What Is Problem Solving? How Software Engineers Approach Complex Challenges

HackerRank AI Promotion

From debugging an existing system to designing an entirely new software application, a day in the life of a software engineer is filled with various challenges and complexities. The one skill that glues these disparate tasks together and makes them manageable? Problem solving . 

Throughout this blog post, we’ll explore why problem-solving skills are so critical for software engineers, delve into the techniques they use to address complex challenges, and discuss how hiring managers can identify these skills during the hiring process. 

What Is Problem Solving?

But what exactly is problem solving in the context of software engineering? How does it work, and why is it so important?

Problem solving, in the simplest terms, is the process of identifying a problem, analyzing it, and finding the most effective solution to overcome it. For software engineers, this process is deeply embedded in their daily workflow. It could be something as simple as figuring out why a piece of code isn’t working as expected, or something as complex as designing the architecture for a new software system. 

In a world where technology is evolving at a blistering pace, the complexity and volume of problems that software engineers face are also growing. As such, the ability to tackle these issues head-on and find innovative solutions is not only a handy skill — it’s a necessity. 

The Importance of Problem-Solving Skills for Software Engineers

Problem-solving isn’t just another ability that software engineers pull out of their toolkits when they encounter a bug or a system failure. It’s a constant, ongoing process that’s intrinsic to every aspect of their work. Let’s break down why this skill is so critical.

Driving Development Forward

Without problem solving, software development would hit a standstill. Every new feature, every optimization, and every bug fix is a problem that needs solving. Whether it’s a performance issue that needs diagnosing or a user interface that needs improving, the capacity to tackle and solve these problems is what keeps the wheels of development turning.

It’s estimated that 60% of software development lifecycle costs are related to maintenance tasks, including debugging and problem solving. This highlights how pivotal this skill is to the everyday functioning and advancement of software systems.

Innovation and Optimization

The importance of problem solving isn’t confined to reactive scenarios; it also plays a major role in proactive, innovative initiatives . Software engineers often need to think outside the box to come up with creative solutions, whether it’s optimizing an algorithm to run faster or designing a new feature to meet customer needs. These are all forms of problem solving.

Consider the development of the modern smartphone. It wasn’t born out of a pre-existing issue but was a solution to a problem people didn’t realize they had — a device that combined communication, entertainment, and productivity into one handheld tool.

Increasing Efficiency and Productivity

Good problem-solving skills can save a lot of time and resources. Effective problem-solvers are adept at dissecting an issue to understand its root cause, thus reducing the time spent on trial and error. This efficiency means projects move faster, releases happen sooner, and businesses stay ahead of their competition.

Improving Software Quality

Problem solving also plays a significant role in enhancing the quality of the end product. By tackling the root causes of bugs and system failures, software engineers can deliver reliable, high-performing software. This is critical because, according to the Consortium for Information and Software Quality, poor quality software in the U.S. in 2022 cost at least $2.41 trillion in operational issues, wasted developer time, and other related problems.

Problem-Solving Techniques in Software Engineering

So how do software engineers go about tackling these complex challenges? Let’s explore some of the key problem-solving techniques, theories, and processes they commonly use.

Decomposition

Breaking down a problem into smaller, manageable parts is one of the first steps in the problem-solving process. It’s like dealing with a complicated puzzle. You don’t try to solve it all at once. Instead, you separate the pieces, group them based on similarities, and then start working on the smaller sets. This method allows software engineers to handle complex issues without being overwhelmed and makes it easier to identify where things might be going wrong.

Abstraction

In the realm of software engineering, abstraction means focusing on the necessary information only and ignoring irrelevant details. It is a way of simplifying complex systems to make them easier to understand and manage. For instance, a software engineer might ignore the details of how a database works to focus on the information it holds and how to retrieve or modify that information.

Algorithmic Thinking

At its core, software engineering is about creating algorithms — step-by-step procedures to solve a problem or accomplish a goal. Algorithmic thinking involves conceiving and expressing these procedures clearly and accurately and viewing every problem through an algorithmic lens. A well-designed algorithm not only solves the problem at hand but also does so efficiently, saving computational resources.

Parallel Thinking

Parallel thinking is a structured process where team members think in the same direction at the same time, allowing for more organized discussion and collaboration. It’s an approach popularized by Edward de Bono with the “ Six Thinking Hats ” technique, where each “hat” represents a different style of thinking.

In the context of software engineering, parallel thinking can be highly effective for problem solving. For instance, when dealing with a complex issue, the team can use the “White Hat” to focus solely on the data and facts about the problem, then the “Black Hat” to consider potential problems with a proposed solution, and so on. This structured approach can lead to more comprehensive analysis and more effective solutions, and it ensures that everyone’s perspectives are considered.

This is the process of identifying and fixing errors in code . Debugging involves carefully reviewing the code, reproducing and analyzing the error, and then making necessary modifications to rectify the problem. It’s a key part of maintaining and improving software quality.

Testing and Validation

Testing is an essential part of problem solving in software engineering. Engineers use a variety of tests to verify that their code works as expected and to uncover any potential issues. These range from unit tests that check individual components of the code to integration tests that ensure the pieces work well together. Validation, on the other hand, ensures that the solution not only works but also fulfills the intended requirements and objectives.

Explore verified tech roles & skills.

The definitive directory of tech roles, backed by machine learning and skills intelligence.

Explore all roles

Evaluating Problem-Solving Skills

We’ve examined the importance of problem-solving in the work of a software engineer and explored various techniques software engineers employ to approach complex challenges. Now, let’s delve into how hiring teams can identify and evaluate problem-solving skills during the hiring process.

Recognizing Problem-Solving Skills in Candidates

How can you tell if a candidate is a good problem solver? Look for these indicators:

  • Previous Experience: A history of dealing with complex, challenging projects is often a good sign. Ask the candidate to discuss a difficult problem they faced in a previous role and how they solved it.
  • Problem-Solving Questions: During interviews, pose hypothetical scenarios or present real problems your company has faced. Ask candidates to explain how they would tackle these issues. You’re not just looking for a correct solution but the thought process that led them there.
  • Technical Tests: Coding challenges and other technical tests can provide insight into a candidate’s problem-solving abilities. Consider leveraging a platform for assessing these skills in a realistic, job-related context.

Assessing Problem-Solving Skills

Once you’ve identified potential problem solvers, here are a few ways you can assess their skills:

  • Solution Effectiveness: Did the candidate solve the problem? How efficient and effective is their solution?
  • Approach and Process: Go beyond whether or not they solved the problem and examine how they arrived at their solution. Did they break the problem down into manageable parts? Did they consider different perspectives and possibilities?
  • Communication: A good problem solver can explain their thought process clearly. Can the candidate effectively communicate how they arrived at their solution and why they chose it?
  • Adaptability: Problem-solving often involves a degree of trial and error. How does the candidate handle roadblocks? Do they adapt their approach based on new information or feedback?

Hiring managers play a crucial role in identifying and fostering problem-solving skills within their teams. By focusing on these abilities during the hiring process, companies can build teams that are more capable, innovative, and resilient.

Key Takeaways

As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. 

By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome complex challenges. But mastering these techniques isn’t simple feat. It requires a learning mindset, regular practice, collaboration, reflective thinking, resilience, and a commitment to staying updated with industry trends. 

For hiring managers and team leads, recognizing these skills and fostering a culture that values and nurtures problem solving is key. It’s this emphasis on problem solving that can differentiate an average team from a high-performing one and an ordinary product from an industry-leading one.

At the end of the day, software engineering is fundamentally about solving problems — problems that matter to businesses, to users, and to the wider society. And it’s the proficient problem solvers who stand at the forefront of this dynamic field, turning challenges into opportunities, and ideas into reality.

This article was written with the help of AI. Can you tell which parts?

Get started with HackerRank

Over 2,500 companies and 40% of developers worldwide use HackerRank to hire tech talent and sharpen their skills.

Recommended topics

  • Hire Developers
  • Problem Solving

Abstract, futuristic image generated by AI

Does a College Degree Still Matter for Developers in 2024?

How to think like a programmer — lessons in problem solving

How to think like a programmer — lessons in problem solving

by Richard Reis

aNP21-ICMABUCyfdi4Pys7P0D2wiZqTd3iRY

If you’re interested in programming, you may well have seen this quote before:

“Everyone in this country should learn to program a computer, because it teaches you to think.” — Steve Jobs

You probably also wondered what does it mean, exactly, to think like a programmer? And how do you do it??

Essentially, it’s all about a more effective way for problem solving .

In this post, my goal is to teach you that way.

By the end of it, you’ll know exactly what steps to take to be a better problem-solver.

Why is this important?

Problem solving is the meta-skill.

We all have problems. Big and small. How we deal with them is sometimes, well
pretty random.

Unless you have a system, this is probably how you “solve” problems (which is what I did when I started coding):

  • Try a solution.
  • If that doesn’t work, try another one.
  • If that doesn’t work, repeat step 2 until you luck out.

Look, sometimes you luck out. But that is the worst way to solve problems! And it’s a huge, huge waste of time.

The best way involves a) having a framework and b) practicing it.

“Almost all employers prioritize problem-solving skills first.
Problem-solving skills are almost unanimously the most important qualification that employers look for
.more than programming languages proficiency, debugging, and system design.
Demonstrating computational thinking or the ability to break down large, complex problems is just as valuable (if not more so) than the baseline technical skills required for a job.” — Hacker Rank ( 2018 Developer Skills Report )

Have a framework

To find the right framework, I followed the advice in Tim Ferriss’ book on learning, “ The 4-Hour Chef ”.

It led me to interview two really impressive people: C. Jordan Ball (ranked 1st or 2nd out of 65,000+ users on Coderbyte ), and V. Anton Spraul (author of the book “ Think Like a Programmer: An Introduction to Creative Problem Solving ”).

I asked them the same questions, and guess what? Their answers were pretty similar!

Soon, you too will know them.

Sidenote: this doesn’t mean they did everything the same way. Everyone is different. You’ll be different. But if you start with principles we all agree are good, you’ll get a lot further a lot quicker.

“The biggest mistake I see new programmers make is focusing on learning syntax instead of learning how to solve problems.” — V. Anton Spraul

So, what should you do when you encounter a new problem?

Here are the steps:

1. Understand

Know exactly what is being asked. Most hard problems are hard because you don’t understand them (hence why this is the first step).

How to know when you understand a problem? When you can explain it in plain English.

Do you remember being stuck on a problem, you start explaining it, and you instantly see holes in the logic you didn’t see before?

Most programmers know this feeling.

This is why you should write down your problem, doodle a diagram, or tell someone else about it (or thing
 some people use a rubber duck ).

“If you can’t explain something in simple terms, you don’t understand it.” — Richard Feynman

Don’t dive right into solving without a plan (and somehow hope you can muddle your way through). Plan your solution!

Nothing can help you if you can’t write down the exact steps.

In programming, this means don’t start hacking straight away. Give your brain time to analyze the problem and process the information.

To get a good plan, answer this question:

“Given input X, what are the steps necessary to return output Y?”

Sidenote: Programmers have a great tool to help them with this
 Comments!

Pay attention. This is the most important step of all.

Do not try to solve one big problem. You will cry.

Instead, break it into sub-problems. These sub-problems are much easier to solve.

Then, solve each sub-problem one by one. Begin with the simplest. Simplest means you know the answer (or are closer to that answer).

After that, simplest means this sub-problem being solved doesn’t depend on others being solved.

Once you solved every sub-problem, connect the dots.

Connecting all your “sub-solutions” will give you the solution to the original problem. Congratulations!

This technique is a cornerstone of problem-solving. Remember it (read this step again, if you must).

“If I could teach every beginning programmer one problem-solving skill, it would be the ‘reduce the problem technique.’
For example, suppose you’re a new programmer and you’re asked to write a program that reads ten numbers and figures out which number is the third highest. For a brand-new programmer, that can be a tough assignment, even though it only requires basic programming syntax.
If you’re stuck, you should reduce the problem to something simpler. Instead of the third-highest number, what about finding the highest overall? Still too tough? What about finding the largest of just three numbers? Or the larger of two?
Reduce the problem to the point where you know how to solve it and write the solution. Then expand the problem slightly and rewrite the solution to match, and keep going until you are back where you started.” — V. Anton Spraul

By now, you’re probably sitting there thinking “Hey Richard... That’s cool and all, but what if I’m stuck and can’t even solve a sub-problem??”

First off, take a deep breath. Second, that’s fair.

Don’t worry though, friend. This happens to everyone!

The difference is the best programmers/problem-solvers are more curious about bugs/errors than irritated.

In fact, here are three things to try when facing a whammy:

  • Debug: Go step by step through your solution trying to find where you went wrong. Programmers call this debugging (in fact, this is all a debugger does).
“The art of debugging is figuring out what you really told your program to do rather than what you thought you told it to do.”” — Andrew Singer
  • Reassess: Take a step back. Look at the problem from another perspective. Is there anything that can be abstracted to a more general approach?
“Sometimes we get so lost in the details of a problem that we overlook general principles that would solve the problem at a more general level. [
]
The classic example of this, of course, is the summation of a long list of consecutive integers, 1 + 2 + 3 + 
 + n, which a very young Gauss quickly recognized was simply n(n+1)/2, thus avoiding the effort of having to do the addition.” — C. Jordan Ball

Sidenote: Another way of reassessing is starting anew. Delete everything and begin again with fresh eyes. I’m serious. You’ll be dumbfounded at how effective this is.

  • Research: Ahh, good ol’ Google. You read that right. No matter what problem you have, someone has probably solved it. Find that person/ solution. In fact, do this even if you solved the problem! (You can learn a lot from other people’s solutions).

Caveat: Don’t look for a solution to the big problem. Only look for solutions to sub-problems. Why? Because unless you struggle (even a little bit), you won’t learn anything. If you don’t learn anything, you wasted your time.

Don’t expect to be great after just one week. If you want to be a good problem-solver, solve a lot of problems!

Practice. Practice. Practice. It’ll only be a matter of time before you recognize that “this problem could easily be solved with <insert concept here>.”

How to practice? There are options out the wazoo!

Chess puzzles, math problems, Sudoku, Go, Monopoly, video-games, cryptokitties, bla
 bla
 bla
.

In fact, a common pattern amongst successful people is their habit of practicing “micro problem-solving.” For example, Peter Thiel plays chess, and Elon Musk plays video-games.

“Byron Reeves said ‘If you want to see what business leadership may look like in three to five years, look at what’s happening in online games.’
Fast-forward to today. Elon [Musk], Reid [Hoffman], Mark Zuckerberg and many others say that games have been foundational to their success in building their companies.” — Mary Meeker ( 2017 internet trends report )

Does this mean you should just play video-games? Not at all.

But what are video-games all about? That’s right, problem-solving!

So, what you should do is find an outlet to practice. Something that allows you to solve many micro-problems (ideally, something you enjoy).

For example, I enjoy coding challenges. Every day, I try to solve at least one challenge (usually on Coderbyte ).

Like I said, all problems share similar patterns.

That’s all folks!

Now, you know better what it means to “think like a programmer.”

You also know that problem-solving is an incredible skill to cultivate (the meta-skill).

As if that wasn’t enough, notice how you also know what to do to practice your problem-solving skills!

Phew
 Pretty cool right?

Finally, I wish you encounter many problems.

You read that right. At least now you know how to solve them! (also, you’ll learn that with every solution, you improve).

“Just when you think you’ve successfully navigated one obstacle, another emerges. But that’s what keeps life interesting.[
]
Life is a process of breaking through these impediments — a series of fortified lines that we must break through.
Each time, you’ll learn something.
Each time, you’ll develop strength, wisdom, and perspective.
Each time, a little more of the competition falls away. Until all that is left is you: the best version of you.” — Ryan Holiday ( The Obstacle is the Way )

Now, go solve some problems!

And best of luck ?

Special thanks to C. Jordan Ball and V. Anton Spraul . All the good advice here came from them.

Thanks for reading! If you enjoyed it, test how many times can you hit in 5 seconds. It’s great cardio for your fingers AND will help other people see the story.

If this article was helpful, share it .

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

  • All Articles
  • Let's Connect
  • Fundamentals
  • Soft Skills
  • Side Projects

A Guide to Problem-Solving for Software Developers with Examples

If I ask you, out of the blue, what’s the role of a developer, what would you answer? Coding all day? Drinking coffee? Complaining about the management?

To me, a developer is first and foremost a problem solver, simply because solving problem is the most important (and the most difficult) part of our job. After all, even if our code is perfect, clear, performing great, a masterpiece of form and meaning, it’s useless if it doesn’t solve the problem it was meant to solve.

So, let’s dive into problem-solving today. More specifically, we’ll see in this article:

  • How to define a problem, and the difference sometimes made between problem-solving and decision-making.
  • Why some problems should not be solved.
  • The two wide categories of problems you can encounter.
  • Why it’s important to correctly define the problem, and how to do so.
  • How to explore the solution space.
  • Why deferring a problem might be the best decision to make in specific situations.
  • Why reflecting on the whole process afterward can help you in the future.

This article is mostly based on my own experience, even if I apply here some ideas I found in books and papers.

We have our plan. Now, it’s time to dive deep into the difficult, but rewarding, process of problem-solving.

Problem-Solving and Decision-Making

“When I use a word,” Humpty Dumpty said in rather a scornful tone, “it means just what I choose it to mean — neither more nor less.” “The question is,” said Alice, “whether you can make words mean so many different things.” “The question is,” said Humpty Dumpty, “which is to be master — that’s all.” Lewis Caroll Source

Words are ambiguous; they can mean different things for each of us. So let’s first begin to agree on the definition of “problem-solving” here, to be sure we’re on the same page.

Let’s first look at the definition of the word “problem” in a dictionary:

  • According to the American Heritage Dictionary , a problem is “a question to be considered, solved, or answered”.
  • According to the Oxford Learner’s dictionary , a problem is “a thing that is difficult to deal with or to understand”.

In short, in any problem, there is some degree of uncertainty. If you’re certain of the solution, the problem is already solved. Nothing would need to be “considered, solved, or answered”.

Information is useful to reduce this uncertainty. The quantity is often not the most important, but the quality will be decisive. If I tell you that 90% of my readers are extremely intelligent, would it help you to solve a problem in your daily job? I bet it wouldn’t. It’s information nonetheless, but its usefulness for you is close to zero.

This is an extreme example, but it highlights an important point: before collecting any data, define your problem clearly; then, according to the problem, decide what data you need. Yet, many companies out there begin to collect the data and then decide what problem to solve. We’ll come back to that soon in this article.

So, to summarize, a problem is a situation with some degree of uncertainty. Sometimes, this uncertainty needs to be reduced to come up with an appropriate solution, or, at least, a decision to move forward to your specific goal.

Is there a Problem to Solve?

Whenever you (or somebody else) see a problem, you should always ask yourself this simple question first: is it really a problem, and should we solve it now ?

In other words, ask yourself the following questions:

  • Why is this problem important to solve?
  • Would be solving the problem creates some value? What value?
  • What would happen if the problem was not solved?
  • What desired outcome do we expect by solving the problem?

If the problem doesn’t bother anybody and solving it doesn’t create any value, why allocating effort and time to solve it?

It sounds obvious, but it’s an important point nonetheless. More often than not, I see developers heading first in solving problems without asking themselves if they should solve them at the first place.

The most common examples I can think of are useless refactoring. I saw developers refactoring parts of codebases which never change, or is rarely executed at runtime. In the mind of the developer, the code itself is the problem: refactoring is the solution.

I remember a similar case: a developer refactored part of the codebase which was basically never used. We discovered, months later, when we had more and more users using this specific part of the codebase, that the refactoring didn’t really simplify anything. To the contrary; we had to refactor the code again. The first refactoring tried to solve a problem which didn’t exists.

Of course, the developer could argue that the value created is a “cleaner” codebase, but it’s arguable, especially when the code is neither often modified nor used. The value created here is not clear, and it would have been easier if the first refactoring never happened. In this specific situation, I recommend refactoring when you actively change part of the codebase for another reason (implementing a new feature for example).

Whether a problem is worthy to be solved is subjective. It also depends on the problem: if the solution is clear and straightforward, it might be useful to solve it, if the consequences of the solution are also clearly known and the risks are low. Unfortunately, these kinds of problems, in practice, are quite rare.

Types of Problems

I would define here two wide categories of problems: the problems with a (or multiple) clear solution (what the literature call “problem-solving”), and the problems without clear solution (it’s sometimes called “decision-making” instead of “problem-solving”).

In fact, if the problem you’re trying to solve has a clear, accepted answer, it’s very likely it has been solved already. It’s often the case for mechanical, technical problems. For example, let’s say that you need to order a list; you just have to search on the wild Internet how to do so in your programming language of choice, and you’re done! You can ask an “AI” too, or stack overflow, or whatever.

In my experience, most technical problems have one (or multiple) accepted solution. I won’t speak about these kinds of problems at length in this article, since they’re the easiest to solve.

When you’re in front of a problem which has no clear solution (even after doing some research), it’s where things get more complicated. I’d argue that most problems you’ll face, as a software developer, are of this category. Problems which are directly linked to the domain of the company you work with are often specific (because they depend on the domain), and complex.

For example, I’m working for a company providing a learning platform for medical students who want to become doctors, among other services. This context is changing because the real world is changing; medicine is no exception.

Recently, we had to create new data structures for the knowledge we provide; these data structures are directly linked to the domain (medicine) here. But what data structures to create? How can they adapt to the ever-changing environment? How to capture the data in the most meaningful way, with understandable naming for other developers?

Decisions had to be made, and when there are no clear solutions, you need to come up with a couple of hypothesizes. They won’t feel necessary like solutions , but rather decisions to take to move forward toward the desired outcome. It often ends up in compromises, especially if you’re working in a team where the members have different opinions .

Also, architectural decisions have often no clear solutions because they depend, again, on the changing context. How to be sure that an architectural decision is good today and in three months? How can we make the architecture flexible enough to adapt to the blurry future?

As developers, we deal with complex codebases, which are somewhat linked to the even more complex real world. It’s difficult to know beforehand the consequences of our decisions, as well as the benefits, the drawback, and the potential bugs we introduce.

Before jumping into the solution space however, we first need a good detour in the problem space.

Defining the Problem

Correctly stating the problem.

After determining that we indeed have some kind of problem, it’s tempting to try to find a solution directly. Be patient: it’s better to look at the problem more closely first.

If you don’t specify well the problem, you might not solve it entirely. It’s also possible that you end up solving the wrong problem, or the symptoms of a problem, that is, other minor problems created by a root problem. Often, the ideal scenario is to find the root problem, even if you don’t want to tackle it first. In any case, it’s always useful information.

For example, not long ago, our users didn’t find the content they were searching for, using our search functionality on our learning platform.

We could have directly solved the problem by asking the search team to adjust that for us, but this problem was only a symptom. It wasn’t the first time that we had to spend time and energy trying to communicate to the search team what we wanted to fix; the real root problem here was that we didn’t have any ownership of our search results.

The solution: we created a better API communicating with the search team, to be able to adjust ourselves the search results in a more flexible manner.

When looking at a problem, a good first step is to write it down. Don’t do it once; try to find different formulations for the same problem.

Writing is nice (I love it!), but other ways to represent ideas can be really useful too. You can try to draw what you understand from the problem: a drawing, a diagram, or even a picture can help you understand the problem.

From there, you can ask yourself: do you have enough information to take a decision? The answer will be mostly based on the experience of the problem solver, there is no magical formula to be sure that you can and will solve the problem.

You should also try to look at the problem from different angles, to really frame it correctly. The best way to do so is to solve problems as a team.

Solving Problems in a Team

Trying to describe and think about a problem is a great beginning, but it’s even better if you do it as a team. You can exchange experience, opinions, and it’s easier to look at a problem from multiple angles when multiple developers are involved.

First, make sure that everybody in the team is aware of the problem. Defining it altogether is the best. If you have a doubt that somebody is not on the same page, you can re-explain it using different words. It might bring more insights and ideas to the discussion.

Don’t assume that everybody understands the problem equally. Words are powerful, but they are also ambiguous; never hesitate to ask questions (even if they seem stupid at first), and encourage the team to do the same. If your colleagues see that you’re not afraid to ask, it will give them confidence to do the same.

The ambiguity can also build overtime, after the problem was discussed. That’s why it’s really important to document the whole process, for anybody to be able to look at it again and fix the possible creeping misconceptions. Don’t try to describe everything, but try to be specific enough. It’s a delicate balance, and you’ll get better at it with experience.

If you don’t like writing, I’d recommend you to try anyway: this is a powerful skill which will be useful in many areas of your life.

Regarding the team of problem solvers, diversity is important. Diversity of opinion, experience, background, you name it. The more diverse the opinions and ideas are, the more chances you’ll have to solve the problem satisfyingly (more on that later). If the members of the team have enough respect, humility, and know how to listen to their colleagues , you’re in the perfect environment to solve problems.

As developers, we’re dealing with moving systems, because they need to reflect the ever-changing business domain of the company you’re working with. These problems are unique, and even if similar problems might have been solved in the past, they’re never the exactly same. The differences can have an impact on the solution, sometimes insignificant (allowing you to re-apply the solution found previously), sometimes important enough to change the solution entirely.

Exploring the Solution Space

Now that we’ve defined the problem, thought about it with our team, tried to look at it from different angles, it’s time to try to find solutions, or at least to make a decision.

What is a good decision? The one which will bring you closer to your desired outcome. It sounds obvious, but there can be some ego involved in discussions, which will push us to try to be right even if it’s not the best solution in the current context. Our personal incentives can conflict with the company’s best interest; it’s always good to try to stay aware of that.

The solution should also be the simplest possible, while still moving forward to the desired outcome. It should also have an acceptable level of risk when we decide to apply the solution. In my experience, complicated solutions are the ones which come up first: don’t stop there. Take some time trying to find the best solution with your team.

For example, here’s what we do with my actual team:

  • We define the problem altogether.
  • We try to think about different hypothesizes. Not only one, but a couple of them.
  • We write the benefits and drawbacks of each hypothesis (which can lead to more ideas, and possibly more hypothesizes).
  • We commit to a hypothesis, which then needs to be implemented.

What I meant by “hypothesis” here is a solution which might work; but only the implementation of the hypothesis can be considered as a solution. Before the implementation, it’s just an informed guess. Many things can go wrong during an implementation.

This process looks simple, but when you have multiple developers involved, it’s not. Again, if each member of the team have good soft skills and some experience, it can be an enjoyable and rewarding process. But you need a good team for it to work efficiently (that’s why it’s so important to ask the good questions when joining a company). It’s even better if the members of the team are used to swim in uncertainty, and take it as a challenge more than a chore.

The process described above is just an example; in practice it’s often more chaotic. For example, even when a decision is made, your brain might still continue to process the problem passively. If you find some flaws in the hypothesis you’ve committed to, congratulations! You have now a brand-new problem.

I can’t emphasize it enough: try to be as detached as possible from your ideas, opinions, and preferred hypothesizes. The goal is not for you to be right and feel good, but for your company to move in the good direction. It’s hard, but with practice it gets easier.

I also want to underline the importance of finding both benefits and drawbacks for the different hypothesizes you (and your team) came up with.

To find good solutions, we might also need to reduce the uncertainty around their possible consequences. Doing some external research can help, like gathering data around the problem and the possible hypothesizes. In the best case scenario, if you can find enough data, and if you feel confident that you can move forward with a hypothesis, that’s already a great victory.

If you don’t have enough external information to reduce the uncertainty to a level you feel comfortable with, look at your past experience. Try to find problems similar to the one your deal with in the present, and try to think about the solutions applied at the time, to see if they could also be applied in your current case. But be careful with this approach: complex problems are context-sensitive, and the context you were in the past will never be exactly the same as the present and future contexts.

For example, I recently changed the way we display search results in our system, because we had some data indicating that some users had difficulties to find what they really wanted to find. The problem: users have difficulties to find the good information; it’s a recurrent problem which might never be 100% solved. That said, thanks to the data gathered, we found an easy way to improve the situation.

The data was very clear and specific, but it’s not always the case. More often than not, your data won’t really prove anything. It might only show correlations without clear causality. It will be even more true if you begin by gathering data without defining first the problem you try to solve. You can find problems looking at some data, that’s true, but it needs care and deep understanding of what you’re doing; looking at data when you know exactly what you want to solve works better.

Using this kind of process, the hypothesis is often some sort of compromise. That’s fine; committing to a hypothesis is not the end of the process, and there will be other occasions to revisit and refine the solution.

If you don’t feel comfortable with the level of uncertainty of the problem (or the risk involved by applying your hypothesis), you need to dig more. Writing a prototype can be useful for example, if you hesitate between two or more approaches. If your prototype is convincing enough, it can also be useful to gather feedback from your users, even if the ones testing your hypothesis will always be more invested if they test a real-life functionality, instead of a prototype which might use dummy data, or be in a context which is too remote from the “real” context.

In my opinion, prototypes are not always useful for complex problems, because a prototype only test a new feature at time T, but doesn’t allow you to see if the solution stay flexible enough overtime. That’s often a big concern: how will the solution evolve?

But prototyping can still help gather information and reduce the uncertainty of the problem, even if the prototype doesn’t really give you the solution on a silver platter. It’s also great for A/B testing, when you’re in the (likely) case when you have not much information about the real needs of your users. You could ask them of course, but nothing guarantee that they know themselves what these needs are.

If you don’t find any satisfying hypothesis to your problem, you might also challenge the desired outcome. Maybe a similar, simplest hypothesis, with slightly different outcomes, could work better? If it makes things easier, faster, and less complex, it could be the best solution. Don’t hesitate to challenge your stakeholders directly on the desired outcomes.

Deferring the Problem

In some cases, you might be hesitant to try to solve a problem if there is still too much uncertainty around it. In that case, it might be best to defer solving the problem altogether.

Deferring the problem means that you don’t solve it now ; you keep things as they are, until you get more information to reduce the uncertainty enough.

We had a problem in the company I worked with some time ago: we have dosages which can be discovered in articles, but users didn’t really find them, and nobody really knew why. Because of this lack of information, the problem was not tackled right away, but differed. From there, data have been collected overtime, allowing us to understand the scope of the problem better.

Don’t forget that deferring a problem is already taking a decision. It might be the less disruptive decision for the application and its codebase, but it’s s decision nonetheless, and it can have consequences. Seeing a differed problem as a decision will push you to think about the possible consequences of your inaction, and you’ll look at it as a partial “solution”, with some uncertainty and risk associated to it.

In my experience, deferring the problem works well only when you try to actively seek more data to solve it later. It can be some monitoring to see how the problem evolves, or some data taken from users’ actions. Sometimes, simply waiting can also give you important information about the nature of the problem.

What you shouldn’t do is try to forget the problem. It might come back in force to haunt your sleepless nightmares later. Avoiding a problem is not deferring it.

Here’s another example: we began recently to build some CMS tooling for medical editors, for them to write and edit content on our learning platform. We had one GraphQL API endpoint at the beginning, providing data to two different part of the application:

  • Our CMS for medical editors.
  • Our learning platform for medical students.

We knew that using one single GraphQL endpoint for these two types of users could cause some problems.

But we didn’t do anything about it, mostly because we didn’t see any real, concrete problem, at least at first. When a minor symptom, related to this unique endpoint, popped up, we spoke about it, and we still chose not to do anything. We preferred deferring the problem once more, to try to solve the real problem (one API for two different kinds of applications) later.

Finally, when we had enough symptoms and some frustration, we decided to split our graphQL API in two different endpoints. It was the best moment to do so: we had enough information to come up with a good decision, we applied it, and we stayed vigilant, to see how our applied hypothesis would evolve.

Moving fast and breaking things is not always the best solution. In some situations, waiting a bit and see how things evolve can allow you to solve your problems in a more effective way. But, as always, it depends on the problem, its context, and so on.

Reading this article, you might have wondered: how much information is enough to be comfortable enough to apply a solution? Well, again, your experience will be the best judge here. You’ll also need to consider carefully risks, benefits, and drawbacks. It doesn’t mean that you need to chicken out if you don’t have 100% certainty about a problem and some hypothesizes; being a software developer implies to have some courage and accept that mistakes will be made. It’s not an easy task, and there is no general process to follow in any possible case.

In short: use your brain. Even if you’re totally wrong, you’ll have the opportunity to fix the bad decisions you’ve made before the implementation, during the implementation, and even after it. We don’t code in stone.

The Implementation: The Value of Iteration

You’ve gathered with your team, tried to define the problem, found multiple hypothesizes, and agreed to try one of them. Great! Problem solved.

Not so fast! We still need to apply the hypothesis, and hope that it will become a good solution to the problem. Doing so, you’ll gather more information along the way, which might change your perspective on the problem, on your hypothesizes, and can even create some baby problems on its own.

It’s where the agile methodology is useful: since we’ll never have 100% certainty regarding a problem and its possible solution, we’ll learn more about both while implementing the hypothesis. That’s why it’s so valuable to iterate on the implementation: it gives you more information to possibly adjust your code, or even the problem, or even switching hypothesizes altogether. Who knows? A solution which is not implemented is just a guess.

If the hypothesis applied is not the ones you would have personally preferred (compromising, or even giving up on your preferred solution is common in a team), only applying it will tell you if you’re right or wrong; that is, if the hypothesis can become a solution solving the problem, at least in the present context.

If you’re worried about how a specific solution will evolve overtime, it’s more complicated, because an implementation won’t give you the information you seek. Still, implementing a hypothesis can be a great source of learning (the most valuable to me is when I’m wrong, because I learn even more). If you think that your hypothesis can have better outcome at time T, you might also try to implement it and compare it. Again, it’s where prototyping is useful.

When applying the solution, you need to look at the details of the implementation, as well as the big picture, to judge if the solution you’re creating is appropriate (leading to the desired outcome). This is a difficult exercise. In general, a developer should be able to reason on different levels of abstraction, more or less at the same time. Again, if you’re aware of it, your experience will help you here, and you can also push yourself to think of all the possible risks and consequences at different levels.

If you work in a team, try to participate (at least a bit) into the implementation of the solution. It’s not good to create silos in teams (that is, only a couple of members have some information others don’t have).

You can go as far as looking at other projects, and ask yourselves these questions:

  • Did we had similar problems on these other projects? How did we solve them?
  • What was the context of these projects? Is it similar to our current context?
  • What did we learn from these other problems, and their implementation? Is the implementation similar to what we’re doing now?

In any case, I would definitely recommend you to write a development journal. I write mine for years, and it has been valuable in many cases. I basically write in there:

  • The interesting problems I had.
  • The decisions made.
  • How the implementation of the solution evolved overtime.
  • The possible mistakes we made along the way.

It’s a great resource when you have a problem and you want to look at your past experience.

To evaluate your decisions overtime, nothing will beat a good monitoring process: logs, tests, and so on. It’s what the book Building Evolutionary Architecture call “fitness functions” for example, some monitoring allowing you to measure how healthy your architecture stays overtime. It doesn’t have to stop to the architecture; you can think about different monitoring system to see how something evolve, especially if the solution has still a lot of uncertainty regarding its benefits, drawbacks, and risks.

You can also do that retrospectively: looking at how the code complexity evolve overtime using Git for example.

Retrospective on the Process

We defined the problem, implemented a solution iteratively, and now the problem is gone. That’s it! We made it! Are we done now?

Decisions are sometimes not optimal, and implementing a solution successfully doesn’t mean that there wasn’t a better (simpler) one to begin with. That’s why it can be beneficial to look back and understand what went right, and what went wrong. For example, we can ask ourselves these questions:

  • Looking at what we learned during the whole process, is there a potentially better hypothesis to solve the problem in a simpler, more robust way?
  • What are the benefits and drawbacks we missed when speaking about the different hypothesizes, but we discovered during the implementation? Why we didn’t think about them beforehand?
  • What other problems did we encounter during the implementation? Did we solve them? Did we differ some? What should be the next steps regarding these new problems?
  • What kind of monitoring did we put in place to make sure that the solution won’t have undesired outcomes overtime? Can we learn something with this data?

Reflecting on past solutions is a difficult thing to do. There is no way to logically assess that the decision taken was better than others, since we didn’t implement the other hypothesizes, and we didn’t look at them overtime to appreciate their consequences. But you can still look at the implementation of the solution overtime, and write in your developer journal each time there is a bug which seems directly related to the solution. Would the bugs be the same if another solution would had been applied?

Bugs are often not an option; they will pop up, eventually. Nonetheless, it’s important to make sure that you can fix them in a reasonable amount of time, and that you don’t see them creeping back in the codebase after being solved. Some metrics, from the DevOps movement (like MTTR for example) can help here. Sometimes, bugs will show you a better, more refined solution to the original problem; after all, bugs can also give you some useful information. They are also the most direct result of the implementation of your solution.

If you want to know more about measuring complexity (which can be also used to measure complexity overtime after applying a solution), I wrote a couple of articles on the subject .

Humility in Problem-Solving

It’s time to do a little summary. What did we see in this article?

  • We need to ensure that the problem we found is really a problem we need to solve. Is there any value to solve the problem? Is it even a problem?
  • Try to determine what kind of problem you have: a problem which can have multiple, specific, known answers (like a technical problem), or a problem which depends on the real-life context, without known solutions?
  • Defining the problem is important. Try to define it using different words. Write these definitions down. Does everybody in your team understand the problem equally?
  • It’s time to explore the solution space. Draft a couple of hypothesizes, their benefits, drawbacks, and risks. You can also do some prototyping if you think it would give you more information to take the best decision.
  • Do you have enough information to implement a hypothesis, becoming effectively a solution? If it’s not the case, it might be better to keep the status quo and try to solve the problem later, when you’ll have more information. But don’t forget the problem!
  • If you decide to implement a solution, do it step by step, especially if you’re unsure about the consequences of your decisions. Implement an independent part of the hypothesis, look at the consequences, adjust if necessary, and re-iterate.
  • When the solution is implemented, it’s time to reflect on the whole process: did we solve the problem? What other problems did we encounter? Maybe another solution would have been better? Why?

As I was writing above, most problems you’ll encounter will be complex ones, embedded into a changing environment with different moving parts. As a result, it’s difficult to train to solve problems in a vacuum; the only good training I know is solving real life problems. That’s why your experience is so important.

Experience build your intuition, which in turn increase your expertise.

You’ll never have 100% certainty that a solution will bring you the desired outcome, especially if you are in front of a complex problem with a blurry context. If you are absolutely convinced that you have the good solution without even beginning to implement it, I’d advise you to stay humber in front of the Gods of Complexity, or they will show you how little you know.

  • How to solve it
  • Hammock Driven Development
  • When Deferring Decisions Leads to Better Codebases
  • Lean Development - deferring decision

Onecodecamp

Mastering Programming Challenges: Five In-Depth Problem-Solving Strategies

problem solving technique in programming

  • Posted on 22/08/2023
  • chuapristine16
  • No Comments

Practicing problem-solving techniques is crucial for becoming a proficient programmer . Whether you’re a beginner or an experienced coder, honing your problem-solving skills can greatly improve your ability to tackle programming challenges effectively.

Here are some strategies and techniques to help you in this endeavor:

  • Understand the Problem: Before you start coding , it’s essential to thoroughly understand the problem statement. Break it down into smaller components and ensure you grasp the requirements, constraints, and the expected input-output relationship. Consider asking questions like: What are the input types and their ranges? What should the output look like? Are there any edge cases to consider? A solid understanding of the problem will guide your solution and prevent misunderstandings that might lead to incorrect implementations.
  • Break Down the Problem: Large problems can often be intimidating, but breaking them down into smaller subproblems can make them more manageable. Identify the main steps or components needed to solve the problem. Tackle each subproblem one at a time, focusing on solving each part independently. Once you have working solutions for the subproblems, combine them to solve the larger problem. This approach not only simplifies complex problems but also allows you to approach each part with a clear strategy.
  • Algorithm Design: Choosing the right algorithmic approach is critical for efficient problem-solving. Different types of problems often have established algorithms that work well for them. For instance, if you’re dealing with a search problem, consider binary search for efficiency. If the problem involves finding the shortest path, graph algorithms like Dijkstra’s or A* might be useful. Understanding the problem’s characteristics and selecting an appropriate algorithmic paradigm will significantly influence the efficiency and correctness of your solution.
  • Pseudocode and Visualization: Before diving into coding, sketch out a high-level pseudocode that outlines the steps your solution will take. Pseudocode helps you structure your thoughts and visualize the solution’s logic without getting bogged down in syntax. It serves as a roadmap for implementing the actual code. Visualizing the algorithm’s flow through pseudocode allows you to spot potential issues and refine your approach before committing to coding.
  • Test Cases: Creating a well-defined set of test cases is crucial for ensuring the correctness of your solution. Start with common cases, and then expand to cover edge cases and corner cases. These might include situations where the input is at its maximum or minimum values, or scenarios that involve unusual combinations of inputs. By testing your solution against these cases, you can catch errors and ensure your solution handles all possible scenarios accurately.

Remember that problem-solving is a skill that takes time to develop. It’s okay to face challenges and make mistakes; they are valuable learning experiences. With consistent practice and dedication, you’ll see significant improvement in your ability to tackle programming challenges effectively.

Leave a Comment Cancel reply

Reserve my spot.

Please Login First to Download the Carriculum!

Download Curriculum

Download syllabus.

problem solving technique in programming

Tutorial Playlist

Programming tutorial, your guide to the best backend languages for 2024, an ultimate guide that helps you to start learn coding 2024, what is backend development: the ultimate guide for beginners, all you need to know for choosing the first programming language to learn, here’s all you need to know about coding, decoding, and reasoning with examples, understanding what is xml: the best guide to xml and its concepts., an ultimate guide to learn the importance of low-code and no-code development, top frontend languages that you should know about, top 75+ frontend developer interview questions and answers, the ultimate guide to learn typescript generics, the most comprehensive guide for beginners to know ‘what is typescript’.

The Ultimate Guide on Introduction to Competitive Programming

Top 60+ TCS NQT Interview Questions and Answers for 2024

Most commonly asked logical reasoning questions in an aptitude test, everything you need to know about advanced typescript concepts, an absolute guide to build c hello world program, a one-stop solution guide to learn how to create a game in unity, what is nat significance of nat for translating ip addresses in the network model, data science vs software engineering: key differences, a real-time chat application typescript project using node.js as a server, what is raspberry pi here’s the best guide to get started, what is arduino here’s the best beginners guide to get started, arduino vs. raspberry pi: which is the better board, the perfect guide for all you need to learn about mean stack, software developer resume: a comprehensive guide, here’s everything all you need to know about the programming roadmap, an ultimate guide that helps you to develop and improve problem solving in programming, the top 10 awesome arduino projects of all time, roles of product managers, pyspark rdd: everything you need to know about pyspark rdd, wipro interview questions and answers that you should know before going for an interview, how to use typescript with nodejs: the ultimate guide, what is rust programming language why is it so popular, software terminologies, an ultimate guide that helps you to develop and improve problem solving in programming.

Lesson 27 of 34 By Hemant Deshpande

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Table of Contents

Coding and Programming skills hold a significant and critical role in implementing and developing various technologies and software. They add more value to the future and development. These programming and coding skills are essential for every person to improve problem solving skills. So, we brought you this article to help you learn and know the importance of these skills in the future. 

Want a Top Software Development Job? Start Here!

Want a Top Software Development Job? Start Here!

Topics covered in this problem solving in programming article are:

  • What is Problem Solving in Programming? 
  • Problem Solving skills in Programming
  • How does it impact your career ?
  • Steps involved in Problem Solving
  • Steps to improve Problem Solving in programming

What is Problem Solving in Programming?

Computers are used to solve various problems in day-to-day life. Problem Solving is an essential skill that helps to solve problems in programming. There are specific steps to be carried out to solve problems in computer programming, and the success depends on how correctly and precisely we define a problem. This involves designing, identifying and implementing problems using certain steps to develop a computer.

When we know what exactly problem solving in programming is, let us learn how it impacts your career growth.

How Does It Impact Your Career?

Many companies look for candidates with excellent problem solving skills. These skills help people manage the work and make candidates put more effort into the work, which results in finding solutions for complex problems in unexpected situations. These skills also help to identify quick solutions when they arise and are identified. 

People with great problem solving skills also possess more thinking and analytical skills, which makes them much more successful and confident in their career and able to work in any kind of environment. 

The above section gives you an idea of how problem solving in programming impacts your career and growth. Now, let's understand what problem solving skills mean.

Problem Solving Skills in Programming

Solving a question that is related to computers is more complicated than finding the solutions for other questions. It requires excellent knowledge and much thinking power. Problem solving in programming skills is much needed for a person and holds a major advantage. For every question, there are specific steps to be followed to get a perfect solution. By using those steps, it is possible to find a solution quickly.

The above section is covered with an explanation of problem solving in programming skills. Now let's learn some steps involved in problem solving.

Steps Involved in Problem Solving

Before being ready to solve a problem, there are some steps and procedures to be followed to find the solution. Let's have a look at them in this problem solving in programming article.

Basically, they are divided into four categories:

  • Analysing the problem
  • Developing the algorithm
  • Testing and debugging

Analysing the Problem

Every problem has a perfect solution; before we are ready to solve a problem, we must look over the question and understand it. When we know the question, it is easy to find the solution for it. If we are not ready with what we have to solve, then we end up with the question and cannot find the answer as expected. By analysing it, we can figure out the outputs and inputs to be carried out. Thus, when we analyse and are ready with the list, it is easy and helps us find the solution easily. 

Developing the Algorithm

It is required to decide a solution before writing a program. The procedure of representing the solution  in a natural language called an algorithm. We must design, develop and decide the final approach after a number of trials and errors, before actually writing the final code on an algorithm before we write the code. It captures and refines all the aspects of the desired solution.

Once we finalise the algorithm, we must convert the decided algorithm into a code or program using a dedicated programming language that is understandable by the computer to find a desired solution. In this stage, a wide variety of programming languages are used to convert the algorithm into code. 

Testing and Debugging

The designed and developed program undergoes several rigorous tests based on various real-time parameters and the program undergoes various levels of simulations. It must meet the user's requirements, which have to respond with the required time. It should generate all expected outputs to all the possible inputs. The program should also undergo bug fixing and all possible exception handling. If it fails to show the possible results, it should be checked for logical errors.

Industries follow some testing methods like system testing, component testing and acceptance testing while developing complex applications. The errors identified while testing are debugged or rectified and tested again until all errors are removed from the program.

The steps mentioned above are involved in problem solving in programming. Now let's see some more detailed information about the steps to improve problem solving in programming.

Steps to Improve Problem Solving in Programming

Right mindset.

The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

Making Right Decisions

When we need to solve a problem, we must be clear with the solution. The perfect solution helps to get success in a shorter period. Making the right decisions in the right situation helps to find the perfect solution quickly and efficiently. These skills also help to get more command over the subject.

Keeping Ideas on Track

Ideas always help much in improving the skills; they also help to gain more knowledge and more command over things. In problem solving situations, these ideas help much and help to develop more skills. Give opportunities for the mind and keep on noting the ideas.

Learning from Feedbacks

A crucial part of learning is from the feedback. Mistakes help you to gain more knowledge and have much growth. When you have a solution for a problem, go for the feedback from the experienced or the professionals. It helps you get success within a shorter period and enables you to find other solutions easily.

Asking Questions

Questions are an incredible part of life. While searching for solutions, there are a lot of questions that arise in our minds. Once you know the question correctly, then you are able to find answers quickly. In coding or programming, we must have a clear idea about the problem. Then, you can find the perfect solution for it. Raising questions can help to understand the problem.

These are a few reasons and tips to improve problem solving in programming skills. Now let's see some major benefits in this article.

  • Problem solving in programming skills helps to gain more knowledge over coding and programming, which is a major benefit.
  • These problem solving skills also help to develop more skills in a person and build a promising career.
  • These skills also help to find the solutions for critical and complex problems in a perfect way.
  • Learning and developing problem solving in programming helps in building a good foundation.
  • Most of the companies are looking for people with good problem solving skills, and these play an important role when it comes to job opportunities 
Don't miss out on the opportunity to become a Certified Professional with Simplilearn's Post Graduate Program in Full Stack Web Development . Enroll Today!

Problem solving in programming skills is important in this modern world; these skills build a great career and hold a great advantage. This article on problem solving in programming provides you with an idea of how it plays a massive role in the present world. In this problem solving in programming article, the skills and the ways to improve more command on problem solving in programming are mentioned and explained in a proper way.

If you are looking to advance in your career. Simplilearn provides training and certification courses on various programming languages - Python , Java , Javascript , and many more. Check out our Post Graduate Program in Full Stack Web Development course that will help you excel in your career.

If you have any questions for us on the problem solving in programming article. Do let us know in the comments section below; we have our experts answer it right away.

About the Author

Hemant Deshpande

Hemant Deshpande, PMP has more than 17 years of experience working for various global MNC's. He has more than 10 years of experience in managing large transformation programs for Fortune 500 clients across verticals such as Banking, Finance, Insurance, Healthcare, Telecom and others. During his career he has worked across the geographies - North America, Europe, Middle East, and Asia Pacific. Hemant is an internationally Certified Executive Coach (CCA/ICF Approved) working with corporate leaders. He also provides Management Consulting and Training services. He is passionate about writing and regularly blogs and writes content for top websites. His motto in life - Making a positive difference.

Recommended Resources

Your One-Stop Solution to Understand Coin Change Problem

Your One-Stop Solution to Understand Coin Change Problem

Combating the Global Talent Shortage Through Skill Development Programs

Combating the Global Talent Shortage Through Skill Development Programs

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

One Stop Solution to All the Dynamic Programming Problems

One Stop Solution to All the Dynamic Programming Problems

The Ultimate Guide on Introduction to Competitive Programming

The Ultimate Guide to Top Front End and Back End Programming Languages for 2021

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

Problem Solving

Foundations course, introduction.

Before we start digging into some pretty nifty JavaScript, we need to begin talking about problem solving : the most important skill a developer needs.

Problem solving is the core thing software developers do. The programming languages and tools they use are secondary to this fundamental skill.

From his book, “Think Like a Programmer” , V. Anton Spraul defines problem solving in programming as:

Problem solving is writing an original program that performs a particular set of tasks and meets all stated constraints.

The set of tasks can range from solving small coding exercises all the way up to building a social network site like Facebook or a search engine like Google. Each problem has its own set of constraints, for example, high performance and scalability may not matter too much in a coding exercise but it will be vital in apps like Google that need to service billions of search queries each day.

New programmers often find problem solving the hardest skill to build. It’s not uncommon for budding programmers to breeze through learning syntax and programming concepts, yet when trying to code something on their own, they find themselves staring blankly at their text editor not knowing where to start.

The best way to improve your problem solving ability is by building experience by making lots and lots of programs. The more practice you have the better you’ll be prepared to solve real world problems.

In this lesson we will walk through a few techniques that can be used to help with the problem solving process.

Lesson overview

This section contains a general overview of topics that you will learn in this lesson.

  • Explain the three steps in the problem solving process.
  • Explain what pseudocode is and be able to use it to solve problems.
  • Be able to break a problem down into subproblems.

Understand the problem

The first step to solving a problem is understanding exactly what the problem is. If you don’t understand the problem, you won’t know when you’ve successfully solved it and may waste a lot of time on a wrong solution .

To gain clarity and understanding of the problem, write it down on paper, reword it in plain English until it makes sense to you, and draw diagrams if that helps. When you can explain the problem to someone else in plain English, you understand it.

Now that you know what you’re aiming to solve, don’t jump into coding just yet. It’s time to plan out how you’re going to solve it first. Some of the questions you should answer at this stage of the process:

  • Does your program have a user interface? What will it look like? What functionality will the interface have? Sketch this out on paper.
  • What inputs will your program have? Will the user enter data or will you get input from somewhere else?
  • What’s the desired output?
  • Given your inputs, what are the steps necessary to return the desired output?

The last question is where you will write out an algorithm to solve the problem. You can think of an algorithm as a recipe for solving a particular problem. It defines the steps that need to be taken by the computer to solve a problem in pseudocode.

Pseudocode is writing out the logic for your program in natural language instead of code. It helps you slow down and think through the steps your program will have to go through to solve the problem.

Here’s an example of what the pseudocode for a program that prints all numbers up to an inputted number might look like:

This is a basic program to demonstrate how pseudocode looks. There will be more examples of pseudocode included in the assignments.

Divide and conquer

From your planning, you should have identified some subproblems of the big problem you’re solving. Each of the steps in the algorithm we wrote out in the last section are subproblems. Pick the smallest or simplest one and start there with coding.

It’s important to remember that you might not know all the steps that you might need up front, so your algorithm may be incomplete -— this is fine. Getting started with and solving one of the subproblems you have identified in the planning stage often reveals the next subproblem you can work on. Or, if you already know the next subproblem, it’s often simpler with the first subproblem solved.

Many beginners try to solve the big problem in one go. Don’t do this . If the problem is sufficiently complex, you’ll get yourself tied in knots and make life a lot harder for yourself. Decomposing problems into smaller and easier to solve subproblems is a much better approach. Decomposition is the main way to deal with complexity, making problems easier and more approachable to solve and understand.

In short, break the big problem down and solve each of the smaller problems until you’ve solved the big problem.

Solving Fizz Buzz

To demonstrate this workflow in action, let’s solve a common programming exercise: Fizz Buzz, explained in this wiki article .

Understanding the problem

Write a program that takes a user’s input and prints the numbers from one to the number the user entered. However, for multiples of three print Fizz instead of the number and for the multiples of five print Buzz . For numbers which are multiples of both three and five print FizzBuzz .

This is the big picture problem we will be solving. But we can always make it clearer by rewording it.

Write a program that allows the user to enter a number, print each number between one and the number the user entered, but for numbers that divide by 3 without a remainder print Fizz instead. For numbers that divide by 5 without a remainder print Buzz and finally for numbers that divide by both 3 and 5 without a remainder print FizzBuzz .

Does your program have an interface? What will it look like? Our FizzBuzz solution will be a browser console program, so we don’t need an interface. The only user interaction will be allowing users to enter a number.

What inputs will your program have? Will the user enter data or will you get input from somewhere else? The user will enter a number from a prompt (popup box).

What’s the desired output? The desired output is a list of numbers from 1 to the number the user entered. But each number that is divisible by 3 will output Fizz , each number that is divisible by 5 will output Buzz and each number that is divisible by both 3 and 5 will output FizzBuzz .

Writing the pseudocode

What are the steps necessary to return the desired output? Here is an algorithm in pseudocode for this problem:

Dividing and conquering

As we can see from the algorithm we developed, the first subproblem we can solve is getting input from the user. So let’s start there and verify it works by printing the entered number.

With JavaScript, we’ll use the “prompt” method.

The above code should create a little popup box that asks the user for a number. The input we get back will be stored in our variable answer .

We wrapped the prompt call in a parseInt function so that a number is returned from the user’s input.

With that done, let’s move on to the next subproblem: “Loop from 1 to the entered number”. There are many ways to do this in JavaScript. One of the common ways - that you actually see in many other languages like Java, C++, and Ruby - is with the for loop :

If you haven’t seen this before and it looks strange, it’s actually straightforward. We declare a variable i and assign it 1: the initial value of the variable i in our loop. The second clause, i <= answer is our condition. We want to loop until i is greater than answer . The third clause, i++ , tells our loop to increment i by 1 every iteration. As a result, if the user inputs 10, this loop would print numbers 1 - 10 to the console.

Most of the time, programmers find themselves looping from 0. Due to the needs of our program, we’re starting from 1

With that working, let’s move on to the next problem: If the current number is divisible by 3, then print Fizz .

We are using the modulus operator ( % ) here to divide the current number by three. If you recall from a previous lesson, the modulus operator returns the remainder of a division. So if a remainder of 0 is returned from the division, it means the current number is divisible by 3.

After this change the program will now output this when you run it and the user inputs 10:

The program is starting to take shape. The final few subproblems should be easy to solve as the basic structure is in place and they are just different variations of the condition we’ve already got in place. Let’s tackle the next one: If the current number is divisible by 5 then print Buzz .

When you run the program now, you should see this output if the user inputs 10:

We have one more subproblem to solve to complete the program: If the current number is divisible by 3 and 5 then print FizzBuzz .

We’ve had to move the conditionals around a little to get it to work. The first condition now checks if i is divisible by 3 and 5 instead of checking if i is just divisible by 3. We’ve had to do this because if we kept it the way it was, it would run the first condition if (i % 3 === 0) , so that if i was divisible by 3, it would print Fizz and then move on to the next number in the iteration, even if i was divisible by 5 as well.

With the condition if (i % 3 === 0 && i % 5 === 0) coming first, we check that i is divisible by both 3 and 5 before moving on to check if it is divisible by 3 or 5 individually in the else if conditions.

The program is now complete! If you run it now you should get this output when the user inputs 20:

  • Read How to Think Like a Programmer - Lessons in Problem Solving by Richard Reis.
  • Watch How to Begin Thinking Like a Programmer by Coding Tech. It’s an hour long but packed full of information and definitely worth your time watching.
  • Read this Pseudocode: What It Is and How to Write It article from Built In.

Knowledge check

This section contains questions for you to check your understanding of this lesson on your own. If you’re having trouble answering a question, click it and review the material it links to.

  • What are the three stages in the problem solving process?
  • Why is it important to clearly understand the problem first?
  • What can you do to help get a clearer understanding of the problem?
  • What are some of the things you should do in the planning stage of the problem solving process?
  • What is an algorithm?
  • What is pseudocode?
  • What are the advantages of breaking a problem down and solving the smaller problems?

Additional resources

This section contains helpful links to other content. It isn’t required, so consider it supplemental.

  • Read the first chapter in Think Like a Programmer: An Introduction to Creative Problem Solving ( not free ). This book’s examples are in C++, but you will understand everything since the main idea of the book is to teach programmers to better solve problems. It’s an amazing book and worth every penny. It will make you a better programmer.
  • Watch this video on repetitive programming techniques .
  • Watch Jonathan Blow on solving hard problems where he gives sage advice on how to approach problem solving in software projects.

Support us!

The odin project is funded by the community. join us in empowering learners around the globe by supporting the odin project.

Learnprogramo Logo

Problem Solving Through Programming in C

In this lesson, we are going to learn Problem Solving Through Programming in C. This is the first lesson while we start learning the C language.

So let’s start learning the C language.

Table of Contents

Introduction to Problem Solving Through Programming in C

Regardless of the area of the study, computer science is all about solving problems with computers. The problem that we want to solve can come from any real-world problem or perhaps even from the abstract world. We need to have a standard systematic approach to problem solving through programming in c.

computer programmers are problem solvers. In order to solve a problem on a computer, we must know how to represent the information describing the problem and determine the steps to transform the information from one representation into another.

In this chapter, we will learn problem-solving and steps in problem-solving, basic tools for designing solution as an algorithm, flowchart , pseudo code etc.

A computer is a very powerful and versatile machine capable of performing a multitude of different tasks, yet it has no intelligence or thinking power.

The Computer performs many tasks exactly in the same manner as it is told to do. This places responsibility on the user to instruct the computer in a correct and precise manner so that the machine is able to perform the required job in a proper way. A wrong or ambiguous instruction may sometimes prove dangerous.

The computer cannot solve the problem on its own, one has to provide step by step solutions of the problem to the computer. In fact, the task of problem-solving is not that of the computer.

It is the programmer who has to write down the solution to the problem in terms of simple operations which the computer can understand and execute.

Problem-solving is a sequential process of analyzing information related to a given situation and generating appropriate response options.

In order to solve a problem with the computer, one has to pass through certain stages or steps. They are as follows:

Steps to Solve a Problem With the Computer

problem solving through programming in c

Step 1: Understanding the Problem:

Here we try to understand the problem to be solved in totally. Before with the next stage or step, we should be absolutely sure about the objectives of the given problem.

Step 2: Analyzing the Problem:

After understanding thoroughly the problem to be solved, we look at different ways of solving the problem and evaluate each of these methods.

The idea here is to search for an appropriate solution to the problem under consideration. The end result of this stage is a broad overview of the sequence of operations that are to be carried out to solve the given problem.

Step 3: Developing the solution:

Here, the overview of the sequence of operations that was the result of the analysis stage is expanded to form a detailed step by step solution to the problem under consideration.

Step 4: Coding and Implementation:

The last stage of problem-solving is the conversion of the detailed sequence of operations into a language that the computer can understand. Here, each step is converted to its equivalent instruction or instructions in the computer language that has been chosen for the implantation.

The vehicle for the computer solution to a problem is a set of explicit and unambiguous instructions expressed in a programming language. This set of instruction is called a program with problem solving through programming in C .

A program may also be thought of as an algorithm expressed in a programming language. an algorithm, therefore, corresponds to a solution to a problem that is independent of any programming language .

To obtain the computer solution to a problem once we have the program we usually have to supply the program with input or data. The program then takes this input and manipulates it according to its instructions. Eventually produces an output which represents the computer solution to the problem.

The problem solving is a skill and there are no universal approaches one can take to solving problems. Basically one must explore possible avenues to a solution one by one until she/he comes across the right path to a solution.

In general, as one gains experience in solving problems, one develops one’s own techniques and strategies, though they are often intangible. Problem-solving skills are recognized as an integral component of computer programming.

Note: Practice C Programs for problem solving through programming in C.

Problem Solving Steps

Problem-solving is a creative process which defines systematization and mechanization. There are a number of steps that can be taken to raise the level of one’s performance in problem-solving.

A problem-solving technique follows certain steps in finding the solution to a problem. Let us look into the steps one by one:

1. Problem Definition Phase:

The success in solving any problem is possible only after the problem has been fully understood. That is, we cannot hope to solve a problem, which we do not understand. So, the problem understanding is the first step towards the solution of the problem.

In the problem definition phase, we must emphasize what must be done rather than how is it to be done. That is, we try to extract the precisely defined set of tasks from the problem statement.

Inexperienced problem solvers too often gallop ahead with the task of the problem – solving only to find that they are either solving the wrong problem or solving the wrong problem or solving just one particular problem.

2. Getting Started on a Problem:

There are many ways of solving a problem and there may be several solutions. So, it is difficult to recognize immediately which path could be more productive. Problem solving through programming in C.

Sometimes you do not have any idea where to begin solving a problem, even if the problem has been defined. Such block sometimes occurs because you are overly concerned with the details of the implementation even before you have completely understood or worked out a solution.

The best advice is not to get concerned with the details. Those can come later when the intricacies of the problem have been understood.

3. Use of Specific Examples:

To get started on a problem, we can make use of heuristics i.e the rule of thumb. This approach will allow us to start on the problem by picking a specific problem we wish to solve and try to work out the mechanism that will allow solving this particular problem.

It is usually much easier to work out the details of a solution to a specific problem because the relationship between the mechanism and the problem is more clearly defined.

This approach of focusing on a particular problem can give us the foothold we need for making a start on the solution to the general problem.

4. Similarities Among Problems:

One way to make a start is by considering a specific example. Another approach is to bring the experience to bear on the current problems. So, it is important to see if there are any similarities between the current problem and the past problems which we have solved.

The more experience one has the more tools and techniques one can bring to bear in tackling the given problem. But sometimes, it blocks us from discovering a desirable or better solution to the problem.

A skill that is important to try to develop in problem-solving is the ability to view a problem from a variety of angles.

One must be able to metaphorically turn a problem upside down, inside out, sideways, backwards, forwards and so on. Once one has developed this skill it should be possible to get started on any problem.

5. Working Backwards from the Solution:

In some cases, we can assume that we already have the solution to the problem and then try to work backwards to the starting point. Even a guess at the solution to the problem may be enough to give us a foothold to start on the problem.

We can systematize the investigations and avoid duplicate efforts by writing down the various steps taken and explorations made.

Another practice that helps to develop the problem-solving skills, once we have solved a problem, to consciously reflect back on the way we went about discovering the solution.

General Problem Solving Strategies:

problem solving through programming in c

There are a number of general and powerful computational strategies that are repeatedly used in various guises in computer science.

Often it is possible to phrase a problem in terms of one of these strategies and achieve considerable gains in computational efficiency.

1. Divide and Conquer:

The most widely known and used strategy, where the basic idea is to break down the original problem into two or more sub-problems, which is presumably easier or more efficient to solve.

The Splitting can be carried on further so that eventually we have many sub-problems, so small that further splitting is no necessary to solve them. We shall see many examples of this strategy and discuss the gain in efficiency due to its application.

2. Binary Doubling:

This is the reverse of the divide and conquers strategy i.e build-up the solution for a larger problem from solutions and smaller sub-problems.

3. Dynamic Programming:

Another general strategy for problem-solving which is useful when we can build-up the solution as a sequence of the intermediate steps. Problem Solving through programming in C.

The travelling salesman problem falls into this category. The idea here is that a good or optimal solution to a problem can be built-up from good or optimal solutions of the sub-problems.

4. General Search, Back Tracking and Branch-and-Bound:

All of these are variants of the basic dynamic programming strategy but are equally important.

Share This Story, Choose Your Platform!

Related posts.

What is Preprocessor in C

What is Preprocessor in C

What is File Handling in C

What is File Handling in C

Structures and Unions in C

Structures and Unions in C

Enhancing Problem-Solving Skills in Java Programming: A Comprehensive Guide

Avinash bidkar, introduction.

Problem-solving skills lie at the heart of successful Java programming. In the realm of software development, the ability to dissect complex challenges, design efficient solutions, and implement them through code is paramount. This article delves into the art of honing problem-solving skills within the context of Java programming. By combining logical thinking, algorithmic strategies, and effective coding practice, developers can elevate their problem-solving skills in Java programming and create elegant, robust solutions.

Java Programing

Understanding Problem-Solving in Java Programming

Problem-solving in the realm of Java programming refers to the systematic approach of identifying, analyzing, and solving coding challenges. In a software developer course, you’ll learn that it involves breaking down intricate problems into manageable components and devising logical strategies to tackle them. Logical thinking and algorithmic understanding play a pivotal role in this process, allowing developers to construct well-structured and optimized solutions. Such skills are indispensable for crafting software that is not only functional but also efficient.

Guidelines for Enhancing Problem-Solving Skills

Here’s a rundown of the guidelines to enhance your problem-Solving skills.

  • Breaking down complex problems: Start by breaking down a complex problem into smaller sub-problems. This approach simplifies the overall challenge and makes it easier to develop individual solutions for each component.
  • Developing a systematic approach: Establish a systematic approach to problem-solving. Define the problem, identify the required inputs and desired outputs, and outline the steps needed to bridge the gap.
  • Understanding before coding: Resist the urge to immediately dive into coding. Spend ample time understanding the problem statement, its nuances, and potential edge cases. A solid understanding is the foundation of an effective solution.
  • Utilizing pseudocode and flowcharts: Before writing actual code, create pseudocode or flowcharts to outline the logical flow of your solution. This helps in visualizing the process and identifying potential flaws early on.
  • Incremental development and testing: Build your solution incrementally, testing each component as you progress. This approach allows you to catch errors early and refine your solution iteratively.

Effective Coding Practice for Problem-Solving

Regular coding practice is essential for honing problem-solving skills. Engage in a variety of coding challenges that span different difficulty levels and problem domains. Online coding platforms, such as LeetCode, HackerRank, and CodeSignal, offer a wealth of practice problems and allow you to benchmark your skills against a global community of programmers. Mastering problem-solving skills in Java programming involves a combination of understanding the language's features, algorithms, and data structures, as well as practicing systematic approaches to tackling challenges.

Applying Algorithms for Efficient Solutions

Algorithms are step-by-step instructions for solving a specific problem. Learning and implementing various algorithms can greatly improve your problem-solving capabilities. Start by understanding the fundamental algorithms such as sorting, searching, and graph traversal. As you become more comfortable, move on to more advanced algorithms like dynamic programming, greedy algorithms, and divide-and-conquer techniques. Regularly practicing these algorithms through coding exercises will help you develop a toolkit of strategies to approach different types of problems effectively.

Strengthening Logical Thinking Abilities

Logical thinking is the foundation of problem-solving. It involves breaking down complex problems into smaller, manageable parts and understanding the relationships between different elements. To enhance your logical thinking skills, practice solving puzzles, brain teasers, and mathematical problems. Additionally, try to analyze the structure of various programming challenges and identify patterns and dependencies. Cultivating this skill will enable you to devise creative and efficient solutions to intricate programming problems.

Learning from Real-world Examples

Real-world examples provide practical insights into applying problem-solving skills in Java programming. Let's explore a few examples:

Example 1: Finding the factorial of a number: Break down the problem into smaller steps, creating a loop to multiply consecutive integers.

Example 2: Implementing binary search: Utilize the divide and conquer strategy to narrow down the search space and efficiently find the target element.

Example 3: Solving the Fibonacci sequence: Employ dynamic programming to optimize recursive calculations and generate Fibonacci numbers efficiently.

Overcoming Common Challenges

When solving programming problems, you're likely to encounter common challenges such as bugs, runtime errors, and inefficiencies. Embrace these challenges as opportunities to learn. Debugging is a crucial aspect of problem-solving. Cultivate a systematic approach to identifying and fixing errors by using tools like debugging environments and print statements. Additionally, optimize your code by analyzing time and space complexity, identifying bottlenecks, and making informed decisions to improve efficiency.

Putting Problem-Solving Skills to the Test

Practicing problem-solving skills is essential for improvement. Utilize coding platforms like LeetCode, HackerRank, and Codeforces to access a wide range of programming challenges. These platforms often categorize problems by difficulty, allowing you to gradually progress from easy to more complex tasks. Set aside dedicated time for consistent practice, and challenge yourself by attempting problems that initially seem daunting.

Collaborate with fellow programmers, engage in coding competitions, and participate in online forums to gain exposure to different problem-solving approaches.

An essential talent for Java programmers is the ability to solve problems. Developers can become skilled problem solvers by following logical rules, practicing code often, learning algorithms, and cultivating logical thought. The secret to maximizing the potential of problem-solving abilities is constant learning combined with practical experience. As you set out on this path, keep in mind that every obstacle you overcome will help you get closer to mastering Java programming and being able to create unique, effective solutions.

How can I improve my problem-solving skills in Java programming?

Enhance your problem-solving skills in Java by practicing algorithmic challenges, breaking down complex problems into smaller tasks, and leveraging data structures effectively. Regular coding practice and participating in coding competitions can also contribute to your skill development.

What strategies can I employ to tackle challenging Java programming problems?

Approach difficult Java programming problems step by step, analyze the problem requirements thoroughly, devise a clear plan, and implement it incrementally. Utilize debugging tools and collaborate with peers to gain different perspectives on problem-solving techniques.

Are there any specific resources for practicing Java problem-solving?

Numerous online platforms offer Java programming challenges and exercises, such as LeetCode, HackerRank, and Codeforces. These resources provide a range of problems to solve, helping you refine your problem-solving skills and Java proficiency.

How do I optimize my Java code for better problem-solving outcomes?

Optimize Java code by choosing efficient data structures, minimizing unnecessary iterations, and employing dynamic programming or memoization techniques when appropriate. Regularly review and refactor your code to improve its clarity and performance.

Q. Can problem-solving in Java programming benefit my overall programming proficiency?

Enhancing your problem-solving skills in Java translates to improved programming proficiency in general. The analytical mindset and structured problem-solving techniques you develop will prove valuable across various programming languages and domains.

Our Courses

Practice-Based Learning Tracks, Supercharged By A.I.

Code With C

The Way to Programming

  • C Tutorials
  • Java Tutorials
  • Python Tutorials
  • PHP Tutorials
  • Java Projects

Dynamic Programming: Strategies for Solving Complex Problems Efficiently

CodeLikeAGirl

Dynamic Programming Demystified 🚀

Hey there, fellow tech enthusiasts! đŸ€– Today, let’s delve into the fascinating world of Dynamic Programming 🌟. Don’t be scared off by the jargon; I’m here to break it down with a sprinkle of humor and a dollop of enthusiasm! So, grab your virtual seat and let’s dive right in! đŸ’»

Understanding Dynamic Programming

So, what in the world is Dynamic Programming ? đŸ€” Imagine you have this colossal problem to solve, and it’s so complex that you feel like pulling your hair out! Dynamic Programming swoops in like a superhero, offering you a strategy to break down this mammoth task into bite-sized, manageable chunks. Voila! Problem solved! đŸ’Ș

Definition of Dynamic Programming

Dynamic Programming is like the master chef in the kitchen of algorithms . It’s a methodical way of solving complex problems by breaking them down into simpler subproblems. 🍳 Each subproblem’s solution is stored to avoid redundant calculations, making the overall process more efficient. Efficiency for the win! 🎉

Importance of Dynamic Programming

Picture this: You’re at a buffet, and you want to sample every dish. Dynamic Programming allows you to do just that in the realm of algorithms – optimize your solutions and tackle even the most intricate problems with finesse. It’s like having a secret recipe book for cracking challenging puzzles in record time! đŸœïž

Basic Principles of Dynamic Programming

Let’s talk about the fundamental rules that make Dynamic Programming the rockstar of problem-solving techniques! 🌟

  • Overlapping Subproblems : It’s like finding money in the pockets of your old jeans. Dynamic Programming identifies these recurring subproblems and saves their solutions for later use, eliminating unnecessary work. It’s all about efficiency, baby! 💾
  • Optimal Substructure : This principle is like building a sturdy LEGO tower. Each piece (subproblem) fits perfectly to create the optimal solution . Dynamic Programming ensures that each subproblem’s solution contributes to the overall best answer. It’s all about that solid foundation! đŸ—ïž

Strategies for Applying Dynamic Programming

Now that we’ve got the basics under our belt, let’s explore the two dynamic strategies that make the magic happen! đŸŽ©âœš

  • Top-down Approach : Imagine you’re skydiving from the top. This approach starts with the main problem and recursively breaks it down into subproblems. It’s adventurous, exhilarating, and definitely keeps you on your toes! đŸȘ‚
  • Bottom-up Approach : Ever built a tower from the ground up? That’s the bottom-up approach. You start with the smallest subproblems, gradually solving larger ones until you conquer the main problem like a champ. It’s a steady climb to success! đŸ—Œ

Applications of Dynamic Programming

Dynamic Programming isn’t just a fancy term; it’s the powerhouse behind some incredible real-world applications! 🌐 Let’s take a peek at a couple of them:

  • Fibonacci Sequence : Ah, the Fibonacci sequence, nature’s favorite mathematical marvel ! Dynamic Programming nimbly calculates Fibonacci numbers faster than you can say “Golden Ratio.” It’s all about those efficient number-crunching skills! 🔱
  • Shortest Path Algorithms : Navigating through a maze? Dynamic Programming has your back! It’s the GPS guiding you through the shortest route with speed and precision. Say goodbye to taking the long, scenic route! đŸ—ș

Challenges and Tips for Mastering Dynamic Programming

Ah, every hero has their kryptonite, right? Let’s uncover some challenges in mastering Dynamic Programming and how to conquer them like a pro! đŸŠžâ€â™‚ïž

  • Identifying Optimal Substructure : Sometimes the forest (complex problem) is so dense that you can’t see the trees (optimal substructure). Mastering Dynamic Programming involves honing your detective skills to spot these crucial patterns. Sherlock, who? đŸ•”ïž
  • Handling State Transitions efficiently : It’s like switching gears in a Formula 1 race. Efficiently transitioning between states is key to zipping through problems with ease. Rev up those mental engines and zoom past any hurdles! đŸŽïž

Overall, Mastering Dynamic Programming Like a Pro! 🚀

So, there you have it, folks! Dynamic Programming, the unsung hero of problem-solving, ready to tackle any challenge with finesse. Remember, practice makes perfect, and with a dash of determination and a sprinkle of creativity, you’ll be mastering Dynamic Programming like a seasoned pro in no time! đŸ’Ș

Thanks for tuning in, and remember: Keep coding, keep smiling, and embrace the dynamic journey ahead! 🌟

Stay Dynamically Awesome, Techies! đŸš€đŸ‘©â€đŸ’»

In closing, thanks a ton for joining me on this Dynamic Programming rollercoaster! 🎱 Keep shining bright and solving those tech puzzles like a boss! See you in the next coding adventure! ✹

Dynamic Programming: Strategies for Solving Complex Problems Efficiently

Program Code – Dynamic Programming: Strategies for Solving Complex Problems Efficiently

Code Output: The 10th Fibonacci number is: 55

Code Explanation:

In the given dynamic programming example , we solve for the nth Fibonacci number, a popular problem showcasing the elegance and efficiency of the dynamic programming approach. The recursive nature of the Fibonacci sequence, where each number is the sum of the two preceding ones (excluding the first two numbers which are both considered as 1), makes it an ideal candidate for dynamic programming, particularly memoization.

The code defines a fibonacci function that takes two arguments: n , the position in the Fibonacci sequence whose value we want to find, and memo , a dictionary used as a cache to store the results of the Fibonacci numbers we’ve already computed.

At the function’s core, we employ a base case for when n is less than or equal to 2. For these cases, we simply return 1, as the first two Fibonacci numbers by definition are 1.

The true power and efficiency lie in the subsequent lines. Before plunging headlong into a recursive frenzy, we first check if our current n is in the memo . If it’s not, this means we haven’t computed it yet, and then we proceed to perform the recursive operations to calculate fibonacci(n-1) and fibonacci(n-2) . Crucially, we then store this computed value in memo[n] . This storage step is what saves us from the redundant work if we encounter the same n value again in our computations.

In essence, any subsequent calls for the same Fibonacci number won’t have to go through the recursion again; instead, they’ll directly fetch the result from our memo , dramatically reducing the time complexity from what would have been exponential in a naive recursive approach (O(2^n)) to O(n) in our dynamic programming approach.

Let’s not forget—the function concludes by returning the memoized or newly computed value of the nth Fibonacci number, giving us our desired result efficiently and elegantly. Dynamic programming, with its memoization strategy, thus transforms an otherwise computationally intensive problem into a tractable one, showcasing its power in optimizing the performance of algorithms dealing with overlapping subproblems.

Frequently Asked Questions (F&Q) on Dynamic Programming

What is dynamic programming and how does it work.

Dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems. It involves solving each subproblem only once and storing the solution to avoid redundant calculations. This approach can significantly improve the efficiency of solving problems with overlapping subproblems.

When should I use dynamic programming to solve a problem?

Dynamic programming is most useful when a problem can be broken down into overlapping subproblems, and the optimal solution to the problem can be constructed from optimal solutions to its subproblems. It is commonly used in optimization problems, such as finding the shortest path or maximizing profit.

What are the key characteristics of problems that are suitable for dynamic programming?

Problems suitable for dynamic programming usually exhibit two key characteristics: optimal substructure and overlapping subproblems. Optimal substructure means that the optimal solution to the problem can be constructed from the optimal solutions to its subproblems. Overlapping subproblems refer to the fact that the same subproblems are solved multiple times in a recursive algorithm .

Can you provide an example of a problem that can be solved using dynamic programming?

One classic example of a problem solved using dynamic programming is the Fibonacci sequence. By storing the results of subproblems (calculating Fibonacci numbers for smaller indices), we can avoid redundant calculations and compute the nth Fibonacci number efficiently.

Are there different strategies or approaches to dynamic programming?

Yes, there are several strategies for approaching dynamic programming problems, such as top-down with memoization and bottom-up with tabulation. Top-down with memoization involves solving the problem recursively while storing the results of subproblems to avoid redundant calculations. Bottom-up with tabulation involves solving the problem iteratively, starting from the smallest subproblems and building up to the desired solution.

What are some common pitfalls to avoid when using dynamic programming?

One common pitfall when using dynamic programming is not recognizing the overlapping subproblems and failing to store and reuse intermediate results. It is essential to identify the repeating subproblems to benefit from the efficiency of dynamic programming . Additionally, starting with a brute-force approach before optimizing with dynamic programming can help in understanding the problem better.

How can I improve my skills in dynamic programming?

To improve your skills in dynamic programming, practice solving a variety of problems that can be optimized using dynamic programming techniques . Online coding platforms, coding contests, and algorithmic problem-solving websites offer a wide range of problems to help you sharpen your skills. Additionally, studying different dynamic programming patterns and approaches can enhance your problem-solving abilities.

What are some resources to learn more about dynamic programming?

There are plenty of resources available to deepen your understanding of dynamic programming, including online courses, textbooks, and tutorials. Websites like LeetCode, GeeksforGeeks, and CodeSignal offer practice problems and explanations related to dynamic programming. Additionally, joining online coding communities and forums can provide valuable insights and tips from experienced programmers in the field.

You Might Also Like

Binary decision diagrams: simplifying complex decision processes, optimizing data search in binary search trees, binary search tree: structure, operations, and applications, binary tree search: navigating trees for efficient data retrieval, searching in a binary search tree: algorithms and efficiency.

Avatar photo

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Latest Posts

93 Top Machine Learning Projects in Python with Source Code for Your Next Project

Top Machine Learning Projects in Python with Source Code for Your Next Project

86 Machine Learning Projects for Final Year with Source Code: A Comprehensive Guide to Success

Machine Learning Projects for Final Year with Source Code: A Comprehensive Guide to Success

87 Top 10 Machine Learning Projects for Students to Excel in Machine Learning Project

Top 10 Machine Learning Projects for Students to Excel in Machine Learning Project

82 Top Machine Learning Projects for Students: A Compilation of Exciting ML Projects to Boost Your Skills in 2022 Project

Top Machine Learning Projects for Students: A Compilation of Exciting ML Projects to Boost Your Skills in 2022 Project

75 Top Machine Learning Projects on GitHub for Deep Learning Enthusiasts - Dive into Exciting Project Ideas Now!

Top Machine Learning Projects on GitHub for Deep Learning Enthusiasts – Dive into Exciting Project Ideas Now!

Privacy overview.

Sign in to your account

Username or Email Address

Remember Me

  • Interview Problems on DP
  • Practice DP
  • Tutorial on Dynamic Programming
  • Optimal Substructure
  • Overlapping Subproblem
  • Memoization
  • Tabulation vs Memoization
  • 0/1 Knapsack
  • Unbounded Knapsack
  • Coin Change
  • Egg Dropping Puzzle
  • Matrix Chain Multiplication
  • Palindrome Partitioning
  • DP on Arrays
  • DP with Bitmasking
  • DP on Trees
  • DP on Graph
  • Dynamic Programming or DP
  • What is memoization? A Complete tutorial

Dynamic Programming (DP) Tutorial with Problems

  • Optimal Substructure Property in Dynamic Programming | DP-2
  • Overlapping Subproblems Property in Dynamic Programming | DP-1
  • Steps for how to solve a Dynamic Programming Problem

Advanced Topics

  • Bitmasking and Dynamic Programming | Set 1 (Count ways to assign unique cap to every person)
  • Digit DP | Introduction
  • Sum over Subsets | Dynamic Programming

Easy problems in Dynamic programming

  • Count all combinations of coins to make a given value sum (Coin Change II)
  • Subset Sum Problem
  • Introduction and Dynamic Programming solution to compute nCr%p
  • Cutting a Rod | DP-13
  • Painting Fence Algorithm
  • Longest Common Subsequence (LCS)
  • Longest Increasing Subsequence (LIS)
  • Longest subsequence such that difference between adjacents is one
  • Maximum size square sub-matrix with all 1s
  • Min Cost Path | DP-6
  • Longest Common Substring (Space optimized DP solution)
  • Count ways to reach the nth stair using step 1, 2 or 3
  • Count Unique Paths in matrix
  • Unique paths in a Grid with Obstacles

Medium problems on Dynamic programming

  • 0/1 Knapsack Problem
  • Printing Items in 0/1 Knapsack
  • Unbounded Knapsack (Repetition of items allowed)
  • Egg Dropping Puzzle | DP-11
  • Word Break Problem | DP-32
  • Vertex Cover Problem (Dynamic Programming Solution for Tree)
  • Tile Stacking Problem
  • Box Stacking Problem | DP-22
  • Partition problem | DP-18
  • Travelling Salesman Problem using Dynamic Programming
  • Longest Palindromic Subsequence (LPS)
  • Longest Common Increasing Subsequence (LCS + LIS)
  • Find all distinct subset (or subsequence) sums of an array
  • Weighted Job Scheduling
  • Count Derangements (Permutation such that no element appears in its original position)
  • Minimum insertions to form a palindrome | DP-28
  • Ways to arrange Balls such that adjacent balls are of different types

Hard problems on Dynamic programming

  • Word Wrap Problem
  • The Painter's Partition Problem
  • Program for Bridge and Torch problem
  • Matrix Chain Multiplication | DP-8
  • Printing brackets in Matrix Chain Multiplication Problem
  • Maximum sum rectangle in a 2D matrix | DP-27
  • Maximum profit by buying and selling a share at most k times
  • Minimum cost to sort strings using reversal operations of different costs
  • Count of AP (Arithmetic Progression) Subsequences in an array
  • Introduction to Dynamic Programming on Trees
  • Maximum height of Tree when any Node can be considered as Root
  • Longest repeating and non-overlapping substring
  • Top 20 Dynamic Programming Interview Questions
Dynamic Programming (DP) is defined as a technique that solves some particular type of problems in Polynomial Time. Dynamic Programming solutions are faster than the exponential brute method and can be easily proved their correctness.

Important Topics in Dynamic Programming Tutorial

Characteristics of dynamic programming algorithm:, what is the difference between a dynamic programming algorithm and recursion, techniques to solve dynamic programming problems:.

  • Tabulation(Dynamic Programming) vs Memoization:
  • How to solve a Dynamic Programming Problem?

How to solve Dynamic Programming problems through Example?

Greedy approach vs dynamic programming, some commonly asked problems in dynamic programming:, faqs about dynamic programming algorithm:.

Dynamic Programming is mainly an optimization over plain recursion . Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of subproblems so that we do not have to re-compute them when needed later. This simple optimization reduces time complexities from exponential to polynomial.

Introduction to Dynamic Programming - Data Structures and Algorithm Tutorials

Introduction to Dynamic Programming – Data Structures and Algorithm Tutorials

  • In general, dynamic programming (DP) is one of the most powerful techniques for solving a certain class of problems. 
  • There is an elegant way to formulate the approach and a very simple thinking process, and the coding part is very easy. 
  • Essentially, it is a simple idea, after solving a problem with a given input, save the result as a reference for future use, so you won’t have to re-solve it.. briefly ‘Remember your Past’ :). 
  • It is a big hint for DP if the given problem can be broken up into smaller sub-problems, and these smaller subproblems can be divided into still smaller ones, and in this process, you see some overlapping subproblems. 
  • Additionally, the optimal solutions to the subproblems contribute to the optimal solution of the given problem (referred to as the Optimal Substructure Property ).
  •  The solutions to the subproblems are stored in a table or array (memoization) or in a bottom-up manner (tabulation) to avoid redundant computation.
  • The solution to the problem can be constructed from the solutions to the subproblems.
  • Dynamic programming can be implemented using a recursive algorithm, where the solutions to subproblems are found recursively, or using an iterative algorithm, where the solutions are found by working through the subproblems in a specific order.

Dynamic programming works on following principles: 

  • Characterize structure of optimal solution, i.e. build a mathematical model of the solution.
  • Recursively define the value of the optimal solution. 
  • Using bottom-up approach, compute the value of the optimal solution for each possible subproblems.
  •  Construct optimal solution for the original problem using information computed in the previous step.

Applications:

Dynamic programming is used to solve optimization problems. It is used to solve many real-life problems such as,

(i) Make a change problem

 (ii) Knapsack problem

(iii) Optimal binary search tree

  • In dynamic programming , problems are solved by breaking them down into smaller ones to solve the larger ones, while recursion is when a function is called and executed by itself. While dynamic programming can function without making use of recursion techniques, since the purpose of dynamic programming is to optimize and accelerate the process, programmers usually make use of recursion techniques to accelerate and turn the process efficiently.
  • When a function can execute a specific task by calling itself, receive the name of the recursive function. In order to perform and accomplish the work, this function calls itself when it has to be executed.
  • Using dynamic programming , you can break a problem into smaller parts, called subproblems, to solve it. Dynamic programming involves solving the problem for the first time, then using memoization to store the solutions.
  • Therefore, the main difference between the two techniques is their intended use; recursion is used to automate a function, whereas dynamic programming is an optimization technique used to solve problems.
  • Recursive functions recognize when they are needed, execute themselves, then stop working. When the function identifies the moment it is needed, it calls itself and is executed; this is called a recursive case. As a result, the function must stop once the task is completed, known as the base case.
  • By establishing states, dynamic programming recognizes the problem and divides it into sub-problems in order to solve the whole scene. After solving these sub-problems, or variables, the programmer must establish a mathematical relationship between them. Last but not least, these solutions and results are stored as algorithms, so they can be accessed in the future without having to solve the whole problem again.

1. Top-Down(Memoization):

Break down the given problem in order to begin solving it. If you see that the problem has already been solved, return the saved answer. If it hasn’t been solved, solve it and save it. This is usually easy to think of and very intuitive, This is referred to as Memoization .

2. Bottom-Up(Tabulation):

Analyze the problem and see in what order the subproblems are solved, and work your way up from the trivial subproblem to the given problem. This process ensures that the subproblems are solved before the main problem. This is referred to as Dynamic Programming .

Types of the approach of dynamic programming algorithm

Types of the approach of dynamic programming algorithm

Tabulation vs Memoization:

There are two different ways to store the values so that the values of a sub-problem can be reused. Here, will discuss two patterns of solving dynamic programming (DP) problems: 

  • Tabulation: Bottom Up
  • Memoization: Top Down

Before getting to the definitions of the above two terms consider the following statements:

  • Version 1 : I will study the theory of DP from GeeksforGeeks, then I will practice some problems on classic DP and hence I will master DP.
  • Version 2 : To Master DP, I would have to practice Dynamic problems and practice problems – Firstly, I would have to study some theories of DP from GeeksforGeeks

Both versions say the same thing, the difference simply lies in the way of conveying the message and that’s exactly what Bottom-Up and Top-Down DP do. Version 1 can be related to Bottom-Up DP and Version-2 can be related to Top-Down DP.

To dynamically solve a problem, we need to check two necessary conditions: 

  • Overlapping Subproblems : When the solutions to the same subproblems are needed repetitively for solving the actual problem. The problem is said to have overlapping subproblems property.  

N-th Fibonacci Series as Overlapping Subproblems

N-th Fibonacci Series as Overlapping Subproblems

  • Optimal Substructure Property : If the optimal solution of the given problem can be obtained by using optimal solutions of its subproblems then the problem is said to have Optimal Substructure Property.

Steps to solve a Dynamic programming problem:

  • Identify if it is a Dynamic programming problem.
  • Decide a state expression with the Least parameters.
  • Formulate state and transition relationships.
  • Do tabulation (or memorization).

1) How to classify a problem as a Dynamic Programming algorithm Problem?

  • Typically, all the problems that require maximizing or minimizing certain quantities or counting problems that say to count the arrangements under certain conditions or certain probability problems can be solved by using Dynamic Programming.
  • All dynamic programming problems satisfy the overlapping subproblems property and most of the classic Dynamic programming problems also satisfy the optimal substructure property. Once we observe these properties in a given problem be sure that it can be solved using Dynamic Programming.

2) Deciding the state:

Problems with dynamic programming are mostly concerned with the state and its transition. The most fundamental phase must be carried out with extreme care because the state transition depends on the state definition you select.

A state is a collection of characteristics that can be used to specifically describe a given position or standing in a given challenge. To minimise state space, this set of parameters has to be as compact as feasible.

3) Formulating a relation among the states:

The hardest part of a Dynamic Programming challenge is this step, which calls for a lot of intuition, observation, and training.

Given 3 numbers {1, 3, 5}, the task is to tell the total number of ways we can form a number N using the sum of the given three numbers. (allowing repetitions and different arrangements).

The total number of ways to form 6 is: 8 1+1+1+1+1+1 1+1+1+3 1+1+3+1 1+3+1+1 3+1+1+1 3+3 1+5 5+1

Following are the steps to solve the problem:

  • We choose a state for the given problem.
  • N will be used as the determining factor for the state because it can be used to identify any subproblem.
  • The DP state will resemble state(N), where the state(N) is the total number of arrangements required to create N using the elements 1, 3, and 5. Identify the relationship of the transition between any two states.
  • We must now calculate the state (N).

3.1) How to Compute the state?

As we can only use 1, 3, or 5 to form a given number N. Let us assume that we know the result for N = 1, 2, 3, 4, 5, 6 

Let us say we know the result for: state (n = 1), state (n = 2), state (n = 3) 


 state (n = 6)  Now, we wish to know the result of the state (n = 7). See, we can only add 1, 3, and 5. Now we can get a sum total of 7 in the following 3 ways:

1) Adding 1 to all possible combinations of state (n = 6)  Eg: [ (1+1+1+1+1+1) + 1]  [ (1+1+1+3) + 1]  [ (1+1+3+1) + 1]  [ (1+3+1+1) + 1]  [ (3+1+1+1) + 1]  [ (3+3) + 1]  [ (1+5) + 1]  [ (5+1) + 1] 2) Adding 3 to all possible combinations of state (n = 4); [(1+1+1+1) + 3]  [(1+3) + 3]  [(3+1) + 3] 3) Adding 5 to all possible combinations of state(n = 2)  [ (1+1) + 5] (Note how it sufficient to add only on the right-side – all the add-from-left-side cases are covered, either in the same state, or another, e.g. [ 1+(1+1+1+3)]  is not needed in state (n=6) because it’s covered by state (n = 4) [(1+1+1+1) + 3]) Now, think carefully and satisfy yourself that the above three cases are covering all possible ways to form a sum total of 7; Therefore, we can say that result for  state(7) = state (6) + state (4) + state (2)  OR state(7) = state (7-1) + state (7-3) + state (7-5) In general,  state(n) = state(n-1) + state(n-3) + state(n-5)

Below is the implementation for the above approach:

Time Complexity: O(3 n ), As at every stage we need to take three decisions and the height of the tree will be of the order of n. Auxiliary Space: O(n), The extra space is used due to the recursion call stack.

The above code seems exponential as it is calculating the same state again and again. So, we just need to add memoization .

4) Adding memoization or tabulation for the state

The simplest portion of a solution based on dynamic programming is this. Simply storing the state solution will allow us to access it from memory the next time that state is needed.

Adding memoization to the above code:

Time Complexity: O(n), As we just need to make 3n function calls and there will be no repetitive calculations as we are returning previously calculated results. Auxiliary Space: O(n), The extra space is used due to the recursion call stack.

Problem: Let’s find the Fibonacci sequence up to the nth term . A Fibonacci series is the sequence of numbers in which each number is the sum of the two preceding ones. For example, 0, 1, 1, 2, 3, and so on. Here, each number is the sum of the two preceding numbers.

Naive Approach: The basic way to find the nth Fibonacci number is to use recursion .

Complexity Analysis: 

Time Complexity: O(2 n )

  • Here, for every n, we are required to make a recursive call to fib(n – 1) and fib(n – 2). For fib(n – 1), we will again make the recursive call to fib(n – 2) and fib(n – 3). Similarly, for fib(n – 2), recursive calls are made on fib(n – 3) and fib(n – 4) until we reach the base case.
  • During each recursive call, we perform constant work(k) (adding previous outputs to obtain the current output). We perform 2nK work at every level (where n = 0, 1, 2, …). Since n is the number of calls needed to reach 1, we are performing 2n-1k at the final level. Total work can be calculated as:
  • If we draw the recursion tree of the Fibonacci recursion then we found the maximum height of the tree will be n and hence the space complexity of the Fibonacci recursion will be O(n).

Efficient approach: As it is a very terrible complexity(Exponential), thus we need to optimize it with an efficient method. (Memoization)

Let’s look at the example below for finding the 5th Fibonacci number.

problem solving technique in programming

Representation of 5th Fibonacci number

Observations:

The entire program repeats recursive calls. As in the above figure, for calculating fib(4), we need the value of fib(3) (first recursive call over fib(3)), and for calculating fib(5), we again need the value of fib(3)(second similar recursive call over fib(3)).  Both of these recursive calls are shown above in the outlining circle.  Similarly, there are many others for which we are repeating the recursive calls.  Recursion generally involves repeated recursive calls, which increases the program’s time complexity.  By storing the output of previously encountered values (preferably in arrays, as these can be traversed and extracted most efficiently), we can overcome this problem. The next time we make a recursive call over these values, we will use their already stored outputs instead of calculating them all over again.  In this way, we can improve the performance of our code. Memoization is the process of storing each recursive call’s output for later use, preventing the code from calculating it again.  Way to memoize: To achieve this in our example we will simply take an answer array initialized to -1. As we make a recursive call, we will first check if the value stored in the answer array corresponding to that position is -1. The value -1 indicates that we haven’t calculated it yet and have to recursively compute it. The output must be stored in the answer array so that, next time, if the same value is encountered, it can be directly used from the answer array.   

Now in this process of memoization, considering the above Fibonacci numbers example, it can be observed that the total number of unique calls will be at most (n + 1) only.

Complexity analysis:

  • Time complexity: O(n)
  • Auxiliary Space: O(n)

Optimized approach: Following a bottom-up approach to reach the desired index. This approach of converting recursion into iteration is known as Dynamic programming(DP).

Finally, what we do is recursively call each response index field and calculate its value using previously saved outputs.  Recursive calls terminate via the base case, which means we are already aware of the answers which should be stored in the base case indexes.  In the case of Fibonacci numbers, these indices are 0 and 1 as f(ib0) = 0 and f(ib1) = 1. So we can directly assign these two values ​​into our answer array and then use them to calculate f(ib2), which is f(ib1) + f(ib0), and so on for each subsequent index.  This can easily be done iteratively by running a loop from i = (2 to n). Finally, we get our answer at the 5th index of the array because we already know that the ith index contains the answer to the ith value. Simply, we first try to find out the dependence of the current value on previous values ​​and then use them to calculate our new value. Now, we are looking for those values which do not depend on other values, which means they are independent(base case values, since these, are the smallest problems which we are already aware of).

Complexity analysis: 

Optimization of above method

in above code we can see that the current state of any fibonacci number depend only on prev two number so using this observation we can conclude that we did not need to store the whole table of size n but instead of that we can only store the prev two values so this way we can optimize the space complexity in the above code O(n) to O(1)

1) Is dynamic programming just recursion?

Dynamic programming and recursion are things completely different. While dynamic programming can use recursion techniques, recursion itself doesn’t have anything similar to dynamic programming. . Dynamic programming involves breaking down a problem into smaller subproblems, storing the solutions to these subproblems to avoid redundant computation, and using these solutions to construct the overall solution. Recursion, on the other hand, is a technique for solving problems by breaking them down into smaller subproblems and solving them recursively.

2) How does dynamic programming works?

Dynamic Programming (DP) is a technique that solves some particular type of problems in Polynomial Time. Dynamic Programming solutions are faster than the exponential brute method and can be easily proved their correctness. Dynamic programming works by breaking down a problem into smaller subproblems, solving each subproblem independently, and using the solutions to these subproblems to construct the overall solution. The solutions to the subproblems are stored in a table or array (memoization) or in a bottom-up manner (tabulation) to avoid redundant computation.

3) How greedy algorithms are similar to Dynamic programming?

Greedy Algorithms are similar to dynamic programming in the sense that they are both tools for optimization. Both dynamic programming and greedy algorithms are used for optimization problems. However, while dynamic programming breaks down a problem into smaller subproblems and solves them independently, greedy algorithms make a locally optimal choice at each step with the hope of finding a globally optimal solution.

4) What are the basics of Dynamic programming?

You can solve subproblems faster by using dynamic programming, which is nothing more than recursion and memoization, thereby reducing the complexity of your code and making it faster. Following are the basic points:

  • Breaking down a problem into smaller subproblems.
  • Solving each subproblem independently.
  • Storing the solutions to subproblems to avoid redundant computation.
  • Using the solutions to the subproblems to construct the overall solution.
  • Using the principle of optimality to ensure that the solution is optimal.

5) What are the advantages of Dynamic programming?

Dynamic programming has the advantage of being able to find both a local and a global optimal solution. Additionally, practical experience can be exploited to benefit from dynamic programming’s better efficiency. However, there isn’t a single, accepted paradigm for dynamic programming, and other conditions could show up as the problem is being solved. Dynamic programming algorithms are guaranteed to find the optimal solution among a set of possible solutions, provided that the problem satisfies the principle of optimality. The solutions to subproblems can be stored in a table, which can be reused for similar problems. Dynamic programming can be applied to a wide range of problems, including optimization, sequence alignment, and resource allocation.

Conclusion:

In conclusion, dynamic programming is a powerful problem-solving technique that is used for optimization problems. Dynamic programming is a superior form of recursion that overcomes its limitations. It involves breaking down a problem into smaller subproblems, solving each subproblem independently, and using the solutions to these subproblems to construct the overall solution. The key characteristics of a dynamic programming algorithm include overlapping subproblems, optimal substructure, memoization or tabulation, and the use of either iterative or recursive methods.

Dynamic programming has several advantages over other problem-solving techniques, including efficiency, simplicity, flexibility, optimality, clarity, and code reusability. It is not just recursion, although it can be implemented using a recursive algorithm. Dynamic programming is different from greedy algorithms in that it breaks down the problem into smaller subproblems, solves each subproblem independently, and uses the solutions to the subproblems to construct the overall solution.

The basics of dynamic programming include breaking down a problem into smaller subproblems, solving each subproblem independently, storing the solutions to subproblems to avoid redundant computation, using the solutions to the subproblems to construct the overall solution and using the principle of optimality to ensure that the solution is optimal.  However, DP can occasionally be challenging to comprehend, making it a well-liked option for coding interviews. Understanding how DP functions work can be useful to everyone, whether they are a professional or a student getting ready for the placements. 

Overall, dynamic programming is a valuable tool for solving complex optimization problems and can lead to more efficient and effective solutions.

Some important links:

  • Top 20 Dynamic programming interview questions
  • Dynamic programming
  • Practice Problems on Dynamic Programming
  • Interview series

Please Login to comment...

Similar reads.

  • DSA Tutorials
  • Dynamic Programming

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

problem solving technique in programming

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

problem solving technique in programming

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

problem solving technique in programming

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

problem solving technique in programming

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Book cover

Guide to Teaching Computer Science pp 143–168 Cite as

Problem-Solving Strategies

  • Orit Hazzan   ORCID: orcid.org/0000-0002-8627-0997 4 ,
  • Noa Ragonis   ORCID: orcid.org/0000-0002-8163-0199 5 &
  • Tami Lapidot 4  
  • First Online: 06 August 2020

1352 Accesses

Problem-solving is generally considered as one of the most important and challenging cognitive activities in everyday as well as in any professional contexts. Specifically, it is one of the central activities performed by computer scientists as well as by computer science learners. However, it is not a uniform or linear process that can be taught as an algorithm to be followed, and the understanding of this individual process is not always clear. Computer science learners often face difficulties in performing two of the main stages of a problem-solving process: problem analysis and solution construction. Therefore, it is important that computer science educators be aware of these difficulties and acquire appropriate pedagogical tools to guide and scaffold learners in learning these skills. This chapter is dedicated to such pedagogical tools. It presents several problem-solving strategies to address in the MTCS course together with appropriate activities that mediate them to the prospective computer science teachers by enabling them to experience the different strategies.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

An algorithmic problem is defined by what is given – the initial conditions of the problem and its goals – the desired state, what should be accomplished. An algorithm problem can be solved with a series of actions formulated formally either by pseudo-code or a programming language. See Sect. 12.4.1 .

In advanced computer science classes, it is relevant to mention that in computer science, in addition to the development of problem-solving strategies, special emphasis is placed also on non-solvable problems (see Sect. 12.4.3 ).

Role of Variables in Python: http://www.cs.joensuu.fi/~saja/var_roles/stud_vers/stud_Python_eng.html

Roles of Variables with examples in Scratch: https://www.sisd.net/cms/lib/TX01001452/Centricity/domain/433/cse/1.1.5%20RolesOfVariables_UsedActivity1.2.4.pptx

The Roles of Variables home page ( http://saja.kapsi.fi/var_roles/ ) is a rich resource and contains different kinds of educational resources.

See http://www.cs.joensuu.fi/~saja/var_roles/role_intro.html

See http://www.cs.joensuu.fi/~saja/var_roles/try.html

See http://cs.uef.fi/~pgerdt/RAE/

See http://www.cs.joensuu.fi/~saja/var_roles/why_roles.html

See http://www.cs.joensuu.fi/~saja/var_roles/teaching.html

See http://saja.kapsi.fi/var_roles/literature.html

Ahrendt W, Bubel R, Hahnle R (2009) Integrated and tool-supported teaching of testing, debugging, and verification. In: Gibbons J, Oliveira JN (eds) Proceedings of the 2nd international conference on teaching formal methods (TFM ’09). Springer, Berlin/Heidelberg, pp 125–143

Google Scholar  

Alqadi BS, Maletic JI (2017) An empirical study of debugging patterns among novices programmers. In: Proceedings of the 2017 ACM SIGCSE technical symposium on computer science education (SIGCSE ’17). ACM, New York, pp 15–20

Arshad N (2009) Teaching programming and problem solving to CS2 students using think-alouds. SIGCSE Bull 41(1):372–376

Astrachan O, Berry G, Cox L, Mitchener G (1998) Design patterns: an essential component of CS curricula. In: Proceeding of SIGCSE, pp 153–160

Batory D, Sarvela JN, Rauschmayer A (2004) Scaling stepwise refinement. IEEE Trans Softw Eng 30(6):355–371

Bauer A, Popović Z (2017) Collaborative problem solving in an open-ended scientific discovery game. In: Proceedings of the ACM Human-Computer Interaction 1, CSCW, Article 22 (December 2017)

Ben-Ari M, Sajaniemi J (2003) Roles of variables from the perspective of computer science educators. University of Joensuu, Department of Computer Science, Technical Report, Series A-2003–6

Börstler J, Hilburn TB (2016) Team projects in computing education. ACM Trans Comput Educ 16(2), Article 4 (March 2016)

Byckling P, Sajaniemi J (2006) Roles of variables and programming skills improvement. SIGCSE Bull 38(1):413–417

Carver S, McCoy (1988) Learning and transfer of debugging skills: applying task analysis to curriculum design and assessment. In Mayer RE (ed) Teaching and learning computer programming, multiple research perspectives. Lawrence Erlbaum Associates, Inc., Chapter 11

Celepkolu M, Boyer KE (2018) The importance of producing shared code through pair programming. In: Proceedings of the 49th ACM technical symposium on computer science education (SIGCSE ’18). ACM, New York, pp 765–770

Clancy MJ, Linn M C (1999) Patterns and pedagogy. In: Proceedings of the SIGCSE’99, pp 37–42

Cosmides L, Tooby J (1997) Evolutionary psychology: a primer. Retrieved 24 October 2004, from http://www.psych.ucsb.edu/research/cep/primer.html

Dijkstra EW (1976) A discipline of programming. Prentice-Hall, Englewood Cliffs

MATH   Google Scholar  

East JP, Thomas SR, Wallingford E, Beck W, Drake J (1996) Pattern-based programming instruction. In: Proceedings of ASEE annual conference and exposition, Washington, DC

Ginat D (2003) The greedy trap and learning from mistakes. SIGCSE Bull 35(1):11–15

Ginat D (2004) Algorithmic patterns and the case of the sliding delta. SIGCSE Bull 36(2):29–33

Ginat D (2008) Learning from wrong and creative algorithm design. SIGCSE Bull 40(1):26–30

Ginat D (2009) Interleaved pattern composition and scaffolded learning. In: Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and Technology in Computer Science Education – ITiCSE ‘09, Paris, France, pp 109–113

Ginat D, Shmalo R (2013) Constructive use of errors in teaching CS1. In: Proceedings of the 44th ACM technical symposium on Computer science education (SIGCSE ’13). ACM, New York, pp 353–358

Hasni TF, Lodhi F (2011) Teaching problem solving effectively. ACM Inroads 2(3):58–62

Hazzan O, Leron U (2006) Why do we resist testing? Syst Des Front Exclus Front Cover Syst Des 3(7):20–23

Johnson DW, Johanson RT (2017) Cooperative learning. Retrieved from: https://2017.congresoinnovacion.educa.aragon.es/documents/48/David_Johnson.pdf

Jonassen DH (2000) Toward a design theory of problem solving. Educ Technol Res Dev 48(4):63–85

KiesmĂŒller U (2009) Diagnosing learners’ problem-solving strategies using learning environments with algorithmic problems in secondary education. Trans Comput Educ 9(3), Article 17 (September 2009), 26 pages

Laakso MJ, Malmi L, Korhonen A, Rajala T, Kaila E, Salakoski T (2008) Using roles of variables to enhance novice’s debugging work. Issues Informing Sci Inf Technol 5:281–295

Lapidot T, Hazzan O (2005) Song debugging: merging content and pedagogy in computer science education. Inroads SIGCSE Bull 37(4):79–83

Lieberman H (1997) The debugging scandal and what to do about it (special section). Comm ACM 40(4):27–29

Lishinski A, Yadav A, Enbody R, Good J (2016) The influence of problem solving abilities on Students’ performance on different assessment tasks in CS1. In: Proceedings of the 47th ACM technical symposium on computing science education (SIGCSE ’16). ACM, New York, pp 329–334

Muller O (2005) Pattern oriented instruction and the enhancement of analogical reasoning. In: Proceedings of the first International Workshop on Computer Education Research ICER ‘05, Seattle, WA, USA, pp 57–67

Muller O, Haberman B, Averbuch H (2004) (An almost) pedagogical pattern for pattern-based problem solving instruction. In: Proceedings of the 9th Annual SIGCSE Conference on Innovation and Technology in Computer Science. Education, pp 102–106

Muller O, Ginat D, Haberman B (2007) Pattern-oriented instruction and its influence on problem decomposition and solution construction. ACM SIGCSE Bull 39(3):151–155

Murphy L, Lewandowski G, McCauley R, Simon B, Thomas L, Zander C (2008) Debugging: the good, the bad, and the quirky – a qualitative analysis of novices’ strategies. SIGCSE Bull 40(1):163–167

Nagvajara P, Taskin B (2007) Design-for-debug: a vital aspect in education. In: Proceedings of the 2007 IEEE international conference on microelectronic systems education (MSE ’07). IEEE Computer Society, Washington, DC, USA, pp 65–66

Papert S (1980) Mindstorms: children, computers and powerful ideas. Basic Books Inc, New York

Polya G (1957) How to solve it. Doubleday and Co., Inc, Garden City

Polya G (1981) Mathematical discovery on understanding learning and teaching problem solving. Wiley, New York

Popper KR (1992/1959) Logic of scientific discovery. Harper and Row, New York

Proulx VK (2000) Programming patterns and design patterns in the introductory computer science course. Proc SIGCSE 32(1):80–84

Ragonis N (2012) Integrating the teaching of algorithmic patterns into computer science teacher preparation programs. In: Proceedings of the 17th ACM annual conference on Innovation and technology in computer science education (ITiCSE ’12). ACM, New York, pp 339–344

Raman K, Svore KM, Gilad-Bachrach R, Burges CJC (2012) Learning from mistakes: towards a correctable learning algorithm. In: Proceedings of the 21st ACM international conference on information and knowledge management (CIKM ’12). ACM, New York, pp 1930–1934

Reed D (1999) Incorporating problem-solving patterns in CS1. J Comput Sci Edu 13(1):6–13

Reynolds RG, Maletic JI, Porvin SE (1992) Stepwise refinement and problem solving. IEEE Softw 9(5):79–88

Robins A, Rountree J, Rountree N (2003) Learning and teaching programming: a review and discussion. Comput Sci Edu 13(2):137–172

Sajaniemi J (2005) Roles of variables and learning to program. In: Jimoyiannis A (ed) Proceedings of the 3rd Panhellenic conference didactics of informatics, University of Peloponnese, Korinthos, Greece. http://cs.joensuu.fi/~saja/var_roles/abstracts/didinf05.pdf . Accessed 3 July 2010

Santos AL, Sousa J (2017) An exploratory study of how programming instructors illustrate variables and control flow. In: Proceedings of the 17th Koli calling international conference on computing education research (Koli Calling ’17). ACM, New York, pp 173–177

Schoenfeld AH (1983) Episodes and executive decisions in mathematical problem-solving. In: Lesh R, Landaue M (eds) Acquisition of mathematics concepts and processes. Academic Press Inc, New York

Schön DA (1983) The reflective practitioner. BasicBooks

Seta K, Kajino T, Umano M, Ikeda M (2006) An ontology based reflection support system to encourage learning from mistakes. In: Deved V (ed) Proceedings of the 24th IASTED international conference on artificial intelligence and applications (AIA’06). ACTA Press, Anaheim, pp 142–149

Soloway E (1986) Learning to program = learning to construct mechanisms and explanations. CACM 29(1):850–858

Spohrer JG, Soloway E (1986) Analyzing the high frequency bugs in novice programs. In: Soloway E, Iyengar S (eds) Empirical studies of programmers. Ablex, Norwood, pp 230–251

Stoeffler K, Rosen Y, von Davier A (2017) Exploring the measurement of collaborative problem solving using a human-agent educational game. In: Proceedings of the seventh international learning analytics & knowledge conference (LAK ‘17). ACM, New York, pp 570–571

Vainio V, Sajaniemi J (2007) Factors in novice programmers’ poor tracing skills. SIGCSE Bull 39(3):236–240

Vasconcelos J (2007) Basic strategy for algorithmic problem solving. http://www.cs.jhu.edu/~jorgev/cs106/ProblemSolving.html . Accessed 2 June 2010

Vírseda R d V, Orna EP, Berbis E, Guerrero S d L (2011) A logic teaching tool based on tableaux for verification and debugging of algorithms. In: Blackburn P, van Ditmarsch H, Soler-Toscano F, Manzano M (eds) Proceedings of the third international congress conference on tools for teaching logic (TICTTL’11). Springer, Berlin/Heidelberg, pp 239–248

Von Davier AA, Halpin PF (2013) Collaborative problem solving and the assessment of cognitive skills: psychometric considerations. ETS Res Rep Ser 2013(2):1–36

Wallingford E (1996) Toward a first course based on object-oriented patterns. In: Proceedings of the SIGCSE, pp 27–31

Wirth N (1971) Program development by stepwise refinement. CACM 14(4):221–227. http://sunnyday.mit.edu/16.355/wirth-refinement.html . Accessed 13 Nov 2010

Download references

Author information

Authors and affiliations.

Department of Education in Science & Technology, Technion–Israel Institute of Technology, Haifa, Israel

Orit Hazzan & Tami Lapidot

Faculty of Education, Beit Berl College, Doar Beit Berl, Israel

Noa Ragonis

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter.

Hazzan, O., Ragonis, N., Lapidot, T. (2020). Problem-Solving Strategies. In: Guide to Teaching Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-39360-1_8

Download citation

DOI : https://doi.org/10.1007/978-3-030-39360-1_8

Published : 06 August 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-39359-5

Online ISBN : 978-3-030-39360-1

eBook Packages : Computer Science Computer Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Forgot password? New user? Sign up

Existing user? Log in

Dynamic Programming

Already have an account? Log in here.

  • Karleigh Moore
  • Norbert MadarĂĄsz

Dynamic programming refers to a problem-solving approach, in which we precompute and store simpler, similar subproblems, in order to build up the solution to a complex problem. It is similar to recursion , in which calculating the base cases allows us to inductively determine the final value. This bottom-up approach works well when the new value depends only on previously calculated values.

An important property of a problem that is being solved through dynamic programming is that it should have overlapping subproblems. This is what distinguishes DP from divide and conquer in which storing the simpler values isn't necessary.

To show how powerful the technique can be, here are some of the most famous problems commonly approached through dynamic programming:

  • Backpack Problem : Given a set of treasures with known values and weights, which of them should you pick to maximize your profit whilst not damaging your backpack which has a fixed capacity?
  • Egg Dropping : What is the best way to drop \(n\) eggs from an \(m\)-floored building to figure out the lowest height from which the eggs when dropped crack?
  • Longest Common Subsequence : Given two sequences, which is the longest subsequence common to both of them?
  • Subset Sum Problem : Given a set and a value \(n,\) is there a subset the sum of whose elements is \(n?\)
  • Fibonacci Numbers : Is there a better way to compute Fibonacci numbers than plain recursion?

In a contest environment, dynamic programming almost always comes up (and often in a surprising way, no matter how familiar the contestant is with it).

Motivational Example: Change of Coins

Recursion with memoization, bidimensional dynamic programming: example, example: maximum paths.

What is the minimum number of coins of values \(v_1,v_2, v_3, \ldots, v_n\) required to amount a total of \(V?\) You may use a denomination more than once.

Optimal Substructure

The most important aspect of this problem that encourages us to solve this through dynamic programming is that it can be simplified to smaller subproblems.

Let \(f(N)\) represent the minimum number of coins required for a value of \(N\).

Visualize \(f(N)\) as a stack of coins. What is the coin at the top of the stack? It could be any of \(v_1,v_2, v_3, \ldots, v_n\). In case it were \(v_1\), the rest of the stack would amount to \(N-v_1;\) or if it were \(v_2\), the rest of the stack would amount to \(N-v_2\), and so on.

How do we decide which is it? Sure enough, we do not know yet. We need to see which of them minimizes the number of coins required.

Going by the above argument, we could state the problem as follows:

\[f(V) = \min \Big( \big\{ 1 + f(V - v_1), 1 + f(V-v_2), \ldots, 1 + f(V-v_n) \big \} \Big). \]

Because the coin at the top of the stack also counts as one coin, and then we can look at the rest.

Overlapping Subproblems

It is easy to see that the subproblems could be overlapping.

For example, if we are trying to make a stack of $11 using $1, $2, and $5, our look-up pattern would be like this: \[\begin{align} f(11) &= \min \Big( \big\{ 1+f(10),\ 1+ f(9),\ 1 + f(6) \big\} \Big) \\ &= \min \Big ( \big \{ 1+ \min {\small \left ( \{ 1 + f(9), 1+ f(8), 1+ f(5) \} \right )},\ 1+ f(9),\ 1 + f(6) \big \} \Big ). \end{align} \] Clearly enough, we'll need to use the value of \(f(9)\) several times.

One of the most important aspects of optimizing our algorithms is that we do not recompute these values. To do this, we compute and store all the values of \(f\) from 1 onwards for potential future use.

The recursion has to bottom out somewhere, in other words, at a known value from which it can start.

For this problem, we need to take care of two things:

Zero : It is clear enough that \(f(0) = 0\) since we do not require any coins at all to make a stack amounting to 0.

Negative and Unreachable Values : One way of dealing with such values is to mark them with a sentinel value so that our code deals with them in a special way. A good choice of a sentinel is \(\infty\), since the minimum value between a reachable value and \(\infty\) could never be infinity.

The Algorithm

Let's sum up the ideas and see how we could implement this as an actual algorithm:

We have claimed that naive recursion is a bad way to solve problems with overlapping subproblems. Why is that? Mainly because of all the recomputations involved.

Another way to avoid this problem is to compute the data first time and store it as we go, in a top-down fashion.

Let's look at how one could potentially solve the previous coin change problem in the memoization way. 1 2 3 4 5 6 7 8 9 10 11 12 def coinsChange ( V , v ): memo = {} def Change ( V ): if V in memo : return memo [ V ] if V == 0 : return 0 if V < 0 : return float ( "inf" ) memo [ V ] = min ([ 1 + Change ( V - vi ) for vi in v ]) return memo [ V ] return Change ( V )

Dynamic Programming vs Recursion with Caching

There are \(k\) types of brackets each with its own opening bracket and closing bracket. We assume that the first pair is denoted by the numbers 1 and \(k+1,\) the second by 2 and \(k+2,\) and so on. Thus the opening brackets are denoted by \(1, 2, \ldots, k,\) and the corresponding closing brackets are denoted by \(k+1, k+2, \ldots, 2k,\) respectively.

Some sequences with elements from \(1, 2, \ldots, 2k\) form well-bracketed sequences while others don't. A sequence is well-bracketed if we can match or pair up opening brackets of the same type in such a way that the following holds:

  • Every bracket is paired up.
  • In each matched pair, the opening bracket occurs before the closing bracket.
  • For a matched pair, any other matched pair lies either completely between them or outside them.

In this problem, you are given a sequence of brackets of length \(N\): \(B[1], \ldots, B[N]\), where each \(B[i]\) is one of the brackets. You are also given an array of Values: \(V[1],\ldots, V[N] \).

Among all the subsequences in the Values array, such that the corresponding bracket subsequence in the B Array is a well-bracketed sequence, you need to find the maximum sum.

Task: Solve the above problem for this input.

Input Format

One line, which contains \((2\times N + 2)\) space separate integers. The first integer denotes \(N.\) The next integer is \(k.\) The next \(N\) integers are \(V[1],..., V[N].\) The last \(N\) integers are \(B[1],..., B[N].\)

Constraints

  • \(1 \leq k \leq 7\)
  • \(-10^6 \leq V[i] \leq 10^6\), for all \(i\)
  • \(1 \leq B[i] \leq 2k\), for all \(i\)

Illustrated Examples

For the examples discussed here, let us assume that \(k = 2\). The sequence 1, 1, 3 is not well-bracketed as one of the two 1's cannot be paired. The sequence 3, 1, 3, 1 is not well-bracketed as there is no way to match the second 1 to a closing bracket occurring after it. The sequence 1, 2, 3, 4 is not well-bracketed as the matched pair 2, 4 is neither completely between the matched pair 1, 3 nor completely outside of it. That is, the matched pairs cannot overlap. The sequence 1, 2, 4, 3, 1, 3 is well-bracketed. We match the first 1 with the first 3, the 2 with the 4, and the second 1 with the second 3, satisfying all the 3 conditions. If you rewrite these sequences using [, {, ], } instead of 1, 2, 3, 4 respectively, this will be quite clear.

Suppose \(N = 6, k = 3,\) and the values of \(V\) and \(B\) are as follows: Then, the brackets in positions 1, 3 form a well-bracketed sequence (1, 4) and the sum of the values in these positions is 2 (4 + (-2) =2). The brackets in positions 1, 3, 4, 5 form a well-bracketed sequence (1, 4, 2, 5) and the sum of the values in these positions is 4. Finally, the brackets in positions 2, 4, 5, 6 form a well-bracketed sequence (3, 2, 5, 6) and the sum of the values in these positions is 13. The sum of the values in positions 1, 2, 5, 6 is 16 but the brackets in these positions (1, 3, 5, 6) do not form a well-bracketed sequence. You can check the best sum from positions whose brackets form a well-bracketed sequence is 13.

We'll try to solve this problem with the help of a dynamic program, in which the state , or the parameters that describe the problem, consist of two variables.

First, we set up a two-dimensional array dp[start][end] where each entry solves the indicated problem for the part of the sequence between start and end inclusive.

We'll try to think what happens when we run across a new end value, and need to solve the new problem in terms of the previously solved subproblems. Here are all the possibilities:

  • When end <= start , there are no valid subsequences.
  • When b[end] <= k , i.e, the last entry is an open bracket, no valid subsequence can end with it. Effectively, the result is the same if we hadn't included the last entry at all.
  • When b[end] > k , i.e, the last entry is a closing bracket, one has to find the best match for it, or simply ignore it, whichever maximizes the sum.

Can you use these ideas to solve the problem?

Very often, dynamic programming helps solve problems that ask us to find the most profitable (or least costly) path in an implicit graph setting. Let us try to illustrate this with an example.

You are supposed to start at the top of a number triangle and chose your passage all the way down by selecting between the numbers below you to the immediate left or right. Your goal is to maximize the sum of the elements lying in your path. For example, in the triangle below, the red path maximizes the sum.

To see the optimal substructures and the overlapping subproblems , notice that everytime we make a move from the top to the bottom right or the bottom left, we are still left with smaller number triangle, much like this:

We could break each of the sub-problems in a similar way until we reach an edge-case at the bottom:

In this case, the solution is a + max(b,c) .

A bottom-up dynamic programming solution is to allocate a number triangle that stores the maximum reachable sum if we were to start from that position . It is easy to compute the number triangles from the bottom row onward using the fact that the

\[\text{best from this point} = \text{this point} + \max(\text{best from the left, best from the right}).\]

Let me demonstrate this principle through the iterations. Iteration 1: 1 8 5 9 3 Iteration 2: 1 2 10 13 15 8 5 9 3 Iteration 3: 1 2 3 20 19 10 13 15 8 5 9 3 Iteration 4: 1 2 3 4 23 20 19 10 13 15 8 5 9 3 So, the effective best we could do from the top is 23, which is our answer.

Problem Loading...

Note Loading...

Set Loading...

IMAGES

  1. 6 Ways to Improve Your Programming Problem Solving

    problem solving technique in programming

  2. Problem Solving In Programming

    problem solving technique in programming

  3. Six Steps to Solving a Programming Problem Infographic

    problem solving technique in programming

  4. 5 step problem solving method

    problem solving technique in programming

  5. The Beginner Programmer's guide to Problem Solving [With Example

    problem solving technique in programming

  6. problem solving approach in programming

    problem solving technique in programming

VIDEO

  1. Problem Solving Technique à„€à„€5W1H Formula à„€à„€

  2. Problem Solving Techniques

  3. Problem Solving is a Snap

  4. Lateral Thinking: Problem Solving Techniques

  5. A Simple Technique to Solve Coding Problems

  6. Problem Solving Technique WorkShop : Part 1 : SWOT Analysis

COMMENTS

  1. How to Solve Coding Problems with a Simple Four Step Method

    In this post, we've gone over the four-step problem-solving strategy for solving coding problems. Let's review them here: Step 1: understand the problem. Step 2: create a step-by-step plan for how you'll solve it. Step 3: carry out the plan and write the actual code.

  2. What is Problem Solving? An Introduction

    As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome ...

  3. How to think like a programmer

    Simplest means you know the answer (or are closer to that answer). After that, simplest means this sub-problem being solved doesn't depend on others being solved. Once you solved every sub-problem, connect the dots. Connecting all your "sub-solutions" will give you the solution to the original problem. Congratulations!

  4. A Guide to Problem-Solving for Software Developers with Examples

    It's even better if the members of the team are used to swim in uncertainty, and take it as a challenge more than a chore. The process described above is just an example; in practice it's often more chaotic. For example, even when a decision is made, your brain might still continue to process the problem passively.

  5. Problem-Solving Strategies for Software Engineers

    Write out the problem. Your problem won't always come right out and say: "It's me, hi. I'm the problem, it's me.". In fact, something that often gets in the way of solving a problem is that we zero in on the wrong problem. When pinpointing a problem, you can try borrowing a UX research technique that's part of the design thinking ...

  6. Mastering Programming Challenges: Five In-Depth Problem-Solving

    Practicing problem-solving techniques is crucial for becoming a proficient programmer. Whether you're a beginner or an experienced coder, honing your problem-solving skills can greatly improve your ability to tackle programming challenges effectively. Here are some strategies and techniques to help you in this endeavor: Understand the Problem: Before you start coding, it's essential to thoroughly

  7. How to Develop Problem Solving Skills in Programming

    The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

  8. 3 Tips to Solve Problems Like an Expert

    Interactive debugging. Log-file analysis. Unit and integration test. Analyze the bundle file if the problem is related to the web performance. 3. Use Spectrum Thinking Instead of Binary Thinking. Binary thinking is always putting things in terms of two alternatives that are usually mutually exclusive.

  9. Hands-on Tutorial: How To Improve Your Problem-Solving Skills As A

    Programming is ultimately problem-solving. We only apply the programming language to express how we've thought about a problem and the approach we're using to solve it. The worst thing you could do is to start chipping away at the problem once it's presented. This is where most newbie programmers get stuck and give up.

  10. Problem Solving

    The programming languages and tools they use are secondary to this fundamental skill. From his book, "Think Like a Programmer", V. Anton Spraul defines problem solving in programming as: Problem solving is writing an original program that performs a particular set of tasks and meets all stated constraints.

  11. How to think like a programmer

    In programming, this means don't start hacking straight away. Give your brain time to analyze the problem and process the information. ... This technique is a cornerstone of problem-solving ...

  12. PDF Problem Solving Basics and Computer Programming

    Solving Problems with Solutions Requiring Sequential Processing Overview Computer programming is not just programming language syntax and using a development environment. At its core, computer programming is solving problems. We will now turn our attention to a structured methodology you can use to construct solutions for a given problem.

  13. Dynamic programming: what is and how to solve every problem

    Dynamic programming is a powerful problem-solving technique that can be used to solve a wide range of problems across different fields. By breaking down a complex problem into smaller subproblems ...

  14. How To Approach A Coding Problem

    These steps you need to follow while solving a problem: - Understand the question, read it 2-3 times. - Take an estimate of the required complexity. - find, edge cases based on the constraints. - find a brute-force solution. ensure it will pass. - Optimize code, ensure, and repeat this step. - Dry-run your solution (pen& paper) on ...

  15. Problem Solving Techniques

    Want to improve your problem solving skills and ace coding interviews? This videos shares coding interview tips and coding problem solving techniques. These ...

  16. Problem Solving Through Programming in C

    Note: Practice C Programs for problem solving through programming in C. Problem Solving Steps. Problem-solving is a creative process which defines systematization and mechanization. There are a number of steps that can be taken to raise the level of one's performance in problem-solving. A problem-solving technique follows certain steps in ...

  17. Enhancing Problem-Solving Skills in Java Programming: A Comprehensive Guide

    Real-world examples provide practical insights into applying problem-solving skills in Java programming. Let's explore a few examples: Example 1: Finding the factorial of a number: Break down the problem into smaller steps, creating a loop to multiply consecutive integers. Example 2: Implementing binary search: Utilize the divide and conquer ...

  18. Dynamic Programming: Strategies For Solving Complex Problems

    Let's talk about the fundamental rules that make Dynamic Programming the rockstar of problem-solving techniques! 🌟. Overlapping Subproblems: It's like finding money in the pockets of your old jeans. Dynamic Programming identifies these recurring subproblems and saves their solutions for later use, eliminating unnecessary work. It's all ...

  19. Dynamic Programming (DP) Tutorial with Problems

    In general, dynamic programming (DP) is one of the most powerful techniques for solving a certain class of problems. There is an elegant way to formulate the approach and a very simple thinking process, and the coding part is very easy. Essentially, it is a simple idea, after solving a problem with a given input, save the result as a reference ...

  20. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  21. Problem-Solving Strategies

    Programming is a problem-solving process, and during its execution, students are required to apply and integrate many concepts and skills. Hence, acquiring problem-solving skills must be a core content of any introductory computer science course. ... Activity 8.1 addresses several problem-solving techniques in computer science. Activity 8.1 ...

  22. Dynamic Programming

    Dynamic programming refers to a problem-solving approach, in which we precompute and store simpler, similar subproblems, in order to build up the solution to a complex problem. It is similar to recursion, in which calculating the base cases allows us to inductively determine the final value. This bottom-up approach works well when the new value depends only on previously calculated values.

  23. What is Problem Solving? Steps, Process & Techniques

    1. Define the problem. Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-solving techniques include using flowcharts to identify the expected steps of a process and cause-and-effect diagrams to define and analyze root causes.. The sections below help explain key problem-solving steps.