• Privacy Policy

Research Method

Home » 500+ Quantitative Research Titles and Topics

500+ Quantitative Research Titles and Topics

Table of Contents

Quantitative Research Topics

Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology , economics , and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas to explore, from analyzing data on a specific population to studying the effects of a particular intervention or treatment. In this post, we will provide some ideas for quantitative research topics that may inspire you and help you narrow down your interests.

Quantitative Research Titles

Quantitative Research Titles are as follows:

Business and Economics

  • “Statistical Analysis of Supply Chain Disruptions on Retail Sales”
  • “Quantitative Examination of Consumer Loyalty Programs in the Fast Food Industry”
  • “Predicting Stock Market Trends Using Machine Learning Algorithms”
  • “Influence of Workplace Environment on Employee Productivity: A Quantitative Study”
  • “Impact of Economic Policies on Small Businesses: A Regression Analysis”
  • “Customer Satisfaction and Profit Margins: A Quantitative Correlation Study”
  • “Analyzing the Role of Marketing in Brand Recognition: A Statistical Overview”
  • “Quantitative Effects of Corporate Social Responsibility on Consumer Trust”
  • “Price Elasticity of Demand for Luxury Goods: A Case Study”
  • “The Relationship Between Fiscal Policy and Inflation Rates: A Time-Series Analysis”
  • “Factors Influencing E-commerce Conversion Rates: A Quantitative Exploration”
  • “Examining the Correlation Between Interest Rates and Consumer Spending”
  • “Standardized Testing and Academic Performance: A Quantitative Evaluation”
  • “Teaching Strategies and Student Learning Outcomes in Secondary Schools: A Quantitative Study”
  • “The Relationship Between Extracurricular Activities and Academic Success”
  • “Influence of Parental Involvement on Children’s Educational Achievements”
  • “Digital Literacy in Primary Schools: A Quantitative Assessment”
  • “Learning Outcomes in Blended vs. Traditional Classrooms: A Comparative Analysis”
  • “Correlation Between Teacher Experience and Student Success Rates”
  • “Analyzing the Impact of Classroom Technology on Reading Comprehension”
  • “Gender Differences in STEM Fields: A Quantitative Analysis of Enrollment Data”
  • “The Relationship Between Homework Load and Academic Burnout”
  • “Assessment of Special Education Programs in Public Schools”
  • “Role of Peer Tutoring in Improving Academic Performance: A Quantitative Study”

Medicine and Health Sciences

  • “The Impact of Sleep Duration on Cardiovascular Health: A Cross-sectional Study”
  • “Analyzing the Efficacy of Various Antidepressants: A Meta-Analysis”
  • “Patient Satisfaction in Telehealth Services: A Quantitative Assessment”
  • “Dietary Habits and Incidence of Heart Disease: A Quantitative Review”
  • “Correlations Between Stress Levels and Immune System Functioning”
  • “Smoking and Lung Function: A Quantitative Analysis”
  • “Influence of Physical Activity on Mental Health in Older Adults”
  • “Antibiotic Resistance Patterns in Community Hospitals: A Quantitative Study”
  • “The Efficacy of Vaccination Programs in Controlling Disease Spread: A Time-Series Analysis”
  • “Role of Social Determinants in Health Outcomes: A Quantitative Exploration”
  • “Impact of Hospital Design on Patient Recovery Rates”
  • “Quantitative Analysis of Dietary Choices and Obesity Rates in Children”

Social Sciences

  • “Examining Social Inequality through Wage Distribution: A Quantitative Study”
  • “Impact of Parental Divorce on Child Development: A Longitudinal Study”
  • “Social Media and its Effect on Political Polarization: A Quantitative Analysis”
  • “The Relationship Between Religion and Social Attitudes: A Statistical Overview”
  • “Influence of Socioeconomic Status on Educational Achievement”
  • “Quantifying the Effects of Community Programs on Crime Reduction”
  • “Public Opinion and Immigration Policies: A Quantitative Exploration”
  • “Analyzing the Gender Representation in Political Offices: A Quantitative Study”
  • “Impact of Mass Media on Public Opinion: A Regression Analysis”
  • “Influence of Urban Design on Social Interactions in Communities”
  • “The Role of Social Support in Mental Health Outcomes: A Quantitative Analysis”
  • “Examining the Relationship Between Substance Abuse and Employment Status”

Engineering and Technology

  • “Performance Evaluation of Different Machine Learning Algorithms in Autonomous Vehicles”
  • “Material Science: A Quantitative Analysis of Stress-Strain Properties in Various Alloys”
  • “Impacts of Data Center Cooling Solutions on Energy Consumption”
  • “Analyzing the Reliability of Renewable Energy Sources in Grid Management”
  • “Optimization of 5G Network Performance: A Quantitative Assessment”
  • “Quantifying the Effects of Aerodynamics on Fuel Efficiency in Commercial Airplanes”
  • “The Relationship Between Software Complexity and Bug Frequency”
  • “Machine Learning in Predictive Maintenance: A Quantitative Analysis”
  • “Wearable Technologies and their Impact on Healthcare Monitoring”
  • “Quantitative Assessment of Cybersecurity Measures in Financial Institutions”
  • “Analysis of Noise Pollution from Urban Transportation Systems”
  • “The Influence of Architectural Design on Energy Efficiency in Buildings”

Quantitative Research Topics

Quantitative Research Topics are as follows:

  • The effects of social media on self-esteem among teenagers.
  • A comparative study of academic achievement among students of single-sex and co-educational schools.
  • The impact of gender on leadership styles in the workplace.
  • The correlation between parental involvement and academic performance of students.
  • The effect of mindfulness meditation on stress levels in college students.
  • The relationship between employee motivation and job satisfaction.
  • The effectiveness of online learning compared to traditional classroom learning.
  • The correlation between sleep duration and academic performance among college students.
  • The impact of exercise on mental health among adults.
  • The relationship between social support and psychological well-being among cancer patients.
  • The effect of caffeine consumption on sleep quality.
  • A comparative study of the effectiveness of cognitive-behavioral therapy and pharmacotherapy in treating depression.
  • The relationship between physical attractiveness and job opportunities.
  • The correlation between smartphone addiction and academic performance among high school students.
  • The impact of music on memory recall among adults.
  • The effectiveness of parental control software in limiting children’s online activity.
  • The relationship between social media use and body image dissatisfaction among young adults.
  • The correlation between academic achievement and parental involvement among minority students.
  • The impact of early childhood education on academic performance in later years.
  • The effectiveness of employee training and development programs in improving organizational performance.
  • The relationship between socioeconomic status and access to healthcare services.
  • The correlation between social support and academic achievement among college students.
  • The impact of technology on communication skills among children.
  • The effectiveness of mindfulness-based stress reduction programs in reducing symptoms of anxiety and depression.
  • The relationship between employee turnover and organizational culture.
  • The correlation between job satisfaction and employee engagement.
  • The impact of video game violence on aggressive behavior among children.
  • The effectiveness of nutritional education in promoting healthy eating habits among adolescents.
  • The relationship between bullying and academic performance among middle school students.
  • The correlation between teacher expectations and student achievement.
  • The impact of gender stereotypes on career choices among high school students.
  • The effectiveness of anger management programs in reducing violent behavior.
  • The relationship between social support and recovery from substance abuse.
  • The correlation between parent-child communication and adolescent drug use.
  • The impact of technology on family relationships.
  • The effectiveness of smoking cessation programs in promoting long-term abstinence.
  • The relationship between personality traits and academic achievement.
  • The correlation between stress and job performance among healthcare professionals.
  • The impact of online privacy concerns on social media use.
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders.
  • The relationship between teacher feedback and student motivation.
  • The correlation between physical activity and academic performance among elementary school students.
  • The impact of parental divorce on academic achievement among children.
  • The effectiveness of diversity training in improving workplace relationships.
  • The relationship between childhood trauma and adult mental health.
  • The correlation between parental involvement and substance abuse among adolescents.
  • The impact of social media use on romantic relationships among young adults.
  • The effectiveness of assertiveness training in improving communication skills.
  • The relationship between parental expectations and academic achievement among high school students.
  • The correlation between sleep quality and mood among adults.
  • The impact of video game addiction on academic performance among college students.
  • The effectiveness of group therapy in treating eating disorders.
  • The relationship between job stress and job performance among teachers.
  • The correlation between mindfulness and emotional regulation.
  • The impact of social media use on self-esteem among college students.
  • The effectiveness of parent-teacher communication in promoting academic achievement among elementary school students.
  • The impact of renewable energy policies on carbon emissions
  • The relationship between employee motivation and job performance
  • The effectiveness of psychotherapy in treating eating disorders
  • The correlation between physical activity and cognitive function in older adults
  • The effect of childhood poverty on adult health outcomes
  • The impact of urbanization on biodiversity conservation
  • The relationship between work-life balance and employee job satisfaction
  • The effectiveness of eye movement desensitization and reprocessing (EMDR) in treating trauma
  • The correlation between parenting styles and child behavior
  • The effect of social media on political polarization
  • The impact of foreign aid on economic development
  • The relationship between workplace diversity and organizational performance
  • The effectiveness of dialectical behavior therapy in treating borderline personality disorder
  • The correlation between childhood abuse and adult mental health outcomes
  • The effect of sleep deprivation on cognitive function
  • The impact of trade policies on international trade and economic growth
  • The relationship between employee engagement and organizational commitment
  • The effectiveness of cognitive therapy in treating postpartum depression
  • The correlation between family meals and child obesity rates
  • The effect of parental involvement in sports on child athletic performance
  • The impact of social entrepreneurship on sustainable development
  • The relationship between emotional labor and job burnout
  • The effectiveness of art therapy in treating dementia
  • The correlation between social media use and academic procrastination
  • The effect of poverty on childhood educational attainment
  • The impact of urban green spaces on mental health
  • The relationship between job insecurity and employee well-being
  • The effectiveness of virtual reality exposure therapy in treating anxiety disorders
  • The correlation between childhood trauma and substance abuse
  • The effect of screen time on children’s social skills
  • The impact of trade unions on employee job satisfaction
  • The relationship between cultural intelligence and cross-cultural communication
  • The effectiveness of acceptance and commitment therapy in treating chronic pain
  • The correlation between childhood obesity and adult health outcomes
  • The effect of gender diversity on corporate performance
  • The impact of environmental regulations on industry competitiveness.
  • The impact of renewable energy policies on greenhouse gas emissions
  • The relationship between workplace diversity and team performance
  • The effectiveness of group therapy in treating substance abuse
  • The correlation between parental involvement and social skills in early childhood
  • The effect of technology use on sleep patterns
  • The impact of government regulations on small business growth
  • The relationship between job satisfaction and employee turnover
  • The effectiveness of virtual reality therapy in treating anxiety disorders
  • The correlation between parental involvement and academic motivation in adolescents
  • The effect of social media on political engagement
  • The impact of urbanization on mental health
  • The relationship between corporate social responsibility and consumer trust
  • The correlation between early childhood education and social-emotional development
  • The effect of screen time on cognitive development in young children
  • The impact of trade policies on global economic growth
  • The relationship between workplace diversity and innovation
  • The effectiveness of family therapy in treating eating disorders
  • The correlation between parental involvement and college persistence
  • The effect of social media on body image and self-esteem
  • The impact of environmental regulations on business competitiveness
  • The relationship between job autonomy and job satisfaction
  • The effectiveness of virtual reality therapy in treating phobias
  • The correlation between parental involvement and academic achievement in college
  • The effect of social media on sleep quality
  • The impact of immigration policies on social integration
  • The relationship between workplace diversity and employee well-being
  • The effectiveness of psychodynamic therapy in treating personality disorders
  • The correlation between early childhood education and executive function skills
  • The effect of parental involvement on STEM education outcomes
  • The impact of trade policies on domestic employment rates
  • The relationship between job insecurity and mental health
  • The effectiveness of exposure therapy in treating PTSD
  • The correlation between parental involvement and social mobility
  • The effect of social media on intergroup relations
  • The impact of urbanization on air pollution and respiratory health.
  • The relationship between emotional intelligence and leadership effectiveness
  • The effectiveness of cognitive-behavioral therapy in treating depression
  • The correlation between early childhood education and language development
  • The effect of parental involvement on academic achievement in STEM fields
  • The impact of trade policies on income inequality
  • The relationship between workplace diversity and customer satisfaction
  • The effectiveness of mindfulness-based therapy in treating anxiety disorders
  • The correlation between parental involvement and civic engagement in adolescents
  • The effect of social media on mental health among teenagers
  • The impact of public transportation policies on traffic congestion
  • The relationship between job stress and job performance
  • The effectiveness of group therapy in treating depression
  • The correlation between early childhood education and cognitive development
  • The effect of parental involvement on academic motivation in college
  • The impact of environmental regulations on energy consumption
  • The relationship between workplace diversity and employee engagement
  • The effectiveness of art therapy in treating PTSD
  • The correlation between parental involvement and academic success in vocational education
  • The effect of social media on academic achievement in college
  • The impact of tax policies on economic growth
  • The relationship between job flexibility and work-life balance
  • The effectiveness of acceptance and commitment therapy in treating anxiety disorders
  • The correlation between early childhood education and social competence
  • The effect of parental involvement on career readiness in high school
  • The impact of immigration policies on crime rates
  • The relationship between workplace diversity and employee retention
  • The effectiveness of play therapy in treating trauma
  • The correlation between parental involvement and academic success in online learning
  • The effect of social media on body dissatisfaction among women
  • The impact of urbanization on public health infrastructure
  • The relationship between job satisfaction and job performance
  • The effectiveness of eye movement desensitization and reprocessing therapy in treating PTSD
  • The correlation between early childhood education and social skills in adolescence
  • The effect of parental involvement on academic achievement in the arts
  • The impact of trade policies on foreign investment
  • The relationship between workplace diversity and decision-making
  • The effectiveness of exposure and response prevention therapy in treating OCD
  • The correlation between parental involvement and academic success in special education
  • The impact of zoning laws on affordable housing
  • The relationship between job design and employee motivation
  • The effectiveness of cognitive rehabilitation therapy in treating traumatic brain injury
  • The correlation between early childhood education and social-emotional learning
  • The effect of parental involvement on academic achievement in foreign language learning
  • The impact of trade policies on the environment
  • The relationship between workplace diversity and creativity
  • The effectiveness of emotion-focused therapy in treating relationship problems
  • The correlation between parental involvement and academic success in music education
  • The effect of social media on interpersonal communication skills
  • The impact of public health campaigns on health behaviors
  • The relationship between job resources and job stress
  • The effectiveness of equine therapy in treating substance abuse
  • The correlation between early childhood education and self-regulation
  • The effect of parental involvement on academic achievement in physical education
  • The impact of immigration policies on cultural assimilation
  • The relationship between workplace diversity and conflict resolution
  • The effectiveness of schema therapy in treating personality disorders
  • The correlation between parental involvement and academic success in career and technical education
  • The effect of social media on trust in government institutions
  • The impact of urbanization on public transportation systems
  • The relationship between job demands and job stress
  • The correlation between early childhood education and executive functioning
  • The effect of parental involvement on academic achievement in computer science
  • The effectiveness of cognitive processing therapy in treating PTSD
  • The correlation between parental involvement and academic success in homeschooling
  • The effect of social media on cyberbullying behavior
  • The impact of urbanization on air quality
  • The effectiveness of dance therapy in treating anxiety disorders
  • The correlation between early childhood education and math achievement
  • The effect of parental involvement on academic achievement in health education
  • The impact of global warming on agriculture
  • The effectiveness of narrative therapy in treating depression
  • The correlation between parental involvement and academic success in character education
  • The effect of social media on political participation
  • The impact of technology on job displacement
  • The relationship between job resources and job satisfaction
  • The effectiveness of art therapy in treating addiction
  • The correlation between early childhood education and reading comprehension
  • The effect of parental involvement on academic achievement in environmental education
  • The impact of income inequality on social mobility
  • The relationship between workplace diversity and organizational culture
  • The effectiveness of solution-focused brief therapy in treating anxiety disorders
  • The correlation between parental involvement and academic success in physical therapy education
  • The effect of social media on misinformation
  • The impact of green energy policies on economic growth
  • The relationship between job demands and employee well-being
  • The correlation between early childhood education and science achievement
  • The effect of parental involvement on academic achievement in religious education
  • The impact of gender diversity on corporate governance
  • The relationship between workplace diversity and ethical decision-making
  • The correlation between parental involvement and academic success in dental hygiene education
  • The effect of social media on self-esteem among adolescents
  • The impact of renewable energy policies on energy security
  • The effect of parental involvement on academic achievement in social studies
  • The impact of trade policies on job growth
  • The relationship between workplace diversity and leadership styles
  • The correlation between parental involvement and academic success in online vocational training
  • The effect of social media on self-esteem among men
  • The impact of urbanization on air pollution levels
  • The effectiveness of music therapy in treating depression
  • The correlation between early childhood education and math skills
  • The effect of parental involvement on academic achievement in language arts
  • The impact of immigration policies on labor market outcomes
  • The effectiveness of hypnotherapy in treating phobias
  • The effect of social media on political engagement among young adults
  • The impact of urbanization on access to green spaces
  • The relationship between job crafting and job satisfaction
  • The effectiveness of exposure therapy in treating specific phobias
  • The correlation between early childhood education and spatial reasoning
  • The effect of parental involvement on academic achievement in business education
  • The impact of trade policies on economic inequality
  • The effectiveness of narrative therapy in treating PTSD
  • The correlation between parental involvement and academic success in nursing education
  • The effect of social media on sleep quality among adolescents
  • The impact of urbanization on crime rates
  • The relationship between job insecurity and turnover intentions
  • The effectiveness of pet therapy in treating anxiety disorders
  • The correlation between early childhood education and STEM skills
  • The effect of parental involvement on academic achievement in culinary education
  • The impact of immigration policies on housing affordability
  • The relationship between workplace diversity and employee satisfaction
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The correlation between parental involvement and academic success in art education
  • The effect of social media on academic procrastination among college students
  • The impact of urbanization on public safety services.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

Advertisement

Advertisement

Quantitative-comparative research on digital competence in students, graduates and professors of faculty education: an analysis with ANOVA

  • Published: 28 March 2020
  • Volume 25 , pages 4157–4174, ( 2020 )

Cite this article

quantitative research title related to ict

  • Francisco D. Guillén-Gámez 1 &
  • Mª José Mayorga-Fernández 2  

3841 Accesses

27 Citations

Explore all metrics

Currently, the figure of the teacher is a key element to train students in the use of new information and communication technologies (ICT), which will positively influence the entire teaching-learning process. Therefore, it is an indispensable requirement in the initial training of the teacher the development of the digital teaching competence, understanding this construct as the set of knowledge, use and attitudes towards digital technologies. However, in the initial teacher training, the development of digital teaching competence may vary depending on the educational stage in which they carry out their teaching. For this work, the level of development of digital teaching competence of university teaching staff of the Faculty of Education, graduates of education, and students (future teacher of primary and child education) has been taken into consideration. Therefore, in this work we have tried: (1) to analyse the level of competence of the teachers regarding to three components which structure the term digital teaching competence; and (2) to compare the level of competence between the different types of teachers in each of the dimensions that make up the term digital teaching competence. For this purpose, an ex post facto investigation has been carried out with 715 participants, using one-way ANOVA technique by multiple comparisons. The results show that there are significant differences in attitudes towards digital technologies among students and graduates with respect to the university teaching staff. In relation to the knowledge and use dimensions, there are no differences between graduates and university teaching staff, but there are differences between both groups with the students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA) Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

quantitative research title related to ict

Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review

quantitative research title related to ict

Adoption of online mathematics learning in Ugandan government universities during the COVID-19 pandemic: pre-service teachers’ behavioural intention and challenges

quantitative research title related to ict

From digital literacy to digital competence: the teacher digital competency (TDC) framework

Alexander, B., Ashford-Rowe, K., Barajas-Murph, N., Dobbin, G., Knott, J., McCormack, M., ... & Weber, N. (2019). EDUCAUSE Horizon Report 2019 Higher Education Edition (pp. 3–41). EDU19.

Agreda Montoro, M., Hinojo Lucena, M. A., & Sola Reche, J. M. (2016). Design and validation of an instrument for assess digital skills of teachers in Spanish higher education. Pixel-Bit-Revista De Medios Y Educacion, 49 , 39–56.

Article   Google Scholar  

Agufana, P. B., Too, J. K., & Mukwa, C. W. (2018). Assessment of perceived ease of use and instructional use of ICT by lecturers in technical training institutions in Kenya. African Journal of Education, Science and Technology, 5 (1), 150–154.

Google Scholar  

Alfonso, R. D., Mendo, A. H., & Merino, E. C. (2018). Development and validation of a questionnaire for evaluating the impact of ICT in secondary schools. Digital Education Review, 34 , 1–26.

Bamigboye, O. B., Bankole, O. M., Ajiboye, B. A., & George, A. E. (2013). Teachers’ attitude and competence towards the use of ICT resources: A case study of university of agriculture lecturers, Abeokuta Ogun state, Nigeria. Information Manager (The), 13 (1–2), 10–15.

Barrio, T. V., Valle, M. S., & de Frutos Torres, B. (2017). Autopercepción de la competencia digital de profesores de educación primaria y secundaria de la Comunidad de Madrid e identificación del uso de las TIC en su práctica docente. In Del verbo al bit (pp. 1208-1226). Sociedad Latina de Comunicación Social.

Baturay, M. H., Gökçearslan, Ş., & Ke, F. (2017). The relationship among pre-service teachers' computer competence, attitude towards computer-assisted education, and intention of technology acceptance. International Journal of Technology Enhanced Learning, 9 (1), 1–13. https://doi.org/10.1504/IJTEL.2017.084084 .

Bisquerra, R. (2004). Metodología de la investigación educativa . Madrid: Plaza.

Buarki, H. (2016). ICT skills evaluation of faculty members in Kuwait; preliminary findings. Information Development, 32 (4), 777–798. https://doi.org/10.1177/0266666914568796 .

Bugawa, A. M., & Mirzal, A. (2018). The impact of web 2.0 technologies on the learning experience of students in higher education: A review. International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), 13 (3), 1–17. https://doi.org/10.4018/IJWLTT.2018070101 .

Cabero-Almenara, J., & Barroso-Osuna, J. (2016). ICT teacher training: A view of the TPACK model. Cultura y Educación, 28 (3), 633–663. https://doi.org/10.1080/11356405.2016.1203526 .

Cabezas Gonzalez, M., & Casillas Martín, S. (2018). Social educators: A study of digital competence from a gender differences perspectivezlika. Croatian Journal of Education: Hrvatski časopis za odgoj i obrazovanje , 20 (1), 11–42. https://doi.org/10.15516/cje.v20i1.2632 .

Capilla, M. M., Torres, J. M. T., & Sánchez, F. R. (2016). Percepción del profesorado y alumnado universitario ante las posibilidades que ofrecen las TIC en su integración en el proceso educativo: reflexiones, experiencias e investigación en la Facultad de educación de Granada. EDMETIC, 5 (1), 113–142. https://doi.org/10.21071/edmetic.v5i1.4019 .

Charris Franco, M. M. (2016). Conocimientos, usos y actitudes de los estudiantes de 3° y 4° de Pedagogía de la facultad de Educación de la USAL sobre las TIC. Tesis Doctoral. Universidad de Salamanca (USAL).

Chouit, D., Nfissi, A., & Laabidi, H. (2017). Exploring the correlation between professors’ use of ICT in teaching and the levels of institutional support. Journal of English Language Teaching and Linguistics, 2 (1), 47–63. https://doi.org/10.21462/jeltl.v2i1.39 .

EC (European Commission). (2007). The Key Competences for Lifelong Learning – A European Framework. Retrieved from https://www.erasmusplus.org.uk/file/272/download

EC (European Commission). (2013). DIGCOMP: A Framework for Developing and Understanding Digital Competence in Europe. Retrieved from https://publications.jrc.ec.europa.eu/repository/bitstream/JRC83167/lb-na-26035-enn.pdf

EC (European Commission). (2017). Digital Competence Framework for Educators (DigCompEdu). Retrieved from https://ec.europa.eu/jrc/en/digcompedu

EC (European Commission). (2018). Key competences for lifelong learning. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018H0604(01)&from=EN

Eickelmann, B., & Vennemann, M. (2017). Teachers ‘attitudes and beliefs regarding ICT in teaching and learning in European countries. European Educational Research Journal, 16 (6), 733–761. https://doi.org/10.1177/1474904117725899 .

Esteve-Mon, F. M., Gisbert-Cervera, M., & Lázaro-Cantabrana, J. L. (2016). La competencia digital de los futuros docentes: ¿Cómo se ven los actuales estudiantes de educación? Perspectiva Educacional, Formación de Profesores, 55 (2), 38–54.

Fernández Batanero, J. M., & Rodríguez Martín, A. (2017). TIC y diversidad funcional: Conocimiento del profesorado. EJIHPE. European Journal of Investigation in Health, Psychology and Education, 7 (3), 157–175. https://doi.org/10.30552/ejihpe.v7i3.204 .

Fernández-Sanz, L., Gómez-Pérez, J., & Castillo-Martínez, A. (2017). E-skills match: A framework for mapping and integrating the main skills, knowledge and competence standards and models for ICT occupations. Computer Standards & Interfaces, 51 , 30–42. https://doi.org/10.1016/j.csi.2016.11.004 .

From, J. (2017). Pedagogical digital competence--between values, knowledge and skills. Higher Education Studies, 7 (2), 43–50. https://doi.org/10.5539/hes.v7n2p43 .

García-Valcarcel, A. (2011). Integración de las TIC en la docencia universitaria. Netbiblo.

Gisbert, M., & Esteve, F. (2016). Digital Leaners: la competencia digital de los estudiantes universitarios. La cuestión universitaria, 7 , 48–59.

González Martínez, J., Esteve-Mon, F. M., Larraz Rada, V., Espuny Vidal, C., & Gisbert Cervera, M. (2018). INCOTIC 2.0: una nueva herramienta para la autoevaluación de la competencia digital del alumnado universitario= INCOTIC 2.0: A new self-assessment tool for digital competences at the university studies. Profesorado: revista de currículum y formación del profesorado, 2018, vol. 22, núm. 4, p. 133-152 . Doi: 10.30827/profesorado.v22i4.8401.

Guillén-Gámez, F. D., & Perrino, M. P. (2020). Análisis Univariante de la Competencia Digital en Educación Física: un estudio empírico. Retos, 37 (37), 326–332.

Guillén-Gámez, F. D., Lugones, A., & Mayorga-Fernández, M. J. (2019). ICT use by pre-service foreign languages teachers according to gender, age and motivation. Cogent Education , 1–17. https://doi.org/10.1080/2331186X.2019.1574693 .

Guillén-Gámez, F. D., Mayorga-Fernández, M. J., & Álvarez-García, F. J. (2018). A study on the actual use of digital competence in the practicum of education degree. Technology, Knowledge and Learning , 1–18. https://doi.org/10.1007/s10758-018-9390-z .

Gutiérrez Castillo, J. J., & Cabero Almenara, J. (2016). Estudio de caso sobre la autopercepción de la competencia digital del estudiante universitario de las titulaciones de grado de Educación Infantil y Primaria. Profesorado. Revista de currículum y formación del profesorado, 20 (2), 180–199.

Gutiérrez Porlán, I. (2014). Perfil del profesor universitario español en torno a las competencias en tecnologías de la información y la comunicación. Pixel-Bit. Revista de Medios y Educación, 44 , 51–65.

Gutiérrez, I., Prendes, M. P., & Castañeda, L. (2015). Aprendices y competencia digital. J. Cabero y J. Barroso (Coords.). Nuevos retos en tecnología educativa , 239-256.

Hatlevik, O. E., & Christophersen, K. A. (2013). Digital competence at the beginning of upper secondary school: Identifying factors explaining digital inclusion. Computers & Education, 63 , 240–247. https://doi.org/10.1016/j.compedu.2012.11.015 .

Horizon. (2017). The NMC Horizon Report > 2017 Higher Education Edition. Available in http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdff

INTEF (2017). Marco Común de Competencia Digital Docente. Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado. Retrieved from https://intef.es/Noticias/marco-comun-de-competencia-digital-docente-2017-intef/

Janssen, J., Stoyanov, S., Ferrari, A., Punie, Y., Pannekeet, K., & Sloep, P. (2013). Experts' views on digital competence: Commonalities and differences. Computers & Education, 68 , 473–481. https://doi.org/10.1016/j.compedu.2013.06.008 .

Joshua Chukwuemeka, E., & Iscioglu, E. (2016). An examination of lecturers’ technological pedagogical content knowledge perceptions at the Faculty of Education in EMU in Cyprus. Croatian Journal of Education: Hrvatski časopis za odgoj i obrazovanje, 18 (4), 999–1034. https://doi.org/10.15516/cje.v18i4.1845 .

Kale, U., & Goh, D. (2014). Teaching style, ICT experience and teachers’ attitudes toward teaching with web 2.0. Education and Information Technologies, 19 (1), 41–60. https://doi.org/10.1007/s10639-012-9210-3 .

Kerlinger, F. N. L., Howard, B., Pineda, L. E., & Mora Magaña, I. (2002). Investigación del comportamiento . México: McGraw Hill.

Krumsvik, R. J. (2011). Digital competence in the Norwegian teacher education and schools. Högre utbildning, 1 (1), 39–51.

Kunda, D., Chembe, C., & Mukupa, G. (2018). Factors that influence Zambian higher education lecturer’s attitude towards integrating ICTs in teaching and research. JOTSE, 8 (4), 360–384. https://doi.org/10.3926/jotse.338 .

Lázaro-Cantabrana, J., Usart-Rodríguez, M., & Gisbert-Cervera, M. (2019). Assessing teacher digital competence: The construction of an instrument for measuring the knowledge of pre-service teachers. Journal of New Approaches in Educational Research (NAER Journal), 8 (1), 73–78. https://doi.org/10.7821/naer.2019.1.370 .

Llamas-Salguero, F., & Gomez, E. (2018). Formación inicial de docentes en educación básica para la generación de conocimiento con las Tecnologías de la Información y la Comunicación. Revista Complutense De Educación, 29 (2), 577–593. https://doi.org/10.5209/RCED.53520 .

López, M. J. A. (2018). Estudio de un caso de la formación del profesorado en las tecnologías de la información y la comunicación en los centros de educación infantil y primaria. DIM: Didáctica, Innovación y Multimedia, 36 , 1–19.

López, Z. C., Aristizabal, S. S., Guerrero, S. V. A., Oviedo, G. M., Palencia, A. F. C., Rodríguez, M. D. D., et al. (2017). Actitud, conocimiento y uso de las tecnologías de la información y la comunicación (tic) para la enseñanza de las ciencias naturales en las instituciones educativas públicas del municipio de NEIVA: un estudio diagnóstico. Bio-grafía Escritos sobre la biología y su enseñanza , 1211–1220. https://doi.org/10.17227/bio-grafia.extra2017-7292 .

Martín, S. C., & González, M. C. (2018). Estudio psicométrico de un cuestionario para medir la competencia digital de estudiantes universitarios (CODIEU). Education in the Knowledge Society, 19 (3), 69–81. https://doi.org/10.14201/eks20181936981 .

Mefp (2018). Ministerio de Educación y Formación Profesional del Gobierno de España. Accedido el 27 de diciembre de 2018. Disponible en: http://www.educacionyfp.gob.es/educacion/mc/lomce/el-curriculo/curriculo-primaria-eso-bachillerato/competencias-clave/competencias-clave/digital.html

Mercader, C., & Sallán, J. G. (2017). ¿Cómo utiliza el profesorado universitario las tecnologías digitales en sus aulas?. REDU. Revista de Docencia Universitaria , 15 (2), 257-274. Doi: 10.4995/redu.2017.7635.

Mirete Ruiz, A. B. (2016). El profesorado universitario y las tic. análisis de su competencia digital. Ensayos: revista de la facultad de educacion de albacete, 31 (1), 133–147.

Muñoz-Repiso, A. G. V., Gómez-Pablos, V. B., González, M. C., Martín, S. C., Rodero, L. G., Martín, A. H., & Marcos, J. J. M. (2015). Training of university lecturers in information and communication Technology at the University of Salamanca. Revista Latinoamericana de Tecnología Educativa-RELATEC, 14 (1), 75–88. https://doi.org/10.17398/1695-288X.14.1.75 .

Pérez Escoda, A., & Rodríguez Conde, M. J. (2016). Evaluación de las competencias digitales autopercibidas del profesorado de Educación Primaria en Castilla y León (España). Revista de Investigación Educativa, 34 (2), 399–415. https://doi.org/10.6018/rie.34.2.215121 .

Peciuliauskiene, P., & Barkauskaite, M. (2007). Would-be teachers' competence in applying ICT: Exposition and preconditions for development. Informatics in Education-International Journal, 6 , 397–410.

Porlan, I. G., & Sanchez, J. S. (2016). Evaluation and development of digital competence in future primary school teachers at the University of Murcia. Journal of New Approaches in Educational Research (NAER Journal), 5 (1), 51–56. https://doi.org/10.7821/naer.2016.1.152 .

Richardson, J. T. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6 (2), 135–147. https://doi.org/10.1016/j.edurev.2010.12.001 .

Rivera-Laylle, L. I., Fernández-Morales, K., Guzmán-Games, F. J., & Eduardo-Pulido, J. (2017). ICT acceptance by university professors: Knowledge, attitude, and practicality. Revista Electrónica Educare, 21 (3), 99–116. https://doi.org/10.15359/ree.21-3.6 .

Roblizo Colmenero, M. J., & Cózar Gutiérrez, R. (2015). Usos y competencias en TIC en los futuros maestros de Educación Infantil y Primaria: hacia una alfabetización tecnológica real para docentes. Pixel-Bit. Revista de Medios y Educación, 47 , 23–39.

Rodríguez, M. D. M., Méndez, V. G., & Martín, A. M. R. M. R. (2018). Alfabetización informacional y competencia digital en estudiantes de magisterio. Profesorado, Revista de Currículum y Formación del Profesorado, 22 (3), 253–270.

Roig-Vila, R., Luna, P., & María, A. (2012). The digital competences of future teachers. An analysis with pre-school education teaching degree students at the University of Alicante. @tic. Revista d’innovació educativa, 9, 53-60. Doi: 10.7203/attic.9.1958

Røkenes, F. M., & Krumsvik, R. J. (2014). Development of student teachers’ digital competence in teacher education-a literature review. Nordic Journal of Digital Literacy, 9 (04), 250–280.

Rubio, J. C. C., Serrano, J. S., & Martínez, J. C. B. (2018). Competencia digital en futuros docentes de Ciencias Sociales en Educación Primaria: análisis desde el modelo TPACK. Educatio Siglo XXI, 36 (1), 107–128. https://doi.org/10.6018/j/324191 .

Ruiz, A. B. M. (2015). ACUTIC: cuestionario para el estudio de la actitud, el conocimiento y el uso de TIC en profesores de educación superior. In Investigar con y para la sociedad (pp. 1733-1744).

Ruiz, A. B. M., Sánchez, F. A. G., & Pina, F. H. (2015). Cuestionario para el estudio de la actitud, el conocimiento y el uso de TIC (ACUTIC) en Educación Superior. Estudio de fiabilidad y validez. Revista interuniversitaria de formación del profesorado , (83), 75-89.

Skryabin, M., Zhang, J., Liu, L., & Zhang, D. (2015). How the ICT development level and usage influence student achievement in reading, mathematics, and science. Computers & Education, 85 , 49–58.

Tondeur, J., Forkosh-Baruch, A., Prestridge, S., Albion, P., & Edirisinghe, S. (2016). Responding to challenges in teacher professional development for ICT integration in education. Educational Technology and Society, 19 (3), 110–120 Retrieved from http://www.jstor.org/stable/jeductechsoci.19.3.110 .

Upsa. (2018). Training actions 2017–2018. accessed January 24, 2020, Available at: https://www.upsa.es/investigacion-y-docencia/plan-de-investigacion/plan-formacion-profesorado-17-18.php

Van Laar, E., van Deursen, A. J., van Dijk, J. A., & de Haan, J. (2017). The relation between 21st-century skills and digital skills: A systematic literature review. Computers in Human Behavior, 72 , 577–588. https://doi.org/10.1016/j.chb.2017.03.010 .

Zhang, J., Yang, J., Chang, M., & Chang, T. (Eds.). (2016). ICT in education in global context: The best practices in K-12 schools. Springer.

Download references

Author information

Authors and affiliations.

Department of Didactics and School Organization, Faculty of Education, University of Almería (UAL), Almería, Spain

Francisco D. Guillén-Gámez

Department of Didactics and School Organization, Faculty of Education Sciences of the University of Malaga (UMA), Málaga, Spain

Mª José Mayorga-Fernández

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Francisco D. Guillén-Gámez .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Guillén-Gámez, F.D., Mayorga-Fernández, M.J. Quantitative-comparative research on digital competence in students, graduates and professors of faculty education: an analysis with ANOVA. Educ Inf Technol 25 , 4157–4174 (2020). https://doi.org/10.1007/s10639-020-10160-0

Download citation

Received : 04 January 2020

Accepted : 12 March 2020

Published : 28 March 2020

Issue Date : September 2020

DOI : https://doi.org/10.1007/s10639-020-10160-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Digital teaching competence
  • Digital technologies
  • University teaching staff
  • Find a journal
  • Publish with us
  • Track your research

An IERI – International Educational Research Institute Journal

  • Open access
  • Published: 13 September 2016

The relationship between students’ use of ICT for social communication and their computer and information literacy

  • Meral Alkan 1 &
  • Sabine Meinck 2  

Large-scale Assessments in Education volume  4 , Article number:  15 ( 2016 ) Cite this article

78k Accesses

16 Citations

10 Altmetric

Metrics details

This study investigates the relationship between students’ use of information and communication technology (ICT) for social communication and their computer and information literacy (CIL) scores. It also examines whether gender and socioeconomic background moderates this relationship. We utilized student data from IEA’s International Computer and Information Study (ICILS) to build multivariate regression models for answering the research questions, and accounted for the complex sample structure of the data by using weights for all statistical analyses, employing jackknife repeated replication for variance estimation. Students who frequently use the internet for messaging and participation in social networks (i.e., at least once a week) scored on average 44 points higher than those who use ICT for the same purpose only less than once a week or never. The direction of this effect was the same in all 21 participating educational systems, the difference ranging from 19 to 75 points (always statistically significant). We continued the analysis by testing whether the relationship is moderated by gender; as girls use more often ICT for social communication and have higher CIL scores on average. After controlling for the gender effect the CIL scores between the two examined groups decreased only by 2 points on average. Even after including students’ socio-economic background into the model, the difference in CIL between the two groups of interest declined only little—to 32 points on average across all countries. The difference remained to be statistically significant in all countries but one. The results suggest a strong relationship between students’ CIL proficiency level and the frequency of their use of electronic devices for social communication; hence, respective skills needed at schools and later on at the workplace are reflected in their use outside of school and for socializing.

Purpose, significance of research and theoretical frame work

In the last decades we encountered rapid developments in information and communication technologies. The inclusion of the worldwide web into daily life brought new and important implications also for education. Most of the schools and educational systems started providing extensive computer networks for their students and these are increasingly becoming main components of the teaching and learning environment, but so far little is known about the effectiveness and use of these technologies (Fraillon et al. 2014 ). Conclusions from research carried out in the field are partly contradictory. Many authors who examined computer use and student achievement found they were positively related (e.g., Becker 1994 ; Hativa 1994 ; Kozma 1991 ; Kulik and Kulik 1987 ; Liao 1992 ; Osunade 2003 ; Ryan 1991 ; Van Dusen and Worthren 1994 ; James and Lamb 2000 ; Attewell and Battle 1999 ; Sivin-Kachala 1998 ; Weaver 2000 ; Weller 1996 ; Wenglinsky 1998 ). Wen et al. ( 2002 ) suggest that there is a positive relationship between the number of computers available at school and students’ science achievement. Alspaugh ( 1999 ) reports that computer use has no effect on students’ achievement in reading, mathematics, science or social studies. There is also a number of studies that identified negative relationships between computer use and student achievement (Ravitz et al. 2002 ; Papanastasiou 2002 , 2003 ). Papanastasiou ( 2002 ) who analysed the results of TIMSS, found a negative relationship between computer use and achievement in a number of countries such as Cyprus, Hong Kong and United States of America. According to this study, students who use computers most frequently in the classroom were lowest achievers in TIMSS in 1995. Papanastasiou ( 2003 ) and Papanastasiou et al. ( 2005 ) found that computer use does not have a positive nor negative effect on students’ science achievement based on PISA results, but the way of computer use affects science achievement.

Most of the international studies focused so far on the relation of ICT use and students’ competencies in reading, science and mathematics. The amount of research dedicated on computer and information literacy is very limited and most studies examine mainly internet access and online use (Olafsson et al. 2014 ). In the computer and information literacy (CIL) area, the first cross-national study is ICILS (Fraillon et al. 2014 ). It assesses the extent to which students know about, understand, and are able to use information and communication technology (ICT). The main purpose of ICILS is to determine how well students are prepared for study, work and life in the digital age. With the information age the term “digital natives” was coined for the generation born in the early 1980s, also referred to as the first members of the millennial generation (Prensky 2001 ). In his article, Prensky claimed that “the arrival and rapid dissemination of digital technology in the last decade of the twentieth century” had changed the way students think and process information, making it difficult for them to excel academically being exposed to outdated teaching methods. However, according to the ICILS results, although students have had an increased amount of exposure to technology, it does not necessarily imply that they are digital natives. In all the participating countries, on average 17 % of the students did not even achieve the lowest level of CIL determined by the study. On average, only 2 % of the students achieved the highest level with a maximum of 5 % in Korea (Fraillon et al. 2014 ). Footnote 1

This finding raises the question how so called digital natives use twenty first century technology in daily life. It is known from the literature that age plays a significant role in the usage of computers and internet. As shown in Fig.  1 (Zichuhr and Madden 2012 ), and Fig.  2 (TurkStat 2014 ) below, there was a steady increase in internet use across all age groups in Turkey and the US. In the beginning of the current century, however, the younger age groups use internet more often compared to the older age groups in both countries.

(Source: Zichuhr and Madden 2012 )

Internet use by age group in America, 2000–2012

(Source: TurkStat 2014 )

Internet use by age group in Turkey, 2004–2014

In most European countries, as shown in Fig.  3 , more than 80 % of young people (aged 16–29) used a computer on a daily basis. In all countries, percentages of the daily use of computers among young people is higher than for the whole population (Eurostat 2014 ).

Source: Eurostat ( 2014 )

Proportion of people who used a computer on a daily basis, 2014 (%).

Further, literature suggests that many children engage in a wide range of online activities. ICT use by students has expanded to Internet, e-mail, chat, programming, graphics, spreadsheet, online shopping, online searching for literature and other educational materials. The students mostly use ICT for general purposes, i.e., communication, word processing, entertainment, etc. rather than for educational means (Mahmood 2009 ). According to Olafsson et al. ( 2014 ), the most common online activities of 9–16 years olds in Europe are: using internet for school work (85 %), playing games (83 %), watching video clips (76 %) and instant messaging (62 %). Communication via the internet is ubiquitous; often schoolwork is accompanied by chatting and texting. A study published by Gokcearslan and Seferoglu ( 2005 ) showed that—at that time—Turkish students’ main focus is on playing games instead on learning activities.

The internet use has high rates among young people when it is compared to the whole population in the EU-28 for basic skills such as using a search engine (94 %) or sending an e-mail with attachments (87 %), while more than two-thirds of young people posted messages online (72 %), just over half used the internet for calling people (53 %) and around one-third (32 %) used peer-to-peer file sharing services. The proportion of young people of posting messages online was 34 percentage points higher than the average for the whole population (Eurostat 2014 ; Fig.  4 ).

(data from 2013; source: Eurostat 2014 )

Proportion of people who used selected internet skills, EU-28

Already in 2003 Prensky reported that young Americans talk more than 10.000 h on the phone and send more than 200.000 e-mails and text messages until the age of 21. A study conducted in the US found that 80 % of online teens use social network sites, Facebook being the most popular, with 93 % of those teens reporting its use (Lenhart 2012 ). In 2014, according to number of active users, Facebook is the most popular social media platform with 1184 billion users (Digital/Ajanslar 2014 ). In 2015, Facebook is still most popular social media platform among young people and 71 % of all teens from 13 to 17 use Facebook, 52 % of them use Instagram and 41 % use Snapchat. (Pew Research Center 2015 )

“The use of social networks among children research report” focused on the use of social media among 9–16 year olds in Turkey showed that 85 % of students have computers at home, 70 % of all students get online at least once a day and 66 % use social media at least once a day, spending 72 min on average. This shows that most of the time spent on internet is dedicated to social media. The same study shows that 99 % of the children who have a social media account use Facebook. 60 % of the children reported that they don’t study enough because of spending too much time on Facebook, 25 % of them said that they spend less time with their parents and friends (TIB 2011 ).

The most common online social activities for young people in the EU-28 in 2014 included sending and receiving e-mails (86 %) and participating on social networking sites (82 %)—for example, Facebook or Twitter, by creating a user profile, posting messages or making other contributions—while close to half (47 %) of all young people in the EU-28 uploaded self-created content, such as photos, videos or text to the internet (Eurostat 2014 ).

Summarizing the literature, the high importance of students’ use of ICT for social communication in their daily life is evident. But does this type of ICT use enhance students’ CIL skills? Or, does it even rather have a negative effect, because less time remains for “worthwhile” computer usage, such as learning activities? This study examines the relationship between students’ use of ICT for social communication and their computer and information literacy and attempts to contribute to a deeper understanding of this relationship.

Methods and data sources

Students’ data of ICILS was used to explore the hypotheses. ICILS gathered data from almost 60,000 Grade 8 (or equivalent) students and 35,000 teachers in more than 3300 schools from 21 countries or education systems within countries. These data were augmented by contextual data collected from school ICT-coordinators, school principals, and the ICILS national research centres.

Students completed a computer-based test of CIL that consisted of questions and tasks presented in four 30-min modules. Each student completed two modules randomly allocated from the set of four so that the total assessment time for each student was 1 h.

After completing the two test modules, students answered (again on computer) a 30-min questionnaire. It included questions relating to students’ background characteristics, their experience and use of computers and ICT to complete a range of different tasks in school and out of school, and their attitudes toward using computers and ICT (Fraillon et al. 2014 ).

IEA’s IDB Analyzer was utilized for all statistical analyses, including the estimation of percentages, means and regression models. The IDB analyzer takes the complex data structure of ICILS data into account by applying sampling weights and employing jackknife repeated replication for variance estimation. Comparisons between dependent samples were conducted using regression models in order to account for the covariance between the comparative groups.

Analysis results

We first analysed the relationship between students’ CIL score and their use of ICT for social communication. In the ICILS study, the student questionnaire included three questions that require students to rate the frequencies of their use of ICT applications. From these questions four scales were derived. One of them was “Students’ use of ICT for Social Communication” (S_USECOM). The students were asked to identify the frequency with which they were using the internet for various communication and information exchange activities outside of school. The response categories were “never”, “less than once a month”, “at least once a week but not every day” and “every day”. S_USECOM had an average reliability of 0.74 (Fraillon et al. 2015 ).

The index variable (“S_USECOM”) consists of the following items:

How often do you use the Internet outside of school for each of the following activities?

Posting comments to online profiles or blogs.

Uploading images or videos to an [online profile] or [online community] (for example. Facebook or YouTube).

Using voice chat (for example Skype) to chat with friends or family online.

Communicating with others using messaging or social networks [for example instant messaging or (status updates)].

We could identify indeed a relationship between students’ CIL score and their use of ICT for social communication: in all educational systems participating in ICILS (further for simplicity referred to as “countries”), the CIL score increased along with an increase of students’ scale score in “Use of ICT for social communication”. This relationship was statistically significant in 16 out of 21 countries. However, the relation was weak; the explained variance of the CIL score was less than 10 % in most countries. We continued the analysis by investigating further the relationship between CIL and each of the four variables constructing the scale score for “Use of ICT for social communication”.

Posting comments to online profiles or blogs

There were no consistent patterns for relations between the reported frequencies for this variable in most countries except for Chile, Thailand and Turkey—the countries with relatively low CIL average scores. In these three countries, the CIL score increased along with an increasing frequency of postings.

Uploading images or videos to an [online profile] or [online community] (for example. facebook or youtube)

Interestingly, students with a medium frequency of ICT use for uploading images or videos had an average CIL score of 20 more points than those who reported to either never do that or do it every day. This pattern could be observed in all countries and was statistically significant in all countries but three (Republic of Korea, Turkey, Canada—Newfoundland and Labrador).

Using voice chat (for example Skype) to chat with friends or family online

No clear patterns could be identified for relationships between the CIL scores and frequencies of ICT usage for voice chats.

Communicating with others using messaging or social networks [for example instant messaging or (status updates)]

Apparently this variable had the closest relationship with CIL among the variables constructing the index variable (“S_USECOM”): as shown in Fig.  5 , the more frequent students use ICT for communication using messaging or social networks the higher was their CIL score, a finding that generally holds in all countries. Looking at the cross-country average, mean CIL scores of students who never use the internet for communication are as low as 463 points while are as high as 522 points for students who do that on a daily basis (see Table  1 ).

Average CIL scores by ICT use for communicating with others using messaging or social networks

For further in-depth analysis we decided to simplify the data by collapsing categories, resulting in a dichotomous variable. The split was taken between the response categories where the difference in CIL scores was the greatest. Referring to the patterns visible in Fig.  5 , CIL scores of students reporting to use ICT for communication at least once a week or even every day were rather close to each other; also, no large differences in CIL scores occurred for students using ICT for communication less than once a week (or never). Therefore we collapsed the respective categories accordingly. This procedure split the countries’ target populations into two groups of varying proportions, as can be seen in Fig.  6 . On average, three-fourth of the students use the Internet for communication more than once a week. This proportion is less in Thailand and Turkey.

Proportion of students by use of ICT for communicating with others using messaging or social networks

Comparing the resulting two groups of students, we found an average difference in CIL scores of 44 points on favor of students using ICT for social communication more frequently. The direction of the effect was the same in all countries and ranged from 19 points difference in Switzerland to as much as 75 points in the Slovak Republic (refer to Table  2 , Model 1, coefficients of E-communication). In all countries, the difference was found to be statistically significant. Since these results were rather striking, we wondered if this effect was moderated by other variables. Consequently we set up various multivariate regression models in order to control for such effects.

Gender as moderating variable

It is known from the literature that girls spend on average more time on social network sites and use them more actively than boys (Duggan and Brenner 2013 ). Lenhart ( 2012 ) reported that some 95 % of teenagers use the internet in the US. 42 % of girls who use the internet report to video-chat, while only about a third of boys engage in that activity. Girls are also more active in their texting and mobile communication behaviours (Lenhart et al. 2010 ). Our own study confirms this finding for all ICILS countries as can be seen in Fig.  7 — except for Turkey. Interestingly, in Turkey (highlighted by the black arrow in Fig.  7 ) boys report to use the Internet for social communication more often than girls. The differences of the gender group percentages are statistically significant in all countries.

Percentages of students using ICT for communicating at least once a week by gender

Although gender is a major determinant in CIL scores of ICILS, it did hardly moderate the difference in CIL scores between the two groups presented in Fig.  5 . The group differences remained significant in all countries (see Model 2 in Table  2 , coefficients of E-communication.

Socio-economic background as moderating variable

In a next step we included the national index of students’ socio-economic background (variable “S_NISB”) into the model, reasoning that the availability of internet access and communication devices may depend on the socio-economic status (SES) of the students.

The “digital divide”—referring to the gap between those who do and those who do not have access to ICT’s (Warschauer 2003 )—generally affects individuals who are unemployed or in low-skilled occupations, and who have a low income and/or a low level of education. Students from families with a lower SES tend to be less confident and capable in navigating the Web to find credible information (Adler 2014 ). Also Adegoke and Osoyoko ( 2015 ) support the theory that SES influences students’ access (exposure) to ICT and internet. The findings of Hargittai ( 2010 ) suggest that even when controlling for basic Internet access, among a group of young adults, SES is an important predictor of how people are incorporating the Web into their everyday lives. Bozionelos ( 2004 ) showed that SES had a direct positive relationship with computer experience and an indirect negative relationship with computer anxiety. The findings are supportive of the digital divide and they imply that information technology may in fact be increasing inequalities among social strata in their access to employment opportunities.

After controlling for both, gender and SES, the difference in CIL between our two groups of interest declined to 32 points on average across all countries. However, the difference remained to be statistically significant in all countries but one (Denmark).

Table  2 presents regression coefficients of all three discussed models; Fig.  8 presents the differences in CIL scores of students using ICT for social communication more vs. less than once a week for all three considered models (coefficient of “E-communication” in Table  2 ). Evidently, this difference is hardly moderated in any country by gender, while the socio-economic status plays a larger role. In twelve out of twenty countries, after controlling for gender and SES, the examined difference in the CIL score decreases by more than 10 points. Only in Switzerland neither SES nor gender seemed to be associated with the difference in CIL scores between the two groups of interest, i.e., the coefficient of E-communication remains constant across the three models.

Differences in CIL scores of students using ICT for social communication more vs. less than once a week by model

Further variables with potential moderating effects

We also investigated the effect of further variables that may have moderated the found relationship and thereby could have affected the presented relationship in significant ways. We identified such variables based on evidence from the literature, evidence from ICILS (Fraillon et al. 2014 ) or simply by applying common sense. It would exceed the purpose of this paper to present all details of these analyses; however, the following paragraphs give some major findings.

While girls use ICT more often for social communication, boys use it more often for playing games (Rideout and Foehr 2010 ). This is also evident from ICILS data and is presented as cross-country average in Fig.  9 . The patterns are similar for all participating countries. However, there was no general relation between using ICT for playing games and CIL except for Turkey and Thailand, where an increased frequency of gaming was related with increasing CIL scores.

Using a computer for playing games (outside of school) by gender (estimated percentages across all participating countries)

Further, one may argue that the overall use of computers could have a moderating effect on the studied relationship. However, including the respective variable into the regression model proofed to not change much the effect of ICT use for social communication on CIL and also did not enhance the explained variance of the CIL score significantly.

Discussion and conclusions

The arrival and rapid dissemination of digital technology in the last decade of the twentieth century raises the question how so called digital natives use technology in daily life and what relevant skills they need to develop in order to participate effectively in the digital age. From the literature, the high importance of students’ use of ICT for social communication in their daily life is evident. In this paper we tried to answer the question if this type of ICT use enhances students’ CIL skills or if it—on the opposite—perhaps even rather has a negative effect, because less time remains for “worthwhile” computer usage, such as learning activities.

We first analyzed the relationship between students’ CIL score and their use of ICT for social communication. The CIL score increased along with an increase of students’ scale score in “Use of ICT for social communication” in all educational systems participating in ICILS. This relationship was statistically significant in 16 out of 21 countries. However, the relation was weak. We continued the analysis by investigating further the relationship between CIL and each of the four variables constructing the index “Use of ICT for social communication”. We found out that the variable which has the closest relationship with CIL was “Communicating with others using messaging or social networks [for example instant messaging or (status updates)]”, while other variables comprising the index showed different or no patterns related with CIL.

For accommodating further analysis on this variable, we decided to split students’ data into two groups. We collapsed the five original categories of the variable into two categories, reflecting the use of messaging or social networks “at least once a week or even every day” versus “less than once a week (or never)”.

Comparing the resulting two groups of students, we found a large average difference in CIL scores (44 points) favoring students using ICT for social communication more frequently. The direction of the effect was the same in all countries; the difference ranged from 19 points in Switzerland to as much as 75 points in the Slovak Republic. Since these results were rather striking, we examined whether this effect was moderated by other variables such as SES and Gender. We found however that the moderating effect of these variables on the observed relationship was weak or even negligible in all participating countries. In other words, the relation between the use of ICT for communicating with others using messaging or social networks and CIL scores was still high and consistent across countries when controlling for SES and Gender.

This positive and cross-nationally observed relationship was rather unexpected, especially because the relationship between the communication index created by ICILS and the CIL scores was weak. Trying to understand this phenomenon, we considered the nature of messaging and participation in social networks. We see that it actually includes posting comments, uploading and downloading images and videos—hence, these features are no different than the separate items creating the social communication index. In fact the single item basically contains the other index items. Possibly the written communication portion included makes the difference, or the actual widespread of activities involved in messaging/electronic social networking explains the indistinct positive relationship with CIL. In future cycles of ICILS it may be worthwhile to review the index items accordingly.

To explore this phenomenon further, we also should focus on the CIL construct. As Fraillon et al. ( 2014 ) pointed out in the ICILS international report, the CIL construct was conceptualized in terms of two strands:

Strand 1; collecting and managing information , focuses on the receptive and organizational elements of information processing and management,

Strand 2; producing and exchanging information , focuses on using computers as productive tools for thinking, creating, and communicating.

When we consider the interactive nature of social media, it can be assumed that they provide students with a medium for collecting and managing information as anticipated in Strand 1 and also for producing and exchanging information as conceptualized in Strand 2. Hence, this item seems truly be related with both strands of the CIL construct, which may be one reason for the close relationship. Lacking of an experimental design, this study cannot make causal inferences on the relation between CIL and e-communication. Therefore we cannot conclude if frequent use of ICT for communication enhances CIL skills, or if in turn students with high CIL use more frequently ICT for social communication.

Future studies should also monitor the use of social networks in education further. Students should not be expected to accomplish high skills in using information and computer technology and at the same time expect them to keep this aspect of their personality outside of their social life. Rather, it is worth to explore the additional learning opportunities arising from electronic tools and media out- but also and especially inside schools. According to findings from Fraillon et al. ( 2014 ), there is a need in many countries to equip teachers with the respective knowledge to use ICT (including social communication tools) in their teaching. Utilizing social media for teaching may hold the potential to increase CIL for all students independently from their gender and SES backgrounds; and thereby avoid that students with low CIL or limited access to ICT may increasingly lack opportunities to actively participate in the modern society.

As a matter of fact, nowadays messaging and Facebook or other social networks became a part of students’ daily life. As parents, teachers and educators, our responsibility is to help our children to benefit from social networks educationally.

See Fraillon et al. 2014 for detailed explanations of the determined CIL levels.

Digital/Ajanslar, (2014). http://www.dijitalajanslar.com/internet-ve-sosyal-medya-kullanici-istatistikleri-2014/ .

Adegoke, S., & Osoyoko, M. (2015). Socio-economic background and access to internet as correlates of students achievement in agricultural science. International Journal of Evaluation and Research in Education (IJERE), 4 (1), 16–21.

Google Scholar  

Adler, B., (2014). News literacy declines with socioeconomic status. Colombia Journalism Review , http://www.cjr.org/news_literacy/teen_digital_literacy_divide.php .

Alspaugh, J. W. (1999). The relationship between the number of students per computer and educational outcomes. Journal of Educational Computing Research, 21 (2), 141–150.

Article   Google Scholar  

Attewell, P., & Battle, J. (1999). Home computers and school performance. Information Society, 15 , 1–10.

Becker, H. J. (1994). Mindless or mindful use of integrated learning systems. International Journal of Educational Research, 21 , 65–79.

Bozionelos, N. (2004). Socio-economic background and computer use: the role of computer anxiety and computer experience in their relationship. International Journal of Human Computer Studies, 61 (5), 725–746.

Duggan, M., Brenner, J., (2013). The demographics of social media Users—2012. Pew internet and American life project. http://www.pewinternet.org/Reports/2013/Social-media-users.aspx.

Eurostat, (2014). Being young in Europe today-digital world. http://www.ec.europa.eu/eurostat/statistics-explained/index.php/Being_young_in_Europe_today_-_digital_world

Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Gebhardt, E. (2014). Preparing for life in a digital age: The IEA International Computer and Information Literacy Study international report . Berlin: Springer.

Book   Google Scholar  

Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Gebhardt, E. (2015). ICILS 2013 Technical Report .

Gokcearslan, S., & Seferoglu, S. (2005). Öğrencilerin evde bilgisayar kullanımına ilişkin bir çalışma . Pamukkale: Eğitim Bilimleri Kongresi.

Hargittai, E. (2010). Digital Na(t)ives? Variation in internet skills and uses among members of the “Net Generation”. Sociological Inquiry, 80 , 92–113. doi: 10.1111/j.1475-682X.2009.00317.x .

Hativa, N. (1994). What you design is not what you get (WYDINWYG): Cognitive, affective, and social impacts of learning with ILS—an integration of findings from six-years of qualitative and quantitative studies. International Journal of Educational Research, 21 , 81–111.

IEA. (2014). Press Release, Brussels.

James, R., & Lamb, C. (2000). Integrating science, mathematics, and technology in middle school technology-rich environments: A study of implementation and change. School Science and Mathematics, 100 , 27–36.

Kozma, R. B. (1991). Learning with media. Review of Educational Research, 61 , 179–211.

Kulik, J. A., & Kulik, C. L. C. (1987). Review of recent literature on computer-based instruction. Contemporary Education Review, 12 , 222–230.

Lenhart, A., 2012. Teens and video. Pew Internet and American Life Project. http://www.pewinternet.org/2012/05/03/teens-online-video/ .

Lenhart, A., Purcell, K., Smith, A., Zickuhr, K., (2010). Social media and mobile Internet use among teens and young adults. Pew Internet and American Life Project. http://www.pewinternet.org/~/media//Files/Reports/2010/PIP_Social_Media_and_Young_Adults_Report_Final_with_toplines.pdf .

Liao, Y. K. (1992). Effects of computer-assisted instruction on cognitive outcomes: A meta-analysis. Journal of Research on Computing and Education, 24 , 367–380.

Mahmood, K. (2009). Gender, subject and degree differences in university students’ access, use and attitudes toward information and communication technology (ICT). International Journal of Education and Development using Information and Communication Technology (IJEDICT), 5 (3), 206–216.

Olafsson, K., Livingstone, S., Haddon, L. (2014). Children’s use of online technologies in Europe, a review of the European evidence base , http://www.eukidsonline.net

Osunade O., (2003). An Evaluation of the Impact of Internet Browsing on Students’ Academic Performance at the Tertiary Level of Education in Nigeria http://www.rocare.org/smallgrant_nigeria2003.pdf

Papanastasiou, E. (2002). Factors that differentiate mathematics students in Cyprus, Hong Kong, and the USA. Educational Research and Evaluation, 8 , 129–146.

Papanastasiou, E. (2003). Science literacy by technology by country: USA, Finland and Mexico. Making sense of it all. Research in Science and Technological Education, 21 (2), 129–146.

Papanastasiou, E. C., Zembylas, M., & Vrasidas, C. (2005). An examination of the PISA database to explore the relationship between computer use and science achievement. Educational Research and Evaluation, 11 (6), 529–543.

Pew Research Center, (2015). http://www.pewinternet.org/2015/04/09/teens-social-media-technology-2015/pi_2015-04-09_teensandtech_01/

Prensky, M. (2001). Digital natives, digital immigrants, on the horizon . Bradford: MCB University Press.

Ravitz, J., Mergendoller, J., & Rush, W. (2002). Cautionary tales about correlations between student computer use and academic achievement. Paper Presented at Annual Meeting of the American Educational Research Association, New Orleans

Rideout, V.J., Foehr, U.G., Roberts D.F. (2010). Generation M: Media in the lives of 8 - to 18 - year - olds. Henry J. Kaiser Family Foundation. http://www.files.eric.ed.gov/fulltext/ED527859.pdf

Ryan, A. W. (1991). Meta-analysis of achievement effects of microcomputer applications in elementary schools. Educational Administration Quarterly, 27 , 161–184.

Sivin-Kachala, J. (1998). Report on the Effectiveness of Technology in Schools, 1990–1997 . Washington, DC: Software Publisher’s Association.

TIB, (2011). Çocukların Sosyal Paylaşım Sitelerini Kullanım Alışkanlıkları Araştırması , http://www.guvenliweb.org.tr/istatistikler/files/Cocuk_sosyal_paylasim_arastirma_raporu.pdf

TurkStat, (2014). Information and Communication Technology (ICT) usage survey in households & individuals. http://www.tuik.gov.tr/PreTabloArama.do

Van Dusen, L. M., & Worthren, B. R. (1994). The impact of integrated learning system implementation on student outcomes: Implications for research and evaluation. International Journal of Educational Research, 21 , 13–24.

Warschauer, M. (2003). Dissecting the “digital divide”: A case Study in Egypt. The Information Society: An International Journal, 19 (4), 1.

Weaver, G. C. (2000). An examination of the National Educational Longitudinal Study (NELS: 88) Database to probe the correlation between computer use in school and improvement in test scores. Journal of Science Education and Technology, 9 , 121–133.

Weller, H. (1996). Assessing the impact of computer-based learning in science. Journal of Research on Computing in Education, 28 , 461–486.

Wen, M. L., Barrow, L. H. & Alspaugh, J. (2002). How Does Computer Availability Influence Science Achievement. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, New Orleans.

Wenglinsky, H. (1998). Does it compute? The relationship between educational technology and student achievement in mathematics . Princeton: Policy Information Center, Educational Testing Service.

Zichuhr, K., Madden, M. (2012). Older adults and internet use. http://www.pewinternet.org/2012/06/06/older-adults-and-internet-use/

Download references

Authors’ contributions

MA developed the research questions, conducted the literature research and drafted significant parts of the manuscript. SM developed the research design, conducted data compilation, the statistical analysis and interpretation of results and drafted significant parts of the manuscript. Both authors have given final approval of the manuscript version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read and approved the final manuscript.

Acknowledgements

The authors are thankful to Diego Cortes for his very useful comments while reviewing this paper.

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and affiliations.

Ministry of National Education, Ankara, Turkey

Meral Alkan

IEA Data Processing and Research Center, Hamburg, Germany

Sabine Meinck

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sabine Meinck .

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Alkan, M., Meinck, S. The relationship between students’ use of ICT for social communication and their computer and information literacy. Large-scale Assess Educ 4 , 15 (2016). https://doi.org/10.1186/s40536-016-0029-z

Download citation

Received : 23 September 2015

Accepted : 03 August 2016

Published : 13 September 2016

DOI : https://doi.org/10.1186/s40536-016-0029-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Social Network
  • Social Medium
  • Social Communication
  • Social Network Site
  • Instant Messaging

quantitative research title related to ict

  • Research article
  • Open access
  • Published: 10 September 2020

Enhancing the roles of information and communication technologies in doctoral research processes

  • Sarah J. Stein   ORCID: orcid.org/0000-0003-0024-1675 1 &
  • Kwong Nui Sim 2  

International Journal of Educational Technology in Higher Education volume  17 , Article number:  34 ( 2020 ) Cite this article

15k Accesses

5 Citations

3 Altmetric

Metrics details

While information and communication technologies (ICT) are prominent in educational practices at most levels of formal learning, there is relatively little known about the skills and understandings that underlie their effective and efficient use in research higher degree settings. This project aimed to identify doctoral supervisors’ and students’ perceptions of their roles in using ICT. Data were gathered through participative drawing and individual discussion sessions. Participants included 11 students and two supervisors from two New Zealand universities. Focus of the thematic analysis was on the views expressed by students about their ideas, practices and beliefs, in relation to their drawings. The major finding was that individuals hold assumptions and expectations about ICT and their use; they make judgements and take action based on those expectations and assumptions. Knowing about ICT and knowing about research processes separately form only part of the work of doctoral study. Just as supervision cannot be considered independently of the research project and the student involved, ICT skills and the use of ICT cannot be considered in the absence of the people and the project. What is more important in terms of facilitating the doctoral research process is students getting their “flow” right. This indicates a need to provide explicit support to enable students to embed ICT within their own research processes.

Background/context

Information and communication technologies (ICT) can bring either joy or challenge to well-versed academic practices, and either create barriers to learning and development or be the answer to needs. While some grasp and pursue opportunities to make use of various ICT for study, research and teaching, others struggle. Despite documented and anecdotal positive urges to adopt ICT to increase and improve efficiency and effectiveness, staff and students struggle experience ICT as needless and difficult-to-use interruptions. There is often little need seen to change practices by introducing ICT into ways of working. Exploring these views and experiences was the focus of this project. Being empathetic to views such as those expressed by Castañeda and Selwyn ( 2018 ), we did not approach this investigation from a position that assumes that ICT are natural and needed solutions to problems related to improving and facilitating effective learning, teaching and research. Rather, we took a more neutral stance, wishing to explore the experiences of those involved, namely, students and staff, through discussion with them about their ICT practices and views, and with a specific focus on doctoral study and supervision.

Doctoral supervision and the role, place and nature of the doctorate are receiving increasing attention in higher education research literature. A wide range of topics have been covered from, for example, the importance and types of support for students throughout candidature (e.g., Zhou & Okahana, 2019 ); to the teaching and supervision aspects of doctoral supervision (e.g., Åkerlind & McAlpine, 2017 ; Cotterall, 2011 ; Lee, 2008 ).

With advancements in, accessibility to, and development of, ICT within education settings has come a plethora of research into online and blended learning. These studies often highlight the capacity of ICT for facilitating teaching, learning and administrative activity within educational institutions and systems (e.g., Marshall & Shepherd, 2016 ). They cover numerous areas of importance from theoretical, practical, and philosophical angles and include the perspectives and needs of learners, educators and institutions (e.g., Nichols, Anderson, Campbell, & Thompson, 2014 ).

There are also studies on student use of ICT, though not necessarily doctoral students, and these cover a wide range of topics including specific ICT skills (e.g., Stensaker, Maassen, Borgan, Oftebro, & Karseth, 2007 ). Where postgraduate research students are concerned, some studies on ICT skill development and support provide some insights about students (e.g., Dowling & Wilson, 2017 ), and institutional ICT systems (Aghaee et al., 2016 ).

Notable about the many of these studies cited above is the use of self-reporting tools as mechanisms for gathering data about student use and views about ICT. While self-reports are valuable ways to collect such data about self-efficacy, they do have limits. In online learning environments, the role of self-efficacy, for example, is still being contested. It has been argued that learners from a variety of disciplines and learning settings will tend to overestimate claims about their performance and/or knowledge and skills (e.g., Mahmood, 2016 ).

All these studies help to ‘map the territory’ of ICT, their use at individual and institutional levels and related practices. Much advice and guidance can be gleaned from the literature as well, although relatively little for the specific integration of ICT within the doctoral research and supervision environment. Based on the literature that is available though, all indications are that (doctoral) students adopt educational practices incorporating limited ICT use, even though the use of ICT has grown enormously in the last 10 to 20 years. With the current interest in ensuring success of students and completion of doctoral degrees being closely related to high quality supervision, there is a need to improve supervision practices and within that, advance understandings about how to support students in their use of ICT for their doctoral research.

This project

This project aimed to explore doctoral student and supervisor views and use of ICT within the doctoral process. The intention was to bring to light perceptions that could give clues as to how to make practical modifications to the content and scope of professional development support for supervisors and students, in order to help them to make best use of ICT. In addition, consideration was given to the way data would be collected to ensure that more than just the self-reported perspectives of the participants were included.

An interpretivist research approach (Erickson, 2012 ) framed this study to support a focus on understanding the world from the perspectives of those who live it. Thus, the approach was well-suited to exploring perceptions about the use of ICT in our context.

Thus, this study did not commence with any hypotheses related to the influence of ICT in doctoral research in mind. Instead, as the interpretive frame of the research implies, this study investigated ways in which participants expressed their experiences of engaging and integrating ICT in support of their doctoral research processes. The data tapped into the participants’ (PhD students and doctoral supervisors) perspectives, as they expressed them. The research approach thus defined and shaped all aspects of the data gathering, analyses and presentation. In this way, alignment was ensured among the ontological, epistemological and practical implementation of the research project.

The study took place in two New Zealand universities where participants were either employees or students. Both universities are research-intensive, with histories of producing high-level research across many disciplines. Both institutions have clear and well-formulated policies and practices governing doctoral study - PhD and professional doctorate - and these include supporting that study through supervision. A specialised unit in each institution manages the administration of the doctoral degree. Couching “supervision” as essentially a (specialised) teaching activity, each unit also provides or coordinates professional development for staff in the art of supervision, and for students in the skills and processes of undertaking doctoral degree study.

Participants

Participants included doctoral students and supervisors from the two universities. As a result of an invitation to all students and supervisors, in total, 11 students and two supervisors responded. The students were PhD students at varying levels of completion. There was a mix of part time and full-time students from a variety of discipline backgrounds including health sciences, sciences, commerce and humanities. The supervisors were experienced and were from humanities and sciences.

Data sources

Data were collected using a 3-tier participative drawing process (Wetton & McWhirter, 1998 ). This strategy involved a series of two or three interview/discussions, along with participant-made drawings, which formed the focus of the interview/discussions.

This strategy generated two sources of data - interview transcripts and participant drawings – and involved the following (3-tier) phases:

Initial semi-structured interview/discussion to ascertain information about participants’ backgrounds and other details they saw relevant to share. In addition, they were asked about their use of ICT generally as well as within the doctoral process. It was a chance for the researchers to gain some understanding of participants’ views and practices in relation to ICT and their doctoral/supervision journeys.

Participant drawing . The participants were asked to make a drawing in their own time and before the second interview/discussion. Guidelines for the drawing suggested that they think of a way to illustrate their research process first, then to add onto the drawing any ICT (such as devices, websites, programmes, applications) that they make use of in the process.

Follow-up interview/discussion . During this phase, each participant was asked to explain the drawing’s features and how it made sense in terms of the project he or she was undertaking. This included discussion about how their supervision was working, how they worked with supervisors, and how the ICT they had included in the drawing worked within the process. They were also asked about elements that were not in the drawing, for example, certain ICT or activities that might have appeared in a typical account of a doctoral research process but were not included.

All interview/discussions were audio recorded and transcriptions of the recordings were returned to the participants for checking. The drawings were scanned and stored electronically.

In line with the interpretive approach that framed and governed our study, the data were analysed shortly after being gathered. Analysis of the data contributed to the development of ideas about participants’ perceptions, and these were refined progressively across the instances that researchers met with participants. Perceptions were thus checked, rechecked and refined against each data set.

This iterative and inductive approach (Thomas, 2006 ) involved thematic analysis (Silverman, 2001 ) and the capture of major and common ideas (Mayring, 2000 ) expressed by participants about how ICT are perceived and used in doctoral research processes. This approach helped to operationalise a process of co-construction between researchers and participants. Through checking, rechecking, refining and confirming, the researchers were able to articulate their understanding of participant perceptions that matched participants’ expressed thoughts.

The outcome of the analysis process was four assertions concerning ways the students perceived and understood ICT within doctoral study. Because there were only two supervisor participants, the data from the supervisors served to support the assertions we were more confidently able to make about student perceptions.

Research approach, quality assurance conditions and context

Despite the (what might be argued, small) number of volunteer participants who showed interest in, and committed themselves to, this study (i.e., no drop-outs or selection being made from a pool), it is worth noting that the researchers worked with each participant over an extended period of time (prolonged engagement), focused on investigating and gathering identifiable, as well as documentable, aspects of the participants’ ICT understandings and practices (persistent observation), and employed analysis techniques that incorporated peer debriefing, member checking, and fair presentation of assertions (Guba & Lincoln, 1989 ).

The aim was to unlock and identify views of reality held by the participants. The empirical evidence was used to help develop commentary and critique of the phenomenon which was the focus of the study (i.e., ICT use), including what the phenomenon is and how it occurs/is enacted/revealed in a particular context (viz., in doctoral research). This was, therefore, a different kind of study from one that might commence with a hypothesis, which would be concerned more with objectivity, explanation and testable propositions. In short, the methods employed in the current study fitted the intention to solve a “puzzle” about a phenomenon in relation to a particular context.

As this study involved human participants, ethical approval was gained through the institutional processes. This approval (University of Otago Human Ethics Committee reference number D17/414 and Victoria University of Wellington, Ethics Committee reference number 0000023415) enabled data collection methods described in the previous section to be carried out for any doctoral students and supervisors who volunteered to participate in this study. Ethical consent, use and care of the data as well as the ethical treatment of students and staff as participants were integral to the research design, planning and implementation of the whole study.

Findings and discussion

The four assertions are now presented. Each assertion is described and quotations from the interview/discussions along with examples of drawings from the student participants are used to illustrate aspects of each assertion.

Assertion 1: ICT are impartial tools; it does not matter how ICT are used, because the endpoint, that is, thesis completion, is the justification. ICT and people are separate and separated entities.

Students talked about how they worked on their thesis document and on the process of the study they were undertaking. Comments focused on various ICT being used and often on skills needed in order to use them. Some students expressed the view that ICT were tools, separate from the project and the person involved, to be used to achieve an endpoint. For example,

So long as it's formatted – it shouldn't matter - that's their [editors’] responsibility, not mine.
There’s probably a bit more about Zoom [web conferencing application] I could learn but again for me unless it’s a problem, I’m not going to go looking for it… not just for the sake of it at the moment.

Motivation to achieve an outcome was a focus of comments that support this assertion. For many participants, the aim to complete the study and write a thesis was, naturally, a large driver for how they were managing their study. Time was precious, and they would do what they had to do to reach their goal. To be motivated to learn about a new ICT, there needed to be a purpose that sharply focussed on achieving that end.

If the technologies are suddenly not available] I’m happy to sit down with a typewriter and learn it… If I’m not driven, I won’t bother.

This focus is illustrated in Fig.  1 . The drawing shows clearly identified components that make up major elements within the stages of producing the research for the thesis. ICT are listed in relation to those components.

figure 1

ICT and people are separate and separated entities

Supervisors too, tended to focus on thesis production rather than on the process of producing a thesis that includes the use of ICT (i.e., as opposed to their very clear and explicit focus on the research process). An example illustrating this is:

Generally, people think the standard of the people getting or earning a PhD is that this person should be an independent researcher. [But no] After all, we only examine a particular thesis [and] there are lots of inputs from supports and supervision from supervisors.

In summary, this assertion focusses strongly on the experience of doctoral study being about getting the project done within a research journey that gives minimal regard to the affordances of ICT. ICT are framed as necessary but also fraught, especially due to the effort and time that draw attention away from the primary goal.

Assertion 2: ICT are tools or mechanisms that prompt active thought on practices with respect to planning and managing thesis writing and project execution. ICT and individuals work alongside each other.

Views that expressed notions of there being a close interactive relationship between students and ICT came through in several of the discussions with the participants. The focus on achieving goals and endpoints was strong, but the expression of how to achieve those goals, capitalising upon the affordances that ICT present, was different from the way views were expressed in relation to Assertion 1.

On a simple level, this student describes the checking he did when weighing up the merits of a piece of software to meet his needs.

I normally do a trial version… have a play with it. And if I think they are useful then I might try it on a project. And if then I feel it’s definitely worth investing… then I’ll go buy it.

Others simply liked to explore, to see whether there was potential in any ICT they encountered, as in,

Sometimes I just like playing with stuff to see what they can do and then if they tick my boxes then I keep them and if they don't, I move on. So it's more kind of ‘search and discover’ than kind of looking for something, you know.

Describing a deeper level of activity, a degree of critique and active reflection were indicated by another student when he said,

…we tried an electronic version of putting together a programme for a New Zealand conference and I was surprised how long it took us. Whereas in the past I’ve worked with [colleagues] and we’ve just moved pieces of paper around on the floor for abstracts and we were done really quickly.

These sentiments are well-captured in Fig.  2 . Here, the focus is on experimenting with ICT rather than the research process. The process of working things out to suit the individual is foregrounded.

figure 2

ICT and individuals work alongside each other

Whereas Assertion 1-type expressions presented effort in a generally negative light, Assertion 2-type expressions couched effort as an assumed part of learning something new. There was a sense expressed in comments that there will be a way to manage the “problem” to be solved, which then generated the necessary motivation to engage effort. For example,

You just know what you know when you start off; when you're unsure about what you need to do. There's a bit of a barrier in front of you. It feels a bit intimidating and overwhelming, and then you get into it and it just works. And you just kind of put all the pieces together and get something out at the end.

There was a sense that supervisors’ perspectives of ICT might support this assertion too. For instance,

[ICT are] integral to everything now – there's no such thing as doing it without [them] anymore – these are the tools with which we do all the things we do.

In summary, this assertion captures the views of students who engage actively in making decisions about which, how and why they incorporate ICT into doctoral research practices.

Assertion 3: Knowing about ICT is only part of the thinking; what is more important is getting the “flow” right. ICT and the individual are in a complementary partnership.

Perhaps prompted by the nature of the drawing task, which was to illustrate how ICT fitted within the whole process of doctoral study, several students described the challenges to bringing everything together into one process made up of many parts, sections and subsections. One participant focussed on her “workflow” in order to manage the multiple documents, tasks and schedule involved in her doctoral research journey.

What systems do I use, what's my workflow? So, I actually spent some weeks looking at … ideas from other PhD students about their workflows and how they manage it.

Similar to Assertion 2-type comments, ‘getting one’s flow right’ involved exploration and an amount of reflective decision-making. For example,

So I did a play around with that [ICT] and found it was quite useful … So I’m trying to be quite disciplined about when I’ve got a document, entering it at the time, reading an article, throw in heaps of tags rather than not …And I simply keep a note, cross referencing to the actual articles. I like to have the articles and for some key ones I like to make a note. So, if it’s a seminal paper that I know I’ll be referring back to.

Thus, students talked about how hard they worked to set up routines and processes to enable them to manage time and their research projects. As in the above excerpts, they referred to categorising documents, searching for resources, undertaking analysis, managing data, and producing the thesis itself.

In working out one’s system or flow, this student highlighted the need to know about the affordances of ICT and how others had made use of them.

…you do need to know a bit about each of the individual … capabilities of the different systems to know what's even possible… but alongside that you're kind of reading other people's ideas of how they did it, and you think that bit might work for me oh, but that bit won't… so then you can kind of mix and match a bit.

The drawing in Fig.  3 highlights the “flow”. Absent of all words, this illustration draws attention to the movement of ideas, thoughts, processes and actions, from a number of different points but all ultimately converging or contributing to the one path.

figure 3

ICT and the individual are in a complementary partnership

There was a hint that at least one of the supervisors saw the need for a workflow in this same vein: “So long as [the students are] happy with what they’re using – they should use ‘a’ system,”

In summary, this assertion highlights that what is important with respect to ICT and the doctoral process is how it all comes together within one’s flow. That flow incorporates active effort on the part of the individual in finding ICT and practices that suit the individual’s approaches as well as their project demands.

Assertion 4: ICT are not neutral; there is a two-way interaction between technologies as artefacts and the use of them to achieve ends. ICT and the person are intricately linked through multiple active, practical, goal-oriented connections.

This assertion draws attention to the nature of technology as a phenomenon; that technology is not an impartial tool that has no influence on the way humans act and react. This assertion presents ICT as an artefact of technological design activity; as a source of improving efforts to achieve an endpoint; but also as an influencer and even determiner of the thinking and practices of the person interacting with the ICT (e.g., Baird, 2002 ).

On what could be argued a superficial level, this student noted some active connection between the person and the software application, beyond simple use, when he commented:

I think it goes both ways, the product has to be intuitive and you’ve got to have a little bit of inclination to try out different things.

Others went beyond the superficial to describe more in-depth relationships between themselves and the ICT they were using. When discussing her use of software to help her manage her project and her time, this student talked about how the ICT she was using supported and enhanced her thinking.

Using the application] really changed the way I started to think about [my research]. I started to be less worried about the big overwhelming long term stuff that was out there and just think, okay, this week, what am I going to do this week, how am I going to be really efficient and targeted, and I think that really helped me.

Following is another example of how ICT helped solve a problem while simultaneously having an influence on behaviour; in this instance with organising notes, ideas and documents.

“… and it's the same with my note-taking because [the programme] that I use has a similar sort of functionality that it can search text that you've written but also search notes and PDF docs and those kind of things, so it means that when you've had a random thought and put it somewhere you can find it again. Which is huge for me, so I guess that … the power of the search engine is probably the thing that drove me to become paperless, so it helps me to organize myself much better. … filing paper is a skill that I have not mastered whereas filing digital stuff is not as important because you can always just find it again.

Figure  4 illustrates this intricately intertwined interactivity among person, purpose, project, ICT and outcomes.

figure 4

ICT and the person are intricately linked through multiple active, practical, goal-oriented connections

While we did not find strong evidence for supervisors’ thoughts about this integrated and embedded notion of ICT, one supervisor did note “I could probably build them into my system, but I just never have”.

In summary, Assertion 4 highlights the integral role that ICT can be perceived to play in doctoral research processes. This is more than the working-alongside connection illustrated by Assertion 2 and the complementary partnership characterised by Assertion 3.

Assertions 1 and 2 highlight that individuals hold assumptions about, and have expectations of, ICT use; and those expectations and assumptions influence and determine their judgements about ICT and their use of ICT. The assertions point to connections between perceptions and practices. Assertion 1 describes a perception that ICT are separate from the person and the task-at-hand, while Assertion 2 presents a perception in which the person and the ICT are working alongside each other in harmony or at least in a loose partnership. Both assertions focus on endpoints, but the endpoints vary according to the perception of where ICT fit into the journey towards their achievement. For Assertion 1-type expressions, there is one major endpoint. For Assertion 2-type expressions, there are multiple, shorter-term endpoints that build towards achieving the major goal of completing the thesis.

Building on Assertions 1 and 2 are Assertions 3 and 4, which highlight what may be argued as more complex levels of perceiving and working with ICT. Both assertions give some focus to inter-connections, where people and ICT partner or collaborate. Assertion 3 depICT a perception that is about complementarity; where ICT affordances are seen as worthwhile when they support and enhance the work of the individual in ways that make sense to that individual. Assertion 4 builds on Assertion 3 by bringing to light the relationship in which the person alters and changes thinking or practices because of the influence that ICT affordances can have. No evidence was found to support a possible additional claim that as well as ICT causing individuals to alter and modify thinking and behaviours due to their existence, ICT, in turn, are perceived to be able to alter their ways of responding to the people who use them. This is not out of the realms of possibility of course, with ICT increasingly being designed and built to be able to respond to users’ needs.

It is also worth mentioning that the ‘types’ of ICT and the extent of their use by the participants was not the focus of this study. However, the findings suggested that the participants’ ICT use, regardless of their PhD phase and broad discipline background, might have reflected their inability to realise the advantages of learning how to use current ICT-related devices, tools, and applications to enhance the process of undertaking their doctoral research. The evidence that emerged in this study indicated that participants’ perspectives of ICT determined their adoption practices in general (i.e., as illustrated through the four assertions). The boarder higher education context including the specific institution and supervisors, might have neglected the explicit support of PhD students’ ICT capability development in this process.

In addition, while there is no similar study being found thus far, the insights gained from this study are actually similar to the findings in the research studies into the role of ICT in undergraduate education (Butson & Sim, 2013 ; Sim & Butson, 2013 , 2014 ). Results in those studies, demonstrated students’ low levels of ICT use, may be an indication that digital devices and digital tools do not play a significant role in daily study practices. Researchers such as Esposito, Sangrà & Maina ( 2013 ) also show that the PhD students’ learning to become researchers in the digital age is much more complex than is often suggested (e.g., the skills of Prenksy ( 2001 ) “digital natives”). Becoming a researcher involves developing a complex set of knowledge, intellectual abilities, techniques and professional standards. The Researcher Development Framework (Careers Research and Advisory Centre (CRAC), 2010 ) illustrates one useful attempt at mapping out that complexity. It could be that both students’ and supervisors’ adoption of ICT for academic purposes has been overshadowed or taken for granted as a consequence of their advanced academic level.

Implications

The four assertions can be used to provide some guidance to those supporting and participating in doctoral research processes. Students and supervisors do possess a vast array of skills, knowledge and abilities. They have a variety of experiences as well as varying reasons and levels of motivation. Their skills and capacity to make use of ICT to support their roles in the research process vary as well. The assertions that have emerged from this study will inform the planning for support activities to enhance supervisors’ and students’ professional development, whatever their background and needs.

Depending on the perceptions held about ICT and the relationship between ICT and the person in the context of the task and its goals (i.e., the doctoral study) within the doctoral research process as depicted in the four assertions, ICT tend to be seen as a challenge, a change or an opportunity. In the context of ICT use, doctoral students and supervisors may:

assume that if they do not already know how to use something it is not worth learning or exploring as that learning brings with it risk to quality, efficiency and effectiveness of the doctoral research process; and/or.

assume that students will work out the place that ICT play within the research process for themselves.

The findings of this study suggest the need to.

challenge existing ICT knowledge and skill, and to support acceptance of the need to change practices;

teach technological thinking, to enable choice and decision making about ICT;

embed ICT into practices in meaningful ways to suit individual and project needs;

highlight (explicit) responsibilities about thinking and planning skills with respect to making the best use of ICT, to ensure efficiency and effectiveness;

realise that the research process is as much about how it happens as what happens;

recast assumptions about the doctoral research process to embed ICT within it;

reflect on the meaning of effectiveness and efficiency in the context of doctoral research; and the effects of ICT in supporting and facilitating them;

understand that there is a link among ICT thinking and practice: using ICT can enhance or raise ideas that were never thought of before.

This study explored perceptions of doctoral supervisors and students of the role and place of ICT in supervision and study. It generated four assertions characterising those perceptions the relationships among people, ICT and the task-at-hand, that is, the supervised research process. As Castañeda and Selwyn ( 2018 ) argue, it is important that we have an active commitment to ‘think otherwise’ about how ICT might be better implemented across higher education settings” (p. 8). We should not assume that ICT are not important enough to let them fade into the background as they become normalised, without questioning the interrelationships that are happening between the person and the ICT. In the doctoral research setting, as one example of a higher education context, ICT do have a role to play. They cannot and should not be ignored. But seeing ICT in relationship to the person and to the setting is essential.

This project has provided insights into the doctoral students and supervisors’ perceptions of the roles played by ICT during doctoral research process. There are complex human factors, including assumptions, attitudes and conceptions about academic practices, influencing and determining perspectives as well as how ICT are incorporated into doctoral research process, behaviours and practices. Just as Kandiko and Kinchin ( 2012 ) argue that supervision cannot be looked at in the absence of the research work in which it occurs, we argue that doctoral students’ understanding and use of ICT cannot be considered independently of their research work; and that work includes relationships with their project, their supervisors, within the context of the institution, and with the ICT they do and could engage with.

Directly associated with the outcomes of this study, future studies and further exploration could focus on:

ICT use by larger and more diverse groups of doctoral students from a range of fields within discipline areas at institutions outside New Zealand;

building on the findings in order to determine how intensity of ICT use might change for students across the course of their candidature, and in relation to the nature of their research projects;

the role of supervisors, academic departments, and institutions in supporting and enhancing students’ practices and beliefs about ICT in research processes;

the ways in which supervisors engage ICT in their daily academic practices, with a view to exploring how, or if, their ICT use is an influence on PhD students’ beliefs and behaviours in using ICT.

Studying ICT in these directions could offer fresh perspectives and opportunities to think differently and reveal an active way of understanding the role of ICT in doctoral education.

Availability of data and materials

These are not available for open access as their access is bound by the ethical agreement approved by the two institutions and made with the participants in the study.

Aghaee, N., Jobe, W. B., Karunaratne, T., Smedberg, Å., Hansson, H., & Tee, M. (2016). Interaction gaps in PhD education and ICT as a way forward: Results from a study in Sweden. International Review of Research in Open and Distance Learning , 17 (3) Retrieved from https://search.proquest.com/docview/1805463156?accountid=14700 .

Åkerlind, G., & McAlpine, L. (2017). Supervising doctoral students: Variation in purpose and pedagogy. Studies in Higher Education , 42 (9), 1686–1698. https://doi.org/10.1080/03075079.2015.1118031 .

Article   Google Scholar  

Baird, D. (2002). Thing knowledge: Function and truth. Techné: Research in Philosophy and Technology , 6 (2), 96–105. https://scholar.lib.vt.edu/ejournals/SPT/v6n2/ .

MathSciNet   Google Scholar  

Butson, R., & Sim, K. N. (2013). The role of personal computers in undergraduate education. International Journal of Digital Literacy and Digital Competence , 4 (3), 1–9. https://doi.org/10.4018/ijdldc.201307010 .

Careers Research and Advisory Centre (CRAC) (2010). Researcher development framework , (pp. 1–22) Retrieved from https://www.vitae.ac.uk/vitae-publications/rdf- related/researcher-development-framework-rdf-vitae.pdf .

Castañeda, L., & Selwyn, N. (2018). More than tools? Making sense of the ongoing digitizations of higher education. International Journal of Educational Technology in Higher Education , 15 (22), 1–10. https://doi.org/10.1186/s41239-018-0109-y .

Cotterall, S. (2011). Doctoral students writing: Where's the pedagogy? Teaching in Higher Education , 16 (4), 413–425. https://doi.org/10.1080/13562517.2011.560381 .

Dowling, R., & Wilson, M. (2017). Digital doctorates? An exploratory study of PhD candidates’ use of online tools. Innovations in Education and Teaching International , 54 (1), 76–86. https://doi.org/10.1080/14703297.2015.1058720 .

Erickson F. (2012). Qualitative research methods for science education. In Fraser, B., Tobin, K., & McRobbie, C. J. (Eds.), Second international handbook of science education . (Springer International Handbooks of Education, Vol. 2, pp. 1451–69). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-9041-7_93 .

Google Scholar  

Esposito, A., Sangrà, A., & Maina, M. (2013). How Italian PhD students reap the benefits of instiutional resources and digital services in the open web. Proceedings of the International technology, education and development (INTED) conference , pp. 6490-6500. Valencia: Spain. ISBN: 978-84-616-2661-8.

Guba, E. G., & Lincoln, Y. S. (1989). Fourth generation evaluation . Newbury Park: Sage.

Kandiko, C. B., & Kinchin, I. M. (2012). What is a doctorate? A concept-mapped analysis of process versus product in the supervision of lab-based PhDs. Educational Research , 54 (1), 3–16. https://doi.org/10.1080/00131881.2012.658196 .

Lee, A. (2008). How are doctoral students supervised? Concepts of doctoral research supervision. Studies in Higher Education , 33 (3), 267–281. https://doi.org/10.1080/03075070802049202 .

Mahmood, K. (2016). Do people overestimate their information literacy skills? A systematic review of empirical evidence on the Dunning-Kruger effect. Communications in Information Literacy , 10 (2), 199–212. https://doi.org/10.15760/comminfolit.2016.10.2.24 .

Marshall, S., & Shepherd, D. (2016). E-learning in tertiary education. Highlights from Ako Aotearoa projects . Wellington: Ako Aotearoa https://akoaotearoa.ac.nz/download/ng/file/group-4/e-learning-in-tertiary-education-highlights-from-ako-aotearoa-research.pdf .

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research , 1 (2) Retrieved from https://search.proquest.com/docview/867646667?accountid=14700 .

Nichols, M., Anderson, B., Campbell, M., & Thompson, J. (2014). An online orientation to open, flexible and distance learning Ako Aotearoa and the distance education Association of New Zealand (DEANZ). https://ako.ac.nz/knowledge-centre/an-online-orientation-to-open-flexible-and-distance-learning/ .

Prenksy, M. (2001). Digital natives, digital immigrants, part II. Do they really think differently? On the . Horizon , 9 (6), 1–6.

Silverman, D. (2001). Interpreting qualitative data. 2nd Ed. London: Sage.

Sim, K. N., & Butson, R. (2013). Do undergraduates use their personal computers to support learning? Procedia - Social and Behavioral Sciences , 103 , 330–339. https://doi.org/10.1016/j.sbspro.2013.10.341 .

Sim, K. N., & Butson, R. (2014). To what degree are undergraduate students using their personal computers to support their daily study practices? IAFOR Journal of Education , 2 (1), 158–171 Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ1080348&site=ehost-live .

Stensaker, B., Maassen, P., Borgan, M., Oftebro, M., & Karseth, B. (2007). Use, updating and integration of ICT in higher education: Linking purpose, people and pedagogy. Higher Education , 54 , 417–433. https://doi.org/10.1007/s10734-006-9004-x .

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. American Journal of Evaluation , 27 (2), 237–246. https://doi.org/10.1177/1098214005283748 .

Wetton, N. M., & McWhirter, J. (1998). Images and curriculum development in health education. In J. Prosser (Ed.), Image-based research: A sourcebook for qualitative researcher , (pp. 263–283). London: Falmer Press.

Zhou, E., & Okahana, H. (2019). The role of department supports on doctoral completion and time-to-degree. Journal of College Student Retention: Research, Theory & Practice , 20 (4), 511–529. https://doi.org/10.1177/1521025116682036 .

Download references

Acknowledgements

We thank the students and supervisors who shared their reflections and willingly engaged with us in this project.

We acknowledge the support of Ako Aotearoa, The National Centre for Tertiary Teaching Excellence, New Zealand through its Regional Hub Project Fund (RHPF), and the support of our institutions, University of Otago and Victoria University of Wellington.

Author information

Authors and affiliations.

Distance Learning, University of Otago, Dunedin, New Zealand

Sarah J. Stein

Centre for Academic Development, Victoria University of Wellington, Wellington, New Zealand

Kwong Nui Sim

You can also search for this author in PubMed   Google Scholar

Contributions

The authors are responsible for the entire project that is reported in this paper. The writing of the manuscript was led by the first author in collaboration with the second author. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Sarah J. Stein .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Stein, S.J., Sim, K.N. Enhancing the roles of information and communication technologies in doctoral research processes. Int J Educ Technol High Educ 17 , 34 (2020). https://doi.org/10.1186/s41239-020-00212-3

Download citation

Received : 02 February 2020

Accepted : 05 May 2020

Published : 10 September 2020

DOI : https://doi.org/10.1186/s41239-020-00212-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Doctoral research and supervision
  • Information and communication technologies
  • Participative drawing

quantitative research title related to ict

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

100+ Quantitative Research Topics For Students

Quantitative Research Topics

Quantitative research is a research strategy focusing on quantified data collection and analysis processes. This research strategy emphasizes testing theories on various subjects. It also includes collecting and analyzing non-numerical data.

Quantitative research is a common approach in the natural and social sciences , like marketing, business, sociology, chemistry, biology, economics, and psychology. So, if you are fond of statistics and figures, a quantitative research title would be an excellent option for your research proposal or project.

How to Get a Title of Quantitative Research

How to make quantitative research title, what is the best title for quantitative research, amazing quantitative research topics for students, creative quantitative research topics, perfect quantitative research title examples, unique quantitative research titles, outstanding quantitative research title examples for students, creative example title of quantitative research samples, outstanding quantitative research problems examples, fantastic quantitative research topic examples, the best quantitative research topics, grade 12 quantitative research title for students, list of quantitative research titles for high school, easy quantitative research topics for students, trending topics for quantitative research, quantitative research proposal topics, samples of quantitative research titles, research title about business quantitative.

Finding a great title is the key to writing a great quantitative research proposal or paper. A title for quantitative research prepares you for success, failure, or mediocre grades. This post features examples of quantitative research titles for all students.

Putting together a research title and quantitative research design is not as easy as some students assume. So, an example topic of quantitative research can help you craft your own. However, even with the examples, you may need some guidelines for personalizing your research project or proposal topics.

So, here are some tips for getting a title for quantitative research:

  • Consider your area of studies
  • Look out for relevant subjects in the area
  • Expert advice may come in handy
  • Check out some sample quantitative research titles

Making a quantitative research title is easy if you know the qualities of a good title in quantitative research. Reading about how to make a quantitative research title may not help as much as looking at some samples. Looking at a quantitative research example title will give you an idea of where to start.

However, let’s look at some tips for how to make a quantitative research title:

  • The title should seem interesting to readers
  • Ensure that the title represents the content of the research paper
  • Reflect on the tone of the writing in the title
  • The title should contain important keywords in your chosen subject to help readers find your paper
  • The title should not be too lengthy
  • It should be grammatically correct and creative
  • It must generate curiosity

An excellent quantitative title should be clear, which implies that it should effectively explain the paper and what readers can expect. A research title for quantitative research is the gateway to your article or proposal. So, it should be well thought out. Additionally, it should give you room for extensive topic research.

A sample of quantitative research titles will give you an idea of what a good title for quantitative research looks like. Here are some examples:

  • What is the correlation between inflation rates and unemployment rates?
  • Has climate adaptation influenced the mitigation of funds allocation?
  • Job satisfaction and employee turnover: What is the link?
  • A look at the relationship between poor households and the development of entrepreneurship skills
  • Urbanization and economic growth: What is the link between these elements?
  • Does education achievement influence people’s economic status?
  • What is the impact of solar electricity on the wholesale energy market?
  • Debt accumulation and retirement: What is the relationship between these concepts?
  • Can people with psychiatric disorders develop independent living skills?
  • Children’s nutrition and its impact on cognitive development

Quantitative research applies to various subjects in the natural and social sciences. Therefore, depending on your intended subject, you have numerous options. Below are some good quantitative research topics for students:

  • The difference between the colorific intake of men and women in your country
  • Top strategies used to measure customer satisfaction and how they work
  • Black Friday sales: are they profitable?
  • The correlation between estimated target market and practical competitive risk assignment
  • Are smartphones making us brighter or dumber?
  • Nuclear families Vs. Joint families: Is there a difference?
  • What will society look like in the absence of organized religion?
  • A comparison between carbohydrate weight loss benefits and high carbohydrate diets?
  • How does emotional stability influence your overall well-being?
  • The extent of the impact of technology in the communications sector

Creativity is the key to creating a good research topic in quantitative research. Find a good quantitative research topic below:

  • How much exercise is good for lasting physical well-being?
  • A comparison of the nutritional therapy uses and contemporary medical approaches
  • Does sugar intake have a direct impact on diabetes diagnosis?
  • Education attainment: Does it influence crime rates in society?
  • Is there an actual link between obesity and cancer rates?
  • Do kids with siblings have better social skills than those without?
  • Computer games and their impact on the young generation
  • Has social media marketing taken over conventional marketing strategies?
  • The impact of technology development on human relationships and communication
  • What is the link between drug addiction and age?

Need more quantitative research title examples to inspire you? Here are some quantitative research title examples to look at:

  • Habitation fragmentation and biodiversity loss: What is the link?
  • Radiation has affected biodiversity: Assessing its effects
  • An assessment of the impact of the CORONA virus on global population growth
  • Is the pandemic truly over, or have human bodies built resistance against the virus?
  • The ozone hole and its impact on the environment
  • The greenhouse gas effect: What is it and how has it impacted the atmosphere
  • GMO crops: are they good or bad for your health?
  • Is there a direct link between education quality and job attainment?
  • How have education systems changed from traditional to modern times?
  • The good and bad impacts of technology on education qualities

Your examiner will give you excellent grades if you come up with a unique title and outstanding content. Here are some quantitative research examples titles.

  • Online classes: are they helpful or not?
  • What changes has the global CORONA pandemic had on the population growth curve?
  • Daily habits influenced by the global pandemic
  • An analysis of the impact of culture on people’s personalities
  • How has feminism influenced the education system’s approach to the girl child’s education?
  • Academic competition: what are its benefits and downsides for students?
  • Is there a link between education and student integrity?
  • An analysis of how the education sector can influence a country’s economy
  • An overview of the link between crime rates and concern for crime
  • Is there a link between education and obesity?

Research title example quantitative topics when well-thought guarantees a paper that is a good read. Look at the examples below to get started.

  • What are the impacts of online games on students?
  • Sex education in schools: how important is it?
  • Should schools be teaching about safe sex in their sex education classes?
  • The correlation between extreme parent interference on student academic performance
  • Is there a real link between academic marks and intelligence?
  • Teacher feedback: How necessary is it, and how does it help students?
  • An analysis of modern education systems and their impact on student performance
  • An overview of the link between academic performance/marks and intelligence
  • Are grading systems helpful or harmful to students?
  • What was the impact of the pandemic on students?

Irrespective of the course you take, here are some titles that can fit diverse subjects pretty well. Here are some creative quantitative research title ideas:

  • A look at the pre-corona and post-corona economy
  • How are conventional retail businesses fairing against eCommerce sites like Amazon and Shopify?
  • An evaluation of mortality rates of heart attacks
  • Effective treatments for cardiovascular issues and their prevention
  • A comparison of the effectiveness of home care and nursing home care
  • Strategies for managing effective dissemination of information to modern students
  • How does educational discrimination influence students’ futures?
  • The impacts of unfavorable classroom environment and bullying on students and teachers
  • An overview of the implementation of STEM education to K-12 students
  • How effective is digital learning?

If your paper addresses a problem, you must present facts that solve the question or tell more about the question. Here are examples of quantitative research titles that will inspire you.

  • An elaborate study of the influence of telemedicine in healthcare practices
  • How has scientific innovation influenced the defense or military system?
  • The link between technology and people’s mental health
  • Has social media helped create awareness or worsened people’s mental health?
  • How do engineers promote green technology?
  • How can engineers raise sustainability in building and structural infrastructures?
  • An analysis of how decision-making is dependent on someone’s sub-conscious
  • A comprehensive study of ADHD and its impact on students’ capabilities
  • The impact of racism on people’s mental health and overall wellbeing
  • How has the current surge in social activism helped shape people’s relationships?

Are you looking for an example of a quantitative research title? These ten examples below will get you started.

  • The prevalence of nonverbal communication in social control and people’s interactions
  • The impacts of stress on people’s behavior in society
  • A study of the connection between capital structures and corporate strategies
  • How do changes in credit ratings impact equality returns?
  • A quantitative analysis of the effect of bond rating changes on stock prices
  • The impact of semantics on web technology
  • An analysis of persuasion, propaganda, and marketing impact on individuals
  • The dominant-firm model: what is it, and how does it apply to your country’s retail sector?
  • The role of income inequality in economy growth
  • An examination of juvenile delinquents’ treatment in your country

Excellent Topics For Quantitative Research

Here are some titles for quantitative research you should consider:

  • Does studying mathematics help implement data safety for businesses
  • How are art-related subjects interdependent with mathematics?
  • How do eco-friendly practices in the hospitality industry influence tourism rates?
  • A deep insight into how people view eco-tourisms
  • Religion vs. hospitality: Details on their correlation
  • Has your country’s tourist sector revived after the pandemic?
  • How effective is non-verbal communication in conveying emotions?
  • Are there similarities between the English and French vocabulary?
  • How do politicians use persuasive language in political speeches?
  • The correlation between popular culture and translation

Here are some quantitative research titles examples for your consideration:

  • How do world leaders use language to change the emotional climate in their nations?
  • Extensive research on how linguistics cultivate political buzzwords
  • The impact of globalization on the global tourism sector
  • An analysis of the effects of the pandemic on the worldwide hospitality sector
  • The influence of social media platforms on people’s choice of tourism destinations
  • Educational tourism: What is it and what you should know about it
  • Why do college students experience math anxiety?
  • Is math anxiety a phenomenon?
  • A guide on effective ways to fight cultural bias in modern society
  • Creative ways to solve the overpopulation issue

An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones:

  • The link between global warming and climate change
  • What is the greenhouse gas impact on biodiversity and the atmosphere
  • Has the internet successfully influenced literacy rates in society
  • The value and downsides of competition for students
  • A comparison of the education system in first-world and third-world countries
  • The impact of alcohol addiction on the younger generation
  • How has social media influenced human relationships?
  • Has education helped boost feminism among men and women?
  • Are computers in classrooms beneficial or detrimental to students?
  • How has social media improved bullying rates among teenagers?

High school students can apply research titles on social issues  or other elements, depending on the subject. Let’s look at some quantitative topics for students:

  • What is the right age to introduce sex education for students
  • Can extreme punishment help reduce alcohol consumption among teenagers?
  • Should the government increase the age of sexual consent?
  • The link between globalization and the local economy collapses
  • How are global companies influencing local economies?

There are numerous possible quantitative research topics you can write about. Here are some great quantitative research topics examples:

  • The correlation between video games and crime rates
  • Do college studies impact future job satisfaction?
  • What can the education sector do to encourage more college enrollment?
  • The impact of education on self-esteem
  • The relationship between income and occupation

You can find inspiration for your research topic from trending affairs on social media or in the news. Such topics will make your research enticing. Find a trending topic for quantitative research example from the list below:

  • How the country’s economy is fairing after the pandemic
  • An analysis of the riots by women in Iran and what the women gain to achieve
  • Is the current US government living up to the voter’s expectations?
  • How is the war in Ukraine affecting the global economy?
  • Can social media riots affect political decisions?

A proposal is a paper you write proposing the subject you would like to cover for your research and the research techniques you will apply. If the proposal is approved, it turns to your research topic. Here are some quantitative titles you should consider for your research proposal:

  • Military support and economic development: What is the impact in developing nations?
  • How does gun ownership influence crime rates in developed countries?
  • How can the US government reduce gun violence without influencing people’s rights?
  • What is the link between school prestige and academic standards?
  • Is there a scientific link between abortion and the definition of viability?

You can never have too many sample titles. The samples allow you to find a unique title you’re your research or proposal. Find a sample quantitative research title here:

  • Does weight loss indicate good or poor health?
  • Should schools do away with grading systems?
  • The impact of culture on student interactions and personalities
  • How can parents successfully protect their kids from the dangers of the internet?
  • Is the US education system better or worse than Europe’s?

If you’re a business major, then you must choose a research title quantitative about business. Let’s look at some research title examples quantitative in business:

  • Creating shareholder value in business: How important is it?
  • The changes in credit ratings and their impact on equity returns
  • The importance of data privacy laws in business operations
  • How do businesses benefit from e-waste and carbon footprint reduction?
  • Organizational culture in business: what is its importance?

We Are A Call Away

Interesting, creative, unique, and easy quantitative research topics allow you to explain your paper and make research easy. Therefore, you should not take choosing a research paper or proposal topic lightly. With your topic ready, reach out to us today for excellent research paper writing services .

Leave a Reply Cancel reply

quantitative research title related to ict

171+ Most Recent And Good ICT Research Topics For Students in 2024

In the fast-changing world of technology and communication, choosing good research topics is essential for students wanting to explore this always-changing field. This list of ICT research topics for students and ideas is like a starting point for students to look into the latest advancements, tackle current problems, and contribute to how technology changes our world.

From looking at how computers learn and protect them from online threats to thinking about what’s right or wrong with new technologies, these research topics cover many interesting areas. Students can explore things like using big amounts of information to help make decisions or finding out how blockchain can keep our information safe. There’s also the chance to look at how technology affects society, like who has access to it, and think about what’s fair when using our personal information.

By looking into the best ICT research topics for students , they can learn more about technology and have a say in its development. Each research topic gives a different way to think about and solve problems, helping students get into technology and communication.

Table of Contents

What Is ICT Research Topics?

ICT research topics are basically subjects that researchers study to learn more about computers and communication. It’s a wide area that includes making computers learn and decide independently, protecting them from online problems, and figuring out how to use lots of information to make better choices.

Researchers are also looking into how to keep our information safe using a special kind of technology called blockchain. They explore the fair use of technology and study how it affects different social groups. Plus, they check out the good and bad sides of using technology daily.

By looking into these topics, researchers help us understand technology better and develop new and better ways to use it. Each topic is like a different way of thinking about and solving problems, ensuring technology improves and works well for everyone.

How Can I Find Good ICT Research Topics For Students?

Trying to find good research topics in ICT for students? Here’s a simple guide to help you out:

How Can I Find Good ICT Research Topics For Students

  • Keep Updated: Stay informed about the latest things happening in the tech world. Read magazines, websites, and other sources to learn about new technologies and their challenges.
  • Think About What You Like: Consider what you enjoy in the wide tech world. Whether it’s smart machines, online safety, or working with lots of data, choosing a topic you’re passionate about will keep you interested.
  • Look at What Others Are Doing: Check out what scientists write about in academic sources. This can help you see what’s missing in what we know and where there’s room for more research.
  • Talk to Your Friends and Teachers: Chat with your friends, classmates, and teachers. They might have ideas or opinions that can help you find an interesting question to study.
  • Useful Tech Ideas: Find topics that can be useful in the real world. Think about how your research can help solve problems or make tech better.
  • Read the Rules: Check if your school has any rules about the topics you can choose. Following these rules will ensure your topic fits your school’s expectations.
  • Join Events: Go to tech conferences and workshops. These events often show off the newest research and might suggest what to study.
  • Think and Plan: Take some time to think and make a plan. Create a map of your ideas. This can help you see how different things connect.
  • Think About What’s Right: Consider what’s the right thing to do. Choose a topic that follows the rules and is considered fair and good.
  • Get Advice: Ask your teachers or other trusted adults for advice once you have ideas. They can help you make your idea better.

List of Best ICT Research Topics For Students In 2024

Here are the various Best ICT Research Topics for students it is such as;

Best ICT Research Topics

Unique ict research topics for students, most interesting ict research topics for high school students, good ict research topics for grade 11, creative ict research topics for grade 12, cool research topics in ict education, excellent communication and technology research topics for college students, hot ict projects for students, recent ict research topics for undergraduates, latest google scholar research topics in ict, great google scholar research topics in ict quantitative, what is the main problem of ict students for quantitative research titles.

Here is the problem of ICT students for Quantitative research titles:

What Is The Main Problem Of ICT Students For Quantitative Research Titles

Sample Research Proposal Topics In Information And Communication Technology PDF

Here are the ICT research topics for students Pdf is given below:

What Are The Best Titles In Research That Are Related To Ict?

Here are some examples of titles that represent diverse aspects of ICT research:

Great ICT Research Topics for Students open doors for exploring the world of technology in ways that are interesting and useful. These topics give students chances to learn by doing, helping them understand and solve real-world problems using Information and Communication Technology (ICT). Choosing from a variety of topics allows students to focus on what they enjoy, whether it’s artificial intelligence, keeping things safe online, or looking at how technology affects our lives.

The goal of these Good ICT Research Topics for Students is to encourage creativity and smart thinking. Whether it’s understanding how tech influences society or thinking about what’s right and fair in the digital world, these topics cover a wide range. Students can pick topics that match their interests and skills.

To sum it up, Good ICT Research Topics for Students not only make learning exciting but also give students the chance to be part of shaping the future of technology. Through these research projects, students become valuable contributors to the ongoing discussions about Information and Communication Technology, making a real impact on the ever-changing world of tech.

Related Posts

Qualitative Research Topics for High School Students

Top 300+ Qualitative Research Topics For High School Students

Google Scholar Research Topics

100+ Most Interesting Google Scholar Research Topics For Students [Updated 2024]

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Thesis Helpers

quantitative research title related to ict

Find the best tips and advice to improve your writing. Or, have a top expert write your paper.

130 Information Technology Research Topics And Quick Writing Prompts

Information Technology Research Topics

The field of information technology is one of the most recent developments of the 21st century. Scholars argue that we are living in a technological age. Despite this buzz, however, many students still find it challenging to compose an information technology research topic.

Nonetheless, we are here to show you the way and lead you accordingly. Let us explore professional topics in information technology together then.

Quality Information Technology Topics For Research Paper

  • The effects of Artificial Intelligence on complex and tedious tasks
  • Discuss the development of computational & synthetic biology in research
  • What are the limitations to the study of computer architecture in colleges?
  • Discuss the evolution of animation, computer graphics, and game science
  • Critically analyze how computing is contributing to the development
  • What are the emerging fields of study in computer data science?
  • How to manage data in the age of the 5G technology
  • The impact of human-computer interaction on innovations
  • How is machine learning exposing students to more recent opportunities in life?
  • Evaluate molecular information systems and their role in biotechnology
  • How information technology has contributed to natural language processing
  • What are the latest developments in programming languages and software engineering
  • Analyze emerging opportunities in the field of Robotics

College Research Paper Topics in Information Technology

  • The rising security and privacy concerns with technological advancements
  • What are the considerations when setting up systems and networking?
  • Discuss the theory of computation and its contribution to information technology
  • Why is ubiquitous computing attracting fewer students?
  • The role of wireless and sensor systems in making the world a safe place
  • Reasons, why cloud computing has helped save on space and efficiency
  • Why are most computer students comprised of the male?
  • Discuss the essence of amorphous computing in the 21st century
  • How has biomedical mining impacted the health sector?
  • Can cyborgs relate well with the man?
  • How neural networking is making brain surgery a swift process
  • The role of swarm intelligence in collaboration and brainstorming
  • How are companies maximizing the use of Big Data?

List of Topics For Research Paper in Information Technology

  • Discuss how the Internet of Things is transforming how people conduct their activities
  • Challenges to software-defined networking
  • How are marketers and promoters taking up software as a service?
  • The role of augmented reality and virtual reality in healthcare systems
  • How intelligent apps are making life easier for man
  • The role of information technology in detecting fake news and malicious viral content
  • Long term effects of a technologically oriented world
  • Technological advancements that made it possible for the SpaceX shuttle to land on the International Space Station
  • How technology is making learning more practical and student-centered
  • What role has technology played in the spread of world pandemics?
  • How are governments able to shut down the Internet for their countries during particular events?
  • Does social media make the world a global village or a divided universe?
  • Discuss the implications of technological globalization

Unique Information Technology Research Topics

  • Discuss the areas of life which have been least exploited using technology
  • What are the considerations for setting up an educational curriculum on computer technology?
  • Compare and contrast between different computer processing powers
  • Why is Random Access Memory so crucial to the functioning of a computer?
  • Should computer as a subject be mandatory for all students in college?
  • How information technology has helped keep the world together during the quarantine period
  • Discuss why most hackers manage to break firewalls of banks
  • Are automated teller machine cards a safe way of keeping your bank details?
  • Why should every institution incorporate automated systems in its functions?
  • Who is more intelligent than the other? Man or Computer systems?
  • How is NASA implementing the use of Information technology to explore space?
  • The impact of automated message replies on smartphones.
  • Do mobile phones contain radiations that cause cancer?

IT Research Topics For High School Students

  • How does natural language processing compare with machine learning?
  • What is the role of virtual reality in the entertainment industry?
  • Discuss the application of computer vision technology in autonomous cars
  • How have CCTVs assisted in keeping the world safe?
  • Effects of phishing and spying on relationships
  • Why cyber espionage is on the rise in the face of the 5G technology
  • Compare and contrast between content-based recommendation vs. collaborative filtering
  • Evaluate the interconnection between the Internet of things and artificial intelligence
  • Analyze the amount of data generated from the Internet of things in devices
  • Ethical and legal implications of various technological practices
  • How technology has contributed to the formation of Genetically Modified Organisms
  • Describe in detail the vaccine development process
  • Why nanotechnology may be the only hope left in treating HIV

Hot Topics in IT

  • How companies can incorporate information technologies in their policy management systems
  • The role of IT in enhancing service delivery in customer care centers
  • How IT has made advertising more appealing and authentic to the consumer
  • Discuss the innovation of the Next Generation education systems
  • Why are there fewer Information Technology colleges and universities in developing countries?
  • Discuss WIFI connectivity in developed countries
  • What are the considerations when purchasing a Bandwidth Monitor?
  • How to create an effective Clinic Management System for intensive care
  • Factors that necessitate the development of an Enterprise Level System Information Management
  • Is it possible to develop fully functional Intelligent Car Transportation Systems?
  • Why the world should adopt E-Waste Management systems ASAP
  • Discuss the impact of weather and climate on internet strength and connectivity
  • The role of advanced information technologies preserving classified documents

Interesting Information Technology Topics

  • Human resource information management systems in large organizations
  • Evaluate the effectiveness of online enterprise resource planning
  • A critical analysis of object tracking using radial function networks
  • How has Bluetooth mobile phone technology developed over time?
  • Ethical challenges arising from new media information technologies
  • How the computer has developed over the last decade
  • The role of social media in enhancing communication strategies
  • Why new media technologies have made physical newspapers obsolete
  • The impact of the Internet of news sourcing, production, distribution, and sharing
  • Discuss the structures of various communication structures
  • How social media is making ads easily accessible
  • The impact of social networking sites on personal contact
  • Discuss the latest content marketing ideas in the wake of information technology

Topics Related To Information Technology

  • The impact of media exposure to adolescents and teenagers
  • How mass media is slowly but surely taking over the place of personal socialization
  • How to use the Internet and interactive media as advertising tools
  • Discuss the trends in music marketing in a digital world
  • The use of hype in new media technologies
  • The impact of using YouTube and video blogs in communication messages
  • Discuss the challenges that are arising as a result of new media technologies
  • How to build trustful relationships in virtual communication channels
  • Why it is impossible to maintain privacy in social media
  • Reasons why cyberbullying continues to persist in various communication technologies
  • The change in interpersonal communication with the invention of information technology
  • Is the future of information technologies right?
  • Discuss how sensationalism is persisting in the wake of new media technologies

Research Proposal Topics in Information Technology

  • Is it possible to live in a world without social media?
  • The impact of mass media on morality and decency in the 21st century
  • Advantages and disadvantages of renewable energy sources
  • How effective is hydrogen power over others?
  • An overview of renewable energy technologies
  • The impact of robots in improving food safety
  • How are drones useful in keeping large acres of land secure?
  • The impact of 3D printing on the practice of medicine
  • The effectiveness of having robots in infectious disease units
  • The impact of hydroponic farming
  • How to improve disease control using technology
  • Eliminating poisonous substances in food using technology
  • The effectiveness of robotic surgeries

Hot Topics in Computer Science

  • Distinguish between virtual reality and human perception
  • How are the inventions in the field of computer science transforming the world
  • Evaluate the effectiveness of high-dimensional data modeling
  • Limitations to the field of computer science
  • Are colleges and universities producing competent computer scientists?
  • How ethical hacking has turned out to be worse
  • The essence of having specialized banking systems
  • What is the most effective security measure: A serial code or fingerprint?
  • The development of programming languages
  • The effect of computational thinking on science
  • Is it possible to eliminate stalking?
  • Ways of improving patent rights for technological innovations
  • An overview of the different types of software security

Did you find an IT topic for your assignment? If not, our expert thesis writers are here for you. Order a research paper from us today and get to enjoy professional services.

cybersecurity research topics

Make PhD experience your own

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

quantitative research title related to ict

Explore your training options in 10 minutes Get Started

  • Graduate Stories
  • Partner Spotlights
  • Bootcamp Prep
  • Bootcamp Admissions
  • University Bootcamps
  • Coding Tools
  • Software Engineering
  • Web Development
  • Data Science
  • Tech Guides
  • Tech Resources
  • Career Advice
  • Online Learning
  • Internships
  • Apprenticeships
  • Tech Salaries
  • Associate Degree
  • Bachelor's Degree
  • Master's Degree
  • University Admissions
  • Best Schools
  • Certifications
  • Bootcamp Financing
  • Higher Ed Financing
  • Scholarships
  • Financial Aid
  • Best Coding Bootcamps
  • Best Online Bootcamps
  • Best Web Design Bootcamps
  • Best Data Science Bootcamps
  • Best Technology Sales Bootcamps
  • Best Data Analytics Bootcamps
  • Best Cybersecurity Bootcamps
  • Best Digital Marketing Bootcamps
  • Los Angeles
  • San Francisco
  • Browse All Locations
  • Digital Marketing
  • Machine Learning
  • See All Subjects
  • Bootcamps 101
  • Full-Stack Development
  • Career Changes
  • View all Career Discussions
  • Mobile App Development
  • Cybersecurity
  • Product Management
  • UX/UI Design
  • What is a Coding Bootcamp?
  • Are Coding Bootcamps Worth It?
  • How to Choose a Coding Bootcamp
  • Best Online Coding Bootcamps and Courses
  • Best Free Bootcamps and Coding Training
  • Coding Bootcamp vs. Community College
  • Coding Bootcamp vs. Self-Learning
  • Bootcamps vs. Certifications: Compared
  • What Is a Coding Bootcamp Job Guarantee?
  • How to Pay for Coding Bootcamp
  • Ultimate Guide to Coding Bootcamp Loans
  • Best Coding Bootcamp Scholarships and Grants
  • Education Stipends for Coding Bootcamps
  • Get Your Coding Bootcamp Sponsored by Your Employer
  • GI Bill and Coding Bootcamps
  • Tech Intevriews
  • Our Enterprise Solution
  • Connect With Us
  • Publication
  • Reskill America
  • Partner With Us

Career Karma

  • Resource Center
  • Bachelor’s Degree
  • Master’s Degree

The Top 10 Most Interesting Technology Research Topics

With technological innovation streamlining processes in businesses at all levels and customers opting for digital interaction, adopting modern technologies have become critical for success in all industries. Technology continues to positively impact organizations , according to Statista, which is why technology research topics have become common among college-level students.

In this article, we have hand-picked the best examples of technology research topics and technology research questions to help you choose a direction to focus your research efforts. These technology research paper topics will inspire you to consider new ways to analyze technology and its evolving role in today’s world.

Find your bootcamp match

What makes a strong technology research topic.

A strong research topic is clear, relevant, and original. It should intrigue readers to learn more about the role of technology through your research paper. A successful research topic meets the requirements of the assignment and isn’t too broad or narrow.

Technology research topics must identify a broad area of research on technologies, so an extremely technical topic can be overwhelming to write. Your technology research paper topic should be suitable for the academic level of your audience.

Tips for Choosing a Technology Research Topic

  • Make sure it’s clear. Select a research topic with a clear main idea that you can explain in simple language. It should be able to capture the attention of the audience and keep them engaged in your research paper.
  • Make sure it’s relevant. The technology research paper topic should be relevant to the understanding and academic level of the readers. It should enhance their knowledge of a specific technological topic, instead of simply providing vague, directionless ideas about different types of technologies.
  • Employ approachable language. Even though you might be choosing a topic from complex technology research topics, the language should be simple. It can be field-specific, but the technical terms used must be basic and easy to understand for the readers.
  • Discuss innovations. New technologies get introduced frequently, which adds to the variety of technology research paper topics. Your research topic shouldn’t be limited to old or common technologies. Along with the famous technologies, it should include evolving technologies and introduce them to the audience.
  • Be creative . With the rapid growth of technological development, some technology research topics have become increasingly common. It can be challenging to be creative with a topic that has been exhausted through numerous research papers. Your research topic should provide unique information to the audience, which can attract them to your work.

What’s the Difference Between a Research Topic and a Research Question?

A research topic is a subject or a problem being studied by a researcher. It is the foundation of any research paper that sets the tone of the research. It should be broad with a wide range of information available for conducting research.

On the other hand, a research question is closely related to the research topic and is addressed in the study. The answer is formed through data analysis and interpretation. It is more field-specific and directs the research paper toward a specific aspect of a broad subject.

How to Create Strong Technology Research Questions

Technology research questions should be concise, specific, and original while showing a connection to the technology research paper topic. It should be researchable and answerable through analysis of a problem or issue. Make sure it is easy to understand and write within the given word limit and timeframe of the research paper.

Technology is an emerging field with several areas of study, so a strong research question is based on a specific part of a large technical field. For example, many technologies are used in branches of healthcare such as genetics and DNA. Therefore, a research paper about genetics technology should feature a research question that is exclusive to genetics technology only.

Top 10 Technology Research Paper Topics

1. the future of computer-assisted education.

The world shifted to digital learning in the last few years. Students were using the Internet to take online classes, online exams, and courses. Some people prefer distance learning courses over face-to-face classes now, as they only require modern technologies like laptops, mobile phones, and the Internet to study, complete assignments, and even attend lectures.

The demand for digital learning has increased, and it will be an essential part of the education system in the coming years. As a result of the increasing demand, the global digital learning market is expecting a growth of about 110 percent by 2026 .

2. Children’s Use of Social Media

Nowadays, parents allow their children to use the Internet from a very young age. A recent poll by C.S. Mott Children’s Hospital reported that 32 percent of parents allow their children aged seven to nine to use social media sites. This can expose them to cyber bullying and age-inappropriate content, as well as increase their dependence on technology.

Kids need to engage in physical activities and explore the world around them. Using social media sites in childhood can be negative for their personalities and brain health. Analyzing the advantages and disadvantages of the use of technology among young children can create an interesting research paper.

3. The Risks of Digital Voting

Digital voting is an easy way of casting and counting votes. It can save the cost and time associated with traveling to the polling station and getting a postal vote. However, it has a different set of security challenges. A research paper can list the major election security risks caused by digital voting.

Voting in an online format can expose your personal information and decisions to a hacker. As no computer device or software is completely unhackable, the voting system can be taken down, or the hacking may even go undetected.

4. Technology’s Impact on Society in 20 Years

Technological development has accelerated in the last decade. Current technology trends in innovation are focusing on artificial intelligence development, machine learning, and the development and implementation of robots.

Climate change has affected both human life and animal life. Climate technology can be used to deal with global warming in the coming years, and digital learning can make education available for everyone. This technology research paper can discuss the positive and negative effects of technology in 20 years.

5. The Reliability of Self-Driving Cars

Self-driving cars are one of the most exciting trends in technology today. It is a major technology of the future and one of the controversial technology topics. It is considered safer than human driving, but there are some risks involved. For example, edge cases are still common to experience while driving.

Edge cases are occasional and unpredictable situations that may lead to accidents and injuries. It includes difficult weather conditions, objects or animals on the road, and blocked roads. Self-driving cars may struggle to respond to edge cases appropriately, requiring the driver to employ common sense to handle the situation.

6. The Impact of Technology on Infertility

Assisted reproductive technology (ART) helps infertile couples get pregnant. It employs infertility techniques such as In-Vitro Fertilization (IVF) and Gamete Intrafallopian Transfer (GIFT).

Infertility technologies are included in the controversial technology topics because embryonic stem cell research requires extracted human embryos. So, the research can be considered unethical. It is an excellent research topic from the reproductive technology field.

7. Evolution of War Technology

Military technologies have improved throughout history. Modern technologies, such as airplanes, missiles, nuclear reactors, and drones, are essential for war management. Countries experience major innovation in technologies during wars to fulfill their military-specific needs.

Military technologies have controversial ideas and debates linked to them, as some people believe that it plays a role in wars. A research paper on war technology can help evaluate the role of technology in warfare.

8. Using Technology to Create Eco-Friendly Food Packaging

Food technologies and agricultural technologies are trying to manage climate change through eco-friendly food packaging. The materials used are biodegradable, sustainable, and have inbuilt technology that kills microbes harmful to human life.

Research on eco-friendly food packaging can discuss the ineffectiveness of current packaging strategies. The new food technologies used for packaging can be costly, but they are better for preserving foods and the environment.

9. Disease Diagnostics and Therapeutics Through DNA Cloning

Genetic engineering deals with genes and uses them as diagnostics and therapeutics. DNA cloning creates copies of genes or parts of DNA to study different characteristics. The findings are used for diagnosing different types of cancers and even hematological diseases.

Genetic engineering is also used for therapeutic cloning, which clones an embryo for studying diseases and treatments. DNA technology, gene editing, gene therapy, and similar topics are hot topics in technology research papers.

10. Artificial Intelligence in Mental Health Care

Mental health is a widely discussed topic around the world, making it perfect for technology research topics. The mental health care industry has more recently been using artificial intelligence tools and mental health technology like chatbots and virtual assistants to connect with patients.

Venus profile photo

"Career Karma entered my life when I needed it most and quickly helped me match with a bootcamp. Two months after graduating, I found my dream job that aligned with my values and goals in life!"

Venus, Software Engineer at Rockbot

Artificial intelligence has the potential to improve the diagnosis and treatment of mental illness. It can help a health care provider with monitoring patient progress and assigning the right therapist based on provided data and information.

Other Examples of Technology Research Topics & Questions

Technology research topics.

  • The connection between productivity and the use of digital tools
  • The importance of medical technologies in the next years
  • The consequences of addiction to technology
  • The negative impact of social media
  • The rise and future of blockchain technology

Technology Research Questions

  • Is using technology in college classrooms a good or bad idea?
  • What are the advantages of cloud technologies for pharmaceutical companies?
  • Can new technologies help in treating morbid obesity?
  • How to identify true and false information on social media
  • Why is machine learning the future?

Choosing the Right Technology Research Topic

Since technology is a diverse field, it can be challenging to choose an interesting technology research topic. It is crucial to select a good research topic for a successful research paper. Any research is centered around the research topic, so it’s important to pick one carefully.

From cell phones to self-driving cars, technological development has completely transformed the world. It offers a wide range of topics to research, resulting in numerous options to choose from. We have compiled technology research topics from a variety of fields. You should select a topic that interests you, as you will be spending weeks researching and writing about it.

Technology Research Topics FAQ

Technology is important in education because it allows people to access educational opportunities globally through mobile technologies and the Internet. Students can enroll in online college degrees , courses, and attend online coding bootcamps . Technology has also made writing research papers easier with the tremendous amount of material available online.

Yes, technology can take over jobs as robotics and automation continue to evolve. However, the management of these technologies will still require human employees with technical backgrounds, such as artificial intelligence specialists, data scientists , and cloud engineers.

Solar panels and wind turbines are two forms of technology that help with climate change, as they convert energy efficiently without emitting greenhouse gases. Electric bikes run on lithium batteries and only take a few hours to charge, which makes them environmentally friendly. Carbon dioxide captures are a way of removing CO 2 from the atmosphere and storing it deep underground.

Technology helps companies manage client and employee data, store and protect important information, and develop strategies to stay ahead of competitors. Marketing technologies, such as Search Engine Optimization (SEO), are great for attracting customers online.

About us: Career Karma is a platform designed to help job seekers find, research, and connect with job training programs to advance their careers. Learn about the CK publication .

What's Next?

icon_10

Get matched with top bootcamps

Ask a question to our community, take our careers quiz.

Kanza Javed

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Apply to top tech training programs in one click

224 Research Topics on Technology & Computer Science

Are you new to the world of technology? Do you need topics related to technology to write about? No worries, Custom-writing.org experts are here to help! In this article, we offer you a multitude of creative and interesting technology topics from various research areas, including information technology and computer science. So, let’s start!

  • 🔝 Top 10 Topics

👋 Introduction

  • 💾 Top 10 Computer Science Topics

⚙ Artificial Intelligence

💉 biotechnology, 📡 communications and media.

  • 💻Computer Science & Engineering

🔋 Energy & Power Technologies

🍗 food technology, 😷 medical devices & diagnostics, 💊 pharmaceutical technologies.

  • 🚈 Transportation

✋ Conclusion

🔍 references, 🔝 top 10 technology topics.

  • The difference between VR and AR
  • Is genetic engineering ethical?
  • Can digital books replace print ones?
  • The impact of virtual reality on education
  • 5 major fields of robotics
  • The risks and dangers of biometrics
  • Nanotechnology in medicine
  • Digital technology’s impact on globalization
  • Is proprietary software less secure than open-source?
  • The difference between deep learning and machine learning

Is it a good thing that technologies and computer science are developing so fast? No one knows for sure. There are too many different opinions, and some of them are quite radical! However, we know that technologies have changed our world once and forever. Computer science affects every single area of people’s lives.

Arthur clarke quote.

Just think about Netflix . Can you imagine that 24 years ago it didn’t exist? How did people live without it? Well, in 2024, the entertainment field has gone so far that you can travel anywhere while sitting in your room. All you would have to do is just order a VR (virtual reality) headset. Moreover, personal computers give an unlimited flow of information, which has changed the entire education system.

Every day, technologies become smarter and smaller. A smartphone in your pocket may be as powerful as your laptop. No doubt, the development of computer science builds our future. It is hard to count how many research areas in technologies and computer science are there. But it is not hard to name the most important of them.

Artificial intelligence tops the charts, of course. However, engineering and biotechnology are not far behind. Communications and media are developing super fast as well. The research is also done in areas that make our lives better and more comfortable. The list of them includes transport, food and energy, medical, and pharmaceutical areas.

So check out our list of 204 most relevant computer science research topics below. Maybe one of them will inspire you to do revolutionary research!

💾 Top 10 Computer Science Research Topics

💡 technologies & computer science: research ideas.

Many people probably picture robots from the movie “I, Robot” when they hear about artificial intelligence. However, it is far from the truth.

AI is meant to be as close to a rational way of thinking as possible. It uses binary logic (just like computers) to help solve problems in many areas. Applied AI is only aimed at one task. A generalized AI branch is looking into a human-like machine that can learn to do anything.

Robotic hand pressing keyboard laptop.

Applied AI already helps researchers in quantum physics and medicine. You deal with AI every day when online shops suggest some items based on your previous purchases. Siri and self-driving cars are also examples of applied AI.

Generalized AI is supposed to be a copy of multitasking human intelligence. However, it is still in the stage of development. Computer technology has yet to reach the level necessary for its creation.

One of the latest trends in this area is improving healthcare management. It is done through the digitalization of all the information in hospitals and even helping diagnose the patients.

Also, privacy issues and facial recognition technologies are being researched. For example, some governments collect biometric data to reduce and even predict crime.

Research Topics on Artificial Intelligence Technology

Since AI development is exceptionally relevant nowadays, it would be smart to invest your time and effort into researching it. Here are some ideas on artificial intelligence research topics that you can look into:

  • What areas of life machine learning are the most influential?
  • How to choose the right algorithm for machine learning ?
  • Supervised vs. unsupervised machine learning: compare & contrast
  • Reinforcement machine learning algorithms
  • Deep learning as a subset of machine learning
  • Deep learning & artificial neural networks
  • How do artificial neural networks work?
  • A comparison of model-free & model-based reinforcement learning algorithms
  • Reinforcement learning: single vs. multi-agent
  • How do social robots interact with humans?
  • Robotics in NASA
  • Natural language processing: chatbots
  • How does natural language processing produce natural language?
  • Natural language processing vs. machine learning 
  • Artificial intelligence in computer vision
  • Computer vision application: autonomous vehicles
  • Recommender systems’ approaches
  • Recommender systems: content-based recommendation vs. collaborative filtering
  • Internet of things & artificial intelligence: the interconnection
  • How much data do the Internet of things devices generate?

Biotechnology uses living organisms to modify different products. Even the simple thing as baking bread is a process of biotechnology. However, nowadays, this area went as far as changing the organisms’ DNA. Genetics and biochemistry are also a part of the biotechnology area.

The development of this area allows people to cure diseases with the help of new medicines. In agriculture, more and more research is done on biological treatment and modifying plants. Biotechnology is even involved in the production of our groceries, household chemicals, and textiles.

Trends in biotechnology.

There are many exciting trends in biotechnology now that carry the potential of changing our world! For example, scientists are working on creating personalized drugs. This is feasible once they apply computer science to analyze people’s DNA.

Also, thanks to using new technologies, doctors can collect exact data and provide the patients with correct diagnosis and treatment. Now, you don’t even need to leave your place to get a doctor’s check-up. Just use telehealth!

Data management is developing in the biotechnology area as well. Thanks to that, doctors and scientists can store and access a tremendous amount of information.

The most exciting is the fact that new technology enables specialists to assess genetic information to treat and prevent illnesses! It may solve the problem of some diseases that were considered untreatable before.

Research Topics on Biotechnology

You can use the following examples of research questions on biotechnology for presentation or even a PhD paper! Here is a wide range of topics on biotechnology and its relation to agriculture, nanotechnology, and many more:

  • Self-sufficient protein supply and biotechnology in farming
  • Evaporation vs. evapotranspiration
  • DNA cloning and a southern blot
  • Pharmacogenetics & personalized drugs
  • Is cloning “playing God”?
  • Pharmacogenetics: cancer medicines
  • How much can we control our genetics, at what point do we cease to be human?
  • Bio ethics and stem cell research
  • Genetic engineering: gene therapy
  • The potential benefits of genetic engineering
  • Genetic engineering: dangers and opportunities
  • Mycobacterium tuberculosis : counting the proteins
  • Plant genetic enhancement: developing resistance to scarcity
  • Y-chromosome genotyping: the case of South Africa
  • Agricultural biotechnology: GMO crops
  • How are new vaccines developed?
  • Nanotechnology in treating HIV
  • Allergenic potential & biotechnology
  • Whole-genome sequencing in biotechnology
  • Genes in heavy metal tolerance: an overview
  • Food biotechnology & food-borne illnesses
  • How to eliminate heat-resistant microorganisms with ultraviolet?
  • High-throughput screening & biotechnology
  • How do new food processing technologies affect bacteria related to Aspalathus Linearis?
  • Is sweet sorghum suitable for the production of bioethanol in Africa?
  • How can pesticides help to diagnose cancer?
  • How is embelin used to prevent cancer?

One of the first areas that technologies affected was communications and media. People from the last century couldn’t have imagined how easy it would be to get connected with anyone! Internet connection starts appearing even in the most remote places.

Nowadays, media is used not only for social interaction but for business development and educational purposes as well. You can now start an entirely online business or use special tools to promote the existing one. Also, many leading universities offer online degrees.

In communications and media, AI has been playing the role of enhancement recently. The technology helps create personalized content for always demanding consumers.

Developing media also create numerous job opportunities. For instance, recently, an influencer has become a trending career. Influencers always use the most relevant communication tools available. At the moment, live videos and podcasting are on the top.

Now, you just need to reach your smartphone to access all the opportunities mentioned above! You can apply for a college, find a job, or reach out to all your followers online. It is hard to imagine how far communication and media can go…

Communications and Media Technology Research Topics

There are quite a few simple yet exciting ideas for media and communications technology research topics. Hopefully, you will find THE ONE amongst these Information and Communications Technology (ICT) research proposal topics:

  • New media: the importance of ethics in the process of communication
  • The development of computer-based communication over the last decade
  • How have social media changed communication?
  • Media during the disasters: increasing panic or helping reduce it?
  • Authorities’ media representations in different countries: compare & contrast
  • Do people start preferring newspapers to new media again?
  • How has the Internet changed media?
  • Communication networks
  • The impact of social media on super bowl ads
  • Communications: technology and personal contact
  • New content marketing ideas
  • Media exposure and its influence on adolescents
  • The impact of mass media on personal socialization
  • Internet and interactive media as an advertising tool
  • Music marketing in a digital world
  • How do people use hype in the media?
  • Psychology of videoblog communication
  • Media & the freedom of speech
  • Is it possible to build trustful relationships in virtual communication?
  • How to maintain privacy in social media ?
  • Communication technologies & cyberbullying
  • How has the interpersonal communication changed with the invention of computers?
  • The future of the communication technologies
  • Yellow journalism in new media
  • How enterprises use ICT to get a competitive advantage?
  • Healthcare and ICT
  • Can we live without mass media ?
  • Mass media and morality in the 21st century

💻 Computer Science & Engineering

If you have ever wondered how computers work, you better ask a professional in computer science and engineering. This major combines two different, yet interconnected, worlds of machines.

Computer science takes care of the computer’s brain. It usually includes areas of study, such as programming languages and algorithms. Scientists also recognize three paradigms in terms of the computer science field.

For the rationalist paradigm, computer science is a part of math. The technocratic paradigm is focused on software engineering, while the scientific one is all about natural sciences. Interestingly enough, the latter can also be found in the area of artificial intelligence!

Stephen Hawking quote.

On the other hand, computer engineering maintains a computer’s body – hardware and software. It relies quite heavily on electrical engineering. And only the combination of computer science and engineering gives a full understanding of the machine.

If talking about trends and innovations, artificial intelligence development is probably the main one in the area of computer science technology. Big data is the field that has been extremely popular in recent years.

Cybersecurity is and will be one of the leading research fields in our Information Age. The latest trend in computer science and engineering is also virtual reality.

Computer Science Research Topics

If you want to find a good idea for your thesis or you are just preparing for a speech, check out this list of research topics in computer science and engineering:

  • How are virtual reality & human perception connected?
  • The future of computer-assisted education
  • Computer science & high-dimensional data modeling
  • Computer science: imperative vs. declarative languages
  • The use of blockchain and AI for algorithmic regulations
  • Banking industry & blockchain technology
  • How does the machine architecture affect the efficiency of code?
  • Languages for parallel computing
  • How is mesh generation used for computational domains?
  • Ways of persistent data structure optimization
  • Sensor networks vs. cyber-physical system
  • The development of computer graphics: non-photorealistic rendering case
  • The development of the systems programming languages
  • Game theory & network economics
  • How can computational thinking affect science?
  • Theoretical computer science in functional analysis
  • The most efficient cryptographic protocols
  • Software security types: an overview
  • Is it possible to eliminate phishing?
  • Floating point & programming language

Without energy, no technological progress is possible. Scientists are continually working on improving energy and power technologies. Recently, efforts have been aimed at three main areas.

Developing new batteries and fuel types helps create less expensive ways of storing energy. For example, fuel cells can be used for passenger buses. They need to be connected to a source of fuel to work. However, it guarantees the constant production of electricity as long as they have fuel.

One of the potential trends of the next years is hydrogen energy storage. This method is still in the stage of development. It would allow the use of hydrogen instead of electricity.

Trends in energy technologies.

A smart grid is another area that uses information technology for the most efficient use of energy. For instance, the first-generation smart grid tracks the movement of electric energy on the go and sends the information back. It is a great way to correct the consumption of energy in real-time. More development is also done on the issue of electricity generation. It aims at technologies that can produce power from the sources that haven’t been used. The trends in this area include second-generation biofuels and photovoltaic glass.

Energy Technologies Research Topics

Since humanity cannot be using fossil fuels forever, the research in the area of energy can be extremely fruitful. The following list of energy and power technology research paper topics can give you an idea of where to dig:

  • How can fuel cells be used for stationary power generation?
  • Lithium-ion vs. lithium-air batteries: energy density
  • Are lithium-air batteries better than gasoline?
  • Renewable energy usage: advantages and disadvantages
  • The nuclear power usage in the UAE
  • India’s solar installations
  • Gas price increasing and alternative energy sources
  • How can methods of energy transformation be applied with hydrogen energy?
  • Is hydrogen energy our future?
  • Thermal storage & AC systems
  • How to load balance using smart grid?
  • Distributed energy generation to optimize power waste
  • Is the smart energy network a solution to climate change ?
  • The future of the tidal power
  • The possibility of 3D printing of micro stirling engines
  • How can robots be used to adjust solar panels to weather?
  • Advanced biofuels & algae
  • Can photovoltaic glass be fully transparent?
  • Third-generation biofuels : algae vs. crop-based
  • Space-based solar power: myth or reality of the future?
  • Can smaller nuclear reactors be more efficient?
  • Inertial confinement fusion & creal energy
  • Renewable energy technologies: an overview
  • How can thorium change the nuclear power field?

The way we get our food has changed drastically with the technological development. Manufacturers look for ways to feed 7.5 billion people more efficiently. And the demand is growing every year. Now technology is not only used for packaging, but for producing and processing food as well.

Introducing robots into the process of manufacturing brings multiple benefits to the producer. Not only do they make it more cost-efficient, but they also reduce safety problems.

Surprisingly enough, you can print food on the 3D printer now! This technology is applied to produce soft food for people who can’t chew. NASA decided to use it for fun as well and printed a pizza!

Drones now help farmers to keep an eye on crops from above. It helps them see the full picture and analyze the current state of the fields. For example, a drone can spot a starting disease and save the crop.

The newest eco trends push companies to become more environmentally aware. They use technologies to create safer packaging. The issue of food waste is also getting more and more relevant. Consumers want to know that nothing is wasted. Thanks to the new technologies, the excess food is now used more wisely.

Food Technology Research Topics

If you are looking for qualitative research topics about technology in the food industry, here is a list of ideas you don’t want to miss:

  • What machines are used in the food industry?
  • How do robots improve safety in butchery?
  • Food industry & 3D printing
  • 3D printed food – a solution to help people with swallowing disorder?
  • Drones & precision agriculture
  • How is robotics used to create eco-friendly food packaging ?
  • Is micro packaging our future?
  • The development of edible cling film

Healthy food plastic bags.

  • Technology & food waste : what are the solutions?
  • Additives and preservatives & human gut microbiome
  • The effect of citric acid on the orange juice: physicochemical level
  • Vegetable oils in mass production: compare & contrast
  • Time-temperature indicators & food industry
  • Conventional vs. hydroponic farming
  • Food safety: a policy issue in agriculture today
  • How to improve the detection of parasites in food?
  • What are the newest technologies in the baking industry?
  • Eliminating byproducts in edible oils production
  • Cold plasma & biofilms
  • How good are the antioxidant peptides derived from plants?
  • Electronic nose in food industry and agriculture
  • The harm of polyphenols in food

Why does the life expectancy of people get higher and higher every year? One of the main aspects of it is the promotion of innovation in the medical area. For example, the development of equipment helps medical professionals to save many lives.

Thanks to information technology, the work is much more structured now in the medical area. The hospitals use tablets and the method of electronic medical records. It helps them to access and share the data more efficiently.

If talking about medical devices, emerging technologies save more lives than ever! For instance, operations done by robots are getting more and more popular. Don’t worry! Doctors are still in charge; they just control the robots from the other room. It allows operations to be less invasive and precise.

Moreover, science not only helps treat diseases but also prevent them! The medical research aims for the development of vaccines against deadly illnesses like malaria.

Some of the projects even sound more like crazy ideas from the future. But it is all happening right now! Scientists are working on the creation of artificial organs and the best robotic prosthetics.

All the technologies mentioned above are critical for successful healthcare management.

Medical Technology Research Topics

If you feel like saving lives is the purpose of your life, then technological research topics in the medical area are for you! These topics would also suit for your research paper:

  • How effective are robotic surgeries ?
  • Smart inhalers as the new solution for asthma treatment
  • Genetic counseling – a new way of preventing diseases?
  • The benefits of the electronic medical records
  • Erythrocytapheresis to treat sickle cell disease
  • Defibrillator & cardiac resynchronization therapy
  • Why do drug-eluting stents fail?
  • Dissolvable brain sensors: an overview
  • 3D printing for medical purposes
  • How soon will we be able to create artificial organs?
  • Wearable technologies & healthcare
  • Precision medicine based on genetics
  • Virtual reality devices for educational purposes in medical schools
  • The development of telemedicine
  • Clustered regularly interspaced short palindromic repeats as the way of treating diseases
  • Nanotechnology & cancer treatment
  • How safe is genome editing?
  • The trends in electronic diagnostic tools development
  • The future of the brain-machine interface
  • How does wireless communication help medical professionals in hospitals?

In the past years, technologies have been drastically changing the pharmaceutical industry. Now, a lot of processes are optimized with the help of information technology. The ways of prescribing and distributing medications are much more efficient today. Moreover, the production of medicines itself has changed.

For instance, electronic prior authorization is now applied by more than half of the pharmacies. It makes the process of acquiring prior authorization much faster and easier.

The high price of medicines is the number one reason why patients stop using prescriptions. Real-time pharmacy benefit may be the solution! It is a system that gives another perspective for the prescribers. While working with individual patients, they will be able to consider multiple factors with the help of data provided.

The pharmaceutical industry also adopts some new technologies to compete on the international level. They apply advanced data analytics to optimize their work.

Companies try to reduce the cost and boost the effectiveness of the medicines. That is why they look into technologies that help avoid failures in the final clinical trials.

The constant research in the area of pharma is paying off. New specialty drugs and therapies arrive to treat chronic diseases. However, there are still enough opportunities for development.

Pharmaceutical Technologies Research Topics

Following the latest trends in the pharmaceutical area, this list offers a wide range of creative research topics on pharmaceutical technologies:

  • Electronic prior authorization as a pharmacy technological trend
  • The effectiveness of medication therapy management
  • Medication therapy management & health information exchanges
  • Electronic prescribing of controlled substances as a solution for drug abuse issue
  • Do prescription drug monitoring programs really work?
  • How can pharmacists help with meaningful use?
  • NCPDP script standard for specialty pharmacies
  • Pharmaceutical technologies & specialty medications
  • What is the patient’s interest in the real-time pharmacy?
  • The development of the vaccines for AIDS
  • Phenotypic screening in pharmaceutical researches
  • How does cloud ERP help pharmaceutical companies with analytics?
  • Data security & pharmaceutical technologies
  • An overview of the DNA-encoded library technology
  • Pharmaceutical technologies: antibiotics vs. superbugs
  • Personalized medicine: body-on-a-chip approach
  • The future of cannabidiol medication in pain management
  • How is cloud technology beneficial for small pharmaceutical companies?
  • A new perspective on treatment: medicines from plants
  • Anticancer nanomedicine: a pharmaceutical hope

🚈 Transportation Technologies

We used to be focused on making transportation more convenient. However, nowadays, the focus is slowly switching to ecological issues.

It doesn’t mean that vehicles can’t be comfortable at the same time. That is why the development of electric and self-driving cars is on the peak.

Transportation technologies also address the issues of safety and traffic jams. There are quite many solutions suggested. However, it would be hard for big cities to switch to the other systems fast.

One of the solutions is using shared vehicle phone applications. It allows reducing the number of private cars on the roads. On the other hand, if more people start preferring private vehicles, it may cause even more traffic issues.

Transportation technologies.

The most innovative cities even start looking for more eco-friendly solutions for public transport. Buses are being replaced by electric ones. At the same time, the latest trend is using private electric vehicles such as scooters and bikes.

So that people use public transport more, it should be more accessible and comfortable. That is why the payment systems are also being updated. Now, all you would need is to download an app and buy a ticket in one click!

Transportation Technologies Research Topics

Here you can find the best information technology research topics related to transportation technologies:

  • How safe are self-driving cars ?
  • Electric vs. hybrid cars : compare & contrast
  • How to save your smart car from being hijacked?
  • How do next-generation GPS devices adjust the route for traffic?
  • Transportation technologies: personal transportation pods
  • High-speed rail networks in Japan
  • Cell phones during driving: threats and solutions
  • Transportation: electric cars effects
  • Teleportation: physics of the impossible
  • How soon we will see Elon Musk’s Hyperloop?
  • Gyroscopes as a solution for convenient public transportation
  • Electric trucks: the effect on logistics
  • Why were electric scooters banned in some cities in 2018?
  • Carbon fiber as an optional material for unit load devices
  • What are the benefits of the advanced transportation management systems?
  • How to make solar roadways more cost-effective?
  • How is blockchain applied in the transportation industry
  • Transportation technologies: an overview of the freight check-in
  • How do delivery companies use artificial intelligence?
  • Water-fueled cars: the technology of future or fantasy?
  • What can monitoring systems be used to manage curb space?
  • Inclusivity and accessibility in public transport: an overview
  • The development of the mobility-as-a-service

All in all, this article is a compilation of the 204 most interesting research topics on technology and computer science. It is a perfect source of inspiration for anyone who is interested in doing research in this area.

We have divided the topics by specific areas, which makes it easier for you to find your favorite one. There are 20 topics in each category, along with a short explanation of the most recent trends in the area.

You can choose one topic from artificial intelligence research topics and start working on it right away! There is also a wide selection of questions on biotechnology and engineering that are waiting to be answered.

Since media and communications are present in our everyday life and develop very fast, you should look into this area. But if you want to make a real change, you can’t miss on researching medical and pharmaceutical, food and energy, and transportation areas.

Of course, you are welcome to customize the topic you choose! The more creativity, the better! Maybe your research has the power to change something! Good luck, and have fun!

This might be interesting for you:

  • 280 Good Nursing Research Topics & Questions
  • 226 Research Topics on Criminal Justice & Criminology
  • 178 Best Research Titles about Cookery & Food
  • 497 Interesting History Topics to Research
  • 180 Best Education Research Topics & Ideas
  • 110+ Micro- & Macroeconomics Research Topics
  • 417 Business Research Topics for ABM Students
  • 190+ Research Topics on Psychology & Communication
  • 512 Research Topics on HumSS
  • 281 Best Health & Medical Research Topics
  • 501 Research Questions & Titles about Science
  • A List of Research Topics for Students. Unique and Interesting
  • Good Research Topics, Titles and Ideas for Your Paper
  • Databases for Research & Education: Gale
  • The Complete Beginners’ Guide to Artificial Intelligence: Forbes
  • 8 Best Topics for Research and Thesis in Artificial Intelligence: GeeksForGeeks
  • Technology Is Changing Transportation, and Cities Should Adapt: Harvard Business Review
  • Five Technology Trends: Changing Pharmacy Practice Today and Tomorrow (Pharmacy Times)
  • Recent papers in Technology: Academia
  • Research: Michigan Tech
  • What 126 studies say about education technology: MIT News
  • Top 5 Topics in Information Technology: King University Online
  • Research in Technology Education-Some Areas of Need: Virginia Tech
  • Undergraduate Research Topics: Department of Computer Science, Princeton University
  • Student topics: QUT Science and Engineering
  • Developing research questions: Monash University
  • Biotechnology: Definition, Examples, & Applications (Britannica)
  • Medical Laboratory Science Student Research Projects: Rush University
  • Clinical Laboratory Science: Choosing a Research Topic (Library Resource Guide for FGCU Clinical Lab Science students)
  • Share to Facebook
  • Share to Twitter
  • Share to LinkedIn
  • Share to email

Research Proposal Topics: 503 Ideas, Sample, & Guide [2024]

Do you have to write a research proposal and can’t choose one from the professor’s list? This article may be exactly what you need. We will provide you with the most up-to-date undergraduate and postgraduate topic ideas. Moreover, we will share the secrets of the winning research proposal writing. Here,...

278 Interesting History Essay Topics and Events to Write about

A history class can become a jumble of years, dates, odd moments, and names of people who have been dead for centuries. Despite this, you’ll still need to find history topics to write about. You may have no choice! But once in a while, your instructor may let you pick...

150 Argumentative Research Paper Topics [2024 Upd.]

Argumentative research paper topics are a lot easier to find than to come up with. We always try to make your life easier. That’s why you should feel free to check out this list of the hottest and most controversial argumentative essay topics for 2024. In the article prepared by...

420 Funny Speech Topics: Informative, Persuasive, for Presentations

One of the greatest problems of the scholarly world is the lack of funny topics. So why not jazz it up? How about creating one of those humorous speeches the public is always so delighted to listen to? Making a couple of funny informative speech topics or coming up with...

Gun Control Argumentative Essay: 160 Topics + How-to Guide [2024]

After the recent heartbreaking mass shootings, the gun control debate has reached its boiling point. Do we need stricter gun control laws? Should everyone get a weapon to oppose crime? Or should guns be banned overall? You have the opportunity to air your opinion in a gun control argumentative essay....

Best Childhood Memories Essay Ideas: 94 Narrative Topics [2024]

Many people believe that childhood is the happiest period in a person’s life. It’s not hard to see why. Kids have nothing to care or worry about, have almost no duties or problems, and can hang out with their friends all day long. An essay about childhood gives an opportunity...

A List of 272 Informative Speech Topics: Pick Only Awesome Ideas! [2024]

Just when you think you’re way past the question “How to write an essay?” another one comes. That’s the thing students desperately Google: “What is an informative speech?” And our custom writing experts are here to help you sort this out. Informative speaking is a speech on a completely new issue....

435 Literary Analysis Essay Topics and Prompts [2024 Upd]

Literature courses are about two things: reading and writing about what you’ve read. For most students, it’s hard enough to understand great pieces of literature, never mind analyzing them. And with so many books and stories out there, choosing one to write about can be a chore. But you’re in...

335 Unique Essay Topics for College Students [2024 Update]

The success of any college essay depends on the topic choice. If you want to impress your instructors, your essay needs to be interesting and unique. Don’t know what to write about? We are here to help you! In this article by our Custom-Writing.org team, you will find 335 interesting...

147 Social Studies Topics for Your Research Project

Social studies is an integrated research field. It includes a range of topics on social science and humanities, such as history, culture, geography, sociology, education, etc. A social studies essay might be assigned to any middle school, high school, or college student. It might seem like a daunting task, but...

626 Dissertation Topics for Ph.D. and Thesis Ideas for Master Students

If you are about to go into the world of graduate school, then one of the first things you need to do is choose from all the possible dissertation topics available to you. This is no small task. You are likely to spend many years researching your Master’s or Ph.D....

192 Free Ideas for Argumentative or Persuasive Essay Topics

Looking for a good argumentative essay topic? In need of a persuasive idea for a research paper? You’ve found the right page! Academic writing is never easy, whether it is for middle school or college. That’s why there are numerous educational materials on composing an argumentative and persuasive essay, for...

Thanks so much for this! Glad I popped by and I sure did find what I was looking for.

Custom Writing

Thanks for your kind words, Sanny! We look forward to seeing you again!

Thank you very for the best topics of research across all science and art projects. The best thing that I am interested to is computer forensics and security specifically for IT students.

Computer science focuses on creating programs and applications, while information technology focuses on using computer systems and networks. What computer science jobs are there. It includes software developers, web developers, software engineers, and data scientists.

IMAGES

  1. Quantitative Research Title Examples For Ict Students

    quantitative research title related to ict

  2. 😂 Quantitative research title. Format for a quantitative research

    quantitative research title related to ict

  3. The Steps of Quantitative Research

    quantitative research title related to ict

  4. quantitative research title examples for ict students

    quantitative research title related to ict

  5. quantitative research title examples for ict students

    quantitative research title related to ict

  6. quantitative research title examples for ict students

    quantitative research title related to ict

VIDEO

  1. QUANTITATIVE RESEARCH TITLE IDEAS RELATED TO MULTITASKING #geniusai #researchideas

  2. QUANTITATIVE RESEARCH TITLE IDEAS RELATED TO HUMMS STUDENT

  3. Sample Qualitative and Quantitative Research Titles

  4. How to Develop Quantitative Research Titles: Means and Ends

  5. 10th class arithmatic progression 1

  6. RAVIR A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis of Retinal

COMMENTS

  1. 500+ Quantitative Research Titles and Topics

    Quantitative Research Topics. Quantitative Research Topics are as follows: The effects of social media on self-esteem among teenagers. A comparative study of academic achievement among students of single-sex and co-educational schools. The impact of gender on leadership styles in the workplace.

  2. ICT Adoption Impact on Students' Academic Performance ...

    This study investigates and explores the adoption of information communication technology by the universities and the impact it makes on the university students' academic performance. The study also examines the moderators' effect of gender, GPA, and student majors on the relationship between ICT and academic achievement. By using a quantitative research approach and a sample size of 1000 ...

  3. PDF The impact of ICT on learning: A review of research

    636 The impact of ICT on learning: A review of research research in this field has been more consistent and well documented. Two periods of research have been suggested in this review. (a) Research findings and their implications from 1960s to 1980s; (b) Research findings and their implications from1990s to 2000s, and future research.

  4. GRADE-12-ICT-RESEARCH-TITLE-COMPILATION.odt

    grade 12-ict quantitative research title compilation chistel kaye prandas • experiencing low speed internet connection among the students during enhance community quarantine • effects of modern technology on generation z • the negative effects of using gadgets among the students joanna traquina • effectiveness and challenges regarding the use of information communication technology ...

  5. (PDF) Effects of Students' ICT Competencies on Their Research

    By using a quantitative research approach and a sample size of 1000 students, data were collected about the ICT adoption in universities and the relative performance of students belonging to four ...

  6. What are the most popular research topics for ICT in education?

    In my opinion, the most important issues to deal with in education in reference to ICTs are: -Applications of ICTs in Education. -Environments and support environments for Distance Education ...

  7. The use of ICT in educational organizations: A quantitative analysis

    The main goal of this research is analyse the use of ICT by principals of vocational training institutes and schools of second change in Greece in the administration of these organizations ...

  8. Quantitative-comparative research on digital competence in students

    Currently, the figure of the teacher is a key element to train students in the use of new information and communication technologies (ICT), which will positively influence the entire teaching-learning process. Therefore, it is an indispensable requirement in the initial training of the teacher the development of the digital teaching competence, understanding this construct as the set of ...

  9. The relationship between students' use of ICT for ...

    This study investigates the relationship between students' use of information and communication technology (ICT) for social communication and their computer and information literacy (CIL) scores. It also examines whether gender and socioeconomic background moderates this relationship. We utilized student data from IEA's International Computer and Information Study (ICILS) to build ...

  10. Enhancing the roles of information and communication ...

    While information and communication technologies (ICT) are prominent in educational practices at most levels of formal learning, there is relatively little known about the skills and understandings that underlie their effective and efficient use in research higher degree settings. This project aimed to identify doctoral supervisors' and students' perceptions of their roles in using ICT.

  11. 100+ Best Quantitative Research Topics For Students In 2023

    Quantitative research is a common approach in the natural and social sciences, like marketing, business, sociology, chemistry, biology, economics, and psychology. So, if you are fond of statistics and figures, a quantitative research title would be an excellent option for your research proposal or project.

  12. 171+ Most Recent And Good ICT Research Topics For Students

    Unique ICT Research Topics For Students. 1. How People and Computers Interact in Virtual Reality. 2. Using Chains of Blocks to Secure Internet-Connected Devices. 3. Thinking about What's Right in Creating Smart Computers. 4. Stopping Mean Online Behavior: Studying Cyberbullying.

  13. Qualitative Research on Information and Communication Technology

    The methods provided by qualitative research provide the necessary analytical tools and theoretical frameworks to explore these emerging issues. This entry begins with an overview of three current areas of qualitative research on ICT and is then followed by a discussion of the methodological challenges of ICT research.

  14. 130 Top-Notch Information Technology Research Topics

    130 Information Technology Research Topics And Quick Writing Prompts. The field of information technology is one of the most recent developments of the 21st century. Scholars argue that we are living in a technological age. Despite this buzz, however, many students still find it challenging to compose an information technology research topic.

  15. (Pdf) Impact of Ict & Openness on Students' Performance in Quantitative

    The openness can be incorporated by allowing students to identify problem from real life and make use of ICT that helps the learning process to get experience within the limited time. Use of ICT ...

  16. Research into Information and Communications Technology in Education

    Unfortunately, ICT research has not yet provided us with a solid grasp of what this 'new' knowledge or achievement is. ICT research has also not been demonstrably effective in influencing how the billions of pounds spent on computers in schools around the world can be translated into improvements in the learning process or its outcomes.

  17. Technology Research Topics

    A research topic is a subject or a problem being studied by a researcher. It is the foundation of any research paper that sets the tone of the research. It should be broad with a wide range of information available for conducting research. On the other hand, a research question is closely related to the research topic and is addressed in the study.

  18. PDF Experiences, perceptions and attitudes on ICT integration: A case ...

    research. Results revealed that the experienced language teacher had more exposure to ICT use than the novice teacher. However, the novice teacher makes use of more ICT-related materials and activities in her language class. Both teachers also have positive views on the impact of ICT on students' overall learning and achievement.

  19. RESEARCH TITLE: Application of Information and Communication Technology

    analysis, quantitative data was collected using questionnaire with both open and closed ended questions which was administered to respondents in face to face interviews and data collected was analyzed using SPSS version 20. The findings revealed that available ICT facilities for learning include internet, audio devices, networked computers, You

  20. PDF Title: Date of research: Contact details

    Title: Evaluating the impact of using ICT upon student motivation and attainment in English. Researcher: Jackie Bullock Date of research: September 2000 - August 2001 Contact details: Soham Village College, Sand Street, Soham, Ely, Cambridgeshire, CB7 5AA 01353 724100 [email protected] Research topic:

  21. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  22. (PDF) Effects of Information and Communication Technology (ICT) on

    This stu dy is based. on participative observation approach in which ICT had effects on social science research in the foll owing three ICT applicat ion areas: a) Pre-data analy sis, b) Data ...

  23. 224 Research Topics on Technology & Computer Science

    Communications and media are developing super fast as well. The research is also done in areas that make our lives better and more comfortable. The list of them includes transport, food and energy, medical, and pharmaceutical areas. So check out our list of 204 most relevant computer science research topics below.