Assignment Problem: Meaning, Methods and Variations | Operations Research

what are assignment problems

After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations.

Meaning of Assignment Problem:

An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total cost or maximize total profit of allocation.

The problem of assignment arises because available resources such as men, machines etc. have varying degrees of efficiency for performing different activities, therefore, cost, profit or loss of performing the different activities is different.

Thus, the problem is “How should the assignments be made so as to optimize the given objective”. Some of the problem where the assignment technique may be useful are assignment of workers to machines, salesman to different sales areas.

Definition of Assignment Problem:

ADVERTISEMENTS:

Suppose there are n jobs to be performed and n persons are available for doing these jobs. Assume that each person can do each job at a term, though with varying degree of efficiency, let c ij be the cost if the i-th person is assigned to the j-th job. The problem is to find an assignment (which job should be assigned to which person one on-one basis) So that the total cost of performing all jobs is minimum, problem of this kind are known as assignment problem.

The assignment problem can be stated in the form of n x n cost matrix C real members as given in the following table:

what are assignment problems

www.springer.com The European Mathematical Society

  • StatProb Collection
  • Recent changes
  • Current events
  • Random page
  • Project talk
  • Request account
  • What links here
  • Related changes
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • View source

Assignment problem

The problem of optimally assigning $ m $ individuals to $ m $ jobs. It can be formulated as a linear programming problem that is a special case of the transport problem :

maximize $ \sum _ {i,j } c _ {ij } x _ {ij } $

$$ \sum _ { j } x _ {ij } = a _ {i} , i = 1 \dots m $$

(origins or supply),

$$ \sum _ { i } x _ {ij } = b _ {j} , j = 1 \dots n $$

(destinations or demand), where $ x _ {ij } \geq 0 $ and $ \sum a _ {i} = \sum b _ {j} $, which is called the balance condition. The assignment problem arises when $ m = n $ and all $ a _ {i} $ and $ b _ {j} $ are $ 1 $.

If all $ a _ {i} $ and $ b _ {j} $ in the transposed problem are integers, then there is an optimal solution for which all $ x _ {ij } $ are integers (Dantzig's theorem on integral solutions of the transport problem).

In the assignment problem, for such a solution $ x _ {ij } $ is either zero or one; $ x _ {ij } = 1 $ means that person $ i $ is assigned to job $ j $; the weight $ c _ {ij } $ is the utility of person $ i $ assigned to job $ j $.

The special structure of the transport problem and the assignment problem makes it possible to use algorithms that are more efficient than the simplex method . Some of these use the Hungarian method (see, e.g., [a5] , [a1] , Chapt. 7), which is based on the König–Egervary theorem (see König theorem ), the method of potentials (see [a1] , [a2] ), the out-of-kilter algorithm (see, e.g., [a3] ) or the transportation simplex method.

In turn, the transportation problem is a special case of the network optimization problem.

A totally different assignment problem is the pole assignment problem in control theory.

  • This page was last edited on 5 April 2020, at 18:48.
  • Privacy policy
  • About Encyclopedia of Mathematics
  • Disclaimers
  • Impressum-Legal

MBA Notes

How to Solve the Assignment Problem: A Complete Guide

Table of Contents

Assignment problem is a special type of linear programming problem that deals with assigning a number of resources to an equal number of tasks in the most efficient way. The goal is to minimize the total cost of assignments while ensuring that each task is assigned to only one resource and each resource is assigned to only one task. In this blog, we will discuss the solution of the assignment problem using the Hungarian method, which is a popular algorithm for solving the problem.

Understanding the Assignment Problem

Before we dive into the solution, it is important to understand the problem itself. In the assignment problem, we have a matrix of costs, where each row represents a resource and each column represents a task. The objective is to assign each resource to a task in such a way that the total cost of assignments is minimized. However, there are certain constraints that need to be satisfied – each resource can be assigned to only one task and each task can be assigned to only one resource.

Solving the Assignment Problem

There are various methods for solving the assignment problem, including the Hungarian method, the brute force method, and the auction algorithm. Here, we will focus on the steps involved in solving the assignment problem using the Hungarian method, which is the most commonly used and efficient method.

Step 1: Set up the cost matrix

The first step in solving the assignment problem is to set up the cost matrix, which represents the cost of assigning a task to an agent. The matrix should be square and have the same number of rows and columns as the number of tasks and agents, respectively.

Step 2: Subtract the smallest element from each row and column

To simplify the calculations, we need to reduce the size of the cost matrix by subtracting the smallest element from each row and column. This step is called matrix reduction.

Step 3: Cover all zeros with the minimum number of lines

The next step is to cover all zeros in the matrix with the minimum number of horizontal and vertical lines. This step is called matrix covering.

Step 4: Test for optimality and adjust the matrix

To test for optimality, we need to calculate the minimum number of lines required to cover all zeros in the matrix. If the number of lines equals the number of rows or columns, the solution is optimal. If not, we need to adjust the matrix and repeat steps 3 and 4 until we get an optimal solution.

Step 5: Assign the tasks to the agents

The final step is to assign the tasks to the agents based on the optimal solution obtained in step 4. This will give us the most cost-effective or profit-maximizing assignment.

Solution of the Assignment Problem using the Hungarian Method

The Hungarian method is an algorithm that uses a step-by-step approach to find the optimal assignment. The algorithm consists of the following steps:

  • Subtract the smallest entry in each row from all the entries of the row.
  • Subtract the smallest entry in each column from all the entries of the column.
  • Draw the minimum number of lines to cover all zeros in the matrix. If the number of lines drawn is equal to the number of rows, we have an optimal solution. If not, go to step 4.
  • Determine the smallest entry not covered by any line. Subtract it from all uncovered entries and add it to all entries covered by two lines. Go to step 3.

The above steps are repeated until an optimal solution is obtained. The optimal solution will have all zeros covered by the minimum number of lines. The assignments can be made by selecting the rows and columns with a single zero in the final matrix.

Applications of the Assignment Problem

The assignment problem has various applications in different fields, including computer science, economics, logistics, and management. In this section, we will provide some examples of how the assignment problem is used in real-life situations.

Applications in Computer Science

The assignment problem can be used in computer science to allocate resources to different tasks, such as allocating memory to processes or assigning threads to processors.

Applications in Economics

The assignment problem can be used in economics to allocate resources to different agents, such as allocating workers to jobs or assigning projects to contractors.

Applications in Logistics

The assignment problem can be used in logistics to allocate resources to different activities, such as allocating vehicles to routes or assigning warehouses to customers.

Applications in Management

The assignment problem can be used in management to allocate resources to different projects, such as allocating employees to tasks or assigning budgets to departments.

Let’s consider the following scenario: a manager needs to assign three employees to three different tasks. Each employee has different skills, and each task requires specific skills. The manager wants to minimize the total time it takes to complete all the tasks. The skills and the time required for each task are given in the table below:

The assignment problem is to determine which employee should be assigned to which task to minimize the total time required. To solve this problem, we can use the Hungarian method, which we discussed in the previous blog.

Using the Hungarian method, we first subtract the smallest entry in each row from all the entries of the row:

Next, we subtract the smallest entry in each column from all the entries of the column:

We draw the minimum number of lines to cover all the zeros in the matrix, which in this case is three:

Since the number of lines is equal to the number of rows, we have an optimal solution. The assignments can be made by selecting the rows and columns with a single zero in the final matrix. In this case, the optimal assignments are:

  • Emp 1 to Task 3
  • Emp 2 to Task 2
  • Emp 3 to Task 1

This assignment results in a total time of 9 units.

I hope this example helps you better understand the assignment problem and how to solve it using the Hungarian method.

Solving the assignment problem may seem daunting, but with the right approach, it can be a straightforward process. By following the steps outlined in this guide, you can confidently tackle any assignment problem that comes your way.

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you! 😔

Let us improve this post!

Tell us how we can improve this post?

Operations Research

1 Operations Research-An Overview

  • History of O.R.
  • Approach, Techniques and Tools
  • Phases and Processes of O.R. Study
  • Typical Applications of O.R
  • Limitations of Operations Research
  • Models in Operations Research
  • O.R. in real world

2 Linear Programming: Formulation and Graphical Method

  • General formulation of Linear Programming Problem
  • Optimisation Models
  • Basics of Graphic Method
  • Important steps to draw graph
  • Multiple, Unbounded Solution and Infeasible Problems
  • Solving Linear Programming Graphically Using Computer
  • Application of Linear Programming in Business and Industry

3 Linear Programming-Simplex Method

  • Principle of Simplex Method
  • Computational aspect of Simplex Method
  • Simplex Method with several Decision Variables
  • Two Phase and M-method
  • Multiple Solution, Unbounded Solution and Infeasible Problem
  • Sensitivity Analysis
  • Dual Linear Programming Problem

4 Transportation Problem

  • Basic Feasible Solution of a Transportation Problem
  • Modified Distribution Method
  • Stepping Stone Method
  • Unbalanced Transportation Problem
  • Degenerate Transportation Problem
  • Transhipment Problem
  • Maximisation in a Transportation Problem

5 Assignment Problem

  • Solution of the Assignment Problem
  • Unbalanced Assignment Problem
  • Problem with some Infeasible Assignments
  • Maximisation in an Assignment Problem
  • Crew Assignment Problem

6 Application of Excel Solver to Solve LPP

  • Building Excel model for solving LP: An Illustrative Example

7 Goal Programming

  • Concepts of goal programming
  • Goal programming model formulation
  • Graphical method of goal programming
  • The simplex method of goal programming
  • Using Excel Solver to Solve Goal Programming Models
  • Application areas of goal programming

8 Integer Programming

  • Some Integer Programming Formulation Techniques
  • Binary Representation of General Integer Variables
  • Unimodularity
  • Cutting Plane Method
  • Branch and Bound Method
  • Solver Solution

9 Dynamic Programming

  • Dynamic Programming Methodology: An Example
  • Definitions and Notations
  • Dynamic Programming Applications

10 Non-Linear Programming

  • Solution of a Non-linear Programming Problem
  • Convex and Concave Functions
  • Kuhn-Tucker Conditions for Constrained Optimisation
  • Quadratic Programming
  • Separable Programming
  • NLP Models with Solver

11 Introduction to game theory and its Applications

  • Important terms in Game Theory
  • Saddle points
  • Mixed strategies: Games without saddle points
  • 2 x n games
  • Exploiting an opponent’s mistakes

12 Monte Carlo Simulation

  • Reasons for using simulation
  • Monte Carlo simulation
  • Limitations of simulation
  • Steps in the simulation process
  • Some practical applications of simulation
  • Two typical examples of hand-computed simulation
  • Computer simulation

13 Queueing Models

  • Characteristics of a queueing model
  • Notations and Symbols
  • Statistical methods in queueing
  • The M/M/I System
  • The M/M/C System
  • The M/Ek/I System
  • Decision problems in queueing

Google OR-Tools

  • Google OR-Tools
  • Español – América Latina
  • Português – Brasil
  • Tiếng Việt

One of the most well-known combinatorial optimization problems is the assignment problem . Here's an example: suppose a group of workers needs to perform a set of tasks, and for each worker and task, there is a cost for assigning the worker to the task. The problem is to assign each worker to at most one task, with no two workers performing the same task, while minimizing the total cost.

You can visualize this problem by the graph below, in which there are four workers and four tasks. The edges represent all possible ways to assign workers to tasks. The labels on the edges are the costs of assigning workers to tasks.

An assignment corresponds to a subset of the edges, in which each worker has at most one edge leading out, and no two workers have edges leading to the same task. One possible assignment is shown below.

The total cost of the assignment is 70 + 55 + 95 + 45 = 265 .

The next section shows how solve an assignment problem, using both the MIP solver and the CP-SAT solver.

Other tools for solving assignment problems

OR-Tools also provides a couple of other tools for solving assignment problems, which can be faster than the MIP or CP solvers:

  • Linear sum assignment solver
  • Minimum cost flow solver

However, these tools can only solve simple types of assignment problems. So for general solvers that can handle a wide variety of problems (and are fast enough for most applications), we recommend the MIP and CP-SAT solvers.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License , and code samples are licensed under the Apache 2.0 License . For details, see the Google Developers Site Policies . Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2023-01-02 UTC.

The assignment problem revisited

  • Original Paper
  • Published: 16 August 2021
  • Volume 16 , pages 1531–1548, ( 2022 )

Cite this article

what are assignment problems

  • Carlos A. Alfaro   ORCID: orcid.org/0000-0001-9783-8587 1 ,
  • Sergio L. Perez 2 ,
  • Carlos E. Valencia 3 &
  • Marcos C. Vargas 1  

964 Accesses

4 Citations

4 Altmetric

Explore all metrics

First, we give a detailed review of two algorithms that solve the minimization case of the assignment problem, the Bertsekas auction algorithm and the Goldberg & Kennedy algorithm. It was previously alluded that both algorithms are equivalent. We give a detailed proof that these algorithms are equivalent. Also, we perform experimental results comparing the performance of three algorithms for the assignment problem: the \(\epsilon \) - scaling auction algorithm , the Hungarian algorithm and the FlowAssign algorithm . The experiment shows that the auction algorithm still performs and scales better in practice than the other algorithms which are harder to implement and have better theoretical time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

what are assignment problems

Similar content being viewed by others

what are assignment problems

Some results on an assignment problem variant

what are assignment problems

Integer Programming

what are assignment problems

A Full Description of Polytopes Related to the Index of the Lowest Nonzero Row of an Assignment Matrix

Bertsekas, D.P.: The auction algorithm: a distributed relaxation method for the assignment problem. Annal Op. Res. 14 , 105–123 (1988)

Article   MathSciNet   Google Scholar  

Bertsekas, D.P., Castañon, D.A.: Parallel synchronous and asynchronous implementations of the auction algorithm. Parallel Comput. 17 , 707–732 (1991)

Article   Google Scholar  

Bertsekas, D.P.: Linear network optimization: algorithms and codes. MIT Press, Cambridge, MA (1991)

MATH   Google Scholar  

Bertsekas, D.P.: The auction algorithm for shortest paths. SIAM J. Optim. 1 , 425–477 (1991)

Bertsekas, D.P.: Auction algorithms for network flow problems: a tutorial introduction. Comput. Optim. Appl. 1 , 7–66 (1992)

Bertsekas, D.P., Castañon, D.A., Tsaknakis, H.: Reverse auction and the solution of inequality constrained assignment problems. SIAM J. Optim. 3 , 268–299 (1993)

Bertsekas, D.P., Eckstein, J.: Dual coordinate step methods for linear network flow problems. Math. Progr., Ser. B 42 , 203–243 (1988)

Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization. Athena Scientific, Belmont, MA (1997)

Google Scholar  

Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Revised reprint. SIAM, Philadelphia, PA (2011)

Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for network problems. SIAM J. Comput. 18 (5), 1013–1036 (1989)

Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J. Assoc. Comput. Mach. 35 , 921–940 (1988)

Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive approximation. Math. Op. Res. 15 , 430–466 (1990)

Goldberg, A.V., Kennedy, R.: An efficient cost scaling algorithm for the assignment problem. Math. Programm. 71 , 153–177 (1995)

MathSciNet   MATH   Google Scholar  

Goldberg, A.V., Kennedy, R.: Global price updates help. SIAM J. Discr. Math. 10 (4), 551–572 (1997)

Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2 , 83–97 (1955)

Kuhn, H.W.: Variants of the Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2 , 253–258 (1956)

Lawler, E.L.: Combinatorial optimization: networks and matroids, Holt. Rinehart & Winston, New York (1976)

Orlin, J.B., Ahuja, R.K.: New scaling algorithms for the assignment ad minimum mean cycle problems. Math. Programm. 54 , 41–56 (1992)

Ramshaw, L., Tarjan, R.E., Weight-Scaling Algorithm, A., for Min-Cost Imperfect Matchings in Bipartite Graphs, : IEEE 53rd Annual Symposium on Foundations of Computer Science. New Brunswick, NJ 2012 , 581–590 (2012)

Zaki, H.: A comparison of two algorithms for the assignment problem. Comput. Optim. Appl. 4 , 23–45 (1995)

Download references

Acknowledgements

This research was partially supported by SNI and CONACyT.

Author information

Authors and affiliations.

Banco de México, Mexico City, Mexico

Carlos A. Alfaro & Marcos C. Vargas

Mountain View, CA, 94043, USA

Sergio L. Perez

Departamento de Matemáticas, CINVESTAV del IPN, Apartado postal 14-740, 07000, Mexico City, Mexico

Carlos E. Valencia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Carlos A. Alfaro .

Ethics declarations

Conflict of interest.

There is no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported by SNI and CONACyT.

Rights and permissions

Reprints and permissions

About this article

Alfaro, C.A., Perez, S.L., Valencia, C.E. et al. The assignment problem revisited. Optim Lett 16 , 1531–1548 (2022). https://doi.org/10.1007/s11590-021-01791-4

Download citation

Received : 26 March 2020

Accepted : 03 August 2021

Published : 16 August 2021

Issue Date : June 2022

DOI : https://doi.org/10.1007/s11590-021-01791-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Assignment problem
  • Bertsekas auction algorithm
  • Combinatorial optimization and matching
  • Find a journal
  • Publish with us
  • Track your research
  • Data Structures
  • Linked List
  • Binary Tree
  • Binary Search Tree
  • Segment Tree
  • Disjoint Set Union
  • Fenwick Tree
  • Red-Black Tree
  • Advanced Data Structures

Hungarian Algorithm for Assignment Problem | Set 1 (Introduction)

  • Hungarian Algorithm for Assignment Problem | Set 2 (Implementation)
  • Job Assignment Problem using Branch And Bound
  • Channel Assignment Problem
  • OLA Interview Experience | Set 11 ( For Internship)
  • Minimizing Total Manhattan Distances for Driver-Package Allocation
  • Quadratic Assignment Problem (QAP)
  • Find minimum time to finish all jobs with given constraints
  • Minimum Number of Platforms Required for a Railway/Bus Station | Set 2 (Set based approach)
  • Assign N tasks to N persons to minimize total time
  • Maximum points collected by two persons allowed to meet once
  • Find the Platform at which the given Train arrives
  • Data Structures and Algorithms | Set 21
  • Algorithms | Dynamic Programming | Question 7
  • Sprinklr Interview Experience | (On Campus for Internship)
  • OYO Rooms Interview Experience | Set 7
  • Amazon Internship Interview Experience | On-Campus 2021
  • Zoho Interview Experience | Set 9 (On-Campus)
  • Zoho Interview | Set 5 (On-Campus Drive)
  • Gameskraft Technologies Interview Experience
  • Merge Sort - Data Structure and Algorithms Tutorials
  • Must Do Coding Questions for Companies like Amazon, Microsoft, Adobe, ...
  • QuickSort - Data Structure and Algorithm Tutorials
  • Bubble Sort - Data Structure and Algorithm Tutorials
  • Tree Traversal Techniques - Data Structure and Algorithm Tutorials
  • Binary Search - Data Structure and Algorithm Tutorials
  • Insertion Sort - Data Structure and Algorithm Tutorials
  • Selection Sort – Data Structure and Algorithm Tutorials
  • Understanding the basics of Linked List
  • Breadth First Search or BFS for a Graph

hungarian1

  • For each row of the matrix, find the smallest element and subtract it from every element in its row.
  • Do the same (as step 1) for all columns.
  • Cover all zeros in the matrix using minimum number of horizontal and vertical lines.
  • Test for Optimality: If the minimum number of covering lines is n, an optimal assignment is possible and we are finished. Else if lines are lesser than n, we haven’t found the optimal assignment, and must proceed to step 5.
  • Determine the smallest entry not covered by any line. Subtract this entry from each uncovered row, and then add it to each covered column. Return to step 3.
Try it before moving to see the solution

Explanation for above simple example:

  An example that doesn’t lead to optimal value in first attempt: In the above example, the first check for optimality did give us solution. What if we the number covering lines is less than n.

Time complexity : O(n^3), where n is the number of workers and jobs. This is because the algorithm implements the Hungarian algorithm, which is known to have a time complexity of O(n^3).

Space complexity :   O(n^2), where n is the number of workers and jobs. This is because the algorithm uses a 2D cost matrix of size n x n to store the costs of assigning each worker to a job, and additional arrays of size n to store the labels, matches, and auxiliary information needed for the algorithm.

In the next post, we will be discussing implementation of the above algorithm. The implementation requires more steps as we need to find minimum number of lines to cover all 0’s using a program. References: http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf https://www.youtube.com/watch?v=dQDZNHwuuOY

Please Login to comment...

Similar reads.

  • Mathematical

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Quantitative Techniques: Theory and Problems by P. C. Tulsian, Vishal Pandey

Get full access to Quantitative Techniques: Theory and Problems and 60K+ other titles, with a free 10-day trial of O'Reilly.

There are also live events, courses curated by job role, and more.

WHAT IS ASSIGNMENT PROBLEM

Assignment Problem is a special type of linear programming problem where the objective is to minimise the cost or time of completing a number of jobs by a number of persons.

The assignment problem in the general form can be stated as follows:

“Given n facilities, n jobs and the effectiveness of each facility for each job, the problem is to assign each facility to one and only one job in such a way that the measure of effectiveness is optimised (Maximised or Minimised).”

Several problems of management has a structure identical with the assignment problem.

Example I A manager has four persons (i.e. facilities) available for four separate jobs (i.e. jobs) and the cost of assigning (i.e. effectiveness) each job to each ...

Get Quantitative Techniques: Theory and Problems now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Don’t leave empty-handed

Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

It’s yours, free.

Cover of Software Architecture Patterns

Secret Service removes agent from Kamala Harris' detail after 'distressing' behavior

Kamala Harris

WASHINGTON — A Secret Service special agent was removed from Vice President Kamala Harris' detail after having exhibited "distressing" behavior this week, a spokesperson confirmed Thursday.

The agent, whose identity has not been disclosed, had been involved with the Harris' departure from Joint Base Andrews, Maryland, on Monday morning, when Harris was headed to Wisconsin.

The agent "began displaying behavior their colleagues found distressing," Anthony Guglielmi, chief of communications for the Secret Service, said in a statement Thursday. "The agent was removed from their assignment while medical personnel were summoned."

Harris was not present when the incident took place. She was at the Naval Observatory, the vice president's residence, and Guglielmi said her departure was not affected.

“The U.S. Secret Service takes the safety and health of our employees very seriously,” Guglielmi said. “As this was a medical matter, we will not disclose any further details.”

Additional information about the incident, which was first reported by the Washington Examiner , was not released. The vice president's office did not comment Thursday.

what are assignment problems

Megan Lebowitz is a politics reporter for NBC News.

Wildland Firefighters Tackle Recruitment Challenges

A cameraman follows a firefighter who is walking toward small flames and a smoky forested landscape. The firefighter has a hose slung over his shoulder and is dragging the rest on the ground.

Every summer, a vast majority of the United States is shrouded in thick wildfire smoke that hangs in the air like a hazy curtain, casting an eerie filter over landscapes and transforming the once-clear skies into a somber palette of muted hues. Thousands of firefighters are dispatched to distant corners of the nation to begin wildfire suppression efforts that lasts for months. At the peak of fire season, the nation can have as many as 32,000 wildland firefighters on assignment at any given time. The United States has a wildfire problem.

A cameraman leans off the side of an airboat to capture footage of another airboat during a prescribed fire

As wildland fire agencies, including the U.S. Fish and Wildlife Service, strive to reduce risk of wildfire to communities, the issues of recruiting and retaining wildland firefighters pose significant challenges.

The concern over recruitment and retention grows every year. Several factors contribute to the complexity of attracting and keeping personnel within wildland fire agencies: demanding nature of the work, high risk and stress levels, burnout and mental health concerns, and competitive pay. While Congress works to address firefighter pay and mental health concerns, the U.S. Fish and Wildlife Service’s Branch of Fire Management has tackled the recruitment and retention issues by addressing the competitive job market and aging workforce in new ways.

In 2022 and 2023 a film crew hired the U.S. Fish and Wildlife Service jetted across the country to capture wildland fire footage, habitats, wildlife species, fire personnel, and wildland firefighting skills for three short recruitment videos. In November 2022, filmmakers made their first filming stop at Balcones Canyonlands National Wildlife Refuge in Texas.

A cameraman films a marshmaster as it goes over a small hill

Next stop for the film crew brought them to Okefenokee National Wildlife Refuge in Georgia/Florida where they were promised footage of fires along with the endangered gopher tortoise. Turns out gopher tortoises are a little camera-shy, so the crew focused on the less elusive, but also endangered, red-cockaded woodpecker before capturing footage of wildlife, amphibious fire vehicles, and the FWS helicopter on multiple prescribed fires.

From burning at the best-preserved, precipitation-based freshwater wetland ecosystem in the conterminous U.S. at Okefenokee, the film crew worked their way to Turnbull National Wildlife Refuge in Washington. The film crew captured vastly different fire behavior in the Channeled Scablands ecosystem that predominates the refuge in addition moose, deer, and sleeping porcupines.

Filming was topped off with incredible footage of airboats at Big Branch Marsh National Wildlife Refuge in Louisiana and the fire-dependent, colorful blend of rare orchids, carnivorous plants, and other unique groundcover that blankets the flat landscape of Mississippi Sandhill Crane National Wildlife Refuge in Mississippi. 

Once filming was complete, we released three recruitment films, each designed to target diverse, younger audiences to help shepherd in the next generation of wildland firefighters:

  • Recruitment film #1 provides a two-minute intense peek into the excitement of working for our wildland fire program. This film is designed to grab the attention of younger generation thrill seekers looking for intensity in their lives.
  • Recruitment film #2 offers an in-depth look into how the wildland fire program supports and enhances our overall mission, fire’s importance in creating sustainable and healthy ecosystems for plant and wildlife species, and the close-knit culture of our wildland fire program.
  • Recruitment film #3 explores the upbeat, light, and fun aspect of working for our wildland fire program. This film is designed to appeal to those who may have an interest in wildland fire, but also a fear of what type of culture might greet them upon accepting a job in the field.

Recruitment and retention challenges require a multifaceted approach, including implementing strategies to promote a positive and inclusive workplace culture and targeting future recruits that emulate this culture. Collaborative efforts between government agencies, communities, and educational institutions are essential to building a sustainable and resilient wildland firefighting workforce. We hope these recruitment videos help connect communities, educational institutions, and the next generation of firefighters to wildland firefighting with the U.S. Fish and Wildlife Service.

Latest Stories

Aerial spraying of water hyacinth

You are exiting the U.S. Fish and Wildlife Service website

You are being directed to

We do not guarantee that the websites we link to comply with Section 508 (Accessibility Requirements) of the Rehabilitation Act. Links also do not constitute endorsement, recommendation, or favoring by the U.S. Fish and Wildlife Service.

IMAGES

  1. Assignment problem

    what are assignment problems

  2. 7 Most Effective Ways For How To Solve Assignment Problems

    what are assignment problems

  3. solve assignment problems

    what are assignment problems

  4. Assignment problem ppt

    what are assignment problems

  5. Easy Methods of Assignment Problems, Operations Research

    what are assignment problems

  6. 6. assignment problems

    what are assignment problems

VIDEO

  1. BSC SEMESTER 1 MATHS

  2. MBS 2nd Sem📚📘Production & Operation Management[MSC 516] Assignment Problems:Hungarian🇭🇺Method:TU2022

  3. Assignment problem

  4. September 16, 2021 Assignment problem| Part 2

  5. Assignment Problem ( Brute force method) Design and Analysis of Algorithm

  6. Assignment Problems (B.Sc. Maths & M.Sc. Maths) #Lecture 2.

COMMENTS

  1. Assignment problem

    The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.

  2. Assignment Problem: Meaning, Methods and Variations

    After reading this article you will learn about:- 1. Meaning of Assignment Problem 2. Definition of Assignment Problem 3. Mathematical Formulation 4. Hungarian Method 5. Variations. Meaning of Assignment Problem: An assignment problem is a particular case of transportation problem where the objective is to assign a number of resources to an equal number of activities so as to minimise total ...

  3. Assignment Problems: Introduction, Assumptions and Variations ...

    Operations Research-Assignment Problems/Models (Part-1)In this part, students will learn about the fundamentals of assignment problems, definition and variou...

  4. Assignment Problems

    This book provides a comprehensive treatment of assignment problems from their conceptual beginnings in the 1920s through present-day theoretical, algorithmic, and practical developments. The revised reprint provides details on a recent discovery related to one of Jacobi's results, new material on inverse assignment problems and quadratic ...

  5. Solving an Assignment Problem

    This section presents an example that shows how to solve an assignment problem using both the MIP solver and the CP-SAT solver. Example. In the example there are five workers (numbered 0-4) and four tasks (numbered 0-3). Note that there is one more worker than in the example in the Overview.

  6. Assignment problem

    The assignment problem arises when $ m = n $ and all $ a _ {i} $ and $ b _ {j} $ are $ 1 $. If all $ a _ {i} $ and $ b _ {j} $ in the transposed problem are integers, then there is an optimal solution for which all $ x _ {ij } $ are integers (Dantzig's theorem on integral solutions of the transport problem). In the assignment problem, for such ...

  7. How to Solve the Assignment Problem: A Complete Guide

    Assignment problem is a special type of linear programming problem that deals with assigning a number of resources to an equal number of tasks in the most efficient way. The goal is to minimize the total cost of assignments while ensuring that each task is assigned to only one resource and each resource is assigned to only one task. In this ...

  8. PDF The Assignment Problem and the Hungarian Method

    The Assignment Problem: Suppose we have n resources to which we want to assign to n tasks on a one-to-one basis. Suppose also that we know the cost of assigning a given resource to a given task. We wish to find an optimal assignment-one which minimizes total cost. 29

  9. Assignment

    The total cost of the assignment is 70 + 55 + 95 + 45 = 265. The next section shows how solve an assignment problem, using both the MIP solver and the CP-SAT solver. Other tools for solving assignment problems. OR-Tools also provides a couple of other tools for solving assignment problems, which can be faster than the MIP or CP solvers:

  10. The assignment problem revisited

    The assignment problem is important from a theoretical point of view because it appears as a subproblem of a vast number of combinatorial optimization problems , and its solution allows the development of algorithms to solve other combinatorial optimization problems.

  11. Assignment problems: A golden anniversary survey

    Assignment problems involve optimally matching the elements of two or more sets, where the dimension of the problem refers to the number of sets of elements to be matched. When there are only two sets, as will be the case for most of the variations we will consider, they may be referred to as "tasks" and "agents".

  12. PDF 7.13 Assignment Problem

    Equivalent Assignment Problem c(x, y) 00312 01015 43330 00110 12204 cp(x, y) 3891510 41071614 913111910 813122013 175119 8 13 11 19 13 5 4 3 0 8 9 + 8 - 13 10 Reduced costs. For x # X, y # Y, define cp(x, y) = p(x) + c(x, y) - p(y). Observation 1. Finding a min cost perfect matching with reduced costs

  13. Assignment Problems:

    Audience: Assignment Problems is a useful tool for researchers, practitioners, and graduate students. Researchers will benefit from the detailed exposition of theory and algorithms related to assignment problems, including the basic linear sum assignment problem and its many variations. Practitioners will learn about practical applications of ...

  14. PDF Lecture 8: Assignment Algorithms

    Examples of assignment problems VUGRAPH 3 •Assignment problem Also known as weighted bipartite matching problem •Bipartite graph Has two sets of nodes , ⇒ = ∪ And a set of edges 𝐸connecting them •A matching on a bipartite graph G = (S, T, E) is a subset of edges ∈

  15. Assignment Problems

    Assignment Problems is a useful tool for researchers, practitioners, and graduate students. It provides a comprehensive treatment of assignment problems from their conceptual beginnings in the 1920s through present-day theoretical, algorithmic, and practical developments. The authors have organised the book into 10 self-contained chapters to make it easy for readers to use the specific ...

  16. Hungarian Algorithm for Assignment Problem

    The Hungarian algorithm, aka Munkres assignment algorithm, utilizes the following theorem for polynomial runtime complexity (worst case O(n 3)) and guaranteed optimality: If a number is added to or subtracted from all of the entries of any one row or column of a cost matrix, then an optimal assignment for the resulting cost matrix is also an ...

  17. PDF UNIT 5 ASSIGNMENT PROBLEMS

    Assignment Problems 7 Hungarian Method of Solving an Assignment Problem The steps for obtaining an optimal solution of an assignment problem are as follows: 1. Check whether the given matrix is square. If not, make it square by adding a suitable number of dummy rows (or columns) with 0 cost/time elements. 2.

  18. What is Assignment Problem

    WHAT IS ASSIGNMENT PROBLEM. Assignment Problem is a special type of linear programming problem where the objective is to minimise the cost or time of completing a number of jobs by a number of persons. The assignment problem in the general form can be stated as follows: "Given n facilities, n jobs and the effectiveness of each facility for ...

  19. Assignment problems: A golden anniversary survey

    Assignment problems involve optimally matching the elements of two or more sets, where the dimension of the problem refers to the number of sets of elements to be matched. When there are only two sets, as will be the case for most of the variations we will consider, they may be referred to as "tasks" and "agents". ...

  20. PDF CHAPTER 15 TRANSPORTATION AND ASSIGNMENT PROBLEMS

    7. Identify the relationship between assignment problems and transportation problems. 8. Formulate a spreadsheet model for an assignment problem from a description of the problem. 9. Do the same for some variants of assignment problems. 10. Give the name of an algorithm that can solve huge assignment problems that are well

  21. Assignment Problems

    Assignment Problems. Assignment Problems is a useful tool for researchers, practitioners, and graduate students. It provides a comprehensive treatment of assignment problems from their conceptual beginnings in the 1920s through present-day theoretical, algorithmic, and practical developments. The authors have organised the book into 10 self ...

  22. Secret Service agent removed from Kamala Harris' detail after

    Susan Walsh / AP. WASHINGTON — A Secret Service special agent was removed from Vice President Kamala Harris' detail after having exhibited "distressing" behavior this week, a spokesperson ...

  23. Wildland Firefighters Tackle Recruitment Challenges

    The United States has a wildfire problem. Image Details. As wildland fire agencies, including the U.S. Fish and Wildlife Service, strive to reduce risk of wildfire to communities, the issues of recruiting and retaining wildland firefighters pose significant challenges. The concern over recruitment and retention grows every year.