Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

Module 1: Problem Solving Strategies

  • Last updated
  • Save as PDF
  • Page ID 10352

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

Pólya’s How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills. He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities). He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985.1

1. Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY

Screen Shot 2018-08-30 at 4.43.05 PM.png

In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

First, you have to understand the problem.

After understanding, then make a plan.

Carry out the plan.

Look back on your work. How could it be better?

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

Problem Solving Strategy 1 (Guess and Test)

Make a guess and test to see if it satisfies the demands of the problem. If it doesn't, alter the guess appropriately and check again. Keep doing this until you find a solution.

Mr. Jones has a total of 25 chickens and cows on his farm. How many of each does he have if all together there are 76 feet?

Step 1: Understanding the problem

We are given in the problem that there are 25 chickens and cows.

All together there are 76 feet.

Chickens have 2 feet and cows have 4 feet.

We are trying to determine how many cows and how many chickens Mr. Jones has on his farm.

Step 2: Devise a plan

Going to use Guess and test along with making a tab

Many times the strategy below is used with guess and test.

Make a table and look for a pattern:

Procedure: Make a table reflecting the data in the problem. If done in an orderly way, such a table will often reveal patterns and relationships that suggest how the problem can be solved.

Step 3: Carry out the plan:

Notice we are going in the wrong direction! The total number of feet is decreasing!

Better! The total number of feet are increasing!

Step 4: Looking back:

Check: 12 + 13 = 25 heads

24 + 52 = 76 feet.

We have found the solution to this problem. I could use this strategy when there are a limited number of possible answers and when two items are the same but they have one characteristic that is different.

Videos to watch:

1. Click on this link to see an example of “Guess and Test”

http://www.mathstories.com/strategies.htm

2. Click on this link to see another example of Guess and Test.

http://www.mathinaction.org/problem-solving-strategies.html

Check in question 1:

clipboard_e6298bbd7c7f66d9eb9affcd33892ef0d.png

Place the digits 8, 10, 11, 12, and 13 in the circles to make the sums across and vertically equal 31. (5 points)

Check in question 2:

Old McDonald has 250 chickens and goats in the barnyard. Altogether there are 760 feet . How many of each animal does he have? Make sure you use Polya’s 4 problem solving steps. (12 points)

Problem Solving Strategy 2 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric thinking visually can help!

Videos to watch demonstrating how to use "Draw a Picture".

1. Click on this link to see an example of “Draw a Picture”

2. Click on this link to see another example of Draw a Picture.

Problem Solving Strategy 3 ( Using a variable to find the sum of a sequence.)

Gauss's strategy for sequences.

last term = fixed number ( n -1) + first term

The fix number is the the amount each term is increasing or decreasing by. "n" is the number of terms you have. You can use this formula to find the last term in the sequence or the number of terms you have in a sequence.

Ex: 2, 5, 8, ... Find the 200th term.

Last term = 3(200-1) +2

Last term is 599.

To find the sum of a sequence: sum = [(first term + last term) (number of terms)]/ 2

Sum = (2 + 599) (200) then divide by 2

Sum = 60,100

Check in question 3: (10 points)

Find the 320 th term of 7, 10, 13, 16 …

Then find the sum of the first 320 terms.

Problem Solving Strategy 4 (Working Backwards)

This is considered a strategy in many schools. If you are given an answer, and the steps that were taken to arrive at that answer, you should be able to determine the starting point.

Videos to watch demonstrating of “Working Backwards”

https://www.youtube.com/watch?v=5FFWTsMEeJw

Karen is thinking of a number. If you double it, and subtract 7, you obtain 11. What is Karen’s number?

1. We start with 11 and work backwards.

2. The opposite of subtraction is addition. We will add 7 to 11. We are now at 18.

3. The opposite of doubling something is dividing by 2. 18/2 = 9

4. This should be our answer. Looking back:

9 x 2 = 18 -7 = 11

5. We have the right answer.

Check in question 4:

Christina is thinking of a number.

If you multiply her number by 93, add 6, and divide by 3, you obtain 436. What is her number? Solve this problem by working backwards. (5 points)

Problem Solving Strategy 5 (Looking for a Pattern)

Definition: A sequence is a pattern involving an ordered arrangement of numbers.

We first need to find a pattern.

Ask yourself as you search for a pattern – are the numbers growing steadily larger? Steadily smaller? How is each number related?

Example 1: 1, 4, 7, 10, 13…

Find the next 2 numbers. The pattern is each number is increasing by 3. The next two numbers would be 16 and 19.

Example 2: 1, 4, 9, 16 … find the next 2 numbers. It looks like each successive number is increase by the next odd number. 1 + 3 = 4.

So the next number would be

25 + 11 = 36

Example 3: 10, 7, 4, 1, -2… find the next 2 numbers.

In this sequence, the numbers are decreasing by 3. So the next 2 numbers would be -2 -3 = -5

-5 – 3 = -8

Example 4: 1, 2, 4, 8 … find the next two numbers.

This example is a little bit harder. The numbers are increasing but not by a constant. Maybe a factor?

So each number is being multiplied by 2.

16 x 2 = 32

1. Click on this link to see an example of “Looking for a Pattern”

2. Click on this link to see another example of Looking for a Pattern.

Problem Solving Strategy 6 (Make a List)

Example 1 : Can perfect squares end in a 2 or a 3?

List all the squares of the numbers 1 to 20.

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400.

Now look at the number in the ones digits. Notice they are 0, 1, 4, 5, 6, or 9. Notice none of the perfect squares end in 2, 3, 7, or 8. This list suggests that perfect squares cannot end in a 2, 3, 7 or 8.

How many different amounts of money can you have in your pocket if you have only three coins including only dimes and quarters?

Quarter’s dimes

0 3 30 cents

1 2 45 cents

2 1 60 cents

3 0 75 cents

Videos demonstrating "Make a List"

Check in question 5:

How many ways can you make change for 23 cents using only pennies, nickels, and dimes? (10 points)

Problem Solving Strategy 7 (Solve a Simpler Problem)

Geometric Sequences:

How would we find the nth term?

Solve a simpler problem:

1, 3, 9, 27.

1. To get from 1 to 3 what did we do?

2. To get from 3 to 9 what did we do?

Let’s set up a table:

Term Number what did we do

example of problem solving in math

Looking back: How would you find the nth term?

example of problem solving in math

Find the 10 th term of the above sequence.

Let L = the tenth term

example of problem solving in math

Problem Solving Strategy 8 (Process of Elimination)

This strategy can be used when there is only one possible solution.

I’m thinking of a number.

The number is odd.

It is more than 1 but less than 100.

It is greater than 20.

It is less than 5 times 7.

The sum of the digits is 7.

It is evenly divisible by 5.

a. We know it is an odd number between 1 and 100.

b. It is greater than 20 but less than 35

21, 23, 25, 27, 29, 31, 33, 35. These are the possibilities.

c. The sum of the digits is 7

21 (2+1=3) No 23 (2+3 = 5) No 25 (2 + 5= 7) Yes Using the same process we see there are no other numbers that meet this criteria. Also we notice 25 is divisible by 5. By using the strategy elimination, we have found our answer.

Check in question 6: (8 points)

Jose is thinking of a number.

The number is not odd.

The sum of the digits is divisible by 2.

The number is a multiple of 11.

It is greater than 5 times 4.

It is a multiple of 6

It is less than 7 times 8 +23

What is the number?

Click on this link for a quick review of the problem solving strategies.

https://garyhall.org.uk/maths-problem-solving-strategies.html

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Free Math Worksheets — Over 100k free practice problems on Khan Academy

Looking for free math worksheets.

You’ve found something even better!

That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional math worksheets – more instantaneous, more interactive, and more fun!

Just choose your grade level or topic to get access to 100% free practice questions:

Kindergarten, basic geometry, pre-algebra, algebra basics, high school geometry.

  • Trigonometry

Statistics and probability

High school statistics, ap®︎/college statistics, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra.

  • Addition and subtraction
  • Place value (tens and hundreds)
  • Addition and subtraction within 20
  • Addition and subtraction within 100
  • Addition and subtraction within 1000
  • Measurement and data
  • Counting and place value
  • Measurement and geometry
  • Place value
  • Measurement, data, and geometry
  • Add and subtract within 20
  • Add and subtract within 100
  • Add and subtract within 1,000
  • Money and time
  • Measurement
  • Intro to multiplication
  • 1-digit multiplication
  • Addition, subtraction, and estimation
  • Intro to division
  • Understand fractions
  • Equivalent fractions and comparing fractions
  • More with multiplication and division
  • Arithmetic patterns and problem solving
  • Quadrilaterals
  • Represent and interpret data
  • Multiply by 1-digit numbers
  • Multiply by 2-digit numbers
  • Factors, multiples and patterns
  • Add and subtract fractions
  • Multiply fractions
  • Understand decimals
  • Plane figures
  • Measuring angles
  • Area and perimeter
  • Units of measurement
  • Decimal place value
  • Add decimals
  • Subtract decimals
  • Multi-digit multiplication and division
  • Divide fractions
  • Multiply decimals
  • Divide decimals
  • Powers of ten
  • Coordinate plane
  • Algebraic thinking
  • Converting units of measure
  • Properties of shapes
  • Ratios, rates, & percentages
  • Arithmetic operations
  • Negative numbers
  • Properties of numbers
  • Variables & expressions
  • Equations & inequalities introduction
  • Data and statistics
  • Negative numbers: addition and subtraction
  • Negative numbers: multiplication and division
  • Fractions, decimals, & percentages
  • Rates & proportional relationships
  • Expressions, equations, & inequalities
  • Numbers and operations
  • Solving equations with one unknown
  • Linear equations and functions
  • Systems of equations
  • Geometric transformations
  • Data and modeling
  • Volume and surface area
  • Pythagorean theorem
  • Transformations, congruence, and similarity
  • Arithmetic properties
  • Factors and multiples
  • Reading and interpreting data
  • Negative numbers and coordinate plane
  • Ratios, rates, proportions
  • Equations, expressions, and inequalities
  • Exponents, radicals, and scientific notation
  • Foundations
  • Algebraic expressions
  • Linear equations and inequalities
  • Graphing lines and slope
  • Expressions with exponents
  • Quadratics and polynomials
  • Equations and geometry
  • Algebra foundations
  • Solving equations & inequalities
  • Working with units
  • Linear equations & graphs
  • Forms of linear equations
  • Inequalities (systems & graphs)
  • Absolute value & piecewise functions
  • Exponents & radicals
  • Exponential growth & decay
  • Quadratics: Multiplying & factoring
  • Quadratic functions & equations
  • Irrational numbers
  • Performing transformations
  • Transformation properties and proofs
  • Right triangles & trigonometry
  • Non-right triangles & trigonometry (Advanced)
  • Analytic geometry
  • Conic sections
  • Solid geometry
  • Polynomial arithmetic
  • Complex numbers
  • Polynomial factorization
  • Polynomial division
  • Polynomial graphs
  • Rational exponents and radicals
  • Exponential models
  • Transformations of functions
  • Rational functions
  • Trigonometric functions
  • Non-right triangles & trigonometry
  • Trigonometric equations and identities
  • Analyzing categorical data
  • Displaying and comparing quantitative data
  • Summarizing quantitative data
  • Modeling data distributions
  • Exploring bivariate numerical data
  • Study design
  • Probability
  • Counting, permutations, and combinations
  • Random variables
  • Sampling distributions
  • Confidence intervals
  • Significance tests (hypothesis testing)
  • Two-sample inference for the difference between groups
  • Inference for categorical data (chi-square tests)
  • Advanced regression (inference and transforming)
  • Analysis of variance (ANOVA)
  • Scatterplots
  • Data distributions
  • Two-way tables
  • Binomial probability
  • Normal distributions
  • Displaying and describing quantitative data
  • Inference comparing two groups or populations
  • Chi-square tests for categorical data
  • More on regression
  • Prepare for the 2020 AP®︎ Statistics Exam
  • AP®︎ Statistics Standards mappings
  • Polynomials
  • Composite functions
  • Probability and combinatorics
  • Limits and continuity
  • Derivatives: definition and basic rules
  • Derivatives: chain rule and other advanced topics
  • Applications of derivatives
  • Analyzing functions
  • Parametric equations, polar coordinates, and vector-valued functions
  • Applications of integrals
  • Differentiation: definition and basic derivative rules
  • Differentiation: composite, implicit, and inverse functions
  • Contextual applications of differentiation
  • Applying derivatives to analyze functions
  • Integration and accumulation of change
  • Applications of integration
  • AP Calculus AB solved free response questions from past exams
  • AP®︎ Calculus AB Standards mappings
  • Infinite sequences and series
  • AP Calculus BC solved exams
  • AP®︎ Calculus BC Standards mappings
  • Integrals review
  • Integration techniques
  • Thinking about multivariable functions
  • Derivatives of multivariable functions
  • Applications of multivariable derivatives
  • Integrating multivariable functions
  • Green’s, Stokes’, and the divergence theorems
  • First order differential equations
  • Second order linear equations
  • Laplace transform
  • Vectors and spaces
  • Matrix transformations
  • Alternate coordinate systems (bases)

Frequently Asked Questions about Khan Academy and Math Worksheets

Why is khan academy even better than traditional math worksheets.

Khan Academy’s 100,000+ free practice questions give instant feedback, don’t need to be graded, and don’t require a printer.

What do Khan Academy’s interactive math worksheets look like?

Here’s an example:

What are teachers saying about Khan Academy’s interactive math worksheets?

“My students love Khan Academy because they can immediately learn from their mistakes, unlike traditional worksheets.”

Is Khan Academy free?

Khan Academy’s practice questions are 100% free—with no ads or subscriptions.

What do Khan Academy’s interactive math worksheets cover?

Our 100,000+ practice questions cover every math topic from arithmetic to calculus, as well as ELA, Science, Social Studies, and more.

Is Khan Academy a company?

Khan Academy is a nonprofit with a mission to provide a free, world-class education to anyone, anywhere.

Want to get even more out of Khan Academy?

Then be sure to check out our teacher tools . They’ll help you assign the perfect practice for each student from our full math curriculum and track your students’ progress across the year. Plus, they’re also 100% free — with no subscriptions and no ads.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

Math Problem Solving Strategies

In these lessons, we will learn some math problem solving strategies for example, Verbal Model (or Logical Reasoning), Algebraic Model, Block Model (or Singapore Math), Guess & Check Model and Find a Pattern Model.

Related Pages Solving Word Problems Using Block Models Heuristic Approach to Problem-Solving Algebra Lessons

Problem Solving Strategies

The strategies used in solving word problems:

  • What do you know?
  • What do you need to know?
  • Draw a diagram/picture

Solution Strategies Label Variables Verbal Model or Logical Reasoning Algebraic Model - Translate Verbal Model to Algebraic Model Solve and Check.

Solving Word Problems

Step 1: Identify (What is being asked?) Step 2: Strategize Step 3: Write the equation(s) Step 4: Answer the question Step 5: Check

Problem Solving Strategy: Guess And Check

Using the guess and check problem solving strategy to help solve math word problems.

Example: Jamie spent $40 for an outfit. She paid for the items using $10, $5 and $1 bills. If she gave the clerk 10 bills in all, how many of each bill did she use?

Problem Solving : Make A Table And Look For A Pattern

  • Identify - What is the question?
  • Plan - What strategy will I use to solve the problem?
  • Solve - Carry out your plan.
  • Verify - Does my answer make sense?

Example: Marcus ran a lemonade stand for 5 days. On the first day, he made $5. Every day after that he made $2 more than the previous day. How much money did Marcus made in all after 5 days?

Find A Pattern Model (Intermediate)

In this lesson, we will look at some intermediate examples of Find a Pattern method of problem-solving strategy.

Example: The figure shows a series of rectangles where each rectangle is bounded by 10 dots. a) How many dots are required for 7 rectangles? b) If the figure has 73 dots, how many rectangles would there be?

a) The number of dots required for 7 rectangles is 52.

b) If the figure has 73 dots, there would be 10 rectangles.

Example: Each triangle in the figure below has 3 dots. Study the pattern and find the number of dots for 7 layers of triangles.

The number of dots for 7 layers of triangles is 36.

Example: The table below shows numbers placed into groups I, II, III, IV, V and VI. In which groups would the following numbers belong? a) 25 b) 46 c) 269

Solution: The pattern is: The remainder when the number is divided by 6 determines the group. a) 25 ÷ 6 = 4 remainder 1 (Group I) b) 46 ÷ 6 = 7 remainder 4 (Group IV) c) 269 ÷ 6 = 44 remainder 5 (Group V)

Example: The following figures were formed using matchsticks.

a) Based on the above series of figures, complete the table below.

b) How many triangles are there if the figure in the series has 9 squares?

c) How many matchsticks would be used in the figure in the series with 11 squares?

b) The pattern is +2 for each additional square.   18 + 2 = 20   If the figure in the series has 9 squares, there would be 20 triangles.

c) The pattern is + 7 for each additional square   61 + (3 x 7) = 82   If the figure in the series has 11 squares, there would be 82 matchsticks.

Example: Seven ex-schoolmates had a gathering. Each one of them shook hands with all others once. How many handshakes were there?

Total = 6 + 5 + 4 + 3 + 2 + 1 = 21 handshakes.

The following video shows more examples of using problem solving strategies and models. Question 1: Approximate your average speed given some information Question 2: The table shows the number of seats in each of the first four rows in an auditorium. The remaining ten rows follow the same pattern. Find the number of seats in the last row. Question 3: You are hanging three pictures in the wall of your home that is 16 feet wide. The width of your pictures are 2, 3 and 4 feet. You want space between your pictures to be the same and the space to the left and right to be 6 inches more than between the pictures. How would you place the pictures?

The following are some other examples of problem solving strategies.

Explore it/Act it/Try it (EAT) Method (Basic) Explore it/Act it/Try it (EAT) Method (Intermediate) Explore it/Act it/Try it (EAT) Method (Advanced)

Finding A Pattern (Basic) Finding A Pattern (Intermediate) Finding A Pattern (Advanced)

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

Problem Solving in Mathematics

  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade

The main reason for learning about math is to become a better problem solver in all aspects of life. Many problems are multistep and require some type of systematic approach. There are a couple of things you need to do when solving problems. Ask yourself exactly what type of information is being asked for: Is it one of addition, subtraction, multiplication , or division? Then determine all the information that is being given to you in the question.

Mathematician George Pólya’s book, “ How to Solve It: A New Aspect of Mathematical Method ,” written in 1957, is a great guide to have on hand. The ideas below, which provide you with general steps or strategies to solve math problems, are similar to those expressed in Pólya’s book and should help you untangle even the most complicated math problem.

Use Established Procedures

Learning how to solve problems in mathematics is knowing what to look for. Math problems often require established procedures and knowing what procedure to apply. To create procedures, you have to be familiar with the problem situation and be able to collect the appropriate information, identify a strategy or strategies, and use the strategy appropriately.

Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

Look for Clue Words

Think of yourself as a math detective. The first thing to do when you encounter a math problem is to look for clue words. This is one of the most important skills you can develop. If you begin to solve problems by looking for clue words, you will find that those words often indicate an operation.

Common clue words for addition  problems:

Common clue words for  subtraction  problems:

  • How much more

Common clue words for multiplication problems:

Common clue words for division problems:

Although clue words will vary a bit from problem to problem, you'll soon learn to recognize which words mean what in order to perform the correct operation.

Read the Problem Carefully

This, of course, means looking for clue words as outlined in the previous section. Once you’ve identified your clue words, highlight or underline them. This will let you know what kind of problem you’re dealing with. Then do the following:

  • Ask yourself if you've seen a problem similar to this one. If so, what is similar about it?
  • What did you need to do in that instance?
  • What facts are you given about this problem?
  • What facts do you still need to find out about this problem?

Develop a Plan and Review Your Work

Based on what you discovered by reading the problem carefully and identifying similar problems you’ve encountered before, you can then:

  • Define your problem-solving strategy or strategies. This might mean identifying patterns, using known formulas, using sketches, and even guessing and checking.
  • If your strategy doesn't work, it may lead you to an ah-ha moment and to a strategy that does work.

If it seems like you’ve solved the problem, ask yourself the following:

  • Does your solution seem probable?
  • Does it answer the initial question?
  • Did you answer using the language in the question?
  • Did you answer using the same units?

If you feel confident that the answer is “yes” to all questions, consider your problem solved.

Tips and Hints

Some key questions to consider as you approach the problem may be:

  • What are the keywords in the problem?
  • Do I need a data visual, such as a diagram, list, table, chart, or graph?
  • Is there a formula or equation that I'll need? If so, which one?
  • Will I need to use a calculator? Is there a pattern I can use or follow?

Read the problem carefully, and decide on a method to solve the problem. Once you've finished working the problem, check your work and ensure that your answer makes sense and that you've used the same terms and or units in your answer.

  • Free Christmas Math Worksheets
  • 2nd Grade Math Word Problems
  • The Horse Problem: A Math Challenge
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • How to Use Math Journals in Class
  • The Frayer Model for Math
  • Algorithms in Mathematics and Beyond
  • "Grandpa's Rubik's Cube"—Sample Common Application Essay, Option #4
  • Math Stumper: Use Two Squares to Make Separate Pens for Nine Pigs
  • Critical Thinking Definition, Skills, and Examples
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Graphic Organizers in Math
  • Christmas Word Problem Worksheets
  • Solving Problems Involving Distance, Rate, and Time
  • Innovative Ways to Teach Math
  • Study Tips for Math Homework and Math Tests
  • Prodigy Math
  • Prodigy English
  • Is a Premium Membership Worth It?
  • Promote a Growth Mindset
  • Help Your Child Who's Struggling with Math
  • Parent's Guide to Prodigy
  • Assessments
  • Math Curriculum Coverage
  • English Curriculum Coverage
  • Game Portal

120 Math Word Problems To Challenge Students Grades 1 to 8

no image

Written by Marcus Guido

Hey teachers! 👋

Use Prodigy to spark a love for math in your students – including when solving word problems!

  • Teaching Tools
  • Subtraction
  • Multiplication
  • Mixed operations
  • Ordering and number sense
  • Comparing and sequencing
  • Physical measurement
  • Ratios and percentages
  • Probability and data relationships

You sit at your desk, ready to put a math quiz, test or activity together. The questions flow onto the document until you hit a section for word problems.

A jolt of creativity would help. But it doesn’t come.

Whether you’re a 3rd grade teacher or an 8th grade teacher preparing students for high school, translating math concepts into real world examples can certainly be a challenge.

This resource is your jolt of creativity. It provides examples and templates of math word problems for 1st to 8th grade classes.

There are 120 examples in total.

The list of examples is supplemented by tips to create engaging and challenging math word problems.

120 Math word problems, categorized by skill

Addition word problems.

A teacher is teaching three students with a whiteboard happily.

Best for: 1st grade, 2nd grade

1. Adding to 10: Ariel was playing basketball. 1 of her shots went in the hoop. 2 of her shots did not go in the hoop. How many shots were there in total?

2. Adding to 20: Adrianna has 10 pieces of gum to share with her friends. There wasn’t enough gum for all her friends, so she went to the store to get 3 more pieces of gum. How many pieces of gum does Adrianna have now?

3. Adding to 100: Adrianna has 10 pieces of gum to share with her friends. There wasn’t enough gum for all her friends, so she went to the store and got 70 pieces of strawberry gum and 10 pieces of bubble gum. How many pieces of gum does Adrianna have now?

4. Adding Slightly over 100: The restaurant has 175 normal chairs and 20 chairs for babies. How many chairs does the restaurant have in total?

5. Adding to 1,000: How many cookies did you sell if you sold 320 chocolate cookies and 270 vanilla cookies?

6. Adding to and over 10,000: The hobby store normally sells 10,576 trading cards per month. In June, the hobby store sold 15,498 more trading cards than normal. In total, how many trading cards did the hobby store sell in June?

7. Adding 3 Numbers: Billy had 2 books at home. He went to the library to take out 2 more books. He then bought 1 book. How many books does Billy have now?

8. Adding 3 Numbers to and over 100: Ashley bought a big bag of candy. The bag had 102 blue candies, 100 red candies and 94 green candies. How many candies were there in total?

Subtraction word problems

Best for: 1st grade, second grade

9. Subtracting to 10: There were 3 pizzas in total at the pizza shop. A customer bought 1 pizza. How many pizzas are left?

10. Subtracting to 20: Your friend said she had 11 stickers. When you helped her clean her desk, she only had a total of 10 stickers. How many stickers are missing?

11. Subtracting to 100: Adrianna has 100 pieces of gum to share with her friends. When she went to the park, she shared 10 pieces of strawberry gum. When she left the park, Adrianna shared another 10 pieces of bubble gum. How many pieces of gum does Adrianna have now?

Five middle school students sitting at a row of desks playing Prodigy Math on tablets.

Practice math word problems with Prodigy Math

Join millions of teachers using Prodigy to make learning fun and differentiate instruction as they answer in-game questions, including math word problems from 1st to 8th grade!

12. Subtracting Slightly over 100: Your team scored a total of 123 points. 67 points were scored in the first half. How many were scored in the second half?

13. Subtracting to 1,000: Nathan has a big ant farm. He decided to sell some of his ants. He started with 965 ants. He sold 213. How many ants does he have now?

14. Subtracting to and over 10,000: The hobby store normally sells 10,576 trading cards per month. In July, the hobby store sold a total of 20,777 trading cards. How many more trading cards did the hobby store sell in July compared with a normal month?

15. Subtracting 3 Numbers: Charlene had a pack of 35 pencil crayons. She gave 6 to her friend Theresa. She gave 3 to her friend Mandy. How many pencil crayons does Charlene have left?

16. Subtracting 3 Numbers to and over 100: Ashley bought a big bag of candy to share with her friends. In total, there were 296 candies. She gave 105 candies to Marissa. She also gave 86 candies to Kayla. How many candies were left?

Multiplication word problems

A hand holding a pen is doing calculation on a pice of papper

Best for: 2nd grade, 3rd grade

17. Multiplying 1-Digit Integers: Adrianna needs to cut a pan of brownies into pieces. She cuts 6 even columns and 3 even rows into the pan. How many brownies does she have?

18. Multiplying 2-Digit Integers: A movie theatre has 25 rows of seats with 20 seats in each row. How many seats are there in total?

19. Multiplying Integers Ending with 0: A clothing company has 4 different kinds of sweatshirts. Each year, the company makes 60,000 of each kind of sweatshirt. How many sweatshirts does the company make each year?

20. Multiplying 3 Integers: A bricklayer stacks bricks in 2 rows, with 10 bricks in each row. On top of each row, there is a stack of 6 bricks. How many bricks are there in total?

21. Multiplying 4 Integers: Cayley earns $5 an hour by delivering newspapers. She delivers newspapers 3 days each week, for 4 hours at a time. After delivering newspapers for 8 weeks, how much money will Cayley earn?

Division word problems

Best for: 3rd grade, 4th grade, 5th grade

22. Dividing 1-Digit Integers: If you have 4 pieces of candy split evenly into 2 bags, how many pieces of candy are in each bag?

23. Dividing 2-Digit Integers: If you have 80 tickets for the fair and each ride costs 5 tickets, how many rides can you go on?

24. Dividing Numbers Ending with 0: The school has $20,000 to buy new computer equipment. If each piece of equipment costs $50, how many pieces can the school buy in total?

25. Dividing 3 Integers: Melissa buys 2 packs of tennis balls for $12 in total. All together, there are 6 tennis balls. How much does 1 pack of tennis balls cost? How much does 1 tennis ball cost?

26. Interpreting Remainders: An Italian restaurant receives a shipment of 86 veal cutlets. If it takes 3 cutlets to make a dish, how many cutlets will the restaurant have left over after making as many dishes as possible?

Mixed operations word problems

A female teacher is instructing student math on a blackboard

27. Mixing Addition and Subtraction: There are 235 books in a library. On Monday, 123 books are taken out. On Tuesday, 56 books are brought back. How many books are there now?

28. Mixing Multiplication and Division: There is a group of 10 people who are ordering pizza. If each person gets 2 slices and each pizza has 4 slices, how many pizzas should they order?

29. Mixing Multiplication, Addition and Subtraction: Lana has 2 bags with 2 marbles in each bag. Markus has 2 bags with 3 marbles in each bag. How many more marbles does Markus have?

30. Mixing Division, Addition and Subtraction: Lana has 3 bags with the same amount of marbles in them, totaling 12 marbles. Markus has 3 bags with the same amount of marbles in them, totaling 18 marbles. How many more marbles does Markus have in each bag?

Ordering and number sense word problems

31. Counting to Preview Multiplication: There are 2 chalkboards in your classroom. If each chalkboard needs 2 pieces of chalk, how many pieces do you need in total?

32. Counting to Preview Division: There are 3 chalkboards in your classroom. Each chalkboard has 2 pieces of chalk. This means there are 6 pieces of chalk in total. If you take 1 piece of chalk away from each chalkboard, how many will there be in total?

33. Composing Numbers: What number is 6 tens and 10 ones?

34. Guessing Numbers: I have a 7 in the tens place. I have an even number in the ones place. I am lower than 74. What number am I?

35. Finding the Order: In the hockey game, Mitchell scored more points than William but fewer points than Auston. Who scored the most points? Who scored the fewest points?

Fractions word problems

A student is drawing on a notebook, holding a pencil.

Best for: 3rd grade, 4th grade, 5th grade, 6th grade

36. Finding Fractions of a Group: Julia went to 10 houses on her street for Halloween. 5 of the houses gave her a chocolate bar. What fraction of houses on Julia’s street gave her a chocolate bar?

37. Finding Unit Fractions: Heather is painting a portrait of her best friend, Lisa. To make it easier, she divides the portrait into 6 equal parts. What fraction represents each part of the portrait?

38. Adding Fractions with Like Denominators: Noah walks ⅓ of a kilometre to school each day. He also walks ⅓ of a kilometre to get home after school. How many kilometres does he walk in total?

39. Subtracting Fractions with Like Denominators: Last week, Whitney counted the number of juice boxes she had for school lunches. She had ⅗ of a case. This week, it’s down to ⅕ of a case. How much of the case did Whitney drink?

40. Adding Whole Numbers and Fractions with Like Denominators: At lunchtime, an ice cream parlor served 6 ¼ scoops of chocolate ice cream, 5 ¾ scoops of vanilla and 2 ¾ scoops of strawberry. How many scoops of ice cream did the parlor serve in total?

41. Subtracting Whole Numbers and Fractions with Like Denominators: For a party, Jaime had 5 ⅓ bottles of cola for her friends to drink. She drank ⅓ of a bottle herself. Her friends drank 3 ⅓. How many bottles of cola does Jaime have left?

42. Adding Fractions with Unlike Denominators: Kevin completed ½ of an assignment at school. When he was home that evening, he completed ⅚ of another assignment. How many assignments did Kevin complete?

43. Subtracting Fractions with Unlike Denominators: Packing school lunches for her kids, Patty used ⅞ of a package of ham. She also used ½ of a package of turkey. How much more ham than turkey did Patty use?

44. Multiplying Fractions: During gym class on Wednesday, the students ran for ¼ of a kilometre. On Thursday, they ran ½ as many kilometres as on Wednesday. How many kilometres did the students run on Thursday? Write your answer as a fraction.

45. Dividing Fractions: A clothing manufacturer uses ⅕ of a bottle of colour dye to make one pair of pants. The manufacturer used ⅘ of a bottle yesterday. How many pairs of pants did the manufacturer make?

46. Multiplying Fractions with Whole Numbers: Mark drank ⅚ of a carton of milk this week. Frank drank 7 times more milk than Mark. How many cartons of milk did Frank drink? Write your answer as a fraction, or as a whole or mixed number.

Decimals word problems

Best for: 4th grade, 5th grade

47. Adding Decimals: You have 2.6 grams of yogurt in your bowl and you add another spoonful of 1.3 grams. How much yogurt do you have in total?

48. Subtracting Decimals: Gemma had 25.75 grams of frosting to make a cake. She decided to use only 15.5 grams of the frosting. How much frosting does Gemma have left?

49. Multiplying Decimals with Whole Numbers: Marshall walks a total of 0.9 kilometres to and from school each day. After 4 days, how many kilometres will he have walked?

50. Dividing Decimals by Whole Numbers: To make the Leaning Tower of Pisa from spaghetti, Mrs. Robinson bought 2.5 kilograms of spaghetti. Her students were able to make 10 leaning towers in total. How many kilograms of spaghetti does it take to make 1 leaning tower?

51. Mixing Addition and Subtraction of Decimals: Rocco has 1.5 litres of orange soda and 2.25 litres of grape soda in his fridge. Antonio has 1.15 litres of orange soda and 0.62 litres of grape soda. How much more soda does Rocco have than Angelo?

52. Mixing Multiplication and Division of Decimals: 4 days a week, Laura practices martial arts for 1.5 hours. Considering a week is 7 days, what is her average practice time per day each week?

Comparing and sequencing word problems

Four students are sitting together and discussing math questions

Best for: Kindergarten, 1st grade, 2nd grade

53. Comparing 1-Digit Integers: You have 3 apples and your friend has 5 apples. Who has more?

54. Comparing 2-Digit Integers: You have 50 candies and your friend has 75 candies. Who has more?

55. Comparing Different Variables: There are 5 basketballs on the playground. There are 7 footballs on the playground. Are there more basketballs or footballs?

56. Sequencing 1-Digit Integers: Erik has 0 stickers. Every day he gets 1 more sticker. How many days until he gets 3 stickers?

57. Skip-Counting by Odd Numbers: Natalie began at 5. She skip-counted by fives. Could she have said the number 20?

58. Skip-Counting by Even Numbers: Natasha began at 0. She skip-counted by eights. Could she have said the number 36?

59. Sequencing 2-Digit Numbers: Each month, Jeremy adds the same number of cards to his baseball card collection. In January, he had 36. 48 in February. 60 in March. How many baseball cards will Jeremy have in April?

Time word problems

66. Converting Hours into Minutes: Jeremy helped his mom for 1 hour. For how many minutes was he helping her?

69. Adding Time: If you wake up at 7:00 a.m. and it takes you 1 hour and 30 minutes to get ready and walk to school, at what time will you get to school?

70. Subtracting Time: If a train departs at 2:00 p.m. and arrives at 4:00 p.m., how long were passengers on the train for?

71. Finding Start and End Times: Rebecca left her dad’s store to go home at twenty to seven in the evening. Forty minutes later, she was home. What time was it when she arrived home?

Money word problems

Best for: 1st grade, 2nd grade, 3rd grade, 4th grade, 5th grade

60. Adding Money: Thomas and Matthew are saving up money to buy a video game together. Thomas has saved $30. Matthew has saved $35. How much money have they saved up together in total?

61. Subtracting Money: Thomas has $80 saved up. He uses his money to buy a video game. The video game costs $67. How much money does he have left?

62. Multiplying Money: Tim gets $5 for delivering the paper. How much money will he have after delivering the paper 3 times?

63. Dividing Money: Robert spent $184.59 to buy 3 hockey sticks. If each hockey stick was the same price, how much did 1 cost?

64. Adding Money with Decimals: You went to the store and bought gum for $1.25 and a sucker for $0.50. How much was your total?

65. Subtracting Money with Decimals: You went to the store with $5.50. You bought gum for $1.25, a chocolate bar for $1.15 and a sucker for $0.50. How much money do you have left?

67. Applying Proportional Relationships to Money: Jakob wants to invite 20 friends to his birthday, which will cost his parents $250. If he decides to invite 15 friends instead, how much money will it cost his parents? Assume the relationship is directly proportional.

68. Applying Percentages to Money: Retta put $100.00 in a bank account that gains 20% interest annually. How much interest will be accumulated in 1 year? And if she makes no withdrawals, how much money will be in the account after 1 year?

Physical measurement word problems

A girl is doing math practice

Best for: 1st grade, 2nd grade, 3rd grade, 4th grade

72. Comparing Measurements: Cassandra’s ruler is 22 centimetres long. April’s ruler is 30 centimetres long. How many centimetres longer is April’s ruler?

73. Contextualizing Measurements: Picture a school bus. Which unit of measurement would best describe the length of the bus? Centimetres, metres or kilometres?

74. Adding Measurements: Micha’s dad wants to try to save money on gas, so he has been tracking how much he uses. Last year, Micha’s dad used 100 litres of gas. This year, her dad used 90 litres of gas. How much gas did he use in total for the two years?

75. Subtracting Measurements: Micha’s dad wants to try to save money on gas, so he has been tracking how much he uses. Over the past two years, Micha’s dad used 200 litres of gas. This year, he used 100 litres of gas. How much gas did he use last year?

A tablet showing an example of Prodigy Math's battle gameplay.

76. Multiplying Volume and Mass: Kiera wants to make sure she has strong bones, so she drinks 2 litres of milk every week. After 3 weeks, how many litres of milk will Kiera drink?

77. Dividing Volume and Mass: Lillian is doing some gardening, so she bought 1 kilogram of soil. She wants to spread the soil evenly between her 2 plants. How much will each plant get?

78. Converting Mass: Inger goes to the grocery store and buys 3 squashes that each weigh 500 grams. How many kilograms of squash did Inger buy?

79. Converting Volume: Shad has a lemonade stand and sold 20 cups of lemonade. Each cup was 500 millilitres. How many litres did Shad sell in total?

80. Converting Length: Stacy and Milda are comparing their heights. Stacy is 1.5 meters tall. Milda is 10 centimetres taller than Stacy. What is Milda’s height in centimetres?

81. Understanding Distance and Direction: A bus leaves the school to take students on a field trip. The bus travels 10 kilometres south, 10 kilometres west, another 5 kilometres south and 15 kilometres north. To return to the school, in which direction does the bus have to travel? How many kilometres must it travel in that direction?

Ratios and percentages word problems

Best for: 4th grade, 5th grade, 6th grade

82. Finding a Missing Number: The ratio of Jenny’s trophies to Meredith’s trophies is 7:4. Jenny has 28 trophies. How many does Meredith have?

83. Finding Missing Numbers: The ratio of Jenny’s trophies to Meredith’s trophies is 7:4. The difference between the numbers is 12. What are the numbers?

84. Comparing Ratios: The school’s junior band has 10 saxophone players and 20 trumpet players. The school’s senior band has 18 saxophone players and 29 trumpet players. Which band has the higher ratio of trumpet to saxophone players?

85. Determining Percentages: Mary surveyed students in her school to find out what their favourite sports were. Out of 1,200 students, 455 said hockey was their favourite sport. What percentage of students said hockey was their favourite sport?

86. Determining Percent of Change: A decade ago, Oakville’s population was 67,624 people. Now, it is 190% larger. What is Oakville’s current population?

87. Determining Percents of Numbers: At the ice skate rental stand, 60% of 120 skates are for boys. If the rest of the skates are for girls, how many are there?

88. Calculating Averages: For 4 weeks, William volunteered as a helper for swimming classes. The first week, he volunteered for 8 hours. He volunteered for 12 hours in the second week, and another 12 hours in the third week. The fourth week, he volunteered for 9 hours. For how many hours did he volunteer per week, on average?

Probability and data relationships word problems

Two students are calculating on a whiteboard

Best for: 4th grade, 5th grade, 6th grade, 7th grade

89. Understanding the Premise of Probability: John wants to know his class’s favourite TV show, so he surveys all of the boys. Will the sample be representative or biased?

90. Understanding Tangible Probability: The faces on a fair number die are labelled 1, 2, 3, 4, 5 and 6. You roll the die 12 times. How many times should you expect to roll a 1?

91. Exploring Complementary Events: The numbers 1 to 50 are in a hat. If the probability of drawing an even number is 25/50, what is the probability of NOT drawing an even number? Express this probability as a fraction.

92. Exploring Experimental Probability: A pizza shop has recently sold 15 pizzas. 5 of those pizzas were pepperoni. Answering with a fraction, what is the experimental probability that he next pizza will be pepperoni?

93. Introducing Data Relationships: Maurita and Felice each take 4 tests. Here are the results of Maurita’s 4 tests: 4, 4, 4, 4. Here are the results for 3 of Felice’s 4 tests: 3, 3, 3. If Maurita’s mean for the 4 tests is 1 point higher than Felice’s, what’s the score of Felice’s 4th test?

94. Introducing Proportional Relationships: Store A is selling 7 pounds of bananas for $7.00. Store B is selling 3 pounds of bananas for $6.00. Which store has the better deal?

95. Writing Equations for Proportional Relationships: Lionel loves soccer, but has trouble motivating himself to practice. So, he incentivizes himself through video games. There is a proportional relationship between the amount of drills Lionel completes, in x , and for how many hours he plays video games, in y . When Lionel completes 10 drills, he plays video games for 30 minutes. Write the equation for the relationship between x and y .

Geometry word problems

Best for: 4th grade, 5th grade, 6th grade, 7th grade, 8th grade

96. Introducing Perimeter:  The theatre has 4 chairs in a row. There are 5 rows. Using rows as your unit of measurement, what is the perimeter?

97. Introducing Area: The theatre has 4 chairs in a row. There are 5 rows. How many chairs are there in total?

98. Introducing Volume: Aaron wants to know how much candy his container can hold. The container is 20 centimetres tall, 10 centimetres long and 10 centimetres wide. What is the container’s volume?

99. Understanding 2D Shapes: Kevin draws a shape with 4 equal sides. What shape did he draw?

100. Finding the Perimeter of 2D Shapes: Mitchell wrote his homework questions on a piece of square paper. Each side of the paper is 8 centimetres. What is the perimeter?

101. Determining the Area of 2D Shapes: A single trading card is 9 centimetres long by 6 centimetres wide. What is its area?

102. Understanding 3D Shapes: Martha draws a shape that has 6 square faces. What shape did she draw?

103. Determining the Surface Area of 3D Shapes: What is the surface area of a cube that has a width of 2cm, height of 2 cm and length of 2 cm?

104. Determining the Volume of 3D Shapes: Aaron’s candy container is 20 centimetres tall, 10 centimetres long and 10 centimetres wide. Bruce’s container is 25 centimetres tall, 9 centimetres long and 9 centimetres wide. Find the volume of each container. Based on volume, whose container can hold more candy?

105. Identifying Right-Angled Triangles: A triangle has the following side lengths: 3 cm, 4 cm and 5 cm. Is this triangle a right-angled triangle?

106. Identifying Equilateral Triangles: A triangle has the following side lengths: 4 cm, 4 cm and 4 cm. What kind of triangle is it?

107. Identifying Isosceles Triangles: A triangle has the following side lengths: 4 cm, 5 cm and 5 cm. What kind of triangle is it?

108. Identifying Scalene Triangles: A triangle has the following side lengths: 4 cm, 5 cm and 6 cm. What kind of triangle is it?

109. Finding the Perimeter of Triangles: Luigi built a tent in the shape of an equilateral triangle. The perimeter is 21 metres. What is the length of each of the tent’s sides?

110. Determining the Area of Triangles: What is the area of a triangle with a base of 2 units and a height of 3 units?

111. Applying Pythagorean Theorem: A right triangle has one non-hypotenuse side length of 3 inches and the hypotenuse measures 5 inches. What is the length of the other non-hypotenuse side?

112. Finding a Circle’s Diameter: Jasmin bought a new round backpack. Its area is 370 square centimetres. What is the round backpack’s diameter?

113. Finding a Circle's Area: Captain America’s circular shield has a diameter of 76.2 centimetres. What is the area of his shield?

114. Finding a Circle’s Radius: Skylar lives on a farm, where his dad keeps a circular corn maze. The corn maze has a diameter of 2 kilometres. What is the maze’s radius?

Variables word problems

A hand is calculating math problem on a blacboard

Best for: 6th grade, 7th grade, 8th grade

115. Identifying Independent and Dependent Variables: Victoria is baking muffins for her class. The number of muffins she makes is based on how many classmates she has. For this equation, m is the number of muffins and c is the number of classmates. Which variable is independent and which variable is dependent?

116. Writing Variable Expressions for Addition: Last soccer season, Trish scored g goals. Alexa scored 4 more goals than Trish. Write an expression that shows how many goals Alexa scored.

117. Writing Variable Expressions for Subtraction: Elizabeth eats a healthy, balanced breakfast b times a week. Madison sometimes skips breakfast. In total, Madison eats 3 fewer breakfasts a week than Elizabeth. Write an expression that shows how many times a week Madison eats breakfast.

118. Writing Variable Expressions for Multiplication: Last hockey season, Jack scored g goals. Patrik scored twice as many goals than Jack. Write an expression that shows how many goals Patrik scored.

119. Writing Variable Expressions for Division: Amanda has c chocolate bars. She wants to distribute the chocolate bars evenly among 3 friends. Write an expression that shows how many chocolate bars 1 of her friends will receive.

120. Solving Two-Variable Equations: This equation shows how the amount Lucas earns from his after-school job depends on how many hours he works: e = 12h . The variable h represents how many hours he works. The variable e represents how much money he earns. How much money will Lucas earn after working for 6 hours?

How to easily make your own math word problems & word problems worksheets

Two teachers are discussing math with a pen and a notebook

Armed with 120 examples to spark ideas, making your own math word problems can engage your students and ensure alignment with lessons. Do:

  • Link to Student Interests:  By framing your word problems with student interests, you’ll likely grab attention. For example, if most of your class loves American football, a measurement problem could involve the throwing distance of a famous quarterback.
  • Make Questions Topical:  Writing a word problem that reflects current events or issues can engage students by giving them a clear, tangible way to apply their knowledge.
  • Include Student Names:  Naming a question’s characters after your students is an easy way make subject matter relatable, helping them work through the problem.
  • Be Explicit:  Repeating keywords distills the question, helping students focus on the core problem.
  • Test Reading Comprehension:  Flowery word choice and long sentences can hide a question’s key elements. Instead, use concise phrasing and grade-level vocabulary.
  • Focus on Similar Interests:  Framing too many questions with related interests -- such as football and basketball -- can alienate or disengage some students.
  • Feature Red Herrings:  Including unnecessary information introduces another problem-solving element, overwhelming many elementary students.

A key to differentiated instruction , word problems that students can relate to and contextualize will capture interest more than generic and abstract ones.

Final thoughts about math word problems

You’ll likely get the most out of this resource by using the problems as templates, slightly modifying them by applying the above tips. In doing so, they’ll be more relevant to -- and engaging for -- your students.

Regardless, having 120 curriculum-aligned math word problems at your fingertips should help you deliver skill-building challenges and thought-provoking assessments.

The result?

A greater understanding of how your students process content and demonstrate understanding, informing your ongoing teaching approach.

  • 1st Grade Math
  • 2nd Grade Math
  • 3rd Grade Math
  • 4th Grade Math
  • 5th Grade Math
  • 6th Grade Math
  • 7th Grade Math
  • 8th Grade Math
  • Knowledge Base
  • Math for kids

10 Strategies for Problem Solving in Math

May 19, 2022

8 minutes read

strategies for problem solving in math

When faced with problem-solving, children often get stuck. Word puzzles and math questions with an unknown variable, like x, usually confuse them. Therefore, this article discusses math strategies and how your students may use them since instructors often have to lead students through this problem-solving maze.

What Are Problem Solving Strategies in Math?

If you want to fix a problem, you need a solid plan. Math strategies for problem solving are ways of tackling math in a way that guarantees better outcomes. These strategies simplify math for kids so that less time is spent figuring out the problem. Both those new to mathematics and those more knowledgeable about the subject may benefit from these methods.

There are several methods to apply problem-solving procedures in math, and each strategy is different. While none of these methods failsafe, they may help your student become a better problem solver, particularly when paired with practice and examples. The more math problems kids tackle, the more math problem solving skills they acquire, and practice is the key.

Strategies for Problem-solving in Math

Even if a student is not a math wiz, a suitable solution to mathematical problems in math may help them discover answers. There is no one best method for helping students solve arithmetic problems, but the following ten approaches have shown to be very effective.

Understand the Problem

Understanding the nature of math problems is a prerequisite to solving them. They need to specify what kind of issue it is ( fraction problem , word problem, quadratic equation, etc.). Searching for keywords in the math problem, revisiting similar questions, or consulting the internet are all great ways to strengthen their grasp of the material. This step keeps the pupil on track.

1:1 Math Lessons

Want to raise a genius? Start learning Math with Brighterly

Guess and check.

One of the time-intensive strategies for resolving mathematical problems is the guess and check method. In this approach, students keep guessing until they get the answer right.

After assuming how to solve a math issue, students should reintroduce that assumption to check for correctness. While the approach may appear cumbersome, it is typically successful in revealing patterns in a child’s thought process.

Work It Out

Encourage pupils to record their thinking process as they go through a math problem. Since this technique requires an initial comprehension of the topic, it serves as a self-monitoring method for mathematics students. If they immediately start solving the problem, they risk making mistakes.

Students may keep track of their ideas and fix their math problems as they go along using this method. A youngster may still need you to explain their methods of solving the arithmetic questions on the extra page. This confirmation stage etches the steps they took to solve the problem in their minds.

Work Backwards

In mathematics, a fresh perspective is sometimes the key to a successful solution. Young people need to know that the ability to recreate math problems is valuable in many professional fields, including project management and engineering.

Students may better prepare for difficulties in real-world circumstances by using the “Work Backwards” technique. The end product may be used as a start-off point to identify the underlying issue.

In most cases, a visual representation of a math problem may help youngsters understand it better. Some of the most helpful math tactics for kids include having them play out the issue and picture how to solve it.

One way to visualize a workout is to use a blank piece of paper to draw a picture or make tally marks. Students might also use a marker and a whiteboard to draw as they demonstrate the technique before writing it down.

Find a Pattern

Kids who use pattern recognition techniques can better grasp math concepts and retain formulae. The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition.

Students may use this strategy to spot patterns and fill in the blanks. Over time, this strategy will help kids answer math problems quickly.

When faced with a math word problem, it might be helpful to ask, “What are some possible solutions to this issue?” It encourages you to give the problem more thought, develop creative solutions, and prevent you from being stuck in a rut. So, tell the pupils to think about the math problems and not just go with the first solution that comes to mind.

Draw a Picture or Diagram

Drawing a picture of a math problem can help kids understand how to solve it, just like picturing it can help them see it. Shapes or numbers could be used to show the forms to keep things easy. Kids might learn how to use dots or letters to show the parts of a pattern or graph if you teach them.

Charts and graphs can be useful even when math isn’t involved. Kids can draw pictures of the ideas they read about to help them remember them after they’ve learned them. The plan for how to solve the mathematical problem will help kids understand what the problem is and how to solve it.

Trial and Error Method

The trial and error method may be one of the most common problem solving strategies for kids to figure out how to solve problems. But how well this strategy is used will determine how well it works. Students have a hard time figuring out math questions if they don’t have clear formulas or instructions.

They have a better chance of getting the correct answer, though, if they first make a list of possible answers based on rules they already know and then try each one. Don’t be too quick to tell kids they shouldn’t learn by making mistakes.

Review Answers with Peers

It’s fun to work on your math skills with friends by reviewing the answers to math questions together. If different students have different ideas about how to solve the same problem, get them to share their thoughts with the class.

During class time, kids’ ways of working might be compared. Then, students can make their points stronger by fixing these problems.

Check out the Printable Math Worksheets for Your Kids!

There are different ways to solve problems that can affect how fast and well students do on math tests. That’s why they need to learn the best ways to do things. If students follow the steps in this piece, they will have better experiences with solving math questions.

Author Jessica Kaminski

Jessica is a a seasoned math tutor with over a decade of experience in the field. With a BSc and Master’s degree in Mathematics, she enjoys nurturing math geniuses, regardless of their age, grade, and skills. Apart from tutoring, Jessica blogs at Brighterly. She also has experience in child psychology, homeschooling and curriculum consultation for schools and EdTech websites.

Previous Article Image

As adults, we take numbers for granted, but preschoolers and kindergartners have no idea what these symbols mean. Yet, we often demand instant understanding and flawless performance when we start teaching numbers to our children. If you don’t have a clue about how to teach numbers for kids, browse no more. You will get four […]

Previous Article Image

Teaching children is a complex process because they require more attention than an adult person. You may need to employ different teaching strategies when teaching kids. But what are teaching strategies? Teaching strategies are the methods to ensure your kids or students learn efficiently. But not all strategies yield similarly, and if the one you […]

Book 1 to 1 Math Lesson

Image -Book 1 to 1 Math Lesson

Kid’s grade

After-School Math Program Boost Your Child's Math Abilities! Ideal for 1st-12th Graders, Perfectly Synced with School Curriculum!

After-School Math Program

After-School Math Program

Related posts.

How to Teach Division

How to Teach Division – A Simple Step by Step Guide

Division is fourth among the first four basic math operations that a child should learn. These math operations include adding, subtracting, multiplying, and dividing. They form the basis of all math problems. Children do not necessarily need to know the first three operations to understand division, although, as we will see, they are crucial. Teaching […]

Apr 29, 2022

example of problem solving in math

10 Proven Ways To Help Your Kids With Math

Is homework time turning into a battleground of multiplication tables? You’re not alone. Many parents struggle in those situations, feeling flashbacks to their own school struggles. That’s why we are here to help you. Read this article to discover 10 unique ways to help kids learn math. How to help my child with math at […]

Mar 29, 2024

Teach Your Children How to Read Time

Teach Your Children How to Read Time: A Comprehensive Teaching Guide

As we age, we see time as an inherent and integral component of our everyday existence. However, kids often find this idea complex. Generally, it takes children a few years to master essential time-telling skills, let alone make precise forecasts and projections. In this article, you will learn all about teaching kids how to read […]

Apr 05, 2022

We use cookies to help give you the best service possible. If you continue to use the website we will understand that you consent to the Terms and Conditions. These cookies are safe and secure. We will not share your history logs with third parties. Learn More

Math Solver

Geogebra math solver.

Get accurate solutions and step-by-step explanations for algebra and other math problems, while enhancing your problem-solving skills!

person with long dark hair sit at a table working at a laptop. 3x+2 and x² equations float in the air signifying that she is working on math problems

Solving Equations

What is an equation.

An equation says that two things are equal. It will have an equals sign "=" like this:

That equations says:

what is on the left (x − 2)  equals  what is on the right (4)

So an equation is like a statement " this equals that "

What is a Solution?

A Solution is a value we can put in place of a variable (such as x ) that makes the equation true .

Example: x − 2 = 4

When we put 6 in place of x we get:

which is true

So x = 6 is a solution.

How about other values for x ?

  • For x=5 we get "5−2=4" which is not true , so x=5 is not a solution .
  • For x=9 we get "9−2=4" which is not true , so x=9 is not a solution .

In this case x = 6 is the only solution.

You might like to practice solving some animated equations .

More Than One Solution

There can be more than one solution.

Example: (x−3)(x−2) = 0

When x is 3 we get:

(3−3)(3−2) = 0 × 1 = 0

And when x is 2 we get:

(2−3)(2−2) = (−1) × 0 = 0

which is also true

So the solutions are:

x = 3 , or x = 2

When we gather all solutions together it is called a Solution Set

The above solution set is: {2, 3}

Solutions Everywhere!

Some equations are true for all allowed values and are then called Identities

Example: sin(−θ) = −sin(θ) is one of the Trigonometric Identities

Let's try θ = 30°:

sin(−30°) = −0.5 and

−sin(30°) = −0.5

So it is true for θ = 30°

Let's try θ = 90°:

sin(−90°) = −1 and

−sin(90°) = −1

So it is also true for θ = 90°

Is it true for all values of θ ? Try some values for yourself!

How to Solve an Equation

There is no "one perfect way" to solve all equations.

A Useful Goal

But we often get success when our goal is to end up with:

x = something

In other words, we want to move everything except "x" (or whatever name the variable has) over to the right hand side.

Example: Solve 3x−6 = 9

Now we have x = something ,

and a short calculation reveals that x = 5

Like a Puzzle

In fact, solving an equation is just like solving a puzzle. And like puzzles, there are things we can (and cannot) do.

Here are some things we can do:

  • Add or Subtract the same value from both sides
  • Clear out any fractions by Multiplying every term by the bottom parts
  • Divide every term by the same nonzero value
  • Combine Like Terms
  • Expanding (the opposite of factoring) may also help
  • Recognizing a pattern, such as the difference of squares
  • Sometimes we can apply a function to both sides (e.g. square both sides)

Example: Solve √(x/2) = 3

And the more "tricks" and techniques you learn the better you will get.

Special Equations

There are special ways of solving some types of equations. Learn how to ...

  • solve Quadratic Equations
  • solve Radical Equations
  • solve Equations with Sine, Cosine and Tangent

Check Your Solutions

You should always check that your "solution" really is a solution.

How To Check

Take the solution(s) and put them in the original equation to see if they really work.

Example: solve for x:

2x x − 3 + 3 = 6 x − 3     (x≠3)

We have said x≠3 to avoid a division by zero.

Let's multiply through by (x − 3) :

2x + 3(x−3) = 6

Bring the 6 to the left:

2x + 3(x−3) − 6 = 0

Expand and solve:

2x + 3x − 9 − 6 = 0

5x − 15 = 0

5(x − 3) = 0

Which can be solved by having x=3

Let us check x=3 using the original question:

2 × 3 3 − 3 + 3  =   6 3 − 3

Hang On: 3 − 3 = 0 That means dividing by Zero!

And anyway, we said at the top that x≠3 , so ...

x = 3 does not actually work, and so:

There is No Solution!

That was interesting ... we thought we had found a solution, but when we looked back at the question we found it wasn't allowed!

This gives us a moral lesson:

"Solving" only gives us possible solutions, they need to be checked!

  • Note down where an expression is not defined (due to a division by zero, the square root of a negative number, or some other reason)
  • Show all the steps , so it can be checked later (by you or someone else)

[FREE] Fun Math Games & Activities Packs

Always on the lookout for fun math games and activities in the classroom? Try our ready-to-go printable packs for students to complete independently or with a partner!

In order to access this I need to be confident with:

Ratio problem solving

Here you will learn about ratio problem solving, including how to set up and solve problems. You will also look at real life ratio word problems.

Students will first learn about ratio problem solving as part of ratio and proportion in 6 th grade and 7 th grade.

What is ratio problem solving?

Ratio problem solving is a collection of ratio and proportion word problems that link together aspects of ratio and proportion into more real life questions. This requires you to be able to take key information from a question and use your knowledge of ratios (and other areas of the curriculum) to solve the problem.

A ratio is a relationship between two or more quantities. They are usually written in the form a : b where a and b are two quantities. When problem solving with a ratio, the key facts that you need to know are:

  • What is the ratio involved?
  • What order are the quantities in the ratio?
  • What is the total amount / what is the part of the total amount known?
  • What are you trying to calculate ?

As with all problem solving, there is not one unique method to solve a problem. However, this does not mean that there aren’t similarities between different problems that you can use to help you find an answer.

The key to any problem solving is being able to draw from prior knowledge and use the correct piece of information to allow you to get to the next step and then the solution.

Let’s look at a couple of methods you can use when given certain pieces of information.

When solving ratio word problems, it is very important that you are able to use ratios. This includes being able to use ratio notation.

For example, Charlie and David share some sweets in the ratio of 3 : 5. This means that for every 3 sweets Charlie gets, David receives 5 sweets.

Charlie and David share 40 sweets, how many sweets do they each get?

You use the ratio to divide 40 sweets into 8 equal parts.

40 \div 8=5

Then you multiply each part of the ratio by 5.

3\times 5:5\times 5=15 : 25

This means that Charlie will get 15 sweets and David will get 25 sweets.

There can be ratio word problems involving different operations and types of numbers.

Here are some examples of different types of ratio word problems:

What is ratio problem solving?

Common Core State Standards

How does this relate to 6 th and 7 th grade math?

  • Grade 6 – Ratios and Proportional Relationships (6.RP.A.3) Use ratio and rate reasoning to solve real-world and mathematical problems, for example, by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
  • Grade 7 – Ratio and Proportional Relationships (7.RP.A.2) Recognize and represent proportional relationships between quantities.

How to do ratio problem solving

In order to solve problems including ratios:

Identify key information within the question.

Know what you are trying to calculate.

Use prior knowledge to structure a solution.

[FREE] Ratio Check for Understanding Quiz (Grade 6 and 7)

[FREE] Ratio Check for Understanding Quiz (Grade 6 and 7)

Use this quiz to check your 6th and 7th grade students’ understanding of ratios. 10+ questions with answers covering a range of 6th and 7th grade ratio topics to identify areas of strength and support!

Ratio problem solving examples

Example 1: part:part ratio.

Within a school, the total number of students who have school lunches to packed lunches is 5 : 7. If 465 students have a school lunch, how many students have a packed lunch?

Within a school, the number of students who have school lunches to packed lunches is \textbf{5 : 7} . If \textbf{465} students have a school lunch, how many students have a packed lunch?

Here you can see that the ratio is 5 : 7, where the first part of the ratio represents school lunches (S) and the second part of the ratio represents packed lunches (P).

You could write this as:

Ratio Problem Solving Image 2 US

Where the letter above each part of the ratio links to the question.

You know that 465 students have school lunch.

2 Know what you are trying to calculate.

From the question, you need to calculate the number of students that have a packed lunch, so you can now write a ratio below the ratio 5 : 7 that shows that you have 465 students who have school lunches, and p students who have a packed lunch.

Ratio Problem Solving Image 3 US

You need to find the value of p.

3 Use prior knowledge to structure a solution.

You are looking for an equivalent ratio to 5 : 7. So you need to calculate the multiplier.

You do this by dividing the known values on the same side of the ratio by each other.

465\div 5 = 93

This means to create an equivalent ratio, you can multiply both sides by 93.

Ratio Problem Solving Image 4 US

So the value of p is equal to 7 \times 93=651.

There are 651 students that have a packed lunch.

Example 2: unit conversions

The table below shows the currency conversions on one day.

Use the table above to convert £520 \; (GBP) to Euros € \; (EUR).

Use the table above to convert \bf{£520} \textbf{ (GBP)} to Euros \textbf{€ } \textbf{(EUR)}.

The two values in the table that are important are \text{GBP} and EUR. Writing this as a ratio, you can state,

Ratio Problem Solving Image 7 US

You know that you have £520.

You need to convert GBP to EUR and so you are looking for an equivalent ratio with GBP=£520 and EUR=E.

Ratio Problem Solving Image 8 US

To get from 1 to 520, you multiply by 520 and so to calculate the number of Euros for £520, you need to multiply 1.17 by 520.

1.17 \times 520=608.4

So £520=€608.40.

Example 3: writing a ratio 1 : n

Liquid plant food is sold in concentrated bottles. The instructions on the bottle state that the 500 \, ml of concentrated plant food must be diluted into 2 \, l of water. Express the ratio of plant food to water, respectively, in the ratio 1 : n.

Liquid plant food is sold in concentrated bottles. The instructions on the bottle state that the \bf{500 \, ml} of concentrated plant food must be diluted into \bf{2 \, l} of water. Express the ratio of plant food to water respectively as a ratio in the form 1 : n.

Using the information in the question, you can now state the ratio of plant food to water as 500 \, ml : 2 \, l. As you can convert liters into milliliters, you could convert 2 \, l into milliliters by multiplying it by 1000.

2 \, l=2000 \, ml

So you can also express the ratio as 500 : 2000 which will help you in later steps.

You want to simplify the ratio 500 : 2000 into the form 1:n.

You need to find an equivalent ratio where the first part of the ratio is equal to 1. You can only do this by dividing both parts of the ratio by 500 (as 500 \div 500=1 ).

Ratio Problem Solving Image 9 US

So the ratio of plant food to water in the form 1 : n is 1 : 4.

Example 4: forming and solving an equation

Three siblings, Josh, Kieran and Luke, receive an allowance each week proportional to their age. Kieran is 3 years older than Josh. Luke is twice Josh’s age. If Josh receives \$ 8 allowance, how much money do the three siblings receive in total?

Three siblings, Josh, Kieran and Luke, receive an allowance each week proportional to their ages. Kieran is \bf{3} years older than Josh. Luke is twice Josh’s age. If Luke receives \bf{\$ 8} allowance, how much money do the three siblings receive in total?

You can represent the ages of the three siblings as a ratio. Taking Josh as x years old, Kieran would therefore be x+3 years old, and Luke would be 2x years old. As a ratio, you have:

Ratio Problem Solving Image 10 US

You also know that Luke receives \$ 8.

You want to calculate the total amount of allowance for the three siblings.

You need to find the value of x first. As Luke receives \$ 8, you can state the equation 2x=8 and so x=4.

Now you know the value of x, you can substitute this value into the other parts of the ratio to obtain how much money the siblings each receive.

Ratio Problem Solving Image 11 US

The total amount of allowance is therefore 4+7+8=\$ 19.

Example 5: simplifying ratios

Below is a bar chart showing the results for the colors of counters in a bag.

Ratio Problem Solving Image 12 US

Express this data as a ratio in its simplest form.

From the bar chart, you can read the frequencies to create the ratio.

Ratio Problem Solving Image 13 US

You need to simplify this ratio.

To simplify a ratio, you need to find the highest common factor of all the parts of the ratio. By listing the factors of each number, you can quickly see that the highest common factor is 2.

\begin{aligned} & 12 = 1, {\color{red}2}, 3, 4, 6, 12 \\\\ & 16 = 1, {\color{red}2}, 4, 8, 16 \\\\ & 10 = 1, {\color{red}2}, 5, 10 \end{aligned}

HCF(12,16,10) = 2

Dividing all the parts of the ratio by 2, you get

Ratio Problem Solving Image 14 US

Our solution is 6 : 8 : 5.

Example 6: combining two ratios

Glass is made from silica, lime and soda. The ratio of silica to lime is 15 : 2. The ratio of silica to soda is 5 : 1. State the ratio of silica:lime:soda.

Glass is made from silica, lime and soda. The ratio of silica to lime is \bf{15 : 2}. The ratio of silica to soda is \bf{5 : 1}. State the ratio of silica:lime:soda.

You know the two ratios

Ratio Problem Solving Image 15 US

You are trying to find the ratio of all 3 components: silica, lime and soda.

Using equivalent ratios you can say that the ratio of Silica:Soda is equivalent to 15 : 3 by multiplying the ratio by 3.

Ratio Problem Solving Image 16 US

You now have the same amount of silica in both ratios and so you can now combine them to get the ratio 15 : 2 : 3.

Ratio Problem Solving Image 17 US

Example 7: using bar modeling

India and Beau share some popcorn in the ratio of 5 : 2. If India has 75 \, g more popcorn than Beau, what was the original quantity?

India and Beau share some popcorn in the ratio of \bf{5 : 2} . If India has \bf{75 \, g} more popcorn than Beau, what was the original quantity?

You know that the initial ratio is 5 : 2 and that India has three more parts than Beau.

You want to find the original quantity.

Drawing a bar model of this problem, you have:

Ratio Problem Solving Image 18 US

Where India has 5 equal shares, and Beau has 2 equal shares.

Each share is the same value and so if you can find out this value, you can then find the total quantity.

From the question, India’s share is 75 \, g more than Beau’s share so you can write this on the bar model.

Ratio Problem Solving Image 19 US

You can find the value of one share by working out 75 \div 3=25 \, g.

Ratio Problem Solving Image 20 US

You can fill in each share to be 25 \, g.

Ratio Problem Solving Image 21 US

Adding up each share, you get

India=5 \times 25=125 \, g

Beau=2 \times 25=50 \, g

The total amount of popcorn was 125+50=175 \, g.

Teaching tips for ratio problem solving

  • Continue to remind students that when solving ratio word problems, it’s important to identify the quantities being compared and express the ratio in its simplest form.
  • Create practice problems for students using the information in your classroom. For example, ask students to find the ratio of boys to the ratio of girls using the total number of students in your classroom, then the school.
  • To find more practice questions, utilize educational websites and apps instead of worksheets. Some of these may also provide tutorials for struggling students. These can also be helpful for test prep as they are more engaging for students.
  • Use a variety of numbers in your ratio word problems – whole numbers, fractions, decimals, and mixed numbers – to give students a variety of practice.
  • Provide students with a step-by-step process for problem solving, like the one shown above, that can be applied to every ratio word problem.

Easy mistakes to make

  • Mixing units Make sure that all the units in the ratio are the same. For example, in example 6, all the units in the ratio were in milliliters. You did not mix ml and l in the ratio.
  • Writing ratios in the wrong order For example, the number of dogs to cats is given as the ratio 12 : 13 but the solution is written as 13 : 12.

Ratio Problem Solving Image 22 US

  • Counting the number of parts in the ratio, not the total number of shares For example, the ratio 5 : 4 has 9 shares, and 2 parts. This is because the ratio contains 2 numbers but the sum of these parts (the number of shares) is 5+4=9. You need to find the value per share, so you need to use the 9 shares in your next line of working.
  • Ratios of the form \bf{1 : \textbf{n}} The assumption can be incorrectly made that n must be greater than 1, but n can be any number, including a decimal.

Related ratio lessons

  • Unit rate math
  • Simplifying ratios
  • Ratio to fraction
  • How to calculate exchange rates
  • Ratio to percent
  • How to write a ratio
  • Dividing ratios
  • How to find the unit rate
  • Ratio scale
  • Constant of proportionality

Practice ratio problem solving questions

1. An online shop sells board games and computer games. The ratio of board games to the total number of games sold in one month is 3 : 8. What is the ratio of board games to computer games?

GCSE Quiz True

8-3=5 computer games sold for every 3 board games.

2. The ratio of prime numbers to non-prime numbers from 1-200 is 45 : 155. Express this as a ratio in the form 1 : n.

You need to simplify the ratio so that the first number is 1. That means you need to divide each number in the ratio by 45.

45 \div 45=1

155\div{45}=3\cfrac{4}{9}

3. During one month, the weather was recorded into 3 categories: sunshine, cloud and rain. The ratio of sunshine to cloud was 2 : 3 and the ratio of cloud to rain was 9 : 11. State the ratio that compares sunshine:cloud:rain for the month.

3 \times S : C=6 : 9

4. The angles in a triangle are written as the ratio x : 2x : 3x. Calculate the size of each angle.

You should know that the 3 angles in a triangle always equal 180^{\circ}.

\begin{aligned} & x+2 x+3 x=180 \\\\ & 6 x=180 \\\\ & x=30^{\circ} \\\\ & 2 x=60^{\circ} \\\\ & 3 x=90^{\circ} \end{aligned}

5. A clothing company has a sale on tops, dresses and shoes. \cfrac{1}{3} of sales were for tops, \cfrac{1}{5} of sales were for dresses, and the rest were for shoes. Write a ratio of tops to dresses to shoes sold in its simplest form.

\cfrac{1}{3}+\cfrac{1}{5}=\cfrac{5+3}{15}=\cfrac{8}{15}

1-\cfrac{8}{15}=\cfrac{7}{15}

6. The volume of gas is directly proportional to the temperature (in degrees Kelvin). A balloon contains 2.75 \, l of gas and has a temperature of 18^{\circ}K. What is the volume of gas if the temperature increases to 45^{\circ}K?

The given ratio in the word problem is 2. 75 \mathrm{~L}: 18^{\circ} \mathrm{K}

Divide 45 by 18 to see the relationship between the two temperatures.

45 \div 18=2.5

45 is 2.5 times greater than 18. So we multiply 2.75 by 2.5 to get the amount of gas.

2.75 \times 2.5=6.875 \mathrm{~l}

Ratio problem solving FAQs

A ratio is a comparison of two or more quantities. It shows how much one quantity is related to another.

A recipe calls for 2 cups of flour and 1 cup of sugar. What is the ratio of flour to sugar? (2 : 1)

In middle school ( 7 th grade and 8 th grade), students transition from understanding basic ratios to working with more complex and real-life applications of ratios and proportions. They gain a deeper understanding of how ratios relate to different mathematical concepts, making them more prepared for higher-level math topics in high school.

The next lessons are

  • Converting fractions, decimals and percentages

Still stuck?

At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.

Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.

One on one math tuition

Find out how we can help your students achieve success with our math tutoring programs .

[FREE] Common Core Practice Tests (Grades 3 to 6)

Prepare for math tests in your state with these Grade 3 to Grade 6 practice assessments for Common Core and state equivalents.

40 multiple choice questions and detailed answers to support test prep, created by US math experts covering a range of topics!

Solver Title

Practice

Generating PDF...

  • Pre Algebra Order of Operations Factors & Primes Fractions Long Arithmetic Decimals Exponents & Radicals Ratios & Proportions Percent Modulo Number Line Expanded Form Mean, Median & Mode
  • Algebra Equations Inequalities System of Equations System of Inequalities Basic Operations Algebraic Properties Partial Fractions Polynomials Rational Expressions Sequences Power Sums Interval Notation Pi (Product) Notation Induction Logical Sets Word Problems
  • Pre Calculus Equations Inequalities Scientific Calculator Scientific Notation Arithmetics Complex Numbers Polar/Cartesian Simultaneous Equations System of Inequalities Polynomials Rationales Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic Sections Trigonometry
  • Calculus Derivatives Derivative Applications Limits Integrals Integral Applications Integral Approximation Series ODE Multivariable Calculus Laplace Transform Taylor/Maclaurin Series Fourier Series Fourier Transform
  • Functions Line Equations Functions Arithmetic & Comp. Conic Sections Transformation
  • Linear Algebra Matrices Vectors
  • Trigonometry Identities Proving Identities Trig Equations Trig Inequalities Evaluate Functions Simplify
  • Statistics Mean Geometric Mean Quadratic Mean Average Median Mode Order Minimum Maximum Probability Mid-Range Range Standard Deviation Variance Lower Quartile Upper Quartile Interquartile Range Midhinge Standard Normal Distribution
  • Physics Mechanics
  • Chemistry Chemical Reactions Chemical Properties
  • Finance Simple Interest Compound Interest Present Value Future Value
  • Economics Point of Diminishing Return
  • Conversions Roman Numerals Radical to Exponent Exponent to Radical To Fraction To Decimal To Mixed Number To Improper Fraction Radians to Degrees Degrees to Radians Hexadecimal Scientific Notation Distance Weight Time Volume
  • Pre Algebra
  • Pre Calculus
  • Linear Algebra
  • Trigonometry
  • Conversions

Click to reveal more operations

Most Used Actions

Number line.

  • x^{2}-x-6=0
  • -x+3\gt 2x+1
  • line\:(1,\:2),\:(3,\:1)
  • prove\:\tan^2(x)-\sin^2(x)=\tan^2(x)\sin^2(x)
  • \frac{d}{dx}(\frac{3x+9}{2-x})
  • (\sin^2(\theta))'
  • \lim _{x\to 0}(x\ln (x))
  • \int e^x\cos (x)dx
  • \int_{0}^{\pi}\sin(x)dx
  • \sum_{n=0}^{\infty}\frac{3}{2^n}
  • Is there a step by step calculator for math?
  • Symbolab is the best step by step calculator for a wide range of math problems, from basic arithmetic to advanced calculus and linear algebra. It shows you the solution, graph, detailed steps and explanations for each problem.
  • Is there a step by step calculator for physics?
  • Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and magnetism, and thermodynamics. It shows you the steps and explanations for each problem, so you can learn as you go.
  • How to solve math problems step-by-step?
  • To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.
  • Practice, practice, practice Math can be an intimidating subject. Each new topic we learn has symbols and problems we have never seen. The unknowing...

Please add a message.

Message received. Thanks for the feedback.

Microsoft

Get step-by-step solutions to your math problems

qr code

Try Math Solver

Key Features

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions

Learning to sample initial solution for solving 0–1 discrete optimization problem by local search

  • AI Methods for Optimization Problems
  • Published: 29 April 2024

Cite this article

example of problem solving in math

  • Xin Liu 1 ,
  • Jianyong Sun 1 &
  • Zongben Xu 1  

Local search methods are convenient alternatives for solving discrete optimization problems (DOPs). These easy-to-implement methods are able to find approximate optimal solutions within a tolerable time limit. It is known that the quality of the initial solution greatly affects the quality of the approximated solution found by a local search method. In this paper, we propose to take the initial solution as a random variable and learn its preferable probability distribution. The aim is to sample a good initial solution from the learned distribution so that the local search can find a high-quality solution. We develop two different deep network models to deal with DOPs established on set (the knapsack problem) and graph (the maximum clique problem), respectively. The deep neural network learns the representation of an optimization problem instance and transforms the representation to its probability vector. Experimental results show that given the initial solution sampled from the learned probability distribution, a local search method can acquire much better approximate solutions than the randomly-sampled initial solution on the synthesized knapsack instances and the Erdős-Rényi random graph instances. Furthermore, with sampled initial solutions, a classical genetic algorithm can achieve better solutions than a random initialized population in solving the maximum clique problems on DIMACS instances. Particularly, we emphasize that the developed models can generalize in dimensions and across graphs with various densities, which is an important advantage on generalizing deep-learning-based optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Abdel-Basset M, Abdel-Fatah L, Sangaiah A K. Metaheuristic algorithms: A comprehensive review. In: Sangaiah A K, Zhang Z, Sheng M, eds. Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications. New York: Academic Press, 2018, 185–231

Chapter   Google Scholar  

Ansótegui C, Heymann, B, Pon J, et al. Hyper-reactive tabu search for MaxSAT. In: Proceedings of the International Conference on Learning and Intelligent Optimization. Berlin-Heidelberg: Springer, 2019, 309–325

Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proceedings of the 3rd International Conference on Learning Representations. New Orleans: OpenReview.net, 2015, 1–15

Google Scholar  

Bello I, Pham H, Le Q V, et al. Neural combinatorial optimization with reinforcement learning. In: Proceedings of the 5th International Conference on Learning Representations. New Orleans: OpenReview.net, 2017, 1–15

Bengio Y, Lodi A, Prouvost A. Machine learning for combinatorial optimization: A methodological tour d’horizon. Euro J Oper Res, 2021, 290: 405–421

Article   MathSciNet   Google Scholar  

Bertsekas D P. Dynamic Programming and Optimal Control: Volume I. Cambridge: Athena Scientific, 2012

Bron C, Kerbosch J. Algorithm 457: Finding all cliques of an undirected graph. Commun ACM, 1973, 16: 575–577

Article   Google Scholar  

Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs. In: Proceedings of the 2nd International Conference on Learning Representations. New Orleans: OpenReview.net, 2014, 1–14

Cacchiani V, Iori M, Locatelli A, et al. Knapsack problems - an overview of recent advances. part I: Single knapsack problems. Comput Oper Res, 2022, 143: 105692

Chen Z, Liu J, Wang X, et al. On representing linear programs by graph neural networks. In: Proceedings of the 11th International Conference on Learning Representations. New Orleans: OpenReview.net, 2023, 1–29

Cobos C, Dulcey H, Ortega J, et al. A binary fisherman search procedure for the 0/1 knapsack problem. In: Proceedings of the Advances in Artificial Intelligence. Berlin-Heidelberg: Springer, 2016, 447–457

Cortez P. Local Search. Cham: Springerg, 2021

Book   Google Scholar  

Crama Y, Kolen A W J, Pesch E J. Local Search in Combinatorial Optimization. Berlin-Heidelberg: Springer, 1995

Csirik J, Frenk J, Labbé M, et al. Heuristics for the 0–1 min-knapsack problem. Acta Cybernet, 1991, 10: 15–20

MathSciNet   Google Scholar  

Dai H, Khalil E B, Zhang Y, et al. Learning combinatorial optimization algorithms over graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. San Francisco: Curran Associates, 2017, 6351–6361

Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. San Francisco: Curran Associates, 2016, 3844–3852

Doerr B, Neumann F. A survey on recent progress in the theory of evolutionary algorithms for discrete optimization. ACM Trans Evo Learn Optim, 2021, 1: 1–43

Erdős P, Rényi A. On the Evolution of Random Graphs. Princeton: Princeton Univ Press, 2006

Ezugwu A E, Shukla A K, Nath R, et al. Metaheuristics: A comprehensive overview and classification along with bibliometric analysis. Art Intell Rev, 2021, 54: 4237–4316

Gasse M, Chetelat D, Ferroni N, et al. Exact combinatorial optimization with graph convolutional neural networks. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. San Francisco: Curran Associates, 2019, 15554–15566

Glover F. Future paths for integer programming and links to artificial intelligence. Comput Oper Res, 1986, 13: 533–549

Goodfellow I, Bengio Y, Courville A. Optimization for Training Deep Models. Cambridge: MIT Press, 2016

Haghir Chehreghani M. Half a decade of graph convolutional networks. Nat Mach Intell, 2021, 4: 192–193

Hansen P, Mladenovic N. Variable Neighborhood Search. Cham: Springer, 2018

Hottung A, Tanaka S, Tierney K. Deep learning assisted heuristic tree search for the container pre-marshalling problem. Comput Oper Res, 2020, 113: 104781

Hussein A, Gaber M M, Elyan E, et al. Imitation learning: A survey of learning methods. ACM Comput Sur, 2017, 50: 1–35

Jiang H, Li C-M, Manyà F. Combining efficient preprocessing and incremental MaxSAT reasoning for maxclique in large graphs. In: Proceedings of the Twenty-Second European Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016, 939–947

Johnson D J, Trick M A. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge. Providence: Amer Math Soce, 1996

Karimi-Mamaghan M, Mohammadi M, Meyer P, et al. Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. Euro J Oper Res, 2022, 296: 393–422

Khalil E B, Dilkina B, Nemhauser G L, et al. Learning to run heuristics in tree search. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017, 659–666

Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. New Orleans: OpenReview.net, 2017, 1–14

Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220: 671–680

Kool W, van Hoof H, Welling M. Attention, learn to solve routing problems! In: Proceedings of the 7th International Conference on Learning Representations. New Orleans: OpenReview.net, 2019, 1–25

Korte B, Vygen J. Combinatorial Optimization. Berlin-Heidelberg: Springer, 2018

Kruber M, Lübbecke M E, Parmentier A. Learning when to use a decomposition. In: Proceedings of the Integration of AI and OR Techniques in Constraint Programming. Berlin-Heidelberg: Springer, 2017, 202–210

Land A H, Doig A G. An automatic method of solving discrete programming problems. Econometrica, 1960, 28: 497–520

Lemos H, Prates M, Avelar P, et al. Graph colouring meets deep learning: Effective graph neural network models for combinatorial problems. In: Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). San Francisco: IEEE, 2019, 879–885

Li X, Olafsson S. Discovering dispatching rules using data mining. J Schedul, 2005, 8: 515–527

Li Z, Chen Q, Koltun V. Combinatorial optimization with graph convolutional networks and guided tree search. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. San Francisco: Curran Associates, 2018, 537–546

Liu X, Sun J, Zhang Q, et al. Learning to learn evolutionary algorithm: A learnable differential evolution. IEEE Trans Emerg Top Comput Intell, 2023, 7: 1605–1620

Lodi A, Zarpellon G. On learning and branching: A survey. TOP, 2017, 25: 207–236

Louis S, McDonnell J. Learning with case-injected genetic algorithms. IEEE Trans Evol Comput, 2004, 8: 316–328

Mahmood R, Babier A, McNiven A, et al. Automated treatment planning in radiation therapy using generative adversarial networks. In: Proceedings of the 3rd Machine Learning for Healthcare Conference. Ann Arbor: PMLR, 2018, 484–499

Marchiori E. A simple heuristic based genetic algorithm for the maximum clique problem. In: Proceedings of the 1998 ACM Symposium on Applied Computing. New York: Association for Computing Machinery, 1998, 366–373

Marchiori E. Genetic, iterated and multistart local search for the maximum clique problem. In: Proceedings of the Applications of Evolutionary Computing. Berlin-Heidelberg: Springer, 2002, 112–121

Martí R, Reinelt G. Exact and Heuristic Methods in Combinatorial Optimization. Berlin: Springer, 2022

Mencarelli L, D’Ambrosio C, Di Zio A, et al. Heuristics for the general multiple non-linear knapsack problem. Electron Note Discret Math, 2016, 55: 69–72

Milan A, Rezatofighi S H, Garg R, et al. Data-driven approximations to np-hard problems. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017, 1453–1459

Nasiri M M, Salesi S, Rahbari A, et al. A data mining approach for population-based methods to solve the JSSP. Soft Comput, 2019, 23: 11107–11122

Nazari M, Oroojlooy A, Takáč M, et al. Reinforcement learning for solving the vehicle routing problem. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. San Francisco: Curran Associates, 2018, 9861–9871

Peres F, Castelli M. Combinatorial optimization problems and metaheuristics: Review, challenges, design, and development. Appl Sci, 2021, 11: 1–39

Pisinger D. Where are the hard knapsack problems? Comput Oper Res, 2005, 32: 2271–2284

Rossi R A, Gleich D F, Gebremedhin A H. Parallel maximum clique algorithms with applications to network analysis. SIAM J Sci Comput, 2015, 37: C589–C616

San Segundo P, Lopez A, Pardalos P M. A new exact maximum clique algorithm for large and massive sparse graphs. Comput Oper Res, 2016, 66: 81–94

Selsam D, Lamm M, Buünz B, et al. Learning a SAT solver from single-bit supervision. In: Proceedings of the 7th International Conference on Learning Representations. New Orleans: OpenReview.net, 2019, 1–11

Sergienko I V, Shylo V P. Problems of discrete optimization: Challenges and main approaches to solve them. Cybernet Syst Anal, 2006, 42: 465–482

Stüutzle T, Ruiz R. Iterated Local Search. New York-Berlin: Springer, 2018

Sun J, Liu X, Back T, et al. Learning adaptive differential evolution algorithm from optimization experiences by policy gradient. IEEE Trans Evo Comput, 2021, 25: 666–680

Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT press, 2018

Tahami H, Fakhravar H. A literature review on combining heuristics and exact algorithms in combinatorial optimization. Euro J Inform Tech Comput Sci, 2022, 2: 6–12

Talbi E-G. Machine learning into metaheuristics: A survey and taxonomy. ACM Comput Surv, 2021, 54: 1–32

Toth P. Dynamic programming algorithms for the zero-one knapsack problem. Computing, 1980, 25: 29–45

Toyer S, Trevizan F W, Thiébaux S, et al. Action schema networks: Generalised policies with deep learning. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018, 6294–6301

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Association for Computing Machinery, 2017, 6000–6010

Vince A. A framework for the greedy algorithm. Discrete Appl Math, 2002, 121: 247–260

Vinyals O, Fortunato M, Jaitly N. Pointer networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. New York: Association for Computing Machinery, 2015, 2692–2700

Wu Q, Hao J-K. A review on algorithms for maximum clique problems. Euro J Oper Res, 2015, 242: 693–709

Yang X-S. Nature-Inspired Optimization Algorithms. New York: Academic Press, 2021

Zaheer M, Kottur S, Ravanbakhsh S, et al. Deep sets. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Association for Computing Machinery, 2017, 3391–3401

Zhou J, Cui G, Hu S, et al. Graph neural networks: A review of methods and applications. AI Open, 2020, 1: 57–81

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11991023 and 62076197) and Key Research and Development Project of Shaanxi Province (Grant No. 2022GXLH-01-15).

Author information

Authors and affiliations.

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China

Xin Liu, Jianyong Sun & Zongben Xu

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jianyong Sun .

Rights and permissions

Reprints and permissions

About this article

Liu, X., Sun, J. & Xu, Z. Learning to sample initial solution for solving 0–1 discrete optimization problem by local search. Sci. China Math. (2024). https://doi.org/10.1007/s11425-023-2290-y

Download citation

Received : 01 July 2023

Accepted : 01 April 2024

Published : 29 April 2024

DOI : https://doi.org/10.1007/s11425-023-2290-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • discrete optimization
  • deep learning
  • graph convolutional network
  • local search
  • Find a journal
  • Publish with us
  • Track your research

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Praxis Core Math

Course: praxis core math   >   unit 1.

  • Algebraic properties | Lesson
  • Algebraic properties | Worked example
  • Solution procedures | Lesson
  • Solution procedures | Worked example
  • Equivalent expressions | Lesson
  • Equivalent expressions | Worked example
  • Creating expressions and equations | Lesson
  • Creating expressions and equations | Worked example

Algebraic word problems | Lesson

  • Algebraic word problems | Worked example
  • Linear equations | Lesson
  • Linear equations | Worked example
  • Quadratic equations | Lesson
  • Quadratic equations | Worked example

What are algebraic word problems?

What skills are needed.

  • Translating sentences to equations
  • Solving linear equations with one variable
  • Evaluating algebraic expressions
  • Solving problems using Venn diagrams

How do we solve algebraic word problems?

  • Define a variable.
  • Write an equation using the variable.
  • Solve the equation.
  • If the variable is not the answer to the word problem, use the variable to calculate the answer.

What's a Venn diagram?

  • 7 + 10 − 13 = 4 ‍   brought both food and drinks.
  • 7 − 4 = 3 ‍   brought only food.
  • 10 − 4 = 6 ‍   brought only drinks.
  • Your answer should be
  • an integer, like 6 ‍  
  • a simplified proper fraction, like 3 / 5 ‍  
  • a simplified improper fraction, like 7 / 4 ‍  
  • a mixed number, like 1   3 / 4 ‍  
  • an exact decimal, like 0.75 ‍  
  • a multiple of pi, like 12   pi ‍   or 2 / 3   pi ‍  
  • (Choice A)   $ 4 ‍   A $ 4 ‍  
  • (Choice B)   $ 5 ‍   B $ 5 ‍  
  • (Choice C)   $ 9 ‍   C $ 9 ‍  
  • (Choice D)   $ 14 ‍   D $ 14 ‍  
  • (Choice E)   $ 20 ‍   E $ 20 ‍  
  • (Choice A)   10 ‍   A 10 ‍  
  • (Choice B)   12 ‍   B 12 ‍  
  • (Choice C)   24 ‍   C 24 ‍  
  • (Choice D)   30 ‍   D 30 ‍  
  • (Choice E)   32 ‍   E 32 ‍  
  • (Choice A)   4 ‍   A 4 ‍  
  • (Choice B)   10 ‍   B 10 ‍  
  • (Choice C)   14 ‍   C 14 ‍  
  • (Choice D)   18 ‍   D 18 ‍  
  • (Choice E)   22 ‍   E 22 ‍  

Things to remember

Want to join the conversation.

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

IMAGES

  1. What IS Problem-Solving?

    example of problem solving in math

  2. Math Problem Solving Examples With Solutions For Grade 4

    example of problem solving in math

  3. Math Problem Solving 101

    example of problem solving in math

  4. Math Problem Solving Posters [Video]

    example of problem solving in math

  5. math problem solving with solution

    example of problem solving in math

  6. How to Solve a Wordy Math Problem (with Pictures)

    example of problem solving in math

VIDEO

  1. C38 Example problem solving a Cauchy Euler equation with initial values

  2. A09 Example problem of multiplicity two

  3. C74 Example problem

  4. C36 Example problem solving a Cauchy Euler equation

  5. C18 Example problem using the superposition approach

  6. C30 Solving a linear DE by the annihilator approach

COMMENTS

  1. Module 1: Problem Solving Strategies

    Step 1: Understanding the problem. We are given in the problem that there are 25 chickens and cows. All together there are 76 feet. Chickens have 2 feet and cows have 4 feet. We are trying to determine how many cows and how many chickens Mr. Jones has on his farm. Step 2: Devise a plan.

  2. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  3. Free Math Worksheets

    Khan Academy's 100,000+ free practice questions give instant feedback, don't need to be graded, and don't require a printer. Math Worksheets. Khan Academy. Math worksheets take forever to hunt down across the internet. Khan Academy is your one-stop-shop for practice from arithmetic to calculus. Math worksheets can vary in quality from ...

  4. Math Problem Solving Strategies (video lessons, examples and solutions)

    The following video shows more examples of using problem solving strategies and models. Question 2: The table shows the number of seats in each of the first four rows in an auditorium. The remaining ten rows follow the same pattern. Find the number of seats in the last row. Question 3: You are hanging three pictures in the wall of your home ...

  5. Solving equations & inequalities

    Unit test. Level up on all the skills in this unit and collect up to 1,100 Mastery points! There are lots of strategies we can use to solve equations. Let's explore some different ways to solve equations and inequalities. We'll also see what it takes for an equation to have no solution, or infinite solutions.

  6. Problem Solving in Mathematics

    Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

  7. Problem solving with arithmetic

    Problem solving with arithmetic | Khan Academy. 2 units · 15 skills. Unit 2 Factors, multiples, and patterns. Course challenge. Test your knowledge of the skills in this course. Start Course challenge. Math Content. Operations and Algebraic Thinking 201-210.

  8. Mathway

    Free math problem solver answers your algebra, geometry, trigonometry, calculus, and statistics homework questions with step-by-step explanations, just like a math tutor. ... Step-by-Step Examples. Basic Math. Long Arithmetic. Adding Using Long Addition. Long Subtraction. Long Multiplication. ... Solving the System of Equations Using an Inverse ...

  9. 120 Math Word Problems To Challenge Students Grades 1 to 8

    Whether you're a 3rd grade teacher or an 8th grade teacher preparing students for high school, translating math concepts into real world examples can certainly be a challenge. This resource is your jolt of creativity. It provides examples and templates of math word problems for 1st to 8th grade classes. There are 120 examples in total.

  10. 10 Strategies for Problem Solving in Math

    The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition. Students may use this strategy to spot patterns and fill in the blanks.

  11. Algebra 1

    The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a function; Exponential models; and Quadratic equations, functions, and graphs. Khan Academy's Algebra 1 course is built to deliver a comprehensive, illuminating, engaging, and Common Core aligned experience!

  12. GeoGebra Math Solver

    Get accurate solutions and step-by-step explanations for algebra and other math problems with the free GeoGebra Math Solver. Enhance your problem-solving skills while learning how to solve equations on your own. Try it now!

  13. Solving Equations

    In fact, solving an equation is just like solving a puzzle. And like puzzles, there are things we can (and cannot) do. Here are some things we can do: Add or Subtract the same value from both sides; Clear out any fractions by Multiplying every term by the bottom parts; Divide every term by the same nonzero value; Combine Like Terms; Factoring

  14. Ratio Problem Solving

    Free ratio problem solving math topic guide, including step-by-step examples, free practice questions, teaching tips and more! ... Ratio problem solving is a collection of ratio and proportion word problems that link together aspects of ratio and proportion into more real life questions. This requires you to be able to take key information from ...

  15. Step-by-Step Calculator

    To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.

  16. Math Practice

    Problems for 5th Grade. Multi-digit multiplication. Dividing completely. Writing expressions. Rounding whole numbers. Inequalities on a number line. Linear equation and inequality word problems. Linear equation word problems. Linear equation word problems.

  17. Microsoft Math Solver

    Get math help in your language. Works in Spanish, Hindi, German, and more. Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  18. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations.

  19. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and ...

  20. Learning to sample initial solution for solving 0-1 discrete

    Local search methods are convenient alternatives for solving discrete optimization problems (DOPs). These easy-to-implement methods are able to find approximate optimal solutions within a tolerable time limit. It is known that the quality of the initial solution greatly affects the quality of the approximated solution found by a local search method. In this paper, we propose to take the ...

  21. Algebraic word problems

    Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. ... Worked example. Algebraic word problems | Lesson. Algebraic word problems | Worked example. ... Solving algebraic word problems requires us to combine our ability to create equations and solve them.