• Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

hypothesis of the study example in thesis

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Grad Coach

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

hypothesis of the study example in thesis

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

hypothesis of the study example in thesis

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research limitations vs delimitations

16 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

  • How it works

Published by Nicolas at January 16th, 2024 , Revised On January 23, 2024

How To Write A Hypotheses – Guide For Students

The word “hypothesis” might conjure up images of scientists in white coats, but crafting a solid hypothesis is a crucial skill for students in any field. Whether you are analyzing Shakespeare’s sonnets or conducting a science experiment, a well-defined research hypothesis sets the stage for your dissertation or thesis and fuels your investigation. 

Table of Contents

Writing a hypothesis is a crucial step in the research process. A hypothesis serves as the foundation of your research paper because it guides the direction of your study and provides a clear framework for investigation. But how to write a hypothesis? This blog will help you craft one. Let’s get started.

What Is A Hypothesis

A hypothesis is a clear and testable thesis statement or prediction that serves as the foundation of a research study. It is formulated based on existing knowledge, observations, and theoretical frameworks. 

A hypothesis articulates the researcher’s expectations regarding the relationship between variables in a study.

Hypothesis Example

Students exposed to multimedia-enhanced teaching methods will demonstrate higher retention of information compared to those taught using traditional methods.

The formulation of a hypothesis is crucial for guiding the research process and providing a clear direction for data collection and analysis. A well-crafted research hypothesis not only makes the research purpose explicit but also sets the stage for drawing meaningful conclusions from the study’s findings.

What Is A Null Hypothesis And Alternative Hypothesis

There are two main types of hypotheses: the null hypothesis (H0) and the alternative hypothesis (H1 or Ha). 

The null hypothesis posits that there is no significant effect or relationship, while the alternative hypothesis suggests the presence of a significant effect or relationship.

For example, in a study investigating the effect of a new drug on blood pressure, the null hypothesis might state that there is no difference in blood pressure between the control group (not receiving the drug) and the experimental group (receiving the drug). The alternative hypothesis, on the other hand, would propose that there is a significant difference in blood pressure between the two groups.

The literature review we write have:

  • Precision and Clarity
  • Zero Plagiarism
  • High-level Encryption
  • Authentic Sources

How To Write A Good Research Hypothesis

Writing a hypothesis involves a systematic process that guides your research and provides a clear and testable statement about the expected relationship between variables. Go through the MLA vs. APA guidelines before writing. Here are the steps to help you how to write a hypothesis:

Step 1: Identify The Research Topic

Clearly define the research topic or question that you want to investigate. Ensure that your research question is specific and focused, providing a clear direction for your study.

Step 2: Conduct A Literature Review

Review existing literature related to your research topic. A thorough literature review helps you understand what is already known in the field, identify gaps, and build a foundation for formulating your hypothesis.

Step 3: Define Variables

Identify the variables involved in your study. The independent variable is the factor you manipulate, and the dependent variable is the one you measure. Clearly define the characteristics or conditions you are studying.

Step 4: Establish The Relationship

Determine the expected relationship between the independent and dependent variables. Will a change in the independent variable lead to a change in the dependent variable? Specify whether you anticipate a positive, negative, or no relationship.

Step 5: Formulate The Null Hypothesis (H0)

The null hypothesis represents the default position, suggesting that there is no significant effect or relationship between the variables you are studying. It serves as the baseline to be tested against. The null hypothesis is often denoted as H0.

Step 6: Formulate The Alternative Hypothesis (H1 or Ha)

The alternative hypothesis articulates the researcher’s expectation about the existence of a significant effect or relationship. It is what you aim to support with your research paper . The alternative hypothesis is denoted as H1 or Ha.

For example, if your research topic is about the effect of a new fertilizer on plant growth:

  • Null Hypothesis (H0): There is no significant difference in plant growth between plants treated with the traditional fertilizer and those treated with the new fertilizer.
  • Alternative Hypothesis (H1): There is a significant difference in plant growth between plants treated with the traditional fertilizer and those treated with the new fertilizer.

Step 7: Ensure Testability And Specificity

Confirm that your research hypothesis is testable and can be empirically investigated. Ensure that it is specific, providing a clear and measurable statement that can be validated or refuted through data collection and analysis.

Hypothesis Examples

What makes a good hypothesis.

  • Clear Statement: A hypothesis should be stated clearly and precisely. It should be easily understandable and convey the expected relationship between variables.
  • Testability: A hypothesis must be testable through empirical observation or experimentation. This means that there should be a feasible way to collect data and assess whether the expected relationship holds true.
  • Specificity: The research hypothesis should be specific in terms of the variables involved and the nature of the expected relationship. Vague or ambiguous hypotheses can lead to unclear research outcomes.
  • Measurability: Variables in a hypothesis should be measurable, meaning they can be quantified or observed objectively. This ensures that the research can be conducted with precision.
  • Falsifiability: A good research hypothesis should be falsifiable, meaning there should be a possibility of proving it wrong. This concept is fundamental to the scientific method, as hypotheses that cannot be tested or disproven lack scientific validity.

Frequently Asked Questions

How to write a hypothesis.

  • Clearly state the research question.
  • Identify the variables involved.
  • Formulate a clear and testable prediction.
  • Use specific and measurable terms.
  • Align the hypothesis with the research question.
  • Distinguish between the null hypothesis (no effect) and alternative hypothesis (expected effect).
  • Ensure the hypothesis is falsifiable and subject to empirical testing.

How to write a hypothesis for a lab?

  • Identify the purpose of the lab.
  • Clearly state the relationship between variables.
  • Use concise language and specific terms.
  • Make the hypothesis testable through experimentation.
  • Align with the lab’s objectives.
  • Include an if-then statement to express the expected outcome.
  • Ensure clarity and relevance to the experimental setup.

What Is A Null Hypothesis?

A null hypothesis is a statement suggesting no effect or relationship between variables in a research study. It serves as the default assumption, stating that any observed differences or effects are due to chance. Researchers aim to reject the null hypothesis based on statistical evidence to support their alternative hypothesis.

How to write a null hypothesis?

  • State there is no effect, difference, or relationship between variables.
  • Use clear and specific language.
  • Frame it in a testable manner.
  • Align with the research question.
  • Specify parameters for statistical testing.
  • Consider it as the default assumption to be tested and potentially rejected in favour of the alternative hypothesis.

What is the p-value of a hypothesis test?

The p-value in a hypothesis test represents the probability of obtaining observed results, or more extreme ones, if the null hypothesis is true. A lower p-value suggests stronger evidence against the null hypothesis, often leading to its rejection. Common significance thresholds include 0.05 or 0.01.

How to write a hypothesis in science?

  • Clearly state the research question
  • Identify the variables and their relationship.
  • Formulate a testable and falsifiable prediction.
  • Use specific, measurable terms.
  • Distinguish between the null and alternative hypotheses.
  • Ensure clarity and relevance to the scientific investigation.

How to write a hypothesis for a research proposal?

  • Clearly define the research question.
  • Identify variables and their expected relationship.
  • Formulate a specific, testable hypothesis.
  • Align the hypothesis with the proposal’s objectives.
  • Clearly articulate the null hypothesis.
  • Use concise language and measurable terms.
  • Ensure the hypothesis aligns with the proposed research methodology.

How to write a good hypothesis psychology?

  • Formulate a specific and testable prediction.
  • Use precise and measurable terms.
  • Align the hypothesis with psychological theories.
  • Articulate the null hypothesis.
  • Ensure the hypothesis guides empirical testing in psychological research.

You May Also Like

Learn how to write an exceptional research paper with the help of professionally crafted research paper examples. Become an expert now!

This blog comprehensively assigns what the cognitive failures questionnaire measures. Read more to get the complete information.

Learn everything about meta synthesis literature review in this comprehensive guide. From definition and process to its types and challenges.

Ready to place an order?

USEFUL LINKS

Learning resources, company details.

  • How It Works

Automated page speed optimizations for fast site performance

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis of the study example in thesis

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis of the study example in thesis

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

How to Write a Research Hypothesis

  • Research Process
  • Peer Review

Since grade school, we've all been familiar with hypotheses. The hypothesis is an essential step of the scientific method. But what makes an effective research hypothesis, how do you create one, and what types of hypotheses are there? We answer these questions and more.

Updated on April 27, 2022

the word hypothesis being typed on white paper

What is a research hypothesis?

General hypothesis.

Since grade school, we've all been familiar with the term “hypothesis.” A hypothesis is a fact-based guess or prediction that has not been proven. It is an essential step of the scientific method. The hypothesis of a study is a drive for experimentation to either prove the hypothesis or dispute it.

Research Hypothesis

A research hypothesis is more specific than a general hypothesis. It is an educated, expected prediction of the outcome of a study that is testable.

What makes an effective research hypothesis?

A good research hypothesis is a clear statement of the relationship between a dependent variable(s) and independent variable(s) relevant to the study that can be disproven.

Research hypothesis checklist

Once you've written a possible hypothesis, make sure it checks the following boxes:

  • It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis.
  • It must include a dependent and independent variable: At least one independent variable ( cause ) and one dependent variable ( effect ) must be included.
  • The language must be easy to understand: Be as clear and concise as possible. Nothing should be left to interpretation.
  • It must be relevant to your research topic: You probably shouldn't be talking about cats and dogs if your research topic is outer space. Stay relevant to your topic.

How to create an effective research hypothesis

Pose it as a question first.

Start your research hypothesis from a journalistic approach. Ask one of the five W's: Who, what, when, where, or why.

A possible initial question could be: Why is the sky blue?

Do the preliminary research

Once you have a question in mind, read research around your topic. Collect research from academic journals.

If you're looking for information about the sky and why it is blue, research information about the atmosphere, weather, space, the sun, etc.

Write a draft hypothesis

Once you're comfortable with your subject and have preliminary knowledge, create a working hypothesis. Don't stress much over this. Your first hypothesis is not permanent. Look at it as a draft.

Your first draft of a hypothesis could be: Certain molecules in the Earth's atmosphere are responsive to the sky being the color blue.

Make your working draft perfect

Take your working hypothesis and make it perfect. Narrow it down to include only the information listed in the “Research hypothesis checklist” above.

Now that you've written your working hypothesis, narrow it down. Your new hypothesis could be: Light from the sun hitting oxygen molecules in the sky makes the color of the sky appear blue.

Write a null hypothesis

Your null hypothesis should be the opposite of your research hypothesis. It should be able to be disproven by your research.

In this example, your null hypothesis would be: Light from the sun hitting oxygen molecules in the sky does not make the color of the sky appear blue.

Why is it important to have a clear, testable hypothesis?

One of the main reasons a manuscript can be rejected from a journal is because of a weak hypothesis. “Poor hypothesis, study design, methodology, and improper use of statistics are other reasons for rejection of a manuscript,” says Dr. Ish Kumar Dhammi and Dr. Rehan-Ul-Haq in Indian Journal of Orthopaedics.

According to Dr. James M. Provenzale in American Journal of Roentgenology , “The clear declaration of a research question (or hypothesis) in the Introduction is critical for reviewers to understand the intent of the research study. It is best to clearly state the study goal in plain language (for example, “We set out to determine whether condition x produces condition y.”) An insufficient problem statement is one of the more common reasons for manuscript rejection.”

Characteristics that make a hypothesis weak include:

  • Unclear variables
  • Unoriginality
  • Too general
  • Too specific

A weak hypothesis leads to weak research and methods . The goal of a paper is to prove or disprove a hypothesis - or to prove or disprove a null hypothesis. If the hypothesis is not a dependent variable of what is being studied, the paper's methods should come into question.

A strong hypothesis is essential to the scientific method. A hypothesis states an assumed relationship between at least two variables and the experiment then proves or disproves that relationship with statistical significance. Without a proven and reproducible relationship, the paper feeds into the reproducibility crisis. Learn more about writing for reproducibility .

In a study published in The Journal of Obstetrics and Gynecology of India by Dr. Suvarna Satish Khadilkar, she reviewed 400 rejected manuscripts to see why they were rejected. Her studies revealed that poor methodology was a top reason for the submission having a final disposition of rejection.

Aside from publication chances, Dr. Gareth Dyke believes a clear hypothesis helps efficiency.

“Developing a clear and testable hypothesis for your research project means that you will not waste time, energy, and money with your work,” said Dyke. “Refining a hypothesis that is both meaningful, interesting, attainable, and testable is the goal of all effective research.”

Types of research hypotheses

There can be overlap in these types of hypotheses.

Simple hypothesis

A simple hypothesis is a hypothesis at its most basic form. It shows the relationship of one independent and one independent variable.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable).

Complex hypothesis

A complex hypothesis shows the relationship of two or more independent and dependent variables.

Example: Drinking soda (independent variable) every day leads to obesity (dependent variable) and heart disease (dependent variable).

Directional hypothesis

A directional hypothesis guesses which way the results of an experiment will go. It uses words like increase, decrease, higher, lower, positive, negative, more, or less. It is also frequently used in statistics.

Example: Humans exposed to radiation have a higher risk of cancer than humans not exposed to radiation.

Non-directional hypothesis

A non-directional hypothesis says there will be an effect on the dependent variable, but it does not say which direction.

Associative hypothesis

An associative hypothesis says that when one variable changes, so does the other variable.

Alternative hypothesis

An alternative hypothesis states that the variables have a relationship.

  • The opposite of a null hypothesis

Example: An apple a day keeps the doctor away.

Null hypothesis

A null hypothesis states that there is no relationship between the two variables. It is posed as the opposite of what the alternative hypothesis states.

Researchers use a null hypothesis to work to be able to reject it. A null hypothesis:

  • Can never be proven
  • Can only be rejected
  • Is the opposite of an alternative hypothesis

Example: An apple a day does not keep the doctor away.

Logical hypothesis

A logical hypothesis is a suggested explanation while using limited evidence.

Example: Bats can navigate in the dark better than tigers.

In this hypothesis, the researcher knows that tigers cannot see in the dark, and bats mostly live in darkness.

Empirical hypothesis

An empirical hypothesis is also called a “working hypothesis.” It uses the trial and error method and changes around the independent variables.

  • An apple a day keeps the doctor away.
  • Two apples a day keep the doctor away.
  • Three apples a day keep the doctor away.

In this case, the research changes the hypothesis as the researcher learns more about his/her research.

Statistical hypothesis

A statistical hypothesis is a look of a part of a population or statistical model. This type of hypothesis is especially useful if you are making a statement about a large population. Instead of having to test the entire population of Illinois, you could just use a smaller sample of people who live there.

Example: 70% of people who live in Illinois are iron deficient.

Causal hypothesis

A causal hypothesis states that the independent variable will have an effect on the dependent variable.

Example: Using tobacco products causes cancer.

Final thoughts

Make sure your research is error-free before you send it to your preferred journal . Check our our English Editing services to avoid your chances of desk rejection.

Jonny Rhein, BA

Jonny Rhein, BA

See our "Privacy Policy"

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

hypothesis of the study example in thesis

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Bad hypothesis examples, tips for writing a research hypothesis.

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

Elsevier QRcode Wechat

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 301.8K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

What is a Problem Statement

What is a Problem Statement? [with examples]

You may also like.

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

hypothesis of the study example in thesis

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

Input your search keywords and press Enter.

How to write a research hypothesis

Last updated

19 January 2023

Reviewed by

Miroslav Damyanov

Start with a broad subject matter that excites you, so your curiosity will motivate your work. Conduct a literature search to determine the range of questions already addressed and spot any holes in the existing research.

Narrow the topics that interest you and determine your research question. Rather than focusing on a hole in the research, you might choose to challenge an existing assumption, a process called problematization. You may also find yourself with a short list of questions or related topics.

Use the FINER method to determine the single problem you'll address with your research. FINER stands for:

I nteresting

You need a feasible research question, meaning that there is a way to address the question. You should find it interesting, but so should a larger audience. Rather than repeating research that others have already conducted, your research hypothesis should test something novel or unique. 

The research must fall into accepted ethical parameters as defined by the government of your country and your university or college if you're an academic. You'll also need to come up with a relevant question since your research should provide a contribution to the existing research area.

This process typically narrows your shortlist down to a single problem you'd like to study and the variable you want to test. You're ready to write your hypothesis statements.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • Types of research hypotheses

It is important to narrow your topic down to one idea before trying to write your research hypothesis. You'll only test one problem at a time. To do this, you'll write two hypotheses – a null hypothesis (H0) and an alternative hypothesis (Ha).

You'll come across many terms related to developing a research hypothesis or referring to a specific type of hypothesis. Let's take a quick look at these terms.

Null hypothesis

The term null hypothesis refers to a research hypothesis type that assumes no statistically significant relationship exists within a set of observations or data. It represents a claim that assumes that any observed relationship is due to chance. Represented as H0, the null represents the conjecture of the research.

Alternative hypothesis

The alternative hypothesis accompanies the null hypothesis. It states that the situation presented in the null hypothesis is false or untrue, and claims an observed effect in your test. This is typically denoted by Ha or H(n), where “n” stands for the number of alternative hypotheses. You can have more than one alternative hypothesis. 

Simple hypothesis

The term simple hypothesis refers to a hypothesis or theory that predicts the relationship between two variables - the independent (predictor) and the dependent (predicted). 

Complex hypothesis

The term complex hypothesis refers to a model – either quantitative (mathematical) or qualitative . A complex hypothesis states the surmised relationship between two or more potentially related variables.

Directional hypothesis

When creating a statistical hypothesis, the directional hypothesis (the null hypothesis) states an assumption regarding one parameter of a population. Some academics call this the “one-sided” hypothesis. The alternative hypothesis indicates whether the researcher tests for a positive or negative effect by including either the greater than (">") or less than ("<") sign.

Non-directional hypothesis

We refer to the alternative hypothesis in a statistical research question as a non-directional hypothesis. It includes the not equal ("≠") sign to show that the research tests whether or not an effect exists without specifying the effect's direction (positive or negative).

Associative hypothesis

The term associative hypothesis assumes a link between two variables but stops short of stating that one variable impacts the other. Academic statistical literature asserts in this sense that correlation does not imply causation. So, although the hypothesis notes the correlation between two variables – the independent and dependent - it does not predict how the two interact.

Logical hypothesis

Typically used in philosophy rather than science, researchers can't test a logical hypothesis because the technology or data set doesn't yet exist. A logical hypothesis uses logic as the basis of its assumptions. 

In some cases, a logical hypothesis can become an empirical hypothesis once technology provides an opportunity for testing. Until that time, the question remains too expensive or complex to address. Note that a logical hypothesis is not a statistical hypothesis.

Empirical hypothesis

When we consider the opposite of a logical hypothesis, we call this an empirical or working hypothesis. This type of hypothesis considers a scientifically measurable question. A researcher can consider and test an empirical hypothesis through replicable tests, observations, and measurements.

Statistical hypothesis

The term statistical hypothesis refers to a test of a theory that uses representative statistical models to test relationships between variables to draw conclusions regarding a large population. This requires an existing large data set, commonly referred to as big data, or implementing a survey to obtain original statistical information to form a data set for the study. 

Testing this type of hypothesis requires the use of random samples. Note that the null and alternative hypotheses are used in statistical hypothesis testing.

Causal hypothesis

The term causal hypothesis refers to a research hypothesis that tests a cause-and-effect relationship. A causal hypothesis is utilized when conducting experimental or quasi-experimental research.

Descriptive hypothesis

The term descriptive hypothesis refers to a research hypothesis used in non-experimental research, specifying an influence in the relationship between two variables.

  • What makes an effective research hypothesis?

An effective research hypothesis offers a clearly defined, specific statement, using simple wording that contains no assumptions or generalizations, and that you can test. A well-written hypothesis should predict the tested relationship and its outcome. It contains zero ambiguity and offers results you can observe and test. 

The research hypothesis should address a question relevant to a research area. Overall, your research hypothesis needs the following essentials:

Hypothesis Essential #1: Specificity & Clarity

Hypothesis Essential #2: Testability (Provability)

  • How to develop a good research hypothesis

In developing your hypothesis statements, you must pre-plan some of your statistical analysis. Once you decide on your problem to examine, determine three aspects:

the parameter you'll test

the test's direction (left-tailed, right-tailed, or non-directional)

the hypothesized parameter value

Any quantitative research includes a hypothesized parameter value of a mean, a proportion, or the difference between two proportions. Here's how to note each parameter:

Single mean (μ)

Paired means (μd)

Single proportion (p)

Difference between two independent means (μ1−μ2)

Difference between two proportions (p1−p2)

Simple linear regression slope (β)

Correlation (ρ)

Defining these parameters and determining whether you want to test the mean, proportion, or differences helps you determine the statistical tests you'll conduct to analyze your data. When writing your hypothesis, you only need to decide which parameter to test and in what overarching way.

The null research hypothesis must include everyday language, in a single sentence, stating the problem you want to solve. Write it as an if-then statement with defined variables. Write an alternative research hypothesis that states the opposite.

  • What is the correct format for writing a hypothesis?

The following example shows the proper format and textual content of a hypothesis. It follows commonly accepted academic standards.

Null hypothesis (H0): High school students who participate in varsity sports as opposed to those who do not, fail to score higher on leadership tests than students who do not participate.

Alternative hypothesis (H1): High school students who play a varsity sport as opposed to those who do not participate in team athletics will score higher on leadership tests than students who do not participate in athletics.

The research question tests the correlation between varsity sports participation and leadership qualities expressed as a score on leadership tests. It compares the population of athletes to non-athletes.

  • What are the five steps of a hypothesis?

Once you decide on the specific problem or question you want to address, you can write your research hypothesis. Use this five-step system to hone your null hypothesis and generate your alternative hypothesis.

Step 1 : Create your research question. This topic should interest and excite you; answering it provides relevant information to an industry or academic area.

Step 2 : Conduct a literature review to gather essential existing research.

Step 3 : Write a clear, strong, simply worded sentence that explains your test parameter, test direction, and hypothesized parameter.

Step 4 : Read it a few times. Have others read it and ask them what they think it means. Refine your statement accordingly until it becomes understandable to everyone. While not everyone can or will comprehend every research study conducted, any person from the general population should be able to read your hypothesis and alternative hypothesis and understand the essential question you want to answer.

Step 5 : Re-write your null hypothesis until it reads simply and understandably. Write your alternative hypothesis.

What is the Red Queen hypothesis?

Some hypotheses are well-known, such as the Red Queen hypothesis. Choose your wording carefully, since you could become like the famed scientist Dr. Leigh Van Valen. In 1973, Dr. Van Valen proposed the Red Queen hypothesis to describe coevolutionary activity, specifically reciprocal evolutionary effects between species to explain extinction rates in the fossil record. 

Essentially, Van Valen theorized that to survive, each species remains in a constant state of adaptation, evolution, and proliferation, and constantly competes for survival alongside other species doing the same. Only by doing this can a species avoid extinction. Van Valen took the hypothesis title from the Lewis Carroll book, "Through the Looking Glass," which contains a key character named the Red Queen who explains to Alice that for all of her running, she's merely running in place.

  • Getting started with your research

In conclusion, once you write your null hypothesis (H0) and an alternative hypothesis (Ha), you’ve essentially authored the elevator pitch of your research. These two one-sentence statements describe your topic in simple, understandable terms that both professionals and laymen can understand. They provide the starting point of your research project.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 25 November 2023

Last updated: 12 May 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 18 May 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

Banner

PSC 352: Introduction to Comparative Politics

  • Getting Started
  • Comparative Politics Overview
  • Current World/Political News Feeds
  • Choose a country

What is the difference between a thesis & a hypothesis?

  • Find Books/eBooks
  • Find Articles, Reports & Documents
  • Find Statistics
  • Find Poll & Survey Results
  • Evaluate Your Sources
  • Cite Your Sources

B oth the hypothesis statement and the thesis statement answer the research question of the study.  When the statement is one that can be proved or disproved, it is an hypothesis statement.  If, instead, the statement specifically shows the intentions/objectives/position of the researcher, it is a thesis statement.

A hypothesis is a statement that can be proved or disproved.  It is typically used in quantitative research and predicts the relationship between variables.

A thesis statement is a short, direct sentence that summarizes the main point or claim of an essay or research paper. It is seen in quantitative, qualitative, and mixed methods research.  A thesis statement is developed, supported, and explained in the body of the essay or research report by means of examples and evidence.

Every research study should contain a concise and well-written thesis statement. If the intent of the study is to prove/disprove something, that research report will also contain an hypothesis statement.

Jablonski , Judith. What is the difference between a thesis statement and an hypothesis statement? Online Library. American Public University System. Jun 16, 2014. Web.   http://apus.libanswers.com/faq/2374

Let’s say you are interested in the conflict in Darfur, and you conclude that the issues you wish to address include the nature, causes, and effects of the conflict, and the international response. While you could address the issue of international response first, it makes the most sense to start with a description of the conflict, followed by an exploration of the causes, effects, and then to discuss the international response and what more could/should be done.

This hypothetical example may lead to the following title, introduction, and statement of questions:

Conflict in Darfur: Causes, Consequences, and International Response       This paper examines the conflict in Darfur, Sudan. It is organized around the following questions: (1) What is the nature of the conflict in Darfur? (2) What are the causes and effects of the conflict? (3) What has the international community done to address it, and what more could/should it do?

Following the section that presents your questions and background, you will offer a set of responses/answers/(hypo)theses. They should follow the order of the questions. This might look something like this, “The paper argues/contends/ maintains/seeks to develop the position that...etc.” The most important thing you can do in this section is to present as clearly as possible your best thinking on the subject matter guided by course material and research. As you proceed through the research process, your thinking about the issues/questions will become more nuanced, complex, and refined. The statement of your theses will reflect this as you move forward in the research process.

So, looking to our hypothetical example on Darfur:

The current conflict in Darfur goes back more than a decade and consists of fighting between government-supported troops and residents of Darfur. The causes of the conflict include x, y, and z. The effects of the conflict have been a, b, and c. The international community has done 0, and it should do 1, 2, and 3.

Once you have setup your thesis you will be ready to begin amassing supporting evidence for you claims. This is a very important part of the research paper, as you will provide the substance to defend your thesis.

  • << Previous: Choose a country
  • Next: Find Books/eBooks >>
  • Last Updated: Feb 28, 2024 3:19 PM
  • URL: https://libguides.mssu.edu/PSC352

This site is maintained by the librarians of George A. Spiva Library . If you have a question or comment about the Library's LibGuides, please contact the site administrator .

offer

Writing a Strong Hypothesis Statement

hypothesis of the study example in thesis

All good theses begins with a good thesis question. However, all great theses begins with a great hypothesis statement. One of the most important steps for writing a thesis is to create a strong hypothesis statement. 

What is a hypothesis statement?

A hypothesis statement must be testable. If it cannot be tested, then there is no research to be done.

Simply put, a hypothesis statement posits the relationship between two or more variables. It is a prediction of what you think will happen in a research study. A hypothesis statement must be testable. If it cannot be tested, then there is no research to be done. If your thesis question is whether wildfires have effects on the weather, “wildfires create tornadoes” would be your hypothesis. However, a hypothesis needs to have several key elements in order to meet the criteria for a good hypothesis.

In this article, we will learn about what distinguishes a weak hypothesis from a strong one. We will also learn how to phrase your thesis question and frame your variables so that you are able to write a strong hypothesis statement and great thesis.

What is a hypothesis?

A hypothesis statement posits, or considers, a relationship between two variables.

As we mentioned above, a hypothesis statement posits or considers a relationship between two variables. In our hypothesis statement example above, the two variables are wildfires and tornadoes, and our assumed relationship between the two is a causal one (wildfires cause tornadoes). It is clear from our example above what we will be investigating: the relationship between wildfires and tornadoes.

A strong hypothesis statement should be:

  • A prediction of the relationship between two or more variables

A hypothesis is not just a blind guess. It should build upon existing theories and knowledge . Tornadoes are often observed near wildfires once the fires reach a certain size. In addition, tornadoes are not a normal weather event in many areas; they have been spotted together with wildfires. This existing knowledge has informed the formulation of our hypothesis.

Depending on the thesis question, your research paper might have multiple hypothesis statements. What is important is that your hypothesis statement or statements are testable through data analysis, observation, experiments, or other methodologies.

Formulating your hypothesis

One of the best ways to form a hypothesis is to think about “if...then” statements.

Now that we know what a hypothesis statement is, let’s walk through how to formulate a strong one. First, you will need a thesis question. Your thesis question should be narrow in scope, answerable, and focused. Once you have your thesis question, it is time to start thinking about your hypothesis statement. You will need to clearly identify the variables involved before you can begin thinking about their relationship.

One of the best ways to form a hypothesis is to think about “if...then” statements . This can also help you easily identify the variables you are working with and refine your hypothesis statement. Let’s take a few examples.

If teenagers are given comprehensive sex education, there will be fewer teen pregnancies .

In this example, the independent variable is whether or not teenagers receive comprehensive sex education (the cause), and the dependent variable is the number of teen pregnancies (the effect).

If a cat is fed a vegan diet, it will die .

Here, our independent variable is the diet of the cat (the cause), and the dependent variable is the cat’s health (the thing impacted by the cause).

If children drink 8oz of milk per day, they will grow taller than children who do not drink any milk .

What are the variables in this hypothesis? If you identified drinking milk as the independent variable and growth as the dependent variable, you are correct. This is because we are guessing that drinking milk causes increased growth in the height of children.

Refining your hypothesis

Do not be afraid to refine your hypothesis throughout the process of formulation.

Do not be afraid to refine your hypothesis throughout the process of formulation. A strong hypothesis statement is clear, testable, and involves a prediction. While “testable” means verifiable or falsifiable, it also means that you are able to perform the necessary experiments without violating any ethical standards. Perhaps once you think about the ethics of possibly harming some cats by testing a vegan diet on them you might abandon the idea of that experiment altogether. However, if you think it is really important to research the relationship between a cat’s diet and a cat’s health, perhaps you could refine your hypothesis to something like this:

If 50% of a cat’s meals are vegan, the cat will not be able to meet its nutritional needs .

Another feature of a strong hypothesis statement is that it can easily be tested with the resources that you have readily available. While it might not be feasible to measure the growth of a cohort of children throughout their whole lives, you may be able to do so for a year. Then, you can adjust your hypothesis to something like this:

I f children aged 8 drink 8oz of milk per day for one year, they will grow taller during that year than children who do not drink any milk .

As you work to narrow down and refine your hypothesis to reflect a realistic potential research scope, don’t be afraid to talk to your supervisor about any concerns or questions you might have about what is truly possible to research. 

What makes a hypothesis weak?

We noted above that a strong hypothesis statement is clear, is a prediction of a relationship between two or more variables, and is testable. We also clarified that statements, which are too general or specific are not strong hypotheses. We have looked at some examples of hypotheses that meet the criteria for a strong hypothesis, but before we go any further, let’s look at weak or bad hypothesis statement examples so that you can really see the difference.

Bad hypothesis 1: Diabetes is caused by witchcraft .

While this is fun to think about, it cannot be tested or proven one way or the other with clear evidence, data analysis, or experiments. This bad hypothesis fails to meet the testability requirement.

Bad hypothesis 2: If I change the amount of food I eat, my energy levels will change .

This is quite vague. Am I increasing or decreasing my food intake? What do I expect exactly will happen to my energy levels and why? How am I defining energy level? This bad hypothesis statement fails the clarity requirement.

Bad hypothesis 3: Japanese food is disgusting because Japanese people don’t like tourists .

This hypothesis is unclear about the posited relationship between variables. Are we positing the relationship between the deliciousness of Japanese food and the desire for tourists to visit? or the relationship between the deliciousness of Japanese food and the amount that Japanese people like tourists? There is also the problematic subjectivity of the assessment that Japanese food is “disgusting.” The problems are numerous.

The null hypothesis and the alternative hypothesis

The null hypothesis, quite simply, posits that there is no relationship between the variables.

What is the null hypothesis?

The hypothesis posits a relationship between two or more variables. The null hypothesis, quite simply, posits that there is no relationship between the variables. It is often indicated as H 0 , which is read as “h-oh” or “h-null.” The alternative hypothesis is the opposite of the null hypothesis as it posits that there is some relationship between the variables. The alternative hypothesis is written as H a or H 1 .

Let’s take our previous hypothesis statement examples discussed at the start and look at their corresponding null hypothesis.

H a : If teenagers are given comprehensive sex education, there will be fewer teen pregnancies .
H 0 : If teenagers are given comprehensive sex education, there will be no change in the number of teen pregnancies .

The null hypothesis assumes that comprehensive sex education will not affect how many teenagers get pregnant. It should be carefully noted that the null hypothesis is not always the opposite of the alternative hypothesis. For example:

If teenagers are given comprehensive sex education, there will be more teen pregnancies .

These are opposing statements that assume an opposite relationship between the variables: comprehensive sex education increases or decreases the number of teen pregnancies. In fact, these are both alternative hypotheses. This is because they both still assume that there is a relationship between the variables . In other words, both hypothesis statements assume that there is some kind of relationship between sex education and teen pregnancy rates. The alternative hypothesis is also the researcher’s actual predicted outcome, which is why calling it “alternative” can be confusing! However, you can think of it this way: our default assumption is the null hypothesis, and so any possible relationship is an alternative to the default.

Step-by-step sample hypothesis statements

Now that we’ve covered what makes a hypothesis statement strong, how to go about formulating a hypothesis statement, refining your hypothesis statement, and the null hypothesis, let’s put it all together with some examples. The table below shows a breakdown of how we can take a thesis question, identify the variables, create a null hypothesis, and finally create a strong alternative hypothesis.

Once you have formulated a solid thesis question and written a strong hypothesis statement, you are ready to begin your thesis in earnest. Check out our site for more tips on writing a great thesis and information on thesis proofreading and editing services.

Editor’s pick

Get free updates.

Subscribe to our newsletter for regular insights from the research and publishing industry!

Review Checklist

Start with a clear thesis question

Think about “if-then” statements to identify your variables and the relationship between them

Create a null hypothesis

Formulate an alternative hypothesis using the variables you have identified

Make sure your hypothesis clearly posits a relationship between variables

Make sure your hypothesis is testable considering your available time and resources

What makes a hypothesis strong? +

A hypothesis is strong when it is testable, clear, and identifies a potential relationship between two or more variables.

What makes a hypothesis weak? +

A hypothesis is weak when it is too specific or too general, or does not identify a clear relationship between two or more variables.

What is the null hypothesis? +

The null hypothesis posits that the variables you have identified have no relationship.

hypothesis of the study example in thesis

How to Write a Hypothesis

hypothesis of the study example in thesis

If I [do something], then [this] will happen.

This basic statement/formula should be pretty familiar to all of you as it is the starting point of almost every scientific project or paper. It is a hypothesis – a statement that showcases what you “think” will happen during an experiment. This assumption is made based on the knowledge, facts, and data you already have.

How do you write a hypothesis? If you have a clear understanding of the proper structure of a hypothesis, you should not find it too hard to create one. However, if you have never written a hypothesis before, you might find it a bit frustrating. In this article from EssayPro - custom essay writing services , we are going to tell you everything you need to know about hypotheses, their types, and practical tips for writing them.

Hypothesis Definition

According to the definition, a hypothesis is an assumption one makes based on existing knowledge. To elaborate, it is a statement that translates the initial research question into a logical prediction shaped on the basis of available facts and evidence. To solve a specific problem, one first needs to identify the research problem (research question), conduct initial research, and set out to answer the given question by performing experiments and observing their outcomes. However, before one can move to the experimental part of the research, they should first identify what they expect to see for results. At this stage, a scientist makes an educated guess and writes a hypothesis that he or she is going to prove or refute in the course of their study.

Get Help With Writing a Hypothesis Now!

Head on over to EssayPro. We can help you with editing and polishing up any of the work you speedwrite.

A hypothesis can also be seen as a form of development of knowledge. It is a well-grounded assumption put forward to clarify the properties and causes of the phenomena being studied.

As a rule, a hypothesis is formed based on a number of observations and examples that confirm it. This way, it looks plausible as it is backed up with some known information. The hypothesis is subsequently proved by turning it into an established fact or refuted (for example, by pointing out a counterexample), which allows it to attribute it to the category of false statements.

As a student, you may be asked to create a hypothesis statement as a part of your academic papers. Hypothesis-based approaches are commonly used among scientific academic works, including but not limited to research papers, theses, and dissertations.

Note that in some disciplines, a hypothesis statement is called a thesis statement. However, its essence and purpose remain unchanged – this statement aims to make an assumption regarding the outcomes of the investigation that will either be proved or refuted.

Characteristics and Sources of a Hypothesis

Now, as you know what a hypothesis is in a nutshell, let’s look at the key characteristics that define it:

  • It has to be clear and accurate in order to look reliable.
  • It has to be specific.
  • There should be scope for further investigation and experiments.
  • A hypothesis should be explained in simple language—while retaining its significance.
  • If you are making a relational hypothesis, two essential elements you have to include are variables and the relationship between them.

The main sources of a hypothesis are:

  • Scientific theories.
  • Observations from previous studies and current experiences.
  • The resemblance among different phenomena.
  • General patterns that affect people’s thinking process.

Types of Hypothesis

Basically, there are two major types of scientific hypothesis: alternative and null.

Types of Hypothesis

  • Alternative Hypothesis

This type of hypothesis is generally denoted as H1. This statement is used to identify the expected outcome of your research. According to the alternative hypothesis definition, this type of hypothesis can be further divided into two subcategories:

  • Directional — a statement that explains the direction of the expected outcomes. Sometimes this type of hypothesis is used to study the relationship between variables rather than comparing between the groups.
  • Non-directional — unlike the directional alternative hypothesis, a non-directional one does not imply a specific direction of the expected outcomes.

Now, let’s see an alternative hypothesis example for each type:

Directional: Attending more lectures will result in improved test scores among students. Non-directional: Lecture attendance will influence test scores among students.

Notice how in the directional hypothesis we specified that the attendance of more lectures will boost student’s performance on tests, whereas in the non-directional hypothesis we only stated that there is a relationship between the two variables (i.e. lecture attendance and students’ test scores) but did not specify whether the performance will improve or decrease.

  • Null Hypothesis

This type of hypothesis is generally denoted as H0. This statement is the complete opposite of what you expect or predict will happen throughout the course of your study—meaning it is the opposite of your alternative hypothesis. Simply put, a null hypothesis claims that there is no exact or actual correlation between the variables defined in the hypothesis.

To give you a better idea of how to write a null hypothesis, here is a clear example: Lecture attendance has no effect on student’s test scores.

Both of these types of hypotheses provide specific clarifications and restatements of the research problem. The main difference between these hypotheses and a research problem is that the latter is just a question that can’t be tested, whereas hypotheses can.

Based on the alternative and null hypothesis examples provided earlier, we can conclude that the importance and main purpose of these hypotheses are that they deliver a rough description of the subject matter. The main purpose of these statements is to give an investigator a specific guess that can be directly tested in a study. Simply put, a hypothesis outlines the framework, scope, and direction for the study. Although null and alternative hypotheses are the major types, there are also a few more to keep in mind:

Research Hypothesis — a statement that is used to test the correlation between two or more variables.

For example: Eating vitamin-rich foods affects human health.

Simple Hypothesis — a statement used to indicate the correlation between one independent and one dependent variable.

For example: Eating more vegetables leads to better immunity.

Complex Hypothesis — a statement used to indicate the correlation between two or more independent variables and two or more dependent variables.

For example: Eating more fruits and vegetables leads to better immunity, weight loss, and lower risk of diseases.

Associative and Causal Hypothesis — an associative hypothesis is a statement used to indicate the correlation between variables under the scenario when a change in one variable inevitably changes the other variable. A causal hypothesis is a statement that highlights the cause and effect relationship between variables.

Be sure to read how to write a DBQ - this article will expand your understanding.

Add a secret ingredient to your hypothesis

Help of a professional writer.

Hypothesis vs Prediction

When speaking of hypotheses, another term that comes to mind is prediction. These two terms are often used interchangeably, which can be rather confusing. Although both a hypothesis and prediction can generally be defined as “guesses” and can be easy to confuse, these terms are different. The main difference between a hypothesis and a prediction is that the first is predominantly used in science, while the latter is most often used outside of science.

Simply put, a hypothesis is an intelligent assumption. It is a guess made regarding the nature of the unknown (or less known) phenomena based on existing knowledge, studies, and/or series of experiments, and is otherwise grounded by valid facts. The main purpose of a hypothesis is to use available facts to create a logical relationship between variables in order to provide a more precise scientific explanation. Additionally, hypotheses are statements that can be tested with further experiments. It is an assumption you make regarding the flow and outcome(s) of your research study.

A prediction, on the contrary, is a guess that often lacks grounding. Although, in theory, a prediction can be scientific, in most cases it is rather fictional—i.e. a pure guess that is not based on current knowledge and/or facts. As a rule, predictions are linked to foretelling events that may or may not occur in the future. Often, a person who makes predictions has little or no actual knowledge of the subject matter he or she makes the assumption about.

Another big difference between these terms is in the methodology used to prove each of them. A prediction can only be proven once. You can determine whether it is right or wrong only upon the occurrence or non-occurrence of the predicted event. A hypothesis, on the other hand, offers scope for further testing and experiments. Additionally, a hypothesis can be proven in multiple stages. This basically means that a single hypothesis can be proven or refuted numerous times by different scientists who use different scientific tools and methods.

To give you a better idea of how a hypothesis is different from a prediction, let’s look at the following examples:

Hypothesis: If I eat more vegetables and fruits, then I will lose weight faster.

This is a hypothesis because it is based on generally available knowledge (i.e. fruits and vegetables include fewer calories compared to other foods) and past experiences (i.e. people who give preference to healthier foods like fruits and vegetables are losing weight easier). It is still a guess, but it is based on facts and can be tested with an experiment.

Prediction: The end of the world will occur in 2023.

This is a prediction because it foretells future events. However, this assumption is fictional as it doesn’t have any actual grounded evidence supported by facts.

Based on everything that was said earlier and our examples, we can highlight the following key takeaways:

  • A hypothesis, unlike a prediction, is a more intelligent assumption based on facts.
  • Hypotheses define existing variables and analyze the relationship(s) between them.
  • Predictions are most often fictional and lack grounding.
  • A prediction is most often used to foretell events in the future.
  • A prediction can only be proven once – when the predicted event occurs or doesn’t occur. 
  • A hypothesis can remain a hypothesis even if one scientist has already proven or disproven it. Other scientists in the future can obtain a different result using other methods and tools.

We also recommend that you read about some informative essay topics .

Now, as you know what a hypothesis is, what types of it exist, and how it differs from a prediction, you are probably wondering how to state a hypothesis. In this section, we will guide you through the main stages of writing a good hypothesis and provide handy tips and examples to help you overcome this challenge:

how to write

1. Define Your Research Question

Here is one thing to keep in mind – regardless of the paper or project you are working on, the process should always start with asking the right research question. A perfect research question should be specific, clear, focused (meaning not too broad), and manageable.

Example: How does eating fruits and vegetables affect human health?

2. Conduct Your Basic Initial Research

As you already know, a hypothesis is an educated guess of the expected results and outcomes of an investigation. Thus, it is vital to collect some information before you can make this assumption.

At this stage, you should find an answer to your research question based on what has already been discovered. Search for facts, past studies, theories, etc. Based on the collected information, you should be able to make a logical and intelligent guess.

3. Formulate a Hypothesis

Based on the initial research, you should have a certain idea of what you may find throughout the course of your research. Use this knowledge to shape a clear and concise hypothesis.

Based on the type of project you are working on, and the type of hypothesis you are planning to use, you can restate your hypothesis in several different ways:

Non-directional: Eating fruits and vegetables will affect one’s human physical health. Directional: Eating fruits and vegetables will positively affect one’s human physical health. Null: Eating fruits and vegetables will have no effect on one’s human physical health.

4. Refine Your Hypothesis

Finally, the last stage of creating a good hypothesis is refining what you’ve got. During this step, you need to define whether your hypothesis:

  • Has clear and relevant variables;
  • Identifies the relationship between its variables;
  • Is specific and testable;
  • Suggests a predicted result of the investigation or experiment.

In case you need some help with your essay, leave us a notice ' pay someone to write my essay ' and we'll help asap. We also provide nursing writing services .

Hypothesis Examples

Following a step-by-step guide and tips from our essay writers for hire , you should be able to create good hypotheses with ease. To give you a starting point, we have also compiled a list of different research questions with one hypothesis and one null hypothesis example for each:

Ask Pros to Make a Perfect Hypothesis for You!

Sometimes, coping with a large academic load is just too much for a student to handle. Papers like research papers and dissertations can take too much time and effort to write, and, often, a hypothesis is a necessary starting point to get the task on track. Writing or editing a hypothesis is not as easy as it may seem. However, if you need help with forming it, the team at EssayPro is always ready to come to your rescue! If you’re feeling stuck, or don’t have enough time to cope with other tasks, don’t hesitate to send us you rewrite my essay for me or any other request.

Related Articles

How to Write a Summary of a Book with an Example

  • How it works

How to Write a Hypothesis – Steps & Tips

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 26, 2023

What is a Research Hypothesis?

You can test a research statement with the help of experimental or theoretical research, known as a hypothesis.

If you want to find out the similarities, differences, and relationships between variables, you must write a testable hypothesis before compiling the data, performing analysis, and generating results to complete.

The data analysis and findings will help you test the hypothesis and see whether it is true or false. Here is all you need to know about how to write a hypothesis for a  dissertation .

Research Hypothesis Definition

Not sure what the meaning of the research hypothesis is?

A research hypothesis predicts an answer to the research question  based on existing theoretical knowledge or experimental data.

Some studies may have multiple hypothesis statements depending on the research question(s).  A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.

Variables in Hypothesis

Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. The researcher can control or change the independent variable(s) while measuring and observing the independent variable(s).

“How long a student sleeps affects test scores.”

In the above statement, the dependent variable is the test score, while the independent variable is the length of time spent in sleep. Developing a hypothesis will be easy if you know your research’s dependent and independent variables.

Once you have developed a thesis statement, questions such as how to write a hypothesis for the dissertation and how to test a research hypothesis become pretty straightforward.

Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with quantitative dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

dissertation help

Step-by-Step Guide on How to Write a Hypothesis

Here are the steps involved in how to write a hypothesis for a dissertation.

Step 1: Start with a Research Question

  • Begin by asking a specific question about a topic of interest.
  • This question should be clear, concise, and researchable.

Example: Does exposure to sunlight affect plant growth?

Step 2: Do Preliminary Research

  • Before formulating a hypothesis, conduct background research to understand existing knowledge on the topic.
  • Familiarise yourself with prior studies, theories, or observations related to the research question.

Step 3: Define Variables

  • Independent Variable (IV): The factor that you change or manipulate in an experiment.
  • Dependent Variable (DV): The factor that you measure.

Example: IV: Amount of sunlight exposure (e.g., 2 hours/day, 4 hours/day, 8 hours/day) DV: Plant growth (e.g., height in centimetres)

Step 4: Formulate the Hypothesis

  • A hypothesis is a statement that predicts the relationship between variables.
  • It is often written as an “if-then” statement.

Example: If plants receive more sunlight, then they will grow taller.

Step 5: Ensure it is Testable

A good hypothesis is empirically testable. This means you should be able to design an experiment or observation to test its validity.

Example: You can set up an experiment where plants are exposed to varying amounts of sunlight and then measure their growth over a period of time.

Step 6: Consider Potential Confounding Variables

  • Confounding variables are factors other than the independent variable that might affect the outcome.
  • It is important to identify these to ensure that they do not skew your results.

Example: Soil quality, water frequency, or type of plant can all affect growth. Consider keeping these constant in your experiment.

Step 7: Write the Null Hypothesis

  • The null hypothesis is a statement that there is no effect or no relationship between the variables.
  • It is what you aim to disprove or reject through your research.

Example: There is no difference in plant growth regardless of the amount of sunlight exposure.

Step 8: Test your Hypothesis

Design an experiment or conduct observations to test your hypothesis.

Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

Step 9: Analyse the Results

After testing, review your data to determine if it supports your hypothesis.

Step 10: Draw Conclusions

  • Based on your findings, determine whether you can accept or reject the hypothesis.
  • Remember, even if you reject your hypothesis, it’s a valuable result. It can guide future research and refine questions.

Three Ways to Phrase a Hypothesis

Try to use “if”… and “then”… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;

If an obese lady starts attending Zomba fitness classes, her health will improve.

In academic research, you can write the predicted variable relationship directly because most research studies correlate terms.

The number of Zomba fitness classes attended by the obese lady has a positive effect on health.

If your research compares two groups, then you can develop a hypothesis statement on their differences.

An obese lady who attended most Zumba fitness classes will have better health than those who attended a few.

How to Write a Null Hypothesis

If a statistical analysis is involved in your research, then you must create a null hypothesis. If you find any relationship between the variables, then the null hypothesis will be the default position that there is no relationship between them. H0 is the symbol for the null hypothesis, while the hypothesis is represented as H1. The null hypothesis will also answer your question, “How to test the research hypothesis in the dissertation.”

H0: The number of Zumba fitness classes attended by the obese lady does not affect her health.

H1: The number of Zumba fitness classes attended by obese lady positively affects health.

Also see:  Your Dissertation in Education

Hypothesis Examples

Research Question: Does the amount of sunlight a plant receives affect its growth? Hypothesis: Plants that receive more sunlight will grow taller than plants that receive less sunlight.

Research Question: Do students who eat breakfast perform better in school exams than those who don’t? Hypothesis: Students who eat a morning breakfast will score higher on school exams compared to students who skip breakfast.

Research Question: Does listening to music while studying impact a student’s ability to retain information? Hypothesis 1 (Directional): Students who listen to music while studying will retain less information than those who study in silence. Hypothesis 2 (Non-directional): There will be a difference in information retention between students who listen to music while studying and those who study in silence.

How can ResearchProspect Help?

If you are unsure about how to rest a research hypothesis in a dissertation or simply unsure about how to develop a hypothesis for your research, then you can take advantage of our dissertation services which cover every tiny aspect of a dissertation project you might need help with including but not limited to setting up a hypothesis and research questions,  help with individual chapters ,  full dissertation writing ,  statistical analysis , and much more.

Frequently Asked Questions

What are the 5 rules for writing a good hypothesis.

  • Clear Statement: State a clear relationship between variables.
  • Testable: Ensure it can be investigated and measured.
  • Specific: Avoid vague terms, be precise in predictions.
  • Falsifiable: Design to allow potential disproof.
  • Relevant: Address research question and align with existing knowledge.

What is a hypothesis in simple words?

A hypothesis is an educated guess or prediction about something that can be tested. It is a statement that suggests a possible explanation for an event or phenomenon based on prior knowledge or observation. Scientists use hypotheses as a starting point for experiments to discover if they are true or false.

What is the hypothesis and examples?

A hypothesis is a testable prediction or explanation for an observation or phenomenon. For example, if plants are given sunlight, then they will grow. In this case, the hypothesis suggests that sunlight has a positive effect on plant growth. It can be tested by experimenting with plants in varying light conditions.

What is the hypothesis in research definition?

A hypothesis in research is a clear, testable statement predicting the possible outcome of a study based on prior knowledge and observation. It serves as the foundation for conducting experiments or investigations. Researchers test the validity of the hypothesis to draw conclusions and advance knowledge in a particular field.

Why is it called a hypothesis?

The term “hypothesis” originates from the Greek word “hypothesis,” which means “base” or “foundation.” It’s used to describe a foundational statement or proposition that can be tested. In scientific contexts, it denotes a tentative explanation for a phenomenon, serving as a starting point for investigation or experimentation.

You May Also Like

This article is a step-by-step guide to how to write statement of a problem in research. The research problem will be half-solved by defining it correctly.

How to write a hypothesis for dissertation,? A hypothesis is a statement that can be tested with the help of experimental or theoretical research.

Make sure that your selected topic is intriguing, manageable, and relevant. Here are some guidelines to help understand how to find a good dissertation topic.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Hypothesis: Forms and Samples

Hypothesis is a wise guess prepared and temporarily adopted to explain the observed factors covered by the study.  It is a tentative conclusion or answer to a specific question raised at the beginning of the investigation.

Hypothesis helps the researcher in designing the study such as the methods, research instruments, and sampling design to be used as well as the data to be gathered. It also use as bases for determining assumptions and for the explanation about the data gathered.

Forms of Hypothesis

  • Operational Form – It is stated in the affirmative.  It states that there is a difference between two phenomena
  • Null Form – It is stated in the negative. It states that there is no difference between the two phenomena. It is more commonly used.

Question: Is there any significant difference between the perceptions of the teachers and those of the students concerning the different aspects in the teaching of science?

Operational hypothesis There is a significant difference between the perceptions of the teachers and those of the students concerning the different aspects in the teaching of science.

Null hypothesis There is no significant difference between the perceptions of the teachers and those of the students concerning the different aspects in the teaching of science.

3 thoughts to “Hypothesis: Forms and Samples”

hey how we do this hypothesis…………………………….

You know so many interesting infomation. You might be very wise. I like such people. Don’t top writing.

Thate is fine. You shoud proud of youer worke.

Comments are closed.

Llewellyn  E. van Zyl Ph.D.

The Happy-Productive Worker Hypothesis: Factor or Fallacy?

Navigating the complexities of happiness and productivity.

Posted April 24, 2024 | Reviewed by Davia Sills

  • The "happy-productive worker" hypothesis is a fallacy which suggests that happy people are more productive.
  • Research found contradictory evidence that challenges the notion of a direct, reciprocal relationship.
  • Individual, organizational, and contextual factors significantly moderate how happiness impacts productivity.
  • The relationship between happiness and performance is not always bidirectional.

Source: Wiley Publications, used with permission

Yesterday, my colleagues and I received the Top Cited Paper Award (2022-2023) for our paper on a positive psychological intervention we implemented for healthcare students. I was also informed that two of my papers in the Journal of Positive Psychology (the highest-ranked journal in positive psychology) were in the top three most-read and most-discussed manuscripts in the journal for the 2023 publication cycle. On top of this, I published around 29 papers (and had about 33 others in review somewhere). These are such wonderful accolades and provide some recognition for the great work which my team and I did. Undoubtedly, the 2022-2023 academic year has been the most productive and successful period in my entire academic career .

However, despite these achievements and my high performance, I found myself to be deeply unhappy. This seeming contradiction—having attained such remarkable success while grappling with profound personal dissatisfaction—has led me to ponder a fundamental question: Why was I able to function at such a high level yet feel tremendously unhappy at the same time? And more importantly, why did this high level of performance fail to translate into happiness ?

These questions strike at the heart of the “happy-productive worker” hypothesis—an idea that has become one of the building blocks of positive psychology and organizational psychology. The core premise of this idea is that there exists a symbiotic, reciprocal relationship between an employee’s level of happiness and their work performance.

So why was this not the case for me? This seeming contradiction, having achieved some remarkable academic success while feeling deeply unhappy, provides a compelling case study to look into what the research actually says about this “happy-productive worker” hypothesis.

Source: Dall-E / Open AI

What Is the Happy-Productive Worker Hypothesis?

The idea that happier workers are more productive and that increased productivity leads to greater happiness has become a cornerstone of not only my discipline but also one of the main drivers in practice. The idea was popularized by Frank Landy (1985), who argued that there is a symbiotic, reciprocal relationship between employees’ level of happiness and their work performance. And it is an intuitively appealing concept that resonates with many managers and HR professionals.

The underlying logic seems sound—when employees feel content and fulfilled, they are more likely to engage enthusiastically in their work, exhibit creativity , and maintain high levels of motivation and resilience , all of which contribute to enhanced performance. And when these employees experience the positive outcomes associated with their increased productivity, such as recognition, advancement opportunities, and a sense of accomplishment, their overall happiness and job satisfaction are further bolstered.

Source: AI Generated / MS Copilot

Factors Moderating the Happiness-Performance Relationship

But if the happy-productive worker hypothesis is correct, then why does there seem to be an inverse relationship between my happiness and my productivity? It would seem that the unhappier I became, the better I performed, and the better I performed, the unhappier I got. Am I just an outlier—a statistical anomaly?

Well, not entirely! Although the idea is appealing, the empirical evidence supporting the claim has been mixed and even contradictory at times. Recent studies have revealed that the relationship between happiness and job performance is far more complex and nuanced than the simplistic, deterministic view often presented. As with many psychological phenomena, the relationship between happiness and job performance is likely moderated by various individual, organizational, and contextual factors.

  • On an individual level , factors like personality traits, personal life circumstances, job fit, and emotional self-regulation abilities can moderate how an employee’s experienced happiness connects to their work behaviors and performance. For example, highly conscientious individuals may find satisfaction in efficiently completing tasks, leading to higher productivity, while those with lower emotional stability may struggle to maintain happiness in stressful work environments.
  • Organizational factors such as culture, policies, and management practices also play a critical role in shaping employee happiness and job performance. A supportive and inclusive work environment that values employee well-being can contribute to higher levels of happiness, while factors like excessive workload, lack of autonomy, and poor management can undermine employee morale and lead to decreased happiness and performance.
  • Contextual factors like industry norms, economic conditions, and societal expectations can shape the relationship between happiness and job performance. In highly competitive or high-pressure industries, employees may feel compelled to prioritize productivity over their own well-being, leading to a potential mismatch between happiness and performance. Macroeconomic factors such as job insecurity and industry disruptions can also impact employees’ perceptions of their jobs and future prospects, influencing their happiness levels and performance outcomes.

Interestingly, research also shows that the relationship between happiness and performance is not always bidirectional. While happy employees may indeed be more productive in certain contexts, there are instances where heightened productivity may lead to burnout and even detract from overall well-being. Finally, the complexity of human motivation suggests that productivity can stem from various sources beyond happiness alone, including extrinsic incentives, intrinsic interest in the work itself, and a sense of duty or responsibility. Therefore, while fostering employee happiness is undoubtedly valuable for organizational success, the direct reciprocal link proposed by the happy-performing worker thesis may oversimplify the multifaceted nature of workplace dynamics .

hypothesis of the study example in thesis

So what does this all mean for you and me? Well, the realization that my academic performance has come at the cost of my personal well-being has been both humbling and enlightening. While the “happy-productive worker” hypothesis may hold true in certain contexts, my own experience and the latest research serve as a powerful testament to the complexities and nuances that underlie the relationship between happiness and performance. By understanding that various factors affect our happiness and performance, we can chart a path toward creating more sustainable practices that can generate perpetual energy!

Gutiérrez, Oscar Iván, Jean David Polo, Milton José Zambrano, and Diana Carolina Molina. "Meta-analysis and scientific mapping of well-being and job performance." The Spanish Journal of Psychology 23 (2020): e43.

Pérez-Nebra, A. R., Ayala, Y., Tordera, N., Peiró, J. M., & Queiroga, F. (2021). The relationship between performance and well-being at work: a systematic review of 20 years and future perspectives in Brazil. Revista Psicologia Organizações e Trabalho , 21 (2), 1535-1544.

Sender, G., Nobre, G. C., Armagan, S., & Fleck, D. (2022). In search of the Holy Grail: A 20-year systematic review of the happy-productive worker thesis. International Journal of Organizational Analysis , 29 (5), 1199-1224.

Ayala, Y., Peiró Silla, J. M., Tordera, N., Lorente, L., & Yeves, J. (2017). Job satisfaction and innovative performance in young Spanish employees: Testing new patterns in the happy-productive worker thesis—A discriminant study. Journal of Happiness Studies: An Interdisciplinary Forum on Subjective Well-Being, 18 (5), 1377–1401. https://doi.org/10.1007/s10902-016-9778-1

Landy, F. J. (1985). Psychology of Work Behavior. Dorsey Press.

Llewellyn  E. van Zyl Ph.D.

Llewellyn E. van Zyl, Ph.D. , is a professor of positive psychology at the Optentia Research Unit within the North-West University and is attached to the Eindhoven University of Technology.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • International
  • New Zealand
  • South Africa
  • Switzerland
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. How to Write Hypothesis in Research

    hypothesis of the study example in thesis

  2. What is a Research Hypothesis and How to Write a Hypothesis

    hypothesis of the study example in thesis

  3. How to form a hypothesis for a research paper. Sample Research Papers

    hypothesis of the study example in thesis

  4. Hypothesis and Assumptions of the Study

    hypothesis of the study example in thesis

  5. Thesis hypothesis

    hypothesis of the study example in thesis

  6. FREE 11+ Research Hypothesis Templates in PDF

    hypothesis of the study example in thesis

VIDEO

  1. Two-Sample Hypothesis Testing: Dependent Sample

  2. Concept of Hypothesis

  3. Hypothesis Hack : Leveraging Your Thesis with DATAtab

  4. how to say thesis, abstract, theory, hypothesis in Swahili #swahili #learnswahili

  5. How to write a hypothesis

  6. Proportion Hypothesis Testing, example 2

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  3. PDF 1. Formulation of Research Hypothesis with student samples

    Your hypothesis is what you propose to "prove" by your research. As a result of your research, you will arrive at a conclusion, a theory, or understanding that will be useful or applicable beyond the research itself. 3. Avoid judgmental words in your hypothesis. Value judgments are subjective and are not appropriate for a hypothesis.

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  5. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  6. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  7. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  8. How To Write A Hypotheses

    Identify the variables involved. Formulate a clear and testable prediction. Use specific and measurable terms. Align the hypothesis with the research question. Distinguish between the null hypothesis (no effect) and alternative hypothesis (expected effect). Ensure the hypothesis is falsifiable and subject to empirical testing.

  9. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  10. How to Write a Research Hypothesis

    Research hypothesis checklist. Once you've written a possible hypothesis, make sure it checks the following boxes: It must be testable: You need a means to prove your hypothesis. If you can't test it, it's not a hypothesis. It must include a dependent and independent variable: At least one independent variable ( cause) and one dependent ...

  11. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  12. How to Write a Research Hypothesis: Good & Bad Examples

    Alternative Hypothesis. If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the ...

  13. What is and How to Write a Good Hypothesis in Research?

    An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions. Use the following points as a checklist to evaluate the effectiveness of your research hypothesis: Predicts the relationship and outcome.

  14. How to Write a Research Hypothesis

    The following example shows the proper format and textual content of a hypothesis. It follows commonly accepted academic standards. Null hypothesis (H0): High school students who participate in varsity sports as opposed to those who do not, fail to score higher on leadership tests than students who do not participate. Alternative hypothesis (H1): High school students who play a varsity sport ...

  15. How to Write a Hypothesis for a Research Paper + Examples

    Ensure that your hypothesis is realistic and can be tested within the constraints of your available resources, time, and ethical considerations. Avoid value judgments: Be neutral and objective. Avoid including personal beliefs, value judgments, or subjective opinions. Stick to empirical statements based on evidence.

  16. Develop a Thesis/Hypothesis

    A thesis statement is developed, supported, and explained in the body of the essay or research report by means of examples and evidence. Every research study should contain a concise and well-written thesis statement. If the intent of the study is to prove/disprove something, that research report will also contain an hypothesis statement.

  17. Writing a Strong Hypothesis Statement

    Make sure your hypothesis clearly posits a relationship between variables. Make sure your hypothesis is testable considering your available time and resources. Before writing a thesis, it is important to create a strong hypothesis statement. This statement is a prediction of what you think will happen in your research study.

  18. How to Write a Hypothesis: Types, Steps and Examples

    Search for facts, past studies, theories, etc. Based on the collected information, you should be able to make a logical and intelligent guess. 3. Formulate a Hypothesis. Based on the initial research, you should have a certain idea of what you may find throughout the course of your research.

  19. How to Write a Hypothesis

    Step 8: Test your Hypothesis. Design an experiment or conduct observations to test your hypothesis. Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

  20. PDF Writing Thesis Statements & Hypotheses by Hope Matis

    If the essay question asks "how," then your thesis will probably answer it using the word "by.". If the question is "why," the answer is "because.". Other types of problem statements include key task words such as "analyze," "compare/contrast," "define," and "explain.". In each case, the thesis must imply the ...

  21. Hypothesis: Forms and Samples

    Hypothesis helps the researcher in designing the study such as the methods, research instruments, and sampling design to be used as well as the data to be gathered. It also use as bases for determining assumptions and for the explanation about the data gathered. Forms of Hypothesis. Operational Form - It is stated in the affirmative. It ...

  22. PDF CHAPTER 1 RESEARCH BACKGROUND, OBJECTIVES, AND HYPOTHESIS

    1.5 Hypothesis Hypothesis 1: The theory of productive efficiency can be extended into the dynamical realm by incorporating certain concepts within a SD framework. Hypothesis 2: The new framework will provide insights into the performance of dynamic systems, plus provide additional insights about the drivers and levers of system performance.

  23. The Happy-Productive Worker Hypothesis: Factor or Fallacy?

    The "happy-productive worker" hypothesis is a fallacy which suggests that happy people are more productive. Research found contradictory evidence that challenges the notion of a direct, reciprocal ...

  24. Land

    As a typical ecologically fragile area, the ecological security of the Loess Plateau has been seriously threatened. Ecological security patterns (ESP) have gradually become an effective method for protecting ecological security and supporting the management and sustainable development of ecosystems. Therefore, this study constructed a novel ESP based on ecological "function-structure ...