## What Is Statistical Analysis?

Statistical analysis is a technique we use to find patterns in data and make inferences about those patterns to describe variability in the results of a data set or an experiment.

In its simplest form, statistical analysis answers questions about:

- Quantification — how big/small/tall/wide is it?
- Variability — growth, increase, decline
- The confidence level of these variabilities

## What Are the 2 Types of Statistical Analysis?

- Descriptive Statistics: Descriptive statistical analysis describes the quality of the data by summarizing large data sets into single measures.
- Inferential Statistics: Inferential statistical analysis allows you to draw conclusions from your sample data set and make predictions about a population using statistical tests.

## What’s the Purpose of Statistical Analysis?

Using statistical analysis, you can determine trends in the data by calculating your data set’s mean or median. You can also analyze the variation between different data points from the mean to get the standard deviation . Furthermore, to test the validity of your statistical analysis conclusions, you can use hypothesis testing techniques, like P-value, to determine the likelihood that the observed variability could have occurred by chance.

More From Abdishakur Hassan The 7 Best Thematic Map Types for Geospatial Data

## Statistical Analysis Methods

There are two major types of statistical data analysis: descriptive and inferential.

## Descriptive Statistical Analysis

Descriptive statistical analysis describes the quality of the data by summarizing large data sets into single measures.

Within the descriptive analysis branch, there are two main types: measures of central tendency (i.e. mean, median and mode) and measures of dispersion or variation (i.e. variance , standard deviation and range).

For example, you can calculate the average exam results in a class using central tendency or, in particular, the mean. In that case, you’d sum all student results and divide by the number of tests. You can also calculate the data set’s spread by calculating the variance. To calculate the variance, subtract each exam result in the data set from the mean, square the answer, add everything together and divide by the number of tests.

## Inferential Statistics

On the other hand, inferential statistical analysis allows you to draw conclusions from your sample data set and make predictions about a population using statistical tests.

There are two main types of inferential statistical analysis: hypothesis testing and regression analysis. We use hypothesis testing to test and validate assumptions in order to draw conclusions about a population from the sample data. Popular tests include Z-test, F-Test, ANOVA test and confidence intervals . On the other hand, regression analysis primarily estimates the relationship between a dependent variable and one or more independent variables. There are numerous types of regression analysis but the most popular ones include linear and logistic regression .

## Statistical Analysis Steps

In the era of big data and data science, there is a rising demand for a more problem-driven approach. As a result, we must approach statistical analysis holistically. We may divide the entire process into five different and significant stages by using the well-known PPDAC model of statistics: Problem, Plan, Data, Analysis and Conclusion.

In the first stage, you define the problem you want to tackle and explore questions about the problem.

Next is the planning phase. You can check whether data is available or if you need to collect data for your problem. You also determine what to measure and how to measure it.

The third stage involves data collection, understanding the data and checking its quality.

## 4. Analysis

Statistical data analysis is the fourth stage. Here you process and explore the data with the help of tables, graphs and other data visualizations. You also develop and scrutinize your hypothesis in this stage of analysis.

## 5. Conclusion

The final step involves interpretations and conclusions from your analysis. It also covers generating new ideas for the next iteration. Thus, statistical analysis is not a one-time event but an iterative process.

## Statistical Analysis Uses

Statistical analysis is useful for research and decision making because it allows us to understand the world around us and draw conclusions by testing our assumptions. Statistical analysis is important for various applications, including:

- Statistical quality control and analysis in product development
- Clinical trials
- Customer satisfaction surveys and customer experience research
- Marketing operations management
- Process improvement and optimization
- Training needs

More on Statistical Analysis From Built In Experts Intro to Descriptive Statistics for Machine Learning

## Benefits of Statistical Analysis

Here are some of the reasons why statistical analysis is widespread in many applications and why it’s necessary:

## Understand Data

Statistical analysis gives you a better understanding of the data and what they mean. These types of analyses provide information that would otherwise be difficult to obtain by merely looking at the numbers without considering their relationship.

## Find Causal Relationships

Statistical analysis can help you investigate causation or establish the precise meaning of an experiment, like when you’re looking for a relationship between two variables.

## Make Data-Informed Decisions

Businesses are constantly looking to find ways to improve their services and products . Statistical analysis allows you to make data-informed decisions about your business or future actions by helping you identify trends in your data, whether positive or negative.

## Determine Probability

Statistical analysis is an approach to understanding how the probability of certain events affects the outcome of an experiment. It helps scientists and engineers decide how much confidence they can have in the results of their research, how to interpret their data and what questions they can feasibly answer.

You’ve Got Questions. Our Experts Have Answers. Confidence Intervals, Explained!

## What Are the Risks of Statistical Analysis?

Statistical analysis can be valuable and effective, but it’s an imperfect approach. Even if the analyst or researcher performs a thorough statistical analysis, there may still be known or unknown problems that can affect the results. Therefore, statistical analysis is not a one-size-fits-all process. If you want to get good results, you need to know what you’re doing. It can take a lot of time to figure out which type of statistical analysis will work best for your situation .

Thus, you should remember that our conclusions drawn from statistical analysis don’t always guarantee correct results. This can be dangerous when making business decisions. In marketing , for example, we may come to the wrong conclusion about a product . Therefore, the conclusions we draw from statistical data analysis are often approximated; testing for all factors affecting an observation is impossible.

Built In’s expert contributor network publishes thoughtful, solutions-oriented stories written by innovative tech professionals. It is the tech industry’s definitive destination for sharing compelling, first-person accounts of problem-solving on the road to innovation.

## Great Companies Need Great People. That's Where We Come In.

## Statistical Analysis in Research: Meaning, Methods and Types

Home » Videos » Statistical Analysis in Research: Meaning, Methods and Types

The scientific method is an empirical approach to acquiring new knowledge by making skeptical observations and analyses to develop a meaningful interpretation. It is the basis of research and the primary pillar of modern science. Researchers seek to understand the relationships between factors associated with the phenomena of interest. In some cases, research works with vast chunks of data, making it difficult to observe or manipulate each data point. As a result, statistical analysis in research becomes a means of evaluating relationships and interconnections between variables with tools and analytical techniques for working with large data. Since researchers use statistical power analysis to assess the probability of finding an effect in such an investigation, the method is relatively accurate. Hence, statistical analysis in research eases analytical methods by focusing on the quantifiable aspects of phenomena.

## What is Statistical Analysis in Research? A Simplified Definition

Statistical analysis uses quantitative data to investigate patterns, relationships, and patterns to understand real-life and simulated phenomena. The approach is a key analytical tool in various fields, including academia, business, government, and science in general. This statistical analysis in research definition implies that the primary focus of the scientific method is quantitative research. Notably, the investigator targets the constructs developed from general concepts as the researchers can quantify their hypotheses and present their findings in simple statistics.

When a business needs to learn how to improve its product, they collect statistical data about the production line and customer satisfaction. Qualitative data is valuable and often identifies the most common themes in the stakeholders’ responses. On the other hand, the quantitative data creates a level of importance, comparing the themes based on their criticality to the affected persons. For instance, descriptive statistics highlight tendency, frequency, variation, and position information. While the mean shows the average number of respondents who value a certain aspect, the variance indicates the accuracy of the data. In any case, statistical analysis creates simplified concepts used to understand the phenomenon under investigation. It is also a key component in academia as the primary approach to data representation, especially in research projects, term papers and dissertations.

## Most Useful Statistical Analysis Methods in Research

Using statistical analysis methods in research is inevitable, especially in academic assignments, projects, and term papers. It’s always advisable to seek assistance from your professor or you can try research paper writing by CustomWritings before you start your academic project or write statistical analysis in research paper. Consulting an expert when developing a topic for your thesis or short mid-term assignment increases your chances of getting a better grade. Most importantly, it improves your understanding of research methods with insights on how to enhance the originality and quality of personalized essays. Professional writers can also help select the most suitable statistical analysis method for your thesis, influencing the choice of data and type of study.

## Descriptive Statistics

Descriptive statistics is a statistical method summarizing quantitative figures to understand critical details about the sample and population. A description statistic is a figure that quantifies a specific aspect of the data. For instance, instead of analyzing the behavior of a thousand students, research can identify the most common actions among them. By doing this, the person utilizes statistical analysis in research, particularly descriptive statistics.

- Measures of central tendency . Central tendency measures are the mean, mode, and media or the averages denoting specific data points. They assess the centrality of the probability distribution, hence the name. These measures describe the data in relation to the center.
- Measures of frequency . These statistics document the number of times an event happens. They include frequency, count, ratios, rates, and proportions. Measures of frequency can also show how often a score occurs.
- Measures of dispersion/variation . These descriptive statistics assess the intervals between the data points. The objective is to view the spread or disparity between the specific inputs. Measures of variation include the standard deviation, variance, and range. They indicate how the spread may affect other statistics, such as the mean.
- Measures of position . Sometimes researchers can investigate relationships between scores. Measures of position, such as percentiles, quartiles, and ranks, demonstrate this association. They are often useful when comparing the data to normalized information.

## Inferential Statistics

Inferential statistics is critical in statistical analysis in quantitative research. This approach uses statistical tests to draw conclusions about the population. Examples of inferential statistics include t-tests, F-tests, ANOVA, p-value, Mann-Whitney U test, and Wilcoxon W test. This

## Common Statistical Analysis in Research Types

Although inferential and descriptive statistics can be classified as types of statistical analysis in research, they are mostly considered analytical methods. Types of research are distinguishable by the differences in the methodology employed in analyzing, assembling, classifying, manipulating, and interpreting data. The categories may also depend on the type of data used.

## Predictive Analysis

Predictive research analyzes past and present data to assess trends and predict future events. An excellent example of predictive analysis is a market survey that seeks to understand customers’ spending habits to weigh the possibility of a repeat or future purchase. Such studies assess the likelihood of an action based on trends.

## Prescriptive Analysis

On the other hand, a prescriptive analysis targets likely courses of action. It’s decision-making research designed to identify optimal solutions to a problem. Its primary objective is to test or assess alternative measures.

## Causal Analysis

Causal research investigates the explanation behind the events. It explores the relationship between factors for causation. Thus, researchers use causal analyses to analyze root causes, possible problems, and unknown outcomes.

## Mechanistic Analysis

This type of research investigates the mechanism of action. Instead of focusing only on the causes or possible outcomes, researchers may seek an understanding of the processes involved. In such cases, they use mechanistic analyses to document, observe, or learn the mechanisms involved.

## Exploratory Data Analysis

Similarly, an exploratory study is extensive with a wider scope and minimal limitations. This type of research seeks insight into the topic of interest. An exploratory researcher does not try to generalize or predict relationships. Instead, they look for information about the subject before conducting an in-depth analysis.

## The Importance of Statistical Analysis in Research

As a matter of fact, statistical analysis provides critical information for decision-making. Decision-makers require past trends and predictive assumptions to inform their actions. In most cases, the data is too complex or lacks meaningful inferences. Statistical tools for analyzing such details help save time and money, deriving only valuable information for assessment. An excellent statistical analysis in research example is a randomized control trial (RCT) for the Covid-19 vaccine. You can download a sample of such a document online to understand the significance such analyses have to the stakeholders. A vaccine RCT assesses the effectiveness, side effects, duration of protection, and other benefits. Hence, statistical analysis in research is a helpful tool for understanding data.

## Sources and links For the articles and videos I use different databases, such as Eurostat, OECD World Bank Open Data, Data Gov and others. You are free to use the video I have made on your site using the link or the embed code. If you have any questions, don’t hesitate to write to me!

Support statistics and data, if you have reached the end and like this project, you can donate a coffee to “statistics and data”..

Copyright © 2022 Statistics and Data

Skip to main content

- SAS Viya Platform
- Why SAS Viya?
- Capabilities
- Move to SAS Viya
- Risk Management
- All Products & Solutions
- Public Sector
- Life Sciences
- Retail & Consumer Goods
- All Industries
- Contracting with SAS
- Customer Stories

Why Learn SAS?

Demand for SAS skills is growing. Advance your career and train your team in sought after skills

- Train My Team
- Course Catalog
- Free Training
- My Training
- Academic Programs
- Free Academic Software
- Certification
- Choose a Credential
- Why get certified?
- Exam Preparation
- My Certification
- Communities
- Ask the Expert
- All Webinars
- Video Tutorials
- YouTube Channel
- SAS Programming
- Statistical Procedures
- New SAS Users
- Administrators
- All Communities
- Documentation
- Installation & Configuration
- SAS Viya Administration
- SAS Viya Programming
- System Requirements
- All Documentation
- Support & Services
- Knowledge Base
- Starter Kit
- Support by Product
- Support Services
- All Support & Services
- User Groups
- Partner Program
- Find a Partner
- Sign Into PartnerNet

Learn why SAS is the world's most trusted analytics platform, and why analysts, customers and industry experts love SAS.

Learn more about SAS

- Annual Report
- Vision & Mission
- Office Locations
- Internships
- Search Jobs
- News & Events
- Newsletters
- Trust Center
- support.sas.com
- documentation.sas.com
- blogs.sas.com
- communities.sas.com
- developer.sas.com

Select Your Region

Middle East & Africa

Asia Pacific

- Canada (English)
- Canada (Français)
- United States
- Bosnia & Herz.
- Česká Republika
- Deutschland
- Magyarország
- North Macedonia
- Schweiz (Deutsch)
- Suisse (Français)
- United Kingdom
- Middle East
- Saudi Arabia
- South Africa
- Indonesia (Bahasa)
- Indonesia (English)
- New Zealand
- Philippines
- Thailand (English)
- ประเทศไทย (ภาษาไทย)
- Worldwide Sites

Create Profile

Get access to My SAS, trials, communities and more.

Edit Profile

## Statistical Analysis

Look around you. statistics are everywhere..

The field of statistics touches our lives in many ways. From the daily routines in our homes to the business of making the greatest cities run, the effects of statistics are everywhere.

## Statistical Analysis Defined

What is statistical analysis? It’s the science of collecting, exploring and presenting large amounts of data to discover underlying patterns and trends. Statistics are applied every day – in research, industry and government – to become more scientific about decisions that need to be made. For example:

- Manufacturers use statistics to weave quality into beautiful fabrics, to bring lift to the airline industry and to help guitarists make beautiful music.
- Researchers keep children healthy by using statistics to analyze data from the production of viral vaccines, which ensures consistency and safety.
- Communication companies use statistics to optimize network resources, improve service and reduce customer churn by gaining greater insight into subscriber requirements.
- Government agencies around the world rely on statistics for a clear understanding of their countries, their businesses and their people.

Look around you. From the tube of toothpaste in your bathroom to the planes flying overhead, you see hundreds of products and processes every day that have been improved through the use of statistics.

## Analytics Insights

Connect with the latest insights on analytics through related articles and research., more on statistical analysis.

- What are the next big trends in statistics?
- Why should students study statistics?
- Celebrating statisticians: W. Edwards Deming
- Statistics: The language of science

Statistics is so unique because it can go from health outcomes research to marketing analysis to the longevity of a light bulb. It’s a fun field because you really can do so many different things with it.

Besa Smith President and Senior Scientist Analydata

## Statistical Computing

Traditional methods for statistical analysis – from sampling data to interpreting results – have been used by scientists for thousands of years. But today’s data volumes make statistics ever more valuable and powerful. Affordable storage, powerful computers and advanced algorithms have all led to an increased use of computational statistics.

Whether you are working with large data volumes or running multiple permutations of your calculations, statistical computing has become essential for today’s statistician. Popular statistical computing practices include:

- Statistical programming – From traditional analysis of variance and linear regression to exact methods and statistical visualization techniques, statistical programming is essential for making data-based decisions in every field.
- Econometrics – Modeling, forecasting and simulating business processes for improved strategic and tactical planning. This method applies statistics to economics to forecast future trends.
- Operations research – Identify the actions that will produce the best results – based on many possible options and outcomes. Scheduling, simulation, and related modeling processes are used to optimize business processes and management challenges.
- Matrix programming – Powerful computer techniques for implementing your own statistical methods and exploratory data analysis using row operation algorithms.
- Statistical quality improvement – A mathematical approach to reviewing the quality and safety characteristics for all aspects of production.

## Careers in Statistical Analysis

With everyone from The New York Times to Google’s Chief Economist Hal Varien proclaiming statistics to be the latest hot career field, who are we to argue? But why is there so much talk about careers in statistical analysis and data science? It could be the shortage of trained analytical thinkers. Or it could be the demand for managing the latest big data strains. Or, maybe it’s the excitement of applying mathematical concepts to make a difference in the world.

If you talk to statisticians about what first interested them in statistical analysis, you’ll hear a lot of stories about collecting baseball cards as a child. Or applying statistics to win more games of Axis and Allies. It is often these early passions that lead statisticians into the field. As adults, those passions can carry over into the workforce as a love of analysis and reasoning, where their passions are applied to everything from the influence of friends on purchase decisions to the study of endangered species around the world.

Learn more about current and historical statisticians:

- Ask a statistician videos cover current uses and future trends in statistics.
- SAS loves stats profiles statisticians working at SAS.
- Celebrating statisticians commemorates statistics practitioners from history.

Statistics Procedures Community

Join our statistics procedures community, where you can ask questions and share your experiences with SAS statistical products. SAS Statistical Procedures

## Statistical Analysis Resources

- Statistics training
- Statistical analytics tutorials
- Statistics and operations research news
- SAS ® statistics products

## Want more insights?

## Risk & Fraud

Discover new insights on risk and fraud through research, related articles and much more..

## Get more insights on big data including articles, research and other hot topics.

## Explore insights from marketing movers and shakers on a variety of timely topics.

Learn more about sas products and solutions.

## Department of Statistics - Donald Bren School of Information & Computer Sciences

What is statistics.

Statistics is the science concerned with developing and studying methods for collecting, analyzing, interpreting and presenting empirical data. Statistics is a highly interdisciplinary field; research in statistics finds applicability in virtually all scientific fields and research questions in the various scientific fields motivate the development of new statistical methods and theory. In developing methods and studying the theory that underlies the methods statisticians draw on a variety of mathematical and computational tools.

Two fundamental ideas in the field of statistics are uncertainty and variation. There are many situations that we encounter in science (or more generally in life) in which the outcome is uncertain. In some cases the uncertainty is because the outcome in question is not determined yet (e.g., we may not know whether it will rain tomorrow) while in other cases the uncertainty is because although the outcome has been determined already we are not aware of it (e.g., we may not know whether we passed a particular exam).

Probability is a mathematical language used to discuss uncertain events and probability plays a key role in statistics. Any measurement or data collection effort is subject to a number of sources of variation. By this we mean that if the same measurement were repeated, then the answer would likely change. Statisticians attempt to understand and control (where possible) the sources of variation in any situation.

We encourage you to continue exploring our website to learn more about statistics, our academic programs, our students and faculty, as well as the cutting-edge research we are doing in the field.

Statistics Made Easy

## The Importance of Statistics in Research (With Examples)

The field of statistics is concerned with collecting, analyzing, interpreting, and presenting data.

In the field of research, statistics is important for the following reasons:

Reason 1 : Statistics allows researchers to design studies such that the findings from the studies can be extrapolated to a larger population.

Reason 2 : Statistics allows researchers to perform hypothesis tests to determine if some claim about a new drug, new procedure, new manufacturing method, etc. is true.

Reason 3 : Statistics allows researchers to create confidence intervals to capture uncertainty around population estimates.

In the rest of this article, we elaborate on each of these reasons.

## Reason 1: Statistics Allows Researchers to Design Studies

Researchers are often interested in answering questions about populations like:

- What is the average weight of a certain species of bird?
- What is the average height of a certain species of plant?
- What percentage of citizens in a certain city support a certain law?

One way to answer these questions is to go around and collect data on every single individual in the population of interest.

However, this is typically too costly and time-consuming which is why researchers instead take a sample of the population and use the data from the sample to draw conclusions about the population as a whole.

There are many different methods researchers can potentially use to obtain individuals to be in a sample. These are known as sampling methods .

There are two classes of sampling methods:

- Probability sampling methods : Every member in a population has an equal probability of being selected to be in the sample.
- Non-probability sampling methods : Not every member in a population has an equal probability of being selected to be in the sample.

By using probability sampling methods, researchers can maximize the chances that they obtain a sample that is representative of the overall population.

This allows researchers to extrapolate the findings from the sample to the overall population.

Read more about the two classes of sampling methods here .

## Reason 2: Statistics Allows Researchers to Perform Hypothesis Tests

Another way that statistics is used in research is in the form of hypothesis tests .

These are tests that researchers can use to determine if there is a statistical significance between different medical procedures or treatments.

For example, suppose a scientist believes that a new drug is able to reduce blood pressure in obese patients. To test this, he measures the blood pressure of 30 patients before and after using the new drug for one month.

He then performs a paired samples t- test using the following hypotheses:

- H 0 : μ after = μ before (the mean blood pressure is the same before and after using the drug)
- H A : μ after < μ before (the mean blood pressure is less after using the drug)

If the p-value of the test is less than some significance level (e.g. α = .05), then he can reject the null hypothesis and conclude that the new drug leads to reduced blood pressure.

Note : This is just one example of a hypothesis test that is used in research. Other common tests include a one sample t-test , two sample t-test , one-way ANOVA , and two-way ANOVA .

## Reason 3: Statistics Allows Researchers to Create Confidence Intervals

Another way that statistics is used in research is in the form of confidence intervals .

A confidence interval is a range of values that is likely to contain a population parameter with a certain level of confidence.

For example, suppose researchers are interested in estimating the mean weight of a certain species of turtle.

Instead of going around and weighing every single turtle in the population, researchers may instead take a simple random sample of turtles with the following information:

- Sample size n = 25
- Sample mean weight x = 300
- Sample standard deviation s = 18.5

Using the confidence interval for a mean formula , researchers may then construct the following 95% confidence interval:

95% Confidence Interval: 300 +/- 1.96*(18.5/√ 25 ) = [292.75, 307.25]

The researchers would then claim that they’re 95% confident that the true mean weight for this population of turtles is between 292.75 pounds and 307.25 pounds.

## Additional Resources

The following articles explain the importance of statistics in other fields:

The Importance of Statistics in Healthcare The Importance of Statistics in Nursing The Importance of Statistics in Business The Importance of Statistics in Economics The Importance of Statistics in Education

Hey there. My name is Zach Bobbitt. I have a Master of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike. My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

## Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

## Effective Use of Statistics in Research – Methods and Tools for Data Analysis

Remember that impending feeling you get when you are asked to analyze your data! Now that you have all the required raw data, you need to statistically prove your hypothesis. Representing your numerical data as part of statistics in research will also help in breaking the stereotype of being a biology student who can’t do math.

Statistical methods are essential for scientific research. In fact, statistical methods dominate the scientific research as they include planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of research findings. Furthermore, the results acquired from research project are meaningless raw data unless analyzed with statistical tools. Therefore, determining statistics in research is of utmost necessity to justify research findings. In this article, we will discuss how using statistical methods for biology could help draw meaningful conclusion to analyze biological studies.

Table of Contents

## Role of Statistics in Biological Research

Statistics is a branch of science that deals with collection, organization and analysis of data from the sample to the whole population. Moreover, it aids in designing a study more meticulously and also give a logical reasoning in concluding the hypothesis. Furthermore, biology study focuses on study of living organisms and their complex living pathways, which are very dynamic and cannot be explained with logical reasoning. However, statistics is more complex a field of study that defines and explains study patterns based on the sample sizes used. To be precise, statistics provides a trend in the conducted study.

Biological researchers often disregard the use of statistics in their research planning, and mainly use statistical tools at the end of their experiment. Therefore, giving rise to a complicated set of results which are not easily analyzed from statistical tools in research. Statistics in research can help a researcher approach the study in a stepwise manner, wherein the statistical analysis in research follows –

## 1. Establishing a Sample Size

Usually, a biological experiment starts with choosing samples and selecting the right number of repetitive experiments. Statistics in research deals with basics in statistics that provides statistical randomness and law of using large samples. Statistics teaches how choosing a sample size from a random large pool of sample helps extrapolate statistical findings and reduce experimental bias and errors.

## 2. Testing of Hypothesis

When conducting a statistical study with large sample pool, biological researchers must make sure that a conclusion is statistically significant. To achieve this, a researcher must create a hypothesis before examining the distribution of data. Furthermore, statistics in research helps interpret the data clustered near the mean of distributed data or spread across the distribution. These trends help analyze the sample and signify the hypothesis.

## 3. Data Interpretation Through Analysis

When dealing with large data, statistics in research assist in data analysis. This helps researchers to draw an effective conclusion from their experiment and observations. Concluding the study manually or from visual observation may give erroneous results; therefore, thorough statistical analysis will take into consideration all the other statistical measures and variance in the sample to provide a detailed interpretation of the data. Therefore, researchers produce a detailed and important data to support the conclusion.

## Types of Statistical Research Methods That Aid in Data Analysis

Statistical analysis is the process of analyzing samples of data into patterns or trends that help researchers anticipate situations and make appropriate research conclusions. Based on the type of data, statistical analyses are of the following type:

## 1. Descriptive Analysis

The descriptive statistical analysis allows organizing and summarizing the large data into graphs and tables . Descriptive analysis involves various processes such as tabulation, measure of central tendency, measure of dispersion or variance, skewness measurements etc.

## 2. Inferential Analysis

The inferential statistical analysis allows to extrapolate the data acquired from a small sample size to the complete population. This analysis helps draw conclusions and make decisions about the whole population on the basis of sample data. It is a highly recommended statistical method for research projects that work with smaller sample size and meaning to extrapolate conclusion for large population.

## 3. Predictive Analysis

Predictive analysis is used to make a prediction of future events. This analysis is approached by marketing companies, insurance organizations, online service providers, data-driven marketing, and financial corporations.

## 4. Prescriptive Analysis

Prescriptive analysis examines data to find out what can be done next. It is widely used in business analysis for finding out the best possible outcome for a situation. It is nearly related to descriptive and predictive analysis. However, prescriptive analysis deals with giving appropriate suggestions among the available preferences.

## 5. Exploratory Data Analysis

EDA is generally the first step of the data analysis process that is conducted before performing any other statistical analysis technique. It completely focuses on analyzing patterns in the data to recognize potential relationships. EDA is used to discover unknown associations within data, inspect missing data from collected data and obtain maximum insights.

## 6. Causal Analysis

Causal analysis assists in understanding and determining the reasons behind “why” things happen in a certain way, as they appear. This analysis helps identify root cause of failures or simply find the basic reason why something could happen. For example, causal analysis is used to understand what will happen to the provided variable if another variable changes.

## 7. Mechanistic Analysis

This is a least common type of statistical analysis. The mechanistic analysis is used in the process of big data analytics and biological science. It uses the concept of understanding individual changes in variables that cause changes in other variables correspondingly while excluding external influences.

## Important Statistical Tools In Research

Researchers in the biological field find statistical analysis in research as the scariest aspect of completing research. However, statistical tools in research can help researchers understand what to do with data and how to interpret the results, making this process as easy as possible.

## 1. Statistical Package for Social Science (SPSS)

It is a widely used software package for human behavior research. SPSS can compile descriptive statistics, as well as graphical depictions of result. Moreover, it includes the option to create scripts that automate analysis or carry out more advanced statistical processing.

## 2. R Foundation for Statistical Computing

This software package is used among human behavior research and other fields. R is a powerful tool and has a steep learning curve. However, it requires a certain level of coding. Furthermore, it comes with an active community that is engaged in building and enhancing the software and the associated plugins.

## 3. MATLAB (The Mathworks)

It is an analytical platform and a programming language. Researchers and engineers use this software and create their own code and help answer their research question. While MatLab can be a difficult tool to use for novices, it offers flexibility in terms of what the researcher needs.

## 4. Microsoft Excel

Not the best solution for statistical analysis in research, but MS Excel offers wide variety of tools for data visualization and simple statistics. It is easy to generate summary and customizable graphs and figures. MS Excel is the most accessible option for those wanting to start with statistics.

## 5. Statistical Analysis Software (SAS)

It is a statistical platform used in business, healthcare, and human behavior research alike. It can carry out advanced analyzes and produce publication-worthy figures, tables and charts .

## 6. GraphPad Prism

It is a premium software that is primarily used among biology researchers. But, it offers a range of variety to be used in various other fields. Similar to SPSS, GraphPad gives scripting option to automate analyses to carry out complex statistical calculations.

This software offers basic as well as advanced statistical tools for data analysis. However, similar to GraphPad and SPSS, minitab needs command over coding and can offer automated analyses.

## Use of Statistical Tools In Research and Data Analysis

Statistical tools manage the large data. Many biological studies use large data to analyze the trends and patterns in studies. Therefore, using statistical tools becomes essential, as they manage the large data sets, making data processing more convenient.

Following these steps will help biological researchers to showcase the statistics in research in detail, and develop accurate hypothesis and use correct tools for it.

There are a range of statistical tools in research which can help researchers manage their research data and improve the outcome of their research by better interpretation of data. You could use statistics in research by understanding the research question, knowledge of statistics and your personal experience in coding.

Have you faced challenges while using statistics in research? How did you manage it? Did you use any of the statistical tools to help you with your research data? Do write to us or comment below!

## Frequently Asked Questions

Statistics in research can help a researcher approach the study in a stepwise manner: 1. Establishing a sample size 2. Testing of hypothesis 3. Data interpretation through analysis

Statistical methods are essential for scientific research. In fact, statistical methods dominate the scientific research as they include planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of research findings. Furthermore, the results acquired from research project are meaningless raw data unless analyzed with statistical tools. Therefore, determining statistics in research is of utmost necessity to justify research findings.

Statistical tools in research can help researchers understand what to do with data and how to interpret the results, making this process as easy as possible. They can manage large data sets, making data processing more convenient. A great number of tools are available to carry out statistical analysis of data like SPSS, SAS (Statistical Analysis Software), and Minitab.

nice article to read

Holistic but delineating. A very good read.

Rate this article Cancel Reply

Your email address will not be published.

## Enago Academy's Most Popular Articles

- Reporting Research

Research Interviews: An effective and insightful way of data collection

Research interviews play a pivotal role in collecting data for various academic, scientific, and professional…

Planning Your Data Collection: Designing methods for effective research

Planning your research is very important to obtain desirable results. In research, the relevance of…

- Language & Grammar

Best Plagiarism Checker Tool for Researchers — Top 4 to choose from!

While common writing issues like language enhancement, punctuation errors, grammatical errors, etc. can be dealt…

- Industry News
- Publishing News

## 2022 in a Nutshell — Reminiscing the year when opportunities were seized and feats were achieved!

It’s beginning to look a lot like success! Some of the greatest opportunities to research…

- Manuscript Preparation
- Publishing Research

## Qualitative Vs. Quantitative Research — A step-wise guide to conduct research

A research study includes the collection and analysis of data. In quantitative research, the data…

2022 in a Nutshell — Reminiscing the year when opportunities were seized and feats…

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

- 2000+ blog articles
- 50+ Webinars
- 10+ Expert podcasts
- 50+ Infographics
- 10+ Checklists
- Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

What should universities' stance be on AI tools in research and academic writing?

- Search Search Please fill out this field.

## What Is Statistics?

Understanding statistics.

- Descriptive & Inferential Statistics

## Mean, Median, and Mode

Understanding statistical data.

- Levels of Measurement
- Sampling Techniques

## Uses of Statistics

The bottom line.

- Corporate Finance
- Financial Analysis

## Statistics: Definition, Types, and Importance

Katrina Ávila Munichiello is an experienced editor, writer, fact-checker, and proofreader with more than fourteen years of experience working with print and online publications.

Statistics is a branch of applied mathematics that involves the collection, description, analysis, and inference of conclusions from quantitative data. The mathematical theories behind statistics rely heavily on differential and integral calculus, linear algebra, and probability theory.

People who do statistics are referred to as statisticians. They’re particularly concerned with determining how to draw reliable conclusions about large groups and general events from the behavior and other observable characteristics of small samples. These small samples represent a portion of the large group or a limited number of instances of a general phenomenon.

## Key Takeaways

- Statistics is the study and manipulation of data, including ways to gather, review, analyze, and draw conclusions from data.
- The two major areas of statistics are descriptive and inferential statistics.
- Statistics can be communicated at different levels ranging from non-numerical descriptor (nominal-level) to numerical in reference to a zero-point (ratio-level).
- Several sampling techniques can be used to compile statistical data, including simple random, systematic, stratified, or cluster sampling.
- Statistics are present in almost every department of every company and are an integral part of investing.

Dennis Madamba / Investopedia

Statistics are used in virtually all scientific disciplines, such as the physical and social sciences as well as in business, the humanities, government, and manufacturing. Statistics is fundamentally a branch of applied mathematics that developed from the application of mathematical tools, including calculus and linear algebra, to probability theory.

In practice, statistics is the idea that we can learn about the properties of large sets of objects or events (a population ) by studying the characteristics of a smaller number of similar objects or events (a sample ). Gathering comprehensive data about an entire population is too costly, difficult, or impossible in many cases, so statistics start with a sample that can be conveniently or affordably observed.

Statisticians measure and gather data about the individuals or elements of a sample, then they analyze this data to generate descriptive statistics. They can then use these observed characteristics of the sample data, which are properly called “statistics,” to make inferences or educated guesses about the unmeasured characteristics of the broader population, known as the parameters.

Statistics informally dates back centuries. An early record of correspondence between French mathematicians Pierre de Fermat and Blaise Pascal in 1654 is often cited as an early example of statistical probability analysis.

## Descriptive and Inferential Statistics

The two major areas of statistics are known as descriptive statistics , which describes the properties of sample and population data, and inferential statistics, which uses those properties to test hypotheses and draw conclusions. Descriptive statistics include mean (average), variance, skewness , and kurtosis . Inferential statistics include linear regression analysis, analysis of variance (ANOVA), logit/Probit models, and null hypothesis testing.

## Descriptive Statistics

Descriptive statistics mostly focus on the central tendency, variability, and distribution of sample data. Central tendency means the estimate of the characteristics, a typical element of a sample or population. It includes descriptive statistics such as mean , median , and mode .

Variability refers to a set of statistics that show how much difference there is among the elements of a sample or population along the characteristics measured. It includes metrics such as range, variance , and standard deviation .

The distribution refers to the overall “shape” of the data, which can be depicted on a chart such as a histogram or a dot plot, and includes properties such as the probability distribution function, skewness, and kurtosis. Descriptive statistics can also describe differences between observed characteristics of the elements of a data set. They can help us understand the collective properties of the elements of a data sample and form the basis for testing hypotheses and making predictions using inferential statistics.

## Inferential Statistics

Inferential statistics is a tool that statisticians use to draw conclusions about the characteristics of a population, drawn from the characteristics of a sample, and to determine how certain they can be of the reliability of those conclusions. Based on the sample size and distribution, statisticians can calculate the probability that statistics, which measure the central tendency, variability, distribution, and relationships between characteristics within a data sample, provide an accurate picture of the corresponding parameters of the whole population from which the sample is drawn.

Inferential statistics are used to make generalizations about large groups, such as estimating average demand for a product by surveying a sample of consumers’ buying habits or attempting to predict future events. This might mean projecting the future return of a security or asset class based on returns in a sample period.

Regression analysis is a widely used technique of statistical inference used to determine the strength and nature of the relationship (the correlation) between a dependent variable and one or more explanatory (independent) variables. The output of a regression model is often analyzed for statistical significance, which refers to the claim that a result from findings generated by testing or experimentation is not likely to have occurred randomly or by chance. It’s likely to be attributable to a specific cause elucidated by the data.

Having statistical significance is important for academic disciplines or practitioners that rely heavily on analyzing data and research.

The terms “mean,” “median,” and “mode” fall under the umbrella of central tendency. They describe an element that’s typical in a given sample group. You can find the mean descriptor by adding the numbers in the group and dividing the result by the number of data set observations.

The middle number in the set is the median. Half of all included numbers are higher than the median, and half are lesser. The median home value in a neighborhood would be $350,000 if five homes were located there and valued at $500,000, $400,000, $350,000, $325,000, and $300,000. Two values are higher, and two are lower.

Mode identifies the number that falls between the highest and lowest values. It appears most frequently in the data set.

The root of statistics is driven by variables. A variable is a data set that can be counted that marks a characteristic or attribute of an item. For example, a car can have variables such as make, model, year, mileage, color, or condition. By combining the variables across a set of data, such as the colors of all cars in a given parking lot, statistics allows us to better understand trends and outcomes.

There are two main types of variables:

First, qualitative variables are specific attributes that are often non-numeric. Many of the examples given in the car example are qualitative. Other examples of qualitative variables in statistics are gender, eye color, or city of birth. Qualitative data is most often used to determine what percentage of an outcome occurs for any given qualitative variable. Qualitative analysis often does not rely on numbers. For example, trying to determine what percentage of women own a business analyzes qualitative data.

The second type of variable in statistics is quantitative variables. Quantitative variables are studied numerically and only have weight when they’re about a non-numerical descriptor. Similar to quantitative analysis, this information is rooted in numbers. In the car example above, the mileage driven is a quantitative variable, but the number 60,000 holds no value unless it is understood that is the total number of miles driven.

Quantitative variables can be further broken into two categories. First, discrete variables have limitations in statistics and infer that there are gaps between potential discrete variable values. The number of points scored in a football game is a discrete variable because:

- There can be no decimals.
- It is impossible for a team to score only one point.

Statistics also makes use of continuous quantitative variables. These values run along a scale. Discrete values have limitations, but continuous variables are often measured into decimals. Any value within possible limits can be obtained when measuring the height of the football players, and the heights can be measured down to 1/16th of an inch, if not further.

Statisticians can hold various titles and positions within a company. The average total compensation for a statistician with one to three years of experience was $81,885 as of December 2023. This increased to $109,288 with 15 years of experience.

## Statistical Levels of Measurement

There are several resulting levels of measurement after analyzing variables and outcomes. Statistics can quantify outcomes in four ways.

## Nominal-level Measurement

There’s no numerical or quantitative value, and qualities are not ranked. Nominal-level measurements are instead simply labels or categories assigned to other variables. It’s easiest to think of nominal-level measurements as non-numerical facts about a variable.

Example : The name of the president elected in 2020 was Joseph Robinette Biden Jr.

## Ordinal-level Measurement

Outcomes can be arranged in an order, but all data values have the same value or weight. Although they’re numerical, ordinal-level measurements can’t be subtracted against each other in statistics because only the position of the data point matters. Ordinal levels are often incorporated into nonparametric statistics and compared against the total variable group.

Example : American Fred Kerley was the second-fastest man at the 2020 Tokyo Olympics based on 100-meter sprint times.

## Interval-level Measurement

Outcomes can be arranged in order, but differences between data values may now have meaning. Two data points are often used to compare the passing of time or changing conditions within a data set. There is often no “starting point” for the range of data values, and calendar dates or temperatures may not have a meaningful intrinsic zero value.

Example : Inflation hit 8.6% in May 2022. The last time inflation was this high was in December 1981 .

## Ratio-level Measurement

Outcomes can be arranged in order, and differences between data values now have meaning. But there’s a starting point or “zero value” that can be used to further provide value to a statistical value. The ratio between data values has meaning, including its distance away from zero.

Example : The lowest meteorological temperature recorded was -128.6 degrees Fahrenheit in Antarctica.

## Statistics Sampling Techniques

It would often not be possible to gather data from every data point within a population to gather statistical information. Statistics relies instead on different sampling techniques to create a representative subset of the population that’s easier to analyze. In statistics, there are several primary types of sampling.

## Simple Random Sampling

Simple random sampling calls for every member within the population to have an equal chance of being selected for analysis. The entire population is used as the basis for sampling, and any random generator based on chance can select the sample items. For example, 100 individuals are lined up and 10 are chosen at random.

## Systemic Sampling

Systematic sampling calls for a random sample as well, but its technique is slightly modified to make it easier to conduct. A single random number is generated, and individuals are then selected at a specified regular interval until the sample size is complete. For example, 100 individuals are lined up and numbered. The seventh individual is selected for the sample, followed by every subsequent ninth individual, until 10 sample items have been selected.

## Stratified Sampling

Stratified sampling calls for more control over your sample. The population is divided into subgroups based on similar characteristics. Then you calculate how many people from each subgroup would represent the entire population. For example, 100 individuals are grouped by gender and race. Then a sample from each subgroup is taken in proportion to how representative that subgroup is of the population.

## Cluster Sampling

Cluster sampling calls for subgroups as well, but each subgroup should be representative of the population. The entire subgroup is randomly selected instead of randomly selecting individuals within a subgroup.

Not sure which Major League Baseball player should have won Most Valuable Player last year? Statistics, often used to determine value, is often cited when the award for best player is awarded. Statistics can include batting average, number of home runs hit, and stolen bases.

Statistics is prominent in finance, investing, business, and in the world. Much of the information you see and the data you’re given is derived from statistics, which are used in all facets of a business.

- Statistics in investing include average trading volume, 52-week low, 52-week high, beta, and correlation between asset classes or securities.
- Statistics in economics include gross domestic product (GDP), unemployment, consumer pricing, inflation, and other economic growth metrics.
- Statistics in marketing include conversion rates, click-through rates, search quantities, and social media metrics.
- Statistics in accounting include liquidity, solvency, and profitability metrics across time.
- Statistics in information technology include bandwidth, network capabilities, and hardware logistics.
- Statistics in human resources include employee turnover, employee satisfaction, and average compensation relative to the market.

## Why Is Statistics Important?

Statistics provide the information to educate how things work. They’re used to conduct research, evaluate outcomes, develop critical thinking, and make informed decisions. Statistics can be used to inquire about almost any field of study to investigate why things happen, when they occur, and whether reoccurrence is predictable.

## What’s the Difference Between Descriptive and Inferential Statistics?

Descriptive statistics are used to describe or summarize the characteristics of a sample or data set, such as a variable’s mean, standard deviation, or frequency. Inferential statistics employ any number of techniques to relate variables in a data set to one another. An example would be using correlation or regression analysis. These can then be used to estimate forecasts or infer causality.

## Who Uses Statistics?

Statistics are used widely across an array of applications and professions. Statistics are done whenever data are collected and analyzed. This can range from government agencies to academic research to analyzing investments.

## How Are Statistics Used in Economics and Finance?

Economists collect and look at all sorts of data ranging from consumer spending to housing starts to inflation to GDP growth. In finance, analysts and investors collect data about companies, industries, sentiment, and market data on price and volume. The use of inferential statistics in these fields is known as econometrics. Several important financial models, from the capital asset pricing model (CAPM) to modern portfolio theory (MPT) and the Black-Scholes options pricing model, rely on statistical inference.

Statistics is the practice of analyzing pieces of information that might seem conflicting or unrelated at first glance and on the surface. It can lead to a solid career as a statistician, but it can also be a handy metric in everyday life—perhaps when you’re analyzing the odds that your favorite team will win the Super Bowl before you place a bet, gauging the viability of an investment, or determining whether you’re being comparatively overcharged for a product or service.

Encyclopœdia Britannica. “ Probability and Statistics .”

Coursera. “ How Much Do Statisticians Make? Your 2024 Salary Guide .”

Olympics. “ Tokyo 2020: Athletics Men’s 100m Results .”

U.S. Bureau of Labor Statistics. “ Consumer Price Index .”

Arizona State University, World Meteorological Organization’s World Weather & Climate Extremes Archive. “ World: Lowest Temperature .”

Baseball Reference. “ MLB Most Valuable Player MVP Award Winners .”

- Terms of Service
- Editorial Policy
- Privacy Policy
- Your Privacy Choices

## Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

- Knowledge Base

## The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organisations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organise and summarise the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalise your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

## Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarise your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, frequently asked questions about statistics.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

## Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

- Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
- Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
- Null hypothesis: Parental income and GPA have no relationship with each other in college students.
- Alternative hypothesis: Parental income and GPA are positively correlated in college students.

## Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

- In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
- In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
- In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

- In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
- In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
- In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
- Experimental
- Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

## Measuring variables

When planning a research design, you should operationalise your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

- Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
- Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

## Sampling for statistical analysis

There are two main approaches to selecting a sample.

- Probability sampling: every member of the population has a chance of being selected for the study through random selection.
- Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalisable findings, you should use a probability sampling method. Random selection reduces sampling bias and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to be biased, they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

- your sample is representative of the population you’re generalising your findings to.
- your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalise your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialised, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalised in your discussion section .

## Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

- Will you have resources to advertise your study widely, including outside of your university setting?
- Will you have the means to recruit a diverse sample that represents a broad population?
- Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

## Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

- Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
- Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
- Expected effect size : a standardised indication of how large the expected result of your study will be, usually based on other similar studies.
- Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarise them.

## Inspect your data

There are various ways to inspect your data, including the following:

- Organising data from each variable in frequency distribution tables .
- Displaying data from a key variable in a bar chart to view the distribution of responses.
- Visualising the relationship between two variables using a scatter plot .

By visualising your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

## Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

- Mode : the most popular response or value in the data set.
- Median : the value in the exact middle of the data set when ordered from low to high.
- Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

## Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

- Range : the highest value minus the lowest value of the data set.
- Interquartile range : the range of the middle half of the data set.
- Standard deviation : the average distance between each value in your data set and the mean.
- Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

- Estimation: calculating population parameters based on sample statistics.
- Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

- A point estimate : a value that represents your best guess of the exact parameter.
- An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

## Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

- A test statistic tells you how much your data differs from the null hypothesis of the test.
- A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

- Comparison tests assess group differences in outcomes.
- Regression tests assess cause-and-effect relationships between variables.
- Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

## Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

- A simple linear regression includes one predictor variable and one outcome variable.
- A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

- A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
- A z test is for exactly 1 or 2 groups when the sample is large.
- An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

- If you have only one sample that you want to compare to a population mean, use a one-sample test .
- If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
- If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
- If you expect a difference between groups in a specific direction, use a one-tailed test .
- If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

- a t value (test statistic) of 3.00
- a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

- a t value of 3.08
- a p value of 0.001

The final step of statistical analysis is interpreting your results.

## Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

## Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

## Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimise the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

## Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasises null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

The research methods you use depend on the type of data you need to answer your research question .

- If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
- If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
- If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Statistical analysis is the main method for analyzing quantitative research data . It uses probabilities and models to test predictions about a population from sample data.

## Is this article helpful?

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, between-subjects design | examples, pros & cons, more interesting articles.

- Central Limit Theorem | Formula, Definition & Examples
- Central Tendency | Understanding the Mean, Median & Mode
- Correlation Coefficient | Types, Formulas & Examples
- Descriptive Statistics | Definitions, Types, Examples
- How to Calculate Standard Deviation (Guide) | Calculator & Examples
- How to Calculate Variance | Calculator, Analysis & Examples
- How to Find Degrees of Freedom | Definition & Formula
- How to Find Interquartile Range (IQR) | Calculator & Examples
- How to Find Outliers | Meaning, Formula & Examples
- How to Find the Geometric Mean | Calculator & Formula
- How to Find the Mean | Definition, Examples & Calculator
- How to Find the Median | Definition, Examples & Calculator
- How to Find the Range of a Data Set | Calculator & Formula
- Inferential Statistics | An Easy Introduction & Examples
- Levels of measurement: Nominal, ordinal, interval, ratio
- Missing Data | Types, Explanation, & Imputation
- Normal Distribution | Examples, Formulas, & Uses
- Null and Alternative Hypotheses | Definitions & Examples
- Poisson Distributions | Definition, Formula & Examples
- Skewness | Definition, Examples & Formula
- T-Distribution | What It Is and How To Use It (With Examples)
- The Standard Normal Distribution | Calculator, Examples & Uses
- Type I & Type II Errors | Differences, Examples, Visualizations
- Understanding Confidence Intervals | Easy Examples & Formulas
- Variability | Calculating Range, IQR, Variance, Standard Deviation
- What is Effect Size and Why Does It Matter? (Examples)
- What Is Interval Data? | Examples & Definition
- What Is Nominal Data? | Examples & Definition
- What Is Ordinal Data? | Examples & Definition
- What Is Ratio Data? | Examples & Definition
- What Is the Mode in Statistics? | Definition, Examples & Calculator

## Table of Contents

Types of statistical analysis, importance of statistical analysis, benefits of statistical analysis, statistical analysis process, statistical analysis methods, statistical analysis software, statistical analysis examples, career in statistical analysis, choose the right program, become proficient in statistics today, what is statistical analysis types, methods and examples.

Statistical analysis is the process of collecting and analyzing data in order to discern patterns and trends. It is a method for removing bias from evaluating data by employing numerical analysis. This technique is useful for collecting the interpretations of research, developing statistical models, and planning surveys and studies.

Statistical analysis is a scientific tool in AI and ML that helps collect and analyze large amounts of data to identify common patterns and trends to convert them into meaningful information. In simple words, statistical analysis is a data analysis tool that helps draw meaningful conclusions from raw and unstructured data.

The conclusions are drawn using statistical analysis facilitating decision-making and helping businesses make future predictions on the basis of past trends. It can be defined as a science of collecting and analyzing data to identify trends and patterns and presenting them. Statistical analysis involves working with numbers and is used by businesses and other institutions to make use of data to derive meaningful information.

Given below are the 6 types of statistical analysis:

## Descriptive Analysis

Descriptive statistical analysis involves collecting, interpreting, analyzing, and summarizing data to present them in the form of charts, graphs, and tables. Rather than drawing conclusions, it simply makes the complex data easy to read and understand.

## Inferential Analysis

The inferential statistical analysis focuses on drawing meaningful conclusions on the basis of the data analyzed. It studies the relationship between different variables or makes predictions for the whole population.

## Predictive Analysis

Predictive statistical analysis is a type of statistical analysis that analyzes data to derive past trends and predict future events on the basis of them. It uses machine learning algorithms, data mining , data modelling , and artificial intelligence to conduct the statistical analysis of data.

## Prescriptive Analysis

The prescriptive analysis conducts the analysis of data and prescribes the best course of action based on the results. It is a type of statistical analysis that helps you make an informed decision.

## Exploratory Data Analysis

Exploratory analysis is similar to inferential analysis, but the difference is that it involves exploring the unknown data associations. It analyzes the potential relationships within the data.

## Causal Analysis

The causal statistical analysis focuses on determining the cause and effect relationship between different variables within the raw data. In simple words, it determines why something happens and its effect on other variables. This methodology can be used by businesses to determine the reason for failure.

Statistical analysis eliminates unnecessary information and catalogs important data in an uncomplicated manner, making the monumental work of organizing inputs appear so serene. Once the data has been collected, statistical analysis may be utilized for a variety of purposes. Some of them are listed below:

- The statistical analysis aids in summarizing enormous amounts of data into clearly digestible chunks.
- The statistical analysis aids in the effective design of laboratory, field, and survey investigations.
- Statistical analysis may help with solid and efficient planning in any subject of study.
- Statistical analysis aid in establishing broad generalizations and forecasting how much of something will occur under particular conditions.
- Statistical methods, which are effective tools for interpreting numerical data, are applied in practically every field of study. Statistical approaches have been created and are increasingly applied in physical and biological sciences, such as genetics.
- Statistical approaches are used in the job of a businessman, a manufacturer, and a researcher. Statistics departments can be found in banks, insurance businesses, and government agencies.
- A modern administrator, whether in the public or commercial sector, relies on statistical data to make correct decisions.
- Politicians can utilize statistics to support and validate their claims while also explaining the issues they address.

## Become a Data Science & Business Analytics Professional

- 28% Annual Job Growth By 2026
- 11.5 M Expected New Jobs For Data Science By 2026

## Data Analyst

- Industry-recognized Data Analyst Master’s certificate from Simplilearn
- Dedicated live sessions by faculty of industry experts

## Data Scientist

- Add the IBM Advantage to your Learning
- 25 Industry-relevant Projects and Integrated labs

## Here's what learners are saying regarding our programs:

## Gayathri Ramesh

Associate data engineer , publicis sapient.

The course was well structured and curated. The live classes were extremely helpful. They made learning more productive and interactive. The program helped me change my domain from a data analyst to an Associate Data Engineer.

## A.Anthony Davis

Simplilearn has one of the best programs available online to earn real-world skills that are in demand worldwide. I just completed the Machine Learning Advanced course, and the LMS was excellent.

Statistical analysis can be called a boon to mankind and has many benefits for both individuals and organizations. Given below are some of the reasons why you should consider investing in statistical analysis:

- It can help you determine the monthly, quarterly, yearly figures of sales profits, and costs making it easier to make your decisions.
- It can help you make informed and correct decisions.
- It can help you identify the problem or cause of the failure and make corrections. For example, it can identify the reason for an increase in total costs and help you cut the wasteful expenses.
- It can help you conduct market analysis and make an effective marketing and sales strategy.
- It helps improve the efficiency of different processes.

Given below are the 5 steps to conduct a statistical analysis that you should follow:

- Step 1: Identify and describe the nature of the data that you are supposed to analyze.
- Step 2: The next step is to establish a relation between the data analyzed and the sample population to which the data belongs.
- Step 3: The third step is to create a model that clearly presents and summarizes the relationship between the population and the data.
- Step 4: Prove if the model is valid or not.
- Step 5: Use predictive analysis to predict future trends and events likely to happen.

Although there are various methods used to perform data analysis, given below are the 5 most used and popular methods of statistical analysis:

Mean or average mean is one of the most popular methods of statistical analysis. Mean determines the overall trend of the data and is very simple to calculate. Mean is calculated by summing the numbers in the data set together and then dividing it by the number of data points. Despite the ease of calculation and its benefits, it is not advisable to resort to mean as the only statistical indicator as it can result in inaccurate decision making.

## Standard Deviation

Standard deviation is another very widely used statistical tool or method. It analyzes the deviation of different data points from the mean of the entire data set. It determines how data of the data set is spread around the mean. You can use it to decide whether the research outcomes can be generalized or not.

Regression is a statistical tool that helps determine the cause and effect relationship between the variables. It determines the relationship between a dependent and an independent variable. It is generally used to predict future trends and events.

## Hypothesis Testing

Hypothesis testing can be used to test the validity or trueness of a conclusion or argument against a data set. The hypothesis is an assumption made at the beginning of the research and can hold or be false based on the analysis results.

## Sample Size Determination

Sample size determination or data sampling is a technique used to derive a sample from the entire population, which is representative of the population. This method is used when the size of the population is very large. You can choose from among the various data sampling techniques such as snowball sampling, convenience sampling, and random sampling.

Everyone can't perform very complex statistical calculations with accuracy making statistical analysis a time-consuming and costly process. Statistical software has become a very important tool for companies to perform their data analysis. The software uses Artificial Intelligence and Machine Learning to perform complex calculations, identify trends and patterns, and create charts, graphs, and tables accurately within minutes.

Look at the standard deviation sample calculation given below to understand more about statistical analysis.

The weights of 5 pizza bases in cms are as follows:

Calculation of Mean = (9+2+5+4+12)/5 = 32/5 = 6.4

Calculation of mean of squared mean deviation = (6.76+19.36+1.96+5.76+31.36)/5 = 13.04

Sample Variance = 13.04

Standard deviation = √13.04 = 3.611

A Statistical Analyst's career path is determined by the industry in which they work. Anyone interested in becoming a Data Analyst may usually enter the profession and qualify for entry-level Data Analyst positions right out of high school or a certificate program — potentially with a Bachelor's degree in statistics, computer science, or mathematics. Some people go into data analysis from a similar sector such as business, economics, or even the social sciences, usually by updating their skills mid-career with a statistical analytics course.

Statistical Analyst is also a great way to get started in the normally more complex area of data science. A Data Scientist is generally a more senior role than a Data Analyst since it is more strategic in nature and necessitates a more highly developed set of technical abilities, such as knowledge of multiple statistical tools, programming languages, and predictive analytics models.

Aspiring Data Scientists and Statistical Analysts generally begin their careers by learning a programming language such as R or SQL. Following that, they must learn how to create databases, do basic analysis, and make visuals using applications such as Tableau. However, not every Statistical Analyst will need to know how to do all of these things, but if you want to advance in your profession, you should be able to do them all.

Based on your industry and the sort of work you do, you may opt to study Python or R, become an expert at data cleaning, or focus on developing complicated statistical models.

You could also learn a little bit of everything, which might help you take on a leadership role and advance to the position of Senior Data Analyst. A Senior Statistical Analyst with vast and deep knowledge might take on a leadership role leading a team of other Statistical Analysts. Statistical Analysts with extra skill training may be able to advance to Data Scientists or other more senior data analytics positions.

Supercharge your career in AI and ML with Simplilearn's comprehensive courses. Gain the skills and knowledge to transform industries and unleash your true potential. Enroll now and unlock limitless possibilities!

Program Name AI Engineer Post Graduate Program In Artificial Intelligence Post Graduate Program In Artificial Intelligence Geo All Geos All Geos IN/ROW University Simplilearn Purdue Caltech Course Duration 11 Months 11 Months 11 Months Coding Experience Required Basic Basic No Skills You Will Learn 10+ skills including data structure, data manipulation, NumPy, Scikit-Learn, Tableau and more. 16+ skills including chatbots, NLP, Python, Keras and more. 8+ skills including Supervised & Unsupervised Learning Deep Learning Data Visualization, and more. Additional Benefits Get access to exclusive Hackathons, Masterclasses and Ask-Me-Anything sessions by IBM Applied learning via 3 Capstone and 12 Industry-relevant Projects Purdue Alumni Association Membership Free IIMJobs Pro-Membership of 6 months Resume Building Assistance Upto 14 CEU Credits Caltech CTME Circle Membership Cost $$ $$$$ $$$$ Explore Program Explore Program Explore Program

Hope this article assisted you in understanding the importance of statistical analysis in every sphere of life. Artificial Intelligence (AI) can help you perform statistical analysis and data analysis very effectively and efficiently.

If you are a science wizard and fascinated by the role of AI in statistical analysis, check out this amazing Caltech Post Graduate Program in AI & ML course in collaboration with Caltech. With a comprehensive syllabus and real-life projects, this course is one of the most popular courses and will help you with all that you need to know about Artificial Intelligence.

## Our AI & Machine Learning Courses Duration And Fees

AI & Machine Learning Courses typically range from a few weeks to several months, with fees varying based on program and institution.

## Get Free Certifications with free video courses

## Data Science & Business Analytics

Introduction to Data Analytics Course

Introduction to Data Science

## Learn from Industry Experts with free Masterclasses

Ai & machine learning.

Career Masterclass: How to Build the Best Fantasy League Team Using Gen AI Tools

Gain Gen AI expertise in Purdue's Applied Gen AI Specialization

Unlock Your Career Potential: Land Your Dream Job with Gen AI Tools

## Recommended Reads

Free eBook: Guide To The CCBA And CBAP Certifications

Understanding Statistical Process Control (SPC) and Top Applications

A Complete Guide on the Types of Statistical Studies

Digital Marketing Salary Guide 2021

What Is Data Analysis: A Comprehensive Guide

A Complete Guide to Get a Grasp of Time Series Analysis

## Get Affiliated Certifications with Live Class programs

- PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

- Foundations
- Write Paper

## Search form

- Experiments
- Anthropology
- Self-Esteem
- Social Anxiety
- Statistics >

## Statistical Mean

In Statistics, the statistical mean, or statistical average, gives a very good idea about the central tendency of the data being collected.

## This article is a part of the guide:

- Calculate Standard Deviation
- Standard Error of the Mean
- Assumptions
- Normal Distribution

## Browse Full Outline

- 1 Frequency Distribution
- 2.1 Assumptions
- 3 F-Distribution
- 4.1.1 Arithmetic Mean
- 4.1.2 Geometric Mean
- 4.1.3 Calculate Median
- 4.2 Statistical Mode
- 4.3 Range (Statistics)
- 5.1.1 Calculate Standard Deviation
- 5.2 Standard Error of the Mean

Statistical mean gives important information about the data set at hand, and as a single number, can provide a lot of insights into the experiment and nature of the data .

The concept of statistical mean has a very wide range of applicability in statistics for a number of different types of experimentation.

For example, if a simple pendulum is being used to measure the acceleration due to gravity, it makes sense to take a set of values, and then average the final result. This eliminates the random errors in the experiment and usually gives a more accurate value than a single experiment carried out.

The statistical mean also gives a good idea about interpreting the statistical data.

For example, the mean life expectancy in Japan is higher than that of Brazil, which suggests that on an average, the people in Japan are likely to live longer. There may be many viable conclusions about this, such as that it is due to better healthcare facilities in Japan, but the truth is that we do not know this unless we measure it.

Similarly, the mean height of people in Russia is higher than that of China, which means that on an average, you will find Russians to be taller than Chinese.

Statistical mean is a measure of central tendency and gives us an idea about where the data seems to cluster around.

For example, the mean marks obtained by students in a test is required to correctly gauge the performance of a student in that test. If the student scores a low percentage, but is well ahead of the mean, then it means the test is difficult and therefore his performance is good, something that simply a percentage will not be able to tell.

## Different Statistical Means

There are different kinds of statistical means or measures of central tendency for the data points. Each one has its own utility. The arithmetic mean , geometric mean , median and mode are some of the most commonly used measures of statistical mean. They make sense in different situations, and should be used according to the distribution and nature of the data.

For example, the arithmetic mean is frequently used in scientific experimentation , the geometric mean is used in finance to calculate compounding quantities, the median is used as a robust mean in case of skewed data with many outliers and the mode is frequently used in determining the most frequently occurring data, like during an election.

- Psychology 101
- Flags and Countries
- Capitals and Countries

Siddharth Kalla (Jan 13, 2009). Statistical Mean. Retrieved Apr 23, 2024 from Explorable.com: https://explorable.com/statistical-mean

## You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

## Want to stay up to date? Follow us!

Save this course for later.

Don't have time for it all now? No problem, save it as a course and come back to it later.

## Footer bottom

- Privacy Policy

- Subscribe to our RSS Feed
- Like us on Facebook
- Follow us on Twitter

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

- Publications
- Account settings
- Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

## StatPearls [Internet].

Statistical significance.

Steven Tenny ; Ibrahim Abdelgawad .

## Affiliations

Last Update: November 23, 2023 .

- Introduction

In research, statistical significance measures the probability of the null hypothesis being true compared to the acceptable level of uncertainty regarding the true answer. We can better understand statistical significance if we break apart a study design. [1] [2] [3] [4] [5] [6] [7]

When creating a study, the researcher has to start with a hypothesis; that is, they must have some idea of what they think the outcome may be. For example, a study is researching a new medication to lower blood pressure. The researcher hypothesizes that the new medication lowers systolic blood pressure by at least 10 mm Hg compared to not taking the new medication. The hypothesis can be stated: "Taking the new medication will lower systolic blood pressure by at least 10 mm Hg compared to not taking the medication." In science, researchers can never prove any statement as there are infinite alternatives as to why the outcome may have occurred. They can only try to disprove a specific hypothesis. The researcher must then formulate a question they can disprove while concluding that the new medication lowers systolic blood pressure. The hypothesis to be disproven is the null hypothesis and typically the inverse statement of the hypothesis. Thus, the null hypothesis for our researcher would be, "Taking the new medication will not lower systolic blood pressure by at least 10 mm Hg compared to not taking the new medication." The researcher now has the null hypothesis for the research and must specify the significance level or level of acceptable uncertainty.

Even when disproving a hypothesis, the researcher can not be 100% certain of the outcome. The researcher must then settle for some level of confidence, or the degree of significance, for which they want to be confident their finding is correct. The significance level is given the Greek letter alpha and specified as the probability the researcher is willing to be incorrect. Generally, a researcher wants to be correct about their outcome 95% of the time, so the researcher is willing to be incorrect 5% of the time. Probabilities are decimals, with 1.0 being entirely positive (100%) and 0 being completely negative (0%). Thus, the researcher who wants to be 95% sure about the outcome of their study is willing to be wrong about the result 5% of the time. The alpha is the decimal expression of how much they are ready to be incorrect. For the current example, the alpha is 0.05. The level of uncertainty the researcher is willing to accept (alpha or significance level) is 0.05, or a 5% chance they are incorrect about the study's outcome.

Now, the researcher can perform the research. In this example, a prospective randomized controlled study is conducted in which the researcher gives some individuals the new medication and others a placebo. The researcher then evaluates the blood pressure of both groups after a specified time and performs a statistical analysis of the results to obtain a P value (probability value). Several different tests can be performed depending on the type of variable being studied and the number of subjects. The exact test is outside the scope of this review, but the output would be a P value. Using the correct statistical analysis tool when calculating the P value is imperative. If the researchers use the wrong test, the P value will not be accurate, and this result can mislead the researcher. A P value is a probability under a specified statistical model that a statistical summary of the data (eg, the sample mean difference between 2 compared groups) would be equal to or more extreme than its observed value.

In this example, the researcher hypothetically found blood pressure tended to decrease after taking the new medication, with an average decrease of 15 mm Hg in the group taking the new medication. The researcher then used the help of their statistician to perform the correct analysis and arrived at a P value of 0.02 for a decrease in blood pressure in those taking the new medication versus those not taking the new medication. This researcher now has the 3 required pieces of information to look at statistical significance: the null hypothesis, the significance level, and the P value.

The researcher can finally assess the statistical significance of the new medication. A study result is statistically significant if the P value of the data analysis is less than the prespecified alpha (significance level). In this example, the P value is 0.02, which is less than the prespecified alpha of 0.05, so the researcher rejects the null hypothesis, which has been determined within the predetermined confidence level to be disproven, and accepts the hypothesis, thus concluding there is statistical significance for the finding that the new medication lowers blood pressure.

What does this mean? The P value is not the probability of the null hypothesis itself. It is the probability that, if the study were repeated an infinite number of times, one would expect the findings to be as, or more extreme, than the one calculated in this test. Therefore, the P value of 0.02 would signify that 2% of the infinite tests would find a result at least as extreme as the one in this study. Given that the null hypothesis states that there is no significant change in blood pressure if the patient is or is not taking the new medication, we can assume that this statement is false, as 98% of the infinite studies would find that there was indeed a reduction in blood pressure. However, as the P value implies, there is a chance that this is false, and there truly is no effect of the medication on the blood pressure. However, as the researcher prespecified an acceptable confidence level with an alpha of 0.05, and the P value is 0.02, less than the acceptable alpha of 0.05, the researcher rejects the null hypothesis. By rejecting the null hypothesis, the researcher accepts the alternative hypothesis. The researcher rejects the idea that there is no difference in systolic blood pressure with the new medication and accepts a difference of at least 10 mm Hg in systolic blood pressure when taking the new medication.

If the researcher had prespecified an alpha of 0.01, implying they wanted to be 99% sure the new medication lowered the blood pressure by at least 10 mm Hg, the P value of 0.02 would be more significant than the prespecified alpha of 0.01. The researcher would conclude the study did not reach statistical significance as the P value is equal to or greater than the prespecified alpha. The research would then not be able to reject the null hypothesis.

A study is statistically significant if the P value is less than the pre-specified alpha. Stated succinctly:

- A P value less than a predetermined alpha is considered a statistically significant result
- A P value greater than or equal to alpha is not a statistically significant result.
- Issues of Concern

A few issues of concern when looking at statistical significance are evident. These issues include choosing the alpha, statistical analysis method, and clinical significance.

Many current research articles specify an alpha of 0.05 for their significance level. It cannot be stated strongly enough that there is nothing special, mathematical, or certain about picking an alpha of 0.05. Historically, the originators concluded that for many applications, an alpha of 0.05, or a one in 20 chance of being incorrect, was good enough. The researcher must consider what the confidence level should genuinely be for the research question being asked. A smaller alpha, say 0.01, may be more appropriate.

When creating a study, the alpha, or confidence level, should be specified before any intervention or collection of data. It is easy for a researcher to "see what the data shows" and then pick an alpha to give a statistically significant result. Such approaches compromise the data and results as the researcher is more likely to be lax on confidence level selection to obtain a result that looks statistically significant.

A second important issue is selecting the correct statistical analysis method. There are numerous methods for obtaining a P value. The method chosen depends on the type of data, the number of data points, and the question being asked. It is essential to consider these questions during the study design so the statistical analysis can be correctly identified before the research. The statistical analysis method can help determine how to collect the data correctly and the number of data points needed. If the wrong statistical method is used, the results may be meaningless, as an incorrect P value would be calculated.

- Clinical Significance

A key distinction between statistical significance and clinical significance is evident. Statistical significance determines if there is mathematical significance to the analysis of the results. Clinical significance means the difference is vital to the patient and the clinician. This study's statistical significance would be present as the P value was less than the prespecified alpha. The clinical significance would be the 10 mmHg drop in systolic blood pressure. [6]

Two studies can have a similar statistical significance but vastly differ in clinical significance. In a hypothetical example of 2 new chemotherapy agents for treating cancer, Drug A increased survival by at least 10 years with a P value of 0.01 and an alpha for the study of 0.05. Thus, this study has statistical significance ( P value less than alpha) and clinical significance (increased survival by 10 years). A second chemotherapy agent, Drug B, increases survival by at least 10 minutes with a P value of 0.01 and alpha for the study of 0.05. The study for Drug B also found statistical significance ( P value less than alpha) but no clinical significance (a 10-minute increase in life expectancy is not clinically significant). In a separate study, those taking Drug A lived an average of 8 years after starting the medication versus living for only 2 more years for those not taking Drug A, with a P value of 0.08 and alpha for this second study of Drug A of 0.05. In this second study of Drug A, there is no statistical significance ( P value greater than or equal to alpha).

- Enhancing Healthcare Team Outcomes

Each healthcare team member needs a basic understanding of statistical significance. All members of the care continuum, including nurses, physicians, advanced practitioners, social workers, and pharmacists, peruse copious literature and consider conclusions based on statistical significance. Suppose team members do not have a cohesive and harmonious understanding of the statistical significance and its implications for research studies and findings. In that case, various members may draw opposing conclusions from the same research.

- Review Questions
- Access free multiple choice questions on this topic.
- Comment on this article.

Disclosure: Steven Tenny declares no relevant financial relationships with ineligible companies.

Disclosure: Ibrahim Abdelgawad declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

- Cite this Page Tenny S, Abdelgawad I. Statistical Significance. [Updated 2023 Nov 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

## In this Page

Bulk download.

- Bulk download StatPearls data from FTP

## Related information

- PMC PubMed Central citations
- PubMed Links to PubMed

## Similar articles in PubMed

- Qualitative Study. [StatPearls. 2024] Qualitative Study. Tenny S, Brannan JM, Brannan GD. StatPearls. 2024 Jan
- Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. [Cochrane Database Syst Rev. 2022] Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, et al. Cochrane Database Syst Rev. 2022 Feb 1; 2(2022). Epub 2022 Feb 1.
- Medical Error Reduction and Prevention. [StatPearls. 2024] Medical Error Reduction and Prevention. Rodziewicz TL, Houseman B, Hipskind JE. StatPearls. 2024 Jan
- Review Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: An Updated Systematic Review for the U.S. Preventive Services Task Force [ 2018] Review Behavioral and Pharmacotherapy Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: An Updated Systematic Review for the U.S. Preventive Services Task Force LeBlanc EL, Patnode CD, Webber EM, Redmond N, Rushkin M, O’Connor EA. 2018 Sep
- Review Authors' response: Occupation and SARS-CoV-2 infection risk among workers during the first pandemic wave in Germany: potential for bias. [Scand J Work Environ Health. 2...] Review Authors' response: Occupation and SARS-CoV-2 infection risk among workers during the first pandemic wave in Germany: potential for bias. Reuter M, Rigó M, Formazin M, Liebers F, Latza U, Castell S, Jöckel KH, Greiser KH, Michels KB, Krause G, et al. Scand J Work Environ Health. 2022 Sep 1; 48(7):588-590. Epub 2022 Sep 25.

## Recent Activity

- Statistical Significance - StatPearls Statistical Significance - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

## Regions & Countries

- Publications
- Our Methods
- Short Reads
- Tools & Resources

Read Our Research On:

## Gender pay gap in U.S. hasn’t changed much in two decades

The gender gap in pay has remained relatively stable in the United States over the past 20 years or so. In 2022, women earned an average of 82% of what men earned, according to a new Pew Research Center analysis of median hourly earnings of both full- and part-time workers. These results are similar to where the pay gap stood in 2002, when women earned 80% as much as men.

As has long been the case, the wage gap is smaller for workers ages 25 to 34 than for all workers 16 and older. In 2022, women ages 25 to 34 earned an average of 92 cents for every dollar earned by a man in the same age group – an 8-cent gap. By comparison, the gender pay gap among workers of all ages that year was 18 cents.

While the gender pay gap has not changed much in the last two decades, it has narrowed considerably when looking at the longer term, both among all workers ages 16 and older and among those ages 25 to 34. The estimated 18-cent gender pay gap among all workers in 2022 was down from 35 cents in 1982. And the 8-cent gap among workers ages 25 to 34 in 2022 was down from a 26-cent gap four decades earlier.

The gender pay gap measures the difference in median hourly earnings between men and women who work full or part time in the United States. Pew Research Center’s estimate of the pay gap is based on an analysis of Current Population Survey (CPS) monthly outgoing rotation group files ( IPUMS ) from January 1982 to December 2022, combined to create annual files. To understand how we calculate the gender pay gap, read our 2013 post, “How Pew Research Center measured the gender pay gap.”

The COVID-19 outbreak affected data collection efforts by the U.S. government in its surveys, especially in 2020 and 2021, limiting in-person data collection and affecting response rates. It is possible that some measures of economic outcomes and how they vary across demographic groups are affected by these changes in data collection.

In addition to findings about the gender wage gap, this analysis includes information from a Pew Research Center survey about the perceived reasons for the pay gap, as well as the pressures and career goals of U.S. men and women. The survey was conducted among 5,098 adults and includes a subset of questions asked only for 2,048 adults who are employed part time or full time, from Oct. 10-16, 2022. Everyone who took part is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used in this analysis, along with responses, and its methodology .

The U.S. Census Bureau has also analyzed the gender pay gap, though its analysis looks only at full-time workers (as opposed to full- and part-time workers). In 2021, full-time, year-round working women earned 84% of what their male counterparts earned, on average, according to the Census Bureau’s most recent analysis.

Much of the gender pay gap has been explained by measurable factors such as educational attainment, occupational segregation and work experience. The narrowing of the gap over the long term is attributable in large part to gains women have made in each of these dimensions.

Related: The Enduring Grip of the Gender Pay Gap

Even though women have increased their presence in higher-paying jobs traditionally dominated by men, such as professional and managerial positions, women as a whole continue to be overrepresented in lower-paying occupations relative to their share of the workforce. This may contribute to gender differences in pay.

Other factors that are difficult to measure, including gender discrimination, may also contribute to the ongoing wage discrepancy.

## Perceived reasons for the gender wage gap

When asked about the factors that may play a role in the gender wage gap, half of U.S. adults point to women being treated differently by employers as a major reason, according to a Pew Research Center survey conducted in October 2022. Smaller shares point to women making different choices about how to balance work and family (42%) and working in jobs that pay less (34%).

There are some notable differences between men and women in views of what’s behind the gender wage gap. Women are much more likely than men (61% vs. 37%) to say a major reason for the gap is that employers treat women differently. And while 45% of women say a major factor is that women make different choices about how to balance work and family, men are slightly less likely to hold that view (40% say this).

Parents with children younger than 18 in the household are more likely than those who don’t have young kids at home (48% vs. 40%) to say a major reason for the pay gap is the choices that women make about how to balance family and work. On this question, differences by parental status are evident among both men and women.

Views about reasons for the gender wage gap also differ by party. About two-thirds of Democrats and Democratic-leaning independents (68%) say a major factor behind wage differences is that employers treat women differently, but far fewer Republicans and Republican leaners (30%) say the same. Conversely, Republicans are more likely than Democrats to say women’s choices about how to balance family and work (50% vs. 36%) and their tendency to work in jobs that pay less (39% vs. 30%) are major reasons why women earn less than men.

Democratic and Republican women are more likely than their male counterparts in the same party to say a major reason for the gender wage gap is that employers treat women differently. About three-quarters of Democratic women (76%) say this, compared with 59% of Democratic men. And while 43% of Republican women say unequal treatment by employers is a major reason for the gender wage gap, just 18% of GOP men share that view.

## Pressures facing working women and men

Family caregiving responsibilities bring different pressures for working women and men, and research has shown that being a mother can reduce women’s earnings , while fatherhood can increase men’s earnings .

Employed women and men are about equally likely to say they feel a great deal of pressure to support their family financially and to be successful in their jobs and careers, according to the Center’s October survey. But women, and particularly working mothers, are more likely than men to say they feel a great deal of pressure to focus on responsibilities at home.

About half of employed women (48%) report feeling a great deal of pressure to focus on their responsibilities at home, compared with 35% of employed men. Among working mothers with children younger than 18 in the household, two-thirds (67%) say the same, compared with 45% of working dads.

When it comes to supporting their family financially, similar shares of working moms and dads (57% vs. 62%) report they feel a great deal of pressure, but this is driven mainly by the large share of unmarried working mothers who say they feel a great deal of pressure in this regard (77%). Among those who are married, working dads are far more likely than working moms (60% vs. 43%) to say they feel a great deal of pressure to support their family financially. (There were not enough unmarried working fathers in the sample to analyze separately.)

About four-in-ten working parents say they feel a great deal of pressure to be successful at their job or career. These findings don’t differ by gender.

## Gender differences in job roles, aspirations

Overall, a quarter of employed U.S. adults say they are currently the boss or one of the top managers where they work, according to the Center’s survey. Another 33% say they are not currently the boss but would like to be in the future, while 41% are not and do not aspire to be the boss or one of the top managers.

Men are more likely than women to be a boss or a top manager where they work (28% vs. 21%). This is especially the case among employed fathers, 35% of whom say they are the boss or one of the top managers where they work. (The varying attitudes between fathers and men without children at least partly reflect differences in marital status and educational attainment between the two groups.)

In addition to being less likely than men to say they are currently the boss or a top manager at work, women are also more likely to say they wouldn’t want to be in this type of position in the future. More than four-in-ten employed women (46%) say this, compared with 37% of men. Similar shares of men (35%) and women (31%) say they are not currently the boss but would like to be one day. These patterns are similar among parents.

Note: This is an update of a post originally published on March 22, 2019. Anna Brown and former Pew Research Center writer/editor Amanda Barroso contributed to an earlier version of this analysis. Here are the questions used in this analysis, along with responses, and its methodology .

## What is the gender wage gap in your metropolitan area? Find out with our pay gap calculator

- Gender & Work
- Gender Equality & Discrimination
- Gender Pay Gap
- Gender Roles

Carolina Aragão is a research associate focusing on social and demographic trends at Pew Research Center

## Women have gained ground in the nation’s highest-paying occupations, but still lag behind men

Diversity, equity and inclusion in the workplace, the enduring grip of the gender pay gap, more than twice as many americans support than oppose the #metoo movement, women now outnumber men in the u.s. college-educated labor force, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 | Media Inquiries

## Research Topics

- Age & Generations
- Coronavirus (COVID-19)
- Economy & Work
- Family & Relationships
- Gender & LGBTQ
- Immigration & Migration
- International Affairs
- Internet & Technology
- Methodological Research
- News Habits & Media
- Non-U.S. Governments
- Other Topics
- Politics & Policy
- Race & Ethnicity
- Email Newsletters

ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

## IMAGES

## VIDEO

## COMMENTS

Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations. To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process. You need to specify ...

Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

When existing statistical methods are inadequate for addressing new and challenging data questions, improved or new statistical methods must be found. Statistical research is the rigorous development of improved or new statistical methods grounded in probability and statistical theory. We focus on methods in eight areas of statistical research ...

Statistical analysis is the process of collecting and analyzing large volumes of data in order to identify trends and develop valuable insights. In the professional world, statistical analysts take raw data and find correlations between variables to reveal patterns and trends to relevant stakeholders. Working in a wide range of different fields ...

Statistical analysis is useful for research and decision making because it allows us to understand the world around us and draw conclusions by testing our assumptions. Statistical analysis is important for various applications, including: Statistical quality control and analysis in product development. Clinical trials.

Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if ...

A Simplified Definition. Statistical analysis uses quantitative data to investigate patterns, relationships, and patterns to understand real-life and simulated phenomena. The approach is a key analytical tool in various fields, including academia, business, government, and science in general. This statistical analysis in research definition ...

In a previous article in this series, we looked at different types of data and ways to summarise them. 1 At the end of the research study, statistical analyses are performed to test the hypothesis and either prove or disprove it. The choice of statistical test needs to be carefully performed since the use of incorrect tests could lead to misleading conclusions.

What is statistical analysis? It's the science of collecting, exploring and presenting large amounts of data to discover underlying patterns and trends. Statistics are applied every day - in research, industry and government - to become more scientific about decisions that need to be made. For example: Manufacturers use statistics to ...

What is Statistics? Statistics is the science concerned with developing and studying methods for collecting, analyzing, interpreting and presenting empirical data. Statistics is a highly interdisciplinary field; research in statistics finds applicability in virtually all scientific fields and research questions in the various scientific fields ...

The field of statistics is concerned with collecting, analyzing, interpreting, and presenting data.. In the field of research, statistics is important for the following reasons: Reason 1: Statistics allows researchers to design studies such that the findings from the studies can be extrapolated to a larger population.. Reason 2: Statistics allows researchers to perform hypothesis tests to ...

Furthermore, statistics in research helps interpret the data clustered near the mean of distributed data or spread across the distribution. These trends help analyze the sample and signify the hypothesis. 3. Data Interpretation Through Analysis. When dealing with large data, statistics in research assist in data analysis. This helps researchers ...

Statistics is a form of mathematical analysis that uses quantified models, representations and synopses for a given set of experimental data or real-life studies. Statistics studies methodologies ...

Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organisations. To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process. You need to specify ...

Statistical analysis is the process of collecting and analyzing data in order to discern patterns and trends. It is a method for removing bias from evaluating data by employing numerical analysis. This technique is useful for collecting the interpretations of research, developing statistical models, and planning surveys and studies.

Statistics is a mathematical body of science that pertains to the collection, analysis, interpretation or explanation, and presentation of data, or as a branch of mathematics. Some consider statistics to be a distinct mathematical science rather than a branch of mathematics. While many scientific investigations make use of data, statistics is generally concerned with the use of data in the ...

Statistical Treatment Example - Quantitative Research. For a statistical treatment of data example, consider a medical study that is investigating the effect of a drug on the human population. As the drug can affect different people in different ways based on parameters such as gender, age and race, the researchers would want to group the ...

Statistical Mean. In Statistics, the statistical mean, or statistical average, gives a very good idea about the central tendency of the data being collected. Statistical mean gives important information about the data set at hand, and as a single number, can provide a lot of insights into the experiment and nature of the data.

Statistical significance determines if there is mathematical significance to the analysis of the results. Clinical significance means the difference is vital to the patient and the clinician. This study's statistical significance would be present as the P value was less than the prespecified alpha.

The gender gap in pay has remained relatively stable in the United States over the past 20 years or so. In 2022, women earned an average of 82% of what men earned, according to a new Pew Research Center analysis of median hourly earnings of both full- and part-time workers. These results are similar to where the pay gap stood in 2002, when women earned 80% as much as men.

The original public meaning of the constitutional text is the communicative content (the set of concepts and propositions) that was conveyed to the public at the time each provision was drafted, proposed, and ratified. Both semantics (the meaning of words and phrases) and pragmatics (meaning conveyed by context) play essential roles in the ...