fields. In Proceedings of the first workshop on unsupervised learning in NLP, association for computational linguistics pp. 64–71.
  • Collins M. Head-driven statistical models for natural language parsing. Computational Linguistics. 2003; 29 (4):589–637. doi: 10.1162/089120103322753356. [ CrossRef ] [ Google Scholar ]
  • Councill, I. G., Giles, C. L., & Kan, M. Y. (2008). Parscit: An open-source CRF reference string parsing package. In LREC .
  • Curran, J. R., Clark, S., & Bos, J. (2007). Linguistically motivated large-scale NLP with C&C and boxer. In Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions, association for computational linguistics pp. 33–36.
  • Flowerdew L. Corpus-based analyses of the problem-solution pattern: A phraseological approach. Amsterdam: John Benjamins Publishing; 2008. [ Google Scholar ]
  • Grimes JE. The thread of discourse. Berlin: Walter de Gruyter; 1975. [ Google Scholar ]
  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The weka data mining software: An update. ACM SIGKDD Explorations Newsletter. 2009; 11 (1):10–18. doi: 10.1145/1656274.1656278. [ CrossRef ] [ Google Scholar ]
  • Hoey M. Textual interaction: An introduction to written discourse analysis. Portland: Psychology Press; 2001. [ Google Scholar ]
  • Hutchins J. On the structure of scientific texts. UEA Papers in Linguistics. 1977; 5 (3):18–39. [ Google Scholar ]
  • Jonassen DH. Toward a design theory of problem solving. Educational Technology Research and Development. 2000; 48 (4):63–85. doi: 10.1007/BF02300500. [ CrossRef ] [ Google Scholar ]
  • Jordan MP. Short texts to explain problem-solution structures-and vice versa. Instructional Science. 1980; 9 (3):221–252. doi: 10.1007/BF00177328. [ CrossRef ] [ Google Scholar ]
  • Kratzer, A. (1991). Modality. In von Stechow & Wunderlich (Eds.), Semantics: An international handbook of contemporary research .
  • Le QV, Mikolov T. Distributed representations of sentences and documents. ICML. 2014; 14 :1188–1196. [ Google Scholar ]
  • Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone. In Proceedings of the 5th annual international conference on Systems documentation, ACM (pp. 24–26).
  • Madnani, N., Tetreault, J., & Chodorow, M. (2012). Exploring grammatical error correction with not-so-crummy machine translation. In Proceedings of the seventh workshop on building educational applications using NLP, association for computational linguistics pp. 44–53.
  • Mann WC, Thompson SA. Rhetorical structure theory: Toward a functional theory of text organization. Text-Interdisciplinary Journal for the Study of Discourse. 1988; 8 (3):243–281. doi: 10.1515/text.1.1988.8.3.243. [ CrossRef ] [ Google Scholar ]
  • Marasović, A., & Frank, A. (2016). Multilingual modal sense classification using a convolutional neural network. In Proceedings of the 1st Workshop on Representation Learning for NLP .
  • McKeown K, Daume H, Chaturvedi S, Paparrizos J, Thadani K, Barrio P, Biran O, Bothe S, Collins M, Fleischmann KR, et al. Predicting the impact of scientific concepts using full-text features. Journal of the Association for Information Science and Technology. 2016; 67 :2684–2696. doi: 10.1002/asi.23612. [ CrossRef ] [ Google Scholar ]
  • Medlock B, Briscoe T. Weakly supervised learning for hedge classification in scientific literature. ACL, Citeseer. 2007; 2007 :992–999. [ Google Scholar ]
  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111–3119).
  • Mohit, B., Schneider, N., Bhowmick, R., Oflazer, K., & Smith, N. A. (2012). Recall-oriented learning of named entities in arabic wikipedia. In Proceedings of the 13th conference of the European chapter of the association for computational linguistics, association for computational linguistics (pp. 162–173).
  • Mullen T, Collier N. Sentiment analysis using support vector machines with diverse information sources. EMNLP. 2004; 4 :412–418. [ Google Scholar ]
  • Nakov, P., Hearst, M. A. (2008). Solving relational similarity problems using the web as a corpus. In: ACL (pp. 452–460).
  • Poon, H., & Domingos, P. (2009). Unsupervised semantic parsing. In Proceedings of the 2009 conference on empirical methods in natural language processing: Volume 1-association for computational linguistics (pp. 1–10).
  • Ruppenhofer, J., & Rehbein, I. (2012). Yes we can!? Annotating the senses of English modal verbs. In Proceedings of the 8th international conference on language resources and evaluation (LREC), Citeseer (pp. 24–26).
  • Saha, S. K., Mitra, P., & Sarkar, S. (2008). Word clustering and word selection based feature reduction for maxent based hindi ner. In ACL (pp. 488–495).
  • Scott, M. (2001). Mapping key words to problem and solution. In Patterns of text: In honour of Michael Hoey Benjamins, Amsterdam (pp. 109–127).
  • Siegel S. Nonparametric statistics for the behavioral sciences. New York: McGraw-hill; 1956. [ Google Scholar ]
  • Strübing, J. (2007). Research as pragmatic problem-solving: The pragmatist roots of empirically-grounded theorizing. In The Sage handbook of grounded theory (pp. 580–602).
  • Teufel, S., et al. (2000). Argumentative zoning: Information extraction from scientific text. PhD Thesis, Citeseer .
  • Turney, P. D. (2002). Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews. In Proceedings of the 40th annual meeting on association for computational linguistics, association for computational linguistics (pp. 417–424).
  • Van Dijk TA. Text and context explorations in the semantics and pragmatics of discourse. London: Longman; 1980. [ Google Scholar ]
  • Wiebe J, Wilson T, Cardie C. Annotating expressions of opinions and emotions in language. Language Resources and Evaluation. 2005; 39 (2):165–210. doi: 10.1007/s10579-005-7880-9. [ CrossRef ] [ Google Scholar ]
  • Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the conference on human language technology and empirical methods in natural language processing, association for computational linguistics (pp. 347–354).
  • Winter, E. O. (1968). Some aspects of cohesion. In Sentence and clause in scientific English . University College London.
  • Zhou, M., Frank, A., Friedrich, A., & Palmer, A. (2015). Semantically enriched models for modal sense classification. In Workshop on linking models of lexical, sentential and discourse-level semantics (LSDSem) (p. 44).

IMAGES

  1. The 5 Steps of Problem Solving

    one possible first step in scientific problem solving is to

  2. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    one possible first step in scientific problem solving is to

  3. example of solving problem using scientific method

    one possible first step in scientific problem solving is to

  4. 5 step problem solving method

    one possible first step in scientific problem solving is to

  5. Draw A Map Showing The Problem Solving Process

    one possible first step in scientific problem solving is to

  6. Scientific Method: Definition and Examples

    one possible first step in scientific problem solving is to

VIDEO

  1. Steps in Scientific Method (Simplified)

  2. Vocabulary About Scientific Problem-Solving Preview 2, LevelG. i-Ready Answers

  3. College Physics 1: Lecture 10

  4. Scientific Method, steps involved in scientific method/research, scientific research

  5. Scientific Problem-Solving: GPT-4 VISION (multimodal)

  6. Foundations of Science#1: The Scientific Method

COMMENTS

  1. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  2. Using the Scientific Method to Solve Problems

    The scientific method is a process used to explore observations and answer questions. Originally used by scientists looking to prove new theories, its use has spread into many other areas, including that of problem-solving and decision-making. The scientific method is designed to eliminate the influences of bias, prejudice and personal beliefs ...

  3. The 6 Scientific Method Steps and How to Use Them

    The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation ...

  4. Steps in the Scientific Method of Problem Solving Flashcards

    Step 1. DEFINE THE SPECIFIC PROBLEM. -The starting point is recognizing and stating a very specific question/. Step 2. COLLECT INFORMATION BY MAKING OBSERVATIONS. -Gather background information on the problem, and make many observations, information obtained by using the senses. Step 3. FORM A HYPOTHESIS.

  5. 1.2: Scientific Approach for Solving Problems

    In doing so, they are using the scientific method. 1.2: Scientific Approach for Solving Problems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. Chemists expand their knowledge by making observations, carrying out experiments, and testing hypotheses to develop laws to summarize their results and ...

  6. Chapter 6: Scientific Problem Solving

    Exercise. Explain how you would solve these problems using the four steps of the scientific process. Example: The fire alarm is not working. Answer: 1) Observe/Define the problem: it does not beep when I push the button. 2) Hypothesis: it is caused by a dead battery. 3) Test: try a new battery.

  7. 1.3: The Scientific Method

    The scientific method is a method of investigation involving experimentation and observation to acquire new knowledge, solve problems, and answer questions. The key steps in the scientific method include the following: Step 1: Make observations. Step 2: Formulate a hypothesis. Step 3: Test the hypothesis through experimentation.

  8. 1.1.6: Scientific Problem Solving

    The scientific method, as developed by Bacon and others, involves several steps: Ask a question - identify the problem to be considered. Make observations - gather data that pertains to the question. Propose an explanation (a hypothesis) for the observations. Make new observations to test the hypothesis further.

  9. The Scientific Method: What Is It?

    The scientific method is a step-by-step problem-solving process. These steps include: ... One possible explanation that we could test is that the power outlet is broken. ... It can help you solve ...

  10. Steps of the Scientific Method

    The scientific method was not invented by any one person, but is the outcome of centuries of debate about how best to find out how the natural world works. The ancient Greek philosopher Aristotle was among the first known people to promote that observation and reasoning must be applied to figure out how nature works.

  11. PDF The Steps in Mathematical and Scientific Problem Solving

    The purpose of this writing is to present what amounts to a check-list of problem-solving steps. These steps will be presented with limited explanation, such explanations will be made more explicit in future writings. Scientific Problems There are, broadly speaking, four types of problems in science; observational, mathematical,

  12. Earth Science chapter 1 Flashcards

    Math Foundations. Probability. Discrete Math. View all. Science. Biology. Chemistry. Physics. Medicine. Computer Science. Engineering. Earth Science. View all. ... One possible first step in scientific problem-solving is to. Observation. A possible explanation for a scientific problem is called a(an) Upgrade to remove ads. Only $35.99/year ...

  13. The scientific method (article)

    The scientific method. At the core of physics and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  14. Fundamentals

    What is the first step of the seven steps of scientific problem-solving?

  15. Identifying a Scientific Problem

    Identifying a Problem. Picture yourself playing with a ball. You throw it up, and you watch it fall back down. You climb up a tree, and you let the ball roll off a branch and then down to the ...

  16. 1.1: The Scientific Method

    The scientific method is a method of research with defined steps that include experiments and careful observation. The scientific method was used even in ancient times, but it was first documented by England's Sir Francis Bacon (1561-1626; Figure 1.1.2 1.1. 2 ), who set up inductive methods for scientific inquiry.

  17. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  18. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  19. PDF Scientific Method How do Scientists Solve problems

    Formulate student's ideas into a chart of steps in the scientific method. Determine with the students how a scientist solves problems. • Arrange students in working groups of 3 or 4. Students are to attempt to discover what is in their mystery box. • The group must decide on a procedure to determine the contents of their box and formulate ...

  20. Identifying problems and solutions in scientific text

    Introduction. Problem solving is generally regarded as the most important cognitive activity in everyday and professional contexts (Jonassen 2000).Many studies on formalising the cognitive process behind problem-solving exist, for instance (Chandrasekaran 1983).Jordan argues that we all share knowledge of the thought/action problem-solution process involved in real life, and so our writings ...

  21. How to Use the Scientific Method for Problem-Solving

    Define the problem. 2. Formulate a hypothesis. 3. Design and conduct an experiment. 4. Analyze and interpret the results. 5. Communicate and report the findings.

  22. The Scientific Method

    The scientific method is arguably one of the most powerful, if not the most powerful methodology in critical thinking for discovering how things work. For centuries, scientists, engineers, mathematicians, and others have used this method to advance the human knowledge base. The scientific method uses hypothesis, prediction, controlled ...

  23. One Possible First Step In Scientific Problem Solving Is To (2022

    4 One Possible First Step In Scientific Problem Solving Is To 2022-11-04 inspired Neo-conservatives intervened in the foreign policy establishment of the US in order to realise the policy of 'regime change' began to emerge soon after the invasion, and unanswered questions remain a decade later. This book addresses these claims, focusing