What Is a Testable Hypothesis?

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis is a tentative answer to a scientific question. A testable hypothesis is a  hypothesis that can be proved or disproved as a result of testing, data collection, or experience. Only testable hypotheses can be used to conceive and perform an experiment using the scientific method .

Requirements for a Testable Hypothesis

In order to be considered testable, two criteria must be met:

  • It must be possible to prove that the hypothesis is true.
  • It must be possible to prove that the hypothesis is false.
  • It must be possible to reproduce the results of the hypothesis.

Examples of a Testable Hypothesis

All the following hypotheses are testable. It's important, however, to note that while it's possible to say that the hypothesis is correct, much more research would be required to answer the question " why is this hypothesis correct?" 

  • Students who attend class have higher grades than students who skip class.  This is testable because it is possible to compare the grades of students who do and do not skip class and then analyze the resulting data. Another person could conduct the same research and come up with the same results.
  • People exposed to high levels of ultraviolet light have a higher incidence of cancer than the norm.  This is testable because it is possible to find a group of people who have been exposed to high levels of ultraviolet light and compare their cancer rates to the average.
  • If you put people in a dark room, then they will be unable to tell when an infrared light turns on.  This hypothesis is testable because it is possible to put a group of people into a dark room, turn on an infrared light, and ask the people in the room whether or not an infrared light has been turned on.

Examples of a Hypothesis Not Written in a Testable Form

  • It doesn't matter whether or not you skip class.  This hypothesis can't be tested because it doesn't make any actual claim regarding the outcome of skipping class. "It doesn't matter" doesn't have any specific meaning, so it can't be tested.
  • Ultraviolet light could cause cancer.  The word "could" makes a hypothesis extremely difficult to test because it is very vague. There "could," for example, be UFOs watching us at every moment, even though it's impossible to prove that they are there!
  • Goldfish make better pets than guinea pigs.  This is not a hypothesis; it's a matter of opinion. There is no agreed-upon definition of what a "better" pet is, so while it is possible to argue the point, there is no way to prove it.

How to Propose a Testable Hypothesis

Now that you know what a testable hypothesis is, here are tips for proposing one.

  • Try to write the hypothesis as an if-then statement. If you take an action, then a certain outcome is expected.
  • Identify the independent and dependent variable in the hypothesis. The independent variable is what you are controlling or changing. You measure the effect this has on the dependent variable.
  • Write the hypothesis in such a way that you can prove or disprove it. For example, a person has skin cancer, you can't prove they got it from being out in the sun. However, you can demonstrate a relationship between exposure to ultraviolet light and increased risk of skin cancer.
  • Make sure you are proposing a hypothesis you can test with reproducible results. If your face breaks out, you can't prove the breakout was caused by the french fries you had for dinner last night. However, you can measure whether or not eating french fries is associated with breaking out. It's a matter of gathering enough data to be able to reproduce results and draw a conclusion.
  • What Are Examples of a Hypothesis?
  • What Are the Elements of a Good Hypothesis?
  • What Is a Hypothesis? (Science)
  • Understanding Simple vs Controlled Experiments
  • How To Design a Science Fair Experiment
  • Scientific Method Vocabulary Terms
  • Null Hypothesis Definition and Examples
  • Theory Definition in Science
  • Hypothesis, Model, Theory, and Law
  • Six Steps of the Scientific Method
  • What 'Fail to Reject' Means in a Hypothesis Test
  • Scientific Method Flow Chart
  • Null Hypothesis Examples
  • Definition of a Hypothesis
  • What Is an Experiment? Definition and Design

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety
  • Foundations >
  • Reasoning >

Falsifiability

Karl popper's basic scientific principle, karl popper's basic scientific principle.

Falsifiability, according to the philosopher Karl Popper, defines the inherent testability of any scientific hypothesis.

This article is a part of the guide:

  • Inductive Reasoning
  • Deductive Reasoning
  • Hypothetico-Deductive Method
  • Scientific Reasoning
  • Testability

Browse Full Outline

  • 1 Scientific Reasoning
  • 2.1 Falsifiability
  • 2.2 Verification Error
  • 2.3 Testability
  • 2.4 Post Hoc Reasoning
  • 3 Deductive Reasoning
  • 4.1 Raven Paradox
  • 5 Causal Reasoning
  • 6 Abductive Reasoning
  • 7 Defeasible Reasoning

Science and philosophy have always worked together to try to uncover truths about the universe we live in. Indeed, ancient philosophy can be understood as the originator of many of the separate fields of study we have today, including psychology, medicine, law, astronomy, art and even theology.

Scientists design experiments and try to obtain results verifying or disproving a hypothesis, but philosophers are interested in understanding what factors determine the validity of scientific endeavors in the first place.

Whilst most scientists work within established paradigms, philosophers question the paradigms themselves and try to explore our underlying assumptions and definitions behind the logic of how we seek knowledge. Thus there is a feedback relationship between science and philosophy - and sometimes plenty of tension!

One of the tenets behind the scientific method is that any scientific hypothesis and resultant experimental design must be inherently falsifiable. Although falsifiability is not universally accepted, it is still the foundation of the majority of scientific experiments. Most scientists accept and work with this tenet, but it has its roots in philosophy and the deeper questions of truth and our access to it.

valid hypothesis must be testable and falsifiable

What is Falsifiability?

Falsifiability is the assertion that for any hypothesis to have credence, it must be inherently disprovable before it can become accepted as a scientific hypothesis or theory.

For example, someone might claim "the earth is younger than many scientists state, and in fact was created to appear as though it was older through deceptive fossils etc.” This is a claim that is unfalsifiable because it is a theory that can never be shown to be false. If you were to present such a person with fossils, geological data or arguments about the nature of compounds in the ozone, they could refute the argument by saying that your evidence was fabricated to appeared that way, and isn’t valid.

Importantly, falsifiability doesn’t mean that there are currently arguments against a theory, only that it is possible to imagine some kind of argument which would invalidate it. Falsifiability says nothing about an argument's inherent validity or correctness. It is only the minimum trait required of a claim that allows it to be engaged with in a scientific manner – a dividing line between what is considered science and what isn’t. Another important point is that falsifiability is not any claim that has yet to be proven true. After all, a conjecture that hasn’t been proven yet is just a hypothesis.

The idea is that no theory is completely correct , but if it can be shown both to be falsifiable  and supported with evidence that shows it's true, it can be accepted as truth.

For example, Newton's Theory of Gravity was accepted as truth for centuries, because objects do not randomly float away from the earth. It appeared to fit the data obtained by experimentation and research , but was always subject to testing.

However, Einstein's theory makes falsifiable predictions that are different from predictions made by Newton's theory, for example concerning the precession of the orbit of Mercury, and gravitational lensing of light. In non-extreme situations Einstein's and Newton's theories make the same predictions, so they are both correct. But Einstein's theory holds true in a superset of the conditions in which Newton's theory holds, so according to the principle of Occam's Razor , Einstein's theory is preferred. On the other hand, Newtonian calculations are simpler, so Newton's theory is useful for almost any engineering project, including some space projects. But for GPS we need Einstein's theory. Scientists would not have arrived at either of these theories, or a compromise between both of them, without the use of testable, falsifiable experiments. 

Popper saw falsifiability as a black and white definition; that if a theory is falsifiable, it is scientific , and if not, then it is unscientific. Whilst some "pure" sciences do adhere to this strict criterion, many fall somewhere between the two extremes, with  pseudo-sciences  falling at the extreme end of being unfalsifiable. 

valid hypothesis must be testable and falsifiable

Pseudoscience

According to Popper, many branches of applied science, especially social science, are not truly scientific because they have no potential for falsification.

Anthropology and sociology, for example, often use case studies to observe people in their natural environment without actually testing any specific hypotheses or theories.

While such studies and ideas are not falsifiable, most would agree that they are scientific because they significantly advance human knowledge.

Popper had and still has his fair share of critics, and the question of how to demarcate legitimate scientific enquiry can get very convoluted. Some statements are logically falsifiable but not practically falsifiable – consider the famous example of “it will rain at this location in a million years' time.” You could absolutely conceive of a way to test this claim, but carrying it out is a different story.

Thus, falsifiability is not a simple black and white matter. The Raven Paradox shows the inherent danger of relying on falsifiability, because very few scientific experiments can measure all of the data, and necessarily rely upon generalization . Technologies change along with our aims and comprehension of the phenomena we study, and so the falsifiability criterion for good science is subject to shifting.

For many sciences, the idea of falsifiability is a useful tool for generating theories that are testable and realistic. Testability is a crucial starting point around which to design solid experiments that have a chance of telling us something useful about the phenomena in question. If a falsifiable theory is tested and the results are significant , then it can become accepted as a scientific truth.

The advantage of Popper's idea is that such truths can be falsified when more knowledge and resources are available. Even long accepted theories such as Gravity, Relativity and Evolution are increasingly challenged and adapted.

The major disadvantage of falsifiability is that it is very strict in its definitions and does not take into account the contributions of sciences that are observational and descriptive .

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth , Lyndsay T Wilson (Sep 21, 2008). Falsifiability. Retrieved Apr 23, 2024 from Explorable.com: https://explorable.com/falsifiability

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Save this course for later.

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

valid hypothesis must be testable and falsifiable

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Module 1: Introduction to Biology

Experiments and hypotheses, learning outcomes.

  • Form a hypothesis and use it to design a scientific experiment

Now we’ll focus on the methods of scientific inquiry. Science often involves making observations and developing hypotheses. Experiments and further observations are often used to test the hypotheses.

A scientific experiment is a carefully organized procedure in which the scientist intervenes in a system to change something, then observes the result of the change. Scientific inquiry often involves doing experiments, though not always. For example, a scientist studying the mating behaviors of ladybugs might begin with detailed observations of ladybugs mating in their natural habitats. While this research may not be experimental, it is scientific: it involves careful and verifiable observation of the natural world. The same scientist might then treat some of the ladybugs with a hormone hypothesized to trigger mating and observe whether these ladybugs mated sooner or more often than untreated ones. This would qualify as an experiment because the scientist is now making a change in the system and observing the effects.

Forming a Hypothesis

When conducting scientific experiments, researchers develop hypotheses to guide experimental design. A hypothesis is a suggested explanation that is both testable and falsifiable. You must be able to test your hypothesis through observations and research, and it must be possible to prove your hypothesis false.

For example, Michael observes that maple trees lose their leaves in the fall. He might then propose a possible explanation for this observation: “cold weather causes maple trees to lose their leaves in the fall.” This statement is testable. He could grow maple trees in a warm enclosed environment such as a greenhouse and see if their leaves still dropped in the fall. The hypothesis is also falsifiable. If the leaves still dropped in the warm environment, then clearly temperature was not the main factor in causing maple leaves to drop in autumn.

In the Try It below, you can practice recognizing scientific hypotheses. As you consider each statement, try to think as a scientist would: can I test this hypothesis with observations or experiments? Is the statement falsifiable? If the answer to either of these questions is “no,” the statement is not a valid scientific hypothesis.

Practice Questions

Determine whether each following statement is a scientific hypothesis.

Air pollution from automobile exhaust can trigger symptoms in people with asthma.

  • No. This statement is not testable or falsifiable.
  • No. This statement is not testable.
  • No. This statement is not falsifiable.
  • Yes. This statement is testable and falsifiable.

Natural disasters, such as tornadoes, are punishments for bad thoughts and behaviors.

a: No. This statement is not testable or falsifiable. “Bad thoughts and behaviors” are excessively vague and subjective variables that would be impossible to measure or agree upon in a reliable way. The statement might be “falsifiable” if you came up with a counterexample: a “wicked” place that was not punished by a natural disaster. But some would question whether the people in that place were really wicked, and others would continue to predict that a natural disaster was bound to strike that place at some point. There is no reason to suspect that people’s immoral behavior affects the weather unless you bring up the intervention of a supernatural being, making this idea even harder to test.

Testing a Vaccine

Let’s examine the scientific process by discussing an actual scientific experiment conducted by researchers at the University of Washington. These researchers investigated whether a vaccine may reduce the incidence of the human papillomavirus (HPV). The experimental process and results were published in an article titled, “ A controlled trial of a human papillomavirus type 16 vaccine .”

Preliminary observations made by the researchers who conducted the HPV experiment are listed below:

  • Human papillomavirus (HPV) is the most common sexually transmitted virus in the United States.
  • There are about 40 different types of HPV. A significant number of people that have HPV are unaware of it because many of these viruses cause no symptoms.
  • Some types of HPV can cause cervical cancer.
  • About 4,000 women a year die of cervical cancer in the United States.

Practice Question

Researchers have developed a potential vaccine against HPV and want to test it. What is the first testable hypothesis that the researchers should study?

  • HPV causes cervical cancer.
  • People should not have unprotected sex with many partners.
  • People who get the vaccine will not get HPV.
  • The HPV vaccine will protect people against cancer.

Experimental Design

You’ve successfully identified a hypothesis for the University of Washington’s study on HPV: People who get the HPV vaccine will not get HPV.

The next step is to design an experiment that will test this hypothesis. There are several important factors to consider when designing a scientific experiment. First, scientific experiments must have an experimental group. This is the group that receives the experimental treatment necessary to address the hypothesis.

The experimental group receives the vaccine, but how can we know if the vaccine made a difference? Many things may change HPV infection rates in a group of people over time. To clearly show that the vaccine was effective in helping the experimental group, we need to include in our study an otherwise similar control group that does not get the treatment. We can then compare the two groups and determine if the vaccine made a difference. The control group shows us what happens in the absence of the factor under study.

However, the control group cannot get “nothing.” Instead, the control group often receives a placebo. A placebo is a procedure that has no expected therapeutic effect—such as giving a person a sugar pill or a shot containing only plain saline solution with no drug. Scientific studies have shown that the “placebo effect” can alter experimental results because when individuals are told that they are or are not being treated, this knowledge can alter their actions or their emotions, which can then alter the results of the experiment.

Moreover, if the doctor knows which group a patient is in, this can also influence the results of the experiment. Without saying so directly, the doctor may show—through body language or other subtle cues—their views about whether the patient is likely to get well. These errors can then alter the patient’s experience and change the results of the experiment. Therefore, many clinical studies are “double blind.” In these studies, neither the doctor nor the patient knows which group the patient is in until all experimental results have been collected.

Both placebo treatments and double-blind procedures are designed to prevent bias. Bias is any systematic error that makes a particular experimental outcome more or less likely. Errors can happen in any experiment: people make mistakes in measurement, instruments fail, computer glitches can alter data. But most such errors are random and don’t favor one outcome over another. Patients’ belief in a treatment can make it more likely to appear to “work.” Placebos and double-blind procedures are used to level the playing field so that both groups of study subjects are treated equally and share similar beliefs about their treatment.

The scientists who are researching the effectiveness of the HPV vaccine will test their hypothesis by separating 2,392 young women into two groups: the control group and the experimental group. Answer the following questions about these two groups.

  • This group is given a placebo.
  • This group is deliberately infected with HPV.
  • This group is given nothing.
  • This group is given the HPV vaccine.
  • a: This group is given a placebo. A placebo will be a shot, just like the HPV vaccine, but it will have no active ingredient. It may change peoples’ thinking or behavior to have such a shot given to them, but it will not stimulate the immune systems of the subjects in the same way as predicted for the vaccine itself.
  • d: This group is given the HPV vaccine. The experimental group will receive the HPV vaccine and researchers will then be able to see if it works, when compared to the control group.

Experimental Variables

A variable is a characteristic of a subject (in this case, of a person in the study) that can vary over time or among individuals. Sometimes a variable takes the form of a category, such as male or female; often a variable can be measured precisely, such as body height. Ideally, only one variable is different between the control group and the experimental group in a scientific experiment. Otherwise, the researchers will not be able to determine which variable caused any differences seen in the results. For example, imagine that the people in the control group were, on average, much more sexually active than the people in the experimental group. If, at the end of the experiment, the control group had a higher rate of HPV infection, could you confidently determine why? Maybe the experimental subjects were protected by the vaccine, but maybe they were protected by their low level of sexual contact.

To avoid this situation, experimenters make sure that their subject groups are as similar as possible in all variables except for the variable that is being tested in the experiment. This variable, or factor, will be deliberately changed in the experimental group. The one variable that is different between the two groups is called the independent variable. An independent variable is known or hypothesized to cause some outcome. Imagine an educational researcher investigating the effectiveness of a new teaching strategy in a classroom. The experimental group receives the new teaching strategy, while the control group receives the traditional strategy. It is the teaching strategy that is the independent variable in this scenario. In an experiment, the independent variable is the variable that the scientist deliberately changes or imposes on the subjects.

Dependent variables are known or hypothesized consequences; they are the effects that result from changes or differences in an independent variable. In an experiment, the dependent variables are those that the scientist measures before, during, and particularly at the end of the experiment to see if they have changed as expected. The dependent variable must be stated so that it is clear how it will be observed or measured. Rather than comparing “learning” among students (which is a vague and difficult to measure concept), an educational researcher might choose to compare test scores, which are very specific and easy to measure.

In any real-world example, many, many variables MIGHT affect the outcome of an experiment, yet only one or a few independent variables can be tested. Other variables must be kept as similar as possible between the study groups and are called control variables . For our educational research example, if the control group consisted only of people between the ages of 18 and 20 and the experimental group contained people between the ages of 30 and 35, we would not know if it was the teaching strategy or the students’ ages that played a larger role in the results. To avoid this problem, a good study will be set up so that each group contains students with a similar age profile. In a well-designed educational research study, student age will be a controlled variable, along with other possibly important factors like gender, past educational achievement, and pre-existing knowledge of the subject area.

What is the independent variable in this experiment?

  • Sex (all of the subjects will be female)
  • Presence or absence of the HPV vaccine
  • Presence or absence of HPV (the virus)

List three control variables other than age.

What is the dependent variable in this experiment?

  • Sex (male or female)
  • Rates of HPV infection
  • Age (years)

Contribute!

Improve this page Learn More

  • Revision and adaptation. Authored by : Shelli Carter and Lumen Learning. Provided by : Lumen Learning. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Scientific Inquiry. Provided by : Open Learning Initiative. Located at : https://oli.cmu.edu/jcourse/workbook/activity/page?context=434a5c2680020ca6017c03488572e0f8 . Project : Introduction to Biology (Open + Free). License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Footer Logo Lumen Waymaker

valid hypothesis must be testable and falsifiable

From the Editors

Notes from The Conversation newsroom

How we edit science part 1: the scientific method

valid hypothesis must be testable and falsifiable

View all partners

valid hypothesis must be testable and falsifiable

We take science seriously at The Conversation and we work hard to report it accurately. This series of five posts is adapted from an internal presentation on how to understand and edit science by our Australian Science & Technology Editor, Tim Dean. We thought you might also find it useful.

Introduction

If I told you that science was a truth-seeking endeavour that uses a single robust method to prove scientific facts about the world, steadily and inexorably driving towards objective truth, would you believe me?

Many would. But you shouldn’t.

The public perception of science is often at odds with how science actually works. Science is often seen to be a separate domain of knowledge, framed to be superior to other forms of knowledge by virtue of its objectivity, which is sometimes referred to as it having a “ view from nowhere ”.

But science is actually far messier than this - and far more interesting. It is not without its limitations and flaws, but it’s still the most effective tool we have to understand the workings of the natural world around us.

In order to report or edit science effectively - or to consume it as a reader - it’s important to understand what science is, how the scientific method (or methods) work, and also some of the common pitfalls in practising science and interpreting its results.

This guide will give a short overview of what science is and how it works, with a more detailed treatment of both these topics in the final post in the series.

What is science?

Science is special, not because it claims to provide us with access to the truth, but because it admits it can’t provide truth .

Other means of producing knowledge, such as pure reason, intuition or revelation, might be appealing because they give the impression of certainty , but when this knowledge is applied to make predictions about the world around us, reality often finds them wanting.

Rather, science consists of a bunch of methods that enable us to accumulate evidence to test our ideas about how the world is, and why it works the way it does. Science works precisely because it enables us to make predictions that are borne out by experience.

Science is not a body of knowledge. Facts are facts, it’s just that some are known with a higher degree of certainty than others. What we often call “scientific facts” are just facts that are backed by the rigours of the scientific method, but they are not intrinsically different from other facts about the world.

What makes science so powerful is that it’s intensely self-critical. In order for a hypothesis to pass muster and enter a textbook, it must survive a battery of tests designed specifically to show that it could be wrong. If it passes, it has cleared a high bar.

The scientific method(s)

Despite what some philosophers have stated , there is a method for conducting science. In fact, there are many. And not all revolve around performing experiments.

One method involves simple observation, description and classification, such as in taxonomy. (Some physicists look down on this – and every other – kind of science, but they’re only greasing a slippery slope .)

valid hypothesis must be testable and falsifiable

However, when most of us think of The Scientific Method, we’re thinking of a particular kind of experimental method for testing hypotheses.

This begins with observing phenomena in the world around us, and then moves on to positing hypotheses for why those phenomena happen the way they do. A hypothesis is just an explanation, usually in the form of a causal mechanism: X causes Y. An example would be: gravitation causes the ball to fall back to the ground.

A scientific theory is just a collection of well-tested hypotheses that hang together to explain a great deal of stuff.

Crucially, a scientific hypothesis needs to be testable and falsifiable .

An untestable hypothesis would be something like “the ball falls to the ground because mischievous invisible unicorns want it to”. If these unicorns are not detectable by any scientific instrument, then the hypothesis that they’re responsible for gravity is not scientific.

An unfalsifiable hypothesis is one where no amount of testing can prove it wrong. An example might be the psychic who claims the experiment to test their powers of ESP failed because the scientific instruments were interfering with their abilities.

(Caveat: there are some hypotheses that are untestable because we choose not to test them. That doesn’t make them unscientific in principle, it’s just that they’ve been denied by an ethics committee or other regulation.)

Experimentation

There are often many hypotheses that could explain any particular phenomenon. Does the rock fall to the ground because an invisible force pulls on the rock? Or is it because the mass of the Earth warps spacetime , and the rock follows the lowest-energy path, thus colliding with the ground? Or is it that all substances have a natural tendency to fall towards the centre of the Universe , which happens to be at the centre of the Earth?

The trick is figuring out which hypothesis is the right one. That’s where experimentation comes in.

A scientist will take their hypothesis and use that to make a prediction, and they will construct an experiment to see if that prediction holds. But any observation that confirms one hypothesis will likely confirm several others as well. If I lift and drop a rock, it supports all three of the hypotheses on gravity above.

Furthermore, you can keep accumulating evidence to confirm a hypothesis, and it will never prove it to be absolutely true. This is because you can’t rule out the possibility of another similar hypothesis being correct, or of making some new observation that shows your hypothesis to be false. But if one day you drop a rock and it shoots off into space, that ought to cast doubt on all of the above hypotheses.

So while you can never prove a hypothesis true simply by making more confirmatory observations, you only one need one solid contrary observation to prove a hypothesis false. This notion is at the core of the hypothetico-deductive model of science.

This is why a great deal of science is focused on testing hypotheses, pushing them to their limits and attempting to break them through experimentation. If the hypothesis survives repeated testing, our confidence in it grows.

So even crazy-sounding theories like general relativity and quantum mechanics can become well accepted, because both enable very precise predictions, and these have been exhaustively tested and come through unscathed.

The next post will cover hypothesis testing in greater detail.

  • Scientific method
  • Philosophy of science
  • How we edit science

valid hypothesis must be testable and falsifiable

Project Offier - Diversity & Inclusion

valid hypothesis must be testable and falsifiable

Senior Lecturer - Earth System Science

valid hypothesis must be testable and falsifiable

Sydney Horizon Educators (Identified)

valid hypothesis must be testable and falsifiable

Deputy Social Media Producer

valid hypothesis must be testable and falsifiable

Associate Professor, Occupational Therapy

Logo for Open Oregon Educational Resources

1 Hypothesis Testing

Biology is a science, but what exactly is science? What does the study of biology share with other scientific disciplines?  Science  (from the Latin scientia, meaning “knowledge”) can be defined as knowledge about the natural world.

Biologists study the living world by posing questions about it and seeking science-based responses. This approach is common to other sciences as well and is often referred to as the scientific method . The scientific process was used even in ancient times, but it was first documented by England’s Sir Francis Bacon (1561–1626) ( Figure 1 ), who set up inductive methods for scientific inquiry. The scientific method is not exclusively used by biologists but can be applied to almost anything as a logical problem solving method.

a painting of a guy wearing historical clothing

The scientific process typically starts with an observation  (often a problem to be solved) that leads to a question.  Science is very good at answering questions having to do with observations about the natural world, but is very bad at answering questions having to do with purely moral questions, aesthetic questions, personal opinions, or what can be generally categorized as spiritual questions. Science has cannot investigate these areas because they are outside the realm of material phenomena, the phenomena of matter and energy, and cannot be observed and measured.

Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. Imagine that one morning when you wake up and flip a the switch to turn on your bedside lamp, the light won’t turn on. That is an observation that also describes a problem: the lights won’t turn on. Of course, you would next ask the question: “Why won’t the light turn on?”

A hypothesis  is a suggested explanation that can be tested. A hypothesis is NOT the question you are trying to answer – it is what you think the answer to the question will be and why .  Several hypotheses may be proposed as answers to one question. For example, one hypothesis about the question “Why won’t the light turn on?” is “The light won’t turn on because the bulb is burned out.” There are also other possible answers to the question, and therefore other hypotheses may be proposed. A second hypothesis is “The light won’t turn on because the lamp is unplugged” or “The light won’t turn on because the power is out.” A hypothesis should be based on credible background information. A hypothesis is NOT just a guess (not even an educated one), although it can be based on your prior experience (such as in the example where the light won’t turn on). In general, hypotheses in biology should be based on a credible, referenced source of information.

A hypothesis must be testable to ensure that it is valid. For example, a hypothesis that depends on what a dog thinks is not testable, because we can’t tell what a dog thinks. It should also be  falsifiable,  meaning that it can be disproven by experimental results. An example of an unfalsifiable hypothesis is “Red is a better color than blue.” There is no experiment that might show this statement to be false. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. This is important: a hypothesis can be disproven, or eliminated, but it can never be proven.  If an experiment fails to disprove a hypothesis, then that explanation (the hypothesis) is supported as the answer to the question. However, that doesn’t mean that later on, we won’t find a better explanation or design a better experiment that will disprove the first hypothesis and lead to a better one.

A variable is any part of the experiment that can vary or change during the experiment. Typically, an experiment only tests one variable and all the other conditions in the experiment are held constant.

  • The variable that is being changed or tested is known as the  independent variable .
  • The  dependent variable  is the thing (or things) that you are measuring as the outcome of your experiment.
  • A  constant  is a condition that is the same between all of the tested groups.
  • A confounding variable  is a condition that is not held constant that could affect the experimental results.

Let’s start with the first hypothesis given above for the light bulb experiment: the bulb is burned out. When testing this hypothesis, the independent variable (the thing that you are testing) would be changing the light bulb and the dependent variable is whether or not the light turns on.

  • HINT: You should be able to put your identified independent and dependent variables into the phrase “dependent depends on independent”. If you say “whether or not the light turns on depends on changing the light bulb” this makes sense and describes this experiment. In contrast, if you say “changing the light bulb depends on whether or not the light turns on” it doesn’t make sense.

It would be important to hold all the other aspects of the environment constant, for example not messing with the lamp cord or trying to turn the lamp on using a different light switch. If the entire house had lost power during the experiment because a car hit the power pole, that would be a confounding variable.

You may have learned that a hypothesis can be phrased as an “If..then…” statement. Simple hypotheses can be phrased that way (but they must always also include a “because”), but more complicated hypotheses may require several sentences. It is also very easy to get confused by trying to put your hypothesis into this format. Don’t worry about phrasing hypotheses as “if…then” statements – that is almost never done in experiments outside a classroom.

The results  of your experiment are the data that you collect as the outcome.  In the light experiment, your results are either that the light turns on or the light doesn’t turn on. Based on your results, you can make a conclusion. Your conclusion  uses the results to answer your original question.

flow chart illustrating a simplified version of the scientific process.

We can put the experiment with the light that won’t go in into the figure above:

  • Observation: the light won’t turn on.
  • Question: why won’t the light turn on?
  • Hypothesis: the lightbulb is burned out.
  • Prediction: if I change the lightbulb (independent variable), then the light will turn on (dependent variable).
  • Experiment: change the lightbulb while leaving all other variables the same.
  • Analyze the results: the light didn’t turn on.
  • Conclusion: The lightbulb isn’t burned out. The results do not support the hypothesis, time to develop a new one!
  • Hypothesis 2: the lamp is unplugged.
  • Prediction 2: if I plug in the lamp, then the light will turn on.
  • Experiment: plug in the lamp
  • Analyze the results: the light turned on!
  • Conclusion: The light wouldn’t turn on because the lamp was unplugged. The results support the hypothesis, it’s time to move on to the next experiment!

In practice, the scientific method is not as rigid and structured as it might at first appear. Sometimes an experiment leads to conclusions that favor a change in approach; often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion; instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests.

A more complex flow chart illustrating how the scientific method usually happens.

Control Groups

Another important aspect of designing an experiment is the presence of one or more control groups. A control group  allows you to make a comparison that is important for interpreting your results. Control groups are samples that help you to determine that differences between your experimental groups are due to your treatment rather than a different variable – they eliminate alternate explanations for your results (including experimental error and experimenter bias). They increase reliability, often through the comparison of control measurements and measurements of the experimental groups. Often, the control group is a sample that is not treated with the independent variable, but is otherwise treated the same way as your experimental sample. This type of control group is treated the same way as the experimental group except it does not get treated with the independent variable. Therefore, if the results of the experimental group differ from the control group, the difference must be due to the change of the independent, rather than some outside factor. It is common in complex experiments (such as those published in scientific journals) to have more control groups than experimental groups.

Question: Which fertilizer will produce the greatest number of tomatoes when applied to the plants?

Hypothesis : If I apply different brands of fertilizer to tomato plants, the most tomatoes will be produced from plants watered with Brand A because Brand A advertises that it produces twice as many tomatoes as other leading brands.

Experiment:  Purchase 10 tomato plants of the same type from the same nursery. Pick plants that are similar in size and age. Divide the plants into two groups of 5. Apply Brand A to the first group and Brand B to the second group according to the instructions on the packages. After 10 weeks, count the number of tomatoes on each plant.

Independent Variable:  Brand of fertilizer.

Dependent Variable : Number of tomatoes.

  • The number of tomatoes produced depends on the brand of fertilizer applied to the plants.

Constants:  amount of water, type of soil, size of pot, amount of light, type of tomato plant, length of time plants were grown.

Confounding variables : any of the above that are not held constant, plant health, diseases present in the soil or plant before it was purchased.

Results:  Tomatoes fertilized with Brand A  produced an average of 20 tomatoes per plant, while tomatoes fertilized with Brand B produced an average of 10 tomatoes per plant.

You’d want to use Brand A next time you grow tomatoes, right? But what if I told you that plants grown without fertilizer produced an average of 30 tomatoes per plant! Now what will you use on your tomatoes?

Bar graph: number of tomatoes produced from plants watered with different fertilizers. Brand A = 20. Brand B = 10. Control = 30.

Results including control group : Tomatoes which received no fertilizer produced more tomatoes than either brand of fertilizer.

Conclusion:  Although Brand A fertilizer produced more tomatoes than Brand B, neither fertilizer should be used because plants grown without fertilizer produced the most tomatoes!

More examples of control groups:

  • You observe growth . Does this mean that your spinach is really contaminated? Consider an alternate explanation for growth: the swab, the water, or the plate is contaminated with bacteria. You could use a control group to determine which explanation is true. If you wet one of the swabs and wiped on a nutrient plate, do bacteria grow?
  • You don’t observe growth.  Does this mean that your spinach is really safe? Consider an alternate explanation for no growth: Salmonella isn’t able to grow on the type of nutrient you used in your plates. You could use a control group to determine which explanation is true. If you wipe a known sample of Salmonella bacteria on the plate, do bacteria grow?
  • You see a reduction in disease symptoms: you might expect a reduction in disease symptoms purely because the person knows they are taking a drug so they believe should be getting better. If the group treated with the real drug does not show more a reduction in disease symptoms than the placebo group, the drug doesn’t really work. The placebo group sets a baseline against which the experimental group (treated with the drug) can be compared.
  • You don’t see a reduction in disease symptoms: your drug doesn’t work. You don’t need an additional control group for comparison.
  • You would want a “placebo feeder”. This would be the same type of feeder, but with no food in it. Birds might visit a feeder just because they are interested in it; an empty feeder would give a baseline level for bird visits.
  • You would want a control group where you knew the enzyme would function. This would be a tube where you did not change the pH. You need this control group so you know your enzyme is working: if you didn’t see a reaction in any of the tubes with the pH adjusted, you wouldn’t know if it was because the enzyme wasn’t working at all or because the enzyme just didn’t work at any of your tested pH values.
  • You would also want a control group where you knew the enzyme would not function (no enzyme added). You need the negative control group so you can ensure that there is no reaction taking place in the absence of enzyme: if the reaction proceeds without the enzyme, your results are meaningless.

Text adapted from: OpenStax , Biology. OpenStax CNX. May 27, 2016  http://cnx.org/contents/[email protected]:RD6ERYiU@5/The-Process-of-Science .

MHCC Biology 112: Biology for Health Professions Copyright © 2019 by Lisa Bartee is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.2: Science- Reproducible, Testable, Tentative, Predictive, and Explanatory

  • Last updated
  • Save as PDF
  • Page ID 152134

Learning Objectives

  • Describe the differences between hypothesis and theory as scientific terms.
  • Describe the difference between a theory and scientific law.
  • Identify the components of the scientific method.

Although many have taken science classes throughout their course of studies, incorrect or misleading ideas about some of the most important and basic principles in science are still commonplace. Most students have heard of hypotheses , theories , and laws , but what do these terms really mean? Before you read this section, consider what you have learned about these terms previously, and what they mean to you. When reading, notice if any of the text contradicts what you previously thought. What do you read that supports what you thought?

What is a Fact?

A fact is a basic statement established by experiment or observation. All facts are true under the specific conditions of the observation.

What is a Hypothesis?

One of the most common terms used in science classes is a " hypothesis ". The word can have many different definitions, dependent on the context in which it is being used:

  • An educated guess: a scientific hypothesis provides a suggested solution based on evidence.
  • Prediction: if you have ever carried out a science experiment, you probably made this type of hypothesis, in which you predicted the outcome of your experiment.
  • Tentative or proposed explanation: hypotheses can be suggestions about why something is observed. In order for a hypothesis to be scientific, a scientist must be able to test the explanation to see if it works, and if it is able to correctly predict what will happen in a situation. For example, "if my hypothesis is correct, I should see _____ result when I perform _____ test."
A hypothesis is tentative; it can be easily changed.

What is a Theory?

The United States National Academy of Sciences describes a theory as:

"Some scientific explanations are so well established that no new evidence is likely to alter them. The explanation becomes a scientific theory. In everyday language a theory means a hunch or speculation. Not so in science. In science, the word theory refers to a comprehensive explanation of an important feature of nature supported by facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena."

"A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experimentation. Such fact-supported theories are not "guesses," but reliable accounts of the real world. The theory of biological evolution is more than "just a theory." It is as factual an explanation of the universe as the atomic theory of matter (stating that everything is made of atoms) or the germ theory of disease (which states that many diseases are caused by germs). Our understanding of gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact."

Note some key features of theories that are important to understand from this description:

  • Theories are explanations of natural phenomenon. They aren't predictions (although we may use theories to make predictions). They are explanations of why something is observed.
  • Theories aren't likely to change. They have a lot of support and are able to explain many observations satisfactorily. Theories can, indeed, be facts. Theories can change in some instances, but it is a long and difficult process. In order for a theory to change, there must be many observations or evidence that the theory cannot explain.
  • Theories are not guesses. The phrase "just a theory" has no room in science. To be a scientific theory carries a lot of weight—it is not just one person's idea about something
Theories aren't likely to change.

What is a Law?

Scientific laws are similar to scientific theories in that they are principles that can be used to predict the behavior of the natural world. Both scientific laws and scientific theories are typically well-supported by observations and/or experimental evidence. Usually, scientific laws refer to rules for how nature will behave under certain conditions, frequently written as an equation. Scientific theories are overarching explanations of how nature works, and why it exhibits certain characteristics. As a comparison, theories explain why we observe what we do, and laws describe what happens.

For example, around the year 1800, Jacques Charles and other scientists were working with gases to, among other reasons, improve the design of the hot air balloon. These scientists found, after numerous tests, that certain patterns existed in their observations of gas behavior. If the temperature of the gas increased, the volume of the gas increased. This is known as a natural law. A law is a relationship that exists between variables in a group of data. Laws describe the patterns we see in large amounts of data, but do not describe why the patterns exist.

Laws vs Theories

A common misconception is that scientific theories are rudimentary ideas that will eventually graduate into scientific laws when enough data and evidence has been accumulated. A theory does not change into a scientific law with the accumulation of new or better evidence. Remember, theories are explanations; laws are patterns seen in large amounts of data, frequently written as an equation. A theory will always remain a theory, a law will always remain a law.

Video \(\PageIndex{1}\) What is the difference between scientific law and theory?

The Scientific Method

Scientists search for answers to questions and solutions to problems by using a procedure called the scientific method . This procedure consists of making observations, formulating hypotheses, and designing experiments, which in turn lead to additional observations, hypotheses, and experiments in repeated cycles (Figure \(\PageIndex{1}\)).

1.4.jpg

  • Step 1: Make observations.

Observations can be qualitative or quantitative. Qualitative observations describe properties or occurrences in ways that do not rely on numbers. Examples of qualitative observations include the following: "the outside air temperature is cooler during the winter season," "table salt is a crystalline solid," "sulfur crystals are yellow," and "dissolving a penny in dilute nitric acid forms a blue solution and a brown gas." Quantitative observations are measurements, which by definition consist of both a number and a unit. Examples of quantitative observations include the following: "the melting point of crystalline sulfur is 115.21° Celsius," and "35.9 grams of table salt—the chemical name of which is sodium chloride—dissolve in 100 grams of water at 20° Celsius." For the question of the dinosaurs’ extinction, the initial observation was quantitative: iridium concentrations in sediments dating to 66 million years ago were 20–160 times higher than normal.

  • Step 2: Formulate a hypothesis.

After deciding to learn more about an observation or a set of observations, scientists generally begin an investigation by forming a hypothesis, a tentative explanation for the observation(s). The hypothesis may not be correct, but it puts the scientist’s understanding of the system being studied into a form that can be tested. For example, the observation that we experience alternating periods of light and darkness which correspond to observed movements of the sun, moon, clouds, and shadows, is consistent with either of two hypotheses:

  • Earth rotates on its axis every 24 hours, alternately exposing one side to the sun.
  • The sun revolves around Earth every 24 hours.

Suitable experiments can be designed to choose between these two alternatives. In the case of disappearance of the dinosaurs, the hypothesis was that the impact of a large extraterrestrial object caused their extinction. Unfortunately (or perhaps fortunately), this hypothesis does not lend itself to direct testing by any obvious experiment, but scientists can collect additional data that either supports or refutes it.

Step 3: Design and perform experiments.

After a hypothesis has been formed, scientists conduct experiments to test its validity. Experiments are systematic observations or measurements, preferably made under controlled conditions—that is, under conditions in which a single variable changes.

  • Step 4: Accept or modify the hypothesis.

A properly designed and executed experiment enables a scientist to determine whether the original hypothesis is valid. In the case of validity, the scientist can proceed to step 5. In other cases, experiments may demonstrate that the hypothesis is incorrect or that it must be modified, thus requiring further experimentation.

  • Step 5: Development of a law and/or theory.

More experimental data are then collected and analyzed, at which point a scientist may begin to think that the results are sufficiently reproducible (i.e., dependable) to merit being summarized in a law—a verbal or mathematical description of a phenomenon that allows for general predictions. A law simply states what happens; it does not address the question of why.

One example of a law, the law of definite proportions (discovered by the French scientist Joseph Proust [1754–1826]), states that a chemical substance always contains the same proportions of elements by mass. Thus, sodium chloride (table salt) always contains the same proportion by mass of sodium to chlorine—in this case, 39.34% sodium and 60.66% chlorine by mass. Sucrose (table sugar) is always 42.11% carbon, 6.48% hydrogen, and 51.41% oxygen by mass.

Whereas a law states only what happens, a theory attempts to explain why nature behaves as it does. Laws are unlikely to change greatly over time, unless a major experimental error is discovered. A theory, in contrast, is incomplete and imperfect; it evolves with time to explain new facts as they are discovered.

Because scientists can enter the cycle shown in Figure \(\PageIndex{1}\) at any point, the actual application of the scientific method to different topics can take many different forms. For example, a scientist may start with a hypothesis formed by reading about work done by others in the field, rather than by making direct observations.

Example \(\PageIndex{1}\)

Classify each statement as a law, theory, experiment, hypothesis, or observation.

  • Ice always floats on liquid water.
  • Birds evolved from dinosaurs.
  • Hot air is less dense than cold air, probably because the components of hot air are moving more rapidly.
  • When 10 g of ice was added to 100 mL of water at 25°C, the temperature of the water decreased to 15.5°C after the ice melted.
  • The ingredients of Ivory soap were analyzed to see whether it really is 99.44% pure, as advertised.
  • This is a general statement of a relationship between the properties of liquid and solid water, so it is a law.
  • This is a possible explanation for the origin of birds, so it is a hypothesis.
  • This is a statement that tries to explain the relationship between the temperature and the density of air based on fundamental principles, so it is a theory.
  • The temperature is measured before and after a change is made in a system, so these are observations.
  • This is an analysis designed to test a hypothesis (in this case, the manufacturer’s claim of purity), so it is an experiment.

Exercise \(\PageIndex{1}\)

Classify each statement as a law, theory, experiment, hypothesis, qualitative observation, or quantitative observation.

  • Measured amounts of acid were added to a Rolaids tablet to see whether it really “consumes 47 times its weight in excess stomach acid.”
  • Heat always flows from hot objects to cooler ones, not in the opposite direction.
  • The universe was formed by a massive explosion that propelled matter into a vacuum.
  • Michael Jordan is the greatest pure shooter ever to play professional basketball.
  • Limestone is relatively insoluble in water, but dissolves readily in dilute acid with the evolution of a gas.
  • A hypothesis is a tentative explanation that can be tested by further investigation.
  • A theory is a well-supported explanation of observations.
  • A scientific law is a statement that summarizes the relationship between variables.
  • An experiment is a controlled method of testing a hypothesis.
  • Step 3: Test the hypothesis through experimentation.

Contributors and Attributions

Marisa Alviar-Agnew  ( Sacramento City College )

Henry Agnew (UC Davis)

Book cover

Getting to Know the World Scientifically pp 81–99 Cite as

Popper: Proving the Worth of Hypotheses

  • Paul Needham 7  
  • First Online: 21 March 2020

273 Accesses

Part of the book series: Synthese Library ((SYLI,volume 423))

The general idea of falsifiability is outlined as Popper’s answer to his two fundamental questions, How can we account for the extraordinary growth of scientific knowledge? and How is a line of demarcation to be drawn between what does and doesn’t count as science? How Popper envisages circumventing Hume’s problem of induction is described in terms of his initial outline of the idea of falsifiability and later discussed in terms of his more developed notions of the degree of falsifiability and the degree of corroboration. His emphasis on methodological issues in epistemology and the problems raised by the questions of whether ad hoc hypotheses can be assessed as such in advance are discussed. Finally, the motivation of his notion of verisimilitude is discussed in the light of the problem that false theories cannot stand in his simple qualitative relation of verisimilitude.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

For a discussion of this claim, see Fernández Moreno ( 2001 ).

Tichy’s proof runs as follows. Suppose B is false. (i) Assume A T  ⊂  B T . Then for some true sentence τ , τ  ∈  B T and τ ∉ A T . To say that B is false means that there is a false sentence f  ∈  B F . Since f is false, so is the conjunction f  ∧  τ , in which case f  ∧  τ  ∈  B F . But f  ∧  τ ∉ A T ; for otherwise τ  ∈  A T , contradicting what was said about τ . Hence \(B_{F} \nsubseteq A_{F}\) and A does not have less verisimilitude than B . (ii) Assume B F  ⊂  A F . Then for some false sentence φ , φ  ∈  A F and φ ∉ B T . Again, since B is false there is a sentence f  ∈  Cn ( B ) which is false. Since f is false, the disjunction \(\sim \!f \vee \varphi \) is true. Then \(\sim \!f \vee \varphi \in A_{T}\) . But on the other hand, \(\sim \!f \vee \varphi \notin B_{T}\) ; for otherwise φ  ∈  B T , since f  ∈  Cn ( B ), in contradiction with the assumption. Hence \(A_{T} \nsubseteq B_{T}\) and again A does not have less verisimilitude than B . For both alternatives in Popper’s definition, then, a false theory cannot have more verisimilitude than another theory.

Ayer, A. J. (1946). Language, truth and logic (1st ed. 1936; 2nd ed.). London: Victor Gollancz.

Google Scholar  

Bohm, D. (1996). The special theory of relativity . London: Routledge.

Brink, C. (1989). Verisimilitude: Views and reviews. History and Philosophy of Logic, 10 , 181–201.

Article   Google Scholar  

Dancoff, S. (1952). Does the neutrino really exist? Bulletin of the Atomic Scientists, 8 , 139–141.

Drake, S. (1978). Galileo at work: His scientific biography . Chicago: University of Chicago Press.

Drake, S., & Kowal, C. T. (1980). Galileo’s sighting of Neptune. Scientific American, 243 , 52–59.

Fernández Moreno, L. (2001). Tarskian truth and the correspondence theory. Synthese, 126 (1–2), 123–147.

Frické, M. (1976). The rejection of Avogadro’s hypotheses. In C. Howson (Ed.), Method and appraisal in the physical sciences: The critical background to modern science 1800–1905 (pp. 277–307). Cambridge: Cambridge University Press.

Chapter   Google Scholar  

Griffiths, D. (2004). Introduction to elementary particles . New York: Wiley.

Hempel, C. G. (1965). Science and human values. In Aspects of scientific explanation (pp. 81–96). Toronto: Free Press, Collier-Macmillan.

Hunt, B. J. (1991). The Maxwellians . New York: Cornell University Press.

Lakatos, I. (1978). The methodology of scientific research programmes (Philosophical papers, Vol. 1). Cambridge: Cambridge University Press.

Book   Google Scholar  

Miller, D. W. (1974). Popper’s qualitative theory of verisimilitude. British Journal for the Philosophy of Science, 25 , 166–177.

Nash, L. K. (1957). The atomic molecular theory. In J. B. Conant & L. K. Nash (Eds.), Harvard case histories in experimental science (pp. 217–321). Cambridge: Harvard University Press.

Needham, P. (2018). Scientific realism and chemistry. In J. Saatsi (Ed.), The Routledge handbook of scientific realism (pp. 345–356). London: Routledge.

Newton, I. (1687 [1999]). The principia: Mathematical principles of natural philosophy (trans: Bernard Cohen, I., Whitman, A.). Berkely: University of California Press.

Popper, K. R. (1968). The logic of scientific discovery , trans. of Logik der Forschung , 1934, with additional appendices. London: Hutchinson.

Popper, K. R. (1969). Conjectures and refutations (3rd ed.). London: Routledge and Kegan Paul.

Popper, K. R. (1983). A pocket Popper , D. Miller (Ed.). Oxford: Fontana.

Quine, W. V. (1974). On Popper’s negative methodology. In P. A. Schilpp (Ed.), The philosophy of Karl Popper . Illinois: Open Court.

Schurz, G., & Weingartner, P. (1987). Verisimilitude defined by relevant consequence-elements. In T. A. F. Kuipers (Ed.), What is closer-to-the-truth? . Amsterdam: Rodopi.

Tichy, P. (1974). On Popper’s definition of verisimilitude. British Journal for the Philosophy of Science, 25 , 155–160.

Wachbroit, R. (1986). Progress: Metaphysical and otherwise. Philosophy of Science, 53 , 354–371.

Worrall, J. (1982). Scientific realism and scientific change. Philosophical Quarterly, 32 (1982), 201–231.

Zahar, E. G. (1983). The Popper-Lakatos controversy in the light of ‘Die Beiden Grundprobleme der Erkenntnistheorie’. British Journal for the Philosophy of Science, 34 , 149–171.

Download references

Author information

Authors and affiliations.

Department of Philosophy, University of Stockholm, Stockholm, Sweden

Paul Needham

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter.

Needham, P. (2020). Popper: Proving the Worth of Hypotheses. In: Getting to Know the World Scientifically. Synthese Library, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-030-40216-7_5

Download citation

DOI : https://doi.org/10.1007/978-3-030-40216-7_5

Published : 21 March 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-40215-0

Online ISBN : 978-3-030-40216-7

eBook Packages : Religion and Philosophy Philosophy and Religion (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

1.5: Scientific Investigations

  • Last updated
  • Save as PDF
  • Page ID 16715

  • Suzanne Wakim & Mandeep Grewal
  • Butte College

What Turned the Water Orange?

If you were walking in the woods and saw this stream, you probably would wonder what made the water turn orange. Is the water orange because of something growing in it? Is it polluted with some kind of chemicals? To answer these questions, you might do a little research. For example, you might ask local people if they know why the water is orange, or you might try to learn more about it online. If you still haven't found answers, you could undertake a scientific investigation. In short, you could "do" science.

Yellow water flowing in the Rio Tinto, Spain

"Doing" Science

Science is more about doing than knowing. Scientists are always trying to learn more and gain a better understanding of the natural world. There are basic methods of gaining knowledge that is common to all of science. At the heart of science is the scientific investigation. A scientific investigation is a plan for asking questions and testing possible answers in order to advance scientific knowledge.

Figure \(\PageIndex{2}\) outlines the steps of the scientific method. Science textbooks often present this simple, linear "recipe" for a scientific investigation. This is an oversimplification of how science is actually done, but it does highlight the basic plan and purpose of any scientific investigation: testing ideas with evidence. We will use this flowchart to help explain the overall format for scientific inquiry.

Science is actually a complex endeavor that cannot be reduced to a single, linear sequence of steps, like the instructions on a package of cake mix. Real science is nonlinear, iterative (repetitive), creative, unpredictable, and exciting. Scientists often undertake the steps of an investigation in a different sequence, or they repeat the same steps many times as they gain more information and develop new ideas. Scientific investigations often raise new questions as old ones are answered. Successive investigations may address the same questions but at ever-deeper levels. Alternatively, an investigation might lead to an unexpected observation that sparks a new question and takes the research in a completely different direction.

Knowing how scientists "do" science can help you in your everyday life, even if you aren't a scientist. Some steps of the scientific process — such as asking questions and evaluating evidence — can be applied to answering real-life questions and solving practical problems.

Scientific method flow chart. described in text of page

Making Observations

A scientific investigation typically begins with observations. An observation is anything that is detected through human senses or with instruments and measuring devices that enhance human senses. We usually think of observations as things we see with our eyes, but we can also make observations with our sense of touch, smell, taste, or hearing. In addition, we can extend and improve our own senses with instruments such as thermometers and microscopes. Other instruments can be used to sense things that human senses cannot detect at all, such as ultraviolet light or radio waves.

Sometimes chance observations lead to important scientific discoveries. One such observation was made by the Scottish biologist Alexander Fleming (Figure \(\PageIndex{3}\)) in the 1920s. Fleming's name may sound familiar to you because he is famous for the discovery in question. Fleming had been growing a certain type of bacteria on glass plates in his lab when he noticed that one of the plates had been contaminated with mold. On closer examination, Fleming observed that the area around the mold was free of bacteria.

Alexander Fleming looking at a Petri Dish with growth on it

Asking Questions

Observations often lead to interesting questions. This is especially true if the observer is thinking like a scientist. Having scientific training and knowledge is also useful. Relevant background knowledge and logical thinking help make sense of observations so the observer can form particularly salient questions. Fleming, for example, wondered whether the mold — or some substance it produced — had killed bacteria on the plate. Fortunately for us, Fleming didn't just throw out the mold-contaminated plate. Instead, he investigated his question and in so doing, discovered the antibiotic penicillin.

Hypothesis Formation

To find the answer to a question, the next step in a scientific investigation typically is to form a hypothesis. A hypothesis is a possible answer to a scientific question. But it isn’t just any answer. A hypothesis must be based on scientific knowledge. In other words, it shouldn't be at odds with what is already known about the natural world. A hypothesis also must be logical, and it is beneficial if the hypothesis is relatively simple. In addition, to be useful in science, a hypothesis must be testable and falsifiable. In other words, it must be possible to subject the hypothesis to a test that generates evidence for or against it, and it must be possible to make observations that would disprove the hypothesis if it really is false.

A hypothesis is often expressed in the form of prediction: If the hypothesis is true, then B will happen to the dependent variable . Fleming's hypothesis might have been: "If a certain type of mold is introduced to a particular kind of bacteria growing on a plate, the bacteria will die." Is this a good and useful hypothesis? The hypothesis is logical and based directly on observations. The hypothesis is also simple, involving just one type each of mold and bacteria growing on a glass plate. This makes it easy to test. In addition, the hypothesis is falsifiable. If bacteria were to grow in the presence of the mold, it would disprove the hypothesis if it really is false.

Hypothesis Testing

Hypothesis testing is at the heart of a scientific investigation. How would Fleming test his hypothesis? He would gather relevant data as evidence. Evidence is any type of data that may be used to test a hypothesis. Data (singular, datum) are essentially just observations. The observations may be measurements in an experiment or just something the researcher notices. Testing a hypothesis then involves using the data to answer two basic questions:

  • If my hypothesis is true, what would I expect to observe?
  • Does what I actually observe match what predicted?

A hypothesis is supported if the actual observations (data) match the expected observations. A hypothesis is refuted if the actual observations differ from the expected observations.

Testing Fleming's Hypothesis

To test his hypothesis that the mold kills bacteria, Fleming grew colonies of bacteria on several glass plates and introduced mold to just some of the plates. He subjected all of the plates to the same conditions except for the introduction of mold. Any differences in the growth of bacteria on the two groups of plates could then be reasonably attributed to the presence/absence of mold. Fleming's data might have included actual measurements of bacterial colony size, like the data shown in the data table below, or they might have been just an indication of the presence or absence of bacteria growing near the mold. Data like the former, which can be expressed numerically, are called quantitative data. Data like the latter, which can only be expressed in words, such as present or absent, are called qualitative data.

Analyzing and Interpreting Data

The data scientists gather in their investigations are raw data. These are the actual measurements or other observations that are made in an investigation, like the measurements of bacterial growth shown in the data table above. Raw data usually must be analyzed and interpreted before they become evidence to test a hypothesis. To make sense of raw data and decide whether they support a hypothesis, scientists generally use statistics.

There are two basic types of statistics: descriptive statistics and inferential statistics. Both types are important in scientific investigations.

  • Descriptive statistics describe and summarize the data. They include values such as the mean, or average, value in the data. Another basic descriptive statistic is the standard deviation, which gives an idea of the spread of data values around the mean value. Descriptive statistics make it easier to use and discuss the data and also to spot trends or patterns in the data.
  • Inferential statistics help interpret data to test hypotheses. They determine how likely it is that the actual results obtained in an investigation occurred just by chance rather than for the reason posited by the hypothesis. For example, if inferential statistics show that the results of an investigation would happen by chance only 5 percent of the time, then the hypothesis has a 95 percent chance of being correctly supported by the results. An example of a statistical hypothesis test is a t-test. It can be used to compare the mean value of the actual data with the expected value predicted by the hypothesis. Alternatively, a t-test can be used to compare the mean value of one group of data with the mean value of another group to determine whether the mean values are significantly different or just different by chance.

Assume that Fleming obtained the raw data shown in the data table above. We could use a descriptive statistic such as the mean area of bacterial growth to describe the raw data. Based on these data, the mean area of bacterial growth for plates with mold is 56 mm 2 , and the mean area for plates without mold is 69 mm 2 . Is this difference in bacterial growth significant? In other words, does it provide convincing evidence that bacteria are killed by the mold or something produced by the mold? Or could the difference in mean values between the two groups of plates be due to chance alone? What is the likelihood that this outcome could have occurred even if mold or one of its products does not kill bacteria? A t-test could be done to answer this question. The p-value for the t-test analysis of the data above is less than 0.05. This means that one can say with 95% confidence that the means of the above data are statistically different.

Drawing Conclusions

A statistical analysis of Fleming's evidence showed that it did indeed support his hypothesis. Does this mean that the hypothesis is true? No, not necessarily. That's because a hypothesis can never be proven conclusively to be true. Scientists can never examine all of the possible evidence, and someday evidence might be found that disproves the hypothesis. In addition, other hypotheses, as yet unformed, may be supported by the same evidence. For example, in Fleming's investigation, something else introduced onto the plates with the mold might have been responsible for the death of the bacteria. Although a hypothesis cannot be proven true without a shadow of a doubt, the more evidence that supports a hypothesis, the more likely the hypothesis is to be correct. Similarly, the better the match between actual observations and expected observations, the more likely a hypothesis is to be true.

Many times, competing hypotheses are supported by evidence. When that occurs, how do scientists conclude which hypothesis is better? There are several criteria that may be used to judge competing hypotheses. For example, scientists are more likely to accept a hypothesis that:

  • explains a wider variety of observations.
  • explains observations that were previously unexplained.
  • generates more expectations and is thus more testable.
  • is more consistent with well-established theories.
  • is more parsimonious, that is, is a simpler and less convoluted explanation.

Correlation-Causation Fallacy

Many statistical tests used in scientific research calculate correlations between variables. Correlation refers to how closely related two data sets are, which may be a useful starting point for further investigation. However, correlation is also one of the most misused types of evidence, primarily because of the logical fallacy that correlation implies causation. In reality, just because two variables are correlated does not necessarily mean that either variable causes the other.

A simple example can be used to demonstrate the correlation-causation fallacy. Assume a study found that both ice cream sales and burglaries are correlated; that is, rates of both events increase together. If correlation really did imply causation, then you could conclude that ice cream sales cause burglaries or vice versa. It is more likely, however, that a third variable, such as the weather, influences rates of both ice cream sales and burglaries. Both might increase when the weather is sunny.

An actual example of the correlation-causation fallacy occurred during the latter half of the 20th century. Numerous studies showed that women taking hormone replacement therapy (HRT) to treat menopausal symptoms also had a lower-than-average incidence of coronary heart disease (CHD). This correlation was misinterpreted as evidence that HRT protects women against CHD. Subsequent studies that controlled other factors related to CHD disproved this presumed causal connection. The studies found that women taking HRT were more likely to come from higher socio-economic groups, with better-than-average diets and exercise regimens. Rather than HRT causing lower CHD incidence, these studies concluded that HRT and lower CHD were both effects of higher socioeconomic status and related lifestyle factors.

Communicating Results

The last step in a scientific investigation is communicating the results to other scientists. This is a very important step because it allows other scientists to try to repeat the investigation and see if they can produce the same results. If other researchers get the same results, it adds support to the hypothesis. If they get different results, it may disprove the hypothesis. When scientists communicate their results, they should describe their methods and point out any possible problems with the investigation. This allows other researchers to identify any flaws in the method or think of ways to avoid possible problems in future studies.

Repeating a scientific investigation and reproducing the same results is called replication . It is a cornerstone of scientific research. Replication is not required for every investigation in science, but it is highly recommended for those that produce surprising or particularly consequential results. In some scientific fields, scientists routinely try to replicate their own investigations to ensure the reproducibility of the results before they communicate them.

Scientists may communicate their results in a variety of ways. The most rigorous way is to write up the investigation and results in the form of an article and submit it to a peer-reviewed scientific journal for publication. The editor of the journal provides copies of the article to several other scientists who work in the same field. These are the peers in the peer-review process. The reviewers study the article and tell the editor whether they think it should be published, based on the validity of the methods and significance of the study. The article may be rejected outright, or it may be accepted, either as is or with revisions. Only articles that meet high scientific standards are ultimately published.

  • Outline the steps of a typical scientific investigation.
  • What is a scientific hypothesis? What characteristics must a hypothesis have to be useful in science?
  • Explain how you could do a scientific investigation to answer this question: Which of the following surfaces in my home has the most bacteria: the house phone, TV remote, bathroom sink faucet, or outside door handle? Form a hypothesis and state what results would support it and what results would refute it.
  • Look at the areas of bacterial growth for the plates in just one group – either with mold (plates 1-5) or without mold (plates 6-10). Is there a variation within the group? What do you think could be possible sources of variation within the group?
  • Compare the area of bacterial growth for plate 1 vs. plate 7. Does this appear to be more of a difference between the mold group vs. the no mold group than if you compared plate 5 vs. plate 6? Using these differences among the individual data points, explain why it is important to find the mean of each group when analyzing the data.
  • Why do you think it would be important for other researchers to try to replicate the findings in this study?
  • Is the energy level of the mice treated with the drug a qualitative or quantitative observation?
  • At the end of the study, the scientist measures the size of the tumors. Is this qualitative or quantitative data?
  • Would the size of each tumor be considered raw data or descriptive statistics?
  • The scientist determines the average decrease in tumor size for the drug-treated group. Is this raw data, descriptive statistics, or inferential statistics?
  • The average decrease in tumor size in the drug-treated group is larger than the average decrease in the untreated group. Can the scientist assume that the drug shrinks tumors? If not, what do they need to do next?
  • Do you think results published in a peer-reviewed scientific journal are more or less likely to be scientifically valid than those in a self-published article or book? Why or why not
  • Explain why real science is usually “nonlinear”?

Explore More

Watch this TED talk for a lively discussion of why the standard scientific method is an inadequate model of how science is really done.

Attributions

  • Rio Tinto River by Carol Stoker, NASA, public domain via Wikimedia Commons
  • Scientific Method by OpenStax, licensed CC BY 4.0
  • Alexander Flemming by Ministry of Information Photo Division Photographer, public domain via Wikimedia Commons
  • Text adapted from Human Biology by CK-12 licensed CC BY-NC 3.0

IMAGES

  1. PPT

    valid hypothesis must be testable and falsifiable

  2. Everything to Know About Principle of Falsifiability

    valid hypothesis must be testable and falsifiable

  3. PPT

    valid hypothesis must be testable and falsifiable

  4. PPT

    valid hypothesis must be testable and falsifiable

  5. 15 Hypothesis Examples (2024)

    valid hypothesis must be testable and falsifiable

  6. PPT

    valid hypothesis must be testable and falsifiable

VIDEO

  1. Popper, Lakatos, Kuhn, and The Copernican Principle

  2. FALSIFIABILITY

  3. Testing of hypothesis, types of error, steps for testing of hypothesis

  4. Null and Alternative Hypotheses in Statistics (7-8)

  5. Hypothesis Testing

  6. 3.1-04 Evaluating the Validity of a Hypothesis from the Work-Kinetic Energy Theorem

COMMENTS

  1. The scientific method (article)

    A hypothesis must be testable and falsifiable in order to be valid. For example, "Botticelli's Birth of Venus is beautiful" is not a good hypothesis, because there is no experiment that could test this statement and show it to be false. ... Like the article says, a hypothesis must be testable, meaning we can do experiments with it to see if ...

  2. Scientific hypothesis

    The notion of the scientific hypothesis as both falsifiable and testable was advanced in the mid-20th century by Austrian-born British philosopher Karl Popper. The formulation and testing of a hypothesis is part of the scientific method , the approach scientists use when attempting to understand and test ideas about natural phenomena.

  3. 4.14: Experiments and Hypotheses

    A hypothesis is a suggested explanation that is both testable and falsifiable. You must be able to test your hypothesis, and it must be possible to prove your hypothesis true or false. ... If the answer to either of these questions is "no," the statement is not a valid scientific hypothesis. Practice Questions.

  4. Biology and the scientific method review

    A hypothesis must be testable and falsifiable in order to be valid. For example, "The universe is beautiful" is not a good hypothesis, because there is no experiment that could test this statement and show it to be false.

  5. A hypothesis can't be right unless it can be proven wrong

    Everyone appreciates that a hypothesis must be testable to have any value, but there is a much stronger requirement that a hypothesis must meet. A hypothesis is considered scientific only if there is the possibility to disprove the hypothesis. The proof lies in being able to disprove. A hypothesis or model is called falsifiable if it is ...

  6. What Is a Testable Hypothesis?

    Updated on January 12, 2019. A hypothesis is a tentative answer to a scientific question. A testable hypothesis is a hypothesis that can be proved or disproved as a result of testing, data collection, or experience. Only testable hypotheses can be used to conceive and perform an experiment using the scientific method .

  7. Falsifiability

    Falsifiability, according to the philosopher Karl Popper, defines the inherent testability of any scientific hypothesis. Science and philosophy have always worked together to try to uncover truths about the universe we live in. Indeed, ancient philosophy can be understood as the originator of many of the separate fields of study we have today ...

  8. Experiments and Hypotheses

    A hypothesis is a suggested explanation that is both testable and falsifiable. You must be able to test your hypothesis through observations and research, and it must be possible to prove your hypothesis false. ... If the answer to either of these questions is "no," the statement is not a valid scientific hypothesis. Practice Questions.

  9. How we edit science part 1: the scientific method

    Crucially, a scientific hypothesis needs to be testable and falsifiable. An untestable hypothesis would be something like "the ball falls to the ground because mischievous invisible unicorns ...

  10. Hypothesis Testing

    A hypothesis must be testable to ensure that it is valid. For example, a hypothesis that depends on what a dog thinks is not testable, because we can't tell what a dog thinks. It should also be falsifiable, meaning that it can be disproven by experimental results. An example of an unfalsifiable hypothesis is "Red is a better color than blue."

  11. 1.2: Science- Reproducible, Testable, Tentative, Predictive, and

    A properly designed and executed experiment enables a scientist to determine whether the original hypothesis is valid. In the case of validity, the scientist can proceed to step 5. In other cases, experiments may demonstrate that the hypothesis is incorrect or that it must be modified, thus requiring further experimentation.

  12. Popper: Proving the Worth of Hypotheses

    More specifically, a falsifiable hypothesis must imply a singular statement distinct from every initial condition. A hypothesis is thus falsifiable with respect to some given initial condition. Popper recognises this ( 1968 , pp. 75-6) when he says that the initial conditions are themselves also empirical hypotheses in the sense that they too ...

  13. 1.5: Scientific Investigations

    A hypothesis must be based on scientific knowledge. In other words, it shouldn't be at odds with what is already known about the natural world. A hypothesis also must be logical, and it is beneficial if the hypothesis is relatively simple. In addition, to be useful in science, a hypothesis must be testable and falsifiable.

  14. Does testability equal falsifiability?

    Testability is falsifiability. The difference isn't subtle. "Testable" is a vague catchall for unspecified exposure of a theory to some empirical/pragmatic checks that decide its adoption or rejection. More specific guidelines are spelled out in particular scientific disciplines, and vary widely.

  15. Chapter 1 MB Flashcards

    Chapter 1 MB. Get a hint. A hypothesis must be testable and falsifiable to be scientifically valid. Being testable and falsifiable means that __________. Click the card to flip 👆. some conceivable observation or experiment could reveal whether a given hypothesis is incorrect. Click the card to flip 👆. 1 / 30.

  16. CH 1 BIO Flashcards

    To be scientifically valid, a hypothesis must be Select one: A. controlled. B. reasonable. C. testable and falsifiable. D. part of a theory. C. The role of a control in an experiment is to Select one: A. prove that a hypothesis is correct. B. provide a basis of comparison to the experimental group.

  17. chapter 1 study bio Flashcards

    A hypothesis must be testable and falsifiable to be scientifically valid. Being testable and falsifiable means that _____ involves chemical cycling from light energy from the sun for the production of chemical energy in food to the decomposition and the returning of chemicals to the cycle.

  18. Chapter 1 quiz: scientific processes and themes in biology

    Study with Quizlet and memorize flashcards containing terms like to be scientifically valid, a hypothesis must be a) controlled b) testable and falsifiable c) reasonable d) part of a theory, which of the statements best distinguishes hypotheses from theories in science? a) theories are hypotheses that have been proven b) hypotheses usually are narrow in scope; theories have broad explanatory ...

  19. Question: A hypothesis must be testable and falsifiable to be

    A hypothesis must be testable and falsifiable to be scientifically valid. Being testable and falsifiable means that _____.ANSWERUnselectedthe hypothesis has been proved wrongUnselectedsome conceivable observation or experiment could reveal whether a given hypothesis is incorrectUnselectedonly a controlled experiment can prove whether the ...

  20. Campbell Biology Chapter 1 Worksheet Flashcards

    C) Differences among organisms reflect different nucleotide sequences in their DNA. D) Genes are proteins that produce DNA., 2) To be scientifically valid, a hypothesis must be: A) Reasonable. B) Part of a theory. C) Testable and falsifiable. D) Controlled., 3) The role of a control in an experiment is to: A) Prove that a hypothesis is correct.

  21. bio 1 post quiz 1 Flashcards

    Study with Quizlet and memorize flashcards containing terms like A hypothesis must be testable and falsifiable to be scientifically valid. Being testable and falsifiable means that _____., The energy used by most organisms for metabolism and growth ultimately comes from _____., The genetic material within cells is called _____ and is organized into structures called _____. and more.