• Explanatory Research: Types, Examples, Pros & Cons

busayo.longe

Explanatory research is designed to do exactly what it sounds like: explain, and explore. You ask questions, learn about your target market, and develop hypotheses for testing in your study. This article will take you through some of the types of explanatory research and what they are used for.

What is Explanatory Research?

Explanatory research is defined as a strategy used for collecting data for the purpose of explaining a phenomenon. Because the phenomenon being studied began with a single piece of data, it is up to the researcher to collect more pieces of data. 

In other words, explanatory research is a method used to investigate a phenomenon (a situation worth studying) that had not been studied before or had not been well explained previously in a proper way. It is a process in which the purpose is to find out what would be a potential answer to the problem.

This method of research enables you to find out what does not work as well as what does and once you have found this information, you can take measures for developing better alternatives that would improve the process being studied. The goal of explanatory research is to answer the question “How,” and it is most often conducted by people who want to understand why something works the way it does, or why something happens as it does.

Read: How to Write a Problem Statement for your Research

By using this method, researchers are able to explain why something is happening and how it happens. In other words, explanatory research can be used to “explain” something, by providing the right context. This is usually done through the use of surveys and interviews.

Importance of Explanatory Research

Explanatory research helps researchers to better understand a subject, but it does not help them to predict what might happen in the future. Explanatory research is also known by other names, such as ex post facto (Latin for “after the fact”) and causal research.

The most important goal of explanatory research is to help understand a given phenomenon. This can be done through basic or applied research . 

Basic explanatory research, also known as pure or fundamental research, is conducted without any specific real-world application in mind. Applied explanatory research attempts to develop new knowledge that can be used to improve humans’ everyday lives. 

Read: How to Write a Thesis Statement for Your Research: Tips + Examples

For example, you might want to know why people buy certain products, why companies change their business processes, or what motivates people in the workplace. Explanatory research starts with a theory or hypothesis and then gathers evidence to prove or disprove the theory. 

Most explanatory research uses surveys to gather information from a pool of respondents . The results will then provide information about the target population as a whole.

Purpose of Explanatory Research

The purpose of explanatory research is to explore a topic and develop a deeper understanding of it so that it can be described or explained more fully. The researcher sets out with a specific question or hypothesis in mind, which will guide the data collection and analysis process.

Explanatory research can take any number of forms, from experimental studies in which researchers test a hypothesis by manipulating variables, to interviews and surveys that are used to gather insights from participants about their experiences. Explanatory research seeks neither to generate new knowledge nor solve a specific problem; rather it seeks to understand why something happens.

For example, imagine that you would like to know whether one’s age affects his or her ability to use a particular type of computer software. You develop the hypothesis that older people will have more difficulty using the software than younger people. 

In order to test your hypothesis and learn more about the relationship between age and software usage, you design and conduct an explanatory study.

Read: How to Write An Abstract For Research Papers: Tips & Examples

Characteristics of Explanatory Research

Explanatory research is used to explain something that has already happened but it doesn’t try to control anything, nor does it seek to predict what will happen. Instead, its aim is to understand what has happened when it comes to a certain phenomenon.

Here are some of the characteristics of explanatory research, they include:

  • It is used when the researcher wants to explain the relationship between two variables that the researcher cannot manipulate. This means that the researcher must rely on secondary data instead to understand the variables.
  • In explanatory research, the data is collected before the study begins and is usually collected by a different individual/organization than that of the researcher.
  • Explanatory research does not involve random sampling or random allocation (the process of assigning subjects and participants to different study groups).

Types of Explanatory Research

Explanatory research generally focuses on the “why” questions. For example, a business might ask why customers aren’t buying their product or how they can improve their sales process. Types of explanatory research include:

1. Case studies: Case studies allow researchers to examine companies that experienced the same situation as them. This helps them understand what worked and what didn’t work for the other company.

 Explore: Formplus Customer Success Stories and Case Studies

2. Literature research: Literature research involves examining and reviewing existing academic literature on a topic related to your projects, such as a particular strategy or method. Literature research allows researchers to see how other people have discussed a similar problem and how they arrived at their conclusions.

3. Observations: Observations involve gathering information by observing events without interfering with them. They’re useful for gathering information about social interactions, such as who talks to whom on a subway platform or how people react to certain ads in public spaces, like billboards and bus shelters.

4. Pilot studies: Pilot studies are small versions of larger studies that help researchers prepare for larger studies by testing out methods, procedures, or instruments before using them in the final study design.

Read: Research Report: Definition, Types + [Writing Guide]

5. Focus groups: Focus groups involves gathering a group of people so participants can share opinions, instead of answering questions

Difference between Explanatory and Exploratory Research

Explanatory research is a type of research that answers the question “why.” It explains why something happens and it helps to understand what caused something to happen.

Explanatory research always has a clear objective in mind, and it’s all about the execution of that objective. Its main focus is to answer questions like “why?” and “how?”

Exploratory research on the other hand is a form of observational research, meaning that it involves observing and measuring what already exists. Exploratory research is also used when the researcher doesn’t know what they’re looking for. 

Its purpose is to help researchers better understand a subject so that they can develop a theory. It is not about drawing any conclusion but about learning more about the subject. 

Examples of Explanatory Research

Explanatory research will make it easier to find explanations for things that are difficult to understand. 

For example, if you’re trying to figure out why someone got sick, explanatory research can help you look at all of your options and figure out what happened.

In this way, it is also used in order to determine whether or not something was caused by a person or an event. If a person was involved, you might want to consider looking at other people who may have been involved as well.

It can also be useful for determining whether or not the person who caused the problem has changed over time. This can be especially helpful when you’re dealing with a long-term relationship where there have been many changes.

Read: 21 Chrome Extensions for Academic Researchers in 2022

Let us assume a researcher wants to figure out what happened during an accident and how it happened. 

Explanatory research will try to understand if a person was driving while intoxicated, or if the person had been under the influence of alcohol or drugs at the time of their death. If they were not, then they may have had some other medical condition that caused them to pass away unexpectedly.

In the two examples, explanatory research wanted to answer the question of what happened and why did it happen.

Advantages of Explanatory Research

Here are some of the advantages of explanatory research:

  • Explanatory research can explain how something happened
  • It also helps to understand a cause of a phenomenon
  • It is great in predicting what will happen in the future based on observations made today.
  • It is also a great way to start your research if you are unfamiliar with the subject.

Disadvantages of Explanatory Research

Explanatory research is beneficial in many ways as listed above, but here are a few of the disadvantages of explanatory research.

1. Clarity on what is not known: The first disadvantage is that this kind of research is not always clear about what is and isn’t known. Which means it doesn’t always make the best use of existing information or knowledge.

You need to be specific about what you know already and how much more there might be left for future studies in order for this kind of research project to be useful at all times. This can help avoid wasting time by focusing on an issue that has already been studied enough without knowing it yet (or vice versa).

2. No clear hypothesis: Another disadvantage is that when designing experiments using this method there often isn’t any clear hypothesis about what will happen next which makes it impossible for scientists to predict

Explanatory research is taking a topic and explaining it thoroughly so that audiences have a better understanding of the topic in question. With explanatory research, having great explanations takes on more importance, so if you are a researcher in the social science field, you might want to put it to use.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • analytical thesis statement
  • causal research
  • explanatory research
  • exploratory research
  • target population
  • busayo.longe

Formplus

You may also like:

How to do a Meta Analysis: Methodology, Pros & Cons

In this article, we’ll go through the concept of meta-analysis, what it can be used for, and how you can use it to improve how you...

case study explanatory research

How to Write a Thesis Statement for Your Research: Tips + Examples

In this article, we’ll show you how to create different types of thesis statements plus examples you can learn from.

Exploratory Research: What are its Method & Examples?

Overview on exploratory research, examples and methodology. Shows guides on how to conduct exploratory research with online surveys

Descriptive Research Designs: Types, Examples & Methods

Ultimate guide to Descriptive research. Definitions, designs, types, examples and methodology.

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sage Choice

Logo of sageopen

Continuing to enhance the quality of case study methodology in health services research

Shannon l. sibbald.

1 Faculty of Health Sciences, Western University, London, Ontario, Canada.

2 Department of Family Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.

3 The Schulich Interfaculty Program in Public Health, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.

Stefan Paciocco

Meghan fournie, rachelle van asseldonk, tiffany scurr.

Case study methodology has grown in popularity within Health Services Research (HSR). However, its use and merit as a methodology are frequently criticized due to its flexible approach and inconsistent application. Nevertheless, case study methodology is well suited to HSR because it can track and examine complex relationships, contexts, and systems as they evolve. Applied appropriately, it can help generate information on how multiple forms of knowledge come together to inform decision-making within healthcare contexts. In this article, we aim to demystify case study methodology by outlining its philosophical underpinnings and three foundational approaches. We provide literature-based guidance to decision-makers, policy-makers, and health leaders on how to engage in and critically appraise case study design. We advocate that researchers work in collaboration with health leaders to detail their research process with an aim of strengthening the validity and integrity of case study for its continued and advanced use in HSR.

Introduction

The popularity of case study research methodology in Health Services Research (HSR) has grown over the past 40 years. 1 This may be attributed to a shift towards the use of implementation research and a newfound appreciation of contextual factors affecting the uptake of evidence-based interventions within diverse settings. 2 Incorporating context-specific information on the delivery and implementation of programs can increase the likelihood of success. 3 , 4 Case study methodology is particularly well suited for implementation research in health services because it can provide insight into the nuances of diverse contexts. 5 , 6 In 1999, Yin 7 published a paper on how to enhance the quality of case study in HSR, which was foundational for the emergence of case study in this field. Yin 7 maintains case study is an appropriate methodology in HSR because health systems are constantly evolving, and the multiple affiliations and diverse motivations are difficult to track and understand with traditional linear methodologies.

Despite its increased popularity, there is debate whether a case study is a methodology (ie, a principle or process that guides research) or a method (ie, a tool to answer research questions). Some criticize case study for its high level of flexibility, perceiving it as less rigorous, and maintain that it generates inadequate results. 8 Others have noted issues with quality and consistency in how case studies are conducted and reported. 9 Reporting is often varied and inconsistent, using a mix of approaches such as case reports, case findings, and/or case study. Authors sometimes use incongruent methods of data collection and analysis or use the case study as a default when other methodologies do not fit. 9 , 10 Despite these criticisms, case study methodology is becoming more common as a viable approach for HSR. 11 An abundance of articles and textbooks are available to guide researchers through case study research, including field-specific resources for business, 12 , 13 nursing, 14 and family medicine. 15 However, there remains confusion and a lack of clarity on the key tenets of case study methodology.

Several common philosophical underpinnings have contributed to the development of case study research 1 which has led to different approaches to planning, data collection, and analysis. This presents challenges in assessing quality and rigour for researchers conducting case studies and stakeholders reading results.

This article discusses the various approaches and philosophical underpinnings to case study methodology. Our goal is to explain it in a way that provides guidance for decision-makers, policy-makers, and health leaders on how to understand, critically appraise, and engage in case study research and design, as such guidance is largely absent in the literature. This article is by no means exhaustive or authoritative. Instead, we aim to provide guidance and encourage dialogue around case study methodology, facilitating critical thinking around the variety of approaches and ways quality and rigour can be bolstered for its use within HSR.

Purpose of case study methodology

Case study methodology is often used to develop an in-depth, holistic understanding of a specific phenomenon within a specified context. 11 It focuses on studying one or multiple cases over time and uses an in-depth analysis of multiple information sources. 16 , 17 It is ideal for situations including, but not limited to, exploring under-researched and real-life phenomena, 18 especially when the contexts are complex and the researcher has little control over the phenomena. 19 , 20 Case studies can be useful when researchers want to understand how interventions are implemented in different contexts, and how context shapes the phenomenon of interest.

In addition to demonstrating coherency with the type of questions case study is suited to answer, there are four key tenets to case study methodologies: (1) be transparent in the paradigmatic and theoretical perspectives influencing study design; (2) clearly define the case and phenomenon of interest; (3) clearly define and justify the type of case study design; and (4) use multiple data collection sources and analysis methods to present the findings in ways that are consistent with the methodology and the study’s paradigmatic base. 9 , 16 The goal is to appropriately match the methods to empirical questions and issues and not to universally advocate any single approach for all problems. 21

Approaches to case study methodology

Three authors propose distinct foundational approaches to case study methodology positioned within different paradigms: Yin, 19 , 22 Stake, 5 , 23 and Merriam 24 , 25 ( Table 1 ). Yin is strongly post-positivist whereas Stake and Merriam are grounded in a constructivist paradigm. Researchers should locate their research within a paradigm that explains the philosophies guiding their research 26 and adhere to the underlying paradigmatic assumptions and key tenets of the appropriate author’s methodology. This will enhance the consistency and coherency of the methods and findings. However, researchers often do not report their paradigmatic position, nor do they adhere to one approach. 9 Although deliberately blending methodologies may be defensible and methodologically appropriate, more often it is done in an ad hoc and haphazard way, without consideration for limitations.

Cross-analysis of three case study approaches, adapted from Yazan 2015

The post-positive paradigm postulates there is one reality that can be objectively described and understood by “bracketing” oneself from the research to remove prejudice or bias. 27 Yin focuses on general explanation and prediction, emphasizing the formulation of propositions, akin to hypothesis testing. This approach is best suited for structured and objective data collection 9 , 11 and is often used for mixed-method studies.

Constructivism assumes that the phenomenon of interest is constructed and influenced by local contexts, including the interaction between researchers, individuals, and their environment. 27 It acknowledges multiple interpretations of reality 24 constructed within the context by the researcher and participants which are unlikely to be replicated, should either change. 5 , 20 Stake and Merriam’s constructivist approaches emphasize a story-like rendering of a problem and an iterative process of constructing the case study. 7 This stance values researcher reflexivity and transparency, 28 acknowledging how researchers’ experiences and disciplinary lenses influence their assumptions and beliefs about the nature of the phenomenon and development of the findings.

Defining a case

A key tenet of case study methodology often underemphasized in literature is the importance of defining the case and phenomenon. Researches should clearly describe the case with sufficient detail to allow readers to fully understand the setting and context and determine applicability. Trying to answer a question that is too broad often leads to an unclear definition of the case and phenomenon. 20 Cases should therefore be bound by time and place to ensure rigor and feasibility. 6

Yin 22 defines a case as “a contemporary phenomenon within its real-life context,” (p13) which may contain a single unit of analysis, including individuals, programs, corporations, or clinics 29 (holistic), or be broken into sub-units of analysis, such as projects, meetings, roles, or locations within the case (embedded). 30 Merriam 24 and Stake 5 similarly define a case as a single unit studied within a bounded system. Stake 5 , 23 suggests bounding cases by contexts and experiences where the phenomenon of interest can be a program, process, or experience. However, the line between the case and phenomenon can become muddy. For guidance, Stake 5 , 23 describes the case as the noun or entity and the phenomenon of interest as the verb, functioning, or activity of the case.

Designing the case study approach

Yin’s approach to a case study is rooted in a formal proposition or theory which guides the case and is used to test the outcome. 1 Stake 5 advocates for a flexible design and explicitly states that data collection and analysis may commence at any point. Merriam’s 24 approach blends both Yin and Stake’s, allowing the necessary flexibility in data collection and analysis to meet the needs.

Yin 30 proposed three types of case study approaches—descriptive, explanatory, and exploratory. Each can be designed around single or multiple cases, creating six basic case study methodologies. Descriptive studies provide a rich description of the phenomenon within its context, which can be helpful in developing theories. To test a theory or determine cause and effect relationships, researchers can use an explanatory design. An exploratory model is typically used in the pilot-test phase to develop propositions (eg, Sibbald et al. 31 used this approach to explore interprofessional network complexity). Despite having distinct characteristics, the boundaries between case study types are flexible with significant overlap. 30 Each has five key components: (1) research question; (2) proposition; (3) unit of analysis; (4) logical linking that connects the theory with proposition; and (5) criteria for analyzing findings.

Contrary to Yin, Stake 5 believes the research process cannot be planned in its entirety because research evolves as it is performed. Consequently, researchers can adjust the design of their methods even after data collection has begun. Stake 5 classifies case studies into three categories: intrinsic, instrumental, and collective/multiple. Intrinsic case studies focus on gaining a better understanding of the case. These are often undertaken when the researcher has an interest in a specific case. Instrumental case study is used when the case itself is not of the utmost importance, and the issue or phenomenon (ie, the research question) being explored becomes the focus instead (eg, Paciocco 32 used an instrumental case study to evaluate the implementation of a chronic disease management program). 5 Collective designs are rooted in an instrumental case study and include multiple cases to gain an in-depth understanding of the complexity and particularity of a phenomenon across diverse contexts. 5 , 23 In collective designs, studying similarities and differences between the cases allows the phenomenon to be understood more intimately (for examples of this in the field, see van Zelm et al. 33 and Burrows et al. 34 In addition, Sibbald et al. 35 present an example where a cross-case analysis method is used to compare instrumental cases).

Merriam’s approach is flexible (similar to Stake) as well as stepwise and linear (similar to Yin). She advocates for conducting a literature review before designing the study to better understand the theoretical underpinnings. 24 , 25 Unlike Stake or Yin, Merriam proposes a step-by-step guide for researchers to design a case study. These steps include performing a literature review, creating a theoretical framework, identifying the problem, creating and refining the research question(s), and selecting a study sample that fits the question(s). 24 , 25 , 36

Data collection and analysis

Using multiple data collection methods is a key characteristic of all case study methodology; it enhances the credibility of the findings by allowing different facets and views of the phenomenon to be explored. 23 Common methods include interviews, focus groups, observation, and document analysis. 5 , 37 By seeking patterns within and across data sources, a thick description of the case can be generated to support a greater understanding and interpretation of the whole phenomenon. 5 , 17 , 20 , 23 This technique is called triangulation and is used to explore cases with greater accuracy. 5 Although Stake 5 maintains case study is most often used in qualitative research, Yin 17 supports a mix of both quantitative and qualitative methods to triangulate data. This deliberate convergence of data sources (or mixed methods) allows researchers to find greater depth in their analysis and develop converging lines of inquiry. For example, case studies evaluating interventions commonly use qualitative interviews to describe the implementation process, barriers, and facilitators paired with a quantitative survey of comparative outcomes and effectiveness. 33 , 38 , 39

Yin 30 describes analysis as dependent on the chosen approach, whether it be (1) deductive and rely on theoretical propositions; (2) inductive and analyze data from the “ground up”; (3) organized to create a case description; or (4) used to examine plausible rival explanations. According to Yin’s 40 approach to descriptive case studies, carefully considering theory development is an important part of study design. “Theory” refers to field-relevant propositions, commonly agreed upon assumptions, or fully developed theories. 40 Stake 5 advocates for using the researcher’s intuition and impression to guide analysis through a categorical aggregation and direct interpretation. Merriam 24 uses six different methods to guide the “process of making meaning” (p178) : (1) ethnographic analysis; (2) narrative analysis; (3) phenomenological analysis; (4) constant comparative method; (5) content analysis; and (6) analytic induction.

Drawing upon a theoretical or conceptual framework to inform analysis improves the quality of case study and avoids the risk of description without meaning. 18 Using Stake’s 5 approach, researchers rely on protocols and previous knowledge to help make sense of new ideas; theory can guide the research and assist researchers in understanding how new information fits into existing knowledge.

Practical applications of case study research

Columbia University has recently demonstrated how case studies can help train future health leaders. 41 Case studies encompass components of systems thinking—considering connections and interactions between components of a system, alongside the implications and consequences of those relationships—to equip health leaders with tools to tackle global health issues. 41 Greenwood 42 evaluated Indigenous peoples’ relationship with the healthcare system in British Columbia and used a case study to challenge and educate health leaders across the country to enhance culturally sensitive health service environments.

An important but often omitted step in case study research is an assessment of quality and rigour. We recommend using a framework or set of criteria to assess the rigour of the qualitative research. Suitable resources include Caelli et al., 43 Houghten et al., 44 Ravenek and Rudman, 45 and Tracy. 46

New directions in case study

Although “pragmatic” case studies (ie, utilizing practical and applicable methods) have existed within psychotherapy for some time, 47 , 48 only recently has the applicability of pragmatism as an underlying paradigmatic perspective been considered in HSR. 49 This is marked by uptake of pragmatism in Randomized Control Trials, recognizing that “gold standard” testing conditions do not reflect the reality of clinical settings 50 , 51 nor do a handful of epistemologically guided methodologies suit every research inquiry.

Pragmatism positions the research question as the basis for methodological choices, rather than a theory or epistemology, allowing researchers to pursue the most practical approach to understanding a problem or discovering an actionable solution. 52 Mixed methods are commonly used to create a deeper understanding of the case through converging qualitative and quantitative data. 52 Pragmatic case study is suited to HSR because its flexibility throughout the research process accommodates complexity, ever-changing systems, and disruptions to research plans. 49 , 50 Much like case study, pragmatism has been criticized for its flexibility and use when other approaches are seemingly ill-fit. 53 , 54 Similarly, authors argue that this results from a lack of investigation and proper application rather than a reflection of validity, legitimizing the need for more exploration and conversation among researchers and practitioners. 55

Although occasionally misunderstood as a less rigourous research methodology, 8 case study research is highly flexible and allows for contextual nuances. 5 , 6 Its use is valuable when the researcher desires a thorough understanding of a phenomenon or case bound by context. 11 If needed, multiple similar cases can be studied simultaneously, or one case within another. 16 , 17 There are currently three main approaches to case study, 5 , 17 , 24 each with their own definitions of a case, ontological and epistemological paradigms, methodologies, and data collection and analysis procedures. 37

Individuals’ experiences within health systems are influenced heavily by contextual factors, participant experience, and intricate relationships between different organizations and actors. 55 Case study research is well suited for HSR because it can track and examine these complex relationships and systems as they evolve over time. 6 , 7 It is important that researchers and health leaders using this methodology understand its key tenets and how to conduct a proper case study. Although there are many examples of case study in action, they are often under-reported and, when reported, not rigorously conducted. 9 Thus, decision-makers and health leaders should use these examples with caution. The proper reporting of case studies is necessary to bolster their credibility in HSR literature and provide readers sufficient information to critically assess the methodology. We also call on health leaders who frequently use case studies 56 – 58 to report them in the primary research literature.

The purpose of this article is to advocate for the continued and advanced use of case study in HSR and to provide literature-based guidance for decision-makers, policy-makers, and health leaders on how to engage in, read, and interpret findings from case study research. As health systems progress and evolve, the application of case study research will continue to increase as researchers and health leaders aim to capture the inherent complexities, nuances, and contextual factors. 7

An external file that holds a picture, illustration, etc.
Object name is 10.1177_08404704211028857-img1.jpg

  • Search Menu
  • Advance Articles
  • Supplements
  • Virtual Collections
  • Author Guidelines
  • Submission Site
  • Open Access
  • Self-Archiving Policy
  • Benefits of Publishing with JBCR
  • About Journal of Burn Care and Research
  • About the American Burn Association
  • Editorial Board
  • Advertising & Corporate Services
  • Journals Career Network
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

  • < Previous

Explanatory Case Study Design—A Clarification

  • Article contents
  • Figures & tables
  • Supplementary Data

Megan Anne Simons, Jenny Ziviani, Explanatory Case Study Design—A Clarification, Journal of Burn Care & Research , Volume 32, Issue 1, January-February 2011, Page e14, https://doi.org/10.1097/BCR.0b013e3182033569

  • Permissions Icon Permissions

To the Editor:

For the purpose of clarity for the readership, we wish to address the description of the explanatory case study design (ECSD) as a qualitative research method in the invited critique to our original article. 1 Yin, 2 the primary source for ECSD, described case study as suitable when the number of variables of interest exceeds the number of data points (i.e., participants). He has positioned the case study as a stand-alone method, in which the collection of both quantitative and qualitative data is appropriate. 3 We agree that within a qualitative research paradigm, the sample size of seven participants 1 would likely be insufficient to satisfy the sampling strategy. However, ECSD is “driven to theory.” 3 , p. 1212 The use of multiple case studies (as in the original study) is deemed the equivalent of multiple experiments. 2 Generalization from the case studies is accomplished using replication logic derived from theoretical propositions (hypotheses) or theories about the case. Results are considered even more potent when two or more cases support the same theory but not an equally plausible, rival theory. 2 The problem of generalizing from case studies is the same as generalizing from experiments—where hypotheses and theory are the vehicles for generalization. 3 With this point of clarification, we acknowledge that the findings from the original study are limited to children with lower injury severity (when measured as %TBSA) within a shortened timeframe postburn injury (6 months).

Email alerts

Citing articles via, looking for your next opportunity.

  • Recommend to Your Librarian
  • Advertising and Corporate Services

Affiliations

  • Online ISSN 1559-0488
  • Print ISSN 1559-047X
  • Copyright © 2024 American Burn Association
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • First Online: 27 October 2022

Cite this chapter

Book cover

  • R. M. Channaveer 4 &
  • Rajendra Baikady 5  

2163 Accesses

1 Citations

This chapter reviews the strengths and limitations of case study as a research method in social sciences. It provides an account of an evidence base to justify why a case study is best suitable for some research questions and why not for some other research questions. Case study designing around the research context, defining the structure and modality, conducting the study, collecting the data through triangulation mode, analysing the data, and interpreting the data and theory building at the end give a holistic view of it. In addition, the chapter also focuses on the types of case study and when and where to use case study as a research method in social science research.

  • Qualitative research approach
  • Social work research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Ang, C. S., Lee, K. F., & Dipolog-Ubanan, G. F. (2019). Determinants of first-year student identity and satisfaction in higher education: A quantitative case study. SAGE Open, 9 (2), 215824401984668. https://doi.org/10.1177/2158244019846689

Baxter, P., & Jack, S. (2015). Qualitative case study methodology: Study design and implementation for novice researchers. The Qualitative Report . Published. https://doi.org/10.46743/2160-3715/2008.1573

Bhatta, T. P. (2018). Case study research, philosophical position and theory building: A methodological discussion. Dhaulagiri Journal of Sociology and Anthropology, 12 , 72–79. https://doi.org/10.3126/dsaj.v12i0.22182

Article   Google Scholar  

Bromley, P. D. (1990). Academic contributions to psychological counselling. A philosophy of science for the study of individual cases. Counselling Psychology Quarterly , 3 (3), 299–307.

Google Scholar  

Crowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A., & Sheikh, A. (2011). The case study approach. BMC Medical Research Methodology, 11 (1), 1–9.

Grässel, E., & Schirmer, B. (2006). The use of volunteers to support family carers of dementia patients: Results of a prospective longitudinal study investigating expectations towards and experience with training and professional support. Zeitschrift Fur Gerontologie Und Geriatrie, 39 (3), 217–226.

Greenwood, D., & Lowenthal, D. (2005). Case study as a means of researching social work and improving practitioner education. Journal of Social Work Practice, 19 (2), 181–193. https://doi.org/10.1080/02650530500144782

Gülseçen, S., & Kubat, A. (2006). Teaching ICT to teacher candidates using PBL: A qualitative and quantitative evaluation. Journal of Educational Technology & Society, 9 (2), 96–106.

Gomm, R., Hammersley, M., & Foster, P. (2000). Case study and generalization. Case study method , 98–115.

Hamera, J., Denzin, N. K., & Lincoln, Y. S. (2011). Performance ethnography . SAGE.

Hayes, N. (2000). Doing psychological research (p. 133). Open University Press.

Harrison, H., Birks, M., Franklin, R., & Mills, J. (2017). Case study research: Foundations and methodological orientations. In Forum qualitative sozialforschung/forum: Qualitative social research (Vol. 18, No. 1).

Iwakabe, S., & Gazzola, N. (2009). From single-case studies to practice-based knowledge: Aggregating and synthesizing case studies. Psychotherapy Research, 19 (4–5), 601–611. https://doi.org/10.1080/10503300802688494

Johnson, M. P. (2006). Decision models for the location of community corrections centers. Environment and Planning b: Planning and Design, 33 (3), 393–412. https://doi.org/10.1068/b3125

Kaarbo, J., & Beasley, R. K. (1999). A practical guide to the comparative case study method in political psychology. Political Psychology, 20 (2), 369–391. https://doi.org/10.1111/0162-895x.00149

Lovell, G. I. (2006). Justice excused: The deployment of law in everyday political encounters. Law Society Review, 40 (2), 283–324. https://doi.org/10.1111/j.1540-5893.2006.00265.x

McDonough, S., & McDonough, S. (1997). Research methods as part of English language teacher education. English Language Teacher Education and Development, 3 (1), 84–96.

Meredith, J. (1998). Building operations management theory through case and field research. Journal of Operations Management, 16 (4), 441–454. https://doi.org/10.1016/s0272-6963(98)00023-0

Mills, A. J., Durepos, G., & Wiebe, E. (Eds.). (2009). Encyclopedia of case study research . Sage Publications.

Ochieng, P. A. (2009). An analysis of the strengths and limitation of qualitative and quantitative research paradigms. Problems of Education in the 21st Century , 13 , 13.

Page, E. B., Webb, E. J., Campell, D. T., Schwart, R. D., & Sechrest, L. (1966). Unobtrusive measures: Nonreactive research in the social sciences. American Educational Research Journal, 3 (4), 317. https://doi.org/10.2307/1162043

Rashid, Y., Rashid, A., Warraich, M. A., Sabir, S. S., & Waseem, A. (2019). Case study method: A step-by-step guide for business researchers. International Journal of Qualitative Methods, 18 , 160940691986242. https://doi.org/10.1177/1609406919862424

Ridder, H. G. (2017). The theory contribution of case study research designs. Business Research, 10 (2), 281–305. https://doi.org/10.1007/s40685-017-0045-z

Sadeghi Moghadam, M. R., Ghasemnia Arabi, N., & Khoshsima, G. (2021). A Review of case study method in operations management research. International Journal of Qualitative Methods, 20 , 160940692110100. https://doi.org/10.1177/16094069211010088

Sommer, B. B., & Sommer, R. (1997). A practical guide to behavioral research: Tools and techniques . Oxford University Press.

Stake, R. E. (2010). Qualitative research: Studying how things work .

Stake, R. E. (1995). The Art of Case Study Research . Sage Publications.

Stoecker, R. (1991). Evaluating and rethinking the case study. The Sociological Review, 39 (1), 88–112.

Suryani, A. (2013). Comparing case study and ethnography as qualitative research approaches .

Taylor, S., & Berridge, V. (2006). Medicinal plants and malaria: An historical case study of research at the London School of Hygiene and Tropical Medicine in the twentieth century. Transactions of the Royal Society of Tropical Medicine and Hygiene, 100 (8), 707–714. https://doi.org/10.1016/j.trstmh.2005.11.017

Tellis, W. (1997). Introduction to case study. The Qualitative Report . Published. https://doi.org/10.46743/2160-3715/1997.2024

Towne, L., & Shavelson, R. J. (2002). Scientific research in education . National Academy Press Publications Sales Office.

Widdowson, M. D. J. (2011). Case study research methodology. International Journal of Transactional Analysis Research, 2 (1), 25–34.

Yin, R. K. (2004). The case study anthology . Sage.

Yin, R. K. (2003). Design and methods. Case Study Research , 3 (9.2).

Yin, R. K. (1994). Case study research: Design and methods (2nd ed.). Sage Publishing.

Yin, R. (1984). Case study research: Design and methods . Sage Publications Beverly Hills.

Yin, R. (1993). Applications of case study research . Sage Publishing.

Zainal, Z. (2003). An investigation into the effects of discipline-specific knowledge, proficiency and genre on reading comprehension and strategies of Malaysia ESP Students. Unpublished Ph. D. Thesis. University of Reading , 1 (1).

Zeisel, J. (1984). Inquiry by design: Tools for environment-behaviour research (No. 5). CUP archive.

Download references

Author information

Authors and affiliations.

Department of Social Work, Central University of Karnataka, Kadaganchi, India

R. M. Channaveer

Department of Social Work, University of Johannesburg, Johannesburg, South Africa

Rajendra Baikady

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to R. M. Channaveer .

Editor information

Editors and affiliations.

Centre for Family and Child Studies, Research Institute of Humanities and Social Sciences, University of Sharjah, Sharjah, United Arab Emirates

M. Rezaul Islam

Department of Development Studies, University of Dhaka, Dhaka, Bangladesh

Niaz Ahmed Khan

Department of Social Work, School of Humanities, University of Johannesburg, Johannesburg, South Africa

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Channaveer, R.M., Baikady, R. (2022). Case Study. In: Islam, M.R., Khan, N.A., Baikady, R. (eds) Principles of Social Research Methodology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5441-2_21

Download citation

DOI : https://doi.org/10.1007/978-981-19-5441-2_21

Published : 27 October 2022

Publisher Name : Springer, Singapore

Print ISBN : 978-981-19-5219-7

Online ISBN : 978-981-19-5441-2

eBook Packages : Social Sciences

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Explanatory Research | Definition, Guide, & Examples

Explanatory Research | Definition, Guide & Examples

Published on 7 May 2022 by Tegan George and Julia Merkus. Revised on 20 January 2023.

Explanatory research is a research method that explores why something occurs when limited information is available. It can help you increase your understanding of a given topic, ascertain how or why a particular phenomenon is occurring, and predict future occurrences.

Explanatory research can also be explained as a ’cause and effect’ model, investigating patterns and trends in existing data that haven’t been previously investigated. For this reason, it is often considered a type of causal research .

Table of contents

When to use explanatory research, explanatory research questions, explanatory research data collection, explanatory research data analysis, step-by-step example of explanatory research, explanatory vs exploratory research, advantages and disadvantages of exploratory research, frequently asked questions about explanatory research.

Explanatory research is used to investigate how or why a phenomenon takes place. Therefore, this type of research is often one of the first stages in the research process, serving as a jumping-off point for future research. While there is often data available about your topic, it’s possible the particular causal relationship you are interested in has not been robustly studied.

Explanatory research helps you analyse these patterns, formulating hypotheses that can guide future endeavors. If you are seeking a more complete understanding of a relationship between variables, explanatory research is a great place to start. However, keep in mind that it will likely not yield conclusive results.

You analysed their final grades and noticed that the students who take your course in the first semester always obtain higher grades than students who take the same course in the second semester.

Prevent plagiarism, run a free check.

Explanatory research answers ‘why’ and ‘what’ questions, leading to an improved understanding of a previously unresolved problem or providing clarity for related future research initiatives.

Here are a few examples:

  • Why do undergraduate students obtain higher average grades in the first semester than in the second semester?
  • How does marital status affect labour market participation?
  • Why do multilingual individuals show more risky behaviour during business negotiations than monolingual individuals?
  • How does a child’s ability to delay immediate gratification predict success later in life?
  • Why are teenagers more likely to litter in a highly littered area than in a clean area?

After choosing your research question, there is a variety of options for research and data collection methods to choose from.

A few of the most common research methods include:

  • Literature reviews
  • Interviews and focus groups
  • Pilot studies
  • Observations
  • Experiments

The method you choose depends on several factors, including your timeline, your budget, and the structure of your question.

If there is already a body of research on your topic, a literature review is a great place to start. If you are interested in opinions and behaviour, consider an interview or focus group format. If you have more time or funding available, an experiment or pilot study may be a good fit for you.

In order to ensure you are conducting your explanatory research correctly, be sure your analysis is definitively causal in nature, and not just correlated.

Always remember the phrase ‘correlation doesn’t imply causation’. Correlated variables are merely associated with one another: when one variable changes, so does the other. However, this isn’t necessarily due to a direct or indirect causal link.

Causation means that changes in the independent variable bring about changes in the dependent variable. In other words, there is a direct cause-and-effect relationship between variables.

Causal evidence must meet three criteria:

  • Temporal : What you define as the ’cause’ must precede what you define as the ‘effect’.
  • Variation : Intervention must be systematic between your independent variable and dependent variable.
  • Non-spurious : Be careful that there are no mitigating factors or hidden third variables that confound your results.

Correlation doesn’t imply causation, but causation always implies correlation. In order to get conclusive causal results, you’ll need to conduct a full experimental design .

Your explanatory research design depends on the research method you choose to collect your data . In most cases, you’ll use an experiment to investigate potential causal relationships. We’ll walk you through the steps using an example.

Step 1: Develop the research question

The first step in conducting explanatory research is getting familiar with the topic you’re interested in, so that you can develop a research question .

Let’s say you’re interested in language retention rates in adults.

You are interested in finding out how the duration of exposure to language influences language retention ability later in life.

Step 2: Formulate a hypothesis

The next step is to address your expectations. In some cases, there is literature available on your subject or on a closely related topic that you can use as a foundation for your hypothesis . In other cases, the topic isn’t well studied, and you’ll have to develop your hypothesis based on your instincts or on existing literature on more distant topics.

  • H 0 : The duration of exposure to a language in infancy does not influence language retention in adults who were adopted from abroad as children.
  • H 1 : The duration of exposure to a language in infancy has a positive effect on language retention in adults who were adopted from abroad as children.

Step 3: Design your methodology and collect your data

Next, decide what data collection and data analysis methods you will use and write them up. After carefully designing your research, you can begin to collect your data.

  • Adults who were adopted from Colombia between 0 and 6 months of age
  • Adults who were adopted from Colombia between 6 and 12 months of age
  • Adults who were adopted from Colombia between 12 and 18 months of age
  • Monolingual adults who have not been exposed to a different language

During the study, you test their Spanish language proficiency twice in a research design that has three stages:

  • Pretest : You conduct several language proficiency tests to establish any differences between groups pre-intervention.
  • Intervention : You provide all groups with 8 hours of Spanish class.
  • Posttest : You again conduct several language proficiency tests to establish any differences between groups post-intervention.

You made sure to control for any confounding variables , such as age, gender, and proficiency in other languages.

Step 4: Analyse your data and report results

After data collection is complete, proceed to analyse your data and report the results.

  • The pre-exposed adults showed higher language proficiency in Spanish than those who had not been pre-exposed. The difference is even greater for the posttest.
  • The adults who were adopted between 12 and 18 months of age had a higher Spanish language proficiency level than those who were adopted between 0 and 6 months or 6 and 12 months of age, but there was no difference found between the latter two groups.

To determine whether these differences are significant, you conduct a mixed ANOVA. The ANOVA shows that all differences are not significant for the pretest, but they are significant for the posttest.

Step 5: Interpret your results and provide suggestions for future research

As you interpret the results, try to come up with explanations for the results that you did not expect. In most cases, you want to provide suggestions for future research.

However, this difference is only significant after the intervention (the Spanish class).

You decide it’s worth it to further research the matter, and propose a few additional research ideas:

  • Replicate the study with a larger sample
  • Replicate the study for other maternal languages (e.g., Korean, Lingala, Arabic)
  • Replicate the study for other language aspects, such as nativeness of the accent

It can be easy to confuse explanatory research with exploratory research. If you’re in doubt about the relationship between exploratory and explanatory research, just remember that exploratory research lays the groundwork for later explanatory research.

Exploratory research questions often begin with ‘what’. They are designed to guide future research and do not usually have conclusive results. Exploratory research is often utilised as a first step in your research process, to help you focus your research question and fine-tune your hypotheses.

Explanatory research questions often start with ‘why’ or ‘how’. They help you study why and how a previously studied phenomenon takes place.

Exploratory vs explanatory research

Like any other research design , exploratory research has its trade-offs: while it provides a unique set of benefits, it also has significant downsides:

  • It gives more meaning to previous research. It helps fill in the gaps in existing analyses and provides information on the reasons behind phenomena.
  • It is very flexible and often replicable, since the internal validity tends to be high when done correctly.
  • As you can often use secondary research, explanatory research is often very cost- and time-effective, allowing you to utilise pre-existing resources to guide your research before committing to heavier analyses.

Disadvantages

  • While explanatory research does help you solidify your theories and hypotheses, it usually lacks conclusive results.
  • Results can be biased or inadmissible to a larger body of work and are not generally externally valid . You will likely have to conduct more robust (often quantitative ) research later to bolster any possible findings gleaned from explanatory research.
  • Coincidences can be mistaken for causal relationships , and it can sometimes be challenging to ascertain which is the causal variable and which is the effect.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research explores the main aspects of a new or barely researched question.

Explanatory research explains the causes and effects of an already widely researched question.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

George, T. & Merkus, J. (2023, January 20). Explanatory Research | Definition, Guide & Examples. Scribbr. Retrieved 1 April 2024, from https://www.scribbr.co.uk/research-methods/explanatory-research-design/

Is this article helpful?

Tegan George

Tegan George

Other students also liked, exploratory research | definition, guide, & examples, descriptive research design | definition, methods & examples, a quick guide to experimental design | 5 steps & examples.

Join thousands of product people at Insight Out Conf on April 11. Register free.

Insights hub solutions

Analyze data

Uncover deep customer insights with fast, powerful features, store insights, curate and manage insights in one searchable platform, scale research, unlock the potential of customer insights at enterprise scale.

Featured reads

case study explanatory research

Inspiration

Three things to look forward to at Insight Out

Create a quick summary to identify key takeaways and keep your team in the loop.

Tips and tricks

Make magic with your customer data in Dovetail

case study explanatory research

Four ways Dovetail helps Product Managers master continuous product discovery

Events and videos

© Dovetail Research Pty. Ltd.

What is explanatory research?

Last updated

12 June 2023

Reviewed by

Miroslav Damyanov

The search for knowledge and understanding never stops in the field of research. Researchers are always finding new techniques to help analyze and make sense of the world. Explanatory research is one such technique. It provides a new perspective on various areas of study.

So, what exactly is explanatory research? This article will provide an in-depth overview of everything you need to know about explanatory research and its purpose. You’ll also get to know the different types of explanatory research and how they’re conducted.

Analyze explanatory research

Get a deeper understanding of your explanatory research when you analyze it in Dovetail

  • Explanatory research: definition

Explanatory research is a technique used to gain a deeper understanding of the underlying reasons for, causes of, and relationships behind a particular phenomenon that has yet to be extensively studied.

Researchers use this method to understand why and how a particular phenomenon occurs the way it does. Since there is limited information regarding the phenomenon being studied, it’s up to the researcher to develop fresh ideas and collect more data.

The results and conclusions drawn from explanatory research give researchers a deeper understanding and help predict future occurrences.

  • Descriptive research vs. explanatory research

Descriptive research aims to define or summarize an event or population without explaining why it exists. It focuses on acquiring and conveying facts.

On the other hand, explanatory research aims to explain why a phenomenon occurs by working to understand the causes and correlations between variables.

Unlike descriptive research, which focuses on providing descriptions and characteristics of a given phenomenon, explanatory research goes a step further to explain different mechanisms and the reasons behind them. Explanatory research is never concerned with producing new knowledge or solving problems. Instead, it aims to explain why and how something happens.

  • Exploratory research vs. explanatory research

Explanatory research explains why specific phenomena function as they do. Meanwhile, exploratory research examines and investigates an issue that is not clearly defined. Both methods are crucial for problem analysis.

Researchers use exploratory research at the outset to discover new ideas, concepts, and opportunities. Once exploratory research has identified a potential area of interest or problem, researchers employ explanatory research to delve further into the specific subject matter.

Researchers employ the explanatory research technique when they want to explain why and how something occurs in a certain way. Researchers who employ this approach usually have an outcome in mind, and carrying it out is their top priority.

  • When to use explanatory research

Explanatory research may be helpful in the following situations:

When testing a theoretical model: explanatory research can help researchers develop a theory. It can provide sufficient evidence to validate or refine existing theories based on the available data.

When establishing causality: this research method can determine the cause-and-effect relationships between study variables and determine which variable influences the predicted outcome most. Explanatory research explores all the factors that lead to a certain outcome or phenomenon.

When making informed decisions: the results and conclusions drawn from explanatory research can provide a basis for informed decision-making. It can be helpful in different industries and sectors. For example, entrepreneurs in the business sector can use explanatory research to implement informed marketing strategies to increase sales and generate more revenue.

When addressing research gaps: a research gap is an unresolved problem or unanswered question due to inadequate research in that space. Researchers can use explanatory research to gather information about a certain phenomenon and fill research gaps. It also enables researchers to answer previously unanswered questions and explain different mechanisms that haven’t yet been studied.

When conducting program evaluation: researchers can also use the technique to determine the effectiveness of a particular program and identify all the factors that are likely to contribute to its success or failure.

  • Types of explanatory research

Here are the different types of explanatory research:

Case study research: this method involves the in-depth analysis of a given individual, company, organization, or event. It allows researchers to study individuals or organizations that have faced the same situation. This way, they can determine what worked for them and what didn’t.

Experimental research: this involves manipulating independent variables and observing how they affect dependent variables. This method allows researchers to establish a cause-and-effect relationship between different variables.

Quasi-experimental research: this type of research is quite similar to experimental research, but it lacks complete control over variables. It’s best suited to situations where manipulating certain variables is difficult or impossible.

Correlational research: this involves identifying underlying relationships between two or more variables without manipulating them. It determines the strength and direction of the relationship between different variables.

Historical research: this method involves studying past events to gain a better understanding of their causes and effects. It’s mostly used in fields like history and sociology.

Survey research: this type of explanatory research involves collecting data using a set of structured questionnaires or interviews given to a representative sample of participants. It helps researchers gather information about individuals’ attitudes, opinions, and behaviors toward certain phenomena.

Observational research: this involves directly observing and recording people in their natural setting, like the home, the office, or a shop. By studying their actions, needs, and challenges, researchers can gain valuable insights into their behavior, preferences, and pain points. This results in explanatory conclusions.

  • How to conduct explanatory research

Take the following steps when conducting explanatory research:

Develop the research question

The first step is to familiarize yourself with the topic you’re interested in and clearly articulate your specific goals. This will help you define the research question you want to answer or the problem you want to solve. Doing this will guide your research and ensure you collect the right data.

Formulate a hypothesis

The next step is to formulate a hypothesis that will address your expectations. Some researchers find that literature material has already covered their topic in the past. If this is the case with you, you can use such material as the main foundation of your hypothesis. However, if it doesn’t exist, you must formulate a hypothesis based on your own instincts or literature material on closely related topics.

Select the research type

Choose an appropriate research type based on your research questions, available resources, and timeline. Consider the level of control you need over the variables.

Next, design and develop instruments such as surveys, interview guides, or observation guidelines to gather relevant data.

Collect the data

Collecting data involves implementing the research instruments and gathering information from a representative sample of your target audience. Ensure proper data collection protocol, ethical considerations , and appropriate documentation for the data you collect.

Analyze the data

Once you have collected the data you need for your research, you’ll need to organize, code, and interpret it.

Use appropriate analytical methods, such as statistical analysis or thematic coding , to uncover patterns, relationships, and explanations that address your research goals and questions. You may have to suggest or conduct further research based on the results to elaborate on certain areas.

Communicate the results

Finally, communicate your results to relevant stakeholders , such as team members, clients, or other involved partners. Present your insights clearly and concisely through reports, slides, or visualizations. Provide actionable recommendations and avenues for future research.

  • Examples of explanatory research

Here are some real-life examples of explanatory research:

Understanding what causes high crime rates in big cities

Law enforcement organizations use explanatory research to pinpoint what causes high crime rates in particular cities. They gather information about various influencing factors, such as gang involvement, drug misuse, family structures, and firearm availability.

They then use regression analysis to examine the data further to understand the factors contributing to the high crime rates.

Factors that influence students’ academic performance

Educators and stakeholders in the Department of Education use questionnaires and interviews to gather data on factors that affect academic performance. These factors include parental engagement, learning styles, motivation, teaching quality, and peer pressure.

The data is used to ascertain how these variables affect students’ academic performance.

Examining what causes economic disparity in certain areas

Researchers use correlational and experimental research approaches to gather information on variables like education levels, household income, and employment rates. They use the information to examine the causes of economic disparity in certain regions.

  • Advantages of explanatory research

Here are some of the benefits you can expect from explanatory research:

Deeper understanding : the technique helps fill research gaps in previous studies by explaining the reasons, causes, and relationships behind particular behaviors or phenomena.

Competitive edge: by understanding the underlying factors that drive customer satisfaction and behavior, companies can create more engaging products and desirable services.

Predictable capabilities: it helps researchers and teams make predictions regarding certain phenomena like user behavior or future iterations of product features.

Informed decision-making: explanatory research generates insights that can help individuals make informed decisions in various sectors.

  • Disadvantages of explanatory research

Explanatory research is a great approach for better understanding various phenomena, but it has some limitations.

It’s time-consuming: explanatory research can be a time-consuming process, requiring careful planning, data collection, analysis, and interpretation. The technique might extend your timeline.

It’s resource intensive: explanatory research often requires a significant allocation of resources, including financial, human, and technological. This could pose challenges for organizations with limited budgets or constraints.

You have limited control over real-world factors: this type of research often takes place in controlled environments. Researchers may find this limits their ability to capture real-world complexities and variables that influence a particular behavior or phenomenon.

Depth and breadth are difficult to balance : explanatory research mainly focuses on a narrow hypothesis, which can limit the scope of the research and prevent researchers from understanding a problem more broadly.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 17 February 2024

Last updated: 19 November 2023

Last updated: 5 March 2024

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

Research-Methodology

Case Studies

Case studies are a popular research method in business area. Case studies aim to analyze specific issues within the boundaries of a specific environment, situation or organization.

According to its design, case studies in business research can be divided into three categories: explanatory, descriptive and exploratory.

Explanatory case studies aim to answer ‘how’ or ’why’ questions with little control on behalf of researcher over occurrence of events. This type of case studies focus on phenomena within the contexts of real-life situations. Example: “An investigation into the reasons of the global financial and economic crisis of 2008 – 2010.”

Descriptive case studies aim to analyze the sequence of interpersonal events after a certain amount of time has passed. Studies in business research belonging to this category usually describe culture or sub-culture, and they attempt to discover the key phenomena. Example: “Impact of increasing levels of multiculturalism on marketing practices: A case study of McDonald’s Indonesia.”

Exploratory case studies aim to find answers to the questions of ‘what’ or ‘who’. Exploratory case study data collection method is often accompanied by additional data collection method(s) such as interviews, questionnaires, experiments etc. Example: “A study into differences of leadership practices between private and public sector organizations in Atlanta, USA.”

Advantages of case study method include data collection and analysis within the context of phenomenon, integration of qualitative and quantitative data in data analysis, and the ability to capture complexities of real-life situations so that the phenomenon can be studied in greater levels of depth. Case studies do have certain disadvantages that may include lack of rigor, challenges associated with data analysis and very little basis for generalizations of findings and conclusions.

Case Studies

John Dudovskiy

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

case study explanatory research

Home Market Research

Explanatory Research: Definition, Types & Guide

what is explanatory research

There are many types of research, but today, we want to talk to you about one, in particular, that will give you a new perspective on your objects of study; for that, we have created this guide with everything you need to know about explanatory research . After all, w hat is the purpose of explanatory research?

What is Explanatory Research?

Explanatory research is a method developed to investigate a phenomenon that has not been studied or explained properly. Its main intention is to provide details about where to find a small amount of information.

With this method, the researcher gets a general idea and uses research as a tool to guide them quicker to the issues that we might address in the future. Its goal is to find the why and what of an object of study.

Explanatory research is responsible for finding the why of the events by establishing cause-effect relationships. Its results and conclusions constitute the deepest level of knowledge, according to author Fidias G. Arias. In this sense, explanatory studies can deal with the determination of causes (post-facto research) and effects ( experimental research ) through hypothesis testing.

Characteristics of Explanatory Research 

Among the most critical characteristics of explanatory research are:

  • It allows for an increased understanding of a specific topic. Although it does not offer conclusive results, the researcher can find out why a phenomenon occurs.
  • It uses secondary research as a source of information, such as literature or published articles, that are carefully chosen to have a broad and balanced understanding of the topic.
  • It allows the researcher to have a broad understanding of the topic and refine subsequent research questions to augment the study’s conclusions.
  • Researchers can distinguish the causes why phenomena arising during the research design process and anticipate changes.
  • Explanatory research allows them to replicate studies to give them greater depth and gain new insights into the phenomenon.

Types of Explanatory Research

The most popular methods of explanatory research:

types of explanatory research

  • Literature research: It is one of the fastest and least expensive means of determining the hypothesis of the phenomenon and collecting information. It involves searching for literature on the internet and in libraries. It can, of course, be in magazines, newspapers, commercial and academic articles.
  • In-depth interview: The process involves talking to a knowledgeable person about the topic under investigation. The in-depth interview is used to take advantage of the information offered by people and their experience, whether they are professionals within or outside the organization.
  • Focus groups: Focus groups consist of bringing together 8 to 12 people who have information about the phenomenon under study and organizing sessions to obtain from these people various data that will help the research.
  • Case studies: This method allows researchers to deal with carefully selected cases. Case analysis allows the organization to observe companies that have faced the same issue and deal with it more efficiently.

Check out our library of QuestionPro Case Studies to learn more about how we help organizations conduct market research.

Importance of explanatory research

Explanatory research is conducted to help researchers study the research problem in greater depth and understand the phenomenon efficiently.

The primary use for explanatory research is problem-solving by finding the overlooked data that we had never investigated before. At the same time, it might not bring out conclusive data; it will allow us to understand the issue more efficiently.

In carrying out the research process, it is necessary to adapt to new findings and knowledge about the subject. Although it is impossible to conclude, it is possible to explore the variables with a high level of depth.

Explanatory research allows the researcher to become familiar with the topic to be examined and design theories to test them.

Explanatory Reseach Quick Guide

Explanatory research is a great method to use if you’re looking to understand why something is happening. Here’s a quick guide on how to conduct explanatory research:

  • Clearly define your research question and objectives. This will help guide your research and ensure that you collect the right data.
  • Choose your research methods. Explanatory research can be done using both qualitative and quantitative methods. Some popular methods include surveys, interviews, experiments, and observational studies.
  • Collect and analyze your data. Once you’ve chosen your methods, it’s time to collect your data. Make sure to keep accurate records and organize your data so it’s easy to analyze.
  • Draw conclusions and make recommendations. After analyzing your data, it’s time to draw conclusions and make recommendations based on your findings. Be sure to present your conclusions clearly and concisely and ensure your data supports them.
  • Communicate your findings. Share your research findings with others, including your colleagues, stakeholders, or clients. Also, make sure to communicate your findings in a way that is easy for others to understand and act upon.

Remember that explanatory research is about understanding the relationship between variables, so be sure to keep that in mind when designing your research, collecting and analyzing your data, and communicating your findings.

Advantages and Conclusions

This method is precious for social research . It a llows researchers to find a phenomenon we did not study in depth. Although it does not conclude such a study, it helps to understand the problem efficiently. It’s essential to convey new data about a point of view on the study.

People who conduct explanatory research do so to study the interaction of the phenomenon in detail. Therefore, it is vital to have enough information to carry it out.

Finally, we invite you to refer to our market research guide . You can do incredible research and collect data free with our survey software . Get started now!

FREE TRIAL         LEARN MORE

MORE LIKE THIS

customer experience automation

Customer Experience Automation: Benefits and Best Tools

Apr 1, 2024

market segmentation tools

7 Best Market Segmentation Tools in 2024

in-app feedback tools

In-App Feedback Tools: How to Collect, Uses & 14 Best Tools

Mar 29, 2024

Customer Journey Analytics Software

11 Best Customer Journey Analytics Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence
  • How it works

A Quick Guide to Case Study with Examples

Published by Alvin Nicolas at August 14th, 2021 , Revised On August 29, 2023

A case study is a documented history and detailed analysis of a situation concerning organisations, industries, and markets.

A case study:

  • Focuses on discovering new facts of the situation under observation.
  • Includes data collection from multiple sources over time.
  • Widely used in social sciences to study the underlying information, organisation, community, or event.
  • It does not provide any solution to the problem .

When to Use Case Study? 

You can use a case study in your research when:

  • The focus of your study is to find answers to how and why questions .
  • You don’t have enough time to conduct extensive research; case studies are convenient for completing your project successfully.
  • You want to analyse real-world problems in-depth, then you can use the method of the case study.

You can consider a single case to gain in-depth knowledge about the subject, or you can choose multiple cases to know about various aspects of your  research problem .

What are the Aims of the Case Study?

  • The case study aims at identifying weak areas that can be improved.
  • This method is often used for idiographic research (focuses on individual cases or events).
  • Another aim of the case study is nomothetic research (aims to discover new theories through data analysis of multiple cases).

Types of Case Studies

There are different types of case studies that can be categorised based on the purpose of the investigation.

Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

Looking for quantitative dissertation help

How to Conduct a Case Study?

  • Select the Case to Investigate
  • Formulate the Research Question
  • Review of Literature
  • Choose the Precise Case to Use in your Study
  • Select Data Collection and Analysis Techniques
  • Collect the Data
  • Analyse the Data
  • Prepare the Report

Step1: Select the Case to Investigate

The first step is to select a case to conduct your investigation. You should remember the following points.

  • Make sure that you perform the study in the available timeframe.
  • There should not be too much information available about the organisation.
  • You should be able to get access to the organisation.
  • There should be enough information available about the subject to conduct further research.

Step2: Formulate the Research Question

It’s necessary to  formulate a research question  to proceed with your case study. Most of the research questions begin with  how, why, what, or what can . 

You can also use a research statement instead of a research question to conduct your research which can be conditional or non-conditional. 

Step 3: Review of Literature

Once you formulate your research statement or question, you need to extensively  review the documentation about the existing discoveries related to your research question or statement.

Step 4: Choose the Precise Case to Use in your Study

You need to select a specific case or multiple cases related to your research. It would help if you treated each case individually while using multiple cases. The outcomes of each case can be used as contributors to the outcomes of the entire study.  You can select the following cases. 

  • Representing various geographic regions
  • Cases with various size parameters
  • Explaining the existing theories or assumptions
  • Leading to discoveries
  • Providing a base for future research.

Step 5: Select Data Collection and Analysis Techniques

You can choose both  qualitative or quantitative approaches  for  collecting the data . You can use  interviews ,  surveys , artifacts, documentation, newspapers, and photographs, etc. To avoid biased observation, you can triangulate  your research to provide different views of your case. Even if you are focusing on a single case, you need to observe various case angles. It would help if you constructed validity, internal and external validity, as well as reliability.

Example: Identifying the impacts of contaminated water on people’s health and the factors responsible for it. You need to gather the data using qualitative and quantitative approaches to understand the case in such cases.

Construct validity:  You should select the most suitable measurement tool for your research. 

Internal validity:   You should use various methodological tools to  triangulate  the data. Try different methods to study the same hypothesis.

External validity:  You need to effectively apply the data beyond the case’s circumstances to more general issues.

Reliability:   You need to be confident enough to formulate the new direction for future studies based on your findings.

Also Read:  Reliability and Validity

Step 6: Collect the Data

Beware of the following when collecting data:

  • Information should be gathered systematically, and the collected evidence from various sources should contribute to your research objectives.
  • Don’t collect your data randomly.
  • Recheck your research questions to avoid mistakes.
  • You should save the collected data in any popular format for clear understanding.
  • While making any changes to collecting information, make sure to record the changes in a document.
  • You should maintain a case diary and note your opinions and thoughts evolved throughout the study.

Step 7: Analyse the Data

The research data identifies the relationship between the objects of study and the research questions or statements. You need to reconfirm the collected information and tabulate it correctly for better understanding. 

Step 8: Prepare the Report

It’s essential to prepare a report for your case study. You can write your case study in the form of a scientific paper or thesis discussing its detail with supporting evidence. 

A case study can be represented by incorporating  quotations,  stories, anecdotes,  interview transcripts , etc., with empirical data in the result section. 

You can also write it in narrative styles using  textual analysis  or   discourse analysis . Your report should also include evidence from published literature, and you can put it in the discussion section.

Advantages and Disadvantages of Case Study

Frequently asked questions, what is the case study.

A case study is a research method where a specific instance, event, or situation is deeply examined to gain insights into real-world complexities. It involves detailed analysis of context, data, and variables to understand patterns, causes, and effects, often used in various disciplines for in-depth exploration.

You May Also Like

Sampling methods are used to to draw valid conclusions about a large community, organization or group of people, but they are based on evidence and reasoning.

Textual analysis is the method of analysing and understanding the text. We need to look carefully at the text to identify the writer’s context and message.

Experimental research refers to the experiments conducted in the laboratory or under observation in controlled conditions. Here is all you need to know about experimental research.

USEFUL LINKS

LEARNING RESOURCES

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Frequently asked questions

What’s the difference between exploratory and explanatory research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

COMMENTS

  1. Explanatory Research

    Published on December 3, 2021 by Tegan George and Julia Merkus. Revised on November 20, 2023. Explanatory research is a research method that explores why something occurs when limited information is available. It can help you increase your understanding of a given topic, ascertain how or why a particular phenomenon is occurring, and predict ...

  2. Case Study Methodology of Qualitative Research: Key Attributes and

    Realist epistemology generally underpins the explanatory case study research. In explanatory case study, we tend to answer the questions of 'how' and 'why' of the existence of a social reality , and this can be done by looking for causal factors, and the underlying determinants of social life. Realist epistemology also stimulate theory ...

  3. Explanatory Research

    Explanatory research is a type of research that aims to uncover the underlying causes and relationships between different variables. It seeks to explain why a particular phenomenon occurs and how it relates to other factors. This type of research is typically used to test hypotheses or theories and to establish cause-and-effect relationships.

  4. Explanatory Research: Types, Examples, Pros & Cons

    Explanatory research generally focuses on the "why" questions. For example, a business might ask why customers aren't buying their product or how they can improve their sales process. Types of explanatory research include: 1. Case studies: Case studies allow researchers to examine companies that experienced the same situation as them ...

  5. Designing research with case study methods

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. Robert Yin, methodologist most associated with case study research, differentiates between descriptive, exploratory and explanatory case studies:

  6. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  7. Designing Case Studies: Explanatory Approaches in Small-N Research

    The authors explore three ways of conducting causal analysis in case studies. They draw on established practices as well as on recent innovations in case study methodology and integrate these insights into coherent approaches. ... Book Subtitle: Explanatory Approaches in Small-N Research. Authors: Joachim Blatter, Markus Haverland. Series Title ...

  8. Two or Three Approaches to Explanatory Case Study Research?

    Explanatory approach in case study research using covariational analysis [16] and cross-case analysis [17] were used to analyze the data in order to present the results and identify the ...

  9. Continuing to enhance the quality of case study methodology in health

    The popularity of case study research methodology in Health Services Research ... Yin 30 proposed three types of case study approaches—descriptive, explanatory, and exploratory. Each can be designed around single or multiple cases, creating six basic case study methodologies. Descriptive studies provide a rich description of the phenomenon ...

  10. How to Use Case Studies in Research: Guide and Examples

    Case study research is a process by which researchers examine a real-life, specific object or subject in a thorough and detailed way. This object or subject may be a: ... Explanatory. An explanatory case study is an initial explanation of the how or why that is behind something. This design is commonly used when studying a real-life phenomenon ...

  11. Explanatory Case Study Design—A Clarification

    To the Editor: For the purpose of clarity for the readership, we wish to address the description of the explanatory case study design (ECSD) as a qualitative research method in the invited critique to our original article. 1 Yin, 2 the primary source for ECSD, described case study as suitable when the number of variables of interest exceeds the ...

  12. Case Study

    The definitions of case study evolved over a period of time. Case study is defined as "a systematic inquiry into an event or a set of related events which aims to describe and explain the phenomenon of interest" (Bromley, 1990).Stoecker defined a case study as an "intensive research in which interpretations are given based on observable concrete interconnections between actual properties ...

  13. Explanatory Research

    Explanatory Research | Definition, Guide & Examples. Published on 7 May 2022 by Tegan George and Julia Merkus. Revised on 20 January 2023. Explanatory research is a research method that explores why something occurs when limited information is available. It can help you increase your understanding of a given topic, ascertain how or why a particular phenomenon is occurring, and predict future ...

  14. What is explanatory research?

    Explanatory research is a technique used to gain a deeper understanding of the underlying reasons for, causes of, and relationships behind a particular phenomenon that has yet to be extensively studied. ... Case study research: this method involves the in-depth analysis of a given individual, company, organization, or event. It allows ...

  15. PDF Explanatory Case Study (ECS) Method: A Brief Summary

    Three conditions must be met to be deemed suitable for an explanatory case study method. The research project must (Yin, 2014): • seek to explain "how"/"why" a phenomenon occurs, • seek to examine a contemporary phenomenon, and, • the researchers must have no control over the phenomenon. SOPHIE Newsletter: Explanatory Case Study

  16. Case Studies

    Case Studies. Case studies are a popular research method in business area. Case studies aim to analyze specific issues within the boundaries of a specific environment, situation or organization. According to its design, case studies in business research can be divided into three categories: explanatory, descriptive and exploratory.

  17. Explanatory research: Definition & characteristics

    Check out our library of QuestionPro Case Studies to learn more about how we help organizations conduct market research. Importance of explanatory research. Explanatory research is conducted to help researchers study the research problem in greater depth and understand the phenomenon efficiently. The primary use for explanatory research is ...

  18. A Quick Guide to Case Study with Examples

    Types of Case Study Definition Example; Explanatory case study: Explanatory research is used to determine the answers to why and how two or more variables are interrelated.Researchers usually conduct experiments to know the effect of specific changes among two or more variables.

  19. PDF Embedded Case Study Methods TYPES OF CASE STUDIES

    Explanatory case studies can also serve to test cause-and-effect relationships. Clearly, ... A case study may be used as a method of research, teaching, or action/ application. For instructional purposes, case studies are commonly used in business, law, and medical schools. The case encounter quite often changes the traditional educational

  20. What's the difference between exploratory and explanatory research?

    Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research. Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group.As a result, the characteristics of the participants who drop out differ from the characteristics of those who ...

  21. (PDF) Case Study Research

    The case study method is a research strategy that aims to gain an in-depth understanding of a specific phenomenon by collecting and analyzing specific data within its true context (Rebolj, 2013 ...