what makes a research instrument valid

  • My Bookings
  • How to Determine the Validity and Reliability of an Instrument

How to Determine the Validity and Reliability of an Instrument By: Yue Li

Validity and reliability are two important factors to consider when developing and testing any instrument (e.g., content assessment test, questionnaire) for use in a study. Attention to these considerations helps to insure the quality of your measurement and of the data collected for your study.

Understanding and Testing Validity

Validity refers to the degree to which an instrument accurately measures what it intends to measure. Three common types of validity for researchers and evaluators to consider are content, construct, and criterion validities.

  • Content validity indicates the extent to which items adequately measure or represent the content of the property or trait that the researcher wishes to measure. Subject matter expert review is often a good first step in instrument development to assess content validity, in relation to the area or field you are studying.
  • Construct validity indicates the extent to which a measurement method accurately represents a construct (e.g., a latent variable or phenomena that can’t be measured directly, such as a person’s attitude or belief) and produces an observation, distinct from that which is produced by a measure of another construct. Common methods to assess construct validity include, but are not limited to, factor analysis, correlation tests, and item response theory models (including Rasch model).
  • Criterion-related validity indicates the extent to which the instrument’s scores correlate with an external criterion (i.e., usually another measurement from a different instrument) either at present ( concurrent validity ) or in the future ( predictive validity ). A common measurement of this type of validity is the correlation coefficient between two measures.

Often times, when developing, modifying, and interpreting the validity of a given instrument, rather than view or test each type of validity individually, researchers and evaluators test for evidence of several different forms of validity, collectively (e.g., see Samuel Messick’s work regarding validity).

Understanding and Testing Reliability

Reliability refers to the degree to which an instrument yields consistent results. Common measures of reliability include internal consistency, test-retest, and inter-rater reliabilities.

  • Internal consistency reliability looks at the consistency of the score of individual items on an instrument, with the scores of a set of items, or subscale, which typically consists of several items to measure a single construct. Cronbach’s alpha is one of the most common methods for checking internal consistency reliability. Group variability, score reliability, number of items, sample sizes, and difficulty level of the instrument also can impact the Cronbach’s alpha value.
  • Test-retest measures the correlation between scores from one administration of an instrument to another, usually within an interval of 2 to 3 weeks. Unlike pre-post tests, no treatment occurs between the first and second administrations of the instrument, in order to test-retest reliability. A similar type of reliability called alternate forms , involves using slightly different forms or versions of an instrument to see if different versions yield consistent results.
  • Inter-rater reliability checks the degree of agreement among raters (i.e., those completing items on an instrument). Common situations where more than one rater is involved may occur when more than one person conducts classroom observations, uses an observation protocol or scores an open-ended test, using a rubric or other standard protocol. Kappa statistics, correlation coefficients, and intra-class correlation (ICC) coefficient are some of the commonly reported measures of inter-rater reliability.

Developing a valid and reliable instrument usually requires multiple iterations of piloting and testing which can be resource intensive. Therefore, when available, I suggest using already established valid and reliable instruments, such as those published in peer-reviewed journal articles. However, even when using these instruments, you should re-check validity and reliability, using the methods of your study and your own participants’ data before running additional statistical analyses. This process will confirm that the instrument performs, as intended, in your study with the population you are studying, even though they are identical to the purpose and population for which the instrument was initially developed. Below are a few additional, useful readings to further inform your understanding of validity and reliability.

Resources for Understanding and Testing Reliability

  • American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (1985).  Standards for educational and psychological testing . Washington, DC: Authors.
  • Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: Fundamental measurement in the human sciences . Mahwah, NJ: Lawrence Erlbaum.
  • Cronbach, L. (1990).  Essentials of psychological testing .   New York, NY: Harper & Row.
  • Carmines, E., & Zeller, R. (1979).  Reliability and Validity Assessment . Beverly Hills, CA: Sage Publications.
  • Messick, S. (1987). Validity . ETS Research Report Series, 1987: i–208. doi: 10.1002/j.2330-8516.1987.tb00244.x
  • Liu, X. (2010). Using and developing measurement instruments in science education: A Rasch modeling approach . Charlotte, NC: Information Age.
  • Search for:

Recent Posts

  • Avoiding Data Analysis Pitfalls
  • Advice in Building and Boasting a Successful Grant Funding Track Record
  • Personal History of Miami University’s Discovery and E & A Centers
  • Center Director’s Message

Recent Comments

  • November 2016
  • September 2016
  • February 2016
  • November 2015
  • October 2015
  • Uncategorized
  • Entries feed
  • Comments feed
  • WordPress.org
  • Privacy Policy

Research Method

Home » Validity – Types, Examples and Guide

Validity – Types, Examples and Guide

Table of Contents

Validity

Definition:

Validity refers to the extent to which a concept, measure, or study accurately represents the intended meaning or reality it is intended to capture. It is a fundamental concept in research and assessment that assesses the soundness and appropriateness of the conclusions, inferences, or interpretations made based on the data or evidence collected.

Research Validity

Research validity refers to the degree to which a study accurately measures or reflects what it claims to measure. In other words, research validity concerns whether the conclusions drawn from a study are based on accurate, reliable and relevant data.

Validity is a concept used in logic and research methodology to assess the strength of an argument or the quality of a research study. It refers to the extent to which a conclusion or result is supported by evidence and reasoning.

How to Ensure Validity in Research

Ensuring validity in research involves several steps and considerations throughout the research process. Here are some key strategies to help maintain research validity:

Clearly Define Research Objectives and Questions

Start by clearly defining your research objectives and formulating specific research questions. This helps focus your study and ensures that you are addressing relevant and meaningful research topics.

Use appropriate research design

Select a research design that aligns with your research objectives and questions. Different types of studies, such as experimental, observational, qualitative, or quantitative, have specific strengths and limitations. Choose the design that best suits your research goals.

Use reliable and valid measurement instruments

If you are measuring variables or constructs, ensure that the measurement instruments you use are reliable and valid. This involves using established and well-tested tools or developing your own instruments through rigorous validation processes.

Ensure a representative sample

When selecting participants or subjects for your study, aim for a sample that is representative of the population you want to generalize to. Consider factors such as age, gender, socioeconomic status, and other relevant demographics to ensure your findings can be generalized appropriately.

Address potential confounding factors

Identify potential confounding variables or biases that could impact your results. Implement strategies such as randomization, matching, or statistical control to minimize the influence of confounding factors and increase internal validity.

Minimize measurement and response biases

Be aware of measurement biases and response biases that can occur during data collection. Use standardized protocols, clear instructions, and trained data collectors to minimize these biases. Employ techniques like blinding or double-blinding in experimental studies to reduce bias.

Conduct appropriate statistical analyses

Ensure that the statistical analyses you employ are appropriate for your research design and data type. Select statistical tests that are relevant to your research questions and use robust analytical techniques to draw accurate conclusions from your data.

Consider external validity

While it may not always be possible to achieve high external validity, be mindful of the generalizability of your findings. Clearly describe your sample and study context to help readers understand the scope and limitations of your research.

Peer review and replication

Submit your research for peer review by experts in your field. Peer review helps identify potential flaws, biases, or methodological issues that can impact validity. Additionally, encourage replication studies by other researchers to validate your findings and enhance the overall reliability of the research.

Transparent reporting

Clearly and transparently report your research methods, procedures, data collection, and analysis techniques. Provide sufficient details for others to evaluate the validity of your study and replicate your work if needed.

Types of Validity

There are several types of validity that researchers consider when designing and evaluating studies. Here are some common types of validity:

Internal Validity

Internal validity relates to the degree to which a study accurately identifies causal relationships between variables. It addresses whether the observed effects can be attributed to the manipulated independent variable rather than confounding factors. Threats to internal validity include selection bias, history effects, maturation of participants, and instrumentation issues.

External Validity

External validity concerns the generalizability of research findings to the broader population or real-world settings. It assesses the extent to which the results can be applied to other individuals, contexts, or timeframes. Factors that can limit external validity include sample characteristics, research settings, and the specific conditions under which the study was conducted.

Construct Validity

Construct validity examines whether a study adequately measures the intended theoretical constructs or concepts. It focuses on the alignment between the operational definitions used in the study and the underlying theoretical constructs. Construct validity can be threatened by issues such as poor measurement tools, inadequate operational definitions, or a lack of clarity in the conceptual framework.

Content Validity

Content validity refers to the degree to which a measurement instrument or test adequately covers the entire range of the construct being measured. It assesses whether the items or questions included in the measurement tool represent the full scope of the construct. Content validity is often evaluated through expert judgment, reviewing the relevance and representativeness of the items.

Criterion Validity

Criterion validity determines the extent to which a measure or test is related to an external criterion or standard. It assesses whether the results obtained from a measurement instrument align with other established measures or outcomes. Criterion validity can be divided into two subtypes: concurrent validity, which examines the relationship between the measure and the criterion at the same time, and predictive validity, which investigates the measure’s ability to predict future outcomes.

Face Validity

Face validity refers to the degree to which a measurement or test appears, on the surface, to measure what it intends to measure. It is a subjective assessment based on whether the items seem relevant and appropriate to the construct being measured. Face validity is often used as an initial evaluation before conducting more rigorous validity assessments.

Importance of Validity

Validity is crucial in research for several reasons:

  • Accurate Measurement: Validity ensures that the measurements or observations in a study accurately represent the intended constructs or variables. Without validity, researchers cannot be confident that their results truly reflect the phenomena they are studying. Validity allows researchers to draw accurate conclusions and make meaningful inferences based on their findings.
  • Credibility and Trustworthiness: Validity enhances the credibility and trustworthiness of research. When a study demonstrates high validity, it indicates that the researchers have taken appropriate measures to ensure the accuracy and integrity of their work. This strengthens the confidence of other researchers, peers, and the wider scientific community in the study’s results and conclusions.
  • Generalizability: Validity helps determine the extent to which research findings can be generalized beyond the specific sample and context of the study. By addressing external validity, researchers can assess whether their results can be applied to other populations, settings, or situations. This information is valuable for making informed decisions, implementing interventions, or developing policies based on research findings.
  • Sound Decision-Making: Validity supports informed decision-making in various fields, such as medicine, psychology, education, and social sciences. When validity is established, policymakers, practitioners, and professionals can rely on research findings to guide their actions and interventions. Validity ensures that decisions are based on accurate and trustworthy information, which can lead to better outcomes and more effective practices.
  • Avoiding Errors and Bias: Validity helps researchers identify and mitigate potential errors and biases in their studies. By addressing internal validity, researchers can minimize confounding factors and alternative explanations, ensuring that the observed effects are genuinely attributable to the manipulated variables. Validity assessments also highlight measurement errors or shortcomings, enabling researchers to improve their measurement tools and procedures.
  • Progress of Scientific Knowledge: Validity is essential for the advancement of scientific knowledge. Valid research contributes to the accumulation of reliable and valid evidence, which forms the foundation for building theories, developing models, and refining existing knowledge. Validity allows researchers to build upon previous findings, replicate studies, and establish a cumulative body of knowledge in various disciplines. Without validity, the scientific community would struggle to make meaningful progress and establish a solid understanding of the phenomena under investigation.
  • Ethical Considerations: Validity is closely linked to ethical considerations in research. Conducting valid research ensures that participants’ time, effort, and data are not wasted on flawed or invalid studies. It upholds the principle of respect for participants’ autonomy and promotes responsible research practices. Validity is also important when making claims or drawing conclusions that may have real-world implications, as misleading or invalid findings can have adverse effects on individuals, organizations, or society as a whole.

Examples of Validity

Here are some examples of validity in different contexts:

  • Example 1: All men are mortal. John is a man. Therefore, John is mortal. This argument is logically valid because the conclusion follows logically from the premises.
  • Example 2: If it is raining, then the ground is wet. The ground is wet. Therefore, it is raining. This argument is not logically valid because there could be other reasons for the ground being wet, such as watering the plants.
  • Example 1: In a study examining the relationship between caffeine consumption and alertness, the researchers use established measures of both variables, ensuring that they are accurately capturing the concepts they intend to measure. This demonstrates construct validity.
  • Example 2: A researcher develops a new questionnaire to measure anxiety levels. They administer the questionnaire to a group of participants and find that it correlates highly with other established anxiety measures. This indicates good construct validity for the new questionnaire.
  • Example 1: A study on the effects of a particular teaching method is conducted in a controlled laboratory setting. The findings of the study may lack external validity because the conditions in the lab may not accurately reflect real-world classroom settings.
  • Example 2: A research study on the effects of a new medication includes participants from diverse backgrounds and age groups, increasing the external validity of the findings to a broader population.
  • Example 1: In an experiment, a researcher manipulates the independent variable (e.g., a new drug) and controls for other variables to ensure that any observed effects on the dependent variable (e.g., symptom reduction) are indeed due to the manipulation. This establishes internal validity.
  • Example 2: A researcher conducts a study examining the relationship between exercise and mood by administering questionnaires to participants. However, the study lacks internal validity because it does not control for other potential factors that could influence mood, such as diet or stress levels.
  • Example 1: A teacher develops a new test to assess students’ knowledge of a particular subject. The items on the test appear to be relevant to the topic at hand and align with what one would expect to find on such a test. This suggests face validity, as the test appears to measure what it intends to measure.
  • Example 2: A company develops a new customer satisfaction survey. The questions included in the survey seem to address key aspects of the customer experience and capture the relevant information. This indicates face validity, as the survey seems appropriate for assessing customer satisfaction.
  • Example 1: A team of experts reviews a comprehensive curriculum for a high school biology course. They evaluate the curriculum to ensure that it covers all the essential topics and concepts necessary for students to gain a thorough understanding of biology. This demonstrates content validity, as the curriculum is representative of the domain it intends to cover.
  • Example 2: A researcher develops a questionnaire to assess career satisfaction. The questions in the questionnaire encompass various dimensions of job satisfaction, such as salary, work-life balance, and career growth. This indicates content validity, as the questionnaire adequately represents the different aspects of career satisfaction.
  • Example 1: A company wants to evaluate the effectiveness of a new employee selection test. They administer the test to a group of job applicants and later assess the job performance of those who were hired. If there is a strong correlation between the test scores and subsequent job performance, it suggests criterion validity, indicating that the test is predictive of job success.
  • Example 2: A researcher wants to determine if a new medical diagnostic tool accurately identifies a specific disease. They compare the results of the diagnostic tool with the gold standard diagnostic method and find a high level of agreement. This demonstrates criterion validity, indicating that the new tool is valid in accurately diagnosing the disease.

Where to Write About Validity in A Thesis

In a thesis, discussions related to validity are typically included in the methodology and results sections. Here are some specific places where you can address validity within your thesis:

Research Design and Methodology

In the methodology section, provide a clear and detailed description of the measures, instruments, or data collection methods used in your study. Discuss the steps taken to establish or assess the validity of these measures. Explain the rationale behind the selection of specific validity types relevant to your study, such as content validity, criterion validity, or construct validity. Discuss any modifications or adaptations made to existing measures and their potential impact on validity.

Measurement Procedures

In the methodology section, elaborate on the procedures implemented to ensure the validity of measurements. Describe how potential biases or confounding factors were addressed, controlled, or accounted for to enhance internal validity. Provide details on how you ensured that the measurement process accurately captures the intended constructs or variables of interest.

Data Collection

In the methodology section, discuss the steps taken to collect data and ensure data validity. Explain any measures implemented to minimize errors or biases during data collection, such as training of data collectors, standardized protocols, or quality control procedures. Address any potential limitations or threats to validity related to the data collection process.

Data Analysis and Results

In the results section, present the analysis and findings related to validity. Report any statistical tests, correlations, or other measures used to assess validity. Provide interpretations and explanations of the results obtained. Discuss the implications of the validity findings for the overall reliability and credibility of your study.

Limitations and Future Directions

In the discussion or conclusion section, reflect on the limitations of your study, including limitations related to validity. Acknowledge any potential threats or weaknesses to validity that you encountered during your research. Discuss how these limitations may have influenced the interpretation of your findings and suggest avenues for future research that could address these validity concerns.

Applications of Validity

Validity is applicable in various areas and contexts where research and measurement play a role. Here are some common applications of validity:

Psychological and Behavioral Research

Validity is crucial in psychology and behavioral research to ensure that measurement instruments accurately capture constructs such as personality traits, intelligence, attitudes, emotions, or psychological disorders. Validity assessments help researchers determine if their measures are truly measuring the intended psychological constructs and if the results can be generalized to broader populations or real-world settings.

Educational Assessment

Validity is essential in educational assessment to determine if tests, exams, or assessments accurately measure students’ knowledge, skills, or abilities. It ensures that the assessment aligns with the educational objectives and provides reliable information about student performance. Validity assessments help identify if the assessment is valid for all students, regardless of their demographic characteristics, language proficiency, or cultural background.

Program Evaluation

Validity plays a crucial role in program evaluation, where researchers assess the effectiveness and impact of interventions, policies, or programs. By establishing validity, evaluators can determine if the observed outcomes are genuinely attributable to the program being evaluated rather than extraneous factors. Validity assessments also help ensure that the evaluation findings are applicable to different populations, contexts, or timeframes.

Medical and Health Research

Validity is essential in medical and health research to ensure the accuracy and reliability of diagnostic tools, measurement instruments, and clinical assessments. Validity assessments help determine if a measurement accurately identifies the presence or absence of a medical condition, measures the effectiveness of a treatment, or predicts patient outcomes. Validity is crucial for establishing evidence-based medicine and informing medical decision-making.

Social Science Research

Validity is relevant in various social science disciplines, including sociology, anthropology, economics, and political science. Researchers use validity to ensure that their measures and methods accurately capture social phenomena, such as social attitudes, behaviors, social structures, or economic indicators. Validity assessments support the reliability and credibility of social science research findings.

Market Research and Surveys

Validity is important in market research and survey studies to ensure that the survey questions effectively measure consumer preferences, buying behaviors, or attitudes towards products or services. Validity assessments help researchers determine if the survey instrument is accurately capturing the desired information and if the results can be generalized to the target population.

Limitations of Validity

Here are some limitations of validity:

  • Construct Validity: Limitations of construct validity include the potential for measurement error, inadequate operational definitions of constructs, or the failure to capture all aspects of a complex construct.
  • Internal Validity: Limitations of internal validity may arise from confounding variables, selection bias, or the presence of extraneous factors that could influence the study outcomes, making it difficult to attribute causality accurately.
  • External Validity: Limitations of external validity can occur when the study sample does not represent the broader population, when the research setting differs significantly from real-world conditions, or when the study lacks ecological validity, i.e., the findings do not reflect real-world complexities.
  • Measurement Validity: Limitations of measurement validity can arise from measurement error, inadequately designed or flawed measurement scales, or limitations inherent in self-report measures, such as social desirability bias or recall bias.
  • Statistical Conclusion Validity: Limitations in statistical conclusion validity can occur due to sampling errors, inadequate sample sizes, or improper statistical analysis techniques, leading to incorrect conclusions or generalizations.
  • Temporal Validity: Limitations of temporal validity arise when the study results become outdated due to changes in the studied phenomena, interventions, or contextual factors.
  • Researcher Bias: Researcher bias can affect the validity of a study. Biases can emerge through the researcher’s subjective interpretation, influence of personal beliefs, or preconceived notions, leading to unintentional distortion of findings or failure to consider alternative explanations.
  • Ethical Validity: Limitations can arise if the study design or methods involve ethical concerns, such as the use of deceptive practices, inadequate informed consent, or potential harm to participants.

Also see  Reliability Vs Validity

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Alternate Forms Reliability

Alternate Forms Reliability – Methods, Examples...

Construct Validity

Construct Validity – Types, Threats and Examples

Internal Validity

Internal Validity – Threats, Examples and Guide

Reliability Vs Validity

Reliability Vs Validity

Internal_Consistency_Reliability

Internal Consistency Reliability – Methods...

Split-Half Reliability

Split-Half Reliability – Methods, Examples and...

Grad Coach

Validity & Reliability In Research

A Plain-Language Explanation (With Examples)

By: Derek Jansen (MBA) | Expert Reviewer: Kerryn Warren (PhD) | September 2023

Validity and reliability are two related but distinctly different concepts within research. Understanding what they are and how to achieve them is critically important to any research project. In this post, we’ll unpack these two concepts as simply as possible.

This post is based on our popular online course, Research Methodology Bootcamp . In the course, we unpack the basics of methodology  using straightfoward language and loads of examples. If you’re new to academic research, you definitely want to use this link to get 50% off the course (limited-time offer).

Overview: Validity & Reliability

  • The big picture
  • Validity 101
  • Reliability 101 
  • Key takeaways

First, The Basics…

First, let’s start with a big-picture view and then we can zoom in to the finer details.

Validity and reliability are two incredibly important concepts in research, especially within the social sciences. Both validity and reliability have to do with the measurement of variables and/or constructs – for example, job satisfaction, intelligence, productivity, etc. When undertaking research, you’ll often want to measure these types of constructs and variables and, at the simplest level, validity and reliability are about ensuring the quality and accuracy of those measurements .

As you can probably imagine, if your measurements aren’t accurate or there are quality issues at play when you’re collecting your data, your entire study will be at risk. Therefore, validity and reliability are very important concepts to understand (and to get right). So, let’s unpack each of them.

Free Webinar: Research Methodology 101

What Is Validity?

In simple terms, validity (also called “construct validity”) is all about whether a research instrument accurately measures what it’s supposed to measure .

For example, let’s say you have a set of Likert scales that are supposed to quantify someone’s level of overall job satisfaction. If this set of scales focused purely on only one dimension of job satisfaction, say pay satisfaction, this would not be a valid measurement, as it only captures one aspect of the multidimensional construct. In other words, pay satisfaction alone is only one contributing factor toward overall job satisfaction, and therefore it’s not a valid way to measure someone’s job satisfaction.

what makes a research instrument valid

Oftentimes in quantitative studies, the way in which the researcher or survey designer interprets a question or statement can differ from how the study participants interpret it . Given that respondents don’t have the opportunity to ask clarifying questions when taking a survey, it’s easy for these sorts of misunderstandings to crop up. Naturally, if the respondents are interpreting the question in the wrong way, the data they provide will be pretty useless . Therefore, ensuring that a study’s measurement instruments are valid – in other words, that they are measuring what they intend to measure – is incredibly important.

There are various types of validity and we’re not going to go down that rabbit hole in this post, but it’s worth quickly highlighting the importance of making sure that your research instrument is tightly aligned with the theoretical construct you’re trying to measure .  In other words, you need to pay careful attention to how the key theories within your study define the thing you’re trying to measure – and then make sure that your survey presents it in the same way.

For example, sticking with the “job satisfaction” construct we looked at earlier, you’d need to clearly define what you mean by job satisfaction within your study (and this definition would of course need to be underpinned by the relevant theory). You’d then need to make sure that your chosen definition is reflected in the types of questions or scales you’re using in your survey . Simply put, you need to make sure that your survey respondents are perceiving your key constructs in the same way you are. Or, even if they’re not, that your measurement instrument is capturing the necessary information that reflects your definition of the construct at hand.

If all of this talk about constructs sounds a bit fluffy, be sure to check out Research Methodology Bootcamp , which will provide you with a rock-solid foundational understanding of all things methodology-related. Remember, you can take advantage of our 60% discount offer using this link.

Need a helping hand?

what makes a research instrument valid

What Is Reliability?

As with validity, reliability is an attribute of a measurement instrument – for example, a survey, a weight scale or even a blood pressure monitor. But while validity is concerned with whether the instrument is measuring the “thing” it’s supposed to be measuring, reliability is concerned with consistency and stability . In other words, reliability reflects the degree to which a measurement instrument produces consistent results when applied repeatedly to the same phenomenon , under the same conditions .

As you can probably imagine, a measurement instrument that achieves a high level of consistency is naturally more dependable (or reliable) than one that doesn’t – in other words, it can be trusted to provide consistent measurements . And that, of course, is what you want when undertaking empirical research. If you think about it within a more domestic context, just imagine if you found that your bathroom scale gave you a different number every time you hopped on and off of it – you wouldn’t feel too confident in its ability to measure the variable that is your body weight 🙂

It’s worth mentioning that reliability also extends to the person using the measurement instrument . For example, if two researchers use the same instrument (let’s say a measuring tape) and they get different measurements, there’s likely an issue in terms of how one (or both) of them are using the measuring tape. So, when you think about reliability, consider both the instrument and the researcher as part of the equation.

As with validity, there are various types of reliability and various tests that can be used to assess the reliability of an instrument. A popular one that you’ll likely come across for survey instruments is Cronbach’s alpha , which is a statistical measure that quantifies the degree to which items within an instrument (for example, a set of Likert scales) measure the same underlying construct . In other words, Cronbach’s alpha indicates how closely related the items are and whether they consistently capture the same concept . 

Reliability reflects whether an instrument produces consistent results when applied to the same phenomenon, under the same conditions.

Recap: Key Takeaways

Alright, let’s quickly recap to cement your understanding of validity and reliability:

  • Validity is concerned with whether an instrument (e.g., a set of Likert scales) is measuring what it’s supposed to measure
  • Reliability is concerned with whether that measurement is consistent and stable when measuring the same phenomenon under the same conditions.

In short, validity and reliability are both essential to ensuring that your data collection efforts deliver high-quality, accurate data that help you answer your research questions . So, be sure to always pay careful attention to the validity and reliability of your measurement instruments when collecting and analysing data. As the adage goes, “rubbish in, rubbish out” – make sure that your data inputs are rock-solid.

Literature Review Course

Psst… there’s more!

This post is an extract from our bestselling short course, Methodology Bootcamp . If you want to work smart, you don't want to miss this .

You Might Also Like:

Research aims, research objectives and research questions

THE MATERIAL IS WONDERFUL AND BENEFICIAL TO ALL STUDENTS.

THE MATERIAL IS WONDERFUL AND BENEFICIAL TO ALL STUDENTS AND I HAVE GREATLY BENEFITED FROM THE CONTENT.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • How it works

Reliability and Validity – Definitions, Types & Examples

Published by Alvin Nicolas at August 16th, 2021 , Revised On October 26, 2023

A researcher must test the collected data before making any conclusion. Every  research design  needs to be concerned with reliability and validity to measure the quality of the research.

What is Reliability?

Reliability refers to the consistency of the measurement. Reliability shows how trustworthy is the score of the test. If the collected data shows the same results after being tested using various methods and sample groups, the information is reliable. If your method has reliability, the results will be valid.

Example: If you weigh yourself on a weighing scale throughout the day, you’ll get the same results. These are considered reliable results obtained through repeated measures.

Example: If a teacher conducts the same math test of students and repeats it next week with the same questions. If she gets the same score, then the reliability of the test is high.

What is the Validity?

Validity refers to the accuracy of the measurement. Validity shows how a specific test is suitable for a particular situation. If the results are accurate according to the researcher’s situation, explanation, and prediction, then the research is valid. 

If the method of measuring is accurate, then it’ll produce accurate results. If a method is reliable, then it’s valid. In contrast, if a method is not reliable, it’s not valid. 

Example:  Your weighing scale shows different results each time you weigh yourself within a day even after handling it carefully, and weighing before and after meals. Your weighing machine might be malfunctioning. It means your method had low reliability. Hence you are getting inaccurate or inconsistent results that are not valid.

Example:  Suppose a questionnaire is distributed among a group of people to check the quality of a skincare product and repeated the same questionnaire with many groups. If you get the same response from various participants, it means the validity of the questionnaire and product is high as it has high reliability.

Most of the time, validity is difficult to measure even though the process of measurement is reliable. It isn’t easy to interpret the real situation.

Example:  If the weighing scale shows the same result, let’s say 70 kg each time, even if your actual weight is 55 kg, then it means the weighing scale is malfunctioning. However, it was showing consistent results, but it cannot be considered as reliable. It means the method has low reliability.

Internal Vs. External Validity

One of the key features of randomised designs is that they have significantly high internal and external validity.

Internal validity  is the ability to draw a causal link between your treatment and the dependent variable of interest. It means the observed changes should be due to the experiment conducted, and any external factor should not influence the  variables .

Example: age, level, height, and grade.

External validity  is the ability to identify and generalise your study outcomes to the population at large. The relationship between the study’s situation and the situations outside the study is considered external validity.

Also, read about Inductive vs Deductive reasoning in this article.

Looking for reliable dissertation support?

We hear you.

  • Whether you want a full dissertation written or need help forming a dissertation proposal, we can help you with both.
  • Get different dissertation services at ResearchProspect and score amazing grades!

Threats to Interval Validity

Threats of external validity, how to assess reliability and validity.

Reliability can be measured by comparing the consistency of the procedure and its results. There are various methods to measure validity and reliability. Reliability can be measured through  various statistical methods  depending on the types of validity, as explained below:

Types of Reliability

Types of validity.

As we discussed above, the reliability of the measurement alone cannot determine its validity. Validity is difficult to be measured even if the method is reliable. The following type of tests is conducted for measuring validity. 

Does your Research Methodology Have the Following?

  • Great Research/Sources
  • Perfect Language
  • Accurate Sources

If not, we can help. Our panel of experts makes sure to keep the 3 pillars of Research Methodology strong.

Does your Research Methodology Have the Following?

How to Increase Reliability?

  • Use an appropriate questionnaire to measure the competency level.
  • Ensure a consistent environment for participants
  • Make the participants familiar with the criteria of assessment.
  • Train the participants appropriately.
  • Analyse the research items regularly to avoid poor performance.

How to Increase Validity?

Ensuring Validity is also not an easy job. A proper functioning method to ensure validity is given below:

  • The reactivity should be minimised at the first concern.
  • The Hawthorne effect should be reduced.
  • The respondents should be motivated.
  • The intervals between the pre-test and post-test should not be lengthy.
  • Dropout rates should be avoided.
  • The inter-rater reliability should be ensured.
  • Control and experimental groups should be matched with each other.

How to Implement Reliability and Validity in your Thesis?

According to the experts, it is helpful if to implement the concept of reliability and Validity. Especially, in the thesis and the dissertation, these concepts are adopted much. The method for implementation given below:

Frequently Asked Questions

What is reliability and validity in research.

Reliability in research refers to the consistency and stability of measurements or findings. Validity relates to the accuracy and truthfulness of results, measuring what the study intends to. Both are crucial for trustworthy and credible research outcomes.

What is validity?

Validity in research refers to the extent to which a study accurately measures what it intends to measure. It ensures that the results are truly representative of the phenomena under investigation. Without validity, research findings may be irrelevant, misleading, or incorrect, limiting their applicability and credibility.

What is reliability?

Reliability in research refers to the consistency and stability of measurements over time. If a study is reliable, repeating the experiment or test under the same conditions should produce similar results. Without reliability, findings become unpredictable and lack dependability, potentially undermining the study’s credibility and generalisability.

What is reliability in psychology?

In psychology, reliability refers to the consistency of a measurement tool or test. A reliable psychological assessment produces stable and consistent results across different times, situations, or raters. It ensures that an instrument’s scores are not due to random error, making the findings dependable and reproducible in similar conditions.

What is test retest reliability?

Test-retest reliability assesses the consistency of measurements taken by a test over time. It involves administering the same test to the same participants at two different points in time and comparing the results. A high correlation between the scores indicates that the test produces stable and consistent results over time.

How to improve reliability of an experiment?

  • Standardise procedures and instructions.
  • Use consistent and precise measurement tools.
  • Train observers or raters to reduce subjective judgments.
  • Increase sample size to reduce random errors.
  • Conduct pilot studies to refine methods.
  • Repeat measurements or use multiple methods.
  • Address potential sources of variability.

What is the difference between reliability and validity?

Reliability refers to the consistency and repeatability of measurements, ensuring results are stable over time. Validity indicates how well an instrument measures what it’s intended to measure, ensuring accuracy and relevance. While a test can be reliable without being valid, a valid test must inherently be reliable. Both are essential for credible research.

Are interviews reliable and valid?

Interviews can be both reliable and valid, but they are susceptible to biases. The reliability and validity depend on the design, structure, and execution of the interview. Structured interviews with standardised questions improve reliability. Validity is enhanced when questions accurately capture the intended construct and when interviewer biases are minimised.

Are IQ tests valid and reliable?

IQ tests are generally considered reliable, producing consistent scores over time. Their validity, however, is a subject of debate. While they effectively measure certain cognitive skills, whether they capture the entirety of “intelligence” or predict success in all life areas is contested. Cultural bias and over-reliance on tests are also concerns.

Are questionnaires reliable and valid?

Questionnaires can be both reliable and valid if well-designed. Reliability is achieved when they produce consistent results over time or across similar populations. Validity is ensured when questions accurately measure the intended construct. However, factors like poorly phrased questions, respondent bias, and lack of standardisation can compromise their reliability and validity.

You May Also Like

Disadvantages of primary research – It can be expensive, time-consuming and take a long time to complete if it involves face-to-face contact with customers.

You can transcribe an interview by converting a conversation into a written format including question-answer recording sessions between two or more people.

Textual analysis is the method of analysing and understanding the text. We need to look carefully at the text to identify the writer’s context and message.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Reliability vs Validity in Research | Differences, Types & Examples

Reliability vs Validity in Research | Differences, Types & Examples

Published on 3 May 2022 by Fiona Middleton . Revised on 10 October 2022.

Reliability and validity are concepts used to evaluate the quality of research. They indicate how well a method , technique, or test measures something. Reliability is about the consistency of a measure, and validity is about the accuracy of a measure.

It’s important to consider reliability and validity when you are creating your research design , planning your methods, and writing up your results, especially in quantitative research .

Table of contents

Understanding reliability vs validity, how are reliability and validity assessed, how to ensure validity and reliability in your research, where to write about reliability and validity in a thesis.

Reliability and validity are closely related, but they mean different things. A measurement can be reliable without being valid. However, if a measurement is valid, it is usually also reliable.

What is reliability?

Reliability refers to how consistently a method measures something. If the same result can be consistently achieved by using the same methods under the same circumstances, the measurement is considered reliable.

What is validity?

Validity refers to how accurately a method measures what it is intended to measure. If research has high validity, that means it produces results that correspond to real properties, characteristics, and variations in the physical or social world.

High reliability is one indicator that a measurement is valid. If a method is not reliable, it probably isn’t valid.

However, reliability on its own is not enough to ensure validity. Even if a test is reliable, it may not accurately reflect the real situation.

Validity is harder to assess than reliability, but it is even more important. To obtain useful results, the methods you use to collect your data must be valid: the research must be measuring what it claims to measure. This ensures that your discussion of the data and the conclusions you draw are also valid.

Prevent plagiarism, run a free check.

Reliability can be estimated by comparing different versions of the same measurement. Validity is harder to assess, but it can be estimated by comparing the results to other relevant data or theory. Methods of estimating reliability and validity are usually split up into different types.

Types of reliability

Different types of reliability can be estimated through various statistical methods.

Types of validity

The validity of a measurement can be estimated based on three main types of evidence. Each type can be evaluated through expert judgement or statistical methods.

To assess the validity of a cause-and-effect relationship, you also need to consider internal validity (the design of the experiment ) and external validity (the generalisability of the results).

The reliability and validity of your results depends on creating a strong research design , choosing appropriate methods and samples, and conducting the research carefully and consistently.

Ensuring validity

If you use scores or ratings to measure variations in something (such as psychological traits, levels of ability, or physical properties), it’s important that your results reflect the real variations as accurately as possible. Validity should be considered in the very earliest stages of your research, when you decide how you will collect your data .

  • Choose appropriate methods of measurement

Ensure that your method and measurement technique are of high quality and targeted to measure exactly what you want to know. They should be thoroughly researched and based on existing knowledge.

For example, to collect data on a personality trait, you could use a standardised questionnaire that is considered reliable and valid. If you develop your own questionnaire, it should be based on established theory or the findings of previous studies, and the questions should be carefully and precisely worded.

  • Use appropriate sampling methods to select your subjects

To produce valid generalisable results, clearly define the population you are researching (e.g., people from a specific age range, geographical location, or profession). Ensure that you have enough participants and that they are representative of the population.

Ensuring reliability

Reliability should be considered throughout the data collection process. When you use a tool or technique to collect data, it’s important that the results are precise, stable, and reproducible.

  • Apply your methods consistently

Plan your method carefully to make sure you carry out the same steps in the same way for each measurement. This is especially important if multiple researchers are involved.

For example, if you are conducting interviews or observations, clearly define how specific behaviours or responses will be counted, and make sure questions are phrased the same way each time.

  • Standardise the conditions of your research

When you collect your data, keep the circumstances as consistent as possible to reduce the influence of external factors that might create variation in the results.

For example, in an experimental setup, make sure all participants are given the same information and tested under the same conditions.

It’s appropriate to discuss reliability and validity in various sections of your thesis or dissertation or research paper. Showing that you have taken them into account in planning your research and interpreting the results makes your work more credible and trustworthy.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Middleton, F. (2022, October 10). Reliability vs Validity in Research | Differences, Types & Examples. Scribbr. Retrieved 6 May 2024, from https://www.scribbr.co.uk/research-methods/reliability-or-validity/

Is this article helpful?

Fiona Middleton

Fiona Middleton

Other students also liked, the 4 types of validity | types, definitions & examples, a quick guide to experimental design | 5 steps & examples, sampling methods | types, techniques, & examples.

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Instrument reliability.

Reliability (visit the concept map that shows the various types of reliability)

A test is reliable to the extent that whatever it measures, it measures it consistently. If I were to stand on a scale and the scale read 15 pounds, I might wonder. Suppose I were to step off the scale and stand on it again, and again it read 15 pounds. The scale is producing consistent results. From a research point of view, the scale seems to be reliable because whatever it is measuring, it is measuring it consistently. Whether those consistent results are valid is another question.  However, an instrument cannot be valid if it is not reliable.

There are three major categories of reliability for most instruments: test-retest, equivalent form, and internal consistency. Each measures consistency a bit differently and a given instrument need not meet the requirements of each. Test-retest measures consistency from one time to the next. Equivalent-form measures consistency between two versions of an instrument. Internal-consistency measures consistency within the instrument (consistency among the questions). A fourth category (scorer agreement)  is often used with performance and product assessments. Scorer agreement is consistency of rating a performance or product among different judges who are rating the performance or product. Generally speaking, the longer a test is, the more reliable it tends to be (up to a point). For research purposes, a minimum reliability of .70 is required for attitude instruments. Some researchers feel that it should be higher. A reliability of .70 indicates 70% consistency in the scores that are produced by the instrument. Many tests, such as achievement tests, strive for .90 or higher reliabilities.

Relationship of Test Forms and Testing Sessions Required for Reliability Procedures

Test-Retest Method (stability: measures error because of changes over time) The same instrument is given twice to the same group of people. The reliability is the correlation between the scores on the two instruments.  If the results are consistent over time, the scores should be similar. The trick with test-retest reliability is determining how long to wait between the two administrations. One should wait long enough so the subjects don’t remember how they responded the first time they completed the instrument, but not so long that their knowledge of the material being measured has changed. This may be a couple weeks to a couple months.

If one were investigating the reliability of a test measuring mathematics skills, it would not be wise to wait two months. The subjects probably would have gained additional mathematics skills during the two months and thus would have scored differently the second time they completed the test. We would not want their knowledge to have changed between the first and second testing.

Equivalent-Form (Parallel or Alternate-Form) Method (measures error because of differences in test forms) Two different versions of the instrument are created. We assume both measure the same thing. The same subjects complete both instruments during the same time period. The scores on the two instruments are correlated to calculate the consistency between the two forms of the instrument.

Internal-Consistency Method (measures error because of idiosyncrasies of the test items) Several internal-consistency methods exist. They have one thing in common. The subjects complete one instrument one time. For this reason, this is the easiest form of reliability to investigate. This method measures consistency within the instrument three different ways.

– Split-Half A total score for the odd number questions is correlated with a total score for the even number questions (although it might be the first half with the second half). This is often used with dichotomous variables that are scored 0 for incorrect and 1 for correct.The Spearman-Brown prophecy formula is applied to the correlation to determine the reliability.

– Kuder-Richardson Formula 20 (K-R 20) and  Kuder-Richardson Formula 21 (K-R 21) These are alternative formulas for calculating how consistent subject responses are among the questions on an instrument. Items on the instrument must be dichotomously scored (0 for incorrect and 1 for correct). All items are compared with each other, rather than half of the items with the other half of the items. It can be shown mathematically that the Kuder-Richardson reliability coefficient is actually the mean of all split-half coefficients (provided the Rulon formula is used) resulting from different splittings of a test. K-R 21 assumes that all of the questions are equally difficult. K-R 20 does not assume that. The formula for K-R 21 can be found on page 179.

– Cronbach’s Alpha When the items on an instrument are not scored right versus wrong, Cronbach’s alpha is often used to measure the internal consistency. This is often the case with attitude instruments that use the Likert scale. A computer program such as SPSS is often used to calculate Cronbach’s alpha. Although Cronbach’s alpha is usually used for scores which fall along a continuum, it will produce the same results as KR-20 with dichotomous data (0 or 1).

I have created an Excel spreadsheet that will calculate Spearman-Brown, KR-20, KR-21, and Cronbach’s alpha. The spreadsheet will handle data for a maximum 1000 subjects with a maximum of 100 responses for each.

Scoring Agreement (measures error because of the scorer) Performance and product assessments are often based on scores by individuals who are trained to evaluate the performance or product. The consistency between rating can be calculated in a variety of ways.

– Interrater Reliability Two judges can evaluate a group of student products and the correlation between their ratings can be calculated (r=.90 is a common cutoff).

– Percentage Agreement Two judges can evaluate a group of products and a percentage for the number of times they agree is calculated (80% is a common cutoff).

———

All scores contain error. The error is what lowers an instrument’s reliability. Obtained Score = True Score + Error Score

———-

There could be a number of reasons why the reliability estimate for a measure is low. Four common sources of inconsistencies of test scores are listed below:

Test Taker — perhaps the subject is having a bad day Test Itself — the questions on the instrument may be unclear Testing Conditions — there may be distractions during the testing that detract the subject Test Scoring — scores may be applying different standards when evaluating the subjects’ responses

Del Siegle, Ph.D. Neag School of Education – University of Connecticut [email protected] www.delsiegle.info

Created 9/24/2002 Edited 10/17/2013

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • Write for Us
  • BMJ Journals More You are viewing from: Google Indexer

You are here

  • Volume 18, Issue 3
  • Validity and reliability in quantitative studies
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • Roberta Heale 1 ,
  • Alison Twycross 2
  • 1 School of Nursing, Laurentian University , Sudbury, Ontario , Canada
  • 2 Faculty of Health and Social Care , London South Bank University , London , UK
  • Correspondence to : Dr Roberta Heale, School of Nursing, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E2C6; rheale{at}laurentian.ca

https://doi.org/10.1136/eb-2015-102129

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Evidence-based practice includes, in part, implementation of the findings of well-conducted quality research studies. So being able to critique quantitative research is an important skill for nurses. Consideration must be given not only to the results of the study but also the rigour of the research. Rigour refers to the extent to which the researchers worked to enhance the quality of the studies. In quantitative research, this is achieved through measurement of the validity and reliability. 1

  • View inline

Types of validity

The first category is content validity . This category looks at whether the instrument adequately covers all the content that it should with respect to the variable. In other words, does the instrument cover the entire domain related to the variable, or construct it was designed to measure? In an undergraduate nursing course with instruction about public health, an examination with content validity would cover all the content in the course with greater emphasis on the topics that had received greater coverage or more depth. A subset of content validity is face validity , where experts are asked their opinion about whether an instrument measures the concept intended.

Construct validity refers to whether you can draw inferences about test scores related to the concept being studied. For example, if a person has a high score on a survey that measures anxiety, does this person truly have a high degree of anxiety? In another example, a test of knowledge of medications that requires dosage calculations may instead be testing maths knowledge.

There are three types of evidence that can be used to demonstrate a research instrument has construct validity:

Homogeneity—meaning that the instrument measures one construct.

Convergence—this occurs when the instrument measures concepts similar to that of other instruments. Although if there are no similar instruments available this will not be possible to do.

Theory evidence—this is evident when behaviour is similar to theoretical propositions of the construct measured in the instrument. For example, when an instrument measures anxiety, one would expect to see that participants who score high on the instrument for anxiety also demonstrate symptoms of anxiety in their day-to-day lives. 2

The final measure of validity is criterion validity . A criterion is any other instrument that measures the same variable. Correlations can be conducted to determine the extent to which the different instruments measure the same variable. Criterion validity is measured in three ways:

Convergent validity—shows that an instrument is highly correlated with instruments measuring similar variables.

Divergent validity—shows that an instrument is poorly correlated to instruments that measure different variables. In this case, for example, there should be a low correlation between an instrument that measures motivation and one that measures self-efficacy.

Predictive validity—means that the instrument should have high correlations with future criterions. 2 For example, a score of high self-efficacy related to performing a task should predict the likelihood a participant completing the task.

Reliability

Reliability relates to the consistency of a measure. A participant completing an instrument meant to measure motivation should have approximately the same responses each time the test is completed. Although it is not possible to give an exact calculation of reliability, an estimate of reliability can be achieved through different measures. The three attributes of reliability are outlined in table 2 . How each attribute is tested for is described below.

Attributes of reliability

Homogeneity (internal consistency) is assessed using item-to-total correlation, split-half reliability, Kuder-Richardson coefficient and Cronbach's α. In split-half reliability, the results of a test, or instrument, are divided in half. Correlations are calculated comparing both halves. Strong correlations indicate high reliability, while weak correlations indicate the instrument may not be reliable. The Kuder-Richardson test is a more complicated version of the split-half test. In this process the average of all possible split half combinations is determined and a correlation between 0–1 is generated. This test is more accurate than the split-half test, but can only be completed on questions with two answers (eg, yes or no, 0 or 1). 3

Cronbach's α is the most commonly used test to determine the internal consistency of an instrument. In this test, the average of all correlations in every combination of split-halves is determined. Instruments with questions that have more than two responses can be used in this test. The Cronbach's α result is a number between 0 and 1. An acceptable reliability score is one that is 0.7 and higher. 1 , 3

Stability is tested using test–retest and parallel or alternate-form reliability testing. Test–retest reliability is assessed when an instrument is given to the same participants more than once under similar circumstances. A statistical comparison is made between participant's test scores for each of the times they have completed it. This provides an indication of the reliability of the instrument. Parallel-form reliability (or alternate-form reliability) is similar to test–retest reliability except that a different form of the original instrument is given to participants in subsequent tests. The domain, or concepts being tested are the same in both versions of the instrument but the wording of items is different. 2 For an instrument to demonstrate stability there should be a high correlation between the scores each time a participant completes the test. Generally speaking, a correlation coefficient of less than 0.3 signifies a weak correlation, 0.3–0.5 is moderate and greater than 0.5 is strong. 4

Equivalence is assessed through inter-rater reliability. This test includes a process for qualitatively determining the level of agreement between two or more observers. A good example of the process used in assessing inter-rater reliability is the scores of judges for a skating competition. The level of consistency across all judges in the scores given to skating participants is the measure of inter-rater reliability. An example in research is when researchers are asked to give a score for the relevancy of each item on an instrument. Consistency in their scores relates to the level of inter-rater reliability of the instrument.

Determining how rigorously the issues of reliability and validity have been addressed in a study is an essential component in the critique of research as well as influencing the decision about whether to implement of the study findings into nursing practice. In quantitative studies, rigour is determined through an evaluation of the validity and reliability of the tools or instruments utilised in the study. A good quality research study will provide evidence of how all these factors have been addressed. This will help you to assess the validity and reliability of the research and help you decide whether or not you should apply the findings in your area of clinical practice.

  • Lobiondo-Wood G ,
  • Shuttleworth M
  • ↵ Laerd Statistics . Determining the correlation coefficient . 2013 . https://statistics.laerd.com/premium/pc/pearson-correlation-in-spss-8.php

Twitter Follow Roberta Heale at @robertaheale and Alison Twycross at @alitwy

Competing interests None declared.

Read the full text or download the PDF:

Validity in research: a guide to measuring the right things

Last updated

27 February 2023

Reviewed by

Cathy Heath

Validity is necessary for all types of studies ranging from market validation of a business or product idea to the effectiveness of medical trials and procedures. So, how can you determine whether your research is valid? This guide can help you understand what validity is, the types of validity in research, and the factors that affect research validity.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is validity?

In the most basic sense, validity is the quality of being based on truth or reason. Valid research strives to eliminate the effects of unrelated information and the circumstances under which evidence is collected. 

Validity in research is the ability to conduct an accurate study with the right tools and conditions to yield acceptable and reliable data that can be reproduced. Researchers rely on carefully calibrated tools for precise measurements. However, collecting accurate information can be more of a challenge.

Studies must be conducted in environments that don't sway the results to achieve and maintain validity. They can be compromised by asking the wrong questions or relying on limited data. 

Why is validity important in research?

Research is used to improve life for humans. Every product and discovery, from innovative medical breakthroughs to advanced new products, depends on accurate research to be dependable. Without it, the results couldn't be trusted, and products would likely fail. Businesses would lose money, and patients couldn't rely on medical treatments. 

While wasting money on a lousy product is a concern, lack of validity paints a much grimmer picture in the medical field or producing automobiles and airplanes, for example. Whether you're launching an exciting new product or conducting scientific research, validity can determine success and failure.

  • What is reliability?

Reliability is the ability of a method to yield consistency. If the same result can be consistently achieved by using the same method to measure something, the measurement method is said to be reliable. For example, a thermometer that shows the same temperatures each time in a controlled environment is reliable.

While high reliability is a part of measuring validity, it's only part of the puzzle. If the reliable thermometer hasn't been properly calibrated and reliably measures temperatures two degrees too high, it doesn't provide a valid (accurate) measure of temperature. 

Similarly, if a researcher uses a thermometer to measure weight, the results won't be accurate because it's the wrong tool for the job. 

  • How are reliability and validity assessed?

While measuring reliability is a part of measuring validity, there are distinct ways to assess both measurements for accuracy. 

How is reliability measured?

These measures of consistency and stability help assess reliability, including:

Consistency and stability of the same measure when repeated multiple times and conditions

Consistency and stability of the measure across different test subjects

Consistency and stability of results from different parts of a test designed to measure the same thing

How is validity measured?

Since validity refers to how accurately a method measures what it is intended to measure, it can be difficult to assess the accuracy. Validity can be estimated by comparing research results to other relevant data or theories.

The adherence of a measure to existing knowledge of how the concept is measured

The ability to cover all aspects of the concept being measured

The relation of the result in comparison with other valid measures of the same concept

  • What are the types of validity in a research design?

Research validity is broadly gathered into two groups: internal and external. Yet, this grouping doesn't clearly define the different types of validity. Research validity can be divided into seven distinct groups.

Face validity : A test that appears valid simply because of the appropriateness or relativity of the testing method, included information, or tools used.

Content validity : The determination that the measure used in research covers the full domain of the content.

Construct validity : The assessment of the suitability of the measurement tool to measure the activity being studied.

Internal validity : The assessment of how your research environment affects measurement results. This is where other factors can’t explain the extent of an observed cause-and-effect response.

External validity : The extent to which the study will be accurate beyond the sample and the level to which it can be generalized in other settings, populations, and measures.

Statistical conclusion validity: The determination of whether a relationship exists between procedures and outcomes (appropriate sampling and measuring procedures along with appropriate statistical tests).

Criterion-related validity : A measurement of the quality of your testing methods against a criterion measure (like a “gold standard” test) that is measured at the same time.

  • Examples of validity

Like different types of research and the various ways to measure validity, examples of validity can vary widely. These include:

A questionnaire may be considered valid because each question addresses specific and relevant aspects of the study subject.

In a brand assessment study, researchers can use comparison testing to verify the results of an initial study. For example, the results from a focus group response about brand perception are considered more valid when the results match that of a questionnaire answered by current and potential customers.

A test to measure a class of students' understanding of the English language contains reading, writing, listening, and speaking components to cover the full scope of how language is used.

  • Factors that affect research validity

Certain factors can affect research validity in both positive and negative ways. By understanding the factors that improve validity and those that threaten it, you can enhance the validity of your study. These include:

Random selection of participants vs. the selection of participants that are representative of your study criteria

Blinding with interventions the participants are unaware of (like the use of placebos)

Manipulating the experiment by inserting a variable that will change the results

Randomly assigning participants to treatment and control groups to avoid bias

Following specific procedures during the study to avoid unintended effects

Conducting a study in the field instead of a laboratory for more accurate results

Replicating the study with different factors or settings to compare results

Using statistical methods to adjust for inconclusive data

What are the common validity threats in research, and how can their effects be minimized or nullified?

Research validity can be difficult to achieve because of internal and external threats that produce inaccurate results. These factors can jeopardize validity.

History: Events that occur between an early and later measurement

Maturation: The passage of time in a study can include data on actions that would have naturally occurred outside of the settings of the study

Repeated testing: The outcome of repeated tests can change the outcome of followed tests

Selection of subjects: Unconscious bias which can result in the selection of uniform comparison groups

Statistical regression: Choosing subjects based on extremes doesn't yield an accurate outcome for the majority of individuals

Attrition: When the sample group is diminished significantly during the course of the study

Maturation: When subjects mature during the study, and natural maturation is awarded to the effects of the study

While some validity threats can be minimized or wholly nullified, removing all threats from a study is impossible. For example, random selection can remove unconscious bias and statistical regression. 

Researchers can even hope to avoid attrition by using smaller study groups. Yet, smaller study groups could potentially affect the research in other ways. The best practice for researchers to prevent validity threats is through careful environmental planning and t reliable data-gathering methods. 

  • How to ensure validity in your research

Researchers should be mindful of the importance of validity in the early planning stages of any study to avoid inaccurate results. Researchers must take the time to consider tools and methods as well as how the testing environment matches closely with the natural environment in which results will be used.

The following steps can be used to ensure validity in research:

Choose appropriate methods of measurement

Use appropriate sampling to choose test subjects

Create an accurate testing environment

How do you maintain validity in research?

Accurate research is usually conducted over a period of time with different test subjects. To maintain validity across an entire study, you must take specific steps to ensure that gathered data has the same levels of accuracy. 

Consistency is crucial for maintaining validity in research. When researchers apply methods consistently and standardize the circumstances under which data is collected, validity can be maintained across the entire study.

Is there a need for validation of the research instrument before its implementation?

An essential part of validity is choosing the right research instrument or method for accurate results. Consider the thermometer that is reliable but still produces inaccurate results. You're unlikely to achieve research validity without activities like calibration, content, and construct validity.

  • Understanding research validity for more accurate results

Without validity, research can't provide the accuracy necessary to deliver a useful study. By getting a clear understanding of validity in research, you can take steps to improve your research skills and achieve more accurate results.

Editor’s picks

Last updated: 11 January 2024

Last updated: 15 January 2024

Last updated: 25 November 2023

Last updated: 12 May 2023

Last updated: 30 April 2024

Last updated: 18 May 2023

Last updated: 10 April 2023

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

what makes a research instrument valid

Users report unexpectedly high data usage, especially during streaming sessions.

what makes a research instrument valid

Users find it hard to navigate from the home page to relevant playlists in the app.

what makes a research instrument valid

It would be great to have a sleep timer feature, especially for bedtime listening.

what makes a research instrument valid

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

Uncomplicated Reviews of Educational Research Methods

  • Instrument, Validity, Reliability

.pdf version of this page

Part I: The Instrument

Instrument is the general term that researchers use for a measurement device (survey, test, questionnaire, etc.). To help distinguish between instrument and instrumentation, consider that the instrument is the device and instrumentation is the course of action (the process of developing, testing, and using the device).

Instruments fall into two broad categories, researcher-completed and subject-completed, distinguished by those instruments that researchers administer versus those that are completed by participants. Researchers chose which type of instrument, or instruments, to use based on the research question. Examples are listed below:

Usability refers to the ease with which an instrument can be administered, interpreted by the participant, and scored/interpreted by the researcher. Example usability problems include:

  • Students are asked to rate a lesson immediately after class, but there are only a few minutes before the next class begins (problem with administration).
  • Students are asked to keep self-checklists of their after school activities, but the directions are complicated and the item descriptions confusing (problem with interpretation).
  • Teachers are asked about their attitudes regarding school policy, but some questions are worded poorly which results in low completion rates (problem with scoring/interpretation).

Validity and reliability concerns (discussed below) will help alleviate usability issues. For now, we can identify five usability considerations:

  • How long will it take to administer?
  • Are the directions clear?
  • How easy is it to score?
  • Do equivalent forms exist?
  • Have any problems been reported by others who used it?

It is best to use an existing instrument, one that has been developed and tested numerous times, such as can be found in the Mental Measurements Yearbook . We will turn to why next.

Part II: Validity

Validity is the extent to which an instrument measures what it is supposed to measure and performs as it is designed to perform. It is rare, if nearly impossible, that an instrument be 100% valid, so validity is generally measured in degrees. As a process, validation involves collecting and analyzing data to assess the accuracy of an instrument. There are numerous statistical tests and measures to assess the validity of quantitative instruments, which generally involves pilot testing. The remainder of this discussion focuses on external validity and content validity.

External validity is the extent to which the results of a study can be generalized from a sample to a population. Establishing eternal validity for an instrument, then, follows directly from sampling. Recall that a sample should be an accurate representation of a population, because the total population may not be available. An instrument that is externally valid helps obtain population generalizability, or the degree to which a sample represents the population.

Content validity refers to the appropriateness of the content of an instrument. In other words, do the measures (questions, observation logs, etc.) accurately assess what you want to know? This is particularly important with achievement tests. Consider that a test developer wants to maximize the validity of a unit test for 7th grade mathematics. This would involve taking representative questions from each of the sections of the unit and evaluating them against the desired outcomes.

Part III: Reliability

Reliability can be thought of as consistency. Does the instrument consistently measure what it is intended to measure? It is not possible to calculate reliability; however, there are four general estimators that you may encounter in reading research:

  • Inter-Rater/Observer Reliability : The degree to which different raters/observers give consistent answers or estimates.
  • Test-Retest Reliability : The consistency of a measure evaluated over time.
  • Parallel-Forms Reliability: The reliability of two tests constructed the same way, from the same content.
  • Internal Consistency Reliability: The consistency of results across items, often measured with Cronbach’s Alpha.

Relating Reliability and Validity

Reliability is directly related to the validity of the measure. There are several important principles. First, a test can be considered reliable, but not valid. Consider the SAT, used as a predictor of success in college. It is a reliable test (high scores relate to high GPA), though only a moderately valid indicator of success (due to the lack of structured environment – class attendance, parent-regulated study, and sleeping habits – each holistically related to success).

Second, validity is more important than reliability. Using the above example, college admissions may consider the SAT a reliable test, but not necessarily a valid measure of other quantities colleges seek, such as leadership capability, altruism, and civic involvement. The combination of these aspects, alongside the SAT, is a more valid measure of the applicant’s potential for graduation, later social involvement, and generosity (alumni giving) toward the alma mater.

Finally, the most useful instrument is both valid and reliable. Proponents of the SAT argue that it is both. It is a moderately reliable predictor of future success and a moderately valid measure of a student’s knowledge in Mathematics, Critical Reading, and Writing.

Part IV: Validity and Reliability in Qualitative Research

Thus far, we have discussed Instrumentation as related to mostly quantitative measurement. Establishing validity and reliability in qualitative research can be less precise, though participant/member checks, peer evaluation (another researcher checks the researcher’s inferences based on the instrument ( Denzin & Lincoln, 2005 ), and multiple methods (keyword: triangulation ), are convincingly used. Some qualitative researchers reject the concept of validity due to the constructivist viewpoint that reality is unique to the individual, and cannot be generalized. These researchers argue for a different standard for judging research quality. For a more complete discussion of trustworthiness, see Lincoln and Guba’s (1985) chapter .

Share this:

  • How To Assess Research Validity | Windranger5
  • How unreliable are the judges on Strictly Come Dancing? | Delight Through Logical Misery

Comments are closed.

About Research Rundowns

Research Rundowns was made possible by support from the Dewar College of Education at Valdosta State University .

  • Experimental Design
  • What is Educational Research?
  • Writing Research Questions
  • Mixed Methods Research Designs
  • Qualitative Coding & Analysis
  • Qualitative Research Design
  • Correlation
  • Effect Size
  • Mean & Standard Deviation
  • Significance Testing (t-tests)
  • Steps 1-4: Finding Research
  • Steps 5-6: Analyzing & Organizing
  • Steps 7-9: Citing & Writing
  • Writing a Research Report

Create a free website or blog at WordPress.com.

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

17.4.1   Validity of instruments

Validity has to do with whether the instrument is measuring what it is intended to measure. Empirical evidence that PROs measure the domains of interest allows strong inferences regarding validity. To provide such evidence, investigators have borrowed validation strategies from psychologists who for many years have struggled with determining whether questionnaires assessing intelligence and attitudes really measure what is intended.

Validation strategies include:

content-related: evidence that the items and domains of an instrument are appropriate and comprehensive relative to its intended measurement concept(s), population and use;

construct-related: evidence that relationships among items, domains, and concepts conform to a priori hypotheses concerning logical relationships that should exist with other measures or characteristics of patients and patient groups; and

criterion-related (for a PRO instrument used as diagnostic tool): the extent to which the scores of a PRO instrument are related to a criterion measure.

Establishing validity involves examining the logical relationships that should exist between assessment measures. For example, we would expect that patients with lower treadmill exercise capacity generally will have more shortness of breath in daily life than those with higher exercise capacity, and we would expect to see substantial correlations between a new measure of emotional function and existing emotional function questionnaires.

When we are interested in evaluating change over time, we examine correlations of change scores. For example, patients who deteriorate in their treadmill exercise capacity should, in general, show increases in dyspnoea, whereas those whose exercise capacity improves should experience less dyspnoea. Similarly, a new emotional function measure should show improvement in patients who improve on existing measures of emotional function. The technical term for this process is testing an instrument’s construct validity.

Review authors should look for, and evaluate the evidence of, the validity of PROs used in their included studies. Unfortunately, reports of randomized trials and other studies using PROs seldom review evidence of the validity of the instruments they use, but review authors can gain some reassurance from statements (backed by citations) that the questionnaires have been validated previously.

A final concern about validity arises if the measurement instrument is used with a different population, or in a culturally and linguistically different environment, than the one in which it was developed (typically, use of a non-English version of an English-language questionnaire). Ideally, one would have evidence of validity in the population enrolled in the randomized trial. Ideally PRO measures should be re-validated in each study using whatever data are available for the validation, for instance, other endpoints measured. Authors should note, in evaluating evidence of validity, when the population assessed in the trial is different from that used in validation studies.

Banner

Research Methodologies: Research Instruments

  • Research Methodology Basics
  • Research Instruments
  • Types of Research Methodologies

Header Image

research interview survey bibguru

Types of Research Instruments

A research instrument is a tool you will use to help you collect, measure and analyze the data you use as part of your research.  The choice of research instrument will usually be yours to make as the researcher and will be whichever best suits your methodology. 

There are many different research instruments you can use in collecting data for your research:

  • Interviews  (either as a group or one-on-one). You can carry out interviews in many different ways. For example, your interview can be structured, semi-structured, or unstructured. The difference between them is how formal the set of questions is that is asked of the interviewee. In a group interview, you may choose to ask the interviewees to give you their opinions or perceptions on certain topics.
  • Surveys  (online or in-person). In survey research, you are posing questions in which you ask for a response from the person taking the survey. You may wish to have either free-answer questions such as essay style questions, or you may wish to use closed questions such as multiple choice. You may even wish to make the survey a mixture of both.
  • Focus Groups.  Similar to the group interview above, you may wish to ask a focus group to discuss a particular topic or opinion while you make a note of the answers given.
  • Observations.  This is a good research instrument to use if you are looking into human behaviors. Different ways of researching this include studying the spontaneous behavior of participants in their everyday life, or something more structured. A structured observation is research conducted at a set time and place where researchers observe behavior as planned and agreed upon with participants.

These are the most common ways of carrying out research, but it is really dependent on your needs as a researcher and what approach you think is best to take. It is also possible to combine a number of research instruments if this is necessary and appropriate in answering your research problem.

Data Collection

How to Collect Data for Your Research   This article covers different ways of collecting data in preparation for writing a thesis.

  • << Previous: Research Methodology Basics
  • Next: Types of Research Methodologies >>
  • Last Updated: Sep 27, 2022 12:28 PM
  • URL: https://paperpile.libguides.com/research-methodologies

What makes a measurement instrument valid and reliable?

Affiliation.

  • 1 Department of Orthopaedic Surgery, Joint Research, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands. [email protected]
  • PMID: 21145544
  • DOI: 10.1016/j.injury.2010.11.042

High quality instruments are useful tools for clinical and research purposes. To determine whether an instrument has high quality, measurement properties such as reliability and validity need to be assessed, using standardised criteria. This paper discusses these quality domains and measurement properties using the standardised criteria that were recently published by the COSMIN group. Examples are given of studies evaluating the measurement properties of instruments frequently used in trauma. This paper presents a helpful tool for readers who want to evaluate or assess the quality of a measurement instrument on reliability and validity.

Copyright © 2010 Elsevier Ltd. All rights reserved.

  • Clinical Protocols / standards*
  • Data Interpretation, Statistical
  • Health Status Indicators
  • Outcome Assessment, Health Care / standards*
  • Reproducibility of Results
  • Research Design / standards
  • Selection Bias
  • Wounds and Injuries / therapy*

what makes a research instrument valid

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is a Research Instrument?

DiscoverPhDs

  • By DiscoverPhDs
  • October 9, 2020

What is a Research Instrument?

The term research instrument refers to any tool that you may use to collect or obtain data, measure data and analyse data that is relevant to the subject of your research.

Research instruments are often used in the fields of social sciences and health sciences. These tools can also be found within education that relates to patients, staff, teachers and students.

The format of a research instrument may consist of questionnaires, surveys, interviews, checklists or simple tests. The choice of which specific research instrument tool to use will be decided on the by the researcher. It will also be strongly related to the actual methods that will be used in the specific study.

What Makes a Good Research Instrument?

A good research instrument is one that has been validated and has proven reliability. It should be one that can collect data in a way that’s appropriate to the research question being asked.

The research instrument must be able to assist in answering the research aims , objectives and research questions, as well as prove or disprove the hypothesis of the study.

It should not have any bias in the way that data is collect and it should be clear as to how the research instrument should be used appropriately.

What are the Different Types of Interview Research Instruments?

The general format of an interview is where the interviewer asks the interviewee to answer a set of questions which are normally asked and answered verbally. There are several different types of interview research instruments that may exist.

  • A structural interview may be used in which there are a specific number of questions that are formally asked of the interviewee and their responses recorded using a systematic and standard methodology.
  • An unstructured interview on the other hand may still be based on the same general theme of questions but here the person asking the questions (the interviewer) may change the order the questions are asked in and the specific way in which they’re asked.
  • A focus interview is one in which the interviewer will adapt their line or content of questioning based on the responses from the interviewee.
  • A focus group interview is one in which a group of volunteers or interviewees are asked questions to understand their opinion or thoughts on a specific subject.
  • A non-directive interview is one in which there are no specific questions agreed upon but instead the format is open-ended and more reactionary in the discussion between interviewer and interviewee.

What are the Different Types of Observation Research Instruments?

An observation research instrument is one in which a researcher makes observations and records of the behaviour of individuals. There are several different types.

Structured observations occur when the study is performed at a predetermined location and time, in which the volunteers or study participants are observed used standardised methods.

Naturalistic observations are focused on volunteers or participants being in more natural environments in which their reactions and behaviour are also more natural or spontaneous.

A participant observation occurs when the person conducting the research actively becomes part of the group of volunteers or participants that he or she is researching.

Final Comments

The types of research instruments will depend on the format of the research study being performed: qualitative, quantitative or a mixed methodology. You may for example utilise questionnaires when a study is more qualitative or use a scoring scale in more quantitative studies.

A Guide to Your First Week as a PhD Student

How should you spend your first week as a PhD student? Here’s are 7 steps to help you get started on your journey.

What is a Monotonic Relationship?

The term monotonic relationship is a statistical definition that is used to describe the link between two variables.

Unit of Analysis

The unit of analysis refers to the main parameter that you’re investigating in your research project or study.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

what makes a research instrument valid

Browse PhDs Now

Can you do a PhD part time while working answered

Is it really possible to do a PhD while working? The answer is ‘yes’, but it comes with several ‘buts’. Read our post to find out if it’s for you.

How to Build a Research Collaboration

Learning how to effectively collaborate with others is an important skill for anyone in academia to develop.

Hannah-Mae-Lewis-Profile

Hannah is a 1st year PhD student at Cardiff Metropolitan University. The aim of her research is to clarify what strategies are the most effective in supporting young people with dyslexia.

what makes a research instrument valid

Kat is in the second year of her PhD at the International Centre for Radio Astronomy Research (ICRAR) in Perth, Western Australia (WA). Her research involves studying supermassive black holes at the centres of distant galaxies.

Join Thousands of Students

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

As Biden and Trump seek reelection, who are the oldest – and youngest – current world leaders?

Joe Biden, at 81, is the oldest American president , a distinction he’s held since entering office at age 78. As Biden runs for reelection in 2024, he is the ninth oldest national leader in the world, according to a Pew Research Center analysis of sitting leaders in 187 United Nations member states.

Former President Donald Trump, who is running for the White House again this year, is younger than Biden. But at 77, Trump also falls among the 20 oldest world leaders when compared with those currently in power.

With current U.S. President Joe Biden and former President Donald Trump both running for reelection to the country’s highest office, Pew Research Center examined the ages of current national leaders to place the ages of Biden and Trump into a global context.

This analysis examines the ages of the current heads of government in 187 countries that are member states of the United Nations, relying on government biographies and regional news articles. It reflects the ages of national leaders – and in a few instances, acting or interim leaders – as of May 1, 2024. It excludes six UN member states for which an exact birth date of the leader could not be found: Afghanistan, Haiti, Iraq, Mali, Niger and Somalia. For each of these countries, we reached out to embassy officials in the United States but did not receive further information.

This analysis focuses mostly on heads of government as defined by a country’s political system or constitution. In some cases, we determined the national leader based on which executive has the power to appoint/dismiss the nominal head of government. In San Marino, where there are two captains regent who share power, we included data for Alessandro Rossi, as he assumed the position most recently.

This analysis also draws on Freedom House country rankings to determine whether countries are free, partly free or not free. These rankings are based on two numerical scores assigned to each country for its political rights and civil liberties.

The median age of each country’s overall population is a 2024 projection from the UN’s World Population Prospects 2022 report . The projections are based on “all available sources of data on population size and levels of fertility, mortality and international migration.”

American voters are skeptical about both candidates’ fitness for the job, according to a recent Center survey . Only about four-in-ten U.S. registered voters are extremely or very confident that Trump has the mental fitness to be president (38%), while a similar share are confident in his physical fitness (36%). Even fewer express this degree of confidence in Biden’s mental (21%) and physical (15%) fitness for the role.

Below are five key facts about the ages of current national leaders.

National leaders range in age from their mid-30s to 91. The youngest leader is Burkina Faso’s Ibrahim Traoré, who is 36. He only slightly edges out two fellow 36-year-olds, Ecuadorian President Daniel Noboa and Montenegrin Prime Minister Milojko Spajić. Only two other world leaders are in their 30s: Irish Taoiseach Simon Harris and Chilean President Gabriel Boric.

The oldest national leader is President Paul Biya of Cameroon, who was born in 1933 and took office more than 40 years ago. Biya is the only current national leader in his 90s.

The median age of current national leaders is 62, as of May 1, 2024. The largest share of global leaders today (34%) are in their 60s. Roughly a quarter (22%) are in their 50s; 19% are in their 70s; and 16% are in their 40s. Biden is among the 5% of leaders who are in their 80s.

A dot plot showing that most global leaders are in their 50s and 60s.

Countries that are less free tend to have older leaders. In countries that Freedom House classifies as “not free,” the median age of the national leader is 68. That compares with 62 in countries that are classified as “partly free” and 60 in countries classified as “free.”

A dot plot showing that countries ranked less free tend to have older global leaders.

The United States is one of only three countries that are classified as free and have a leader age 80 or older; the other two are Ghana and Namibia. In Ghana, President Nana Akufo-Addo recently turned 80 in office. And in Namibia, 82-year-old Nangolo Mbumba took over as president earlier this year following the previous leader’s death in office at age 82.

The median age for women leaders and men leaders is the same. Among men who are world leaders, 3% are in their 30s, while no women leaders are in this age group. Yet, of the 14 women leaders currently in power, 29% are in their 40s, compared with 14% of leaders who are men.

Prime Minister Mette Frederiksen of Denmark is the youngest female leader at 46, followed closely by fellow 46-year-old Kaja Kallas , the prime minister of Estonia. Prime Minister Sheikh Hasina of Bangladesh is the oldest female leader at 76.

A dot plot showing that the median age for men and women leaders is the same.

In most countries, the leader is significantly older than the median member of the population. For example, the median American is 38, according to UN population projections for 2024, while Biden is more than twice as old. In fact, the only countries that have a leader who is younger than the median resident of the country are Montenegro, Ireland and Italy. Andorran Prime Minister Xavier Espot Zamora, at 44, is the same age as the median Andorran resident. 

In general, countries that Freedom House classifies as free are more likely than those classified as partly free or not free to have leaders who are closer in age to the median resident of the country.

Note: This is an update of a post originally published on March 24, 2023.

  • More Leaders
  • Older Adults & Aging
  • World Leaders

Laura Silver's photo

Laura Silver is an associate director focusing on global attitudes at Pew Research Center .

Many in East Asia say men and women make equally good leaders, despite few female heads of government

6 facts about how mexicans view the u.s. and their own country, views of india lean positive across 23 countries, how americans view israel, netanyahu and u.s.-israel relations in 5 charts, israelis have polarized views of netanyahu, reflecting conflicts many see in israeli society, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

IMAGES

  1. 8. validity and reliability of research instruments

    what makes a research instrument valid

  2. 8. validity and reliability of research instruments

    what makes a research instrument valid

  3. CHAPTER 3 RESEARCH METHODOLOGY Components of a research

    what makes a research instrument valid

  4. Characteristics of a Good Research Instrument

    what makes a research instrument valid

  5. Validity and Reliability in Qualitative Research

    what makes a research instrument valid

  6. School essay: Components of valid research

    what makes a research instrument valid

VIDEO

  1. A Guide to the Kuder-Richardson Reliability Test

  2. Research instrument VALIDITY & RELIABILITY

  3. Research Instrument 1

  4. Research Instrument

  5. Musical Instruments From Different Countries

  6. Constructing instrument for data collection

COMMENTS

  1. Reliability vs. Validity in Research

    Validity refers to how accurately a method measures what it is intended to measure. If research has high validity, that means it produces results that correspond to real properties, characteristics, and variations in the physical or social world. High reliability is one indicator that a measurement is valid.

  2. How to Determine the Validity and Reliability of an Instrument

    Validity refers to the degree to which an instrument accurately measures what it intends to measure. Three common types of validity for researchers and evaluators to consider are content, construct, and criterion validities. Content validity indicates the extent to which items adequately measure or represent the content of the property or trait ...

  3. Validity

    Validity is essential in medical and health research to ensure the accuracy and reliability of diagnostic tools, measurement instruments, and clinical assessments. Validity assessments help determine if a measurement accurately identifies the presence or absence of a medical condition, measures the effectiveness of a treatment, or predicts ...

  4. Validity & Reliability In Research

    In simple terms, validity (also called "construct validity") is all about whether a research instrument accurately measures what it's supposed to measure. For example, let's say you have a set of Likert scales that are supposed to quantify someone's level of overall job satisfaction. If this set of scales focused purely on only one ...

  5. Reliability and Validity

    Reliability refers to the consistency of the measurement. Reliability shows how trustworthy is the score of the test. If the collected data shows the same results after being tested using various methods and sample groups, the information is reliable. If your method has reliability, the results will be valid. Example: If you weigh yourself on a ...

  6. Instrument Validity

    Instrument Validity. Validity (a concept map shows the various types of validity) A instrument is valid only to the extent that it's scores permits appropriate inferences to be made about. 1) a specific group of people for. 2) specific purposes. An instrument that is a valid measure of third grader's math skills probably is not a valid ...

  7. Validity, reliability, and generalizability in qualitative research

    The essence of qualitative research is to make sense of and recognize patterns among words in order to build up a meaningful picture without compromising its richness and dimensionality. Like quantitative research, the qualitative research aims to seek answers for questions of "how, where, when who and why" with a perspective to build a ...

  8. A Primer on the Validity of Assessment Instruments

    What is validity? 1. Validity in research refers to how accurately a study answers the study question or the strength of the study conclusions. For outcome measures such as surveys or tests, validity refers to the accuracy of measurement. Here validity refers to how well the assessment tool actually measures the underlying outcome of interest.

  9. Reliability vs Validity in Research

    Validity refers to how accurately a method measures what it is intended to measure. If research has high validity, that means it produces results that correspond to real properties, characteristics, and variations in the physical or social world. High reliability is one indicator that a measurement is valid.

  10. Instrument Reliability

    Generally speaking, the longer a test is, the more reliable it tends to be (up to a point). For research purposes, a minimum reliability of .70 is required for attitude instruments. Some researchers feel that it should be higher. A reliability of .70 indicates 70% consistency in the scores that are produced by the instrument.

  11. Validity and reliability in quantitative studies

    Validity. Validity is defined as the extent to which a concept is accurately measured in a quantitative study. For example, a survey designed to explore depression but which actually measures anxiety would not be considered valid. The second measure of quality in a quantitative study is reliability, or the accuracy of an instrument.In other words, the extent to which a research instrument ...

  12. Reliability and validity: Importance in Medical Research

    Reliability and validity are among the most important and fundamental domains in the assessment of any measuring methodology for data-collection in a good research. Validity is about what an instrument measures and how well it does so, whereas reliability concerns the truthfulness in the data obtained and the degree to which any measuring tool ...

  13. Validity in Research: A Guide to Better Results

    Validity in research is the ability to conduct an accurate study with the right tools and conditions to yield acceptable and reliable data that can be reproduced. Researchers rely on carefully calibrated tools for precise measurements. However, collecting accurate information can be more of a challenge.

  14. Instrument, Validity, Reliability

    Validity is the extent to which an instrument measures what it is supposed to measure and performs as it is designed to perform. It is rare, if nearly impossible, that an instrument be 100% valid, so validity is generally measured in degrees. As a process, validation involves collecting and analyzing data to assess the accuracy of an instrument.

  15. 17.4.1 Validity of instruments

    17.4.1 Validity of instruments. 17.4.1. Validity of instruments. Validity has to do with whether the instrument is measuring what it is intended to measure. Empirical evidence that PROs measure the domains of interest allows strong inferences regarding validity. To provide such evidence, investigators have borrowed validation strategies from ...

  16. PDF Establishing survey validity: A practical guide

    two areas of importance for establishing evidence of validity: a validated model that provides the basis for an instrument, and the items composing an instrument. 2.1. Foundational Model A valid survey requires a theoretical model of what it is the researcher wants to find out by having people respond to survey items.

  17. Overview

    Finding a research instrument can be time consuming! There are 3 concrete steps in the process:. Identify an appropriate tool or instrument for your research; Assess whether the instrument is valid and reliable; Obtain permission and get the full text; Be aware - published papers and other sources often do not provide access to the full instrument.. Look for a citation and expect to contact ...

  18. The 4 Types of Reliability in Research

    Reliability is a key concept in research that measures how consistent and trustworthy the results are. In this article, you will learn about the four types of reliability in research: test-retest, inter-rater, parallel forms, and internal consistency. You will also find definitions and examples of each type, as well as tips on how to improve reliability in your own research.

  19. LibGuides: Research Methodologies: Research Instruments

    A research instrument is a tool you will use to help you collect, measure and analyze the data you use as part of your research. The choice of research instrument will usually be yours to make as the researcher and will be whichever best suits your methodology. There are many different research instruments you can use in collecting data for your research:

  20. What makes a measurement instrument valid and reliable?

    Wounds and Injuries / therapy*. High quality instruments are useful tools for clinical and research purposes. To determine whether an instrument has high quality, measurement properties such as reliability and validity need to be assessed, using standardised criteria. This paper discusses these quality domains and measurement prop ….

  21. What is a Research Instrument?

    The term research instrument refers to any tool that you may use to collect or obtain data, measure data and analyse data that is relevant to the subject of your research. Research instruments are often used in the fields of social sciences and health sciences. These tools can also be found within education that relates to patients, staff ...

  22. What makes a measurement instrument valid and reliable?

    Before considering using or implementing a measurement instrument into a clinical or research setting, one should evaluate its quality. According to the COSMIN guidelines, the quality of a measurement instrument is described by three quality domains: reliability, validity and responsiveness. Reliability contains the measurement properties ...

  23. How Biden, 81, stacks up in age against other world leaders

    Biya is the only current national leader in his 90s. The median age of current national leaders is 62, as of May 1, 2024. The largest share of global leaders today (34%) are in their 60s. Roughly a quarter (22%) are in their 50s; 19% are in their 70s; and 16% are in their 40s. Biden is among the 5% of leaders who are in their 80s.