logo

Learning Python by doing

  • suggest edit

Variables, Expressions, and Assignments

Variables, expressions, and assignments 1 #, introduction #.

In this chapter, we introduce some of the main building blocks needed to create programs–that is, variables, expressions, and assignments. Programming related variables can be intepret in the same way that we interpret mathematical variables, as elements that store values that can later be changed. Usually, variables and values are used within the so-called expressions. Once again, just as in mathematics, an expression is a construct of values and variables connected with operators that result in a new value. Lastly, an assignment is a language construct know as an statement that assign a value (either as a constant or expression) to a variable. The rest of this notebook will dive into the main concepts that we need to fully understand these three language constructs.

Values and Types #

A value is the basic unit used in a program. It may be, for instance, a number respresenting temperature. It may be a string representing a word. Some values are 42, 42.0, and ‘Hello, Data Scientists!’.

Each value has its own type : 42 is an integer ( int in Python), 42.0 is a floating-point number ( float in Python), and ‘Hello, Data Scientists!’ is a string ( str in Python).

The Python interpreter can tell you the type of a value: the function type takes a value as argument and returns its corresponding type.

Observe the difference between type(42) and type('42') !

Expressions and Statements #

On the one hand, an expression is a combination of values, variables, and operators.

A value all by itself is considered an expression, and so is a variable.

When you type an expression at the prompt, the interpreter evaluates it, which means that it calculates the value of the expression and displays it.

In boxes above, m has the value 27 and m + 25 has the value 52 . m + 25 is said to be an expression.

On the other hand, a statement is an instruction that has an effect, like creating a variable or displaying a value.

The first statement initializes the variable n with the value 17 , this is a so-called assignment statement .

The second statement is a print statement that prints the value of the variable n .

The effect is not always visible. Assigning a value to a variable is not visible, but printing the value of a variable is.

Assignment Statements #

We have already seen that Python allows you to evaluate expressions, for instance 40 + 2 . It is very convenient if we are able to store the calculated value in some variable for future use. The latter can be done via an assignment statement. An assignment statement creates a new variable with a given name and assigns it a value.

The example in the previous code contains three assignments. The first one assigns the value of the expression 40 + 2 to a new variable called magicnumber ; the second one assigns the value of π to the variable pi , and; the last assignment assigns the string value 'Data is eatig the world' to the variable message .

Programmers generally choose names for their variables that are meaningful. In this way, they document what the variable is used for.

Do It Yourself!

Let’s compute the volume of a cube with side \(s = 5\) . Remember that the volume of a cube is defined as \(v = s^3\) . Assign the value to a variable called volume .

Well done! Now, why don’t you print the result in a message? It can say something like “The volume of the cube with side 5 is \(volume\) ”.

Beware that there is no checking of types ( type checking ) in Python, so a variable to which you have assigned an integer may be re-used as a float, even if we provide type-hints .

Names and Keywords #

Names of variable and other language constructs such as functions (we will cover this topic later), should be meaningful and reflect the purpose of the construct.

In general, Python names should adhere to the following rules:

It should start with a letter or underscore.

It cannot start with a number.

It must only contain alpha-numeric (i.e., letters a-z A-Z and digits 0-9) characters and underscores.

They cannot share the name of a Python keyword.

If you use illegal variable names you will get a syntax error.

By choosing the right variables names you make the code self-documenting, what is better the variable v or velocity ?

The following are examples of invalid variable names.

These basic development principles are sometimes called architectural rules . By defining and agreeing upon architectural rules you make it easier for you and your fellow developers to understand and modify your code.

If you want to read more on this, please have a look at Code complete a book by Steven McConnell [ McC04 ] .

Every programming language has a collection of reserved keywords . They are used in predefined language constructs, such as loops and conditionals . These language concepts and their usage will be explained later.

The interpreter uses keywords to recognize these language constructs in a program. Python 3 has the following keywords:

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass break

except in raise

Reassignments #

It is allowed to assign a new value to an existing variable. This process is called reassignment . As soon as you assign a value to a variable, the old value is lost.

The assignment of a variable to another variable, for instance b = a does not imply that if a is reassigned then b changes as well.

You have a variable salary that shows the weekly salary of an employee. However, you want to compute the monthly salary. Can you reassign the value to the salary variable according to the instruction?

Updating Variables #

A frequently used reassignment is for updating puposes: the value of a variable depends on the previous value of the variable.

This statement expresses “get the current value of x , add one, and then update x with the new value.”

Beware, that the variable should be initialized first, usually with a simple assignment.

Do you remember the salary excercise of the previous section (cf. 13. Reassignments)? Well, if you have not done it yet, update the salary variable by using its previous value.

Updating a variable by adding 1 is called an increment ; subtracting 1 is called a decrement . A shorthand way of doing is using += and -= , which stands for x = x + ... and x = x - ... respectively.

Order of Operations #

Expressions may contain multiple operators. The order of evaluation depends on the priorities of the operators also known as rules of precedence .

For mathematical operators, Python follows mathematical convention. The acronym PEMDAS is a useful way to remember the rules:

Parentheses have the highest precedence and can be used to force an expression to evaluate in the order you want. Since expressions in parentheses are evaluated first, 2 * (3 - 1) is 4 , and (1 + 1)**(5 - 2) is 8 . You can also use parentheses to make an expression easier to read, even if it does not change the result.

Exponentiation has the next highest precedence, so 1 + 2**3 is 9 , not 27 , and 2 * 3**2 is 18 , not 36 .

Multiplication and division have higher precedence than addition and subtraction . So 2 * 3 - 1 is 5 , not 4 , and 6 + 4 / 2 is 8 , not 5 .

Operators with the same precedence are evaluated from left to right (except exponentiation). So in the expression degrees / 2 * pi , the division happens first and the result is multiplied by pi . To divide by 2π, you can use parentheses or write: degrees / 2 / pi .

In case of doubt, use parentheses!

Let’s see what happens when we evaluate the following expressions. Just run the cell to check the resulting value.

Floor Division and Modulus Operators #

The floor division operator // divides two numbers and rounds down to an integer.

For example, suppose that driving to the south of France takes 555 minutes. You might want to know how long that is in hours.

Conventional division returns a floating-point number.

Hours are normally not represented with decimal points. Floor division returns the integer number of hours, dropping the fraction part.

You spend around 225 minutes every week on programming activities. You want to know around how many hours you invest to this activity during a month. Use the \(//\) operator to give the answer.

The modulus operator % works on integer values. It computes the remainder when dividing the first integer by the second one.

The modulus operator is more useful than it seems.

For example, you can check whether one number is divisible by another—if x % y is zero, then x is divisible by y .

String Operations #

In general, you cannot perform mathematical operations on strings, even if the strings look like numbers, so the following operations are illegal: '2'-'1' 'eggs'/'easy' 'third'*'a charm'

But there are two exceptions, + and * .

The + operator performs string concatenation, which means it joins the strings by linking them end-to-end.

The * operator also works on strings; it performs repetition.

Speedy Gonzales is a cartoon known to be the fastest mouse in all Mexico . He is also famous for saying “Arriba Arriba Andale Arriba Arriba Yepa”. Can you use the following variables, namely arriba , andale and yepa to print the mentioned expression? Don’t forget to use the string operators.

Asking the User for Input #

The programs we have written so far accept no input from the user.

To get data from the user through the Python prompt, we can use the built-in function input .

When input is called your whole program stops and waits for the user to enter the required data. Once the user types the value and presses Return or Enter , the function returns the input value as a string and the program continues with its execution.

Try it out!

You can also print a message to clarify the purpose of the required input as follows.

The resulting string can later be translated to a different type, like an integer or a float. To do so, you use the functions int and float , respectively. But be careful, the user might introduce a value that cannot be converted to the type you required.

We want to know the name of a user so we can display a welcome message in our program. The message should say something like “Hello \(name\) , welcome to our hello world program!”.

Script Mode #

So far we have run Python in interactive mode in these Jupyter notebooks, which means that you interact directly with the interpreter in the code cells . The interactive mode is a good way to get started, but if you are working with more than a few lines of code, it can be clumsy. The alternative is to save code in a file called a script and then run the interpreter in script mode to execute the script. By convention, Python scripts have names that end with .py .

Use the PyCharm icon in Anaconda Navigator to create and execute stand-alone Python scripts. Later in the course, you will have to work with Python projects for the assignments, in order to get acquainted with another way of interacing with Python code.

This Jupyter Notebook is based on Chapter 2 of the books Python for Everybody [ Sev16 ] and Think Python (Sections 5.1, 7.1, 7.2, and 5.12) [ Dow15 ] .

5. Assignment Expressions

By Bernd Klein . Last modified: 30 Nov 2023.

On this page ➤

Introduction

walrus

This section in our Python tutorial explores the "assignment expression operator" affectionately known to many as "the walrus operator. So, you can call it either the "walrus operator" or the "assignment expression operator," and people in the Python programming community will generally understand what you mean. Despite being introduced in Python version 3.8, we can still view it as a relatively recent addition to the language. The assignment expressions have been discussed in PEP 572 and this is what was written about the naming:

The purpose of this feature is not a new way to assign objects to variables, but it gives programmers a convenient way to assign variables in the middle of expressions.

You might still be curious about the origin of the term "walrus operator." It's affectionately named this way because, with a touch of imagination, the operator's characters resemble the eyes and tusks of a walrus.

We will introduce the assignment expression by comparing it first with a simple assignment statement. A simple assignment statement can also be replaced by an assignment expression, even though it looks clumsy and is definitely not the intended use case of it:

First you may wonder about the brackets, when you look at the assignment expression. It is not meant as a replacement for the simple "assignment statement". Its primary role is to be utilized within expressions

The following code shows a proper usecase:

Though you may argue that the following code might be even clearer:

Here's another Python code example that demonstrates a similar scenario. First with the walrus operator:

Now without the walrus operator:

Live Python training

instructor-led training course

Enjoying this page? We offer live Python training courses covering the content of this site.

See: Live Python courses overview

Beneficial applications

Now, let's explore some examples where the usage of the assignment expression is really beneficial compared to code not using it.

You can observe that if we choose to avoid using the assignment expression in the list comprehension, we would need to call the function twice. So using the assgment expression makes the code in this context more efficient.

Use Case: Regular Expressions

There is also a great advantage when we use regular expressions. Like in our previous examples we present again two similiar code snippets, the first one without and the second one with the walrus operator:

Now, the code using assignment expressions:

Assignment Expression in File Reading

Fixed-width files.

Files in which each line has the same length are often referred to as "fixed-width" or "fixed-length" files. In these files, each line (or record) is structured so that it contains a predefined number of characters, and the fields within the lines have fixed positions. The files can be read by using the read -method and the walrus operator:

Now the same in traditional coding style:

The benefits for the most recent code snippet are

  • It uses a more traditional coding style, which may be more familiar to some developers.
  • It assigns and uses the data variable explicitly, making the code easier to understand for those not familiar with assignment expressions.

However, a significant drawback of this approach is that it requires the explicit assignment and reassignment of the data variable, which can be seen as less concise and somewhat less elegant.

Using readline

Most people use a for loop to iterator over a text file line by line. With the walrus operator, we can also elegantly go through a text using the method readline :

Code snippet using readline but not the assignment expression:

Now with the walrus operator:

Another Use Case

In the chapter on while loops of our Python Tutorial, we had a little number guessing game:

As you can see, we had to initialize guess to zero to be able to enter the loop. We can do the initialization directly in the loop condition with an assignment expression and simplify the whole code by this:

Critiques of the Walrus Operator in Python

the Python walrus

We said in the beginning of this page that some Python programmers longed for this construct for quite a while. One reason why it was not introduced earlier was the fact that it can also be used to write code which is less readable. In fact, the application of the walrus operator contradicts several principles highlighted in the Zen of Python. To grasp these contraventions, let's delve into the ensuing scenarios.

The Zen of Python says "Explicit is better than implicit". The walrus operator violates this requirement of the Zen of Python. This means that explicit operations are always better than implicit operations. The walrus operator assigns a value to a variable and implicitly returns the value as well. Therefore, it does not align with the concept of "Explicit is better than implicit."

The following code snippet is shows an extreme example which is not recommended to use:

What are your thoughts on the following piece of code using the Python assignment operator inside of a print function call?

These Python code snipets certainly violate two other demands of the Zen of Python:

  • Beautiful is Better Than Ugly
  • Complex is Better Than Complicated

The principle "There should be one and preferably only one obvious way to do it" from the Zen of Python emphasizes the importance of having a clear and singular approach. When we have the option to separate assignment and return operations into distinct statements, opting for the less readable and more complex walrus operator contradicts this principle.

Upcoming online Courses

On this page

Mouse Vs Python

Python 101 – Assignment Expressions

Assignment expressions were added to Python in version 3.8 . The general idea is that an assignment expression allows you to assign to variables within an expression.

The syntax for doing this is:

This operator has been called the “walrus operator”, although their real name is “assignment expression”. Interestingly, the CPython internals also refer to them as “named expressions”.

You can read all about assignment expressions in PEP 572 . Let’s find out how to use assignment expressions!

Using Assignment Expressions

Assignment expressions are still relatively rare. However, you need to know about assignment expressions because you will probably come across them from time to time. PEP 572 has some good examples of assignment expressions.

In these 3 examples, you are creating a variable in the expression statement itself. The first example creates the variable match by assigning it the result of the regex pattern search. The second example assigns the variable value to the result of calling a function in the while loop’s expression. Finally, you assign the result of calling f(x) to the variable y inside of a list comprehension.

It would probably help to see the difference between code that doesn’t use an assignment expression and one that does. Here’s an example of reading a file in chunks:

This code will open up a file of indeterminate size and process it 1024 bytes at a time. You will find this useful when working with very large files as it prevents you from loading the entire file into memory. If you do, you can run out of memory and cause your application or even the computer to crash.

You can shorten this code up a bit by using an assignment expression:

Here you assign the result of the read() to data within the while loop’s expression. This allows you to then use that variable inside of the while loop’s code block. It also checks that some data was returned so you don’t have to have the if not data: break stanza.

Another good example that is mentioned in PEP 572 is taken from Python’s own site.py . Here’s how the code was originally:

And this is how it could be simplified by using an assignment expression:

You move the assignment into the conditional statement’s expression, which shortens the code up nicely.

Now let’s discover some of the situations where assignment expressions can’t be used.

What You Cannot Do With Assignment Expressions

There are several cases where assignment expressions cannot be used.

One of the most interesting features of assignment expressions is that they can be used in contexts that an assignment statement cannot, such as in a lambda or the previously mentioned comprehension. However, they do NOT support some things that assignment statements can do. For example, you cannot do multiple target assignment:

Another prohibited use case is using an assignment expression at the top level of an expression statement. Here is an example from PEP 572:

There is a detailed list of other cases where assignment expressions are prohibited or discouraged in the PEP. You should check that document out if you plan to use assignment expressions often.

Wrapping Up

Assignment expressions are an elegant way to clean up certain parts of your code. The feature’s syntax is kind of similar to type hinting a variable. Once you have the hang of one, the other should become easier to do as well.

In this article, you saw some real-world examples of using the “walrus operator”. You also learned when assignment expressions shouldn’t be used. This syntax is only available in Python 3.8 or newer, so if you happen to be forced to use an older version of Python, this feature won’t be of much use to you.

Related Reading

This article is based on a chapter from Python 101, 2nd Edition , which you can purchase on Leanpub or Amazon .

If you’d like to learn more Python, then check out these tutorials:

Python 101 – How to Work with Images

Python 101 – Documenting Your Code

Python 101: An Intro to Working with JSON

Python 101 – Creating Multiple Processes

  • Contributors

Basic Statements in Python

Table of contents, what is a statement in python, statement set, multi-line statements, simple statements, expression statements, the assert statement, the try statement.

Statements in Python

In Python, statements are instructions or commands that you write to perform specific actions or tasks. They are the building blocks of a Python program.

A statement is a line of code that performs a specific action. It is the smallest unit of code that can be executed by the Python interpreter.

Assignment Statement

In this example, the value 10 is assigned to the variable x using the assignment statement.

Conditional Statement

In this example, the if-else statement is used to check the value of x and print a corresponding message.

By using statements, programmers can instruct the computer to perform a variety of tasks, from simple arithmetic operations to complex decision-making processes. Proper use of statements is crucial to writing efficient and effective Python code.

Here's a table summarizing various types of statements in Python:

Please note that this table provides a brief overview of each statement type, and there may be additional details and variations for each statement.

Multi-line statements are a convenient way to write long code in Python without making it cluttered. They allow you to write several lines of code as a single statement, making it easier for developers to read and understand the code. Here are two examples of multi-line statements in Python:

  • Using backslash:
  • Using parentheses:

Simple statements are the smallest unit of execution in Python programming language and they do not contain any logical or conditional expressions. They are usually composed of a single line of code and can perform basic operations such as assigning values to variables , printing out values, or calling functions .

Examples of simple statements in Python:

Simple statements are essential to programming in Python and are often used in combination with more complex statements to create robust programs and applications.

Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result.

In this example, we assign the value 5 to the variable x , then add 3 to x and assign the result ( 8 ) to the variable y . Finally, we print the value of y .

In this example, we define a function square that takes one argument ( x ) and returns its square. We then call the function with the argument 5 and assign the result ( 25 ) to the variable result . Finally, we print the value of result .

Overall, expression statements are an essential part of Python programming and allow for the execution of mathematical and computational operations.

The assert statement in Python is used to test conditions and trigger an error if the condition is not met. It is often used for debugging and testing purposes.

Where condition is the expression that is tested, and message is the optional error message that is displayed when the condition is not met.

In this example, the assert statement tests whether x is equal to 5 . If the condition is met, the statement has no effect. If the condition is not met, an error will be raised with the message x should be 5 .

In this example, the assert statement tests whether y is not equal to 0 before performing the division. If the condition is met, the division proceeds as normal. If the condition is not met, an error will be raised with the message Cannot divide by zero .

Overall, assert statements are a useful tool in Python for debugging and testing, as they can help catch errors early on. They are also easily disabled in production code to avoid any unnecessary overhead.

The try statement in Python is used to catch exceptions that may occur during the execution of a block of code. It ensures that even when an error occurs, the code does not stop running.

Examples of Error Processing

Dive deep into the topic.

  • Match Statements
  • Operators in Python Statements
  • The IF Statement

Contribute with us!

Do not hesitate to contribute to Python tutorials on GitHub: create a fork, update content and issue a pull request.

Profile picture for user AliaksandrSumich

  • Turtle Graphics
  • Chapter 3: Branch
  • Chapter 4: Loop
  • Chapter 5: Function
  • Chapter 6 Collection

Expression and Statement ¶

Expression ¶.

An expression is a code construct that is evaluated to a value. A code construct is a piece of code. Following are some common expressions:

  • An object or a declared variable, such as: 3 , Hi , x , [1, 2, 3] .
  • A computation using operators, such as 3 + 5 , x < y < z .
  • A function call, such as len("hello") , math.pow(3, 2) .
  • Functions defined inside types are called methods. A method call is an expression. For example: "hello".upper() , [1, 2, 3].pop() .

Evaluation ¶

Evaluation refers to the process that Python interpreter generates the final object of an expression.

Expressions have a common characteristic: the evaluation of the code construct generates a single object .

An object may have a single value such as 3 or multiple values like a list or a tuple.

An expression may have nested expression. For example, a list or a tuple may have other tuple or list or dictionary as its element. There is no limit on the nested levels.

Python evaluates expressions from left to right.

Expression Examples ¶

  • 3 is an literal expression, evaluated to 3
  • 3 + 5 is an addition operation expression, evaluated to 8
  • len("hello") is a function call expression, evaluated to 5
  • math.pow(3, 2) is an method call expression. evaluated to 9
  • len("hello"), math.pow(3, 2) is an expression that has two nested evaluation, the final evaluation result is a tuple of (5, 3) .

There are other code constructs that are expressions. They will be introduced later.

Operator ¶

An operator is a special symbols that perform operations on values and variables.

A high-level programming language like Python has many built-in operators that make the language simple and easy to understand. For example, very few programming languages have built-in support for chained comparison like x < y < z or matrix multiplication operation with @ . Python allows both, though matrix data types are not provided by third party libraries.

The data that an on operator acts on are called operands . An operator may take one operand ( unary operator ), two operands ( binary operator ), or three operands ( ternary operator ).

Python has 7 types of operators.

Types of Operators ¶

1 Arithmetic Operators

2 Relational Operators

3 Logical (Boolean) Operators

4 Membership Operators

5 Identity Operators

6 Bitwise Operators

7 Assignment Operators

3 Logical Operators ¶

Also called Boolean operators. there are three of them: not , and , and or . There are four important details for boolean operators:

  • all Python objects can be Truthy or Falsy .
  • not is a unary boolean operator, it always returns a True or False .
  • The return value of and and or is determined by their operands.
  • and and or operations support short circuiting.

Truthy and Falsy ¶

All Python objects can be Truthy or Falsy , used as True or False in places where a boolean value is required. For example, logical operation and branching code.

You can find the Truthy or Falsy value using the built-in function bool() . Empty values such as 0 , None , empty list [] , empty tuple () and empty dictionary {} are Falsy . Most values are Truthy .

and and or Logical Operation ¶

The evaluation rules are:

  • x or y , if x is True or Truthy , then x , else y
  • x and y , if x is False or Falsy , then x , else y

If it is confusing, use if/else statement.

Short-circuiting ¶

Python supports short-circuiting in and / or operations: if it can determine the result from the left part, it doesn't evaluate the later part.

4 Membership Operator ¶

The membership operator in and not in are used to find if a value is a member of a sequence. A sequence can be a string, a list, a tuple, or even a dictionary.

5 Identity Operator ¶

is and is not are used to check if two variables refer to the same object, i.e., if two variables are aliases of the same object. Use == to check if two values are equal or not. It is not recommended to use identity operator on literal values.

There are some surprises in these two concepts. In Python, small integer values (from -5 to 256, inclusive) and strings are shared by all references for performance reason. Therefore, variables with the same value refer to the same object, so-called interning . But it is implementation-specific.

Practically, it is safe and simple to remember that only an assignment x = y or a function/method call create an alias.

6 Bitwise Operators ¶

Python has one unary and several binary bit operators that act on binary data. Their operands only have 0 s or 1 s.

7 Assignment Operator ¶

Assignment operator = binds a variable in LHS to the RHS expression . It creates the variable if it is the first time binding for the variable, otherwise, it re-binds it to a different object.

The = assignment operation is not an expression because it binds a variable to an object, but the operation generates no value, i.e., you cannot use an assignment in a place that requires a value. It is a syntax error to write code like (x = 3) = 5 or if (x = 3) .

Augmented Assignment ¶

It is common to use a variable in an arithmetic or bitwise operation and assign the result back to the variable. Augmented assignment makes it simple to write those operations. It works for all binary arithmetic or bitwise operators. The LHS variable is used as the first operand of the operator.

The Walrus Operator ¶

Python 3.8 (released in 2019) brings a walrus := operator that work as an assignment expression. It performs two tasks: assign the RHS expression value to the LHS variable and use the value as its expression value.

It combines two tasks into one operation. It makes code simpler in some cases.

Operator Precedence ¶

Operators have different precedences when they are used together in a single expression. For example, the expression 3 + 5 * 4 evaluates 5 * 4 before add them. Thus the result is 23 , not 32 .

The Python document gives a list of operator precedences. You don't need to remember it - you even don't need to read it. The best practices are:

  • break long expression into short expressions with only one or two operators
  • use parenthesis to make the precedence explicit.

Using the best practices, 3 + 5 * 4 should be written as 3 + (5 * 4) .

Conditional Expression ¶

Python provides a conditional expression syntax to make it easy to choose a value from two conditions.

For example, you want to set a message to odd or even based on oddness of a number. Without conditional expression, it needs a four-line statements. With conditional expression, it is one line.

Statement ¶

A Python program consists of instructions to be executed by the Python interpreter. Those instructions are called statements.

All expressions are executed by the Python interpreter and generate values. Expressions are statements. But a program needs more than expressions.

The assignment name = expression is not an expression. It is a statement that bind a variable with the value on the RHS.

There are two types of statements: simple statement and compound statement.

Simple Statements ¶

Statements that are short and usually written in one line are simple statements .

Simple statements include

  • assignment statement name = expression
  • return statement: return expression
  • import statement: import module_name

Compound Statements ¶

A compound statement contains multiple statements that usually span multiple lines.

Compound statements are used to control program flow or create new data types like functions and classes.

They are not expressions.

They give the "high level" abstractions that make Python more flexible and expressive. Conditional statements, loop statements, function definition are compound statements.

Why Statements? ¶

Typically a Python program consists of one or more statements.

All expressions are simple statements. Python has two types of expressions

  • those generate a value: all operators, except the assignment operator = , act on their operands and create a value.
  • those don't generate a value. They handle I/O or change program states. For example: print() , assignment.

Expressions that generate values are useless if the result is not used in a statement that stores the value in memory/disk, or sends it over network, or displays it in a terminal.

For example, you can write an expression x + 1 as a valid statement in a Python program. But it is a waste of CPU cycles because its result is discarded. A statement like y = x + 1 is useful because the result can be used later.

Similarly, a function call math.sqrt(x) is useless by itself. But print("Hi") is useful because it displays the string in a console.

Walrus Operator Syntax ¶

Walrus operator := is interesting because it highlights the difference between a value-generation expression and a statement. Because := generate a value, it is useless if its value is not used. You cannot write it in a single line.

For example, it is an SyntaxError to write the expression x := 5 in a line. Because the evaluated value 5 is not used. If you only need assignment, use an assignment statement.

The following code shows a valid use.

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 577 – Augmented Assignment Expressions

Pep withdrawal, augmented assignment expressions, adding an inline assignment operator, assignment operator precedence, augmented assignment to names in block scopes, augmented assignment to names in scoped expressions, allowing complex assignment targets, augmented assignment or name binding only, postponing a decision on expression level target declarations, ignoring scoped expressions when determining augmented assignment targets, treating inline assignment as an augmented assignment variant, disallowing augmented assignments in class level scoped expressions, comparison operators vs assignment operators, simplifying retry loops, simplifying if-elif chains, capturing intermediate values from comprehensions, allowing lambda expressions to act more like re-usable code thunks, relationship with pep 572, acknowledgements.

While working on this PEP, I realised that it didn’t really address what was actually bothering me about PEP 572 ’s proposed scoping rules for previously unreferenced assignment targets, and also had some significant undesirable consequences (most notably, allowing >>= and <<= as inline augmented assignment operators that meant something entirely different from the >= and <= comparison operators).

I also realised that even without dedicated syntax of their own, PEP 572 technically allows inline augmented assignments to be written using the operator module:

The restriction to simple names as inline assignment targets means that the target expression can always be repeated without side effects, and thus avoids the ambiguity that would arise from allowing actual embedded augmented assignments (it’s still a bad idea, since it would almost certainly be hard for humans to read, this note is just about the theoretical limits of language level expressiveness).

Accordingly, I withdrew this PEP without submitting it for pronouncement. At the time I also started writing a replacement PEP that focused specifically on the handling of assignment targets which hadn’t already been declared as local variables in the current scope (for both regular block scopes, and for scoped expressions), but that draft never even reached a stage where I liked it better than the ultimately accepted proposal in PEP 572 , so it was never posted anywhere, nor assigned a PEP number.

This is a proposal to allow augmented assignments such as x += 1 to be used as expressions, not just statements.

As part of this, NAME := EXPR is proposed as an inline assignment expression that uses the new augmented assignment scoping rules, rather than implicitly defining a new local variable name the way that existing name binding statements do. The question of allowing expression level local variable declarations at function scope is deliberately separated from the question of allowing expression level name bindings, and deferred to a later PEP.

This PEP is a direct competitor to PEP 572 (although it borrows heavily from that PEP’s motivation, and even shares the proposed syntax for inline assignments). See Relationship with PEP 572 for more details on the connections between the two PEPs.

To improve the usability of the new expressions, a semantic split is proposed between the handling of augmented assignments in regular block scopes (modules, classes, and functions), and the handling of augmented assignments in scoped expressions (lambda expressions, generator expressions, and comprehensions), such that all inline assignments default to targeting the nearest containing block scope.

A new compile time TargetNameError is added as a subclass of SyntaxError to handle cases where it is deemed to be currently unclear which target is expected to be rebound by an inline assignment, or else the target scope for the inline assignment is considered invalid for another reason.

Syntax and semantics

The language grammar would be adjusted to allow augmented assignments to appear as expressions, where the result of the augmented assignment expression is the same post-calculation reference as is being bound to the given target.

For example:

For mutable targets, this means the result is always just the original object:

Augmented assignments to attributes and container subscripts will be permitted, with the result being the post-calculation reference being bound to the target, just as it is for simple name targets:

In these cases, __getitem__ and __getattribute__ will not be called after the assignment has already taken place (they will only be called as needed to evaluate the in-place operation).

Given only the addition of augmented assignment expressions, it would be possible to abuse a symbol like |= as a general purpose assignment operator by defining a Target wrapper type that worked as follows:

This is similar to the way that storing a single reference in a list was long used as a workaround for the lack of a nonlocal keyword, and can still be used today (in combination with operator.itemsetter ) to work around the lack of expression level assignments.

Rather than requiring such workarounds, this PEP instead proposes that PEP 572 ’s “NAME := EXPR” syntax be adopted as a new inline assignment expression that uses the augmented assignment scoping rules described below.

This cleanly handles cases where only the new value is of interest, and the previously bound value (if any) can just be discarded completely.

Note that for both simple names and complex assignment targets, the inline assignment operator does not read the previous reference before assigning the new one. However, when used at function scope (either directly or inside a scoped expression), it does not implicitly define a new local variable, and will instead raise TargetNameError (as described for augmented assignments below).

To preserve the existing semantics of augmented assignment statements, inline assignment operators will be defined as being of lower precedence than all other operators, include the comma pseudo-operator. This ensures that when used as a top level expression the entire right hand side of the expression is still interpreted as the value to be processed (even when that value is a tuple without parentheses).

The difference this introduces relative to PEP 572 is that where (n := first, second) sets n = first in PEP 572 , in this PEP it would set n = (first, second) , and getting the first meaning would require an extra set of parentheses ( ((n := first), second) ).

PEP 572 quite reasonably notes that this results in ambiguity when assignment expressions are used as function call arguments. This PEP resolves that concern a different way by requiring that assignment expressions be parenthesised when used as arguments to a function call (unless they’re the sole argument).

This is a more relaxed version of the restriction placed on generator expressions (which always require parentheses, except when they’re the sole argument to a function call).

No target name binding changes are proposed for augmented assignments at module or class scope (this also includes code executed using “exec” or “eval”). These will continue to implicitly declare a new local variable as the binding target as they do today, and (if necessary) will be able to resolve the name from an outer scope before binding it locally.

At function scope, augmented assignments will be changed to require that there be either a preceding name binding or variable declaration to explicitly establish the target name as being local to the function, or else an explicit global or nonlocal declaration. TargetNameError , a new SyntaxError subclass, will be raised at compile time if no such binding or declaration is present.

For example, the following code would compile and run as it does today:

The follow examples would all still compile and then raise an error at runtime as they do today:

Whereas the following would raise a compile time DeprecationWarning initially, and eventually change to report a compile time TargetNameError :

As a conservative implementation approach, the compile time function name resolution change would be introduced as a DeprecationWarning in Python 3.8, and then converted to TargetNameError in Python 3.9. This avoids potential problems in cases where an unused function would currently raise UnboundLocalError if it was ever actually called, but the code is actually unused - converting that latent runtime defect to a compile time error qualifies as a backwards incompatible change that requires a deprecation period.

When augmented assignments are used as expressions in function scope (rather than as standalone statements), there aren’t any backwards compatibility concerns, so the compile time name binding checks would be enforced immediately in Python 3.8.

Similarly, the new inline assignment expressions would always require explicit predeclaration of their target scope when used as part of a function, at least for Python 3.8. (See the design discussion section for notes on potentially revisiting that restriction in the future).

Scoped expressions is a new collective term being proposed for expressions that introduce a new nested scope of execution, either as an intrinsic part of their operation (lambda expressions, generator expressions), or else as a way of hiding name binding operations from the containing scope (container comprehensions).

Unlike regular functions, these scoped expressions can’t include explicit global or nonlocal declarations to rebind names directly in an outer scope.

Instead, their name binding semantics for augmented assignment expressions would be defined as follows:

  • augmented assignment targets used in scoped expressions are expected to either be already bound in the containing block scope, or else have their scope explicitly declared in the containing block scope. If no suitable name binding or declaration can be found in that scope, then TargetNameError will be raised at compile time (rather than creating a new binding within the scoped expression).
  • if the containing block scope is a function scope, and the target name is explicitly declared as global or nonlocal , then it will be use the same scope declaration in the body of the scoped expression
  • if the containing block scope is a function scope, and the target name is a local variable in that function, then it will be implicitly declared as nonlocal in the body of the scoped expression
  • if the containing block scope is a class scope, than TargetNameError will always be raised, with a dedicated message indicating that combining class scopes with augmented assignments in scoped expressions is not currently permitted.
  • if a name is declared as a formal parameter (lambda expressions), or as an iteration variable (generator expressions, comprehensions), then that name is considered local to that scoped expression, and attempting to use it as the target of an augmented assignment operation in that scope, or any nested scoped expression, will raise TargetNameError (this is a restriction that could potentially be lifted later, but is being proposed for now to simplify the initial set of compile time and runtime semantics that needs to be covered in the language reference and handled by the compiler and interpreter)

For example, the following code would work as shown:

While the following examples would all raise TargetNameError :

As augmented assignments currently can’t appear inside scoped expressions, the above compile time name resolution exceptions would be included as part of the initial implementation rather than needing to be phased in as a potentially backwards incompatible change.

Design discussion

The initial drafts of this PEP kept PEP 572 ’s restriction to single name targets when augmented assignments were used as expressions, allowing attribute and subscript targets solely for the statement form.

However, enforcing that required varying the permitted targets based on whether or not the augmented assignment was a top level expression or not, as well as explaining why n += 1 , (n += 1) , and self.n += 1 were all legal, but (self.n += 1) was prohibited, so the proposal was simplified to allow all existing augmented assignment targets for the expression form as well.

Since this PEP defines TARGET := EXPR as a variant on augmented assignment, that also gained support for assignment and subscript targets.

PEP 572 makes a reasonable case that the potential use cases for inline augmented assignment are notably weaker than those for inline assignment in general, so it’s acceptable to require that they be spelled as x := x + 1 , bypassing any in-place augmented assignment methods.

While this is at least arguably true for the builtin types (where potential counterexamples would probably need to focus on set manipulation use cases that the PEP author doesn’t personally have), it would also rule out more memory intensive use cases like manipulation of NumPy arrays, where the data copying involved in out-of-place operations can make them impractical as alternatives to their in-place counterparts.

That said, this PEP mainly exists because the PEP author found the inline assignment proposal much easier to grasp as “It’s like += , only skipping the addition step”, and also liked the way that that framing provides an actual semantic difference between NAME = EXPR and NAME := EXPR at function scope.

That difference in target scoping behaviour means that the NAME := EXPR syntax would be expected to have two primary use cases:

  • as a way of allowing assignments to be embedded as an expression in an if or while statement, or as part of a scoped expression
  • as a way of requesting a compile time check that the target name be previously declared or bound in the current function scope

At module or class scope, NAME = EXPR and NAME := EXPR would be semantically equivalent due to the compiler’s lack of visibility into the set of names that will be resolvable at runtime, but code linters and static type checkers would be encouraged to enforce the same “declaration or assignment required before use” behaviour for NAME := EXPR as the compiler would enforce at function scope.

At least for Python 3.8, usage of inline assignments (whether augmented or not) at function scope would always require a preceding name binding or scope declaration to avoid getting TargetNameError , even when used outside a scoped expression.

The intent behind this requirement is to clearly separate the following two language design questions:

  • Can an expression rebind a name in the current scope?
  • Can an expression declare a new name in the current scope?

For module global scopes, the answer to both of those questions is unequivocally “Yes”, because it’s a language level guarantee that mutating the globals() dict will immediately impact the runtime module scope, and global NAME declarations inside a function can have the same effect (as can importing the currently executing module and modifying its attributes).

For class scopes, the answer to both questions is also “Yes” in practice, although less unequivocally so, since the semantics of locals() are currently formally unspecified. However, if the current behaviour of locals() at class scope is taken as normative (as PEP 558 proposes), then this is essentially the same scenario as manipulating the module globals, just using locals() instead.

For function scopes, however, the current answers to these two questions are respectively “Yes” and “No”. Expression level rebinding of function locals is already possible thanks to lexically nested scopes and explicit nonlocal NAME expressions. While this PEP will likely make expression level rebinding more common than it is today, it isn’t a fundamentally new concept for the language.

By contrast, declaring a new function local variable is currently a statement level action, involving one of:

  • an assignment statement ( NAME = EXPR , OTHER_TARGET = NAME = EXPR , etc)
  • a variable declaration ( NAME : EXPR )
  • a nested function definition
  • a nested class definition
  • a with statement
  • an except clause (with limited scope of access)

The historical trend for the language has actually been to remove support for expression level declarations of function local names, first with the introduction of “fast locals” semantics (which made the introduction of names via locals() unsupported for function scopes), and again with the hiding of comprehension iteration variables in Python 3.0.

Now, it may be that in Python 3.9, we decide to revisit this question based on our experience with expression level name binding in Python 3.8, and decide that we really do want expression level function local variable declarations as well, and that we want NAME := EXPR to be the way we spell that (rather than, for example, spelling inline declarations more explicitly as NAME := EXPR given NAME , which would permit them to carry type annotations, and also permit them to declare new local variables in scoped expressions, rather than having to pollute the namespace in their containing scope).

But the proposal in this PEP is that we explicitly give ourselves a full release to decide how much we want that feature, and exactly where we find its absence irritating. Python has survived happily without expression level name bindings or declarations for decades, so we can afford to give ourselves a couple of years to decide if we really want both of those, or if expression level bindings are sufficient.

When discussing possible binding semantics for PEP 572 ’s assignment expressions, Tim Peters made a plausible case [1] , [2] , [3] for assignment expressions targeting the containing block scope, essentially ignoring any intervening scoped expressions.

This approach allows use cases like cumulative sums, or extracting the final value from a generator expression to be written in a relatively straightforward way:

Guido also expressed his approval for this general approach [4] .

The proposal in this PEP differs from Tim’s original proposal in three main areas:

  • it applies the proposal to all augmented assignment operators, not just a single new name binding operator
  • as far as is practical, it extends the augmented assignment requirement that the name already be defined to the new name binding operator (raising TargetNameError rather than implicitly declaring new local variables at function scope)
  • it includes lambda expressions in the set of scopes that get ignored for target name binding purposes, making this transparency to assignments common to all of the scoped expressions rather than being specific to comprehensions and generator expressions

With scoped expressions being ignored when calculating binding targets, it’s once again difficult to detect the scoping difference between the outermost iterable expressions in generator expressions and comprehensions (you have to mess about with either class scopes or attempting to rebind iteration Variables to detect it), so there’s also no need to tinker with that.

One of the challenges with PEP 572 is the fact that NAME = EXPR and NAME := EXPR are entirely semantically equivalent at every scope. This makes the two forms hard to teach, since there’s no inherent nudge towards choosing one over the other at the statement level, so you end up having to resort to “ NAME = EXPR is preferred because it’s been around longer” (and PEP 572 proposes to enforce that historical idiosyncrasy at the compiler level).

That semantic equivalence is difficult to avoid at module and class scope while still having if NAME := EXPR: and while NAME := EXPR: work sensibly, but at function scope the compiler’s comprehensive view of all local names makes it possible to require that the name be assigned or declared before use, providing a reasonable incentive to continue to default to using the NAME = EXPR form when possible, while also enabling the use of the NAME := EXPR as a kind of simple compile time assertion (i.e. explicitly indicating that the targeted name has already been bound or declared and hence should already be known to the compiler).

If Guido were to declare that support for inline declarations was a hard design requirement, then this PEP would be updated to propose that EXPR given NAME also be introduced as a way to support inline name declarations after arbitrary expressions (this would allow the inline name declarations to be deferred until the end of a complex expression rather than needing to be embedded in the middle of it, and PEP 8 would gain a recommendation encouraging that style).

While modern classes do define an implicit closure that’s visible to method implementations (in order to make __class__ available for use in zero-arg super() calls), there’s no way for user level code to explicitly add additional names to that scope.

Meanwhile, attributes defined in a class body are ignored for the purpose of defining a method’s lexical closure, which means adding them there wouldn’t work at an implementation level.

Rather than trying to resolve that inherent ambiguity, this PEP simply prohibits such usage, and requires that any affected logic be written somewhere other than directly inline in the class body (e.g. in a separate helper function).

The OP= construct as an expression currently indicates a comparison operation:

Both this PEP and PEP 572 propose adding at least one operator that’s somewhat similar in appearance, but defines an assignment instead:

This PEP then goes much further and allows all 13 augmented assignment symbols to be uses as binary operators:

Of those additional binary operators, the most questionable would be the bitshift assignment operators, since they’re each only one doubled character away from one of the inclusive ordered comparison operators.

There are currently a few different options for writing retry loops, including:

Each of the available options hides some aspect of the intended loop structure inside the loop body, whether that’s the state modification, the exit condition, or both.

The proposal in this PEP allows both the state modification and the exit condition to be included directly in the loop header:

if-elif chains that need to rebind the checked condition currently need to be written using nested if-else statements:

As with PEP 572 , this PEP allows the else/if portions of that chain to be condensed, making their consistent and mutually exclusive structure more readily apparent:

Unlike PEP 572 , this PEP requires that the assignment target be explicitly indicated as local before the first use as a := target, either by binding it to a value (as shown above), or else by including an appropriate explicit type declaration:

The proposal in this PEP makes it straightforward to capture and reuse intermediate values in comprehensions and generator expressions by exporting them to the containing block scope:

This PEP allows the classic closure usage example:

To be abbreviated as:

While the latter form is still a conceptually dense piece of code, it can be reasonably argued that the lack of boilerplate (where the “def”, “nonlocal”, and “return” keywords and two additional repetitions of the “x” variable name have been replaced with the “lambda” keyword) may make it easier to read in practice.

The case for allowing inline assignments at all is made in PEP 572 . This competing PEP was initially going to propose an alternate surface syntax ( EXPR given NAME = EXPR ), while retaining the expression semantics from PEP 572 , but that changed when discussing one of the initial motivating use cases for allowing embedded assignments at all: making it possible to easily calculate cumulative sums in comprehensions and generator expressions.

As a result of that, and unlike PEP 572 , this PEP focuses primarily on use cases for inline augmented assignment. It also has the effect of converting cases that currently inevitably raise UnboundLocalError at function call time to report a new compile time TargetNameError .

New syntax for a name rebinding expression ( NAME := TARGET ) is then added not only to handle the same use cases as are identified in PEP 572 , but also as a lower level primitive to help illustrate, implement and explain the new augmented assignment semantics, rather than being the sole change being proposed.

The author of this PEP believes that this approach makes the value of the new flexibility in name rebinding clearer, while also mitigating many of the potential concerns raised with PEP 572 around explaining when to use NAME = EXPR over NAME := EXPR (and vice-versa), without resorting to prohibiting the bare statement form of NAME := EXPR outright (such that NAME := EXPR is a compile error, but (NAME := EXPR) is permitted).

The PEP author wishes to thank Chris Angelico for his work on PEP 572 , and his efforts to create a coherent summary of the great many sprawling discussions that spawned on both python-ideas and python-dev, as well as Tim Peters for the in-depth discussion of parent local scoping that prompted the above scoping proposal for augmented assignments inside scoped expressions.

Eric Snow’s feedback on a pre-release version of this PEP helped make it significantly more readable.

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0577.rst

Last modified: 2023-10-11 12:05:51 GMT

  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Python Operators

Precedence and associativity of operators in python.

  • Python Arithmetic Operators
  • Difference between / vs. // operator in Python
  • Python - Star or Asterisk operator ( * )
  • What does the Double Star operator mean in Python?
  • Division Operators in Python
  • Modulo operator (%) in Python
  • Python Logical Operators
  • Python OR Operator
  • Difference between 'and' and '&' in Python
  • not Operator in Python | Boolean Logic

Ternary Operator in Python

  • Python Bitwise Operators

Python Assignment Operators

Assignment operators in python.

  • Walrus Operator in Python 3.8
  • Increment += and Decrement -= Assignment Operators in Python
  • Merging and Updating Dictionary Operators in Python 3.9
  • New '=' Operator in Python3.8 f-string

Python Relational Operators

  • Comparison Operators in Python
  • Python NOT EQUAL operator
  • Difference between == and is operator in Python
  • Chaining comparison operators in Python
  • Python Membership and Identity Operators
  • Difference between != and is not operator in Python

In Python programming, Operators in general are used to perform operations on values and variables. These are standard symbols used for logical and arithmetic operations. In this article, we will look into different types of Python operators. 

  • OPERATORS: These are the special symbols. Eg- + , * , /, etc.
  • OPERAND: It is the value on which the operator is applied.

Types of Operators in Python

  • Arithmetic Operators
  • Comparison Operators
  • Logical Operators
  • Bitwise Operators
  • Assignment Operators
  • Identity Operators and Membership Operators

Python Operators

Arithmetic Operators in Python

Python Arithmetic operators are used to perform basic mathematical operations like addition, subtraction, multiplication , and division .

In Python 3.x the result of division is a floating-point while in Python 2.x division of 2 integers was an integer. To obtain an integer result in Python 3.x floored (// integer) is used.

Example of Arithmetic Operators in Python

Division operators.

In Python programming language Division Operators allow you to divide two numbers and return a quotient, i.e., the first number or number at the left is divided by the second number or number at the right and returns the quotient. 

There are two types of division operators: 

Float division

  • Floor division

The quotient returned by this operator is always a float number, no matter if two numbers are integers. For example:

Example: The code performs division operations and prints the results. It demonstrates that both integer and floating-point divisions return accurate results. For example, ’10/2′ results in ‘5.0’ , and ‘-10/2’ results in ‘-5.0’ .

Integer division( Floor division)

The quotient returned by this operator is dependent on the argument being passed. If any of the numbers is float, it returns output in float. It is also known as Floor division because, if any number is negative, then the output will be floored. For example:

Example: The code demonstrates integer (floor) division operations using the // in Python operators . It provides results as follows: ’10//3′ equals ‘3’ , ‘-5//2’ equals ‘-3’ , ‘ 5.0//2′ equals ‘2.0’ , and ‘-5.0//2’ equals ‘-3.0’ . Integer division returns the largest integer less than or equal to the division result.

Precedence of Arithmetic Operators in Python

The precedence of Arithmetic Operators in Python is as follows:

  • P – Parentheses
  • E – Exponentiation
  • M – Multiplication (Multiplication and division have the same precedence)
  • D – Division
  • A – Addition (Addition and subtraction have the same precedence)
  • S – Subtraction

The modulus of Python operators helps us extract the last digit/s of a number. For example:

  • x % 10 -> yields the last digit
  • x % 100 -> yield last two digits

Arithmetic Operators With Addition, Subtraction, Multiplication, Modulo and Power

Here is an example showing how different Arithmetic Operators in Python work:

Example: The code performs basic arithmetic operations with the values of ‘a’ and ‘b’ . It adds (‘+’) , subtracts (‘-‘) , multiplies (‘*’) , computes the remainder (‘%’) , and raises a to the power of ‘b (**)’ . The results of these operations are printed.

Note: Refer to Differences between / and // for some interesting facts about these two Python operators.

Comparison of Python Operators

In Python Comparison of Relational operators compares the values. It either returns True or False according to the condition.

= is an assignment operator and == comparison operator.

Precedence of Comparison Operators in Python

In Python, the comparison operators have lower precedence than the arithmetic operators. All the operators within comparison operators have the same precedence order.

Example of Comparison Operators in Python

Let’s see an example of Comparison Operators in Python.

Example: The code compares the values of ‘a’ and ‘b’ using various comparison Python operators and prints the results. It checks if ‘a’ is greater than, less than, equal to, not equal to, greater than, or equal to, and less than or equal to ‘b’ .

Logical Operators in Python

Python Logical operators perform Logical AND , Logical OR , and Logical NOT operations. It is used to combine conditional statements.

Precedence of Logical Operators in Python

The precedence of Logical Operators in Python is as follows:

  • Logical not
  • logical and

Example of Logical Operators in Python

The following code shows how to implement Logical Operators in Python:

Example: The code performs logical operations with Boolean values. It checks if both ‘a’ and ‘b’ are true ( ‘and’ ), if at least one of them is true ( ‘or’ ), and negates the value of ‘a’ using ‘not’ . The results are printed accordingly.

Bitwise Operators in Python

Python Bitwise operators act on bits and perform bit-by-bit operations. These are used to operate on binary numbers.

Precedence of Bitwise Operators in Python

The precedence of Bitwise Operators in Python is as follows:

  • Bitwise NOT
  • Bitwise Shift
  • Bitwise AND
  • Bitwise XOR

Here is an example showing how Bitwise Operators in Python work:

Example: The code demonstrates various bitwise operations with the values of ‘a’ and ‘b’ . It performs bitwise AND (&) , OR (|) , NOT (~) , XOR (^) , right shift (>>) , and left shift (<<) operations and prints the results. These operations manipulate the binary representations of the numbers.

Python Assignment operators are used to assign values to the variables.

Let’s see an example of Assignment Operators in Python.

Example: The code starts with ‘a’ and ‘b’ both having the value 10. It then performs a series of operations: addition, subtraction, multiplication, and a left shift operation on ‘b’ . The results of each operation are printed, showing the impact of these operations on the value of ‘b’ .

Identity Operators in Python

In Python, is and is not are the identity operators both are used to check if two values are located on the same part of the memory. Two variables that are equal do not imply that they are identical. 

Example Identity Operators in Python

Let’s see an example of Identity Operators in Python.

Example: The code uses identity operators to compare variables in Python. It checks if ‘a’ is not the same object as ‘b’ (which is true because they have different values) and if ‘a’ is the same object as ‘c’ (which is true because ‘c’ was assigned the value of ‘a’ ).

Membership Operators in Python

In Python, in and not in are the membership operators that are used to test whether a value or variable is in a sequence.

Examples of Membership Operators in Python

The following code shows how to implement Membership Operators in Python:

Example: The code checks for the presence of values ‘x’ and ‘y’ in the list. It prints whether or not each value is present in the list. ‘x’ is not in the list, and ‘y’ is present, as indicated by the printed messages. The code uses the ‘in’ and ‘not in’ Python operators to perform these checks.

in Python, Ternary operators also known as conditional expressions are operators that evaluate something based on a condition being true or false. It was added to Python in version 2.5. 

It simply allows testing a condition in a single line replacing the multiline if-else making the code compact.

Syntax :   [on_true] if [expression] else [on_false] 

Examples of Ternary Operator in Python

The code assigns values to variables ‘a’ and ‘b’ (10 and 20, respectively). It then uses a conditional assignment to determine the smaller of the two values and assigns it to the variable ‘min’ . Finally, it prints the value of ‘min’ , which is 10 in this case.

In Python, Operator precedence and associativity determine the priorities of the operator.

Operator Precedence in Python

This is used in an expression with more than one operator with different precedence to determine which operation to perform first.

Let’s see an example of how Operator Precedence in Python works:

Example: The code first calculates and prints the value of the expression 10 + 20 * 30 , which is 610. Then, it checks a condition based on the values of the ‘name’ and ‘age’ variables. Since the name is “ Alex” and the condition is satisfied using the or operator, it prints “Hello! Welcome.”

Operator Associativity in Python

If an expression contains two or more operators with the same precedence then Operator Associativity is used to determine. It can either be Left to Right or from Right to Left.

The following code shows how Operator Associativity in Python works:

Example: The code showcases various mathematical operations. It calculates and prints the results of division and multiplication, addition and subtraction, subtraction within parentheses, and exponentiation. The code illustrates different mathematical calculations and their outcomes.

To try your knowledge of Python Operators, you can take out the quiz on Operators in Python . 

Python Operator Exercise Questions

Below are two Exercise Questions on Python Operators. We have covered arithmetic operators and comparison operators in these exercise questions. For more exercises on Python Operators visit the page mentioned below.

Q1. Code to implement basic arithmetic operations on integers

Q2. Code to implement Comparison operations on integers

Explore more Exercises: Practice Exercise on Operators in Python

Please Login to comment...

Similar reads.

  • python-basics
  • Python-Operators

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Python »
  • 3.14.0a0 Documentation »
  • The Python Tutorial »
  • Theme Auto Light Dark |

9. Classes ¶

Classes provide a means of bundling data and functionality together. Creating a new class creates a new type of object, allowing new instances of that type to be made. Each class instance can have attributes attached to it for maintaining its state. Class instances can also have methods (defined by its class) for modifying its state.

Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new syntax and semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes provide all the standard features of Object Oriented Programming: the class inheritance mechanism allows multiple base classes, a derived class can override any methods of its base class or classes, and a method can call the method of a base class with the same name. Objects can contain arbitrary amounts and kinds of data. As is true for modules, classes partake of the dynamic nature of Python: they are created at runtime, and can be modified further after creation.

In C++ terminology, normally class members (including the data members) are public (except see below Private Variables ), and all member functions are virtual . As in Modula-3, there are no shorthands for referencing the object’s members from its methods: the method function is declared with an explicit first argument representing the object, which is provided implicitly by the call. As in Smalltalk, classes themselves are objects. This provides semantics for importing and renaming. Unlike C++ and Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++ terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I expect that few readers have heard of it.)

9.1. A Word About Names and Objects ¶

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly surprising effect on the semantics of Python code involving mutable objects such as lists, dictionaries, and most other types. This is usually used to the benefit of the program, since aliases behave like pointers in some respects. For example, passing an object is cheap since only a pointer is passed by the implementation; and if a function modifies an object passed as an argument, the caller will see the change — this eliminates the need for two different argument passing mechanisms as in Pascal.

9.2. Python Scopes and Namespaces ¶

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s going on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries, but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples of namespaces are: the set of built-in names (containing functions such as abs() , and built-in exception names); the global names in a module; and the local names in a function invocation. In a sense the set of attributes of an object also form a namespace. The important thing to know about namespaces is that there is absolutely no relation between names in different namespaces; for instance, two different modules may both define a function maximize without confusion — users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for example, in the expression z.real , real is an attribute of the object z . Strictly speaking, references to names in modules are attribute references: in the expression modname.funcname , modname is a module object and funcname is an attribute of it. In this case there happens to be a straightforward mapping between the module’s attributes and the global names defined in the module: they share the same namespace! [ 1 ]

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes are writable: you can write modname.the_answer = 42 . Writable attributes may also be deleted with the del statement. For example, del modname.the_answer will remove the attribute the_answer from the object named by modname .

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module is created when the module definition is read in; normally, module namespaces also last until the interpreter quits. The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively, are considered part of a module called __main__ , so they have their own global namespace. (The built-in names actually also live in a module; this is called builtins .)

The local namespace for a function is created when the function is called, and deleted when the function returns or raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe what actually happens.) Of course, recursive invocations each have their own local namespace.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are 3 or 4 nested scopes whose namespaces are directly accessible:

the innermost scope, which is searched first, contains the local names

the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contain non-local, but also non-global names

the next-to-last scope contains the current module’s global names

the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the next-to-last scope containing the module’s global names. To rebind variables found outside of the innermost scope, the nonlocal statement can be used; if not declared nonlocal, those variables are read-only (an attempt to write to such a variable will simply create a new local variable in the innermost scope, leaving the identically named outer variable unchanged).

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local scope references the same namespace as the global scope: the module’s namespace. Class definitions place yet another namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the actual search for names is done dynamically, at run time — however, the language definition is evolving towards static name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are already determined statically.)

A special quirk of Python is that – if no global or nonlocal statement is in effect – assignments to names always go into the innermost scope. Assignments do not copy data — they just bind names to objects. The same is true for deletions: the statement del x removes the binding of x from the namespace referenced by the local scope. In fact, all operations that introduce new names use the local scope: in particular, import statements and function definitions bind the module or function name in the local scope.

The global statement can be used to indicate that particular variables live in the global scope and should be rebound there; the nonlocal statement indicates that particular variables live in an enclosing scope and should be rebound there.

9.2.1. Scopes and Namespaces Example ¶

This is an example demonstrating how to reference the different scopes and namespaces, and how global and nonlocal affect variable binding:

The output of the example code is:

Note how the local assignment (which is default) didn’t change scope_test 's binding of spam . The nonlocal assignment changed scope_test 's binding of spam , and the global assignment changed the module-level binding.

You can also see that there was no previous binding for spam before the global assignment.

9.3. A First Look at Classes ¶

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1. Class Definition Syntax ¶

The simplest form of class definition looks like this:

Class definitions, like function definitions ( def statements) must be executed before they have any effect. (You could conceivably place a class definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed, and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have a peculiar form of argument list, dictated by the calling conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments to local variables go into this new namespace. In particular, function definitions bind the name of the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is bound here to the class name given in the class definition header ( ClassName in the example).

9.3.2. Class Objects ¶

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name . Valid attribute names are all the names that were in the class’s namespace when the class object was created. So, if the class definition looked like this:

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object, respectively. Class attributes can also be assigned to, so you can change the value of MyClass.i by assignment. __doc__ is also a valid attribute, returning the docstring belonging to the class: "A simple example class" .

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a new instance of the class. For example (assuming the above class):

creates a new instance of the class and assigns this object to the local variable x .

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with instances customized to a specific initial state. Therefore a class may define a special method named __init__() , like this:

When a class defines an __init__() method, class instantiation automatically invokes __init__() for the newly created class instance. So in this example, a new, initialized instance can be obtained by:

Of course, the __init__() method may have arguments for greater flexibility. In that case, arguments given to the class instantiation operator are passed on to __init__() . For example,

9.3.3. Instance Objects ¶

Now what can we do with instance objects? The only operations understood by instance objects are attribute references. There are two kinds of valid attribute names: data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes need not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is the instance of MyClass created above, the following piece of code will print the value 16 , without leaving a trace:

The other kind of instance attribute reference is a method . A method is a function that “belongs to” an object. (In Python, the term method is not unique to class instances: other object types can have methods as well. For example, list objects have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll use the term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are function objects define corresponding methods of its instances. So in our example, x.f is a valid method reference, since MyClass.f is a function, but x.i is not, since MyClass.i is not. But x.f is not the same thing as MyClass.f — it is a method object , not a function object.

9.3.4. Method Objects ¶

Usually, a method is called right after it is bound:

In the MyClass example, this will return the string 'hello world' . However, it is not necessary to call a method right away: x.f is a method object, and can be stored away and called at a later time. For example:

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x.f() was called without an argument above, even though the function definition for f() specified an argument. What happened to the argument? Surely Python raises an exception when a function that requires an argument is called without any — even if the argument isn’t actually used…

Actually, you may have guessed the answer: the special thing about methods is that the instance object is passed as the first argument of the function. In our example, the call x.f() is exactly equivalent to MyClass.f(x) . In general, calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that is created by inserting the method’s instance object before the first argument.

In general, methods work as follows. When a non-data attribute of an instance is referenced, the instance’s class is searched. If the name denotes a valid class attribute that is a function object, references to both the instance object and the function object are packed into a method object. When the method object is called with an argument list, a new argument list is constructed from the instance object and the argument list, and the function object is called with this new argument list.

9.3.5. Class and Instance Variables ¶

Generally speaking, instance variables are for data unique to each instance and class variables are for attributes and methods shared by all instances of the class:

As discussed in A Word About Names and Objects , shared data can have possibly surprising effects with involving mutable objects such as lists and dictionaries. For example, the tricks list in the following code should not be used as a class variable because just a single list would be shared by all Dog instances:

Correct design of the class should use an instance variable instead:

9.4. Random Remarks ¶

If the same attribute name occurs in both an instance and in a class, then attribute lookup prioritizes the instance:

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words, classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can completely hide implementation details and control access to an object if necessary; this can be used by extensions to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by stamping on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this actually increases the readability of methods: there is no chance of confusing local variables and instance variables when glancing through a method.

Often, the first argument of a method is called self . This is nothing more than a convention: the name self has absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less readable to other Python programmers, and it is also conceivable that a class browser program might be written that relies upon such a convention.

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the function definition is textually enclosed in the class definition: assigning a function object to a local variable in the class is also ok. For example:

Now f , g and h are all attributes of class C that refer to function objects, and consequently they are all methods of instances of C — h being exactly equivalent to g . Note that this practice usually only serves to confuse the reader of a program.

Methods may call other methods by using method attributes of the self argument:

Methods may reference global names in the same way as ordinary functions. The global scope associated with a method is the module containing its definition. (A class is never used as a global scope.) While one rarely encounters a good reason for using global data in a method, there are many legitimate uses of the global scope: for one thing, functions and modules imported into the global scope can be used by methods, as well as functions and classes defined in it. Usually, the class containing the method is itself defined in this global scope, and in the next section we’ll find some good reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its type ). It is stored as object.__class__ .

9.5. Inheritance ¶

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax for a derived class definition looks like this:

The name BaseClassName must be defined in a namespace accessible from the scope containing the derived class definition. In place of a base class name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is defined in another module:

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the class, the search proceeds to look in the base class. This rule is applied recursively if the base class itself is derived from some other class.

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new instance of the class. Method references are resolved as follows: the corresponding class attribute is searched, descending down the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when calling other methods of the same object, a method of a base class that calls another method defined in the same base class may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively virtual .)

An overriding method in a derived class may in fact want to extend rather than simply replace the base class method of the same name. There is a simple way to call the base class method directly: just call BaseClassName.methodname(self, arguments) . This is occasionally useful to clients as well. (Note that this only works if the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

Use isinstance() to check an instance’s type: isinstance(obj, int) will be True only if obj.__class__ is int or some class derived from int .

Use issubclass() to check class inheritance: issubclass(bool, int) is True since bool is a subclass of int . However, issubclass(float, int) is False since float is not a subclass of int .

9.5.1. Multiple Inheritance ¶

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like this:

For most purposes, in the simplest cases, you can think of the search for attributes inherited from a parent class as depth-first, left-to-right, not searching twice in the same class where there is an overlap in the hierarchy. Thus, if an attribute is not found in DerivedClassName , it is searched for in Base1 , then (recursively) in the base classes of Base1 , and if it was not found there, it was searched for in Base2 , and so on.

In fact, it is slightly more complex than that; the method resolution order changes dynamically to support cooperative calls to super() . This approach is known in some other multiple-inheritance languages as call-next-method and is more powerful than the super call found in single-inheritance languages.

Dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more diamond relationships (where at least one of the parent classes can be accessed through multiple paths from the bottommost class). For example, all classes inherit from object , so any case of multiple inheritance provides more than one path to reach object . To keep the base classes from being accessed more than once, the dynamic algorithm linearizes the search order in a way that preserves the left-to-right ordering specified in each class, that calls each parent only once, and that is monotonic (meaning that a class can be subclassed without affecting the precedence order of its parents). Taken together, these properties make it possible to design reliable and extensible classes with multiple inheritance. For more detail, see The Python 2.3 Method Resolution Order .

9.6. Private Variables ¶

“Private” instance variables that cannot be accessed except from inside an object don’t exist in Python. However, there is a convention that is followed by most Python code: a name prefixed with an underscore (e.g. _spam ) should be treated as a non-public part of the API (whether it is a function, a method or a data member). It should be considered an implementation detail and subject to change without notice.

Since there is a valid use-case for class-private members (namely to avoid name clashes of names with names defined by subclasses), there is limited support for such a mechanism, called name mangling . Any identifier of the form __spam (at least two leading underscores, at most one trailing underscore) is textually replaced with _classname__spam , where classname is the current class name with leading underscore(s) stripped. This mangling is done without regard to the syntactic position of the identifier, as long as it occurs within the definition of a class.

Name mangling is helpful for letting subclasses override methods without breaking intraclass method calls. For example:

The above example would work even if MappingSubclass were to introduce a __update identifier since it is replaced with _Mapping__update in the Mapping class and _MappingSubclass__update in the MappingSubclass class respectively.

Note that the mangling rules are designed mostly to avoid accidents; it still is possible to access or modify a variable that is considered private. This can even be useful in special circumstances, such as in the debugger.

Notice that code passed to exec() or eval() does not consider the classname of the invoking class to be the current class; this is similar to the effect of the global statement, the effect of which is likewise restricted to code that is byte-compiled together. The same restriction applies to getattr() , setattr() and delattr() , as well as when referencing __dict__ directly.

9.7. Odds and Ends ¶

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a few named data items. The idiomatic approach is to use dataclasses for this purpose:

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the methods of that data type instead. For instance, if you have a function that formats some data from a file object, you can define a class with methods read() and readline() that get the data from a string buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m.__self__ is the instance object with the method m() , and m.__func__ is the function object corresponding to the method.

9.8. Iterators ¶

By now you have probably noticed that most container objects can be looped over using a for statement:

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the scenes, the for statement calls iter() on the container object. The function returns an iterator object that defines the method __next__() which accesses elements in the container one at a time. When there are no more elements, __next__() raises a StopIteration exception which tells the for loop to terminate. You can call the __next__() method using the next() built-in function; this example shows how it all works:

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define an __iter__() method which returns an object with a __next__() method. If the class defines __next__() , then __iter__() can just return self :

9.9. Generators ¶

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use the yield statement whenever they want to return data. Each time next() is called on it, the generator resumes where it left off (it remembers all the data values and which statement was last executed). An example shows that generators can be trivially easy to create:

Anything that can be done with generators can also be done with class-based iterators as described in the previous section. What makes generators so compact is that the __iter__() and __next__() methods are created automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This made the function easier to write and much more clear than an approach using instance variables like self.index and self.data .

In addition to automatic method creation and saving program state, when generators terminate, they automatically raise StopIteration . In combination, these features make it easy to create iterators with no more effort than writing a regular function.

9.10. Generator Expressions ¶

Some simple generators can be coded succinctly as expressions using a syntax similar to list comprehensions but with parentheses instead of square brackets. These expressions are designed for situations where the generator is used right away by an enclosing function. Generator expressions are more compact but less versatile than full generator definitions and tend to be more memory friendly than equivalent list comprehensions.

Table of Contents

  • 9.1. A Word About Names and Objects
  • 9.2.1. Scopes and Namespaces Example
  • 9.3.1. Class Definition Syntax
  • 9.3.2. Class Objects
  • 9.3.3. Instance Objects
  • 9.3.4. Method Objects
  • 9.3.5. Class and Instance Variables
  • 9.4. Random Remarks
  • 9.5.1. Multiple Inheritance
  • 9.6. Private Variables
  • 9.7. Odds and Ends
  • 9.8. Iterators
  • 9.9. Generators
  • 9.10. Generator Expressions

Previous topic

8. Errors and Exceptions

10. Brief Tour of the Standard Library

  • Report a Bug
  • Show Source

IMAGES

  1. Assignment Statement in Python

    in python the assignment statement is also an expression

  2. Variable Assignment in Python

    in python the assignment statement is also an expression

  3. Python Assignment Statement and Types

    in python the assignment statement is also an expression

  4. Python Assignment Expression? The 13 Top Answers

    in python the assignment statement is also an expression

  5. Python Assignment Statement and Types

    in python the assignment statement is also an expression

  6. Assigning multiple variables in one line in Python

    in python the assignment statement is also an expression

VIDEO

  1. Assignment

  2. Python Tutorial : Comments , Input Statement , Operators

  3. Python Tutorial : Conditional Statement

  4. L-5.4 Assignment Operators

  5. Python Tutorial : Conditional Statement

  6. how to use the if statement in python.pt1 of python

COMMENTS

  1. What is the difference between an expression and a statement in Python

    An expression tells the interpreter that something needs to be evaluated, calculated, reduced, etc. for example: >>>>5 + 5. A statement does not. Think of the statement as the block of code, that instructs the interpreter to do something (besides evaluation). So as a simple example, x = 5 + 5.

  2. Python's Assignment Operator: Write Robust Assignments

    Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal—or an expression that evaluates to a value. To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object.

  3. PEP 572

    Unparenthesized assignment expressions are prohibited at the top level of the right hand side of an assignment statement. Example: y0 = y1 := f(x) # INVALID y0 = (y1 := f(x)) # Valid, though discouraged. Again, this rule is included to avoid two visually similar ways of saying the same thing.

  4. Assignment Expressions: The Walrus Operator

    In this lesson, you'll learn about the biggest change in Python 3.8: the introduction of assignment expressions.Assignment expression are written with a new notation (:=).This operator is often called the walrus operator as it resembles the eyes and tusks of a walrus on its side.. Assignment expressions allow you to assign and return a value in the same expression.

  5. 7. Simple statements

    Annotated assignment statements¶ Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement: annotated_assignment_stmt::= augtarget ":" expression ["=" (starred_expression | yield_expression)] The difference from normal Assignment statements is that only a single ...

  6. How To Use Assignment Expressions in Python

    The author selected the COVID-19 Relief Fund to receive a donation as part of the Write for DOnations program.. Introduction. Python 3.8, released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called "the walrus operator" because := vaguely resembles a walrus with tusks. ...

  7. Operators and Expressions in Python

    The walrus operator is also a binary operator. Its left-hand operand must be a variable name, and its right-hand operand can be any Python expression. The operator will evaluate the expression, assign its value to the target variable, and return the value. The general syntax of an assignment expression is as follows:

  8. Variables, Expressions, and Assignments

    Assignment Statements# We have already seen that Python allows you to evaluate expressions, for instance 40 + 2. It is very convenient if we are able to store the calculated value in some variable for future use. The latter can be done via an assignment statement. An assignment statement creates a new variable with a given name and assigns it a ...

  9. 5. Assignment Expressions

    5. First you may wonder about the brackets, when you look at the assignment expression. It is not meant as a replacement for the simple "assignment statement". Its primary role is to be utilized within expressions. The following code shows a proper usecase: x = 4.56 z = (square := x**2) - (6.6 / square) print(z) OUTPUT:

  10. Python 101

    The general idea is that an assignment expression allows you to assign to variables within an expression. The syntax for doing this is: NAME := expr. This operator has been called the "walrus operator", although their real name is "assignment expression". Interestingly, the CPython internals also refer to them as "named expressions".

  11. 6. Expressions

    Assignment expressions¶ assignment_expression::= [identifier ":="] expression. An assignment expression (sometimes also called a "named expression" or "walrus") assigns an expression to an identifier, while also returning the value of the expression. One common use case is when handling matched regular expressions:

  12. Introduction into Python Statements: Assignment, Conditional Examples

    Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result. x = 5. y = x + 3. print(y) In this example, we assign the value 5 to the variable x, then add 3 to x and assign the result ( 8) to the variable y.

  13. python

    This is of the form name := expr where expr is any valid Python expression, and name is an identifier. The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value. Differences from regular assignment statements

  14. The Walrus Operator: Python 3.8 Assignment Expressions

    Each new version of Python adds new features to the language. For Python 3.8, the biggest change is the addition of assignment expressions.Specifically, the := operator gives you a new syntax for assigning variables in the middle of expressions. This operator is colloquially known as the walrus operator.. This tutorial is an in-depth introduction to the walrus operator.

  15. Different Forms of Assignment Statements in Python

    Multiple- target assignment: x = y = 75. print(x, y) In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left. OUTPUT. 75 75. 7. Augmented assignment : The augmented assignment is a shorthand assignment that combines an expression and an assignment.

  16. Is variable assignment a statement or expression?

    0. Roughly speaking, in C; A statement is a section of code that produces an observable effect; An expression is a code construct which accesses at least one data item, performs some operation of the result of that access (or those accesses), and produces at least one result. An expression may be composed of (smaller) expressions.

  17. Augmented Assignment Expression in Python

    By contrast, #B is a statement — an assignment statement, to be specific. More generally speaking, expressions are code that evaluates to a value or an object in Python (values are all objects in Python). For instance, when you call a function (e.g., abs(-5)), it's an expression. Statements are code that don't evaluate to any value.

  18. python

    Fun fact: := (the assignment expression) is also known as the "walrus operator" because if considered as a text based emoji it looks like a walrus. :) - jlsecrest. Nov 6, 2021 at 4:13 ... No. Assignment in Python is a statement, not an expression. Share. Follow answered Apr 8, 2010 at 22:50. Ignacio Vazquez ...

  19. Assignment Operators in Python

    The Walrus Operator in Python is a new assignment operator which is introduced in Python version 3.8 and higher. This operator is used to assign a value to a variable within an expression. Syntax: a := expression. Example: In this code, we have a Python list of integers. We have used Python Walrus assignment operator within the Python while loop.

  20. Assignment Expression Syntax

    Assignment Expression Syntax. For more information on concepts covered in this lesson, you can check out: Walrus operator syntax. One of the main reasons assignments were not expressions in Python from the beginning is the visual likeness of the assignment operator (=) and the equality comparison operator (==). This could potentially lead to bugs.

  21. Expression and Statement

    Evaluation refers to the process that Python interpreter generates the final object of an expression. Expressions have a common characteristic: the evaluation of the code construct generates a single object. An object may have a single value such as 3 or multiple values like a list or a tuple. An expression may have nested expression.

  22. Assignment Expressions

    Assignment Expressions. For more information on concepts covered in this lesson, you can check out: Here's a feature introduced in version 3.8 of Python, which can simplify the function we're currently working on. It's called an assignment expression, and it allows you to save the return value of a function to a variable while at the same ...

  23. PEP 577

    This is a proposal to allow augmented assignments such as x += 1 to be used as expressions, not just statements. As part of this, NAME:= EXPR is proposed as an inline assignment expression that uses the new augmented assignment scoping rules, rather than implicitly defining a new local variable name the way that existing name binding statements ...

  24. Python Operators

    Assignment Operators in Python. ... Ternary operators also known as conditional expressions are operators that evaluate something based on a condition being true or false. It was added to Python in version 2.5. ... Operator Associativity in Python. If an expression contains two or more operators with the same precedence then Operator ...

  25. 9. Classes

    Note how the local assignment (which is default) didn't change scope_test's binding of spam.The nonlocal assignment changed scope_test's binding of spam, and the global assignment changed the module-level binding.. You can also see that there was no previous binding for spam before the global assignment.. 9.3. A First Look at Classes¶. Classes introduce a little bit of new syntax, three new ...

  26. python: return, return None, and no return at all -- is there any

    Either all return statements in a function should return an expression, or none of them should. If any return statement returns an expression, any return statements where no value is returned should explicitly state this as return None, and an explicit return statement should be present at the end of the function (if reachable). Yes: