Digital Commons @ University of South Florida

  • USF Research
  • USF Libraries

Digital Commons @ USF > College of Engineering > Mechanical Engineering > Theses and Dissertations

Mechanical Engineering Theses and Dissertations

Theses/dissertations from 2023 2023.

Metachronal Locomotion: Swimming, Scaling, and Schooling , Kuvvat Garayev

A Human-in-the-Loop Robot Grasping System with Grasp Quality Refinement , Tian Tan

Theses/Dissertations from 2022 2022

Health Effects of Oil Spills and Dispersal of Oil Droplets and Zooplankton by Langmuir Cells , Sanjib Gurung

Estimating the As-Placed Grout Volume of Auger Cast Piles , Tristen Mee

Hybrid RANS-LES Hemolytic Power Law Modeling of the FDA Blood Pump , Joseph Tarriela

Theses/Dissertations from 2021 2021

Dynamic Loading Directed Neural Stem Cell Differentiation , Abdullah Revaha Akdemir

An Investigation of Cross-links on Crystallization and Degradation in a Novel, PhotoCross-linkable Poly (Lactic Acid) System , Nicholas Baksh

A Framework to Aid Decision Making for Smart Manufacturing Technologies in Small-and Medium-Sized Enterprises , Purvee Bhatia

Formation of Gas Jets and Vortex Rings from Bursting Bubbles: Visualization, Kinematics, and Fluid Dynamics , Ali A. Dasouqi

Development of Carbon and Silicon Carbide Based Microelectrode Implantable Neural Interfaces , Chenyin Feng

Sulfate Optimization in the Cement-Slag Blended System Based on Calorimetry and Strength Studies , Mustafa Fincan

Interrelation of Thermal Stimulation with Haptic Perception, Emotion, and Memory , Mehdi Hojatmadani

Modeling the Ambient Conditions of a Manufacturing Environment Using Computational Fluid Dynamics (CFD) , Yang Liu

Flow Visualization and Aerosol Characterization of Respiratory Jets Exhaled from a Mannequin Simulator , Sindhu Reddy Mutra

A Constitutive-Based Deep Learning Model for the Identification of Active Contraction Parameters of the Left Ventricular Myocardium , Igor Augusto Paschoalotte Nobrega

Sensible/Latent Hybrid Thermal Energy Storage for the Supercritical Carbon Dioxide Brayton Cycle , Kelly Osterman

Evaluating the Performance of Devices Engineering to Quantify the FARS Test , Harsh Patel

Event-Triggered Control Architectures for Scheduling Information Exchange in Uncertain and Multiagent Systems , Stefan Ristevski

Theses/Dissertations from 2020 2020

Experimental Investigation of Liquid Height Estimation and Simulation Verification of Bolt Tension Quantification Using Surface Acoustic Waves , Hani Alhazmi

Investigation of Navigation Systems for Size, Cost, and Mass Constrained Satellites , Omar Awad

Simulation and Verification of Phase Change Materials for Thermal Energy Storage , Marwan Mosubah Belaed

Control of a Human Arm Robotic Unit Using Augmented Reality and Optimized Kinematics , Carlo Canezo

Manipulation and Patterning of Mammalian Cells Using Vibrations and Acoustic Forces , Joel Cooper

Stable Adaptive Control Systems in the Presence of Unmodeled and Actuator Dynamics , Kadriye Merve Dogan

The Design and Development of a Wrist-Hand Orthosis , Amber Gatto

ROBOAT - Rescue Operations Bot Operating in All Terrains , Akshay Gulhane

Mitigation of Electromigration in Metal Interconnects Passivated by Ångstrom-Thin 2D Materials , Yunjo Jeong

Swimming of Pelagic Snails: Kinematics and Fluid Dynamics , Ferhat Karakas

Functional Gait Asymmetries Achieved Through Modeling and Understanding the Interaction of Multiple Gait Modulations , Fatemeh Rasouli

Distributed Control of Multiagent Systems under Heterogeneity , Selahattin Burak Sarsilmaz

Design and Implementation of Intuitive Human-robot Teleoperation Interfaces , Lei Wu

Laser Micropatterning Effects on Corrosion Resistance of Pure Magnesium Surfaces , Yahya Efe Yayoglu

Theses/Dissertations from 2019 2019

Synthesis and Characterization of Molybdenum Disulfide/Conducting Polymer Nanocomposite Materials for Supercapacitor Applications , Turki S. Alamro

Design of Shape-Morphing Structures Consisting of Bistable Compliant Mechanisms , Rami Alfattani

Low Temperature Multi Effects Desalination-Mechanical Vapor Compression Powered by Supercritical Organic Rankine Cycle , Eydhah Almatrafi

Experimental Results of a Model Reference Adaptive Control Approach on an Interconnected Uncertain Dynamical System , Kemberly Cespedes

Modeling of Buildings with Electrochromic Windows and Thermochromic Roofs , Hua-Ting Kao

Design and Testing of Experimental Langmuir Turbulence Facilities , Zongze Li

Solar Thermal Geothermal Hybrid System With a Bottoming Supercritical Organic Rankine Cycle , Francesca Moloney

Design and Testing of a Reciprocating Wind Harvester , Ahmet Topcuoglu

Distributed Spatiotemporal Control and Dynamic Information Fusion for Multiagent Systems , Dzung Minh Duc Tran

Controlled Wetting Using Ultrasonic Vibration , Matthew A. Trapuzzano

On Distributed Control of Multiagent Systems under Adverse Conditions , Emre Yildirim

Theses/Dissertations from 2018 2018

Synthesis and Characterization of Alpha-Hematite Nanomaterials for Water-Splitting Applications , Hussein Alrobei

Control of Uncertain Dynamical Systems with Spatial and Temporal Constraints , Ehsan Arabi

Simulation and Optimization of a Sheathless Size-Based Acoustic Particle Separator , Shivaraman Asoda

Simulation of Radiation Flux from Thermal Fluid in Origami Tubes , Robert R. Bebeau

Toward Verifiable Adaptive Control Systems: High-Performance and Robust Architectures , Benjamin Charles Gruenwald

Developing Motion Platform Dynamics for Studying Biomechanical Responses During Exercise for Human Spaceflight Applications , Kaitlin Lostroscio

Design and Testing of a Linear Compliant Mechanism with Adjustable Force Output , William Niemeier

Investigation of Thermal History in Large Area Projection Sintering, an Additive Manufacturing Technology , Justin Nussbaum

Acoustic Source Localization with a VTOL sUAV Deployable Module , Kory Olney

Defect Detection in Additive Manufacturing Utilizing Long Pulse Thermography , James Pierce

Design and Testing of a Passive Prosthetic Ankle Foot Optimized to Mimic an Able-Bodied Gait , Millicent Schlafly

Simulation of Turbulent Air Jet Impingement for Commercial Cooking Applications , Shantanu S. Shevade

Materials and Methods to Fabricate Porous Structures Using Additive Manufacturing Techniques , Mohsen Ziaee

Theses/Dissertations from 2017 2017

Large Area Sintering Test Platform Design and Preliminary Study on Cross Sectional Resolution , Christopher J. Gardiner

Enhanced Visible Light Photocatalytic Remediation of Organics in Water Using Zinc Oxide and Titanium Oxide Nanostructures , Srikanth Gunti

Heat Flux Modeling of Asymmetrically Heated and Cooled Thermal Stimuli , Matthew Hardy

Simulation of Hemiparetic Function Using a Knee Orthosis with Variable Impedance and a Proprioception Interference Apparatus , Christina-Anne Kathleen Lahiff

Synthesis, Characterization, and Application of Molybdenum Oxide Nanomaterials , Michael S. McCrory

Effects of Microstructure and Alloy Concentration on the Corrosion and Tribocorrosion Resistance of Al-Mn and WE43 Mg Alloys , Hesham Y. Saleh Mraied

Novel Transducer Calibration and Simulation Verification of Polydimethylsiloxane (PDMS) Channels on Acoustic Microfluidic Devices , Scott T. Padilla

Force Compensation and Recreation Accuracy in Humans , Benjamin Rigsby

Experimental Evaluation of Cooling Effectiveness and Water Conservation in a Poultry House Using Flow Blurring ® Atomizers , Rafael M. Rodriguez

Media Velocity Considerations in Pleated Air Filtration , Frederik Carl Schousboe

Orthoplanar Spring Based Compliant Force/Torque Sensor for Robot Force Control , Jerry West

Experimental Study of High-Temperature Range Latent Heat Thermal Energy Storage , Chatura Wickramaratne

Theses/Dissertations from 2016 2016

Al/Ti Nanostructured Multilayers: from Mechanical, Tribological, to Corrosion Properties , Sina Izadi

Molybdenum Disulfide-Conducting Polymer Composite Structures for Electrochemical Biosensor Applications , Hongxiang Jia

Waterproofing Shape-Changing Mechanisms Using Origami Engineering; Also a Mechanical Property Evaluation Approach for Rapid Prototyping , Andrew Jason Katz

Hydrogen Effects on X80 Steel Mechanical Properties Measured by Tensile and Impact Testing , Xuan Li

Application and Analysis of Asymmetrical Hot and Cold Stimuli , Ahmad Manasrah

Droplet-based Mechanical Actuator Utilizing Electrowetting Effect , Qi Ni

Experimental and Computational Study on Fracture Mechanics of Multilayered Structures , Hai Thanh Tran

Designing the Haptic Interface for Morse Code , Michael Walker

Optimization and Characterization of Integrated Microfluidic Surface Acoustic Wave Sensors and Transducers , Tao Wang

Corrosion Characteristics of Magnesium under Varying Surface Roughness Conditions , Yahya Efe Yayoglu

Theses/Dissertations from 2015 2015

Carbon Dioxide (CO 2 ) Emissions, Human Energy, and Cultural Perceptions Associated with Traditional and Improved Methods of Shea Butter Processing in Ghana, West Africa , Emily Adams

Experimental Investigation of Encapsulated Phase Change Materials for Thermal Energy Storage , Tanvir E. Alam

Design Of Shape Morphing Structures Using Bistable Elements , Ahmad Alqasimi

Heat Transfer Analysis of Slot Jet Impingement onto Roughened Surfaces , Rashid Ali Alshatti

Systems Approach to Producing Electrospun Polyvinylidene Difluoride Fiber Webs with Controlled Fiber Structure and Functionality , Brian D. Bell

Self-Assembly Kinetics of Microscale Components: A Parametric Evaluation , Jose Miguel Carballo

Measuring Polydimethylsiloxane (PDMS) Mechanical Properties Using Flat Punch Nanoindentation Focusing on Obtaining Full Contact , Federico De Paoli

A Numerical and Experimental Investigation of Flow Induced Noise In Hydraulic Counterbalance Valves , Mutasim Mohamed Elsheikh

An Experimental Study on Passive Dynamic Walking , Philip Andrew Hatzitheodorou

Use of Anaerobic Adhesive for Prevailing Torque Locking Feature on Threaded Product , Alan Hernandez

Viability of Bismuth as a Green Substitute for Lead in Jacketed .357 Magnum Revolver Bullets , Joel A. Jenkins

A Planar Pseudo-Rigid-Body Model for Cantilevers Experiencing Combined Endpoint Forces and Uniformly Distributed Loads Acting in Parallel , Philip James Logan

Kinematic Control of Redundant Mobile Manipulators , Mustafa Mashali

Passive Symmetry in Dynamic Systems and Walking , Haris Muratagic

Mechanical Properties of Laser-Sintered-Nylon Diamond Lattices , Clayton Neff

Design, Fabrication and Analysis of a Paver Machine Push Bar Mechanism , Mahendra Palnati

Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films , Soukaina Rami

A Technical and Economic Comparative Analysis of Sensible and Latent Heat Packed Bed Storage Systems for Concentrating Solar Thermal Power Plants , Jamie Trahan

Use of FDM Components for Ion Beam and Vacuum Applications , Eric Miguel Tridas

The Development of an Adaptive Driving Simulator , Sarah Marie Tudor

Dual 7-Degree-of-Freedom Robotic Arm Remote Teleoperation Using Haptic Devices , Yu-Cheng Wang

Ductility and Use of Titanium Alloy and Stainless Steel Aerospace Fasteners , Jarrod Talbott Whittaker

Advanced Search

  • Email Notifications and RSS
  • All Collections
  • USF Faculty Publications
  • Open Access Journals
  • Conferences and Events
  • Theses and Dissertations
  • Textbooks Collection

Useful Links

  • Rights Information
  • SelectedWorks
  • Submit Research

Home | About | Help | My Account | Accessibility Statement | Language and Diversity Statements

Privacy Copyright

MIT Libraries home DSpace@MIT

  • DSpace@MIT Home
  • MIT Libraries

This collection of MIT Theses in DSpace contains selected theses and dissertations from all MIT departments. Please note that this is NOT a complete collection of MIT theses. To search all MIT theses, use MIT Libraries' catalog .

MIT's DSpace contains more than 58,000 theses completed at MIT dating as far back as the mid 1800's. Theses in this collection have been scanned by the MIT Libraries or submitted in electronic format by thesis authors. Since 2004 all new Masters and Ph.D. theses are scanned and added to this collection after degrees are awarded.

MIT Theses are openly available to all readers. Please share how this access affects or benefits you. Your story matters.

If you have questions about MIT theses in DSpace, [email protected] . See also Access & Availability Questions or About MIT Theses in DSpace .

If you are a recent MIT graduate, your thesis will be added to DSpace within 3-6 months after your graduation date. Please email [email protected] with any questions.

Permissions

MIT Theses may be protected by copyright. Please refer to the MIT Libraries Permissions Policy for permission information. Note that the copyright holder for most MIT theses is identified on the title page of the thesis.

Theses by Department

  • Comparative Media Studies
  • Computation for Design and Optimization
  • Computational and Systems Biology
  • Department of Aeronautics and Astronautics
  • Department of Architecture
  • Department of Biological Engineering
  • Department of Biology
  • Department of Brain and Cognitive Sciences
  • Department of Chemical Engineering
  • Department of Chemistry
  • Department of Civil and Environmental Engineering
  • Department of Earth, Atmospheric, and Planetary Sciences
  • Department of Economics
  • Department of Electrical Engineering and Computer Sciences
  • Department of Humanities
  • Department of Linguistics and Philosophy
  • Department of Materials Science and Engineering
  • Department of Mathematics
  • Department of Mechanical Engineering
  • Department of Nuclear Science and Engineering
  • Department of Ocean Engineering
  • Department of Physics
  • Department of Political Science
  • Department of Urban Studies and Planning
  • Engineering Systems Division
  • Harvard-MIT Program of Health Sciences and Technology
  • Institute for Data, Systems, and Society
  • Media Arts & Sciences
  • Operations Research Center
  • Program in Real Estate Development
  • Program in Writing and Humanistic Studies
  • Science, Technology & Society
  • Science Writing
  • Sloan School of Management
  • Supply Chain Management
  • System Design & Management
  • Technology and Policy Program

Collections in this community

Doctoral theses, graduate theses, undergraduate theses, recent submissions.

Thumbnail

L-dopa metabolism and the regulation of brain polysome aggregation 

Thumbnail

The North-Eastern Fishery question since 1886, a record of diplomatic relations 

Thumbnail

Metal complexes as models for vitamin B₆ catalysis 

feed

Doctoral Program

Main navigation.

The Ph.D. degree is intended primarily for students who desire a career in research, advanced development, or teaching; for this type of work, a broad background in mathematics and the engineering sciences, together with intensive study and research experience in a specialized area, are the necessary requisites.

The degree of Doctor of Philosophy (Ph.D.) is conferred on candidates who have demonstrated to the satisfaction of their department or school

  • substantial scholarship
  • high attainment in a particular field of knowledge
  • and the ability to do independent investigation and present the results of such research.

They must satisfy the general requirements for advanced degrees, the program requirements specified by their departments, and the doctoral requirements for candidacy, as outlined in the Stanford Bulletin.

PhD Admissions information

For Current Stanford Students

The ME Student Intranet has detailed information about processes and requirements for the ME PhD .

""

“ Two of the biggest lessons I’ve learned over the years are ... ”

BYU ScholarsArchive

BYU ScholarsArchive

Home > Engineering > Mechanical Engineering > Theses and Dissertations

Mechanical Engineering Theses and Dissertations

Theses/dissertations from 2024 2024.

Application of High-Deflection Strain Gauges to Characterize Spinal-Motion Phenotypes Among Patients with CLBP , Spencer Alan Baker

Investigating Which Muscles are Most Responsible for Tremor Through Both Experimental Data and Simulation , Daniel Benjamin Free

Multiscale Characterization of Dislocation Development During Cyclic Bending Under Tension in Commercially Pure Titanium , Nathan R. Miller

Time-Dependent Strain-Resistance Relationships in Silicone Nanocomposite Sensors , Alex Mikal Wonnacott

Theses/Dissertations from 2023 2023

A Series of Improved and Novel Methods in Computer Vision Estimation , James J. Adams

Experimental Validation of a Vibration-Based Sound Power Method , Trent P. Bates

Detecting Lumbar Muscle Fatigue Using Nanocomposite Strain Gauges , Darci Ann Billmire

Heated Supersonic Jet Characteristics From Far-field Acoustical Measurements , Matthew Austin Christian

Cooperative Navigation of Autonomous Vehicles in Challenging Environments , Brendon Peter Forsgren

Heat Transfer to Rolling or Sliding Drops on Inclined Heated Superhydrophobic Surfaces , Joseph Merkley Furner

Lumbar Skin Strain Fields in the Context of Skin Adhered Wearables , Andrew Kent Gibbons

A Statistical Approach for Analyzing Expectations Alignment Between Design Teams and their Project Stakeholders , Matthew Christian Goodson

Interaction of Natural Convection and Real Gas Radiation Over a Vertical Flat Plate , Nathan Hale

Thermal Atomization of Impinging Drops on Superheated Superhydrophobic Surfaces , Eric Lee

An Inexpensive, 3D Printable, Arduino and BluRay-based, Confocal Laser and Fluorescent Scanning Thermal Microscope , Justin Loose

Gradient-Based Optimization of Highly Flexible Aeroelastic Structures , Taylor G. McDonnell

Dynamic Segmental Kinematics of the Lumbar Spine During Diagnostic Movements , Paul McMullin

Friction and Heat Transfer Modeling of the Tool and Workpiece Interface in Friction Stir Welding of AA 6061-T6 for Improved Simulation Accuracy , Ryan Melander

Designed for Better Control: Using Kinematic and Dynamic Metrics to Optimize Robot Manipulator Design , John R. Morrell

Numerical Evaluation of Forces Affecting Particle Motion in Time-Invariant Pressurized Jet Flow , Donald E. Peterson

Modeling the Influence of Vibration on Flow Through Embedded Microchannels , Joseph S. Seamons

Evaluating Effects of Urban Growth Within the Greater Salt Lake Area on Local Meteorological Conditions Using Urban Canopy Modeling , Corey L. Smithson

Soft Robot Configuration Estimation: Towards Load-Agnostic Soft-Bodied Proprioception , Christian Peter Sorensen

Perfusion Pressure-Flow Relationships in Synthetic Poroelastic Vocal Fold Models , Cooper B. Thacker

Methods for Designing Compact and Deployable Origami-Inspired Flat-Foldable Spacecraft Antennas and Other Systems , Collin Ryan Ynchausti

Theses/Dissertations from 2022 2022

Mechanisms for Improvement of Key Mechanical Properties in Polymer Powder Bed Fusion Processes , Clinton Spencer Abbott

Reformulated Vortex Particle Method and Meshless Large Eddy Simulation of Multirotor Aircraft , Eduardo J. Alvarez

Improving Ideation of User Actions Using a Novel Ideation Method , Thomas L. Ashworth

Temperature and Radiation Measurements in a Pressurized Oxy-Coal Reactor , Dustin Peter Badger

Midfoot Motion and Stiffness: Does Structure Predict Function? , Kirk Evans Bassett

The Effects of Various Inlet Distortion Profiles on Transonic Fan Performance , Andrew Michael Bedke

Optical Observation of Large Area Projection Sintering , Derek Black

Investigations into Pressure Profile and Pressure Control in Wrist-Worn Health Monitoring Devices , Roger McAllister Black

Selecting and Optimizing Origami-Based Patterns for Deployable Space Systems , Diana Stefania Bolanos

Developing an Accurate Simulation Model for Predicting Friction Stir Welding Processes in 2219 Aluminum Alloy , Kennen Brooks

An Augmented Reality Maintenance Assistant with Real-Time Quality Inspection on Handheld Mobile Devices , James Thomas Frandsen

Motion Analysis of Physical Human-Human Collaboration with Varying Modus , Seth Michael Freeman

Effects of Optical Configuration and Sampling Efficiency on the Response of Low-Cost Optical Particle Counters , Brady Scott Hales

Developing Ultra-High Resolution 3D Printing for Microfluidics , Kent Richard Hooper

Controlled Pre-Wetting of Spread Powder and Its Effects on Part Formation and Printing Parameters in Binder Jetting Additive Manufacturing , Colton G. Inkley

Enabling Successful Human-Robot Interaction Through Human-Human Co-Manipulation Analysis, Soft Robot Modeling, and Reliable Model Evolutionary Gain-Based Predictive Control (MEGa-PC) , Spencer W. Jensen

Demonstration of a Transient Hot Wire Measurement System Towards a Carbide-Based Sensor for Measuring the Thermal Conductivity of Molten Salts , Peter Charles Kasper

Measured Spectral, Directional Radiative Behavior of Corrugated Surfaces , Kyle S. Meaker

Modified Transient Hot-Wire Needle Probe for Experimentally Measuring Thermal Conductivity of Molten Salts , Brian N. Merritt

Parametric Models of Maize Stalk Morphology , Michael Alan Ottesen

A Formal Consideration of User Tactics During Product Evaluation in Early-Stage Product Development , Trenton Brady Owens

Airship Systems Design, Modeling, and Simulation for Social Impact , Daniel C. Richards

Sub-Grain Characterization of Slip Activity in BCC Tantalum , Tristan Kirby Russell

Tidally Generated Internal Waves from Dual-Ridge Topography , Ian Derik Sanderson

An Investigation into the Role of Geometrically Necessary Dislocations in Multi-Strain Path Deformation in Automotive Sheet Alloys , Rishabh Sharma

Methods for Engineers to Understand, Predict, and Influence the Social Impacts of Engineered Products , Phillip Douglas Stevenson

Principles for Using Remote Data Collection Devices and Deep Learning in Evaluating Social Impact Indicators of Engineered Products for Global Development , Bryan J. Stringham

Improvement of Ex Vivo Testing Methods for Spine Biomechanical Characterization , Aubrie Lisa Taylor

Gradient-Based Wind Farm Layout Optimization , Jared Joseph Thomas

Material Development Toward an Index-Matched Gadolinium-Based Heterogenous Capture-Gated Neutron Detector , Aaron J. Thorum

Optimization of a Smart Sensor Wearable Knee Sleeve for Measuring Skin Strain to Determine Joint Biomechanics , David Steven Wood

Multi-Material 3D-Printed Silicone Vocal Fold Models , Clayton Adam Young

Theses/Dissertations from 2021 2021

Laser Forming of Compliant Mechanisms and Flat-Foldable Furniture , Daniel Calvin Ames

Effects of Static and Dynamic Thermal Gradients in Gas Chromatography , Samuel Avila

Five Degree-of-Freedom Property Interpolation of Arbitrary Grain Boundaries via Voronoi Fundamental Zone Octonion Framework , Sterling Gregory Baird

Optimization of Solar-Coal Hybridization for Low Solar Augmentation , Aaron T. Bame

Characterizing Behaviors and Functions of Joints for Design of Origami-Based Mechanical Systems , Nathan Chandler Brown

Thermal Transport to Impinging Droplets on Superhydrophobic Surfaces , Jonathan C. Burnett

3D Permeability Characterization of Sheared Fiber Reinforcement for Liquid Composite Molding Process Simulation , Collin William Childs

The Impact of Inkjet Parameters and Environmental Conditions in Binder Jetting Additive Manufacturing , Trenton Miles Colton

Control of Post-Weld Fracture Toughness in Friction Stir Processed X-80 HSLA Steel , Nolan Tracy Crook

Sensitivity of Tremor Propagation to Model Parameters , Charles Paul Curtis Jr.

Feasibility and Impact of Liquid/Liquid-encased Dopants as Method of Composition Control in Laser Powder Bed Fusion , Taylor Matthew Davis

Design Validation of a Multi-Stage Gradually Deploying Stent , Dillon J. Despain

Analysis of Closed-Loop Digital Twin , Andrew Stuart Eyring

Completion and Initial Testing of a Pressurized Oxy-Coal Reactor , Scott Hunsaker Gardner

Method for Creating Subject-specific Models of the Wrist in both Degrees of Freedom Using Measured Muscle Excitations and Joint Torques , Blake Robert Harper

CEDAR: A Dimensionally Adaptive Flow Solver for Cylindrical Combustors , Ty R. Hosler

Modeling Current and Future Windblown Utah Dust Events Using CMAQ 5.3.1 , Zachary David Lawless

Acclimation of Contact Impedance and Wrist-Based Pulsatile Signal Measurements Through Electrical Bioimpedance , Diego A. Leon

Characterizing Bacterial Resistance and Microstructure-Related Properties of Carbon-Infiltrated Carbon Nanotube Surface Coatings with Applications in Medical Devices , Stephanie Renee Morco

Effects of Whole Body Vibration on Inhibitory Control Processes , Bennett Alan Mortensen

Exploration of Constant-Force Wristbands for a Wearable Health Device , Thomas Alexander Naylor

Effect of Ported Shroud Casing Treatment Modifications on Operational Range and Limits in a Centrifugal Compressor , Alexander A. Newell

Considering Social Impact when Engineering for Global Development , Hans Jorgen Ottosson

A New Method of Measuring Flow Stress for Improved Modeling of Friction Stir Welding , David John Prymak

Constrained Nonlinear Heuristic-Based MPC for Control of Robotic Systems with Uncertainty , Tyler James Quackenbush

A Study in Soft Robotics: Metrics, Models, Control, and Estimation , Levi Thomas Rupert

Development of an Origami Inspired Composite Deployable Structure Utilizing Compliant Joints as Surrogate Folds , Samuel Porter Smith

Development and Evaluation of an Improved Microbial Inactivation Model for Analyzing Continuous Flow UV-LED Air Treatment Systems , Cole Holtom Thatcher

Micromechanisms of Near-Yield Deformation in BCC Tantalum , Joshua Jr-Syan Tsai

Effects of Carbon-Infiltrated Carbon Nanotube Growth on the Biocompatibility of 316L Stainless Steel , Sterling Charles Voss

Active Thermography for Additive Manufacturing Processes , Nicholas Jay Wallace

System Identification of Postural Tremor in Wrist Flexion-Extension and Radial-Ulnar Deviation , Sydney Bryanna Ward

Effective Temperature Control for Industrial Friction Stir Technologies , Arnold David Wright

Theses/Dissertations from 2020 2020

Characterization of the Factors Influencing Retained Austenite Transformation in Q&P Steels , Derrik David Adams

Instructional Case Studies in the Field of Windfarm Optimization , N. Francesco Baker

LCM Permeability Characterization Over Mold Curvature , Benjamin Grant Betteridge

Linear and Nonlinear Dimensionality-Reduction-Based Surrogate Models for Real-Time Design Space Exploration of Structural Responses , Gregory David Bird

Electrochemical Sensors Enhanced by Convection and by 3D Arrays of Vertically Aligned Carbon Nanotubes , Benjamin James Brownlee

In Vivo Silicon Lance Array Transfection of Plant Cells , Taylor Andrew Brown

Real Time Design Space Exploration of Static and Vibratory Structural Responses in Turbomachinery Through Surrogate Modeling with Principal Components , Spencer Reese Bunnell

On Creases and Curved Links: Design Approaches for Predicting and Customizing Behaviors in Origami-Based and Developable Mechanisms , Jared J. Butler

Jet Impingement Heat Transfer from Superheated, Superhydrophobic Surfaces , David Jacob Butterfield

A Framework for Simulating and Analyzing Multi-UAV Persistent Search and Retrieval with Stochastic Target Appearance , Ryan David Day

Page 1 of 9

Advanced Search

  • Notify me via email or RSS

ScholarsArchive ISSN: 2572-4479

  • Collections
  • Disciplines
  • Scholarly Communication
  • Additional Collections
  • Academic Research Blog

Author Corner

Hosted by the.

  • Harold B. Lee Library

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

PhD in Mechanical Engineering

The Department of Mechanical Science and Engineering boasts a world-class program leading to the PhD in Mechanical Engineering, offering tremendous flexibility in course selection.

Students may choose whether or not to earn the MS on the way to earning the PhD in Mechanical Engineering. Most students joining the department enter the PhD program in Stage 1, during which students complete their MS degree in Mechanical Engineering or Theoretical and Applied Mechanics. An outline of the steps toward completion of the Mechanical Engineering PhD is presented below.

Stage 1: MS or its Equivalent

Please select a link for information on getting your MS degree in  ME  & or  TAM .*

Students entering directly after earning the BS are considered Stage 1 PhD students until the prerequisite for the qualifying exam has been completed. 

Stage 2: Qualifying Examination, PhD Coursework, Preliminary Examination

The Department requires graduate students to successfully complete a qualifying examination to formally enter the PhD program.

ME PhD Qualifying Examination

The objective of the qualifying exam is to evaluate student’s sufficient depth and breadth of understanding in the area of research. Towards this goal, a committee of two faculty members appointed by the Associate Head for Graduate Programs for each examinee will administer an hour-long oral exam on a peer-reviewed, archival journal article related to student’s area of research. The committee will be asked to select an important paper in the student’s research field, consistent with the fact that the student has a two-week preparation period.  The paper is chosen by the committee in consultation with the student’s advisor, and is provided to the student two weeks ahead of the exam. The article may not be one authored/co-authored by the student or by any faculty in the department.  The exam result is presented as pass, conditional pass or fail, and should be submitted via email to the Graduate Programs Coordinator.  The Assistant Director of Graduate Programs will relay the result to the student’s advisor.

A minimum of B+ grade in each of four independent courses from any one or a combination of any two areas chosen from an approved list (see below) is a prerequisite for taking the qualifying exam.

A student may attempt the examination twice.

Details of the Exam

Prerequisites:   A B+ grade or higher in each of the four independent courses chosen from an approved list (see below) is a prerequisite for appearing in the qualifying exam. These four courses can be chosen from a single area or a combination of any two areas. In addition, the student is required to take the qualifying exam within two years after a master’s degree or within three years of a bachelor’s degree. The advisor must approve the choice of courses. Students would be encouraged to retake a class to improve their grade sufficiently to meet the requirements. Transferred coursework cannot be used to fulfill the prerequisites of the qualifying exam.

Administration of the Qual Exam :  Students who have satisfied the prerequisites for the exam and wish to register should submit the  ME PhD Qualifying Exam Form to the Graduate Programs Office. Exam schedules will be set based on committee availability and must not be earlier than 3 weeks from the time of the request approval.

Advisors will email the names of three suggested committee members and three suggested articles to the Graduate Programs Office.

The Associate Head for Graduate Programs will review the request and select the two members for the evaluation committee.

A notice will be sent from the Graduate Programs Office to the committee, informing them that they have been appointed to administer the examination and who has been named Committee Chair. The notice will also include the suggested articles from the advisor and the timeline in which the exam needs to be scheduled.

Students are responsible for picking a date and time that works for all committee members. Once a date and time are confirmed by all committee members, students must email [email protected]  the date and time of their exam, with each member of the committee carbon-copied (CCed) on the email. 

Oral Examination Committee:   A committee of two faculty members from MechSE appointed by the Associate Head for Graduate Programs for each examinee will administer an hour-long oral exam on a peer-reviewed, archival journal article related to student’s area of research.

Journal article:  The student will be examined on a published, peer-reviewed archival journal article related to student’s research. The student’s adviser will provide a suggested list of papers to the Graduate Programs Office with a rationale for the choice of the articles, to be shared with the examining committee.  The committee may choose a paper from the list, or it can choose a paper outside of the advisor’s suggested list, but from within the general research area of the student.  The selected paper must be an important paper in the student’s research field, consistent with the fact that the student has a two-week preparation period. If the article selected is outside the list, the committee needs to provide a rationale for the choice of the article, and a statement describing the reason as to why an article was  not  chosen from the advisor’s suggested list. The committee’s statement will be provided to the Associate Head (AH) for Grad Programs, and  not  to the student’s advisor. AH may communicate the statement to the advisor at his/her own discretion.  The article may not be one authored/co-authored by the student or by any faculty in the department.  In addition to reading the article, the student is expected to review the related literature.  The article will be provided to the student two weeks ahead of the exam, so please contact the Graduate Programs Office with the article selection as quickly as possible. Once the paper is selected, the student will be notified to contact the committee to schedule the examination.

Grading:  The student must present the material from the article in 30 minutes, and answer committee’s questions in the remaining 30 minutes. The exam will be graded on the following points:

  • overall significance of the article
  • influence of the work on the development of the field
  • possible future research directions in the area of the article
  • the key findings of the work
  • connection to student’s research

Outcome of the exam:  the result can be (a) an unconditional pass, (b) a conditional pass pending taking a specific course or courses with a defined minimum grade, and (c) a fail. On failing, a student may repeat the oral exam once.

Approved List of Areas and Courses

Combustion: ME 403, 501, 503; CHBE 551/CHEM 582; CHEM 522;

Computational Mechanics: ME 412, 447, 471, 570; TAM 470, 570, 574; CEE 576; CS 446, 450; MSE 485

Controls: ME 446, 460, 461, 541, 561, 562; AE 403, 454, 504, 555, 556; ECE 486, 515 (same as ME 540), 517, 534, 553, 555, 568, 573; Math 518, 519, 540, 541, 550, 551

Dynamics: ME 440, 546 (same as ECE 528); TAM 412, 416, 514, 518; TAM 515 / AE 554

Fluid Mechanics: ME 410, 411(same as AE 412), 412, 504, 510; TAM 435, 531, 532, 534, 536, 537, 538, 570; AE 511, 514, 515

Heat Transfer: ME 401, 411 (same as AE 412), 412, 420, 502, 504, 520, 521, 522, 523

Manufacturing: ME 450, 451, 452, 453 455, 458, 541, 550, 554; AE 526

Materials: CHEM 524; ME 430, 431, 530, 531, 532, 533; MSE 455, 460, 480, 488; PHYS 460; TAM 424, 427, 428, 524, 534, 559; AE 525, 526

MEMS/NEMS: ME 485, 487, 523, 586

Solid Mechanics: ME 430, 472; TAM 445, 451, 456, 529, 545, 551, 552, 554, 555, 557, 559; AE 522, 523, 528, 529, 550, 559

Biomechanics: ME 481, 482, 483; TAM 461

Thermodynamics & Energy Conversion: ME 400 (this course will be counted for the Qualifying Examination for those who have taken the course during Spring 2017 or earlier), ME 401, ME 402, ME 404, ME 502, ME 512; CHEM 442, CHEM 524, CHEM 544; PHYS 427/MSE 500 (one or the other--students may not take both), PHYS 486, PHYS 487, PHYS 504

Coursework***

If a student is entering with a completed MS degree or plans to earn the MS on the way to the PhD, the coursework requirements are 20 hours of graduate-level coursework beyond the MS, to include: at least 8 hours of 500-level courses, an advanced 500-level math course taught at the University of Illinois Urbana-Champaign campus (which can be counted as  part of the required 8 hours of 500-level coursework).  The advanced math requirements may be satisfied by TAM 541, TAM 542, TAM 549, ECE 534, or any 500-level course offered by the Mathematics Department except for the following: MATH 596, MATH 597, MATH 598, and MATH 599.  At least 8 hours of “Enrichment” coursework (graduate level courses that do not strongly overlap with the student’s main research topic) to be chosen in consultation with the advisor, and at least 44 hours of dissertation credit (599) beyond the MS.  Additional courses beyond the 8 hours of 500-level courses may be ME or TAM graduate-level courses (400-500 level), or other engineering graduate-level technical courses chosen in consultation with advisor.  No more than 4 of the 20 hours may be ME or TAM 597, Independent Study.

If the PhD is pursued directly after the bachelor's degree, the coursework requirements are 44 hours of formal graded coursework to include 16 hours at the 500 level, 4 of which may be ME 597 Independent Study and may include the required 3-4 hours of 500-level math.  The math requirement may be satisfied by TAM 541, TAM 542, TAM 549, ECE 534, or any 500-level course offered by the Mathematics Department except for the following: MATH 596, MATH 597, MATH 598, and MATH 599. At least 8 hours of “Enrichment” coursework (graduate level courses that do not strongly overlap with the student’s main research topic) to be chosen in consultation with the advisor, and at least 52 hours of dissertation credit (599) beyond the MS.  Additional courses beyond the 16 hours of 500-level courses may be ME or TAM graduate-level courses (400-500 level), or other engineering graduate-level technical courses chosen in consultation with advisor.  

Preliminary and Final Examinations

Scheduled upon completion of coursework requirement or in the semester in which the final coursework is taken. To schedule your exam, please see this page on the Graduate College website: grad.illinois.edu/thesis/submitting-doctoral-committee-requests  

You should submit your exam request to the Graduate College at least 3 weeks prior to the approximate exam date. Once you have submitted your Graduate College exam request, a notice is sent to the MechSE Graduate Programs  Office to approve the request. Once the request is approved by the MechSE Graduate Programs Office, the Graduate College will send the student and the MechSE Graduate Programs Office notice that the exam has been approved. 

After the Graduate College has approved your exam and you have been notified of the approval via email, the MechSE Graduate Programs Office will direct you to complete the Departmental Preliminary Exam Request Form or Departmental Final Exam Request Form . These forms should be submitted online to the MechSE Graduate Programs Office at least one week prior to the exam. 

Preliminary Examination proposals should be 20 pages in length including introductory pages, figures, etc. It should include statement of proposed research, its objectives and significance; a brief review of previous work on related research; and a short discussion of tentative methods of analysis and/or experimentation. There are no specific format requirements for the proposal. 

Final Examination abstracts should be submitted as a double-spaced Microsoft Word document in Times New Roman, size 12 font. The research summary should be one paragraph long, submitted as a Microsoft word document in size 11, Calibri font.

PROCESS FOR REPORTING EXAM RESULTS

The process for reporting Prelim and Final exam results is as follows:

The Committee Chair should email  [email protected] , cc’d to the committee members.  The email must include the following information:

  • For Preliminary Exams : 1) Date of the exam, 2) Result of the exam, 3) Names of committee members
  • For Final Exams : 1) Date of the exam, 2) Result of the exam, 3) Names of committee members, 4) How each committee member voted
  • For Thesis/Dissertation Approval Forms : 1) Approval of the document, 2) Names of committee members

The Graduate Programs Office will attach the result confirmation email to the PER/FER form, which should include the signature of the EO or DGS at the bottom. This departmental signature confirms the accuracy of the result, which aligns with our standard practice.

DOCTORAL EXAMINATION COMMITTEE REQUIREMENTS

  • Graduate College policy requires this committee shall have a minimum of 4 voting members, 3 of whom must be University of Illinois Graduate Faculty (i.e. they have an appointment with the Graduate College as teaching faculty who instruct a graduate course or courses.   MechSE policy states at least 1 of the 4 voting members must not be from the department of the candidate.  Committee members from outside the University of Illinois Urbana-Champaign are welcome but would serve in addition to the 3 University of Illinois Urbana-Champaign committee members.  If a member of the committee is non-UIUC faculty and will participate as a non-voting member, nothing additional is required.  If you desire a non-UIUC faculty member to serve as a voting committee member, a letter/email of justification from the advisor, stating what qualifies the person to be a voting member on the committee along with the person’s CV, must be attached to the exam request at the time of submission.
  • Three of the committee members must be listed as Graduate Faculty members and two must be tenured (Associate Professor or Professor).  The committee should include faculty members from more than one area of specialization.
  • The “Chair” must be a member of the Graduate Faculty from the candidate’s department and may also be the Director of Dissertation Research.  The chair is responsible for convening the committee, conducting the examination, and submitting the Certificate of Result to the department in which the student is enrolled.
  • A “Contingent Chair,” if designated, must be a member of the Graduate Faculty.  The Contingent Chair serves if the original chair is unable to serve for any reason.
  •  The Director of Dissertation Research is responsible for guiding/advising the student in their thesis research as part of an ongoing research project.  He/she may also discuss a tentative course of study or recommend a sequence of courses the student can take reflecting the interest of the student.
  • A Department Affiliate cannot serve as a “Chair” or a “Contingent Chair” of a Preliminary Examination or Final Examination Committee.  Only faculty members of the Department of Mechanical Science and Engineering may serve in that capacity.

SEMINAR REQUIREMENT

Continuous registration in ME 590 is required until completion of the preliminary exam unless the student will not attend the full semester the preliminary exam is administered. In this case, the student does not need to register in their final semester. Seminar credit cannot be counted toward coursework requirements.

Stage 3: Thesis and Final Examination

THESIS FOCUS

Thesis and Final Examination

DOCTORAL DISSERTATION DEFENSE

May be taken no sooner than six months after the preliminary examination.

FINAL EXAMINATION

Residency requirement: The University of Illinois requires that 64 hours must be from courses meeting on the Urbana-Champaign campus or at other locations approved by the Graduate College for resident credit. *A student entering with a MS degree is credited with 32 hours of coursework, leaving 64 hours to be completed at Illinois. **A maximum of 4 hours of ME 597 Independent study may be applied toward the 500-level coursework requirement. ***Coursework applied toward the degree must be approved by the Associate Head for Graduate Programs.

Continuous registration in ME 590 is required until completion of the preliminary exam. Seminar credit cannot be counted toward coursework requirements. Students are required to attend a minimum of 4 seminars in the semester. The seminar schedule is e-mailed to students at the beginning of each semester.

Students enrolled in a course that conflicts with ME 590 or TAM 500 still need to register for ME 590/TAM 500 and are required to attend alternate seminars.

To complete seminar registration with a conflict:

  • Request a registration override by contacting the Undergraduate Programs Office at  [email protected] . Include your name, UIN, and the course you are enrolled in that is in conflict with the seminar. Also, list the seminar course you will register for (ME 590 or TAM 500).
  • You will receive an email when the override is entered.
  • You must register for ME 590 after the override is entered.

To receive credit for alternate seminars:

Alternate seminars include TAM 539 Fluids Seminar Series (for students who are registered in TAM 539), any other MechSE seminars not listed as part of the MechSE Seminar Series, and other seminars in Engineering, Math, or Physics.

Questions? MS/PhD: [email protected] M.Eng.ME: [email protected]

Banner

Mechanical Engineering: Find Theses and Dissertations

  • Starting Point
  • Find Reference Sources
  • Find Books and ebooks
  • Find Journals
  • Find Articles
  • Find Facts & Formulas
  • Find Properties of Materials
  • Find Patents and Trademarks
  • Find Technical Reports
  • Find Theses and Dissertations
  • Find Conferences
  • Track a Citation
  • Writing & Citing
  • Associations and Societies
  • Guidance for Authors of ASME Literature

About Theses and Dissertations

A dissertation or thesis is a document submitted in support of candidature for a degree or professional qualification presenting the author's research and findings.  (International Standard ISO 7144: Documentation — Presentation of theses and similar documents ).

For most universities in the U.S., dissertation is the term for the required submission for the PhD, and thesis refers only to the master's degree requirement.

Other Universities

T he best source to find theses is ProQuest Dissertations & Thesis Global .  Policies regarding theses and dissertation collections largely vary between universities.  So check the library website of the university of interest.

Carnegie Mellon University

Carnegie Mellon theses are now ONLINE and can be searched through the ProQuest database Dissertations & Theses @ Carnegie Mellon University that enables access to citations and abstracts of all dissertations and theses, as well as the fulltext in PDF format.  Scroll down and select Dissertations & Theses, then do a regular search. Print versions are also available in the libraries collection.

The Carnegie Mellon Library catalog , uses the term THESIS to denote both masters' theses and dissertations.  However, the number of master's theses is limited.  Within the libraries, theses are located in designated areas and are shelved in alphabetical order by the author's last name.  The catalog treats theses and dissertations like books and they can be borrowed as such.  Theses may be in print, microfiche, or microform.

  • In the catalog use the Advanced Search :  search by author, title, or keyword limiting to type THESIS.
  • For a list of theses from a specific department, use Advanced Search to combine a keyword search for the name of the department with location THESES.  E.g., search for "Dept. of Computer Science" with THESES as the location.
  • For a reasonably complete list of theses at Carnegie Mellon, use Advanced Search to search Carnegie Mellon University Dissertations in the Subject line.  

Other Countries

Center for Research Libraries:  Foreign Doctoral Dissertations CRL has more than 800,000 cataloged foreign doctoral dissertations from more than 90 countries and over 1200 institutions.

  • << Previous: Find Technical Reports
  • Next: Find Conferences >>
  • Last Updated: Feb 26, 2024 3:48 PM
  • URL: https://guides.library.cmu.edu/meng

Home Page

  •   Create Account
  •   Login
  •   Home

Browsing/Searching: UR Research > Mechanical Engineering Department  >  Mechanical Engineering Ph.D. Theses

  • Browse Publications
  • Browse Authors/Contributors
  • Browse Sponsors

Viewing: 1 - 25 of 61

phd thesis mechanical engineering

  • Help  | 
  • Contact Us  | 
  • About  | 
  • Privacy Policy

UKnowledge

UKnowledge > College of Engineering > Mechanical Engineering > Theses & Dissertations

Theses and Dissertations--Mechanical Engineering

Theses/dissertations from 2024 2024.

The Determination of Darcy Permeabilities and Slip Parameters in Porous Thermal Protection Media via Pressure-Driven Steady Flows at Varying Levels of Thermal Decomposition , John Ryan O'Nan

Theses/Dissertations from 2023 2023

Utilization of Uncrewed Aircraft Systems Towards Investigating the Structure of the Atmospheric Surface Layer , Loiy Al-Ghussain

MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN , Alireza Babaei

Impact of spallation and internal radiation on fibrous ablative materials , Raghava Sai Chaitanya Davuluri

ANISOTROPIC MATERIAL BEHAVIOR OF 3D PRINTED FIBER COMPOSITES , Jordan Garcia

Stratospheric Glider Measurements of Atmospheric Parameters , Anisa Haghighi

Attrition Study of Copper-Supplemented Iron-Based Oxygen Carrier for Chemical Looping Combustion , Neng Huang

MACHINE LEARNING FOR ADVANCING AUTOMATION AND QUALITY CONTROL IN ROBOTIC WELDING , Joseph Kershaw

A computational fluid dynamic analysis of oxyacetylene combustion flow for use in material response boundary conditions , Craig Meade

MULTISCALE MODELING OF CARDIAC GROWTH AND BAROREFLEX CONTROL , Hossein Sharifi

Precision Meteorological Prediction Employing A Data-Driven, Adaptive, Real-Time (DART) Approach , Sujit Sinha

Parallel Real Time RRT*: An RRT* Based Path Planning Process , David Yackzan

Theses/Dissertations from 2022 2022

IN-SITU CHARACTERIZATION OF SURFACE QUALITY IN γ-TiAl AEROSPACE ALLOY MACHINING , David Adeniji

NUMERICAL AND SCALING STUDY ON APPLICATION OF INKJET TECHNOLOGY TO AUTOMOTIVE COATING , Masoud Arabghahestani Dr.

EXPERIMENTAL INVESTIGATION OF ROUGHNESS AND BLOWING EFFECTS OVER ABLATOR-LIKE SURFACES , Colby Borchetta

Energy and Economic Modeling of Stillage Dewatering Processes in Kentucky Bourbon Distilleries , William Brennan

Peridynamic Material Correspondence Models: Bond-Associated and Higher-Order Formulations , WaiLam Chan

A Decoupled Engineering Methodology for Accurate Prediction of Ablative Surface Boundary Conditions in Thermal Protection Systems , Justin Cooper

QUANTITATIVE METHODS FOR TOTAL LIFECYCLE RISK LIKELIHOOD AND IMPACT ASSESSMENT IN SUSTAINABLE PRODUCT DESIGN DECISION MAKING , Christian Enyoghasi

Numerical Investigation of an Oxyacetylene Torch With Regards to an Ablative Material , Luke Fortner

Formation Control with Collision Avoidance for Fixed-Wing Unmanned Air Vehicles With Speed Constraints , Christopher Heintz

Radiative Conductivity Estimation Using Direct Approach For Fibrous Materials , Mohammad Khaleel

Modeling Human Control Behavior in Command-following Tasks , Sajad Koushkbaghi

Formation Control with Bounded Controls and Collision Avoidance: Theory and Application to Quadrotor Unmanned Air Vehicles , Zachary S. Lippay

Small-Satellite Attitude Control Using Sinusoidal Actuator Motion: Experiments on the International Space Station , K. Ryan Lush

Page 1 of 14

Advanced Search

  • Notify me via email or RSS

Browse by Author

  • Collections
  • Disciplines

Author Corner

  • Submit Research

New Title Here

Below. --> connect.

  • Law Library
  • Special Collections
  • Copyright Resource Center
  • Graduate School
  • Scholars@UK

Logo of Kentucky Research Commons

  • We’d like your feedback

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

University of Kentucky ®

An Equal Opportunity University Accreditation Directory Email Privacy Policy Accessibility Disclosures

Logo

Departments

  • Applied Physics
  • Biomedical Engineering
  • Center for Urban Science and Progress
  • Chemical and Biomolecular Engineering
  • Civil and Urban Engineering
  • Computer Science and Engineering
  • Electrical and Computer Engineering
  • Finance and Risk Engineering
  • Mathematics
  • Mechanical and Aerospace Engineering
  • Technology, Culture and Society
  • Technology Management and Innovation

Degrees & Programs

  • Bachelor of Science
  • Master of Science
  • Doctor of Philosophy
  • Digital Learning
  • Certificate Programs
  • NYU Tandon Bridge
  • Undergraduate
  • Records & Registration
  • Digital Learning Services
  • Teaching Innovation
  • Explore NYU Tandon
  • Year in Review
  • Strategic Plan
  • Diversity & Inclusion

News & Events

  • Social Media

Looking for News or Events ?

Mechanical Engineering, Ph.D.

close up of hands soldering part of computer chip

  • Request Information

Mechanical engineers create the physical systems and devices that define modern society — everything from automobiles to air conditioning, robotic parts to power plants, people movers to artificial limbs, and rocket engines to satellites. At the School of Engineering, we groom our students to become the inventors and innovators of tomorrow. Our PhD in Mechanical Engineering program offers a balanced curriculum that emphasizes the principles behind these designs and approaches. To apply these principles in the field, we make computational and research experience an integral component of your studies.

We also offer you the freedom to choose from 5 distinct areas of specialization:

  • aerospace engineering
  • controls and dynamic systems
  • fluid dynamics and thermal systems
  • materials engineering
  • mechanics and structural systems

The high faculty-to-student ratio of our program ensures you develop close ties to your instructors and fellow students. This fosters lifelong relationships and a rigorous intellectual community of scholars.

Many of our graduates enter such fields as computer engineering, nanotechnology, software development, and financial engineering. They also occupy positions in bioengineering, manufacturing, astronautics, systems engineering, and corporate management and law.

Admission Requirements

Admission to this program requires an MS in Mechanical or Aerospace Engineering or other closely related engineering field or applied sciences. Generally, you must also be able to present a GPA of 3.5 or better in your MS work. In cases where it is unclear that the required MS specialization has been satisfied, the degree requirements for the Mechanical Engineering, MS at the School of Engineering will define the necessary reparation. This same criterion applies for degrees received in other engineering disciplines.

Those with a BS in Mechanical or Aerospace Engineering and a GPA of 3.5 or better may apply directly to the program.

Find out more about  admission requirements .

abu dhabi

Abu Dhabi Global Fellow Program

City skyline with digital info graphics superimposed

Urban Science Doctoral Track

The general credit requirements for the Doctor of Philosophy in Mechanical Engineering degree at the School of Engineering are:

  • Transfer from MS degree (30 credits)
  • Approved coursework beyond the MS degree (18 credits minimum)
  • Ph.D. dissertation (18 credits minimum)
  • Approved electives (up to 6 credits)
  • Minimum Total Required: 75 Credits

The credits above include MS degree credits but go beyond those for the BS degree.

Your studies must also be completed 5 years after the MS degree or the date of admission, whichever is later, unless a formal leave of absence is approved before the period for which the studies are interrupted.

In addition, you must take a written and oral departmental qualifying examination within the first 2 times it is offered after the date you join the doctoral program. Upon passing, you must then form a Ph.D. Guidance Committee and begin your dissertation. To do so, you will need to register for at least 3 credits of ME 9999 each fall and spring semester. Actual registration should reflect the pace of the work and your activity.

An exception to the minimum registration requirement may be made in the last semester of registration if that semester is devoted primarily to complete the work and dissertation. A dissertation grade of U for 2 consecutive terms affects whether or not you will be allowed to continue doctoral work. You must present progress on your dissertation to your guidance committee at least once a year. You can find additional details on degree requirements in the departmental pamphlet available at the department's main office.

Quick Links

  • Graduate Admissions
  • Robotics at NYU Tandon

Program Director

""

Iskender Sahin

Kevin Jose

Matthieu Nadini

  • Skip to Content
  • Catalog Home
  • Mechanical Engineering, Ph.D.

3D printer

The doctoral program in the Department of Mechanical Engineering prepares students to perform independent research in areas of faculty expertise within the department. The Ph.D. program in Mechanical Engineering is designed to train outstanding students for advanced work in industry, national labs, and academia through a combination of coursework and hands on research.

Ph.D. students are mentored by faculty to become world-class researchers. The Department of Mechanical Engineering has a long history of excellence in graduate education. The department is consistently ranked in the top 20 in the United States for graduate programs in mechanical engineering. The department offers research opportunities in a large number of established and emerging research specializations. Broad research themes within the department include: biomechanics, computational engineering and design, energy systems, advanced manufacturing, mechanics, and robotics, controls and sensing. Excellent research facilities are available for specialized research within these broad areas for studies in: biomechanics, combustion, computational design, controls, cryogenics, dynamics and vibrations, fluid dynamics, fluid power, geometric modeling and prototyping, heat and mass transfer, internal combustion engines, laser diagnostics, manufacturing processes, mechanics, mechatronics, polymer and composites processing, powertrain control, robotics, solar energy, and more.

For a list of mechanical engineering faculty along with faculty research interests, please visit our  faculty directory . For more information on research areas see our page on research in Mechanical Engineering . 

Please consult the table below for key information about this degree program’s admissions requirements. The program may have more detailed admissions requirements, which can be found below the table or on the program’s website.

Graduate admissions is a two-step process between academic programs and the Graduate School. Applicants must meet the minimum requirements of the Graduate School as well as the program(s). Once you have researched the graduate program(s) you are interested in, apply online .

Submitted scores will not be used in admission decisions.

APPLICATION REQUIREMENTS and PROCESS

Degree: Most applicants have a Bachelor of Science in Mechanical Engineering. Students with a Bachelor of Science in other engineering or physical and natural science disciplines will be considered for admission. International applicants must have a degree comparable to a regionally accredited U.S. bachelor’s degree.

GPA: The Department of Mechanical Engineering prefers a 3.2/4.0 GPA. The minimum GPA to be reviewed by the admission committee is 3.0/4.0.

Advisor selection process: Applicants are required to seek out and secure their own faculty advisor. International students must complete this process as part of the application process, before an offer of admission may be granted. To seek out a faculty advisor please review the department Research and People websites. Only those faculty listed with titles of Assistant Professor, Associate Professor, or Professor, can serve as graduate advisors. Do not contact Emeritus faculty, Lecturers, Research Scientists, or Faculty Associates. You are encouraged to inquire about possible funding opportunities. If a faculty member offers to be your advisor, ask them to email their acceptance to [email protected] .

Each application must include the following:

  • Graduate School Application
  • Academic transcripts
  • Statement of purpose
  • Three letters of recommendation
  • English Proficiency Score (if required)
  • Application Fee

All applicants must satisfy requirements that are set forth by the  Graduate School . Upon acceptance, students without Mechanical Engineering Bachelor of Science degrees may be required to complete one or more courses in addition to degree requirements to satisfy any deficiencies (this requirement cannot be determined prior to admission).

To apply to the Mechanical Engineering program, complete  applications , including supportive materials, must be submitted as described below and received by the following deadline dates:

  • Fall Semester—December 15 
  • Spring Semester—September 1 
  • Summer Session—December 15 

ACADEMIC TRANSCRIPT

Within the online application, upload the undergraduate transcript(s) and, if applicable, the previous graduate transcript. Unofficial copies of transcripts will be accepted for review, but official copies are required for admitted students. Please do not send transcripts or any other application materials to the Graduate School or the Department of Mechanical Engineering unless requested. Please review the requirements set by the  Graduate School  for additional information about degrees/transcripts.

STATEMENT OF PURPOSE

In this document, applicants should explain why they want to pursue further education in Mechanical Engineering and discuss which UW faculty members they would be interested in doing research with during their graduate study (see the Graduate School for  more advice on how to structure a personal statement ).

Upload your resume in your application.

THREE LETTERS OF RECOMMENDATION

These letters are required from people who can accurately judge the applicant's academic, research, and/or work performance. Letters of recommendation are submitted electronically to graduate programs through the online application. See the  Graduate School for FAQs  regarding letters of recommendation. Letters of recommendation are due by the deadline listed above. 

ENGLISH PROFICIENCY SCORE 

Every applicant whose native language is not English, or whose undergraduate instruction was not in English, must provide an English proficiency test score. The UW-Madison Graduate School accepts TOEFL or IETLS scores. Your score will not be accepted if it is more than two years old from the start of your admission term. Country of citizenship does not exempt applicants from this requirement. Language of instruction at the college or university level and how recent the language instruction was taken are the determining factors in meeting this requirement.

For more information regarding minimum score requirements and exemption policy, please see the Graduate School Requirements for Admission .

APPLICATION FEE

Submission must be accompanied by the one-time application fee. It is non-refundable and can be paid by credit card (MasterCard or Visa) or debit/ATM. Information about the application fee may be found here (scroll to the ‘Frequently asked questions).

Fee grants are available through the conditions  outlined here by the Graduate School . Applicants who do not qualify for a fee grant as explained above, may seek out a Mechanical Engineering faculty advisor and discuss the fee grant option with that individual. If the faculty advisor is able and willing to pay the application fee for the applicant, the faculty advisor should contact the ME Associate Chair for Graduate Studies or the ME Graduate Admissions Team for assistance. 

If you have questions, please contact  [email protected] .

RE-ENTRY ADMISSIONS

If you were previously enrolled as a graduate student in the Department of Mechanical Engineering, have not earned your degree, but have had a break in enrollment for a minimum of a fall or spring term, you will need to re-apply to resume your studies. Please review the Graduate School requirements for previously enrolled students . Your previous faculty advisor (or another ME faculty advisor) must be willing to supply advising support and should e-mail the ME Graduate Student Services Coordinator regarding next steps in the process.

If you were previously enrolled in a UW-Madison graduate degree, completed that degree, have had a break in enrollment since earning the degree and would now like to apply for another UW-Madison program; you are required to submit a new student application through the UW-Madison Graduate School online application. For ME graduate programs, you must follow the entire application process as described above.

CURRENTLY ENROLLED GRADUATE STUDENT ADMISSIONS

Students currently enrolled as a graduate student at UW-Madison, whether in ME or a non-ME graduate program, wishing to apply to this degree program should contact the ME Graduate Admissions Team to inquire about the process and deadlines several months in advance of the anticipated enrollment term. Current students may apply to change or add programs for any term (fall, spring, or summer).

Graduate School Resources

Resources to help you afford graduate study might include assistantships, fellowships, traineeships, and financial aid.  Further funding information is available from the Graduate School. Be sure to check with your program for individual policies and restrictions related to funding.

Program Resources

There are three mechanisms for Graduate Student funding through the university for Mechanical Engineering Ph.D. students:

  • Fellowships
  • Graduate assistantships: project assistantships, teaching assistantships, and research assistantships
  • Traineeships

Funding is awarded based on the qualifications of the student, the number of applicants, the amount of available funding, and the number of continuing students receiving support. You can apply for funding for research assistantships by contacting individual faculty members directly. Please check our  website  to look for faculty (only those listed with titles of assistant professor, associate professor, or professor can serve as graduate student advisors). Search for faculty who have research interests that align closely with your own by viewing faculty directory entries, visiting the faculty’s website (linked from the directory page), and reviewing publications by the faculty member. Once you have identified faculty with interests close to your own, you are encouraged to contact them by email to inquire regarding available research assistant positions. The admissions office does not know if a particular professor has research assistant positions available.

Students who apply to the department will be automatically considered for fellowship opportunities within the department. Admitted students will be eligible to apply for Teaching Assistantship positions. More information, including the application, will be available to students after admission is complete.

ADDITIONAL RESOURCES

Federal loans.

Students who are U.S. citizens or permanent residents may be eligible to receive some level of funding through the federal direct loan program. These loans are available to qualified graduate students who are taking at least 4 credits during the fall and spring semesters, and 2 credits during summer. Private loans are also available. Learn more about financial aid at  their website . 

INTERNATIONAL STUDENT SERVICES FUNDING AND SCHOLARSHIPS

For information on International Student Funding and Scholarships visit the ISS  website .

Minimum Graduate School Requirements

Major requirements.

Review the Graduate School minimum academic progress and degree requirements , in addition to the program requirements listed below.

MODE OF INSTRUCTION

Mode of instruction definitions.

Accelerated: Accelerated programs are offered at a fast pace that condenses the time to completion. Students typically take enough credits aimed at completing the program in a year or two.

Evening/Weekend: ​Courses meet on the UW–Madison campus only in evenings and/or on weekends to accommodate typical business schedules.  Students have the advantages of face-to-face courses with the flexibility to keep work and other life commitments.

Face-to-Face: Courses typically meet during weekdays on the UW-Madison Campus.

Hybrid: These programs combine face-to-face and online learning formats.  Contact the program for more specific information.

Online: These programs are offered 100% online.  Some programs may require an on-campus orientation or residency experience, but the courses will be facilitated in an online format.

CURRICULAR REQUIREMENTS

Required courses.

Two semesters of  M E 903 Graduate Seminar  are required.  These should be taken the first two semester the student is in residence.  If an M.S. degree is received at UW–Madison, additional M E 903 credits are not required.

A minimum of 42 formal course credits beyond the B.S. degree. This includes a minimum of 15 credits (usually five courses) numbered 700 or higher (excluding M E 964 Special Advanced Topics in Mechanical Engineering courses unless specifically approved). 12 credits (usually four courses) numbered 700 and above must be taken at UW–Madison. A minimum of 6 credits (usually two courses) numbered 700 and above must be in Mechanical Engineering (M E) and/or Engineering Mechanics (E M A) taken at UW–Madison. A minimum of one (3 or more - credit) math course. The following courses would satisfy the math course requirement:

Acceptable courses for the remainder of the required 42 formal course credits (this total includes the courses taken for the PhD breadth requirement) are those numbered 400 and above. Up to two 300 and above courses in engineering, math, or the sciences taken at UW-Madison can also be used towards the formal course credit requirement. The 300 and above courses can be from Mechanical Engineering and/or Engineering Mechanics if approved by the student's advisor and the ME graduate committee. 

Minimum of 18 thesis credits ( M E 790 Master's Research and Thesis ,  M E 890 PhD Research and Thesis ,  M E 990 Dissertator Research and Thesis ) are required with an overall grade of S.

Graduate School Policies

The  Graduate School’s Academic Policies and Procedures  provide essential information regarding general university policies. Program authority to set degree policies beyond the minimum required by the Graduate School lies with the degree program faculty. Policies set by the academic degree program can be found below.

Major-Specific Policies

Prior coursework, graduate work from other institutions.

With program approval, students are allowed to count up to 24 credits of graduate coursework from other institutions toward the minimum graduate degree credit requirement and the minimum graduate coursework (50%) requirement. No credits from other institutions can be counted toward the minimum graduate residence credit requirement. Coursework earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements.

UW–Madison Undergraduate

Up to 7 credits numbered 400 or above can be counted toward the minimum graduate degree credit requirement. These credits may be counted toward the minimum graduate coursework (50%) requirement if they are from courses numbered 700 or above. No credits can be counted toward the minimum graduate residence credit requirement.  A course number in the 300s can only be transferred from a UW-Madison undergraduate program if it was taken as a technical elective (i.e., non-required course). Coursework earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements. 

UW–Madison University Special

With program approval, students are allowed to count up to 15 credits of coursework numbered 400 or above taken as a UW–Madison Special student toward the minimum graduate residence credit requirement and the minimum graduate degree credit requirement.  These credits may be counted toward the minimum graduate coursework (50%) requirement if they are in courses numbered 700 or above. Coursework earned ten years or more prior to admission to a doctoral degree is not allowed to satisfy requirements.

This program follows the Graduate School's Probation policy , except that a semester GPA below 3.25 will result in the student being placed on academic probation. If a semester GPA of 3.25 is not attained during the subsequent semester of full time enrollment (or 12 credits of enrollment if enrolled part-time), this will be deemed unsatisfactory progress and the student may be dismissed from the program or allowed to continue for one additional semester based on advisor appeal to the department.

ADVISOR / COMMITTEE

All students must have a mechanical engineering faculty advisor who assists them in planning a course sequence that meets degree requirements, who helps guide them and mentor them in their research, and who will discuss career objectives with the student.

A qualifying exam committee must include the student’s mechanical engineering faculty advisor and two other mechanical engineering faculty members.

A preliminary exam committee must include the student’s mechanical engineering faculty advisor and at least three other members who will also serve on the final oral defense committee.

A final dissertation oral exam (defense) must be presented to the dissertation committee of at least five members (but no more than eight) consisting of your advisor, who chairs the committee, three other graduate faculty or former graduate faculty up to one year after resignation or retirement, and one of the following: another graduate faculty, a retired faculty member with emeritus status, or a UW–Madison academic staff member who has been approved by the Mechanical Engineering executive committee. At least one faculty member on the committee must be from outside the Mechanical Engineering Department. Members of the committee from outside of Mechanical Engineering should be selected to have a background appropriate to evaluate the dissertation.

CREDITS PER TERM ALLOWED

Time limits.

Qualifying Exam:  The written portion of the qualifying exam is offered twice a year, once in August/September and once in January, generally the week before classes start. The associated literature review presentation must be completed within the timing limits stated above. 1. If you enter the PhD program directly without an MS or equivalent degree, you will first earn 30 graduate credits. Take your qualifying exam either the first or second time that it is offered after the semester in which you earn those 30 credits. 2. If you earn a UW–Madison Mechanical Engineering MS and immediately enter the PhD program in the following semester, take your qualifying exam either the first or second time it is offered after the semester in which you earned your MS. 3. If you enter the PhD program with an MS degree either from another department or institution, or are returning to UW–Madison with an MS degree after an absence, take the exam at the start of your third PhD semester

Preliminary Exam:  Ph.D. students must complete their preliminary exam within five years of passing their qualifying exam.

Dissertation Defense (oral thesis presentation):  There must be at least nine (9) months between the preliminary exam and dissertation defense. 

A candidate for a doctoral degree who fails to successfully complete the dissertation   defense and deposit the dissertation within five years after passing the preliminary examination may be required to take another preliminary examination to be admitted to candidacy a second time.

Grievances and Appeals

These resources may be helpful in addressing your concerns:

  • Bias or Hate Reporting  
  • Graduate Assistantship Policies and Procedures
  • Office of the Provost for Faculty and Staff Affairs
  • Dean of Students Office (for all students to seek grievance assistance and support)
  • Employee Assistance (for personal counseling and workplace consultation around communication and conflict involving graduate assistants and other employees, post-doctoral students, faculty and staff)
  • Employee Disability Resource Office (for qualified employees or applicants with disabilities to have equal employment opportunities)
  • Graduate School (for informal advice at any level of review and for official appeals of program/departmental or school/college grievance decisions)
  • Office of Compliance (for class harassment and discrimination, including sexual harassment and sexual violence)
  • Office of Student Conduct and Community Standards (for conflicts involving students)
  • Ombuds Office for Faculty and Staff (for employed graduate students and post-docs, as well as faculty and staff)
  • Title IX (for concerns about discrimination)

Mechanical Engineering Grievance Procedures

If a student feels unfairly treated or aggrieved by faculty, staff, or another student, the University offers several avenues to resolve the grievance. Students’ concerns about unfair treatment are best handled directly with the person responsible for the objectionable action. If the student is uncomfortable making direct contact with the individual(s) involved, they should contact the advisor or the person in charge of the unit where the action occurred (program or department chair, section chair, lab manager, etc.). Many departments and schools/colleges have established specific procedures for handling such situations; check their web pages and published handbooks for information. If such procedures exist at the local level, these should be investigated first. For more information see the Graduate School Academic Policies & Procedures: https://grad.wisc.edu/acadpolicy/?policy=grievancesandappeals . The Assistant Dean for Graduate Affairs ( [email protected] ) provides overall leadership for graduate education in the College of Engineering (CoE), and is a point of contact for graduate students who have concerns about education, mentoring, research, or other difficulties.

The student is encouraged to speak first with the person toward whom the grievance is directed to see if a situation can be resolved at this level.

Should a satisfactory resolution not be achieved, the student should contact the  Associate Chair for Graduate Studies or the John Bollinger Chair of Mechanical Engineering  to discuss the grievance. The Associate Chair for Graduate Studies or Department Chair will facilitate problem resolution through informal channels and facilitate any complaints or issues of students. The first attempt is to help students informally address the grievance prior to any formal complaint. Students are also encouraged to talk with their faculty advisors regarding concerns or difficulties if necessary. University resources for sexual harassment, discrimination, disability accommodations, and other related concerns can be found on the UW Office of Compliance website . Other campus resources can be found above. 

If the issue is not resolved to the student’s satisfaction the student can submit the grievance to the Associate Chair for Graduate Studies in writing, within 60 calendar days of the alleged unfair treatment.

On receipt of a written complaint, a faculty committee will be convened by the Associate Chair for Graduate Studies to manage the grievance. The faculty committee will obtain a written response from the person toward whom the complaint is directed. This response will be shared with the person filing the grievance.

The faculty committee will determine a decision regarding the grievance. The Associate Chair for Graduate Studies will report on the action taken by the committee in writing to both the student and the party toward whom the complaint was directed within 15 working days from the date the complaint was received.

At this point, if either party (the student or the person toward whom the grievance is directed) is unsatisfied with the decision of the faculty committee, the party may file a written appeal. Either party has 10 working days to file a written appeal to the School/College.

Documentation of the grievance will be stored for at least 7 years. Significant grievances that set a precedent will be stored indefinitely.

The Graduate School has procedures for students wishing to appeal a grievance decision made at the school/college level. These policies are described in the Graduate School’s Academic Policies & Procedures: https://grad.wisc.edu/acadpolicy/?policy=grievancesandappeals .

Take advantage of the Graduate School's  professional development resources to build skills, thrive academically, and launch your career. 

  • Demonstrate an extraordinary, deep understanding of mathematical, scientific, and engineering principles in the field.
  • Demonstrate an ability to formulate, analyze, and independently solve advanced engineering problems.
  • Apply the relevant scientific and technological advancements, techniques, and engineering tools to address these problems.
  • Recognize and apply principles of ethical and professional conduct.
  • Demonstrate an ability to synthesize knowledge from a subset of the biological, physical, and/or social sciences to help frame problems critical to the future of their discipline.
  • Demonstrate an ability to conduct original research and communicate it to their peers.

ASSOCIATE PROFESSORS

Assistant professors, see also  mechanical engineering faculty directory ..

  • Requirements
  • Professional Development
  • Learning Outcomes

Contact Information

Mechanical Engineering College of Engineering 2107 Mechanical Engineering Building 1513 University Ave., Madison, WI 53706 Department of Mechanical Engineering

Graduate Student Services [email protected] 3182 Mechanical Engineering Building 1513 University Ave., Madison

Associate Chair for Graduate Studies [email protected]

Graduate Program Handbook View Here

Graduate School grad.wisc.edu

  • /​pdf/​
  • Explore Graduate Opportunities
  • Explore UW-​Madison's Undergraduate Opportunities
  • Accounting and Information Systems
  • African American Studies
  • African Cultural Studies
  • Agricultural and Applied Economics
  • Agricultural and Life Sciences -​ College-​Wide
  • Animal and Dairy Sciences
  • Anthropology
  • Art History
  • Asian Languages and Cultures
  • Atmospheric and Oceanic Sciences
  • Bacteriology
  • Biochemistry
  • Biological Systems Engineering
  • Biomedical Engineering
  • Biostatistics and Medical Informatics
  • Business -​ School-​Wide
  • Cell and Regenerative Biology
  • Chemical and Biological Engineering
  • Chicana/​o and Latina/​o Studies
  • Civil and Environmental Engineering
  • Civil Society &​ Community Studies
  • Classical and Ancient Near Eastern Studies
  • Communication Arts
  • Communication Sciences and Disorders
  • Community and Environmental Sociology
  • Computer Sciences
  • Counseling Psychology
  • Curriculum and Instruction
  • Educational Leadership and Policy Analysis
  • Educational Policy Studies
  • Educational Psychology
  • Electrical and Computer Engineering
  • Engineering -​ College-​Wide
  • Food Science
  • Forest and Wildlife Ecology
  • French and Italian
  • Gaylord Nelson Institute for Environmental Studies
  • Gender and Women's Studies
  • German, Nordic, and Slavic
  • Graduate -​ School-​Wide
  • Horticulture
  • Human Ecology -​ School-​Wide
  • Industrial and Systems Engineering
  • Information School
  • Institute for Clinical and Translational Research
  • Institute for Regional and International Studies
  • Integrative Biology
  • Journalism and Mass Communication
  • Kinesiology
  • La Follette School of Public Affairs
  • Language Institute
  • Language Sciences
  • Law -​ School-​Wide
  • Life Sciences Communication
  • Management and Human Resources
  • Materials Science and Engineering
  • Mathematics
  • Mead Witter School of Music
  • Engineering Mechanics, Doctoral Minor
  • Engineering Mechanics, M.S.
  • Engineering Mechanics, Ph.D.
  • Mechanical Engineering, Doctoral Minor
  • Mechanical Engineering, M.S.
  • Medical Physics
  • Medicine and Public Health -​ School-​Wide
  • Nuclear Engineering and Engineering Physics
  • Nursing -​ School-​Wide
  • Nutritional Sciences
  • Operations and Information Management
  • Pharmacy -​ School-​Wide
  • Planning and Landscape Architecture
  • Plant Pathology
  • Political Science
  • Population Health Sciences
  • Real Estate and Urban Land Economics
  • Rehabilitation Psychology and Special Education
  • Religious Studies
  • Risk and Insurance
  • Sandra Rosenbaum School of Social Work
  • Soil Science
  • Spanish and Portuguese
  • Veterinary Medicine -​ School-​Wide
  • Nondegree/​Visiting Student Guide
  • Pharmacy Guide
  • School of Medicine and Public Health Guide
  • Undergraduate Guide
  • Veterinary Guide

Your browser is unsupported

We recommend using the latest version of IE11, Edge, Chrome, Firefox or Safari.

Mechanical and Industrial Engineering

College of engineering, phd dissertations, acc heading link copy link.

George W. Woodruff School of Mechanical Engineering

Phd degree program.

Requirements for the various PhD degree programs, degree checklist, and information on: advising, qualifying exams, seminars, teaching practicum, dissertation, deadlines, and applying to graduate.

Degree Requirements

Select your degree below to view the minimum course credit-hour requirements (PDF):

  • Doctor of Philosophy in Mechanical Engineering
  • Doctor of Philosophy in Mechanical Engineering-Georgia Tech & Seoul National University Joint Program
  • Doctor of Philosophy in Nuclear Engineering
  • Doctor of Philosophy in Robotics
  • Doctor of Philosophy in Bioengineering

Student Resources

Phd advising.

All new GRA's and GTA's must participate in the thesis advisor selection process during the first month of their first semester in the Woodruff School.

All Ph.D. students must register for Seminar 8014  (2 credit hours- no letter grade- attend at least 22 seminars).

PhD Proposal

The objective of the Ph.D. Proposal is to allow an early assessment of your chosen topic of research for the satisfactory completion of the doctoral degree.

PhD Deadlines

Thesis deadlines are firm, and if you don't submit yours by the deadline, your graduation may be delayed. Here are a few things to keep in mind when it comes to submitting theses or dissertations.

PhD Qualifying Examination

The qualifying examination provides an early assessment of your potential to satisfactorily complete the requirements for the doctoral degree.

Teaching Practicum

All Woodruff School Ph.D. students are required to complete three semester hours of Teaching Practicum (ME/NRE 7757) during the course of their doctoral studies.

PhD Dissertation

All PhD students at the Woodruff School should review the following requirements and guidelines to prepare for their dissertation.

Apply to Graduate

On-line Application for Graduation Instructions.

Skip to Content

graduate student adjusting air quality tubes

PhD in Mechanical Engineering

The primary objective of the PhD degree program is to educate students to the highest levels of their chosen field to enable them to make lasting impacts to fundamental knowledge, technology, and society through research. PhD students are expected to become domain experts and complete research that can withstand the rigorous test of external peer review.

We offer funding to all PhD applicants whom we admit. Our department anticipates extending full funding to about 70 Fall 2024 PhD applicants. Funding includes:

  • a graduate student salary,
  • tuition remission,
  • mandatory student fees, and
  • 91% health insurance coverage.

In your first year, you will be funded by the department as a Teaching Assistant (TA) for one semester and as a Research Assistant (RA) for the other semester, which enables you to find a research lab and to practice working in a classroom setting. Faculty with alternate sources of funding may petition the department to waive the TA requirement for first year students in their lab. In your second year and beyond, you will be funded by a research advisor as an RA or through other fellowships, pending reasonable research progress and academic performance. If your research advisor has a funding gap, they can apply to the department for gap funding. This way, students have a safety net so that they can continue to be funded throughout their PhD program.

For information about applying to the PhD program, please visit  PhD Admission  or email [email protected] .

PhD Degree Overview

  • Research Focus Areas
  • PhD Curriculum
  • Application Deadlines

At the time of application, PhD students choose from  seven focus areas  to guide their selection of courses and research. Within each area, PhD students have access to top experts in their field and conduct research that has direct impact on human health and safety, the environment, and technology development. They work alongside and learn directly from faculty members doing both fundamental and applied research that harnesses state-of-the-art experimental, theoretical, and computational approaches to expand the frontiers of technology in the following areas:

  • Air Quality
  • Mechanics of Materials
  • Micro/Nanoscale
  • Robotics and Systems Design
  • Thermo Fluid Sciences

Please review our  Research Overview Slides  for a quick look at faculty members and their unique capabilities and areas of expertise. 

Research Overview Slides

PhD Courses Requirement

PhD students must complete a minimum of 30 graduate-level credits at the 5000 level or higher. Of these 30 credits, at least nine must be mechanical engineering department courses. All PhD students are required to take the following courses:

  • MCEN 5020: Methods of Engineering Analysis (3 credits)
  • MCEN 5030: Introduction to Research (3 credits)

Note: Some faculty research advisors will require that their students complete more than 30 course credits. The department recommends that students consult with both their graduate program advisor and faculty research advisor for guidance on coursework recommendations or requirements.

Mathematical Proficiency Requirement

All PhD students are required to take MCEN 5020 Methods of Engineering Analysis and to pass with a grade of B- or higher. Students receiving a grade below B- in MCEN 5020 must retake the course. PhD students will not be able to advance to post-prelim status until the mathematical proficiency requirement has been completed. Failure to complete this requirement by the end of the second year of the PhD may result in removal from the PhD program.

Dissertation Hour Requirement

​In addition to coursework, you are required to complete 30 dissertation hours. Students are not able to register for thesis credits on their own and should schedule an appointment with their graduate advisor to be registered. Students must continuously enroll in five dissertation credits in the semesters following passing the comprehensive exam.

Fundamental Topics Preliminary Exam

All PhD students must successfully pass the fundamental topics preliminary exam , which is intended to assess the potential to successfully complete a PhD in mechanical engineering. It is designed to evaluate analytical skills, appraise knowledge of mechanical engineering fundamentals, and to gauge potential for creative independent research. The exam requires students to consolidate their grasp of the fundamentals of mechanical engineering and to demonstrate an aptitude for communicating knowledge during an oral presentation. The content of the examination reflects consensus across the department faculty. The examination is administered by the Graduate Committee, acting on behalf of the entire faculty.

Research Preliminary Exam

The research preliminary exam is an oral presentation of research to a committee of three that must include a PhD student’s research advisor and at least one other faculty member from mechanical engineering. Students should view this as an early thesis proposal. At least one week prior to the exam, students must send a 250-word presentation abstract, including title and any relevant references, to all committee members. 

Comprehensive Examination

Students must complete a comprehensive exam between 6 and 12 months prior to defending their PhD dissertations. At the time of the comprehensive exam, the dissertation committee will be formed and given preliminary approval by the Department and Graduate School. A mechanical engineering PhD degree requires depth of knowledge in the dissertation/research area, as well as breadth of knowledge across the mechanical engineering curriculum. Consequently, the comprehensive exam is designed to test student knowledge of their proposed research area, and any general knowledge in the field. It is also intended to evaluate whether a student’s proposed research project is original and creative work, whether it will make a significant impact in the field, and whether it will qualify for publication in quality peer-reviewed journals. The exam is also an opportunity to demonstrate an ability to present scientific concepts orally. In short, the comprehensive exam serves as the gateway to the next phase of the doctoral program: completion of a dissertation.

Written Dissertation

The written dissertation must comply with Graduate School rules and procedures in terms of format and submission. The dissertation title appears on official university transcripts and must be submitted to the Graduate School in addition to the physical signature page from the dissertation. Students are also required to submit the full written dissertation electronically at the ProQuest website .

  • Dissertation Defense

Before completion of the PhD degree, students must have their dissertation accepted for defense by the review committee. The dissertation defense may occur before or after the final electronic submission of the written dissertation to the Graduate School, but must take place prior to the end of the final semester of enrollment. Students must then pass a dissertation defense, which is a final examination on the dissertation and related topics. In the defense, students are expected to explain their research clearly and concisely, and to discuss how it relates to other research in the field. This is an opportunity for recognition of completed doctoral work. It is also an opportunity for discussion and formal evaluation of the dissertation.

We accept PhD applications from applicants not currently enrolled at CU Boulder for the  fall term only . To receive full consideration, please submit all application items by the following deadlines:

  • International applicant deadline:  December 1  by 10:00 p.m. MST
  • Domestic applicant deadline:  December 15  by 10:00 p.m. MST

In limited cases, external PhD applications may be accepted and reviewed for the spring semester. Typically, these applicants are transfer students who have already identified a CU PhD advisor. In such instances, the graduate advising team should be consulted at  [email protected]  prior to applying. Applicants in this scenario should plan to ensure the submission of all required application documents as soon as possible and no later than one month prior to the anticipated semester of beginning their studies at CU Boulder.

What should be in my application? | Paul M. Rady Mechanical Engineering | University of Colorado Boulder

Learn About our Faculty

  • Traits Faculty Value in Prospective PhD Students
  • Innovation, Industry, and Research Collaborations
  • Learn More about Faculty Research

When surveyed, faculty shared that the following traits are valuable in prospective PhD students: 

  • Interest in hands-on learning
  • Enthusiasm and grit
  • Research experience
  • Creativity and independence
  • Intellectual curiosity
  • Dependability
  • Willingness to try new things
  • Work experience is a plus
  • Publications are a bonus
  • Dedication to lab goals
  • Ability to connect past knowledge with new areas of inquiry
  • Understanding how the science we generate in our research is relevant for policy and how it readily impacts local communities

Venture Partners at CU Boulder  notes that the University of Colorado has ranked fifth for startup creation , according to the latest report by the Association of University Technology Manager (AUTM).

The National Academy of Inventors (NAI)  has ranked  the CU system 14th among the “Top 100” institutions nationwide for recent patent activity. 

Boulder is also home to a variety of well-known companies and labs doing research and development. Our faculty researchers and their research groups regularly collaborate with scientists at federal research labs that are located in the Boulder/Denver area, including the following:

  • National Center for Atmospheric Research (NCAR)
  • National Institute for Standards and Technology (NIST)
  • National Oceanic and Atmospheric Administration (NOAA)
  • National Renewable Energy Laboratory (NREL)

When surveyed, mechanical engineering research faculty indicated the following level of industry involvement throughout their academic careers:

You can also watch a comprehensive overview of the research happening in our department, presented by our faculty:

  • Research in Air Quality and Thermofluids
  • Research in Biomedical, Robotics, and Design
  • Research in Materials, Mechanics, and MicroNano

Frequently Asked Questions

  • Is a PhD in mechanical engineering worth it?
  • What can I do with a PhD in mechanical engineering?
  • Why pursue a PhD in mechanical engineering versus a specific engineering program?
  • What differentiates CU Boulder's mechanical engineering program from others?
  • How long will it take to get my degree?
  • What are current students saying about the program?
  • What are alumni saying about the program?

Yes! Graduates conduct impactful research with a direct influence on human health, safety, environmental sustainability, and technological advancement. The program prioritizes cutting-edge tier-one research, supported by state-of-the-art facilities. CU Boulder's top-ranked mechanical engineering programs provide guidance through research and teaching assistantships, fostering a collaborative environment. The diverse research focus areas and the opportunity to engage with field experts make pursuing a PhD in mechanical engineering at CU Boulder rewarding and impactful.

Mechanical engineers holding a PhD enjoy a spectrum of possibilities. They can pioneer startups derived from their research, secure patents for groundbreaking technologies, conduct research in national labs and diverse industries, engage in teaching roles, or work globally in prestigious research institutes.

We surveyed faculty members to gain insights into the diverse career trajectories of mechanical engineering PhD graduates. The resulting data presents an approximate distribution of pursuits among our PhD graduates:

Academia: 28.9% Industry R&D: 38.5% Consulting: 6.7% Nonprofits: 5.7% National Labs: 15.8% Their own start-ups: 4.0% Other: 0.6%

Prospective students are encouraged to connect with faculty for in-depth insights and explore unique program opportunities.

A PhD in mechanical engineering offers versatility in the job market, enabling professionals to work in renewable energy, biomechanics, air quality, robotics, project management, construction, and more. Choosing mechanical engineering allows exploration across multiple areas of interest, facilitating interdisciplinary research and collaboration. It can be a practical choice for individuals transitioning from related backgrounds, providing flexibility in research focus and professional outcomes.

Our program fosters adaptability, empowering students for various career paths—academia, industry research, consulting, nonprofits, national laboratories, startups, and more. CU Boulder's Mechanical Engineering provides a strong foundation for diverse and fulfilling career journeys.

Additionally, our program stands out for its diverse class offerings that align with individual interests and goals. The program emphasizes collaboration, offering numerous avenues for students to work with different lab groups, industries, and national labs. This collaborative environment enhances research opportunities and post-graduation prospects. 

We also cultivate a strong sense of community among our graduate students. PhD students gather on a regular basis for community events such as the fall picnic, heritage feast, spring picnic, a summer Pride event, and coffee hours. Our students have advocated for emergency funds for students and have also launched an active K-12 outreach program. Additionally, PhD students have impacted graduate program decision-making and policies by having representation and a voice on the graduate committee.

A PhD student entering without prior graduate coursework will typically take five years to complete the PhD degree. However, it is not uncommon for students to finish both earlier and later than this five-year average. A student entering the PhD program with prior graduate coursework from another university may be eligible to transfer up to 21 credit hours to CU and may be finish in about four years. Regardless of the time taken to complete the PhD, the primary emphasis is on remaining at CU Boulder long enough to complete high-quality research that satisfies the requirements of the PhD dissertation and defense. 

What do mechanical engineers with a PhD do?

  • One of the coolest things about getting a PhD in mechanical engineering is that you can choose to go into almost any field! Some PhD students will spin a startup company off their research ideas; some will patent new technologies, and some will teach in lecture halls with over 300 students. There is no limit to the opportunities available to you with a PhD in mechanical engineering. - Liv F.
  • Mechanical engineers can do all sorts of different things. I have PhD friends who are working on diagnostic blood testing, others studying human motion and prosthetics, and others studying atmospheric science and laser systems. I work at the confluence of robotics, AI, and neuroscience. - Gene R.

​Why mechanical engineering versus a specific program?

 Mechanical engineering is a great degree because you can use it to work in many different fields. Whether you are interested in renewable energy, biomechanics, air quality, robotics, project management, construction, or a number of other things, you’ll be able to pursue a career in those fields using your knowledge and background in mechanical engineering. - Liv F.

I chose mechanical engineering because it was easier for me to continue that course (my BS and MS were in ME) and get accepted into an ME program than CS, for example. -Gene R.

What differentiates CU Boulder’s mechanical engineering program from others?

  • I think one of the great things about the CU mechanical engineering program is the variety of classes that are offered; you can almost always find a class that aligns well with your interests and goals. -Liv F.
  • We have a lot of collaboration within the department, and across departments, relative to other schools. - Gene R.
  • I am using my degree as an excuse to move to a different country and work at a massive research institute called Max Planck! The world seems one degree smaller within the research realm and it makes it so much easier to make connections around the world/ work with a variety of different people. - Vani S.
  • There are several options for PhDs. Common paths are to pursue a career in academia, secure a role in industry or government lab, or create a startup to commercialize your research. I chose to pursue the 3rd option and co-founded a company with several other people from our lab. It’s been a great experience and opportunity. Like a PhD, this path is full of new challenges and opportunities to grow. - Eric A.

ME is perfect for the individual who likes to dip into multiple different areas of interest. I gravitated toward the ME program because I had a biomechanics background, but I wanted to become more knowledgeable in robotics. By not doing a specific program, I was able to explore both fields through my research and work with people who specialized in both robotics and biomechanics. - Vani S. 

Mechanical engineering is interesting because it’s so broad and deals with many different topics. There are always new things to learn and opportunities to synthesize knowledge from different disciplines. I really enjoy the physical and tangible aspects of mechanical engineering, which is why I studied soft robotics and actuators. - Eric A.

  • There are many different avenues for collaboration when completing a PhD at CU Boulder. I worked with five different lab groups during my graduate career, and I was able to complete a 7-month internship with Meta one year prior to my defense. Several students in my year were able to work with other industries and national labs to complete their research, many of whom hired the students post-graduation. Vani S.
  • Generally, location and opportunities for outdoor recreation are a big differentiator for CU Boulder. Academically, the mechanical engineering program offers unique opportunities. Robotics and soft materials are rapidly growing disciplines. The department has recruited key faculty in this area, and there are opportunities to collaborate with other departments, such as computer science, electrical engineering, and aerospace. You also have access to several resources that will help you commercialize your research if you’re interested in starting a business. CU Boulder actually has one of the highest rates for startup creation in the nation. There are many resources through the College of Engineering and Applied Sciences, Leeds School of Business, and Venture Partners to help you pursue that path. - Eric Ac.

faculty advisor in lab

  • Academic Advising & Administration

lasers

  • PhD Focus Areas

courses

  • Elective Courses

forms and handbooks

  • Forms and Handbooks

lab microscope

  • Funding and Fellowships
  • Share via Facebook
  • Share via Twitter
  • Share via LinkedIn
  • Undergraduate Program
  • MS Programs
  • Preliminary Exams
  • Comprehensive Exam
  • Design Center Colorado
  • Professional Development
  • Educational Facilities
  • Partnership Programs
  • Graduation Information

Graduate Program Mission

We establish an environment of respect and inclusive excellence where high-quality instruction, project-based learning and cutting-edge research are leveraged to educate and nurture the next generation of socially conscious, deeply knowledgeable engineers, scientists and problem-solvers. 

Want to know more? Contact us.

Spring 2022 FAQs

Graduate Program Handbook

PhD Program Admissions

Graduates Apply Now

Apply   Visit   Give

Departments

  • Ann and H.J. Smead Aerospace Engineering Sciences
  • Chemical & Biological Engineering
  • Civil, Environmental & Architectural Engineering
  • Computer Science
  • Electrical, Computer & Energy Engineering
  • Paul M. Rady Mechanical Engineering
  • Applied Mathematics
  • Biomedical Engineering
  • Creative Technology & Design
  • Engineering Education
  • Engineering Management
  • Engineering Physics
  • Integrated Design Engineering
  • Environmental Engineering
  • Materials Science & Engineering

Affiliates & Partners

  • ATLAS Institute
  • BOLD Center
  • Colorado Mesa University
  • Colorado Space Grant Consortium
  • Discovery Learning
  • Engineering Honors
  • Engineering Leadership
  • Entrepreneurship
  • Herbst Program for Engineering, Ethics & Society
  • Integrated Teaching and Learning
  • Global Engineering
  • National Center for Women & Information Technology
  • Mortenson Center for Global Engineering
  • Western Colorado University

News alert: UC Berkeley has announced its next university librarian

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Mechanical engineering: dissertations & theses.

  • Books + Ebooks
  • Dissertations & Theses
  • Materials Properties & Selection
  • Services + Help

Kresge Engineering Library closed until 2025

The Kresge Engineering Library is temporarily closed due to the Bechtel Engineering Center renovation. We plan to re-open in 2025 when the new Engineering Student Center opens its doors.

Read about the closure here .

Questions? Send us a message and one of our engineering librarians will reach out. 

Dissertations and Theses

Dissertations Online

UCB access only

UC Berkeley Dissertations 

For online access to dissertations published since 1997, see Proquest link above. To locate dissertations from a specific UC Berkeley department, search  UC Library Search  for the keywords berkeley dissertations <department name>.

Example: berkeley dissertations molecular and cell biology

  • << Previous: Books + Ebooks
  • Next: Materials Properties & Selection >>
  • Last Updated: Feb 17, 2024 11:58 AM
  • URL: https://guides.lib.berkeley.edu/mechanical-engineering

ScholarWorks@UMass Amherst

Home > Engineering > MIE > ME_THESES

Mechanical and Industrial Engineering

Mechanical Engineering Masters Theses Collection

Theses from 2024 2024.

TECHNICAL EVALUATION OF FLOATING OFFSHORE WIND PLANTS AND INSTALLATION OPERATIONS , CENGIZHAN CENGIZ, Mechanical Engineering

Heat Transfer Enhacement of Latent Heat Thermal Enery Storage , Joe Hatem T. Saba, Mechanical Engineering

Theses from 2023 2023

Device Design for Inducing Aneurysm-Susceptible Flow Conditions Onto Endothelial Cells , hans f. foelsche, Mechanical Engineering

Thermal Conductivity and Mechanical Properties of Interlayer-Bonded Graphene Bilayers , Afnan Mostafa, Mechanical Engineering

Wind-Wave Misalignment Effects on Multiline Anchor Systems for Floating Offshore Wind Turbines , Doron T. Rose, Mechanical Engineering

Theses from 2022 2022

A Simplified Fluid Dynamics Model of Ultrafiltration , Christopher Cardimino, Mechanical Engineering

Local Nanomechanical Variations of Cold-sprayed Tantalum Coatings , Dhrubajyoti Chowdhury, Mechanical Engineering

Aerodynamically Augmented Air-Hockey Pucks , Madhukar Prasad, Mechanical Engineering

Analysis of Low-Induction Rotors for Increased Power Production , Jack E. Rees, Mechanical Engineering

Application of the New IEC International Design Standard for Offshore Wind Turbines to a Reference Site in the Massachusetts Offshore Wind Energy Area , Samuel C. Roach, Mechanical Engineering

Applications of Thermal Energy Storage with Electrified Heating and Cooling , Erich Ryan, Mechanical Engineering

Theses from 2021 2021

Design and Testing of a Foundation Raised Oscillating Surge Wave Energy Converter , Jacob R. Davis, Mechanical Engineering

Wind Turbine Power Production Estimation for Better Financial Agreements , Shanon Fan, Mechanical Engineering

Finite Element Analysis of Impact and Cohesion of Cold Sprayed Particles onto Non-Planar Surfaces , Zhongkui Liu, Mechanical Engineering

Mechanical Design and Analysis: High-Precision Microcontact Printhead for Roll-to-Roll Printing of Flexible Electronics , Mehdi Riza, Mechanical Engineering

Jet Breakup Dynamics of Inkjet Printing Fluids , Kashyap Sundara Rajan, Mechanical Engineering

Ground Source Heat Pumps: Considerations for Large Facilities in Massachusetts , Eric Wagner, Mechanical Engineering

Theses from 2020 2020

Modeling of Electrical Grid Systems to Evaluate Sustainable Electricity Generation in Pakistan , Muhammad Mustafa Amjad, Mechanical Engineering

A Study on Latent Thermal Energy Storage (LTES) using Phase Change Materials (PCMs) 2020 , Ritvij Dixit, Mechanical Engineering

SunDown: Model-driven Per-Panel Solar Anomaly Detection for Residential Arrays , Menghong Feng, Mechanical Engineering

Nozzle Clogging Prevention and Analysis in Cold Spray , Alden Foelsche, Mechanical Engineering

Short Term Energy Forecasting for a Microgird Load using LSTM RNN , Akhil Soman, Mechanical Engineering

Optimization of Thermal Energy Storage Sizing Using Thermodynamic Analysis , Andrew Villanueva, Mechanical Engineering

Fabrication of Binder-Free Electrodes Based on Graphene Oxide with CNT for Decrease of Resistance , Di Zhang, Mechanical Engineering

Theses from 2019 2019

Computational Fluid Dynamics Models of Electromagnetic Levitation Experiments in Reduced Gravity , Gwendolyn Bracker, Mechanical Engineering

Forecasting the Cost of Electricity Generated by Offshore Wind Turbines , Timothy Costa, Mechanical Engineering

Optical-Fiber-Based Laser-Induced Cavitation for Dynamic Mechanical Characterization of Soft Materials , Qian Feng, Mechanical Engineering

On the Fuel Spray Applications of Multi-Phase Eulerian CFD Techniques , Gabriel Lev Jacobsohn, Mechanical Engineering

Topology Network Optimization of Facility Planning and Design Problems , Ravi Ratan Raj Monga, Mechanical Engineering

The Promise of VR Headsets: Validation of a Virtual Reality Headset-Based Driving Simulator for Measuring Drivers’ Hazard Anticipation Performance , Ganesh Pai Mangalore, Mechanical Engineering

Ammonia Production from a Non-Grid Connected Floating Offshore Wind-Farm: A System-Level Techno-Economic Review , Vismay V. Parmar, Mechanical Engineering

Calculation of Scalar Isosurface Area and Applications , Kedar Prashant Shete, Mechanical Engineering

Theses from 2018 2018

Electroplating of Copper on Tungsten Powder , Richard Berdos, Mechanical Engineering

A NUMERICAL FLUTTER PREDICTOR FOR 3D AIRFOILS USING THE ONERA DYNAMIC STALL MODEL , Pieter Boersma, Mechanical Engineering

Streamwise Flow-Induced Oscillations of Bluff Bodies - The Influence of Symmetry Breaking , Tyler Gurian, Mechanical Engineering

Thermal Radiation Measurement and Development of Tunable Plasmonic Thermal Emitter Using Strain-induced Buckling in Metallic Layers , Amir Kazemi-Moridani, Mechanical Engineering

Restructuring Controllers to Accommodate Plant Nonlinearities , Kushal Sahare, Mechanical Engineering

Application and Evaluation of Lighthouse Technology for Precision Motion Capture , Soumitra Sitole, Mechanical Engineering

High Strain Rate Dynamic Response of Aluminum 6061 Micro Particles at Elevated Temperatures and Varying Oxide Thicknesses of Substrate Surface , Carmine Taglienti, Mechanical Engineering

The Effects of Mechanical Loading and Tumor Factors on Osteocyte Dendrite Formation , Wenbo Wang, Mechanical Engineering

Microenvironment Regulates Fusion of Breast Cancer Cells , Peiran Zhu, Mechanical Engineering

Design for Sustainability through a Life Cycle Assessment Conceptual Framework Integrated within Product Lifecycle Management , Renpeng Zou, Mechanical Engineering

Theses from 2017 2017

Improving the Efficiency of Wind Farm Turbines using External Airfoils , Shujaut Bader, Mechanical Engineering

Evaluation Of Impedance Control On A Powered Hip Exoskeleton , Punith condoor, Mechanical Engineering

Experimental Study on Viscoelastic Fluid-Structure Interactions , Anita Anup Dey, Mechanical Engineering

BMI, Tumor Lesion and Probability of Femur Fracture: a Probabilistic Biomechanics Approach , Zhi Gao, Mechanical Engineering

A Magnetic Resonance Compatible Knee Extension Ergometer , Youssef Jaber, Mechanical Engineering

Non-Equispaced Fast Fourier Transforms in Turbulence Simulation , Aditya M. Kulkarni, Mechanical Engineering

INCORPORATING SEASONAL WIND RESOURCE AND ELECTRICITY PRICE DATA INTO WIND FARM MICROSITING , Timothy A. Pfeiffer, Mechanical Engineering

Effects of Malformed or Absent Valves to Lymphatic Fluid Transport and Lymphedema in Vivo in Mice , Akshay S. Pujari, Mechanical Engineering

Electroless Deposition & Electroplating of Nickel on Chromium-Nickel Carbide Powder , Jeffrey Rigali, Mechanical Engineering

Numerical Simulation of Multi-Phase Core-Shell Molten Metal Drop Oscillations , Kaushal Sumaria, Mechanical Engineering

Theses from 2016 2016

Cold Gas Dynamic Spray – Characterization of Polymeric Deposition , Trenton Bush, Mechanical Engineering

Intent Recognition Of Rotation Versus Translation Movements In Human-Robot Collaborative Manipulation Tasks , Vinh Q. Nguyen, Mechanical Engineering

A Soft Multiple-Degree of Freedom Load Cell Based on The Hall Effect , Qiandong Nie, Mechanical Engineering

A Haptic Surface Robot Interface for Large-Format Touchscreen Displays , Mark Price, Mechanical Engineering

Numerical Simulation of High Velocity Impact of a Single Polymer Particle during Cold Spray Deposition , Sagar P. Shah, Mechanical Engineering

Tunable Plasmonic Thermal Emitter Using Metal-Coated Elastomeric Structures , Robert Zando, Mechanical Engineering

Theses from 2015 2015

Thermodynamic Analysis of the Application of Thermal Energy Storage to a Combined Heat and Power Plant , Benjamin McDaniel, Mechanical Engineering

Towards a Semantic Knowledge Management Framework for Laminated Composites , Vivek Premkumar, Mechanical Engineering

A CONTINOUS ROTARY ACTUATION MECHANISM FOR A POWERED HIP EXOSKELETON , Matthew C. Ryder, Mechanical Engineering

Optimal Topological Arrangement of Queues in Closed Finite Queueing Networks , Lening Wang, Mechanical Engineering

Creating a New Model to Predict Cooling Tower Performance and Determining Energy Saving Opportunities through Economizer Operation , Pranav Yedatore Venkatesh, Mechanical Engineering

Theses from 2014 2014

New Generator Control Algorithms for Smart-Bladed Wind Turbines to Improve Power Capture in Below Rated Conditions , Bryce B. Aquino, Mechanical Engineering

UBOT-7: THE DESIGN OF A COMPLIANT DEXTEROUS MOBILE MANIPULATOR , Jonathan Cummings, Mechanical Engineering

Design and Control of a Two-Wheeled Robotic Walker , Airton R. da Silva Jr., Mechanical Engineering

Free Wake Potential Flow Vortex Wind Turbine Modeling: Advances in Parallel Processing and Integration of Ground Effects , Nathaniel B. Develder, Mechanical Engineering

Buckling of Particle-Laden Interfaces , Theo Dias Kassuga, Mechanical Engineering

Modeling Dynamic Stall for a Free Vortex Wake Model of a Floating Offshore Wind Turbine , Evan M. Gaertner, Mechanical Engineering

An Experimental Study of the C-Start of a Mechanical Fish , Benjamin Kandaswamy Chinna Thambi, Mechanical Engineering

Measurement and Verification - Retro-Commissioning of a LEED Gold Rated Building Through Means of an Energy Model: Are Aggressive Energy Simulation Models Reliable? , Justin M. Marmaras, Mechanical Engineering

Development of a Support Structure for Multi-Rotor Wind Turbines , Gaurav Murlidhar Mate, Mechanical Engineering

Towards Accessible, Usable Knowledge Frameworks in Engineering , Jeffrey Mcpherson, Mechanical Engineering

A Consistent Algorithm for Implementing the Space Conservation Law , Venkata Pavan Pillalamarri Narasimha Rao, Mechanical Engineering

Kinetics of Aluminization and Homogenization in Wrought H-X750 Nickel-Base Superalloy , Sean Reilly, Mechanical Engineering

Single-Phase Turbulent Enthalpy Transport , Bradley J. Shields, Mechanical Engineering

CFD Simulation of the Flow around NREL Phase VI Wind Turbine , Yang Song, Mechanical Engineering

Selection of Outputs for Distributed Parameter Systems by Identifiability Analysis in the Time-scale Domain , Teergele, Mechanical Engineering

The Optimization of Offshore Wind Turbine Towers Using Passive Tuned Mass Dampers , Onur Can Yilmaz, Mechanical Engineering

Design of a Passive Exoskeleton Spine , Haohan Zhang, Mechanical Engineering

TURBULENT TRANSITION IN ELECTROMAGNETICALLY LEVITATED LIQUID METAL DROPLETS , Jie Zhao, Mechanical Engineering

Theses from 2013 2013

Optimization of Mixing in a Simulated Biomass Bed Reactor with a Center Feeding Tube , Michael T. Blatnik, Mechanical Engineering

Continued Development of a Chilled Water System Analysis Tool for Energy Conservation Measures Evaluation , Ghanshyam Gaudani, Mechanical Engineering

Application of Finite Element Method in Protein Normal Mode Analysis , Chiung-fang Hsu, Mechanical Engineering

Asymmetric Blade Spar for Passive Aerodynamic Load Control , Charles Mcclelland, Mechanical Engineering

Background and Available Potential Energy in Numerical Simulations of a Boussinesq Fluid , Shreyas S. Panse, Mechanical Engineering

Techno-Economic Analysis of Hydrogen Fuel Cell Systems Used as an Electricity Storage Technology in a Wind Farm with Large Amounts of Intermittent Energy , Yash Sanghai, Mechanical Engineering

Multi Rotor Wind Turbine Design And Cost Scaling , Preeti Verma, Mechanical Engineering

Activity Intent Recognition of the Torso Based on Surface Electromyography and Inertial Measurement Units , Zhe Zhang, Mechanical Engineering

Theses from 2012 2012

Simulations of Non-Contact Creep in Regimes of Mixed Dominance , Maija Benitz, Mechanical Engineering

Techniques for Industrial Implementation of Emerging Semantic Technologies , Jay T. Breindel, Mechanical Engineering

Environmental Impacts Due to Fixed and Floating Offshore Wind Turbines , Micah K. Brewer, Mechanical Engineering

Physical Model of the Feeding Strike of the Mantis Shrimp , Suzanne M. Cox, Mechanical Engineering

Investigating the Relationship Between Material Property Axes and Strain Orientations in Cebus Apella Crania , Christine M. Dzialo, Mechanical Engineering

A Multi-Level Hierarchical Finite Element Model for Capillary Failure in Soft Tissue , Lu Huang, Mechanical Engineering

Finite Element Analysis of a Femur to Deconstruct the Design Paradox of Bone Curvature , Sameer Jade, Mechanical Engineering

Vortex-Induced Vibrations of an Inclined Cylinder in Flow , Anil B. Jain, Mechanical Engineering

Experimental Study of Stability Limits for Slender Wind Turbine Blades , Shruti Ladge, Mechanical Engineering

Semi-Active Damping for an Intelligent Adaptive Ankle Prosthesis , Andrew K. Lapre, Mechanical Engineering

A Finite Volume Approach For Cure Kinetics Simulation , Wei Ma, Mechanical Engineering

Advanced Search

  • Notify me via email or RSS
  • Collections
  • Disciplines

Author Corner

  • Login for Faculty Authors
  • Faculty Author Gallery
  • Expert Gallery
  • University Libraries
  • Mechanical and Industrial Engineering Webpage
  • UMass Amherst

This page is sponsored by the University Libraries.

© 2009 University of Massachusetts Amherst • Site Policies

Privacy Copyright

The Tufts Department of Mechanical Engineering offers a  PhD in Mechanical Engineering . In addition, the Department of Mechanical Engineering participates in two interdisciplinary Joint-PhD programs: One in  Materials Science and Engineering  and one in  Human-Robot Interaction .

In general, the PhD program is for full-time students only, and any deviation from this policy must be approved by vote of the department faculty. Tuition scholarships, teaching assistantships, and research assistantships are only available, on a competitive basis, to full-time PhD candidates.

Upon matriculation, graduate students are assigned a faculty advisor who provides advice about registration for courses and program requirements. For PhD students, as progress is made on the degree, suitable thesis topics are discussed between the student and department faculty members. The selection of a thesis advisor should be completed by the end of the second term of full-time study. This advisor then assumes all advising duties for the student. After selecting a thesis topic and an advisor, students in the PhD program must register for thesis credit, normally beginning in the third term of full-time study. For the PhD, a thesis prospectus describing the proposed project must be submitted by the end of the third term, and before the formal thesis proposal defense (see respective program descriptions for more detail).

The interaction between the graduate student and a faculty member is one of the most significant aspects of a graduate student's time at Tufts. PhD students also have a thesis committee that works with the thesis advisor to ensure success. PhD students must successfully complete the PhD qualifying exams before the end of the first year in the program, prior to initiating their research. All candidates for the PhD degree must defend their thesis in an oral examination in an open forum.

Doctoral degrees require the fulfillment of the specific department requirements including the number of courses with grades of S (satisfactory) or at least a B-, as well as successful completion of the qualifying examination and doctoral dissertation.

All Mechanical Engineering graduate students should also obtain a copy of the current  Graduate Student Handbook  and the  University Bulletin  for general University requirements and deadlines. In addition, all courses and descriptions can be found on SIS. All graduate students receive an email account and shared mailbox space in the Mechanical Engineering Main Office.

Students are responsible for checking their mailbox and email regularly, as well as the Department website to remain up-to-date on department and university matters, and for informing the department of any changes of local address or phone number.

For further information, please contact:

M arc Hodes Professor of Mechanical Engineering Graduate Program Director

  • Search News and Events
  • News overview
  • Media relations

New numerical method simulates properties of scratches on wafers

Sven Sperling defended his PhD thesis at the Department of Mechanical Engineering on April 18th.

phd thesis mechanical engineering

In his PhD research Sven Sperling established a microscopic scratch model for silicon. For this a material model has been extended to include the complex material behavior of silicon under contact conditions. This new numerical method can simulate the properties of scratches. It has been shown that the model in its current form simulates experimental observations well within a normal force domain of 20-50 mN. By now two papers have been published on the model in leading journals for (numerical) mechanics. This project is mainly related to further developments in the semiconductor industry, specifically for the machines made by ASML. The ACCESS consortium is the first collaboration between TU/e and VDL ETG. This research field is a new territory for both VDL ETG and TU/e.

The most popular material for the production of high-end electronic devices, such as chips and solar panels, is silicon because of its semiconducting properties and vast abundance. For the fabrication of chips and solar panels, thin slices of crystalline silicon are employed, which are called wafers. In order to convert silicon wafers into reliable products, the surface characteristics of these wafers need to be formidable, which is why wafer fabrication methods such as sawing and griding are thoroughly investigated nowadays. Also, in recent years, the subtle contact between wafers and machine components for handling has become a topic of interest since it can introduce contaminating wear debris which may interfere with the lithography process. Consequently, the reliability of the chips decreases due to manufacturing errors. 

Role of numerical simulations

To investigate the implications of contact between a saw, griding device or machine component with the wafer, scratch experiments are performed on silicon substrates. From the post-scratch analysis, the surface damage can be investigated providing information on, for instance, the scratch conditions that cause surface crack formation or wear particles. However, what happens beneath the surface during scratching is unclear and therefore the mechanisms behind crack and wear particle formation remain unknown. Since experimental procedures are limited in the ability to investigate the subsurface deformation evolution during scratching, numerical simulations can play an instrumental role. But, to arrive at a reliable scratch model, three aspects need to be considered. First, a suitable numerical methodology that can account for the features that belong to scratching such as complex fracture and large local deformations. Secondly, a representative material description that can account for the mechanics of crystalline silicon under contact loading conditions at the microscopic scale. Lastly, experimental data to perform a parameter identification and validation comparison with the simulations. These three subjects are covered in detail in this thesis.

Dominant continuum behavior

The continuum-particle methodology adopted in this thesis allows to implement a microscale material formulation such that the computational cost maintains within a reasonable timeframe. All the while, the discrete nature of the numerical method allows to extend the model to incorporate complex fracture events by simply eliminating the bonds between particles. The focus in this thesis, though, is to capture the scratch regime in which the continuum behavior is still dominant, with the possibility to extend to larger scratch regimes including fracture and wear particle detachment.

At the microscopic scale, under compressive contact conditions, silicon exhibits a series phase transformations which are accompanied by large volumetric changes. The microscopic continuum description of the material behavior is formulated such that it includes this important but complex physical phenomenon. The microscale continuum material description is implemented in the continuum-particle methodology to perform scratch simulations, where the simulations are compared to scratch experiments which are executed under similar loading conditions. It was shown that the post-scratch surface profiles of the simulations and the experiments for a blunt indenter tip at a normal load range of 20-50 mN were in adequate agreement with each other. Also, it was shown that the phase transformation behavior which was included in the microscale material description has a significant influence on the resulting post-scratch topology. With this confirmation, further investigation into subsurface stresses and deformation behavior of silicon micro-scratching is possible.

Research School: EM (Engineering Mechanics)

Consortium: ACCESS (a collaboration with VDL ETG, together with 2 other PhD projects)

Title of PhD thesis:  A continuum-particle simulation framework for silicon scratching at the microscale . Supervisors: Prof. Marc Geers , and Dr. Johan Hoefnagels .

Media Contact

Effect of steplike high-temperature treatment on the composition and structure of the primary carbides in R6M5 high-speed steel ingots

  • Published: 25 May 2011
  • Volume 2011 , pages 29–32, ( 2011 )

Cite this article

  • I. V. Doronin 1 ,
  • Yu. A. Lukina 2 ,
  • I. O. Bannykh 3 &
  • P. L. Alekseev 1  

30 Accesses

3 Citations

Explore all metrics

The effect of steplike high-temperature treatment (SHTT) on the composition and structure of carbides in the ledeburite eutectic of R6M5 high-speed steel ingots is studied. It is shown that SHTT processes lead to fragmentation and a change in the composition of the primary carbides, which causes their disintegration and a decrease in the carbide size during hot deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

phd thesis mechanical engineering

Structural and phase changes in carbides of the high-speed steel upon heat treatment

A. S. Chaus

Optimization of the Process of Carburizing and Heat Treatment of Low-Carbon Martensitic Steels

A. S. Ivanov, S. K. Greben’kov & M. V. Bogdanova

phd thesis mechanical engineering

Effect of Melting Rate of Electroslag Rapid Remelting on the Microstructure and Carbides in a Hot Work Tool Steel

Chengbin Shi, Xin Zheng, … Fang Jiang

V. I. Baranchikov, A. V. Zharinov, N. D. Yudina, et. al., Progressive Cutting Tools and Regimes for Cutting Metal. Handbook (Mashinostroyenie, Moscow, 1990) [in Russian].

Google Scholar  

V. N. Andreev, “Modern Tendencies in Development of Tool Materials,” Stanki i Instrument, No. 2, 13–15 (1988).

Yu. A. Geller, Tool Steels (Metallurgiya, Moscow, 1983) [in Russian].

E. I. Malinkina and K. P. Imshennik, “Demands of Cutting Tool Industry to High-Speed Steel by the State Standard 5952-63,” in New Tool Materials Improving the Resistance of Cutting Tool (NIIMASh, Moscow, 1965), p. 28.

L. A. Poznyak and S. I. Tishayev, Yu. M. Skrynchenko, et al.,“Ways of Development of Tool Steels” in Tool and Bearing Steels (Metallurgiya, Moscow, 1973), p. 5.

V. M. Doronin and Yu. V. Vinogradov, “The Effect of Composition and Strain on Carbide Heterogeneity of High-Speed Steel” in Production of High Speed and Die Steels (Metallurgiya, Moscow, 1970), p. 14.

V. I. Zagorskii, “Effect of Regimes for Heating Ingots and the Conditions of Plastic Deformation on Quality of High-Speed Steel, Cand. Sci. (Tech) Dissertation , Moscow Institute of Steel and Alloys, Moscow, 1970.

V. M. Blinov, I. V. Doronin, A. E. Antonschenkov, et al., “Structure of Ledeburite Steels after Radial Shear Rolling,” Izv. Ross. Akad. Nauk, Met., No. 2, 55–58 (2007) [Russian Metallurgy, No. 2, 45–48 (2007)].

V. M. Doronin, “Structure, Properties and Heat Treatment” in Materials Science and Heat Treatment of Steels: A Handbook (Metallurgiya, Moscow, 1983), Vol. 3 [in Russian].

L. D. Moshkevich, V. F. Smolyakov, T. I. Malinovskaya, et. al., “The Effect of Heating on Properties of R6M5 Steel” in Tool and Bearing Steels (Metallurgiya, Moscow, 1973), No. 1.

L. D. Moshkevich, N. E. Malinovskaya, A. N. Kurasov, et al., “Spheroidization Kinetics of Eutectic Carbides in High-Speed Steels,” in Tool and Bearing Steels (Metallurgiya, Moscow, 1975), No. 2.

Metals Reference Book , Ed. by C. J. Smithles (Butter-worth, London, 1976; Metallurgiya, Moscow, 1980).

D. A. Prokoshkin and E. V. Vasil’eva, “Homological Law of Diffusion and Heat-Resistant Alloying of Metals” in Physicochemical Studies of Heat-Resistant Alloys (Metallurgiya, Moscow, 1968).

Download references

Author information

Authors and affiliations.

Elektrostal Branch of Moscow Institute of Steel and Alloys, ul. Pervomaiskaya, 7, Elektrostal, Moscow oblast’, 144001, Russia

I. V. Doronin & P. L. Alekseev

Elektrostal Heavy Engineering Works, ul. Krasnaya, 19, Elektrostal, Moscow oblast’, 144005, Russia

Yu. A. Lukina

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskii pr. 49, Moscow, 119991, Russia

I. O. Bannykh

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Yu. A. Lukina .

Additional information

Original Russian Text © I.V. Doronin, Yu.A. Lukina, I.O. Bannykh, P.L. Alekseev, 2011, published in Metally, 2011, No. 1, pp. 35–38.

Rights and permissions

Reprints and permissions

About this article

Doronin, I.V., Lukina, Y.A., Bannykh, I.O. et al. Effect of steplike high-temperature treatment on the composition and structure of the primary carbides in R6M5 high-speed steel ingots. Russ. Metall. 2011 , 29–32 (2011). https://doi.org/10.1134/S0036029511010071

Download citation

Received : 07 April 2010

Published : 25 May 2011

Issue Date : January 2011

DOI : https://doi.org/10.1134/S0036029511010071

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • RUSSIAN Metallurgy
  • Tool Material
  • High Speed Steel
  • Find a journal
  • Publish with us
  • Track your research

30 Best universities for Mechanical Engineering in Moscow, Russia

Updated: February 29, 2024

  • Art & Design
  • Computer Science
  • Engineering
  • Environmental Science
  • Liberal Arts & Social Sciences
  • Mathematics

Below is a list of best universities in Moscow ranked based on their research performance in Mechanical Engineering. A graph of 269K citations received by 45.8K academic papers made by 30 universities in Moscow was used to calculate publications' ratings, which then were adjusted for release dates and added to final scores.

We don't distinguish between undergraduate and graduate programs nor do we adjust for current majors offered. You can find information about granted degrees on a university page but always double-check with the university website.

1. Moscow State University

For Mechanical Engineering

Moscow State University logo

2. Bauman Moscow State Technical University

Bauman Moscow State Technical University logo

3. National Research University Higher School of Economics

National Research University Higher School of Economics logo

4. Moscow Aviation Institute

Moscow Aviation Institute logo

5. N.R.U. Moscow Power Engineering Institute

N.R.U. Moscow Power Engineering Institute logo

6. National Research Nuclear University MEPI

National Research Nuclear University MEPI logo

7. National University of Science and Technology "MISIS"

National University of Science and Technology "MISIS" logo

8. Moscow Institute of Physics and Technology

Moscow Institute of Physics and Technology logo

9. Moscow State Technological University "Stankin"

Moscow State Technological University "Stankin" logo

10. RUDN University

RUDN University logo

11. Moscow Polytech

Moscow Polytech logo

12. Moscow State University of Railway Engineering

Moscow State University of Railway Engineering logo

13. Finance Academy under the Government of the Russian Federation

Finance Academy under the Government of the Russian Federation logo

14. Moscow Medical Academy

Moscow Medical Academy logo

15. Russian State University of Oil and Gas

16. mendeleev university of chemical technology of russia.

Mendeleev University of Chemical Technology of Russia logo

17. Russian National Research Medical University

Russian National Research Medical University logo

18. Plekhanov Russian University of Economics

Plekhanov Russian University of Economics logo

19. National Research University of Electronic Technology

National Research University of Electronic Technology logo

20. Moscow State Pedagogical University

Moscow State Pedagogical University logo

21. Russian Presidential Academy of National Economy and Public Administration

Russian Presidential Academy of National Economy and Public Administration logo

22. State University of Management

State University of Management logo

23. Moscow State Institute of International Relations

Moscow State Institute of International Relations logo

24. Russian State Geological Prospecting University

25. russian state agricultural university.

Russian State Agricultural University logo

26. New Economic School

New Economic School logo

27. Moscow State Technical University of Civil Aviation

Moscow State Technical University of Civil Aviation logo

28. Russian State University for the Humanities

Russian State University for the Humanities logo

29. Russian State Social University

Russian State Social University logo

30. Moscow State Linguistic University

Moscow State Linguistic University logo

Universities for Mechanical Engineering near Moscow

Engineering subfields in moscow.

IMAGES

  1. Rowan-Gollan-PhD-Thesis

    phd thesis mechanical engineering

  2. Engineering PhD Research Proposal Sample by phdresearchinfo

    phd thesis mechanical engineering

  3. Mechanical Engineering Thesis Ideas

    phd thesis mechanical engineering

  4. Mechanical engineering phd web by Queen's Faculty of Engineering and

    phd thesis mechanical engineering

  5. Thesis Ideas For Mechanical Engineering

    phd thesis mechanical engineering

  6. Mechanical Engineering Thesis Ideas

    phd thesis mechanical engineering

VIDEO

  1. PhD Thesis Defense. Konstantin Makarenko

  2. Two Level SVM inverter Simulink

  3. MODEL PREDICTIVE CONTROL Inverter based Microgrid with #MPC #microgrid #matlab #simulink #electrical

  4. #SVPWM modulation three phase two level inverter #Matlab #Simulink

  5. Control Sensorless controller based on DREM adaptive observer PMSM matlab simulink model

  6. Janell Shah

COMMENTS

  1. Mechanical Engineering Theses and Dissertations

    Theses/Dissertations from 2016 PDF. Al/Ti Nanostructured Multilayers: from Mechanical, Tribological, to Corrosion Properties, Sina Izadi. PDF. Molybdenum Disulfide-Conducting Polymer Composite Structures for Electrochemical Biosensor Applications, Hongxiang Jia. PDF

  2. MIT Theses

    If you are a recent MIT graduate, your thesis will be added to DSpace within 3-6 months after your graduation date. Please email [email protected] with any questions. ... Mechanical Engineering (1780) Engineering Systems Division. (1587)... View More Date Issued 2000 - 2024 (39107) 1900 - 1999 (22466) 1868 - 1899 (93) Has File(s) Yes (61668 ...

  3. Doctoral Program

    Doctoral Program. The Ph.D. degree is intended primarily for students who desire a career in research, advanced development, or teaching; for this type of work, a broad background in mathematics and the engineering sciences, together with intensive study and research experience in a specialized area, are the necessary requisites.

  4. Mechanical Engineering Theses and Dissertations

    Theses/Dissertations from 2022. Mechanisms for Improvement of Key Mechanical Properties in Polymer Powder Bed Fusion Processes, Clinton Spencer Abbott. Reformulated Vortex Particle Method and Meshless Large Eddy Simulation of Multirotor Aircraft, Eduardo J. Alvarez.

  5. PhD in Mechanical Engineering

    An outline of the steps toward completion of the Mechanical Engineering PhD is presented below. ... and at least 44 hours of dissertation credit (599) beyond the MS. Additional courses beyond the 8 hours of 500-level courses may be ME or TAM graduate-level courses (400-500 level), or other engineering graduate-level technical courses chosen in ...

  6. Mechanical Engineering: Find Theses and Dissertations

    Carnegie Mellon University. Carnegie Mellon theses are now ONLINE and can be searched through the ProQuest database Dissertations & Theses @ Carnegie Mellon University that enables access to citations and abstracts of all dissertations and theses, as well as the fulltext in PDF format. Scroll down and select Dissertations & Theses, then do a ...

  7. Browsing/Searching: Mechanical Engineering Ph.D. Theses

    Department of Mechanical Engineering, 2023. 2023. 8/31/2025. Elliot Maxwell Snider - Author. Ranga Dias - Thesis Advisor. Application of grinding fundamentals to develop material-specific relationships in the dental-grinding procedure. Thesis (Ph. D.)--University of Rochester.

  8. Theses and Dissertations--Mechanical Engineering, University of

    Theses/Dissertations from 2023 PDF. Utilization of Uncrewed Aircraft Systems Towards Investigating the Structure of the Atmospheric Surface Layer, Loiy Al-Ghussain. PDF. MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN, Alireza Babaei. PDF

  9. Mechanical Engineering, Ph.D.

    The general credit requirements for the Doctor of Philosophy in Mechanical Engineering degree at the School of Engineering are: Transfer from MS degree (30 credits) Approved coursework beyond the MS degree (18 credits minimum) Ph.D. dissertation (18 credits minimum) Approved electives (up to 6 credits) Minimum Total Required: 75 Credits.

  10. PhD Dissertation

    The following procedure must be followed at the time of the dissertation defense. Step 1. Provide your completed written Ph.D. Dissertation to the members of your Ph.D. Reading Committee. You must provide copies of the completed final draft of your dissertation to each member of the Ph.D. Dissertation Reading Committee.

  11. Mechanical Engineering, Ph.D.

    The 300 and above courses can be from Mechanical Engineering and/or Engineering Mechanics if approved by the student's advisor and the ME graduate committee. Minimum of 18 thesis credits (M E 790 Master's Research and Thesis, M E 890 PhD Research and Thesis, M E 990 Dissertator Research and Thesis) are required with an overall grade of S.

  12. PhD Dissertations

    Novel Perspectives in Non-Invasive Diagnosis of Ailments through Analysis of Mechanical Wave Motion: Thomas Royston: Rohanifar, Milad : Numerical Characterization of Mechanical Properties of Fiber Network Materials: Hamed Hatami-Marbini: Rojaee, Ramin : Polymer Composite Electrolytes and Their Interfacial Engineering for Lithium Batteries: Reza ...

  13. PhD Degree Program

    Select your degree below to view the minimum course credit-hour requirements (PDF): Doctor of Philosophy in Mechanical Engineering. Doctor of Philosophy in Mechanical Engineering-Georgia Tech & Seoul National University Joint Program. Doctor of Philosophy in Nuclear Engineering. Doctor of Philosophy in Robotics.

  14. PhD in Mechanical Engineering

    A mechanical engineering PhD degree requires depth of knowledge in the dissertation/research area, as well as breadth of knowledge across the mechanical engineering curriculum. Consequently, the comprehensive exam is designed to test student knowledge of their proposed research area, and any general knowledge in the field.

  15. Library Guides: Mechanical Engineering: Dissertations & Theses

    Dissertations Online. ProQuest Dissertations and Theses. Indexes graduate dissertations from North American and selected European graduate schools and universities. Dissertations by UC authors are available in full text from 1997. more... UC Berkeley Dissertations. For online access to dissertations published since 1997, see Proquest link above.

  16. PhD in Mechanical Engineering Online

    Through this affordable online program, you can earn a research-based degree that allows you to propose, complete and defend an approved dissertation on a research topic that contributes to the field of mechanical engineering. This PhD program in Mechanical Engineering is the same degree program offered to on-campus students.

  17. Mechanical Engineering Masters Theses Collection

    Theses from 2014 PDF. New Generator Control Algorithms for Smart-Bladed Wind Turbines to Improve Power Capture in Below Rated Conditions, Bryce B. Aquino, Mechanical Engineering. PDF. UBOT-7: THE DESIGN OF A COMPLIANT DEXTEROUS MOBILE MANIPULATOR, Jonathan Cummings, Mechanical Engineering. PDF

  18. PhD

    PhD students also have a thesis committee that works with the thesis advisor to ensure success. PhD students must successfully complete the PhD qualifying exams before the end of the first year in the program, prior to initiating their research. ... All Mechanical Engineering graduate students should also obtain a copy of the current ...

  19. Student Theses

    Ashwin K P: PhD: Adviser: Prof. Ashitava Ghosal Thesis Topic: Development of a flexible actuator and motion planning for endoscopic robots Krishna Mohan Kumar: PhD: Adviser: Prof. M. L. Munjal Thesis Topic: Direct estimation of acoustic source characteristics of the internal combustion engine exhaust system and analysis of complex muffler configurations

  20. New numerical method simulates properties of scratches on wafers

    Sven Sperling defended his PhD thesis at the Department of Mechanical Engineering on April 18th. In his PhD research Sven Sperling established a microscopic scratch model for silicon. For this a material model has been extended to include the complex material behavior of silicon under contact conditions.

  21. Effect of the quenching temperature on the structural state of high

    The effect of the temperature of heating for quenching on the temperatures of the onset of intense grain growth and the onset of melting of grain boundaries is studied for high-speed steels of six grades. The mechanical properties of the tool are shown to be controlled with allowance for its design and operating conditions.

  22. Effect of steplike high-temperature treatment on the ...

    The effect of steplike high-temperature treatment (SHTT) on the composition and structure of carbides in the ledeburite eutectic of R6M5 high-speed steel ingots is studied. It is shown that SHTT processes lead to fragmentation and a change in the composition of the primary carbides, which causes their disintegration and a decrease in the carbide size during hot deformation.

  23. Mechanical Engineering in Russia: Best universities Ranked

    Below is a list of best universities in Russia ranked based on their research performance in Mechanical Engineering. A graph of 714K citations received by 136K academic papers made by 158 universities in Russia was used to calculate publications' ratings, which then were adjusted for release dates and added to final scores.

  24. Moscow, Russia's best Mechanical Engineering universities [Rankings]

    Below is a list of best universities in Moscow ranked based on their research performance in Mechanical Engineering. A graph of 269K citations received by 45.8K academic papers made by 30 universities in Moscow was used to calculate publications' ratings, which then were adjusted for release dates and added to final scores.

  25. Ph.D. Dissertation Proposal Defense in Mechanical Engineering

    The Francis College of Engineering, Department of Mechanical Engineering, invites you to attend a Doctoral Dissertation Proposal defense by Alexander Krueger on "A Fundamental Study of Impact Resistance of Transparent Thermoplastics." Candidate Name: Alexander Krueger Degree: Doctoral Defense Date: Friday April 26, 2024 Time: 11 a.m. - 1 p.m.