Importance of Exercise Essay

500 words essay on exercise essay.

Exercise is basically any physical activity that we perform on a repetitive basis for relaxing our body and taking away all the mental stress. It is important to do regular exercise. When you do this on a daily basis, you become fit both physically and mentally. Moreover, not exercising daily can make a person susceptible to different diseases. Thus, just like eating food daily, we must also exercise daily. The importance of exercise essay will throw more light on it.

importance of exercise essay

Importance of Exercise

Exercising is most essential for proper health and fitness. Moreover, it is essential for every sphere of life. Especially today’s youth need to exercise more than ever. It is because the junk food they consume every day can hamper their quality of life.

If you are not healthy, you cannot lead a happy life and won’t be able to contribute to the expansion of society. Thus, one needs to exercise to beat all these problems. But, it is not just about the youth but also about every member of the society.

These days, physical activities take places in colleges more than often. The professionals are called to the campus for organizing physical exercises. Thus, it is a great opportunity for everyone who wishes to do it.

Just like exercise is important for college kids, it is also essential for office workers. The desk job requires the person to sit at the desk for long hours without breaks. This gives rise to a very unhealthy lifestyle.

They get a limited amount of exercise as they just sit all day then come back home and sleep. Therefore, it is essential to exercise to adopt a healthy lifestyle that can also prevent any damaging diseases .

Benefits of Exercise

Exercise has a lot of benefits in today’s world. First of all, it helps in maintaining your weight. Moreover, it also helps you reduce weight if you are overweight. It is because you burn calories when you exercise.

Further, it helps in developing your muscles. Thus, the rate of your body will increases which helps to burn calories. Moreover, it also helps in improving the oxygen level and blood flow of the body.

When you exercise daily, your brain cells will release frequently. This helps in producing cells in the hippocampus. Moreover, it is the part of the brain which helps to learn and control memory.

The concentration level in your body will improve which will ultimately lower the danger of disease like Alzheimer’s. In addition, you can also reduce the strain on your heart through exercise. Finally, it controls the blood sugar levels of your body so it helps to prevent or delay diabetes.

Get the huge list of more than 500 Essay Topics and Ideas

Conclusion of Importance of Exercise Essay

In order to live life healthily, it is essential to exercise for mental and physical development. Thus, exercise is important for the overall growth of a person. It is essential to maintain a balance between work, rest and activities. So, make sure to exercise daily.

FAQ of Importance of Exercise Essay

Question 1: What is the importance of exercise?

Answer 1: Exercise helps people lose weight and lower the risk of some diseases. When you exercise daily, you lower the risk of developing some diseases like obesity, type 2 diabetes, high blood pressure and more. It also helps to keep your body at a healthy weight.

Question 2: Why is exercising important for students?

Answer 2: Exercising is important for students because it helps students to enhance their cardiorespiratory fitness and build strong bones and muscles. In addition, it also controls weight and reduces the symptoms of anxiety and depression. Further, it can also reduce the risk of health conditions like heart diseases and more.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Appointments at Mayo Clinic

Exercise: 7 benefits of regular physical activity.

You know exercise is good for you, but do you know how good? From boosting your mood to improving your sex life, find out how exercise can improve your life.

Want to feel better, have more energy and even add years to your life? Just exercise.

The health benefits of regular exercise and physical activity are hard to ignore. Everyone benefits from exercise, no matter their age, sex or physical ability.

Need more convincing to get moving? Check out these seven ways that exercise can lead to a happier, healthier you.

1. Exercise controls weight

Exercise can help prevent excess weight gain or help you keep off lost weight. When you take part in physical activity, you burn calories. The more intense the activity, the more calories you burn.

Regular trips to the gym are great, but don't worry if you can't find a large chunk of time to exercise every day. Any amount of activity is better than none. To gain the benefits of exercise, just get more active throughout your day. For example, take the stairs instead of the elevator or rev up your household chores. Consistency is key.

2. Exercise combats health conditions and diseases

Worried about heart disease? Hoping to prevent high blood pressure? No matter what your current weight is, being active boosts high-density lipoprotein (HDL) cholesterol, the "good" cholesterol, and it decreases unhealthy triglycerides. This one-two punch keeps your blood flowing smoothly, which lowers your risk of heart and blood vessel, called cardiovascular, diseases.

Regular exercise helps prevent or manage many health problems and concerns, including:

  • Metabolic syndrome.
  • High blood pressure.
  • Type 2 diabetes.
  • Depression.
  • Many types of cancer.

It also can help improve cognitive function and helps lower the risk of death from all causes.

3. Exercise improves mood

Need an emotional lift? Or need to lower stress after a stressful day? A gym session or brisk walk can help. Physical activity stimulates many brain chemicals that may leave you feeling happier, more relaxed and less anxious.

You also may feel better about your appearance and yourself when you exercise regularly, which can boost your confidence and improve your self-esteem.

4. Exercise boosts energy

Winded by grocery shopping or household chores? Regular physical activity can improve your muscle strength and boost your endurance.

Exercise sends oxygen and nutrients to your tissues and helps your cardiovascular system work more efficiently. And when your heart and lung health improve, you have more energy to tackle daily chores.

5. Exercise promotes better sleep

Struggling to snooze? Regular physical activity can help you fall asleep faster, get better sleep and deepen your sleep. Just don't exercise too close to bedtime, or you may be too energized to go to sleep.

6. Exercise puts the spark back into your sex life

Do you feel too tired or too out of shape to enjoy physical intimacy? Regular physical activity can improve energy levels and give you more confidence about your physical appearance, which may boost your sex life.

But there's even more to it than that. Regular physical activity may enhance arousal for women. And men who exercise regularly are less likely to have problems with erectile dysfunction than are men who don't exercise.

7. Exercise can be fun — and social!

Exercise and physical activity can be fun. They give you a chance to unwind, enjoy the outdoors or simply do activities that make you happy. Physical activity also can help you connect with family or friends in a fun social setting.

So take a dance class, hit the hiking trails or join a soccer team. Find a physical activity you enjoy, and just do it. Bored? Try something new, or do something with friends or family.

Exercise to feel better and have fun

Exercise and physical activity are great ways to feel better, boost your health and have fun. For most healthy adults, the U.S. Department of Health and Human Services recommends these exercise guidelines:

Aerobic activity. Get at least 150 minutes of moderate aerobic activity. Or get at least 75 minutes of vigorous aerobic activity a week. You also can get an equal combination of moderate and vigorous activity. Aim to spread out this exercise over a few days or more in a week.

For even more health benefits, the guidelines suggest getting 300 minutes a week or more of moderate aerobic activity. Exercising this much may help with weight loss or keeping off lost weight. But even small amounts of physical activity can be helpful. Being active for short periods of time during the day can add up and have health benefits.

  • Strength training. Do strength training exercises for all major muscle groups at least two times a week. One set of each exercise is enough for health and fitness benefits. Use a weight or resistance level heavy enough to tire your muscles after about 12 to 15 repetitions.

Moderate aerobic exercise includes activities such as brisk walking, biking, swimming and mowing the lawn.

Vigorous aerobic exercise includes activities such as running, swimming laps, heavy yardwork and aerobic dancing.

You can do strength training by using weight machines or free weights, your own body weight, heavy bags, or resistance bands. You also can use resistance paddles in the water or do activities such as rock climbing.

If you want to lose weight, keep off lost weight or meet specific fitness goals, you may need to exercise more.

Remember to check with a health care professional before starting a new exercise program, especially if you have any concerns about your fitness or haven't exercised for a long time. Also check with a health care professional if you have chronic health problems, such as heart disease, diabetes or arthritis.

There is a problem with information submitted for this request. Review/update the information highlighted below and resubmit the form.

From Mayo Clinic to your inbox

Sign up for free and stay up to date on research advancements, health tips, current health topics, and expertise on managing health. Click here for an email preview.

Error Email field is required

Error Include a valid email address

To provide you with the most relevant and helpful information, and understand which information is beneficial, we may combine your email and website usage information with other information we have about you. If you are a Mayo Clinic patient, this could include protected health information. If we combine this information with your protected health information, we will treat all of that information as protected health information and will only use or disclose that information as set forth in our notice of privacy practices. You may opt-out of email communications at any time by clicking on the unsubscribe link in the e-mail.

Thank you for subscribing!

You'll soon start receiving the latest Mayo Clinic health information you requested in your inbox.

Sorry something went wrong with your subscription

Please, try again in a couple of minutes

  • AskMayoExpert. Physical activity (adult). Mayo Clinic; 2021.
  • Physical Activity Guidelines for Americans. 2nd ed. U.S. Department of Health and Human Services. https://health.gov/our-work/physical-activity/current-guidelines. Accessed June 25, 2021.
  • Peterson DM. The benefits and risk of aerobic exercise. https://www.uptodate.com/contents/search. Accessed June 24, 2021.
  • Maseroli E, et al. Physical activity and female sexual dysfunction: A lot helps, but not too much. The Journal of Sexual Medicine. 2021; doi:10.1016/j.jsxm.2021.04.004.
  • Allen MS. Physical activity as an adjunct treatment for erectile dysfunction. Nature Reviews: Urology. 2019; doi:10.1038/s41585-019-0210-6.
  • Tips for starting physical activity. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/weight-management/tips-get-active/tips-starting-physical-activity. Accessed June 25, 2021.
  • Laskowski ER (expert opinion). Mayo Clinic. June 16, 2021.

Products and Services

  • Mayo Clinic Sports Medicine
  • A Book: The Mayo Clinic Diet Bundle
  • A Book: Live Younger Longer
  • Available Health Products from Mayo Clinic Store
  • Available Solutions under FSA/HSA Coverage from Mayo Clinic Store
  • Newsletter: Mayo Clinic Health Letter — Digital Edition
  • A Book: Mayo Clinic Book of Home Remedies
  • A Book: Mayo Clinic on High Blood Pressure
  • A Book: Mayo Clinic Family Health Book, 5th Edition
  • The Mayo Clinic Diet Online
  • Balance exercises
  • Blood Doping
  • Can I exercise if I have atopic dermatitis?
  • Core exercises
  • Exercise and chronic disease
  • Exercise and illness
  • Stress relief
  • Exercising with arthritis
  • Fitness ball exercises videos
  • Fitness program
  • Fitness training routine
  • Hate to exercise? Try these tips
  • Hockey Flywheel
  • How fit are you?
  • Marathon and the Heat
  • BMI and waist circumference calculator
  • Mayo Clinic Minute: How to hit your target heart rate
  • Staying active with Crohn's disease
  • Strength training: How-to video collection

Mayo Clinic does not endorse companies or products. Advertising revenue supports our not-for-profit mission.

  • Opportunities

Mayo Clinic Press

Check out these best-sellers and special offers on books and newsletters from Mayo Clinic Press .

  • Mayo Clinic on Incontinence - Mayo Clinic Press Mayo Clinic on Incontinence
  • The Essential Diabetes Book - Mayo Clinic Press The Essential Diabetes Book
  • Mayo Clinic on Hearing and Balance - Mayo Clinic Press Mayo Clinic on Hearing and Balance
  • FREE Mayo Clinic Diet Assessment - Mayo Clinic Press FREE Mayo Clinic Diet Assessment
  • Mayo Clinic Health Letter - FREE book - Mayo Clinic Press Mayo Clinic Health Letter - FREE book
  • Healthy Lifestyle
  • Exercise 7 benefits of regular physical activity

Your gift holds great power – donate today!

Make your tax-deductible gift and be a part of the cutting-edge research and care that's changing medicine.

Physical Exercises and Their Health Benefits Essay

Exercises that include physical activities are very essential to both body and mental health of human beings. In fact this is one of the areas where many studies have been conducted by scholars from different parts of the world to show that exercise is essential to all people regardless of their age, sex and occupation. Healthcare givers also recommend that patients with chronic sicknesses should do some workouts to facilitate their healing. According to the recent studies on the importance of exercise to human beings, it is evident that people have begun to realize the need for doing exercise. In fact people from different parts of the world participate in various exercises and other physical activity in order to keep fit and remain healthy. This paper highlights some of the major importance of workouts to our bodies and why people should do exercises.

One of the major benefits of exercise is that it helps in maintaining a healthy body weight. Cases of people being overweight are common in the modern society due to people shying away from physical activities and desire for junk food. Change of lifestyles has made many people to be overweight and this comes with health complications. Participating in physical activity burns calories and this promotes weight loss. Exercises also help in maintaining weight loss among those working on how to lose some of their body weight.

Exercise makes an individual stronger and boosts the body energy. Some people are very weak to an extent that they are heavily fatigued by simple duties such as doing shopping or doing basic domestic chores. Regular exercise improves bone and muscle strength and give gives the body endurance to tiring activities. When you participate in regular workouts, oxygen and other necessary nutrients are delivered to the lungs, heart and other vital body organs to ensure that they are functioning well. Consequently, a person is able to do simple routine tasks without getting easily exhausted.

Exercise also improves moods and looks. Studies show that people who do not participate in any physical activities and workouts are mostly in bad moods and gloomy. Ordinarily, people get involved in some activities that may lower their moods and exercise helps in improving moods and maintain the charming appearance. Simple workouts stimulate the brain to release some chemicals that make an individual feel happy and relaxed. This also improves the facial looks therefore raising self-esteem and confidence. For those who want to keep fit and maintain certain body looks such as models, sports people and celebrities, exercise helps in achieving the desired physical body appearances.

Exercise is also believed to promote good sleeping habits. Sometimes it becomes difficult to fall asleep or to remain asleep especially after a busy day. Regular exercise can help in promoting better sleep and ensure that it is a continuous one. To the married people, sex life is important and cannot be taken for granted. However, this has become a major challenge to the modern couples because many people retire to their beds feeling too tired to participate in physical intimacy. Exercise makes helps in maintaining a positive sex life and it promotes arousal for both women and men. Studies show that regular physical activity helps men to overcome erectile dysfunction making sex life more enjoyable.

Exercise is also paramount for maintaining better health. Regular workouts improve the immune system and this reduces the chances of getting sick. However, it is worth noting that over exercising can destroy the body immune system. Additionally, regular exercise reduces stress thereby contributing to a healthy living. Regular workouts take the body and mind from the stressing activities and this relieves the body the weight of the stress. The energy used in handling stress is therefore used for other productive processes of the body. Some people suffer from poor digestion and metabolism especially the elderly ones. Exercise helps in ensuring that digestion and absorption of food in the body take place as well. Workouts also increase the rate of metabolisms and the end result is good health. For those doing trainings such as weight lifting and muscle builders, workouts promotes muscle buildup and helps in changing the body shape to the desired body shape. Regular exercise also improves the body stamina and enhances flexibility and stability. Workouts stretch the body and ensure a good posture. This is vital for body stability and it also prevents early body aging. It also reduces the chances of getting easily injured when doing routine duties.

Generally, it is evident that exercise is good for both our mental and body health. It is also worth noting that exercise is enjoyable and can be used to bring people close to their friends. Physical activity is fun and it gives people an opportunity to participate in things that make them happy. Participating in a dance class or soccer club is very enjoyable and makes you to feel relaxed. However it is important for the people with special health conditions to ensure that they have consulted their healthcare for advice on the best workouts to avoid more harm to their body.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2020, August 21). Physical Exercises and Their Health Benefits. https://ivypanda.com/essays/physical-exercises-and-their-health-benefits/

"Physical Exercises and Their Health Benefits." IvyPanda , 21 Aug. 2020, ivypanda.com/essays/physical-exercises-and-their-health-benefits/.

IvyPanda . (2020) 'Physical Exercises and Their Health Benefits'. 21 August.

IvyPanda . 2020. "Physical Exercises and Their Health Benefits." August 21, 2020. https://ivypanda.com/essays/physical-exercises-and-their-health-benefits/.

1. IvyPanda . "Physical Exercises and Their Health Benefits." August 21, 2020. https://ivypanda.com/essays/physical-exercises-and-their-health-benefits/.

Bibliography

IvyPanda . "Physical Exercises and Their Health Benefits." August 21, 2020. https://ivypanda.com/essays/physical-exercises-and-their-health-benefits/.

  • Aerobic and Anaerobic Workouts Comparison
  • Daily Workouts App Evaluation
  • Work Out and Stay Healthy: Persuading Classmates
  • The Problem of Falling Asleep
  • Endurance Training Programs in Soldiers and Athletes
  • Weight Training: Principles and Recommendations
  • Physical Fitness Training Programs for Athletes
  • Muay Thai and Kickboxing Promotion in the UAE
  • Market Outcomes for Resistance Bands
  • The Governmental Healthcare Program and Patient Behavior
  • The Benefit of Personal Fitness
  • Obesity and Benefits of Exercising
  • Wellness Goal: Diets and Exercises for Gaining Lean Body Mass
  • Impacts of the Regular Exercise on the Human Life Quality
  • Yoga for Depression and Anxiety

Physical Activity Is Good for the Mind and the Body

doing exercise is good for health essay

Health and Well-Being Matter is the monthly blog of the Director of the Office of Disease Prevention and Health Promotion.

Everyone has their own way to “recharge” their sense of well-being — something that makes them feel good physically, emotionally, and spiritually even if they aren’t consciously aware of it. Personally, I know that few things can improve my day as quickly as a walk around the block or even just getting up from my desk and doing some push-ups. A hike through the woods is ideal when I can make it happen. But that’s me. It’s not simply that I enjoy these activities but also that they literally make me feel better and clear my mind.

Mental health and physical health are closely connected. No kidding — what’s good for the body is often good for the mind. Knowing what you can do physically that has this effect for you will change your day and your life.

Physical activity has many well-established mental health benefits. These are published in the Physical Activity Guidelines for Americans and include improved brain health and cognitive function (the ability to think, if you will), a reduced risk of anxiety and depression, and improved sleep and overall quality of life. Although not a cure-all, increasing physical activity directly contributes to improved mental health and better overall health and well-being.

Learning how to routinely manage stress and getting screened for depression are simply good prevention practices. Awareness is especially critical at this time of year when disruptions to healthy habits and choices can be more likely and more jarring. Shorter days and colder temperatures have a way of interrupting routines — as do the holidays, with both their joys and their stresses. When the plentiful sunshine and clear skies of temperate months give way to unpredictable weather, less daylight, and festive gatherings, it may happen unconsciously or seem natural to be distracted from being as physically active. However, that tendency is precisely why it’s so important that we are ever more mindful of our physical and emotional health — and how we can maintain both — during this time of year.

Roughly half of all people in the United States will be diagnosed with a mental health disorder at some point in their lifetime, with anxiety and anxiety disorders being the most common. Major depression, another of the most common mental health disorders, is also a leading cause of disability for middle-aged adults. Compounding all of this, mental health disorders like depression and anxiety can affect people’s ability to take part in health-promoting behaviors, including physical activity. In addition, physical health problems can contribute to mental health problems and make it harder for people to get treatment for mental health disorders.

The COVID-19 pandemic has brought the need to take care of our physical and emotional health to light even more so these past 2 years. Recently, the U.S. Surgeon General highlighted how the pandemic has exacerbated the mental health crisis in youth .

The good news is that even small amounts of physical activity can immediately reduce symptoms of anxiety in adults and older adults. Depression has also shown to be responsive to physical activity. Research suggests that increased physical activity, of any kind, can improve depression symptoms experienced by people across the lifespan. Engaging in regular physical activity has also been shown to reduce the risk of developing depression in children and adults.

Though the seasons and our life circumstances may change, our basic needs do not. Just as we shift from shorts to coats or fresh summer fruits and vegetables to heartier fall food choices, so too must we shift our seasonal approach to how we stay physically active. Some of that is simply adapting to conditions: bundling up for a walk, wearing the appropriate shoes, or playing in the snow with the kids instead of playing soccer in the grass.

Sometimes there’s a bit more creativity involved. Often this means finding ways to simplify activity or make it more accessible. For example, it may not be possible to get to the gym or even take a walk due to weather or any number of reasons. In those instances, other options include adding new types of movement — such as impromptu dance parties at home — or doing a few household chores (yes, it all counts as physical activity).

During the COVID-19 pandemic, I built a makeshift gym in my garage as an alternative to driving back and forth to the gym several miles from home. That has not only saved me time and money but also afforded me the opportunity to get 15 to 45 minutes of muscle-strengthening physical activity in at odd times of the day.

For more ideas on how to get active — on any day — or for help finding the motivation to get started, check out this Move Your Way® video .

The point to remember is that no matter the approach, the Physical Activity Guidelines recommend that adults get at least 150 minutes of moderate-intensity aerobic activity (anything that gets your heart beating faster) each week and at least 2 days per week of muscle-strengthening activity (anything that makes your muscles work harder than usual). Youth need 60 minutes or more of physical activity each day. Preschool-aged children ages 3 to 5 years need to be active throughout the day — with adult caregivers encouraging active play — to enhance growth and development. Striving toward these goals and then continuing to get physical activity, in some shape or form, contributes to better health outcomes both immediately and over the long term.

For youth, sports offer additional avenues to more physical activity and improved mental health. Youth who participate in sports may enjoy psychosocial health benefits beyond the benefits they gain from other forms of leisure-time physical activity. Psychological health benefits include higher levels of perceived competence, confidence, and self-esteem — not to mention the benefits of team building, leadership, and resilience, which are important skills to apply on the field and throughout life. Research has also shown that youth sports participants have a reduced risk of suicide and suicidal thoughts and tendencies. Additionally, team sports participation during adolescence may lead to better mental health outcomes in adulthood (e.g., less anxiety and depression) for people exposed to adverse childhood experiences. In addition to the physical and mental health benefits, sports can be just plain fun.

Physical activity’s implications for significant positive effects on mental health and social well-being are enormous, impacting every facet of life. In fact, because of this national imperative, the presidential executive order that re-established the President’s Council on Sports, Fitness & Nutrition explicitly seeks to “expand national awareness of the importance of mental health as it pertains to physical fitness and nutrition.” While physical activity is not a substitute for mental health treatment when needed and it’s not the answer to certain mental health challenges, it does play a significant role in our emotional and cognitive well-being.

No matter how we choose to be active during the holiday season — or any season — every effort to move counts toward achieving recommended physical activity goals and will have positive impacts on both the mind and the body. Along with preventing diabetes, high blood pressure, obesity, and the additional risks associated with these comorbidities, physical activity’s positive effect on mental health is yet another important reason to be active and Move Your Way .

As for me… I think it’s time for a walk. Happy and healthy holidays, everyone!

Yours in health, Paul

Paul Reed, MD Rear Admiral, U.S. Public Health Service Deputy Assistant Secretary for Health Director, Office of Disease Prevention and Health Promotion

The Office of Disease Prevention and Health Promotion (ODPHP) cannot attest to the accuracy of a non-federal website.

Linking to a non-federal website does not constitute an endorsement by ODPHP or any of its employees of the sponsors or the information and products presented on the website.

You will be subject to the destination website's privacy policy when you follow the link.

Benefits of Physical Activity

Obesity and Excess Weight Increase Risk of Severe Illness; Racial and Ethnic Disparities Persist

Food Assistance and Food Systems Resources

Immediate Benefits

Weight management, reduce your health risk, strengthen your bones and muscles, improve your ability to do daily activities and prevent falls, increase your chances of living longer, manage chronic health conditions & disabilities.

Regular physical activity is one of the most important things you can do for your health. Being physically active can improve your brain health , help manage weight , reduce the risk of disease , strengthen bones and muscles , and improve your ability to do everyday activities .

Adults who sit less and do any amount of moderate-to-vigorous physical activity gain some health benefits. Only a few lifestyle choices have as large an impact on your health as physical activity.

Everyone can experience the health benefits of physical activity – age, abilities, ethnicity, shape, or size do not matter.

Some benefits of physical activity on brain health [PDF-14.4MB] happen right after a session of moderate-to-vigorous physical activity. Benefits include improved thinking or cognition for children 6 to 13 years of age and reduced short-term feelings of anxiety for adults. Regular physical activity can help keep your thinking, learning, and judgment skills sharp as you age. It can also reduce your risk of depression and anxiety and help you sleep better.

Both eating patterns and physical activity routines play a critical role in weight management. You gain weight when you consume more calories through eating and drinking than the amount of calories you burn , including those burned during physical activity.

To maintain your weight:  Work your way up to 150 minutes a week of moderate physical activity, which could include dancing or yard work. You could achieve the goal of 150 minutes a week with 30 minutes a day, 5 days a week.

People vary greatly in how much physical activity they need for weight management. You may need to be more active than others to reach or maintain a healthy weight.

To lose weight and keep it off: You will need a high amount of physical activity unless you also adjust your eating patterns and reduce the amount of calories you’re eating and drinking. Getting to and staying at a healthy weight requires both regular physical activity and healthy eating.

See more information about:

  • Getting started with weight loss .
  • Getting started with physical activity .
  • Improving your eating patterns .

Benefits of Physical Activity

Learn more about the health benefits of physical activity  for children, adults, and adults age 65 and older.

See these tips  on getting started.

The good news [PDF-14.5MB]  is that  moderate physical activity , such as brisk walking, is generally  safe for most people .

Cardiovascular Disease

Heart disease and stroke are two leading causes of death in the United States. Getting at least 150 minutes a week of moderate physical activity can put you at a lower risk for these diseases. You can reduce your risk even further with more physical activity. Regular physical activity can also lower your blood pressure and improve your cholesterol levels.

Type 2 Diabetes and Metabolic Syndrome

Regular physical activity can reduce your risk of developing type 2 diabetes  and metabolic syndrome. Metabolic syndrome is some combination of too much fat around the waist, high blood pressure, low high-density lipoproteins (HDL) cholesterol, high triglycerides, or high blood sugar. People start to see benefits at levels from physical activity even without meeting the recommendations for 150 minutes a week of moderate physical activity. Additional amounts of physical activity seem to lower risk even more.

Infectious Diseases

Physical activity may help reduce the risk of serious outcomes from infectious diseases, including COVID-19, the flu, and pneumonia. For example:

  • People who do little or no physical activity are more likely to get very sick from COVID-19 than those who are physically active. A CDC systematic review [PDF-931KB] found that physical activity is associated with a decrease in COVID-19 hospitalizations and deaths, while inactivity increases that risk.
  • People who are more active may be less likely to die from flu or pneumonia. A CDC study found that adults who meet the aerobic and muscle-strengthening physical activity guidelines are about half as likely to die from flu and pneumonia as adults who meet neither guideline.

Some Cancers

Being physically active lowers your risk for developing several common cancers .  Adults who participate in greater amounts of physical activity have reduced risks of developing cancers of the:

  • Colon (proximal and distal)
  • Endometrium
  • Esophagus (adenocarcinoma)
  • Stomach (cardia and non-cardia adenocarcinoma)

If you are a cancer survivor, getting regular physical activity  not only helps give you a better quality of life, but also improves your physical fitness.

Regular Physical Activity Helps Lower Your Cancer Risk

Learn more about Physical Activity and Cancer

A woman jogging in a park with her dog.

As you age, it’s important to protect your bones, joints, and muscles – they support your body and help you move. Keeping bones, joints, and muscles healthy can help ensure that you’re able to do your daily activities and be physically active.

Muscle-strengthening activities like lifting weights can help you increase or maintain your muscle mass and strength. This is important for older adults who experience reduced muscle mass and muscle strength with aging. Slowly increasing the amount of weight and number of repetitions you do as part of muscle strengthening activities will give you even more benefits, no matter your age.

Everyday activities include climbing stairs, grocery shopping, or playing with your grandchildren. Being unable to do everyday activities is called a functional limitation. Physically active middle-aged or older adults have a lower risk of functional limitations than people who are inactive.

For older adults, doing a variety of physical activity improves physical function and decreases the risk of falls or injury from a fall . Include physical activities such as aerobic, muscle strengthening, and balance training. Multicomponent physical activity can be done at home or in a community setting as part of a structured program.

Hip fracture is a serious health condition that can result from a fall. Breaking a hip have life-changing negative effects, especially if you’re an older adult. Physically active people have a lower risk of hip fracture than inactive people.

See physical activity recommendations for different groups, including:

  • Children age 3-5 .
  • Children and adolescents age 6-17 .
  • Adults age 18-64 .
  • Adults 65 and older .
  • Adults with chronic health conditions and disabilities .
  • Healthy pregnant and postpartum women .

An estimated 110,000 deaths  per year could be prevented if US adults ages 40 and older increased their moderate-to-vigorous physical activity by a small amount. Even 10 minutes more a day would make a difference.

Taking more steps a day also helps lower the risk of premature death from all causes. For adults younger than 60, the risk of premature death leveled off at about 8,000 to 10,000 steps per day. For adults 60 and older, the risk of premature death leveled off at about 6,000 to 8,000 steps per day.

Regular physical activity can help people manage existing chronic conditions and disabilities. For example, regular physical activity can:

  • Reduce pain and improve function, mood, and quality of life for adults with arthritis.
  • Help control blood sugar levels and lower risk of heart disease and nerve damage for people with type 2 diabetes.
  • Health Benefits Associated with Physical Activity for People with Chronic Conditions and Disabilities [PDF-14.4MB]
  • Key Recommendations for Adults with Chronic Conditions and Disabilities [PDF-14.4MB]

Active People, Healthy Nation SM is a CDC initiative to help people be more physically active.

Active People, Healthy Nation logo

Sign up today!

To receive email updates about this topic, enter your email address.

Active People, Healthy Nation. Creating an Active America, Together.

  • Physical Activity
  • Overweight & Obesity
  • Healthy Weight, Nutrition, and Physical Activity
  • Breastfeeding
  • Micronutrient Malnutrition
  • State and Local Programs
  • Physical Activity for Arthritis
  • Diabetes — Get Active
  • Physical Activity for People with Disabilities
  • Prevent Heart Disease
  • Healthy Schools – Promoting Healthy Behaviors
  • Healthy Aging

Exit Notification / Disclaimer Policy

  • The Centers for Disease Control and Prevention (CDC) cannot attest to the accuracy of a non-federal website.
  • Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website.
  • You will be subject to the destination website's privacy policy when you follow the link.
  • CDC is not responsible for Section 508 compliance (accessibility) on other federal or private website.

Home — Essay Samples — Nursing & Health — Physical Exercise — The Importance of Exercise for a Healthy Lifestyle

test_template

The Importance of Exercise for a Healthy Lifestyle

  • Categories: Healthy Lifestyle Physical Exercise

About this sample

close

Words: 638 |

Published: Mar 16, 2024

Words: 638 | Page: 1 | 4 min read

Table of contents

Impact on physical health, impact on mental health, barriers to exercise.

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr Jacklynne

Verified writer

  • Expert in: Life Nursing & Health

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

2 pages / 886 words

2 pages / 1117 words

4 pages / 1771 words

1 pages / 578 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Physical Exercise

Easterlin, M. C., Chung, P. J., & Leng, M. (2023). Association of Team Sports Participation With Long-term Mental Health Outcomes Among Individuals Exposed to Adverse Childhood Experiences. JAMA Pediatrics.National Public Radio. [...]

High blood pressure is a significant health concern affecting adults worldwide. This quantitative essay employs a research investigation approach to examine the effects of physical activity on blood pressure levels in adults. [...]

World Health Organization. (n.d.). Mental disorders affect one in four people. Retrieved from https://www.harpersbazaar.com/uk/beauty/fitness-wellbeing/a28917865/the-mental-health-benefits-of-boxing/

In this essay on the benefits of exercise, we will explore the multitude of advantages that regular physical activity can offer. Exercise is not merely a means to improve physical appearance; it is a powerful tool that can [...]

My physical goals include increasing my fitness levels as well as weight loss. I would like to work on strengthening my body through gym and yoga whilst also embarking on a cardio routine that will mainly include running and [...]

What do you feel after exercise? Exercise is the cheapest and most useful tool for not only stress, but for many other things. For me, when I exercise, I get a feeling of comfort and relaxation. My whole body changes into a more [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

doing exercise is good for health essay

  • Share full article

Advertisement

Supported by

How Exercise Strengthens Your Brain

Physical activity improves cognitive and mental health in all sorts of ways. Here’s why, and how to reap the benefits.

An illustration of a person running; various colored dots surround the top of the runner; a large white brain shape is in the background.

By Dana G. Smith

Growing up in the Netherlands, Henriette van Praag had always been active, playing sports and riding her bike to school every day. Then, in the late-1990s, while working as a staff scientist at the Salk Institute for Biological Studies in San Diego, she discovered that exercise can spur the growth of new brain cells in mature mice. After that, her approach to exercise changed.

“I started to take it more seriously,” said Dr. van Praag, now an associate professor of biomedical science at Florida Atlantic University. Today, that involves doing CrossFit and running five or six miles several days a week.

Whether exercise can cause new neurons to grow in adult humans — a feat previously thought impossible, and a tantalizing prospect to treat neurodegenerative diseases — is still up for debate . But even if it’s not possible, physical activity is excellent for your brain, improving mood and cognition through “a plethora” of cellular changes, Dr. van Praag said.

What are some of the benefits, specifically?

Exercise offers short-term boosts in cognition. Studies show that immediately after a bout of physical activity, people perform better on tests of working memory and other executive functions . This may be in part because movement increases the release of neurotransmitters in the brain, most notably epinephrine and norepinephrine.

“These kinds of molecules are needed for paying attention to information,” said Marc Roig, an associate professor in the School of Physical and Occupational Therapy at McGill University. Attention is essential for working memory and executive functioning, he added.

The neurotransmitters dopamine and serotonin are also released with exercise, which is thought to be a main reason people often feel so good after going for a run or a long bike ride.

The brain benefits really start to emerge, though, when we work out consistently over time. Studies show that people who work out several times a week have higher cognitive test scores, on average, than people who are more sedentary. Other research has found that a person’s cognition tends to improve after participating in a new aerobic exercise program for several months.

Dr. Roig added the caveat that the effects on cognition aren’t huge, and not everyone improves to the same degree. “You cannot acquire a super memory just because you exercised,” he said.

Physical activity also benefits mood . People who work out regularly report having better mental health than people who are sedentary. And exercise programs can be effective at treating people’s depression, leading some psychiatrists and therapists to prescribe physical activity. The Centers for Disease Control and Prevention’s recommendation of 150 minutes of moderate aerobic activity or 75 minutes of vigorous aerobic activity per week is a good benchmark.

Perhaps most remarkable, exercise offers protection against neurodegenerative diseases. “Physical activity is one of the health behaviors that’s shown to be the most beneficial for cognitive function and reducing risk of Alzheimer’s and dementia,” said Michelle Voss, an associate professor of psychological and brain sciences at the University of Iowa.

How does exercise do all that?

It starts with the muscles. When we work out, they release molecules that travel through the blood up to the brain. Some, like a hormone called irisin, have “neuroprotective” qualities and have been shown to be linked to the cognitive health benefits of exercise, said Christiane Wrann, an associate professor of medicine at Massachusetts General Hospital and Harvard Medical School who studies irisin . (Dr. Wrann is also a consultant for a pharmaceutical company, Aevum Therapeutics, hoping to harness irisin’s effects into a drug.)

Good blood flow is essential to obtain the benefits of physical activity. And conveniently, exercise improves circulation and stimulates the growth of new blood vessels in the brain. “It’s not just that there’s increased blood flow,” Dr. Voss said. “It’s that there’s a greater chance, then, for signaling molecules that are coming from the muscle to get delivered to the brain.”

Once these signals are in the brain, other chemicals are released locally. The star of the show is a hormone called brain-derived neurotrophic factor, or B.D.N.F., that is essential for neuron health and creating new connections — called synapses — between neurons. “It’s like a fertilizer for brain cells to recover from damage,” Dr. Voss said. “And also for synapses on nerve cells to connect with each other and sustain those connections.”

A greater number of blood vessels and connections between neurons can actually increase the size of different brain areas. This effect is especially noticeable in older adults because it can offset the loss of brain volume that happens with age. The hippocampus, an area important for memory and mood, is particularly affected. “We know that it shrinks with age,” Dr. Roig said. “And we know that if we exercise regularly, we can prevent this decline.”

Exercise’s effect on the hippocampus may be one way it helps protect against Alzheimer’s disease, which is associated with significant changes to that part of the brain. The same goes for depression; the hippocampus is smaller in people who are depressed, and effective treatments for depression , including medications and exercise, increase the size of the region.

What kind of exercise is best for your brain?

The experts emphasized that any exercise is good, and the type of activity doesn’t seem to matter, though most of the research has involved aerobic exercise. But, they added, higher-intensity workouts do appear to confer a bigger benefit for the brain.

Improving your overall cardiovascular fitness level also appears to be key. “It’s dose-dependent,” Dr. Wrann said. “The more you can improve your cardiorespiratory fitness, the better the benefits are.”

Like Dr. van Praag, Dr. Voss has incorporated her research into her life, making a concerted effort to engage in higher intensity exercise. For example, on busy days when she can’t fit in a full workout, she’ll seek out hills to bike up on her commute to work. “Even if it’s a little,” she said, “it’s still better than nothing.”

Dana G. Smith is a Times reporter covering personal health, particularly aging and brain health. More about Dana G. Smith

Let Us Help You Pick Your Next Workout

Looking for a new way to get moving we have plenty of options..

To develop a sustainable exercise habit, experts say it helps to tie your workout to something or someone .

Viral online exercise challenges might get you in shape in the short run, but they may not help you build sustainable healthy habits. Here’s what fitness fads get wrong .

Does it really matter how many steps you take each day? The quality of the steps you take might be just as important as the amount .

Is your workout really working for you? Take our quiz to find out .

To help you start moving, we tapped fitness pros for advice on setting realistic goals for exercising  and actually enjoying yourself.

You need more than strength to age well — you also need power. Here’s how to measure how much you have  and here’s how to increase yours .

Pick the Right Equipment With Wirecutter’s Recommendations

Want to build a home gym? These five things can help you transform your space  into a fitness center.

Transform your upper-body workouts with a simple pull-up bar  and an adjustable dumbbell set .

Choosing the best  running shoes  and running gear can be tricky. These tips  make the process easier.

A comfortable sports bra can improve your overall workout experience. These are the best on the market .

Few things are more annoying than ill-fitting, hard-to-use headphones. Here are the best ones for the gym  and for runners .

  • Importance Of Exercises Essay

Importance of Exercise Essay

500+ words essay on the importance of exercise.

We all know that exercise is extremely important in our daily lives, but we may not know why or what exercise can do. It’s important to remember that we have evolved from nomadic ancestors who spent all their time moving around in search of food and shelter, travelling large distances on a daily basis. Our bodies are designed and have evolved to be regularly active. Over time, people may come across problems if they sit down all day at a desk or in front of the TV and minimise the amount of exercise they do. Exercise is a bodily movement performed in order to develop or maintain physical fitness and good health overall. Exercise leads to the physical exertion of sufficient intensity, duration and frequency to achieve or maintain vigour and health. This essay on the importance of exercise will help students become familiar with the several benefits of doing exercise regularly. They must go through this essay so as to get an idea of how to write essays on similar topics.

Need of Exercise

The human body is like a complex and delicate machine which comprises several small parts. A slight malfunction of one part leads to the breakdown of the machine. In a similar way, if such a situation arises in the human body, it also leads to malfunctioning of the body. Exercise is one of the healthy lifestyles which contributes to optimum health and quality of life. People who exercise regularly can reduce their risk of death. By doing exercise, active people increase their life expectancy by two years compared to inactive people. Regular exercise and good physical fitness enhance the quality of life in many ways. Physical fitness and exercise can help us to look good, feel good, and enjoy life. Moreover, exercise provides an enjoyable way to spend leisure time.

Exercise helps a person develop emotional balance and maintain a strong self-image. As people get older, exercise becomes more important. This is because, after the age of 30, the heart’s blood pumping capacity declines at a rate of about 8 per cent each decade. Exercise is also vital for a child’s overall development. Exercising helps to maintain a healthy weight by stoking our metabolism, utilizing and burning the extra calories.

Types of Exercise

There are three broad intensities of exercise:

1) Light exercise – Going for a walk is an example of light exercise. In this, the exerciser is able to talk while exercising.

2) Moderate exercise – Here, the exerciser feels slightly out of breath during the session. Examples could be walking briskly, cycling moderately or walking up a hill.

3) Vigorous exercise – While performing this exercise, the exerciser is panting during the activity. The exerciser feels his/her body being pushed much nearer its limit compared to the other two intensities. This could include running, cycling fast, and heavy-weight training.

Importance of Exercise

Regular exercise increases our fitness level and physical stamina. It plays a crucial role in the prevention of cardiovascular diseases. It can help with blood lipid abnormalities, diabetes and obesity. Moreover, it can help to reduce blood pressure. Regular exercise substantially reduces the risk of dying of coronary heart disease and eases the risk of stroke and colon cancer. People of all age groups benefit from exercising.

Exercise can be effective in improving the mental well-being of human beings. It relieves human stress and anxiety. When we come back from work or school, we feel exhausted after a whole day of work. If we can go out to have a walk or jog for at least 30 minutes, it makes us feel happy and relaxed. A number of studies have found that a lifestyle that includes exercise helps alleviate depression. Those who can maintain regular exercise will also reduce their chances of seeing a doctor. Without physical activity, the body’s muscles lose their strength, endurance and ability to function properly. Regular exercise keeps all parts of the body in continuous activity. It improves overall health and fitness, as well as decreases the risk of many chronic diseases. Therefore, physical exercise is very important in our life.

Exercise can play a significant role in keeping the individual, society, community and nation wealthy. If the citizens of a country are healthy, the country is sure to touch heights in every facet of life. The country’s healthy generation can achieve the highest marks in various fields and thereby enable their country to win laurels and glory at the international level. The first step is always the hardest. However, if we can overcome it, and exercise for 21 days continuously, it will be a new beginning for a healthy life.

Did you find the “Importance of Exercise essay” useful for improving your writing skills? Do let us know your view in the comment section. Keep Learning, and don’t forget to download the BYJU’S App for more interesting study videos.

Frequently Asked Questions on the Importance of Exercises Essay

What are the benefits of exercising regularly.

Regular exercise helps in the relaxation of the mind and body and keeps the body fit. It improves flexibility and blood circulation.

Which are some of the easy exercises that can be done at home?

Sit-ups, bicycle crunches, squats, lunges and planks are examples of easy exercises which can be done at home without the help of costly equipment.

Is cycling an effective form of exercise?

Cycling is a low-impact exercise and acts as a good muscle workout.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

doing exercise is good for health essay

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Counselling

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Cold Spring Harb Perspect Med
  • v.8(7); 2018 Jul

Health Benefits of Exercise

Gregory n. ruegsegger.

1 Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211

Frank W. Booth

2 Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211

3 Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211

4 Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211

Overwhelming evidence exists that lifelong exercise is associated with a longer health span, delaying the onset of 40 chronic conditions/diseases. What is beginning to be learned is the molecular mechanisms by which exercise sustains and improves quality of life. The current review begins with two short considerations. The first short presentation concerns the effects of endurance exercise training on cardiovascular fitness, and how it relates to improved health outcomes. The second short section contemplates emerging molecular connections from endurance training to mental health. Finally, approximately half of the remaining review concentrates on the relationships between type 2 diabetes, mitochondria, and endurance training. It is now clear that physical training is complex biology, invoking polygenic interactions within cells, tissues/organs, systems, with remarkable cross talk occurring among the former list.

The aim of this introduction is briefly to document facts that health benefits of physical activity predate its readers. In the 5th century BC, the ancient physician Hippocrates stated: “All parts of the body, if used in moderation and exercised in labors to which each is accustomed, become thereby healthy and well developed and age slowly; but if they are unused and left idle, they become liable to disease, defective in growth and age quickly.” However, by the 21st century, the belief in the value of exercise for health has faded so considerably, the lack of exercise now presents a major public health problem ( Fig. 1 ) ( Booth et al. 2012 ). Similarly, the lack of exercise was classified as an actual cause of chronic diseases and death ( Mokdad et al. 2004 ).

An external file that holds a picture, illustration, etc.
Object name is cshperspectmed-BEX-029694_F1.jpg

Simplistic overview of how physical activity can prevent the development of type 2 diabetes and one of its complications, cardiovascular disease. Physical inactivity is an actual cause of type 2 diabetes, cardiovascular disease, and tens of other chronic conditions ( Table 1 ) via interaction with other factors (e.g., age, diet, gender, and genetics) to increase disease risk factors. This leads to chronic disease, reduced quality of life, and premature death. However, physical activity can prevent and, in some cases, treat disease progression associated with physical inactivity and other genetic and environmental factors.

Published in 1953, Jeremy N. Morris and colleagues conducted the first rigorous epidemiological study investigating physical activity and chronic disease risk, in which coronary heart disease (CHD) rates were increased in physically inactive bus drivers versus active conductors ( Morris et al. 1953 ). Since this pioneering report, a plethora of evidence shows that physical inactivity is associated with the development of 40 chronic diseases ( Table 1 ), including major noncommunicable diseases such as type 2 diabetes (T2D) and CHD, and as premature mortality ( Booth et al. 2012 ).

Worsening of 40 conditions caused by the lack of physical activity with growth, maturation, and aging throughout life span

The breadth of the list implies that a single molecular target will not substitute for appropriate daily physical activity to prevent the loss of all listed items.

In this review, we highlight the far-reaching health benefits of physical activity. However, note that the studies cited here represent only a fraction of the >100,000 studies showing positive associations between the terms “exercise” and “health.” In addition, we discuss how exercise promotes complex integrative responses that lead to multisystem responses to exercise, an underappreciated area of medical research. Finally, we consider how strategies that “mimic” parts of exercise training compare with physical exercise for their potential to combat metabolic disease.

EXERCISE IMPROVES CARDIORESPIRATORY FITNESS

There is arguably no measure more important for health than cardiorespiratory fitness (CRF) (commonly measured by maximal oxygen uptake, VO 2max ) ( Blair et al. 1989 ). For example, Myers et al. (2002 ) showed that each 1 metabolic equivalent (1 MET) increase in exercise-test performance conferred a 12% improvement in survival, stating that “VO 2max is a more powerful predictor of mortality among men than other established risk factors for cardiovascular disease (CVD).” Low CRF is also well established as an independent risk factor of T2D ( Booth et al. 2002 ) and CVD morbidity and mortality ( Kodama et al. 2009 ; Gupta et al. 2011 ). Similarly, Kokkinos et al. (2010) reported that men who transitioned from having low to high CRF decreased their mortality risk by ∼50% over an 8-yr period, whereas men who transitioned from having high to low CRF increased their mortality risk by ∼50%.

Importantly then, from the above paragraph, physical activity and inactivity are major environmental modulators of CRF, increasing and decreasing it, respectively, often through independent pathways. Findings from rats selectively bred for high or low intrinsic aerobic capacity show that rats bred for high capacity, which are also more physically active, have 28%–42% increases in life span compared to low-capacity rats ( Koch et al. 2011 ). Endurance exercise is well recognized to improve CRF and cardiometabolic risk factors. Exercise improves numerous factors speculated to limit VO 2max including, but not restricted to, the capacity to transport oxygen (e.g., cardiac output), oxygen diffusion to working muscles (e.g., capillary density, membrane permeability, muscle myoglobin content), and adenosine triphosphate (ATP) generation (e.g., mitochondrial density, protein concentrations).

Data from the HERITAGE Family Study has provided some of the first knowledge of genes associated with VO 2max plasticity because of endurance-exercise training. Following 6 wk of cycling training at 70% of pretraining VO 2max , Timmons et al. (2010) performed messenger RNA (mRNA) expression microarray profiling to identify molecules potentially predicting VO 2max training responses, and then assessed these molecular predictors to determine whether DNA variants in these genes correlated with VO 2max training responses. This approach identified 29 mRNAs in skeletal muscle and 11 single-nucleotide polymorphisms (SNPs) that predicted ∼50% and ∼23%, respectively, of the variability in VO 2max plasticity following aerobic training ( Timmons et al. 2010 ). Intriguingly, pretraining levels of these mRNAs were greater in subjects that achieved greater increases in VO 2max following aerobic training, and of the 29 mRNAs, >90% were unchanged with aerobic training, suggesting that alternative exercise intervention paradigms or pharmacological strategies may be needed to improve VO 2max in individuals with a low responder profile for the identified predictor genes ( Timmons et al. 2010 ). Keller et al. (2011) found that, in response to endurance training, improvements in VO 2max were associated with effectively up-regulating proangiogenic gene networks and miRNAs influencing the transcription factor–directed networks for runt-related transcription factor 1 (RUNX1), paired box gene 3 (PAC3), and sex-determining region Y box 9 (SOX9). Collectively, these results led the investigators to speculate that improvements in skeletal muscle oxygen sensing and angiogenesis are primary determinates in training responses in VO 2max ( Keller et al. 2011 ).

Clinically important concepts have emerged from the pioneering HERITAGE Family Study. One new clinical concept is that a threshold dose–response relationship influences the percentage of subjects responding with an increase in VO 2max to endurance training volumes (with volume being defined here as the product of intensity × duration), as previously published ( Slentz et al. 2005 , 2007 ). Ross et al. (2015) later extended the aforementioned Slentz et al. studies. After a 24-wk-long endurance training study ( Ross et al. 2015 ), percentages of women and men identified as nonresponders to the training (i.e., defined as not increasing their VO 2peak ) progressively fell inversely to a two stepwise progressive increase in endurance-exercise training volume, as described next. Thirty-nine percent (15 of 39) of training subjects did not increase their VO 2peak in response to the low-amount, low-intensity training; 18% (9 of 51) had no increase in VO 2peak in the group having high-amount, low-intensity training; and 0% (0 of 31) who underwent high-amount, high-intensity training did not increase their VO 2peak . A biological basis for the dose–response relationship in the previous sentence could be made from an analysis of interval training (IT) and IT/continuous-training studies published from 1965 to 2012 ( Bacon et al. 2013 ). A second older concept is being reinvigorated; Bacon et al. (2013) indicate that different endurance-exercise intensities and durations are needed for different systems in the body. They suggest that very short periods of high-intensity endurance-type exercise may be needed to reach a threshold for peripheral metabolic adaptations, but that longer training durations at lower intensities are required to see large changes in maximal cardiac output and VO 2max .

A comparable example exists for resistance training. Maximal resistance loads require a minimum of 2 min/per wk for each muscle group recruited by a specific maneuver to obtain a strength training adaptation [(8 contractions/set × 2 sec/contraction × 3 sets/day) × 2 days/wk) = 96 sec]. As of 2016, one opinion from Sarzynski et al. (2016) for the molecular mechanisms by which endurance exercise drives VO 2max include, but are not limited to, calcium signaling, energy sensing and partitioning, mitochondrial biogenesis, angiogenesis, immune functions, and regulation of autophagy and apoptosis.

Perhaps more importantly, lifelong aerobic exercise training preserves VO 2max into old age. CRF generally increases until early adulthood, then declines the remainder of life in sedentary humans ( Astrand 1956 ). The age-related decline in VO 2max is not trivial, as Schneider (2013) reported a ∼40% decline in healthy males and females spanning from 20 to 70 yr of age. However, cross-sectional data show that with lifelong aerobic exercise training, trained individuals often have the same VO 2max as a sedentary individual four decades younger ( Booth et al. 2012 ). Myers et al. (2002) found that low estimated VO 2max increases mortality 4.5-fold compared to high estimated VO 2max . They concluded, “Exercise capacity is a more powerful predictor of mortality among men than other established risk factors for cardiovascular disease.” Given the strong association between CRF, chronic disease, and mortality, we feel identifying the molecular transducers that cause age-related reductions in CRF may have profound implications for improving health span and delaying the onset of chronic disease. In two of our recent papers, transcriptomics was performed on the triceps muscle ( Toedebusch et al. 2016 ) and on the cardiac left ventricle ( Ruegsegger et al. 2017 ). We were addressing the question of what molecule initiates the beginning of the lifelong decline in aerobic capacity with aging. Aerobic capacity (VO 2max ) involves, at a minimum, the next systems/tissues, as oxygen travels through the mouth, airways, pulmonary membrane, pulmonary circulation, left heart, aorta/arteries/capillaries, and sarcoplasm/myoglobin to mitochondria. We allowed female rats access, or no access, to running wheels from 5 to 27 wk of age. Surprisingly, voluntary running had no effect on the delay in the beginning of the lifetime decrease in VO 2max . Our skeletal muscle transcriptomics elicited no molecular targets, whereas gene networks suggestive of influencing maximal stroke volume were identified in the left ventricle transcriptomics ( Ruegsegger et al. 2017 ).

Publications concerning the effects of exercise on the brain (from 54 to 216 papers listed on PubMed from 2007 to 2016) have increased 400%. In addition, a 2016 study ( Schuch et al. 2016 ) of three previous papers reported that humans with low- and moderate-CRF had 76% and 23%, respectively, increased risk of developing depression compared to high CRF in three publications. With this forming trend, the next section will consider exercise and brain health.

EXERCISE IMPROVES MENTAL HEALTH

Many studies support physical activity as a noninvasive therapy for mental health improvements in cognition ( Beier et al. 2014 ; Bielak et al. 2014 ; Tian et al. 2014 ), depression ( Kratz et al. 2014 ; McKercher et al. 2014 ; Mura et al. 2014 ), anxiety ( Greenwood et al. 2012 ; Nishijima et al. 2013 ; Schoenfeld et al. 2013 ), neurodegenerative diseases (i.e., Alzheimer’s and Parkinson’s disease) ( Bjerring and Arendt-Nielsen 1990 ; Mattson 2014 ), and drug addiction ( Zlebnik et al. 2012 ; Lynch et al. 2013 ; Peterson et al. 2014 ). In 1999, van Praag et al. (1999) showed the survival of newborn cells in the adult mouse dentate gyrus, a hippocampal region important for spatial recognition, is enhanced by voluntary wheel running. Similarly, spatial pattern separation and neurogenesis in the dentate gyrus are strongly correlated in 3-mo-old mice following 10 wk of voluntary wheel running ( Creer et al. 2010 ), and the development of new neurons in the dentate gyrus is coupled with the formation of new blood vessels ( Pereira et al. 2007 ). Many exercise-related improvements in cognitive function have been associated with local and systemic expression of growth factors in the hippocampus, notably, brain-derived neurotrophic factor (BDNF) ( Neeper et al. 1995 ; Cotman and Berchtold 2002 ). BDNF promotes many developmental functions in the brain, including neuronal cell survival, differentiation, migration, dendritic arborization, and synaptic plasticity ( Park and Poo 2013 ). In rat hippocampus, regular exercise promotes a progressive increase in BDNF protein for up to at least 3 mo ( Berchtold et al. 2005 ). In an opposite manner, BDNF mRNA in the hippocampus is rapidly decreased by the cessation of wheel running, suggesting BDNF expression is tightly related to exercise volume ( Widenfalk et al. 1999 ).

Findings by Wrann et al. (2013) highlight one mechanism by which endurance exercise may up-regulate BDNF expression. To summarize, Wrann et al. (2013) noted that exercise increases the activity of the estrogen-related receptor α (ERRα)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) complex, in turn increasing levels of the exercise-secreted factor FNDC5 in skeletal muscle and the hippocampus, whose cleavage products provide beneficial effects in the hippocampus by increasing BDNF gene expression. While future research should determine whether the FNDC5 cleavage-product was produced locally in hippocampal neurons or was secreted into the circulation, this finding eloquently displays one mechanism responsible for brain health benefits following exercise. Similarly, work by van Praag and colleagues suggests that exercise or pharmacological activation of AMP-activated protein kinase (AMPK) in skeletal muscle enhances indices of learning and memory, neurogenesis, and gene expression related to mitochondrial function in the hippocampus ( Kobilo et al. 2011 , 2014 ; Guerrieri and van Praag 2015 ).

Insulin-like growth factor 1 (IGF-1), is central to many exercise-induced adaptations in the brain. Like BDNF, physical activity increases circulatory IGF-1 levels and both exercise and infusion of IGF-1 increase BrdU + cell number and survivability in the hippocampus ( Trejo et al. 2001 ). Similarly, the protective effects of exercise on various brain lesions are nullified by anti-IGF-1 antibody ( Carro et al. 2001 ).

In 1979, Greist et al. (1979) provided evidence that running reduced depression symptoms similarly to psychotherapy. However, the precise mechanisms by which exercise prevents and/or treats depression remain largely unknown. Of the proposed mechanisms, increases in the availability of brain neurotransmitters and neurotrophic factors (e.g., BDNF, dopamine, glutamate, norepinephrine, serotonin) are perhaps the best studied. For example, tyrosine hydroxylase (TH) activity, the rate-limiting enzyme in dopamine formation, in the striatum, an area of the brain's reward system, is increased following 7 days of treadmill running in an intensity-dependent manner ( Hattori et al. 1994 ). Voluntary wheel running is also highly rewarding in rats, and voluntary wheel running in rats lowers the motivation to self-administer cocaine, suggesting exercise may be a viable strategy in the fight against drug addiction ( Larson and Carroll 2005 ).

Similar to the above examples, secreted factors from skeletal muscle have been linked to the regulation of depression. Agudelo et al. (2014) showed that exercise training in mice and humans, and overexpression of skeletal muscle PGC-1α1, leads to robust increases in kynurenine amino transferase (KAT) expression in skeletal muscle, an enzyme whose activity protects from stress-induced increases in depression in the brain by converting kynurenine into kynurenic acid. Additionally, overexpression of PGC-1α1 in skeletal muscle left mice resistant to stress, as evaluated by various behavioral assays indicative of depression ( Agudelo et al. 2014 ). Simultaneously, they report gene expression related to synaptic plasticity in the hippocampus, such as BDNF and CamkII, were unaffected by chronic mild stress compared to wild-type mice. Collectively, these findings suggest exercise-induced increases in skeletal muscle PGC-1α1 may be an important regulator of KAT expression in skeletal muscle, which, via modulation in plasma kynurenine levels, may alleviate stress-induced depression and promote hippocampal neuronal plasticity.

TYPE 2 DIABETES, MITOCHONDRIA, AND EXERCISE

T2d predictions show a pandemic.

In a 2001 Diabetes Care article ( Boyle et al. 2001 ), investigators at the U.S. Centers for Disease Control (CDC) predicted 29 million U.S. cases of T2D would be present in 2050. Unfortunately, the 2001 prediction of 29 million was reached in 2012! For 2012, the American Diabetes Association reported that 29 million Americans had diagnosed and undiagnosed T2D, which was 9% of the American population ( Dwyer-Lindgren et al. 2016 ). More rapid increases in T2D are now predicted by the CDC than in the previous estimate. The CDC now predicts a doubling or tripling in T2D in 2050. The tripling would mean that one out of three U.S. adults would have T2D in their lifetime by 2050 ( Boyle et al. 2010 ), which would be >100 million U.S. cases. The International Diabetes Federation (IDF) reports T2D cases worldwide. In 2015, the IDF reported that 344 and 416 million North American (including Caribbean) and worldwide adults, respectively, had T2D. Furthermore, the IDF predicts for 2040 that 413 and 642 million, respectively, will have T2D. In sum, T2D is now pandemic, and the pandemic will increase in numbers without current apparent action within the general public.

Type 2 Diabetes Prevalence Is Based on a Strong Genetic Predisposition

The Framingham study found that T2D risk in offspring was 3.5-fold and sixfold higher for a single and two diabetic parent(s), respectively, as compared to nondiabetic offspring ( Meigs et al. 2000 ). Thus, T2D is gene-based.

Noncoding regions of the human genome contain >90% of the >100 variants associated with both T2D and related traits that were observed in genome-wide association studies ( Scott et al. 2016 ). Another 2016 paper ( Kwak and Park 2016 ) lists at least 75 independent genetic loci that are associated with T2D. Taken together, T2D is a complex genetic disease ( Scott et al. 2016 ).

Type 2 Diabetes Is Modulated by Lifestyle, with Exercise as the More Powerful Lifestyle Factor

Three large-scale epidemiological studies have been performed on prediabetics, each in a different geographical location. The first study, and only study to have separate study arms for diet and exercise, was in China. The pure exercise intervention group had a 46% reduction in the onset of T2D, relative to the nontreated group, after 6 yr of the study ( Pan et al. 1997 ). Diet alone reduced T2D by 31% in the Chinese study. The second study on T2D was the Finnish Diabetes Prevention Study. It found a 58% reduction in T2D in the lifestyle intervention (combined diet and exercise) in its 522 prediabetic subjects after a mean study duration of 3.2 yr ( Tuomilehto et al. 2001 ). The latest of the three studies was in the U.S. Diabetes Prevention Program. The large randomized trial ( n = 3150 prediabetics) was stopped after 2.8 yr, because of harm to the control group. T2D prevalence in the high-risk adults was reduced by 58% with intensive lifestyle (diet and exercise) intervention, whereas the drug arm (metformin) of the study only reduced T2D by 31%, both compared to the noninnervation group ( Knowler et al. 2002 ). Thus, if differences in genetics in the above three differing ethnicities are not a factor, combined exercise and diet remain more effective in T2D prevention than the drug metformin two decades ago.

Exercise Increases Glucose by Signaling Independent of the Insulin Receptor

A single exercise bout increases glucose uptake by skeletal muscle, sidestepping the insulin receptor and thus insulin resistance in T2D patients ( Holloszy and Narahara 1965 ; Goodyear and Kahn 1998 ; Holloszy 2005 ). After insulin binding to its receptor, insulin initiates a downstream signaling cascade of tyrosine autophosphorylation of insulin receptor, insulin receptor substrate 1 (IRS-1) binding and phosphorylation, activation of a PI3K-dependent pathway, including key downstream regulators protein kinase B (Akt) and the Akt substrate of 160 kDa (AS160), ultimately promoting glucose transporter 4 (GLUT4) translocation to the plasma membrane ( Rockl et al. 2008 ; Stanford and Goodyear 2014 ). Despite normal GLUT4 levels, insulin fails to induce GLUT4 translocation in T2D ( Zierath et al. 2000 ). However, exercise activates a downstream insulin-signaling pathway at AS160 and TBC1 domain family member 1 (TBC1D1) ( Deshmukh et al. 2006 ; Maarbjerg et al. 2011 ), facilitating GLUT4 expression translocation to the plasma membrane independent of the insulin receptor. We contend that exercise could be considered as a very powerful tool to primarily attenuate the T2D pandemic.

Complex Biology of T2D Interactions with the Complex Biology of Exercise

An important consideration from the above is that T2D is such a genetically complex disease that a single gene has not been proven to be sufficiently causal to be effective, at this stage in time, to be a successful target for pharmacological treatment. The expectation for a single molecule target has been met for infectious diseases, which are often monogenic diseases. For example, a vaccine against smallpox was highly successful. Edward Jenner in 1796 produced the first successful vaccine. An important fact is that exercise is genetically complex. The literature allows us to speculate that exercise is at least as genetically complex as the approximately 75 genes associated with T2D ( Kwak and Park 2016 ). An example indicating that exercise is complex biology follows. RNA sequencing analysis of all 119 vastus lateralis muscle biopsies found that endurance training for 4 days/wk for 12 wk produced the differential expression of 3404 putative isoforms, belonging to 2624 different genes, many associated with oxidative ATP production in 23 women and men aged 29 yr old ( Lindholm et al. 2016 ). Our notion is that over 2600 genes suggests complex biology.

A “Case-Type” Study of the Molecular Underpinnings of Exercise, Mitochondria, and T2D Interactions

A PubMed search for the terms “diabetes mitochondria exercise molecular” elicited 74 papers. We arbitrarily selected some of the most recent 50 (spanning from mid-2014 into January 2017), with the assumption they would be representative of any other papers that we did not find in our search. Papers fell into our two arbitrary categories of single gene studies versus “omic”-type studies. First, subcategories of studies that develop themes will be arbitrarily presented.

Recent Studies Show Single Gene Manipulation Alters Mitochondrial Level and Running Performance

Numerous reports in the past couple of years observed that single gene manipulations increase mitochondrial gene expression and activity, which was also associated with increased exercise performance/capacity. A few of these are presented below:

  • Irisin was shown to increase oxidative metabolism in myocytes and increase PGC-1α mRNA and protein ( Vaughan et al. 2014 ), which extends the first observation made earlier in adipose tissue by Spiegelman ( Bostrom et al. 2012 ).
  • Patients with impaired glucose tolerance underwent low-intensity exercise training. Patients whose mitochondrial markers increased to levels that were measured in a separate cohort of nonexercised healthy individuals recovered normal glucose tolerance ( Osler et al. 2015 ). In opposition, those patients whose mitochondria markers did not improve, remained with impaired glucose tolerance.
  • In 2003, muscle PGC-1α mRNA was shown to be induced by endurance-exercise training in human skeletal muscle ( Short et al. 2003 ). PGC-1α was shown to have multiple isoforms ( Lin et al. 2002 ). After a 60-min cycling bout, human vastus lateralis biopsies were taken from both sexes in their mid-20s. Additional biopsies were taken 30 min, and at 2, 6, and 24 hr postexercise. At 30 min postexercise, PGC-1α-ex1b mRNA and PGC-1α mRNA increased 468- and 2.4-fold, respectively, whereas PGC-1α-ex1b protein and PGC-1α protein increased 3.1-fold and no change, respectively. Gidlund et al. (2015 ) interprets the above data as implying PGC-1α-ex1b could be responsible for other changes that have previously been recorded before the increase in total PGC-1α postexercise.
  • Mice with knockout of the kinin B1 receptor gene had higher mitochondrial DNA quantification and of mRNA levels of genes related to mitochondrial biogenesis in soleus and gastrocnemius muscles and had higher exercise times to exhaustion, but did not have higher VO 2max ( Reis et al. 2015 ).
  • Mice do not normally express cholesteryl ester transfer protein (CETP), which is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. Overexpression of CETP in mice after 6 wk on a high-fat diet increased treadmill running duration and distance, mitochondrial oxidation of glutamate/malate, but not palmitoylcarnitine oxidation, and doubled PGC-1α mRNA concentration ( Cappel et al. 2015 ).
  • The myokine musclin is a peptide secreted from exercising muscle during treadmill running. Removal of musclin release during running results in lowered VO 2max , lower skeletal muscle mitochondrial content and respiratory complex protein expression, and reduced exercise tolerance ( Subbotina et al. 2015 ).
  • Lactate dehydrogenase B (LDHB), which produces pyruvate from lactate, was overexpressed in mouse skeletal muscle. Increases in markers of skeletal muscle mitochondria were associated with increased running distance in a progressive speed test, and increased peak VO 2 ( Liang et al. 2016 ).
  • Another example of endurance-type exercise adaptations is the 2016 paper that transcription factor EB (TFEB) regulates metabolic flexibility in skeletal muscle independent of PGC-1α during endurance-type exercise ( Mansueto et al. 2017 ). Lack of metabolic flexibility, termed “metabolic inflexibility,” is important because it is common in T2D. One definition of metabolic inflexibility is its inability to rapidly switch between glucose and fatty acid substrates for ATP production when nutrient availability changes from high blood glucose levels immediately after a meal to decreasing below 100 mg/dl when not eating for hours after a meal. A clinical consequence of T2D-induced metabolic inflexibility is prolonged periods of hyperglycemia, because skeletal muscle is more insulin insensitive in T2D. In contrast, after sufficient endurance exercise, skeletal muscle increases its insulin sensitivity by a second pathway that is independent of proximal postreceptor insulin signaling (see Stephenson et al. 2014 for further discussion).

Studies Showing that Manipulation of One Signaling Molecule Does Not Alter Expression of All Genes with Mitochondrial Functions Found in Skeletal Muscles of Wild-Type Animals to Exercise Training

A 2010 review article ( Lira et al. 2010 ) concludes from gene-deletion studies that p38γ MAPK/PGC-1α signaling controls mitochondrial biogenesis’ adaptation to endurance exercise in skeletal muscle. Two studies do not completely agree with the conclusion in the review article. The Pilegaard laboratory published a 2008 study ( Leick et al. 2008 ) that did not confirm their hypothesis that PGC-1α was required for every metabolic protein adaptive increase after endurance-exercise training by skeletal muscle. They reported that PGC-1α was not required for endurance-training-induced increases in ALAS1, COXI, and cytochrome c expression ( Leick et al. 2008 ). Their interpretation, at that time, was that molecules other than PGC-1α can exert exercise-induced mitochondrial adaptations. A second study published in 2012 rendered a similar verdict. A 12-day program of endurance training led to the middle portion of the gastrocnemius muscle demonstrating a similar 60% increase in mitochondrial density in both wild-type and PGC-1α muscle-specific knockout mice (Myo-PGC-1αKO) ( Rowe et al. 2012 ). The paper concludes that PGC-1α is dispensable for endurance-exercise’s induction of skeletal muscle mitochondrial adaptations.

Exercise signaling targets have actions that are independent of PGC-1α, which is specific to endurance exercise. In 2002, two groups identified PGC-1β, a transcriptional coactivator closely related to PGC-1α ( Kressler et al. 2002 ; Lin et al. 2002 ). Later in 2012, the PGC-1α4 variant of PGC-1α was found to induce skeletal muscle hypertrophy and strength ( Ruas et al. 2012 ). The importance of the finding of a PGC-1α variant is that it partially explains the phenotypic variation for differing types of exercise. Since the 1970s ( Holloszy and Booth 1976 ), it has been appreciated that the biochemical and anatomical observations between endurance and resistance differed. For example, Holloszy and Booth (1976) noted in 1976 that, whereas endurance-type exercise markedly increased skeletal muscle mitochondrial density with very minor increases in muscle fiber diameter, strength-type exercise, in contrast, increased muscle fiber diameter without increases in skeletal muscle mitochondrial density. Taken together, a drug specific for PGC-1α will not likely mimic separate physical training for endurance, strength/resistance, and coordination types of exercise in the same subject. Thus, the common usage of the term exercise capacity is a misnomer because endurance training and resistance training were shown to have different exercise capacity phenotypes very long ago.

In a 2015 Diabetes paper ( Wong et al. 2015 ), Muoio’s laboratory concluded that changes in glucose tolerance and total body fat depended upon how much energy is expended in contracting muscle rather than muscle mitochondrial content or substrate selection. A finding to support the previous sentence was the glucose tolerance tests (GTTs). MCK-PGC-1α mice and their nontransgenic (NT) littermates were not different in GTT, with both being the most glucose intolerant after 10 wk of high-fat feeding. Adding 10 wk of voluntary wheel running to the two high-fat-feed groups during the next 10-wk period (weeks 11–20 of the experiment) lowered the glucose intolerance, and then during weeks 21–30 of the experiment, glucose intolerance was further lowered by adding 25% caloric restriction with the high-fat food and running during the final 10 wk. The percentage weight lost after 30 wk of high-fat feeding was positively related to greater running distances. No single front-runner gene candidate could be identified by principle component analysis. Taken together, the paper suggests “doubts” that pharmacological exercise mimetics that increase muscle oxidative capacity will be effective antiobesity and/or antidiabetic agents. Rather, Muoio and investigators suggest energy expenditure by muscle contraction induces localized shifts in energy balance inside the muscle fiber, which then initiates a broad network of metabolic intermediates regulating nutrient sensing and insulin action. A further discussion of complex biology produced by polygenicity continues next.

POLYGENICITY OF EXERCISE LEADS TO COMPLEX MULTISYSTEM RESPONSES TO IMPROVE HEALTH OUTCOMES

Multiples tissues, organs, and systems are influenced by physical activity, or the lack thereof ( Table 2 ).

Worsening of maximal functioning in selected major organ/tissue/systems that are caused by the lack of physical activity with growth, maturation, and aging

The higher their maximal function is before the end of each item’s maturation, the longer chances are that the quality of life will remain optimal. The breadth of the list implies that a single molecular target will not substitute for appropriate daily physical activity to prevent the loss of all listed items.

To present one extreme, that most will agree, one molecule will not describe the 1000s of molecules adapting to aerobic, resistance, and coordination exercise training. On the opposite extreme, many could likely agree that usage of the various “omics” underlying all adaptations to physical activity will differ (i.e., not be identical in most aspects) among the next list: various cell types within a tissue/organ, tissues/organs, and various intensities of physical activity (i.e., the thresholds among gene responses for health benefits will differ because of the presence of responders and nonresponders, or protein isoform type); during various types cycling (circadian or menstrual); postprandial versus fasting between meals; male and female; child, adult, and the elderly; trained and untrained; aerobic- and resistance-exercise types; and so forth. Others have repetitively written that only ∼59% of the risk reduction for all forms of CVD have been shown to be caused by effects through traditional factors ( Mora et al. 2007 ; Joyner and Green 2009 ). Thus, we pose the next question: what is the identity of all molecules in the yet-to-be-discovered gap between our knowledge of single gene functions and the totality of personalized prescription of physical activity to maximize the period of life free of any chronic disease, termed health span?

While approaches using single-gene manipulations are valuable tools, research must also focus on integrating exercise-responsive molecules into networks that maintain or improve health. This process will reveal complex, multisystem, polygenic networking essential for the advancement of many goals pertaining to exercise physiology, such as tailoring exercise prescriptions and implementing personalized medicine. One example is the developing myokine network with auto-, para-, and endocrine molecules. The first myokine interleukin (IL)-6 began to be described as early as 1994 by the Pedersen laboratory ( Ullum et al. 1994 ), with a history of its development as the first exercise myokine recounted in 2007 ( Pedersen et al. 2007 ). Since their discovery, myokine action within and at a distance from their origins in skeletal muscle have been increasingly studied, as schematically illustrated by Schnyder and Handschin (2015) ( Fig. 2 ).

An external file that holds a picture, illustration, etc.
Object name is cshperspectmed-BEX-029694_F2.jpg

Figure provides an illustration of myokine production by skeletal muscle for actions within or at a distance. Myokine release promotes a high degree of intertissue cross talk. CNTF, Ciliary neurotrophic factor; OSM, oncostatin M; IL, interleukin; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor. (From Schnyder and Handschin 2015 ; reprinted, with permission, courtesy of PMC Open Access.)

Similarly, maximal aerobic exercise is accompanied by tremendous stress on many systems, yet whole-body homeostasis is remarkably maintained. For example, world-class endurance athletes can increase whole-body energy production well over 20-fold ( Joyner and Coyle 2008 ), whereas maintaining blood glucose concentrations at resting levels ( Wasserman 2009 ). Intuitively, such effort would require sophisticated interorgan cross talk and polygenic integration of numerous functions.

Exercise Provides Too Many Benefits to “Fit into a Single Pill”

Despite the well-known benefits of exercise, most adults and many children lead relatively sedentary lifestyles and are not active enough to achieve the health benefits of exercise ( Warburton et al. 2006 ; Fried 2016 ). Accelerometry measurements suggest that >90% of U.S. individuals >12 yr of age and ∼50% of children aged 6–11 yr old fail to meet U.S. Federal physical activity guidelines ( Troiano et al. 2008 ). Given this incredibly low compliance, the identification of genetic and/or orally active agents that mimic the effects of endurance exercise might have high appeal for a majority of sedentary individuals. This high appeal has led to recent identification/development of exercise “mimetics.” In 2009, we set criteria for proper usage of the term “exercise mimetic,” based upon its common usage ( Booth and Laye 2009 ). We gave the Oxford English Dictionary’s definition of mimetic, “A synthetic compound that produces the same (or a very similar) effect as another (especially a naturally occurring) compound.” While many exercise “mimetics” activate signaling pathways commonly associated with muscle endurance, these agents have not completely mimicked all effects for all types of exercise. For example, the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), when given daily to rats over a 5-wk-period, did not increase maximal oxygen consumption (VO 2peak ) in the sedentary group of rats that were forced to run to VO 2peak on treadmills, as compared to sedentary rats receiving the vehicle ( Toedebusch et al. 2016 ). Thus, in our opinion, the published claim ( Narkar et al. 2008 ) that AICAR is an exercise mimetic is invalidated because it did not increase VO 2peak . While these agents may undoubtedly have specific health benefits, it is currently impractical to assume that all of the benefits of exercise can be replaced by “exercise mimetics.”

CONCLUDING REMARKS

Exercise is a powerful tool in the fight to prevent and treat numerous chronic diseases ( Table 1 ). Given its whole-body, health-promoting nature, the integrative responses to exercise should surely attract a great detail of interest as the notion of “exercise is medicine” continues to its integration into clinical settings.

ACKNOWLEDGMENTS

The authors disclose no conflicts of interest. Partial funding for this project was obtained from grants awarded to G.N.R. (AHA 16PRE2715005).

Editors: Juleen R. Zierath, Michael J. Joyner, and John A. Hawley

Additional Perspectives on The Biology of Exercise available at www.perspectivesinmedicine.org

  • Agudelo LZ, Femenia T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, Correia JC, Izadi M, Bhat M, Schuppe-Koistinen I, et al. 2014. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression . Cell 159 : 33–45. [ PubMed ] [ Google Scholar ]
  • Astrand PO. 1956. Human physical fitness with special reference to sex and age . Physiol Rev 36 : 307–335. [ PubMed ] [ Google Scholar ]
  • Bacon AP, Carter RE, Ogle EA, Joyner MJ. 2013. VO 2max trainability and high intensity interval training in humans: A meta-analysis . PLoS ONE 8 : e73182. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Beier M, Bombardier CH, Hartoonian N, Motl RW, Kraft GH. 2014. Improved physical fitness correlates with improved cognition in multiple sclerosis . Arch Phys Med Rehabil 95 : 1328–1334. [ PubMed ] [ Google Scholar ]
  • Berchtold NC, Chinn G, Chou M, Kesslak JP, Cotman CW. 2005. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus . Neuroscience 133 : 853–861. [ PubMed ] [ Google Scholar ]
  • Bielak AA, Cherbuin N, Bunce D, Anstey KJ. 2014. Preserved differentiation between physical activity and cognitive performance across young, middle, and older adulthood over 8 years . J Gerontol B Psychol Sci Soc Sci 69 : 523–532. [ PubMed ] [ Google Scholar ]
  • Bjerring P, Arendt-Nielsen L. 1990. Inhibition of histamine skin flare reaction following repeated topical applications of capsaicin . Allergy 45 : 121–125. [ PubMed ] [ Google Scholar ]
  • Blair SN, Kohl HW III, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. 1989. Physical fitness and all-cause mortality. A prospective study of healthy men and women . JAMA 262 : 2395–2401. [ PubMed ] [ Google Scholar ]
  • Booth FW, Laye MJ. 2009. Lack of adequate appreciation of physical exercise’s complexities can preempt appropriate design and interpretation in scientific discovery . J Physiol 587 : 5527–5539. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Booth FW, Chakravarthy MV, Gordon SE, Spangenburg EE. 2002. Waging war on physical inactivity: Using modern molecular ammunition against an ancient enemy . J Appl Physiol (1985) 93 : 3–30. [ PubMed ] [ Google Scholar ]
  • Booth FW, Roberts CK, Laye MJ. 2012. Lack of exercise is a major cause of chronic diseases . Compr Physiol 2 : 1143–1211. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, et al. 2012. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis . Nature 481 : 463–468. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Boyle JP, Honeycutt AA, Narayan KM, Hoerger TJ, Geiss LS, Chen H, Thompson TJ. 2001. Projection of diabetes burden through 2050: Impact of changing demography and disease prevalence in the U.S . Diabetes Care 24 : 1936–1940. [ PubMed ] [ Google Scholar ]
  • Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. 2010. Projection of the year 2050 burden of diabetes in the US adult population: Dynamic modeling of incidence, mortality, and prediabetes prevalence . Popul Health Metr 8 : 29. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Cappel DA, Lantier L, Palmisano BT, Wasserman DH, Stafford JM. 2015. CETP expression protects female mice from obesity-induced decline in exercise capacity . PLoS ONE 10 : e0136915. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Carro E, Trejo JL, Busiguina S, Torres-Aleman I. 2001. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy . J Neurosci 21 : 5678–5684. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Cotman CW, Berchtold NC. 2002. Exercise: A behavioral intervention to enhance brain health and plasticity . Trends Neurosci 25 : 295–301. [ PubMed ] [ Google Scholar ]
  • Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ. 2010. Running enhances spatial pattern separation in mice . Proc Natl Acad Sci 107 : 2367–2372. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Deshmukh A, Coffey VG, Zhong Z, Chibalin AV, Hawley JA, Zierath JR. 2006. Exercise-induced phosphorylation of the novel Akt substrates AS160 and filamin A in human skeletal muscle . Diabetes 55 : 1776–1782. [ PubMed ] [ Google Scholar ]
  • Dwyer-Lindgren L, Mackenbach JP, van Lenthe FJ, Flaxman AD, Mokdad AH. 2016. Diagnosed and undiagnosed diabetes prevalence by county in the U.S., 1999–2012 . Diabetes Care 39 : 1556–1562. [ PubMed ] [ Google Scholar ]
  • Fried LP. 2016. Interventions for human frailty: Physical activity as a model . Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a025916. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gidlund EK, Ydfors M, Appel S, Rundqvist H, Sundberg CJ, Norrbom J. 2015. Rapidly elevated levels of PGC-1α-b protein in human skeletal muscle after exercise: Exploring regulatory factors in a randomized controlled trial . J Appl Physiol (1985) 119 : 374–384. [ PubMed ] [ Google Scholar ]
  • Goodyear LJ, Kahn BB. 1998. Exercise, glucose transport, and insulin sensitivity . Annu Rev Med 49 : 235–261. [ PubMed ] [ Google Scholar ]
  • Greenwood BN, Loughridge AB, Sadaoui N, Christianson JP, Fleshner M. 2012. The protective effects of voluntary exercise against the behavioral consequences of uncontrollable stress persist despite an increase in anxiety following forced cessation of exercise . Behav Brain Res 233 : 314–321. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Greist JH, Klein MH, Eischens RR, Faris J, Gurman AS, Morgan WP. 1979. Running as treatment for depression . Compr Psychiatry 20 : 41–54. [ PubMed ] [ Google Scholar ]
  • Guerrieri D, van Praag H. 2015. Exercise-mimetic AICAR transiently benefits brain function . Oncotarget 6 : 18293–18313. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Gupta S, Rohatgi A, Ayers CR, Willis BL, Haskell WL, Khera A, Drazner MH, de Lemos JA, Berry JD. 2011. Cardiorespiratory fitness and classification of risk of cardiovascular disease mortality . Circulation 123 : 1377–1383. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Hattori S, Naoi M, Nishino H. 1994. Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running . Brain Res Bull 35 : 41–49. [ PubMed ] [ Google Scholar ]
  • Holloszy JO. 2005. Exercise-induced increase in muscle insulin sensitivity . J Appl Physiol (1985) 99 : 338–343. [ PubMed ] [ Google Scholar ]
  • Holloszy JO, Booth FW. 1976. Biochemical adaptations to endurance exercise in muscle . Annu Rev Physiol 38 : 273–291. [ PubMed ] [ Google Scholar ]
  • Holloszy JO, Narahara HT. 1965. Studies of tissue permeability. X: Changes in permeability to 3-methylglucose associated with contraction of isolated frog muscle . J Biol Chem 240 : 3493–3500. [ PubMed ] [ Google Scholar ]
  • Joyner MJ, Coyle EF. 2008. Endurance exercise performance: The physiology of champions . J Physiol 586 : 35–44. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Joyner MJ, Green DJ. 2009. Exercise protects the cardiovascular system: Effects beyond traditional risk factors . J Physiol 587 : 5551–5558. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Keller P, Vollaard NB, Gustafsson T, Gallagher IJ, Sundberg CJ, Rankinen T, Britton SL, Bouchard C, Koch LG, Timmons JA. 2011. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype . J Appl Physiol (1985) 110 : 46–59. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. 2002. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin . N Engl J Med 346 : 393–403. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Kobilo T, Yuan C, van Praag H. 2011. Endurance factors improve hippocampal neurogenesis and spatial memory in mice . Learn Mem 18 : 103–107. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Kobilo T, Guerrieri D, Zhang Y, Collica SC, Becker KG, van Praag H. 2014. AMPK agonist AICAR improves cognition and motor coordination in young and aged mice . Learn Mem 21 : 119–126. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Koch LG, Kemi OJ, Qi N, Leng SX, Bijma P, Gilligan LJ, Wilkinson JE, Wisloff H, Hoydal MA, Rolim N, et al. 2011. Intrinsic aerobic capacity sets a divide for aging and longevity . Circ Res 109 : 1162–1172. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, et al. 2009. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis . JAMA 301 : 2024–2035. [ PubMed ] [ Google Scholar ]
  • Kokkinos P, Myers J, Faselis C, Panagiotakos DB, Doumas M, Pittaras A, Manolis A, Kokkinos JP, Karasik P, Greenberg M, et al. 2010. Exercise capacity and mortality in older men: A 20-year follow-up study . Circulation 122 : 790–797. [ PubMed ] [ Google Scholar ]
  • Kratz AL, Ehde DM, Bombardier CH. 2014. Affective mediators of a physical activity intervention for depression in multiple sclerosis . Rehabil Psychol 59 : 57–67. [ PubMed ] [ Google Scholar ]
  • Kressler D, Schreiber SN, Knutti D, Kralli A. 2002. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor α . J Biol Chem 277 : 13918–13925. [ PubMed ] [ Google Scholar ]
  • Kwak SH, Park KS. 2016. Recent progress in genetic and epigenetic research on type 2 diabetes . Exp Mol Med 48 : e220. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Larson EB, Carroll ME. 2005. Wheel running as a predictor of cocaine self-administration and reinstatement in female rats . Pharmacol Biochem Behav 82 : 590–600. [ PubMed ] [ Google Scholar ]
  • Leick L, Wojtaszewski JF, Johansen ST, Kiilerich K, Comes G, Hellsten Y, Hidalgo J, Pilegaard H. 2008. PGC-1α is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle . Am J Physiol Endocrinol Metab 294 : E463–E474. [ PubMed ] [ Google Scholar ]
  • Liang X, Liu L, Fu T, Zhou Q, Zhou D, Xiao L, Liu J, Kong Y, Xie H, Yi F, et al. 2016. Exercise inducible lactate dehydrogenase B regulates mitochondrial function in skeletal muscle . J Biol Chem 291 : 25306–25318. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. 2002. Peroxisome proliferator-activated receptor γ coactivator 1 β (PGC-1β ), a novel PGC-1-related transcription coactivator associated with host cell factor . J Biol Chem 277 : 1645–1648. [ PubMed ] [ Google Scholar ]
  • Lindholm ME, Giacomello S, Werne Solnestam B, Fischer H, Huss M, Kjellqvist S, Sundberg CJ. 2016. The impact of endurance training on human skeletal muscle memory, global isoform expression and novel transcripts . PLoS Genet 12 : e1006294. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lira VA, Benton CR, Yan Z, Bonen A. 2010. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity . Am J Physiol Endocrinol Metab 299 : E145–E161. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. 2013. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis . Neurosci Biobehav Rev 37 : 1622–1644. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Maarbjerg SJ, Sylow L, Richter EA. 2011. Current understanding of increased insulin sensitivity after exercise—Emerging candidates . Acta Physiol (Oxf) 202 : 323–335. [ PubMed ] [ Google Scholar ]
  • Mansueto G, Armani A, Viscomi C, D’Orsi L, De Cegli R, Polishchuk EV, Lamperti C, Di Meo I, Romanello V, Marchet S, et al. 2017. Transcription factor EB controls metabolic flexibility during exercise . Cell Metab 25 : 182–196. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Mattson MP. 2014. Interventions that improve body and brain bioenergetics for Parkinson’s disease risk reduction and therapy . J Parkinsons Dis 4 : 1–13. [ PubMed ] [ Google Scholar ]
  • McKercher C, Sanderson K, Schmidt MD, Otahal P, Patton GC, Dwyer T, Venn AJ. 2014. Physical activity patterns and risk of depression in young adulthood: A 20-year cohort study since childhood . Soc Psychiatry Psychiatr Epidemiol 49 : 1823–1834. [ PubMed ] [ Google Scholar ]
  • Meigs JB, Cupples LA, Wilson PW. 2000. Parental transmission of type 2 diabetes: The Framingham Offspring Study . Diabetes 49 : 2201–2207. [ PubMed ] [ Google Scholar ]
  • Mokdad AH, Marks JS, Stroup DF, Gerberding JL. 2004. Actual causes of death in the United States, 2000 . JAMA 291 : 1238–1245. [ PubMed ] [ Google Scholar ]
  • Mora S, Cook N, Buring JE, Ridker PM, Lee IM. 2007. Physical activity and reduced risk of cardiovascular events: Potential mediating mechanisms . Circulation 116 : 2110–2118. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. 1953. Coronary heart-disease and physical activity of work . Lancet 265 : 1053–1057. [ PubMed ] [ Google Scholar ]
  • Mura G, Moro MF, Patten SB, Carta MG. 2014. Exercise as an add-on strategy for the treatment of major depressive disorder: A systematic review . CNS Spectr 19 : 496–508. [ PubMed ] [ Google Scholar ]
  • Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. 2002. Exercise capacity and mortality among men referred for exercise testing . N Engl J Med 346 : 793–801. [ PubMed ] [ Google Scholar ]
  • Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, et al. 2008. AMPK and PPARδ agonists are exercise mimetics . Cell 134 : 405–415. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman C. 1995. Exercise and brain neurotrophins . Nature 373 : 109. [ PubMed ] [ Google Scholar ]
  • Nishijima T, Llorens-Martin M, Tejeda GS, Inoue K, Yamamura Y, Soya H, Trejo JL, Torres-Aleman I. 2013. Cessation of voluntary wheel running increases anxiety-like behavior and impairs adult hippocampal neurogenesis in mice . Behav Brain Res 245 : 34–41. [ PubMed ] [ Google Scholar ]
  • Osler ME, Fritz T, Caidahl K, Krook A, Zierath JR, Wallberg-Henriksson H. 2015. Changes in gene expression in responders and nonresponders to a low-intensity walking intervention . Diabetes Care 38 : 1154–1160. [ PubMed ] [ Google Scholar ]
  • Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, et al. 1997. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study . Diabetes Care 20 : 537–544. [ PubMed ] [ Google Scholar ]
  • Park H, Poo MM. 2013. Neurotrophin regulation of neural circuit development and function . Nat Rev Neurosci 14 : 7–23. [ PubMed ] [ Google Scholar ]
  • Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP. 2007. Role of myokines in exercise and metabolism . J Appl Physiol (1985) 103 : 1093–1098. [ PubMed ] [ Google Scholar ]
  • Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR, Small SA. 2007. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus . Proc Natl Acad Sci 104 : 5638–5643. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Peterson AB, Hivick DP, Lynch WJ. 2014. Dose-dependent effectiveness of wheel running to attenuate cocaine-seeking: Impact of sex and estrous cycle in rats . Psychopharmacology (Berl) 231 : 2661–2670. [ PubMed ] [ Google Scholar ]
  • Reis FC, Haro AS, Bacurau AV, Hirabara SM, Wasinski F, Ormanji MS, Moreira JB, Kiyomoto BH, Bertoncini CR, Brum PC, et al. 2015. Deletion of kinin B2 receptor alters muscle metabolism and exercise performance . PLoS ONE 10 : e0134844. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rockl KS, Witczak CA, Goodyear LJ. 2008. Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise . IUBMB Life 60 : 145–153. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ross R, de Lannoy L, Stotz PJ. 2015. Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response . Mayo Clin Proc 90 : 1506–1514. [ PubMed ] [ Google Scholar ]
  • Rowe GC, El-Khoury R, Patten IS, Rustin P, Arany Z. 2012. PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle . PLoS ONE 7 : e41817. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, et al. 2012. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy . Cell 151 : 1319–1331. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Ruegsegger GN, Toedebusch RG, Braselton JF, Childs TE, Booth FW. 2017. Left ventricle transcriptomic analysis reveals connective tissue accumulation associates with initial age-dependent decline in VO 2peak from its lifetime apex . Physiol Genomics 49 : 53–66. [ PubMed ] [ Google Scholar ]
  • Sarzynski MA, Ghosh S, Bouchard C. 2016. Genomic and transcriptomic predictors of response levels to endurance exercise training . J Physiol 10.1113/JP272559. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schneider J. 2013. Age dependency of oxygen uptake and related parameters in exercise testing: An expert opinion on reference values suitable for adults . Lung 191 : 449–458. [ PubMed ] [ Google Scholar ]
  • Schnyder S, Handschin C. 2015. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise . Bone 80 : 115–125. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Schoenfeld TJ, Rada P, Pieruzzini PR, Hsueh B, Gould E. 2013. Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus . J Neurosci 33 : 7770–7777. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Schuch FB, Vancampfort D, Sui X, Rosenbaum S, Firth J, Richards J, Ward PB, Stubbs B. 2016. Are lower levels of cardiorespiratory fitness associated with incident depression? A systematic review of prospective cohort studies . Prev Med 93 : 159–165. [ PubMed ] [ Google Scholar ]
  • Scott LJ, Erdos MR, Huyghe JR, Welch RP, Beck AT, Wolford BN, Chines PS, Didion JP, Narisu N, Stringham HM, et al. 2016. The genetic regulatory signature of type 2 diabetes in human skeletal muscle . Nat Commun 7 : 11764. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM, Nair KS. 2003. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity . Diabetes 52 : 1888–1896. [ PubMed ] [ Google Scholar ]
  • Slentz CA, Aiken LB, Houmard JA, Bales CW, Johnson JL, Tanner CJ, Duscha BD, Kraus WE. 2005. Inactivity, exercise, and visceral fat. STRRIDE: A randomized, controlled study of exercise intensity and amount . J Appl Physiol (1985) 99 : 1613–1618. [ PubMed ] [ Google Scholar ]
  • Slentz CA, Houmard JA, Kraus WE. 2007. Modest exercise prevents the progressive disease associated with physical inactivity . Exerc Sport Sci Rev 35 : 18–23. [ PubMed ] [ Google Scholar ]
  • Stanford KI, Goodyear LJ. 2014. Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle . Adv Physiol Educ 38 : 308–314. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Stephenson EJ, Smiles W, Hawley JA. 2014. The relationship between exercise, nutrition and type 2 diabetes . Med Sport Sci 60 : 1–10. [ PubMed ] [ Google Scholar ]
  • Subbotina E, Sierra A, Zhu Z, Gao Z, Koganti SR, Reyes S, Stepniak E, Walsh SA, Acevedo MR, Perez-Terzic CM, et al. 2015. Musclin is an activity-stimulated myokine that enhances physical endurance . Proc Natl Acad Sci 112 : 16042–16047. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Tian Q, Erickson KI, Simonsick EM, Aizenstein HJ, Glynn NW, Boudreau RM, Newman AB, Kritchevsky SB, Yaffe K, Harris TB, et al. 2014. Physical activity predicts microstructural integrity in memory-related networks in very old adults . J Gerontol A Biol Sci Med Sci 69 : 1284–1290. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, et al. 2010. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans . J Appl Physiol (1985) 108 : 1487–1496. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Toedebusch RG, Ruegsegger GN, Braselton JF, Heese AJ, Hofheins JC, Childs TE, Thyfault JP, Booth FW. 2016. AMPK agonist AICAR delays the initial decline in lifetime-apex VO 2peak , while voluntary wheel running fails to delay its initial decline in female rats . Physiol Genomics 48 : 101–115. [ PubMed ] [ Google Scholar ]
  • Trejo JL, Carro E, Torres-Aleman I. 2001. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus . J Neurosci 21 : 1628–1634. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. 2008. Physical activity in the United States measured by accelerometer . Med Sci Sports Exerc 40 : 181–188. [ PubMed ] [ Google Scholar ]
  • Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, et al. 2001. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance . N Engl J Med 344 : 1343–1350. [ PubMed ] [ Google Scholar ]
  • Ullum H, Haahr PM, Diamant M, Palmo J, Halkjaer-Kristensen J, Pedersen BK. 1994. Bicycle exercise enhances plasma IL-6 but does not change IL-1α, IL-1β, IL-6, or TNF-α pre-mRNA in BMNC . J Appl Physiol (1985) 77 : 93–97. [ PubMed ] [ Google Scholar ]
  • van Praag H, Kempermann G, Gage FH. 1999. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus . Nat Neurosci 2 : 266–270. [ PubMed ] [ Google Scholar ]
  • Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM, Conn CA, Trujillo KA. 2014. Characterization of the metabolic effects of irisin on skeletal muscle in vitro . Diabetes Obes Metab 16 : 711–718. [ PubMed ] [ Google Scholar ]
  • Warburton DE, Nicol CW, Bredin SS. 2006. Health benefits of physical activity: The evidence . CMAJ 174 : 801–809. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Wasserman DH. 2009. Four grams of glucose . Am J Physiol Endocrinol Metab 296 : E11–E21. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Widenfalk J, Olson L, Thoren P. 1999. Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain . Neurosci Res 34 : 125–132. [ PubMed ] [ Google Scholar ]
  • Wong KE, Mikus CR, Slentz DH, Seiler SE, DeBalsi KL, Ilkayeva OR, Crain KI, Kinter MT, Kien CL, Stevens RD, et al. 2015. Muscle-specific overexpression of PGC-1α does not augment metabolic improvements in response to exercise and caloric restriction . Diabetes 64 : 1532–1543. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME, Spiegelman BM. 2013. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway . Cell Metab 18 : 649–659. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Zierath JR, Krook A, Wallberg-Henriksson H. 2000. Insulin action and insulin resistance in human skeletal muscle . Diabetologia 43 : 821–835. [ PubMed ] [ Google Scholar ]
  • Zlebnik NE, Anker JJ, Carroll ME. 2012. Exercise to reduce the escalation of cocaine self-administration in adolescent and adult rats . Psychopharmacology 224 : 387–400. [ PMC free article ] [ PubMed ] [ Google Scholar ]

Logo

Essay on Exercise Is Good For Health

Students are often asked to write an essay on Exercise Is Good For Health in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Exercise Is Good For Health

What is exercise.

Exercise means moving your body to stay active. Like playing sports, running, or even walking. When you move more, your body can do its job better.

Strong Muscles and Bones

When you exercise, your muscles work hard. This helps them grow strong. Your bones also become tough, just like how a building gets stronger with good materials.

Healthy Heart

Your heart is a muscle too. Exercise makes it pump better, sending fresh blood all over your body. This keeps your heart fit, like keeping a car engine running well.

Feeling Happy

Moving around can make you feel cheerful. It’s like when you play and laugh with friends, your body feels good. Exercise can help chase away sad thoughts.

Staying Sharp

Exercise helps you think better. It’s like when you’re wide awake, you can solve puzzles faster. Your brain works better when your body is active.

250 Words Essay on Exercise Is Good For Health

Why exercise is important.

Exercise is like a magic pill that keeps your body strong and healthy. When you move your body and get active, you are doing a big favor to your health. Think of your body as a battery. When you exercise, you charge this battery, and it helps you feel full of energy.

Exercise Makes Your Body Strong

When you play sports, run, or even walk, your muscles get a workout. This makes them grow stronger over time. Strong muscles help you in daily tasks, like carrying a heavy backpack or climbing stairs. Your bones also become stronger, which is important as you grow.

Exercise Helps You Stay Fit

Being fit means your body is in good shape and can do a lot of activities without getting tired quickly. Regular exercise helps you maintain a healthy weight, which is important for your overall health. It also helps you sleep better at night.

Exercise and Your Heart

Your heart is a muscle too, and exercise is its favorite activity. When you’re active, your heart pumps more blood, which is good because it keeps your heart in tip-top shape. A healthy heart means a lower chance of getting heart-related problems as you grow older.

Exercise is Fun

Exercise isn’t just good for you; it’s also a lot of fun. Whether it’s playing a game of soccer, dancing to your favorite music, or going for a bike ride, there are so many ways to make exercise enjoyable. Plus, it’s a great way to make friends and spend time with them.

In short, exercise is a fantastic way to keep your body and mind happy and healthy. So, grab your sneakers and get moving! Your body will thank you for it.

500 Words Essay on Exercise Is Good For Health

The importance of exercise.

Exercise is like a magic potion for our health. When we move our bodies and get our hearts pumping, we do something great for ourselves. It’s not just about getting strong or being able to run fast; exercise helps our entire body work better. Think of it like oiling a squeaky wheel. Just as oil makes the wheel turn smoothly, exercise helps our bodies run smoothly.

When we exercise, our muscles get stronger. It’s like when you keep using a toy; it becomes easier to play with. Our bones also become stronger, like a tree getting sturdier as it grows. This means we can play harder, run faster, and even carry our heavy school bags without getting tired or hurt.

Happy Hearts and Lungs

Our heart is a muscle that gets better with exercise. When we run, swim, or even walk, our heart beats faster. This is good because it makes our heart more powerful, and a strong heart pumps blood around our body better. This blood carries important stuff like oxygen to every part of us. Our lungs also work better when we exercise. We can take deep breaths and hold our breath longer when playing games.

Sharp Minds

Believe it or not, exercise can make us smarter. When we move around, our brain gets more blood and oxygen. This helps us think better and remember things. It’s like when your computer works faster after you clean up old files. After playing or exercising, we can focus better in class and do our homework more easily.

Staying at a Healthy Weight

Exercising helps us burn energy, just like a car uses gas. This helps us stay at a good weight, so we’re not too heavy or too light. Eating healthy food is important too, but adding exercise means we can sometimes have a treat without worrying too much.

Fighting Off Illness

When we exercise, our body becomes like a superhero fighting off bad germs. We get sick less often and even if we do get sick, we can get better faster. It’s like having a shield that keeps us safe from colds and other illnesses.

Better Sleep

After a day of moving and playing, we can sleep better at night. It’s like after a long day of fun, we fall asleep quickly and wake up the next morning ready to go again. Good sleep is important because it helps our body and mind rest and get ready for a new day.

Fun and Friends

Exercise is not just jumping jacks or running in circles. It can be a game of soccer, dancing to music, or playing tag with friends. It’s fun and it helps us make friends. When we play together, we learn to work as a team and share happy moments.

In conclusion, exercise is very good for our health. It makes our muscles and bones strong, keeps our heart and lungs working well, helps our brain work better, keeps us at a good weight, fights off sickness, helps us sleep well, and it’s fun. So let’s get up, move around, and play every day to stay healthy and happy!

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Business
  • Essay on Burger
  • Essay on Exercise And Health

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Entire Site
  • Research & Funding
  • Health Information
  • About NIDDK
  • Diabetes Overview

Healthy Living with Diabetes

  • Español

On this page:

How can I plan what to eat or drink when I have diabetes?

How can physical activity help manage my diabetes, what can i do to reach or maintain a healthy weight, should i quit smoking, how can i take care of my mental health, clinical trials for healthy living with diabetes.

Healthy living is a way to manage diabetes . To have a healthy lifestyle, take steps now to plan healthy meals and snacks, do physical activities, get enough sleep, and quit smoking or using tobacco products.

Healthy living may help keep your body’s blood pressure , cholesterol , and blood glucose level, also called blood sugar level, in the range your primary health care professional recommends. Your primary health care professional may be a doctor, a physician assistant, or a nurse practitioner. Healthy living may also help prevent or delay health problems  from diabetes that can affect your heart, kidneys, eyes, brain, and other parts of your body.

Making lifestyle changes can be hard, but starting with small changes and building from there may benefit your health. You may want to get help from family, loved ones, friends, and other trusted people in your community. You can also get information from your health care professionals.

What you choose to eat, how much you eat, and when you eat are parts of a meal plan. Having healthy foods and drinks can help keep your blood glucose, blood pressure, and cholesterol levels in the ranges your health care professional recommends. If you have overweight or obesity, a healthy meal plan—along with regular physical activity, getting enough sleep, and other healthy behaviors—may help you reach and maintain a healthy weight. In some cases, health care professionals may also recommend diabetes medicines that may help you lose weight, or weight-loss surgery, also called metabolic and bariatric surgery.

Choose healthy foods and drinks

There is no right or wrong way to choose healthy foods and drinks that may help manage your diabetes. Healthy meal plans for people who have diabetes may include

  • dairy or plant-based dairy products
  • nonstarchy vegetables
  • protein foods
  • whole grains

Try to choose foods that include nutrients such as vitamins, calcium , fiber , and healthy fats . Also try to choose drinks with little or no added sugar , such as tap or bottled water, low-fat or non-fat milk, and unsweetened tea, coffee, or sparkling water.

Try to plan meals and snacks that have fewer

  • foods high in saturated fat
  • foods high in sodium, a mineral found in salt
  • sugary foods , such as cookies and cakes, and sweet drinks, such as soda, juice, flavored coffee, and sports drinks

Your body turns carbohydrates , or carbs, from food into glucose, which can raise your blood glucose level. Some fruits, beans, and starchy vegetables—such as potatoes and corn—have more carbs than other foods. Keep carbs in mind when planning your meals.

You should also limit how much alcohol you drink. If you take insulin  or certain diabetes medicines , drinking alcohol can make your blood glucose level drop too low, which is called hypoglycemia . If you do drink alcohol, be sure to eat food when you drink and remember to check your blood glucose level after drinking. Talk with your health care team about your alcohol-drinking habits.

A woman in a wheelchair, chopping vegetables at a kitchen table.

Find the best times to eat or drink

Talk with your health care professional or health care team about when you should eat or drink. The best time to have meals and snacks may depend on

  • what medicines you take for diabetes
  • what your level of physical activity or your work schedule is
  • whether you have other health conditions or diseases

Ask your health care team if you should eat before, during, or after physical activity. Some diabetes medicines, such as sulfonylureas  or insulin, may make your blood glucose level drop too low during exercise or if you skip or delay a meal.

Plan how much to eat or drink

You may worry that having diabetes means giving up foods and drinks you enjoy. The good news is you can still have your favorite foods and drinks, but you might need to have them in smaller portions  or enjoy them less often.

For people who have diabetes, carb counting and the plate method are two common ways to plan how much to eat or drink. Talk with your health care professional or health care team to find a method that works for you.

Carb counting

Carbohydrate counting , or carb counting, means planning and keeping track of the amount of carbs you eat and drink in each meal or snack. Not all people with diabetes need to count carbs. However, if you take insulin, counting carbs can help you know how much insulin to take.

Plate method

The plate method helps you control portion sizes  without counting and measuring. This method divides a 9-inch plate into the following three sections to help you choose the types and amounts of foods to eat for each meal.

  • Nonstarchy vegetables—such as leafy greens, peppers, carrots, or green beans—should make up half of your plate.
  • Carb foods that are high in fiber—such as brown rice, whole grains, beans, or fruits—should make up one-quarter of your plate.
  • Protein foods—such as lean meats, fish, dairy, or tofu or other soy products—should make up one quarter of your plate.

If you are not taking insulin, you may not need to count carbs when using the plate method.

Plate method, with half of the circular plate filled with nonstarchy vegetables; one fourth of the plate showing carbohydrate foods, including fruits; and one fourth of the plate showing protein foods. A glass filled with water, or another zero-calorie drink, is on the side.

Work with your health care team to create a meal plan that works for you. You may want to have a diabetes educator  or a registered dietitian  on your team. A registered dietitian can provide medical nutrition therapy , which includes counseling to help you create and follow a meal plan. Your health care team may be able to recommend other resources, such as a healthy lifestyle coach, to help you with making changes. Ask your health care team or your insurance company if your benefits include medical nutrition therapy or other diabetes care resources.

Talk with your health care professional before taking dietary supplements

There is no clear proof that specific foods, herbs, spices, or dietary supplements —such as vitamins or minerals—can help manage diabetes. Your health care professional may ask you to take vitamins or minerals if you can’t get enough from foods. Talk with your health care professional before you take any supplements, because some may cause side effects or affect how well your diabetes medicines work.

Research shows that regular physical activity helps people manage their diabetes and stay healthy. Benefits of physical activity may include

  • lower blood glucose, blood pressure, and cholesterol levels
  • better heart health
  • healthier weight
  • better mood and sleep
  • better balance and memory

Talk with your health care professional before starting a new physical activity or changing how much physical activity you do. They may suggest types of activities based on your ability, schedule, meal plan, interests, and diabetes medicines. Your health care professional may also tell you the best times of day to be active or what to do if your blood glucose level goes out of the range recommended for you.

Two women walking outside.

Do different types of physical activity

People with diabetes can be active, even if they take insulin or use technology such as insulin pumps .

Try to do different kinds of activities . While being more active may have more health benefits, any physical activity is better than none. Start slowly with activities you enjoy. You may be able to change your level of effort and try other activities over time. Having a friend or family member join you may help you stick to your routine.

The physical activities you do may need to be different if you are age 65 or older , are pregnant , or have a disability or health condition . Physical activities may also need to be different for children and teens . Ask your health care professional or health care team about activities that are safe for you.

Aerobic activities

Aerobic activities make you breathe harder and make your heart beat faster. You can try walking, dancing, wheelchair rolling, or swimming. Most adults should try to get at least 150 minutes of moderate-intensity physical activity each week. Aim to do 30 minutes a day on most days of the week. You don’t have to do all 30 minutes at one time. You can break up physical activity into small amounts during your day and still get the benefit. 1

Strength training or resistance training

Strength training or resistance training may make your muscles and bones stronger. You can try lifting weights or doing other exercises such as wall pushups or arm raises. Try to do this kind of training two times a week. 1

Balance and stretching activities

Balance and stretching activities may help you move better and have stronger muscles and bones. You may want to try standing on one leg or stretching your legs when sitting on the floor. Try to do these kinds of activities two or three times a week. 1

Some activities that need balance may be unsafe for people with nerve damage or vision problems caused by diabetes. Ask your health care professional or health care team about activities that are safe for you.

 Group of people doing stretching exercises outdoors.

Stay safe during physical activity

Staying safe during physical activity is important. Here are some tips to keep in mind.

Drink liquids

Drinking liquids helps prevent dehydration , or the loss of too much water in your body. Drinking water is a way to stay hydrated. Sports drinks often have a lot of sugar and calories , and you don’t need them for most moderate physical activities.

Avoid low blood glucose

Check your blood glucose level before, during, and right after physical activity. Physical activity often lowers the level of glucose in your blood. Low blood glucose levels may last for hours or days after physical activity. You are most likely to have low blood glucose if you take insulin or some other diabetes medicines, such as sulfonylureas.

Ask your health care professional if you should take less insulin or eat carbs before, during, or after physical activity. Low blood glucose can be a serious medical emergency that must be treated right away. Take steps to protect yourself. You can learn how to treat low blood glucose , let other people know what to do if you need help, and use a medical alert bracelet.

Avoid high blood glucose and ketoacidosis

Taking less insulin before physical activity may help prevent low blood glucose, but it may also make you more likely to have high blood glucose. If your body does not have enough insulin, it can’t use glucose as a source of energy and will use fat instead. When your body uses fat for energy, your body makes chemicals called ketones .

High levels of ketones in your blood can lead to a condition called diabetic ketoacidosis (DKA) . DKA is a medical emergency that should be treated right away. DKA is most common in people with type 1 diabetes . Occasionally, DKA may affect people with type 2 diabetes  who have lost their ability to produce insulin. Ask your health care professional how much insulin you should take before physical activity, whether you need to test your urine for ketones, and what level of ketones is dangerous for you.

Take care of your feet

People with diabetes may have problems with their feet because high blood glucose levels can damage blood vessels and nerves. To help prevent foot problems, wear comfortable and supportive shoes and take care of your feet  before, during, and after physical activity.

A man checks his foot while a woman watches over his shoulder.

If you have diabetes, managing your weight  may bring you several health benefits. Ask your health care professional or health care team if you are at a healthy weight  or if you should try to lose weight.

If you are an adult with overweight or obesity, work with your health care team to create a weight-loss plan. Losing 5% to 7% of your current weight may help you prevent or improve some health problems  and manage your blood glucose, cholesterol, and blood pressure levels. 2 If you are worried about your child’s weight  and they have diabetes, talk with their health care professional before your child starts a new weight-loss plan.

You may be able to reach and maintain a healthy weight by

  • following a healthy meal plan
  • consuming fewer calories
  • being physically active
  • getting 7 to 8 hours of sleep each night 3

If you have type 2 diabetes, your health care professional may recommend diabetes medicines that may help you lose weight.

Online tools such as the Body Weight Planner  may help you create eating and physical activity plans. You may want to talk with your health care professional about other options for managing your weight, including joining a weight-loss program  that can provide helpful information, support, and behavioral or lifestyle counseling. These options may have a cost, so make sure to check the details of the programs.

Your health care professional may recommend weight-loss surgery  if you aren’t able to reach a healthy weight with meal planning, physical activity, and taking diabetes medicines that help with weight loss.

If you are pregnant , trying to lose weight may not be healthy. However, you should ask your health care professional whether it makes sense to monitor or limit your weight gain during pregnancy.

Both diabetes and smoking —including using tobacco products and e-cigarettes—cause your blood vessels to narrow. Both diabetes and smoking increase your risk of having a heart attack or stroke , nerve damage , kidney disease , eye disease , or amputation . Secondhand smoke can also affect the health of your family or others who live with you.

If you smoke or use other tobacco products, stop. Ask for help . You don’t have to do it alone.

Feeling stressed, sad, or angry can be common for people with diabetes. Managing diabetes or learning to cope with new information about your health can be hard. People with chronic illnesses such as diabetes may develop anxiety or other mental health conditions .

Learn healthy ways to lower your stress , and ask for help from your health care team or a mental health professional. While it may be uncomfortable to talk about your feelings, finding a health care professional whom you trust and want to talk with may help you

  • lower your feelings of stress, depression, or anxiety
  • manage problems sleeping or remembering things
  • see how diabetes affects your family, school, work, or financial situation

Ask your health care team for mental health resources for people with diabetes.

Sleeping too much or too little may raise your blood glucose levels. Your sleep habits may also affect your mental health and vice versa. People with diabetes and overweight or obesity can also have other health conditions that affect sleep, such as sleep apnea , which can raise your blood pressure and risk of heart disease.

Man with obesity looking distressed talking with a health care professional.

NIDDK conducts and supports clinical trials in many diseases and conditions, including diabetes. The trials look to find new ways to prevent, detect, or treat disease and improve quality of life.

What are clinical trials for healthy living with diabetes?

Clinical trials—and other types of clinical studies —are part of medical research and involve people like you. When you volunteer to take part in a clinical study, you help health care professionals and researchers learn more about disease and improve health care for people in the future.

Researchers are studying many aspects of healthy living for people with diabetes, such as

  • how changing when you eat may affect body weight and metabolism
  • how less access to healthy foods may affect diabetes management, other health problems, and risk of dying
  • whether low-carbohydrate meal plans can help lower blood glucose levels
  • which diabetes medicines are more likely to help people lose weight

Find out if clinical trials are right for you .

Watch a video of NIDDK Director Dr. Griffin P. Rodgers explaining the importance of participating in clinical trials.

What clinical trials for healthy living with diabetes are looking for participants?

You can view a filtered list of clinical studies on healthy living with diabetes that are federally funded, open, and recruiting at www.ClinicalTrials.gov . You can expand or narrow the list to include clinical studies from industry, universities, and individuals; however, the National Institutes of Health does not review these studies and cannot ensure they are safe for you. Always talk with your primary health care professional before you participate in a clinical study.

This content is provided as a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health. NIDDK translates and disseminates research findings to increase knowledge and understanding about health and disease among patients, health professionals, and the public. Content produced by NIDDK is carefully reviewed by NIDDK scientists and other experts.

NIDDK would like to thank: Elizabeth M. Venditti, Ph.D., University of Pittsburgh School of Medicine.

IMAGES

  1. Benefits of Exercise Essay

    doing exercise is good for health essay

  2. 😱 Importance of exercise in daily life essay. Importance of Exercise

    doing exercise is good for health essay

  3. Exercising is Good for Health Essay Example

    doing exercise is good for health essay

  4. 20 Amazing Benefits Of Physical Exercises For A Healthy Life

    doing exercise is good for health essay

  5. Benefits of Exercise For Healthy Body and Healthy Mind

    doing exercise is good for health essay

  6. Impressive Essay On Regular Exercise ~ Thatsnotus

    doing exercise is good for health essay

VIDEO

  1. essay on Importance of Exercise and Physical activities|| English Essay Writing|| Content Writer

  2. Good Health Essay

  3. Essay on Good Health |Essay on The Value of Health|Essay writing in English|English essay|Eng Teach

  4. Essay on the Importance of Fitness

  5. Best Way To Write 250 Words Essay On The Yoga

  6. Importance of Good Health//English Essay//Good Health

COMMENTS

  1. Importance of Exercise Essay in English for Students

    Answer 1: Exercise helps people lose weight and lower the risk of some diseases. When you exercise daily, you lower the risk of developing some diseases like obesity, type 2 diabetes, high blood pressure and more. It also helps to keep your body at a healthy weight.

  2. Exercise: 7 benefits of regular physical activity

    Check out these seven ways that exercise can lead to a happier, healthier you. 1. Exercise controls weight. Exercise can help prevent excess weight gain or help you keep off lost weight. When you take part in physical activity, you burn calories. The more intense the activity, the more calories you burn.

  3. Essay on Exercise

    Conclusion. Exercise is all-inclusive package that will enable you live almost a stress-free life, full of energy with improved self esteem and sound sleep not forgetting how you will be able to combat some diseases like hypertension and diabetes type II. During exercise, the body releases endorphins that restore peace and felicity.

  4. Physical Exercises and Their Health Benefits Essay

    For those doing trainings such as weight lifting and muscle builders, workouts promotes muscle buildup and helps in changing the body shape to the desired body shape. Regular exercise also improves the body stamina and enhances flexibility and stability. Workouts stretch the body and ensure a good posture.

  5. Why is physical activity so important for health and well-being?

    Here are some other benefits you may get with regular physical activity: Helps you quit smoking and stay tobacco-free. Boosts your energy level so you can get more done. Helps you manage stress and tension. Promotes a positive attitude and outlook. Helps you fall asleep faster and sleep more soundly.

  6. The benefits of exercise for your physical and mental health

    Physical activity can help reduce anxiety, and this benefit can start right after a moderate or vigorous exercise session. Longer term, regular exercise can also help reduce the risk of depression ...

  7. The Comprehensive Benefits of Exercise: A Path to Health ...

    In this essay on the benefits of exercise, we will explore the multitude of advantages that regular physical activity can offer. Exercise is not merely a means to improve physical appearance; it is a powerful tool that can enhance overall health and well-being.

  8. Physical Activity Is Good for the Mind and the Body

    Physical activity has many well-established mental health benefits. These are published in the Physical Activity Guidelines for Americans and include improved brain health and cognitive function (the ability to think, if you will), a reduced risk of anxiety and depression, and improved sleep and overall quality of life.

  9. Exercise: Health benefits, types, and how it works

    Aerobic exercise provides the following benefits: improves muscle strength in the lungs, heart, and whole body. lowers blood pressure. improves circulation and blood flow in the muscles. increases ...

  10. Benefits of Physical Activity

    Benefits of Physical Activity. Regular physical activity is one of the most important things you can do for your health. Being physically active can improve your brain health, help manage weight, reduce the risk of disease, strengthen bones and muscles, and improve your ability to do everyday activities. Adults who sit less and do any amount of ...

  11. The Importance of Exercise for a Healthy Lifestyle

    The benefits of exercise are vast and well-documented. Regular physical activity has been shown to improve physical health, reduce the risk of chronic diseases, and enhance mental well-being. While barriers to exercise such as lack of time and motivation exist, it is important to recognize that even small amounts of physical activity can have ...

  12. Real-Life Benefits of Exercise and Physical Activity

    Physical activity can help: Reduce feelings of depression and stress, while improving your mood and overall emotional well-being. Increase your energy level. Improve sleep. Empower you to feel more in control. In addition, exercise and physical activity may possibly improve or maintain some aspects of cognitive function, such as your ability to ...

  13. How Exercise Strengthens Your Brain

    Perhaps most remarkable, exercise offers protection against neurodegenerative diseases. "Physical activity is one of the health behaviors that's shown to be the most beneficial for cognitive ...

  14. Benefits of Physical Exercise for Health and Wellness: Free Essay

    Physical exercise is significant for keeping up physical wellness and can add to keeping up a solid weight, controlling the stomach related framework, assembling and keeping up sound bone thickness, muscle quality, and joint versatility, advancing physiological prosperity, diminishing careful dangers, and fortifying the resistant framework.

  15. Essay on Benefits of Exercise

    The adage, "A healthy mind in a healthy body," indeed holds. 500 Words Essay on Benefits of Exercise Introduction. Exercise, often regarded as a panacea for numerous health-related issues, has been a subject of extensive research over the years. It is a powerful tool that aids in the enhancement of both physical and mental well-being.

  16. 500+ Words Essay on Importance of Exercise

    Exercise is one of the healthy lifestyles which contributes to optimum health and quality of life. People who exercise regularly can reduce their risk of death. By doing exercise, active people increase their life expectancy by two years compared to inactive people. Regular exercise and good physical fitness enhance the quality of life in many ...

  17. Physical Activity and Sports—Real Health Benefits: A Review with

    2. Definitions of Physical Activity, Exercise, Training, Sport, and Health. Definitions and terms are based on "Physical activity in the prevention and treatment of disease" (FYSS, www.fyss.se [Swedish] []), World Health Organization (WHO) [] and the US Department of Human Services [].The definition of physical activity in FYSS is: "Physical activity is defined purely physiologically, as ...

  18. Benefits of Exercise Essay

    Long Essay on Benefits of Exercise 500 Words in English. Long Essay on Benefits of Exercise is usually given to classes 7, 8, 9, and 10. We have always heard the word 'fitness' and 'health'. We use it ourselves when we say such phrases like 'fitness is the key' and 'health is wealth'. The word health means the idea of 'being ...

  19. Health Benefits of Exercise

    The myokine musclin is a peptide secreted from exercising muscle during treadmill running. Removal of musclin release during running results in lowered VO 2max, lower skeletal muscle mitochondrial content and respiratory complex protein expression, and reduced exercise tolerance ( Subbotina et al. 2015 ).

  20. The Health Benefits of Exercise Essay

    An example of this exercise is weight lifting or sprinting. A person's requires both anaerobic and aerobic exercise for good health. Simply doing a cardio work out is not healthy, and for a person to see real results there must be some activity like weight lifting ("Anaerobic"). By performing some type of physical activity each

  21. Essay on Exercise Is Good For Health

    250 Words Essay on Exercise Is Good For Health Why Exercise is Important. Exercise is like a magic pill that keeps your body strong and healthy. When you move your body and get active, you are doing a big favor to your health. Think of your body as a battery. When you exercise, you charge this battery, and it helps you feel full of energy ...

  22. Healthy Living with Diabetes

    If you have overweight or obesity, a healthy meal plan—along with regular physical activity, getting enough sleep, and other healthy behaviors—may help you reach and maintain a healthy weight. In some cases, health care professionals may also recommend diabetes medicines that may help you lose weight, or weight-loss surgery, also called ...