Grad Coach

How To Write The Results/Findings Chapter

For quantitative studies (dissertations & theses).

By: Derek Jansen (MBA). Expert Reviewed By: Kerryn Warren (PhD) | July 2021

So, you’ve completed your quantitative data analysis and it’s time to report on your findings. But where do you start? In this post, we’ll walk you through the results chapter (also called the findings or analysis chapter), step by step, so that you can craft this section of your dissertation or thesis with confidence. If you’re looking for information regarding the results chapter for qualitative studies, you can find that here .

The results & analysis section in a dissertation

Overview: Quantitative Results Chapter

  • What exactly the results/findings/analysis chapter is
  • What you need to include in your results chapter
  • How to structure your results chapter
  • A few tips and tricks for writing top-notch chapter

What exactly is the results chapter?

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected. It presents the data using a clear text narrative, supported by tables, graphs and charts. In doing so, it also highlights any potential issues (such as outliers or unusual findings) you’ve come across.

But how’s that different from the discussion chapter?

Well, in the results chapter, you only present your statistical findings. Only the numbers, so to speak – no more, no less. Contrasted to this, in the discussion chapter , you interpret your findings and link them to prior research (i.e. your literature review), as well as your research objectives and research questions . In other words, the results chapter presents and describes the data, while the discussion chapter interprets the data.

Let’s look at an example.

In your results chapter, you may have a plot that shows how respondents to a survey  responded: the numbers of respondents per category, for instance. You may also state whether this supports a hypothesis by using a p-value from a statistical test. But it is only in the discussion chapter where you will say why this is relevant or how it compares with the literature or the broader picture. So, in your results chapter, make sure that you don’t present anything other than the hard facts – this is not the place for subjectivity.

It’s worth mentioning that some universities prefer you to combine the results and discussion chapters. Even so, it is good practice to separate the results and discussion elements within the chapter, as this ensures your findings are fully described. Typically, though, the results and discussion chapters are split up in quantitative studies. If you’re unsure, chat with your research supervisor or chair to find out what their preference is.

The results and discussion chapter are typically split

What should you include in the results chapter?

Following your analysis, it’s likely you’ll have far more data than are necessary to include in your chapter. In all likelihood, you’ll have a mountain of SPSS or R output data, and it’s your job to decide what’s most relevant. You’ll need to cut through the noise and focus on the data that matters.

This doesn’t mean that those analyses were a waste of time – on the contrary, those analyses ensure that you have a good understanding of your dataset and how to interpret it. However, that doesn’t mean your reader or examiner needs to see the 165 histograms you created! Relevance is key.

How do I decide what’s relevant?

At this point, it can be difficult to strike a balance between what is and isn’t important. But the most important thing is to ensure your results reflect and align with the purpose of your study .  So, you need to revisit your research aims, objectives and research questions and use these as a litmus test for relevance. Make sure that you refer back to these constantly when writing up your chapter so that you stay on track.

There must be alignment between your research aims objectives and questions

As a general guide, your results chapter will typically include the following:

  • Some demographic data about your sample
  • Reliability tests (if you used measurement scales)
  • Descriptive statistics
  • Inferential statistics (if your research objectives and questions require these)
  • Hypothesis tests (again, if your research objectives and questions require these)

We’ll discuss each of these points in more detail in the next section.

Importantly, your results chapter needs to lay the foundation for your discussion chapter . This means that, in your results chapter, you need to include all the data that you will use as the basis for your interpretation in the discussion chapter.

For example, if you plan to highlight the strong relationship between Variable X and Variable Y in your discussion chapter, you need to present the respective analysis in your results chapter – perhaps a correlation or regression analysis.

Need a helping hand?

statistical analysis in dissertation

How do I write the results chapter?

There are multiple steps involved in writing up the results chapter for your quantitative research. The exact number of steps applicable to you will vary from study to study and will depend on the nature of the research aims, objectives and research questions . However, we’ll outline the generic steps below.

Step 1 – Revisit your research questions

The first step in writing your results chapter is to revisit your research objectives and research questions . These will be (or at least, should be!) the driving force behind your results and discussion chapters, so you need to review them and then ask yourself which statistical analyses and tests (from your mountain of data) would specifically help you address these . For each research objective and research question, list the specific piece (or pieces) of analysis that address it.

At this stage, it’s also useful to think about the key points that you want to raise in your discussion chapter and note these down so that you have a clear reminder of which data points and analyses you want to highlight in the results chapter. Again, list your points and then list the specific piece of analysis that addresses each point. 

Next, you should draw up a rough outline of how you plan to structure your chapter . Which analyses and statistical tests will you present and in what order? We’ll discuss the “standard structure” in more detail later, but it’s worth mentioning now that it’s always useful to draw up a rough outline before you start writing (this advice applies to any chapter).

Step 2 – Craft an overview introduction

As with all chapters in your dissertation or thesis, you should start your quantitative results chapter by providing a brief overview of what you’ll do in the chapter and why . For example, you’d explain that you will start by presenting demographic data to understand the representativeness of the sample, before moving onto X, Y and Z.

This section shouldn’t be lengthy – a paragraph or two maximum. Also, it’s a good idea to weave the research questions into this section so that there’s a golden thread that runs through the document.

Your chapter must have a golden thread

Step 3 – Present the sample demographic data

The first set of data that you’ll present is an overview of the sample demographics – in other words, the demographics of your respondents.

For example:

  • What age range are they?
  • How is gender distributed?
  • How is ethnicity distributed?
  • What areas do the participants live in?

The purpose of this is to assess how representative the sample is of the broader population. This is important for the sake of the generalisability of the results. If your sample is not representative of the population, you will not be able to generalise your findings. This is not necessarily the end of the world, but it is a limitation you’ll need to acknowledge.

Of course, to make this representativeness assessment, you’ll need to have a clear view of the demographics of the population. So, make sure that you design your survey to capture the correct demographic information that you will compare your sample to.

But what if I’m not interested in generalisability?

Well, even if your purpose is not necessarily to extrapolate your findings to the broader population, understanding your sample will allow you to interpret your findings appropriately, considering who responded. In other words, it will help you contextualise your findings . For example, if 80% of your sample was aged over 65, this may be a significant contextual factor to consider when interpreting the data. Therefore, it’s important to understand and present the demographic data.

Communicate the data

 Step 4 – Review composite measures and the data “shape”.

Before you undertake any statistical analysis, you’ll need to do some checks to ensure that your data are suitable for the analysis methods and techniques you plan to use. If you try to analyse data that doesn’t meet the assumptions of a specific statistical technique, your results will be largely meaningless. Therefore, you may need to show that the methods and techniques you’ll use are “allowed”.

Most commonly, there are two areas you need to pay attention to:

#1: Composite measures

The first is when you have multiple scale-based measures that combine to capture one construct – this is called a composite measure .  For example, you may have four Likert scale-based measures that (should) all measure the same thing, but in different ways. In other words, in a survey, these four scales should all receive similar ratings. This is called “ internal consistency ”.

Internal consistency is not guaranteed though (especially if you developed the measures yourself), so you need to assess the reliability of each composite measure using a test. Typically, Cronbach’s Alpha is a common test used to assess internal consistency – i.e., to show that the items you’re combining are more or less saying the same thing. A high alpha score means that your measure is internally consistent. A low alpha score means you may need to consider scrapping one or more of the measures.

#2: Data shape

The second matter that you should address early on in your results chapter is data shape. In other words, you need to assess whether the data in your set are symmetrical (i.e. normally distributed) or not, as this will directly impact what type of analyses you can use. For many common inferential tests such as T-tests or ANOVAs (we’ll discuss these a bit later), your data needs to be normally distributed. If it’s not, you’ll need to adjust your strategy and use alternative tests.

To assess the shape of the data, you’ll usually assess a variety of descriptive statistics (such as the mean, median and skewness), which is what we’ll look at next.

Descriptive statistics

Step 5 – Present the descriptive statistics

Now that you’ve laid the foundation by discussing the representativeness of your sample, as well as the reliability of your measures and the shape of your data, you can get started with the actual statistical analysis. The first step is to present the descriptive statistics for your variables.

For scaled data, this usually includes statistics such as:

  • The mean – this is simply the mathematical average of a range of numbers.
  • The median – this is the midpoint in a range of numbers when the numbers are arranged in order.
  • The mode – this is the most commonly repeated number in the data set.
  • Standard deviation – this metric indicates how dispersed a range of numbers is. In other words, how close all the numbers are to the mean (the average).
  • Skewness – this indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph (this is called a normal or parametric distribution), or do they lean to the left or right (this is called a non-normal or non-parametric distribution).
  • Kurtosis – this metric indicates whether the data are heavily or lightly-tailed, relative to the normal distribution. In other words, how peaked or flat the distribution is.

A large table that indicates all the above for multiple variables can be a very effective way to present your data economically. You can also use colour coding to help make the data more easily digestible.

For categorical data, where you show the percentage of people who chose or fit into a category, for instance, you can either just plain describe the percentages or numbers of people who responded to something or use graphs and charts (such as bar graphs and pie charts) to present your data in this section of the chapter.

When using figures, make sure that you label them simply and clearly , so that your reader can easily understand them. There’s nothing more frustrating than a graph that’s missing axis labels! Keep in mind that although you’ll be presenting charts and graphs, your text content needs to present a clear narrative that can stand on its own. In other words, don’t rely purely on your figures and tables to convey your key points: highlight the crucial trends and values in the text. Figures and tables should complement the writing, not carry it .

Depending on your research aims, objectives and research questions, you may stop your analysis at this point (i.e. descriptive statistics). However, if your study requires inferential statistics, then it’s time to deep dive into those .

Dive into the inferential statistics

Step 6 – Present the inferential statistics

Inferential statistics are used to make generalisations about a population , whereas descriptive statistics focus purely on the sample . Inferential statistical techniques, broadly speaking, can be broken down into two groups .

First, there are those that compare measurements between groups , such as t-tests (which measure differences between two groups) and ANOVAs (which measure differences between multiple groups). Second, there are techniques that assess the relationships between variables , such as correlation analysis and regression analysis. Within each of these, some tests can be used for normally distributed (parametric) data and some tests are designed specifically for use on non-parametric data.

There are a seemingly endless number of tests that you can use to crunch your data, so it’s easy to run down a rabbit hole and end up with piles of test data. Ultimately, the most important thing is to make sure that you adopt the tests and techniques that allow you to achieve your research objectives and answer your research questions .

In this section of the results chapter, you should try to make use of figures and visual components as effectively as possible. For example, if you present a correlation table, use colour coding to highlight the significance of the correlation values, or scatterplots to visually demonstrate what the trend is. The easier you make it for your reader to digest your findings, the more effectively you’ll be able to make your arguments in the next chapter.

make it easy for your reader to understand your quantitative results

Step 7 – Test your hypotheses

If your study requires it, the next stage is hypothesis testing. A hypothesis is a statement , often indicating a difference between groups or relationship between variables, that can be supported or rejected by a statistical test. However, not all studies will involve hypotheses (again, it depends on the research objectives), so don’t feel like you “must” present and test hypotheses just because you’re undertaking quantitative research.

The basic process for hypothesis testing is as follows:

  • Specify your null hypothesis (for example, “The chemical psilocybin has no effect on time perception).
  • Specify your alternative hypothesis (e.g., “The chemical psilocybin has an effect on time perception)
  • Set your significance level (this is usually 0.05)
  • Calculate your statistics and find your p-value (e.g., p=0.01)
  • Draw your conclusions (e.g., “The chemical psilocybin does have an effect on time perception”)

Finally, if the aim of your study is to develop and test a conceptual framework , this is the time to present it, following the testing of your hypotheses. While you don’t need to develop or discuss these findings further in the results chapter, indicating whether the tests (and their p-values) support or reject the hypotheses is crucial.

Step 8 – Provide a chapter summary

To wrap up your results chapter and transition to the discussion chapter, you should provide a brief summary of the key findings . “Brief” is the keyword here – much like the chapter introduction, this shouldn’t be lengthy – a paragraph or two maximum. Highlight the findings most relevant to your research objectives and research questions, and wrap it up.

Some final thoughts, tips and tricks

Now that you’ve got the essentials down, here are a few tips and tricks to make your quantitative results chapter shine:

  • When writing your results chapter, report your findings in the past tense . You’re talking about what you’ve found in your data, not what you are currently looking for or trying to find.
  • Structure your results chapter systematically and sequentially . If you had two experiments where findings from the one generated inputs into the other, report on them in order.
  • Make your own tables and graphs rather than copying and pasting them from statistical analysis programmes like SPSS. Check out the DataIsBeautiful reddit for some inspiration.
  • Once you’re done writing, review your work to make sure that you have provided enough information to answer your research questions , but also that you didn’t include superfluous information.

If you’ve got any questions about writing up the quantitative results chapter, please leave a comment below. If you’d like 1-on-1 assistance with your quantitative analysis and discussion, check out our hands-on coaching service , or book a free consultation with a friendly coach.

statistical analysis in dissertation

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

How to write the results chapter in a qualitative thesis

Thank you. I will try my best to write my results.

Lord

Awesome content 👏🏾

Tshepiso

this was great explaination

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Cookies & Privacy
  • GETTING STARTED
  • Introduction
  • FUNDAMENTALS

statistical analysis in dissertation

Getting to the main article

Choosing your route

Setting research questions/ hypotheses

Assessment point

Building the theoretical case

Setting your research strategy

Data collection

Data analysis

CONSIDERATION ONE

The data analysis process.

The data analysis process involves three steps : (STEP ONE) select the correct statistical tests to run on your data; (STEP TWO) prepare and analyse the data you have collected using a relevant statistics package; and (STEP THREE) interpret the findings properly so that you can write up your results (i.e., usually in Chapter Four: Results ). The basic idea behind each of these steps is relatively straightforward, but the act of analysing your data (i.e., by selecting statistical tests, preparing your data and analysing it, and interpreting the findings from these tests) can be time consuming and challenging. We have tried to make this process as easy as possible by providing comprehensive, step-by-step guides in the Data Analysis part of Lærd Dissertation, but you should leave time at least one week to analyse your data.

STEP ONE Select the correct statistical tests to run on your data

It is common that dissertation students collect good data, but then report the wrong findings because of selecting the incorrect statistical tests to run in the first place. Selecting the correct statistical tests to perform on the data that you have collected will depend on (a) the research questions/hypotheses you have set, together with the research design you have adopted, and (b) the type and nature of your data:

The research questions/hypotheses you have set, together with the research design you have adopted

Your research questions/hypotheses and research design explain what variables you are measuring and how you plan to measure these variables. These highlight whether you want to (a) predict a score or a membership of a group, (b) find out differences between groups or treatments, or (c) explore associations/relationships between variables. These different aims determine the statistical tests that may be appropriate to run on your data. We highlight the word may because the most appropriate test that is identified based on your research questions/hypotheses and research design can change depending on the type and nature of the data you collect; something we discuss next.

The type and nature of the data you collected

Data is not all the same. As you will have identified by now, not all variables are measured in the same way; variables can be dichotomous, ordinal, or continuous. In addition, not all data is normal , as term we explain the Data Analysis section, nor is the data you have collected when comparing groups necessarily equal for each group. As a result, you might think that running a particular statistical test is correct (e.g., a dependent t-test), based on the research questions/hypotheses you have set, but the data you have collected fails certain assumptions that are important to this statistical test (i.e., normality and homogeneity of variance ). As a result, you have to run another statistical test (e.g., a Mann-Whitney U instead of a dependent t-test).

To select the correct statistical tests to run on the data in your dissertation, we have created a Statistical Test Selector to help guide you through the various options.

STEP TWO Prepare and analyse your data using a relevant statistics package

The preparation and analysis of your data is actually a much more practical step than many students realise. Most of the time required to get the results that you will present in your write up (i.e., usually in Chapter Four: Results ) comes from knowing (a) how to enter data into a statistics package (e.g., SPSS) so that it can be analysed correctly, and (b) what buttons to press in the statistics package to correctly run the statistical tests you need:

Entering data is not just about knowing what buttons to press, but: (a) how to code your data correctly to recognise the types of variables that you have, as well as issues such as reverse coding ; (b) how to filter your dataset to take into account missing data and outliers ; (c) how to split files (i.e., in SPSS) when analysing the data for separate subgroups (e.g., males and females) using the same statistical tests; (d) how to weight and unweight data you have collected; and (e) other things you need to consider when entering data. What you have to do when it comes to entering data (i.e., in terms of coding, filtering, splitting files, and weighting/unweighting data) will depend on the statistical tests you plan to run. Therefore, entering data starts with using the Statistical Test Selector to help guide you through the various options. In the Data Analysis section, we help you to understand what you need to know about entering data in the context of your dissertation.

Running statistical tests

Statistics packages do the hard work of statistically analysing your data, but they rely on you making a number of choices. This is not simply about selecting the correct statistical test, but knowing, when you have selected a given test to run on your data, what buttons to press to: (a) test for the assumptions underlying the statistical test; (b) test whether corrections can be made when assumptions are violated ; (c) take into account outliers and missing data ; (d) choose between the different numerical and graphical ways to approach your analysis; and (e) other standard and more advanced tips. In the Data Analysis section, we explain what these considerations are (i.e., assumptions, corrections, outliers and missing data, numerical and graphical analysis) so that you can apply them to your own dissertation. We also provide comprehensive , step-by-step instructions with screenshots that show you how to enter data and run a wide range of statistical tests using the statistics package, SPSS. We do this on the basis that you probably have little or no knowledge of SPSS.

STEP THREE Interpret the findings properly

SPSS produces many tables of output for the typical tests you will run. In addition, SPSS has many new methods of presenting data using its Model viewer. You need to know which of these tables is important for your analysis and what the different figures/numbers mean. Interpreting these findings properly and communicating your results is one of the most important aspects of your dissertation. In the Data Analysis section, we show you how to understand these tables of output, what part of this output you need to look at, and how to write up the results in an appropriate format (i.e., so that you can answer you research hypotheses).

Raw Data to Excellence: Master Dissertation Analysis

Discover the secrets of successful dissertation data analysis. Get practical advice and useful insights from experienced experts now!

' src=

Have you ever found yourself knee-deep in a dissertation, desperately seeking answers from the data you’ve collected? Or have you ever felt clueless with all the data that you’ve collected but don’t know where to start? Fear not, in this article we are going to discuss a method that helps you come out of this situation and that is Dissertation Data Analysis.

Dissertation data analysis is like uncovering hidden treasures within your research findings. It’s where you roll up your sleeves and explore the data you’ve collected, searching for patterns, connections, and those “a-ha!” moments. Whether you’re crunching numbers, dissecting narratives, or diving into qualitative interviews, data analysis is the key that unlocks the potential of your research.

Dissertation Data Analysis

Dissertation data analysis plays a crucial role in conducting rigorous research and drawing meaningful conclusions. It involves the systematic examination, interpretation, and organization of data collected during the research process. The aim is to identify patterns, trends, and relationships that can provide valuable insights into the research topic.

The first step in dissertation data analysis is to carefully prepare and clean the collected data. This may involve removing any irrelevant or incomplete information, addressing missing data, and ensuring data integrity. Once the data is ready, various statistical and analytical techniques can be applied to extract meaningful information.

Descriptive statistics are commonly used to summarize and describe the main characteristics of the data, such as measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). These statistics help researchers gain an initial understanding of the data and identify any outliers or anomalies.

Furthermore, qualitative data analysis techniques can be employed when dealing with non-numerical data, such as textual data or interviews. This involves systematically organizing, coding, and categorizing qualitative data to identify themes and patterns.

Types of Research

When considering research types in the context of dissertation data analysis, several approaches can be employed:

1. Quantitative Research

This type of research involves the collection and analysis of numerical data. It focuses on generating statistical information and making objective interpretations. Quantitative research often utilizes surveys, experiments, or structured observations to gather data that can be quantified and analyzed using statistical techniques.

2. Qualitative Research

In contrast to quantitative research, qualitative research focuses on exploring and understanding complex phenomena in depth. It involves collecting non-numerical data such as interviews, observations, or textual materials. Qualitative data analysis involves identifying themes, patterns, and interpretations, often using techniques like content analysis or thematic analysis.

3. Mixed-Methods Research

This approach combines both quantitative and qualitative research methods. Researchers employing mixed-methods research collect and analyze both numerical and non-numerical data to gain a comprehensive understanding of the research topic. The integration of quantitative and qualitative data can provide a more nuanced and comprehensive analysis, allowing for triangulation and validation of findings.

Primary vs. Secondary Research

Primary research.

Primary research involves the collection of original data specifically for the purpose of the dissertation. This data is directly obtained from the source, often through surveys, interviews, experiments, or observations. Researchers design and implement their data collection methods to gather information that is relevant to their research questions and objectives. Data analysis in primary research typically involves processing and analyzing the raw data collected.

Secondary Research

Secondary research involves the analysis of existing data that has been previously collected by other researchers or organizations. This data can be obtained from various sources such as academic journals, books, reports, government databases, or online repositories. Secondary data can be either quantitative or qualitative, depending on the nature of the source material. Data analysis in secondary research involves reviewing, organizing, and synthesizing the available data.

If you wanna deepen into Methodology in Research, also read: What is Methodology in Research and How Can We Write it?

Types of Analysis 

Various types of analysis techniques can be employed to examine and interpret the collected data. Of all those types, the ones that are most important and used are:

  • Descriptive Analysis: Descriptive analysis focuses on summarizing and describing the main characteristics of the data. It involves calculating measures of central tendency (e.g., mean, median) and measures of dispersion (e.g., standard deviation, range). Descriptive analysis provides an overview of the data, allowing researchers to understand its distribution, variability, and general patterns.
  • Inferential Analysis: Inferential analysis aims to draw conclusions or make inferences about a larger population based on the collected sample data. This type of analysis involves applying statistical techniques, such as hypothesis testing, confidence intervals, and regression analysis, to analyze the data and assess the significance of the findings. Inferential analysis helps researchers make generalizations and draw meaningful conclusions beyond the specific sample under investigation.
  • Qualitative Analysis: Qualitative analysis is used to interpret non-numerical data, such as interviews, focus groups, or textual materials. It involves coding, categorizing, and analyzing the data to identify themes, patterns, and relationships. Techniques like content analysis, thematic analysis, or discourse analysis are commonly employed to derive meaningful insights from qualitative data.
  • Correlation Analysis: Correlation analysis is used to examine the relationship between two or more variables. It determines the strength and direction of the association between variables. Common correlation techniques include Pearson’s correlation coefficient, Spearman’s rank correlation, or point-biserial correlation, depending on the nature of the variables being analyzed.

Basic Statistical Analysis

When conducting dissertation data analysis, researchers often utilize basic statistical analysis techniques to gain insights and draw conclusions from their data. These techniques involve the application of statistical measures to summarize and examine the data. Here are some common types of basic statistical analysis used in dissertation research:

  • Descriptive Statistics
  • Frequency Analysis
  • Cross-tabulation
  • Chi-Square Test
  • Correlation Analysis

Advanced Statistical Analysis

In dissertation data analysis, researchers may employ advanced statistical analysis techniques to gain deeper insights and address complex research questions. These techniques go beyond basic statistical measures and involve more sophisticated methods. Here are some examples of advanced statistical analysis commonly used in dissertation research:

Regression Analysis

  • Analysis of Variance (ANOVA)
  • Factor Analysis
  • Cluster Analysis
  • Structural Equation Modeling (SEM)
  • Time Series Analysis

Examples of Methods of Analysis

Regression analysis is a powerful tool for examining relationships between variables and making predictions. It allows researchers to assess the impact of one or more independent variables on a dependent variable. Different types of regression analysis, such as linear regression, logistic regression, or multiple regression, can be used based on the nature of the variables and research objectives.

Event Study

An event study is a statistical technique that aims to assess the impact of a specific event or intervention on a particular variable of interest. This method is commonly employed in finance, economics, or management to analyze the effects of events such as policy changes, corporate announcements, or market shocks.

Vector Autoregression

Vector Autoregression is a statistical modeling technique used to analyze the dynamic relationships and interactions among multiple time series variables. It is commonly employed in fields such as economics, finance, and social sciences to understand the interdependencies between variables over time.

Preparing Data for Analysis

1. become acquainted with the data.

It is crucial to become acquainted with the data to gain a comprehensive understanding of its characteristics, limitations, and potential insights. This step involves thoroughly exploring and familiarizing oneself with the dataset before conducting any formal analysis by reviewing the dataset to understand its structure and content. Identify the variables included, their definitions, and the overall organization of the data. Gain an understanding of the data collection methods, sampling techniques, and any potential biases or limitations associated with the dataset.

2. Review Research Objectives

This step involves assessing the alignment between the research objectives and the data at hand to ensure that the analysis can effectively address the research questions. Evaluate how well the research objectives and questions align with the variables and data collected. Determine if the available data provides the necessary information to answer the research questions adequately. Identify any gaps or limitations in the data that may hinder the achievement of the research objectives.

3. Creating a Data Structure

This step involves organizing the data into a well-defined structure that aligns with the research objectives and analysis techniques. Organize the data in a tabular format where each row represents an individual case or observation, and each column represents a variable. Ensure that each case has complete and accurate data for all relevant variables. Use consistent units of measurement across variables to facilitate meaningful comparisons.

4. Discover Patterns and Connections

In preparing data for dissertation data analysis, one of the key objectives is to discover patterns and connections within the data. This step involves exploring the dataset to identify relationships, trends, and associations that can provide valuable insights. Visual representations can often reveal patterns that are not immediately apparent in tabular data. 

Qualitative Data Analysis

Qualitative data analysis methods are employed to analyze and interpret non-numerical or textual data. These methods are particularly useful in fields such as social sciences, humanities, and qualitative research studies where the focus is on understanding meaning, context, and subjective experiences. Here are some common qualitative data analysis methods:

Thematic Analysis

The thematic analysis involves identifying and analyzing recurring themes, patterns, or concepts within the qualitative data. Researchers immerse themselves in the data, categorize information into meaningful themes, and explore the relationships between them. This method helps in capturing the underlying meanings and interpretations within the data.

Content Analysis

Content analysis involves systematically coding and categorizing qualitative data based on predefined categories or emerging themes. Researchers examine the content of the data, identify relevant codes, and analyze their frequency or distribution. This method allows for a quantitative summary of qualitative data and helps in identifying patterns or trends across different sources.

Grounded Theory

Grounded theory is an inductive approach to qualitative data analysis that aims to generate theories or concepts from the data itself. Researchers iteratively analyze the data, identify concepts, and develop theoretical explanations based on emerging patterns or relationships. This method focuses on building theory from the ground up and is particularly useful when exploring new or understudied phenomena.

Discourse Analysis

Discourse analysis examines how language and communication shape social interactions, power dynamics, and meaning construction. Researchers analyze the structure, content, and context of language in qualitative data to uncover underlying ideologies, social representations, or discursive practices. This method helps in understanding how individuals or groups make sense of the world through language.

Narrative Analysis

Narrative analysis focuses on the study of stories, personal narratives, or accounts shared by individuals. Researchers analyze the structure, content, and themes within the narratives to identify recurring patterns, plot arcs, or narrative devices. This method provides insights into individuals’ live experiences, identity construction, or sense-making processes.

Applying Data Analysis to Your Dissertation

Applying data analysis to your dissertation is a critical step in deriving meaningful insights and drawing valid conclusions from your research. It involves employing appropriate data analysis techniques to explore, interpret, and present your findings. Here are some key considerations when applying data analysis to your dissertation:

Selecting Analysis Techniques

Choose analysis techniques that align with your research questions, objectives, and the nature of your data. Whether quantitative or qualitative, identify the most suitable statistical tests, modeling approaches, or qualitative analysis methods that can effectively address your research goals. Consider factors such as data type, sample size, measurement scales, and the assumptions associated with the chosen techniques.

Data Preparation

Ensure that your data is properly prepared for analysis. Cleanse and validate your dataset, addressing any missing values, outliers, or data inconsistencies. Code variables, transform data if necessary, and format it appropriately to facilitate accurate and efficient analysis. Pay attention to ethical considerations, data privacy, and confidentiality throughout the data preparation process.

Execution of Analysis

Execute the selected analysis techniques systematically and accurately. Utilize statistical software, programming languages, or qualitative analysis tools to carry out the required computations, calculations, or interpretations. Adhere to established guidelines, protocols, or best practices specific to your chosen analysis techniques to ensure reliability and validity.

Interpretation of Results

Thoroughly interpret the results derived from your analysis. Examine statistical outputs, visual representations, or qualitative findings to understand the implications and significance of the results. Relate the outcomes back to your research questions, objectives, and existing literature. Identify key patterns, relationships, or trends that support or challenge your hypotheses.

Drawing Conclusions

Based on your analysis and interpretation, draw well-supported conclusions that directly address your research objectives. Present the key findings in a clear, concise, and logical manner, emphasizing their relevance and contributions to the research field. Discuss any limitations, potential biases, or alternative explanations that may impact the validity of your conclusions.

Validation and Reliability

Evaluate the validity and reliability of your data analysis by considering the rigor of your methods, the consistency of results, and the triangulation of multiple data sources or perspectives if applicable. Engage in critical self-reflection and seek feedback from peers, mentors, or experts to ensure the robustness of your data analysis and conclusions.

In conclusion, dissertation data analysis is an essential component of the research process, allowing researchers to extract meaningful insights and draw valid conclusions from their data. By employing a range of analysis techniques, researchers can explore relationships, identify patterns, and uncover valuable information to address their research objectives.

Turn Your Data Into Easy-To-Understand And Dynamic Stories

Decoding data is daunting and you might end up in confusion. Here’s where infographics come into the picture. With visuals, you can turn your data into easy-to-understand and dynamic stories that your audience can relate to. Mind the Graph is one such platform that helps scientists to explore a library of visuals and use them to amplify their research work. Sign up now to make your presentation simpler. 

inductive-vs-deductive-research-blog

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Unlock Your Creativity

Create infographics, presentations and other scientifically-accurate designs without hassle — absolutely free for 7 days!

About Sowjanya Pedada

Sowjanya is a passionate writer and an avid reader. She holds MBA in Agribusiness Management and now is working as a content writer. She loves to play with words and hopes to make a difference in the world through her writings. Apart from writing, she is interested in reading fiction novels and doing craftwork. She also loves to travel and explore different cuisines and spend time with her family and friends.

Content tags

en_US

Statistical Methods in Theses: Guidelines and Explanations

Signed August 2018 Naseem Al-Aidroos, PhD, Christopher Fiacconi, PhD Deborah Powell, PhD, Harvey Marmurek, PhD, Ian Newby-Clark, PhD, Jeffrey Spence, PhD, David Stanley, PhD, Lana Trick, PhD

Version:  2.00

This document is an organizational aid, and workbook, for students. We encourage students to take this document to meetings with their advisor and committee. This guide should enhance a committee’s ability to assess key areas of a student’s work. 

In recent years a number of well-known and apparently well-established findings have  failed to replicate , resulting in what is commonly referred to as the replication crisis. The APA Publication Manual 6 th Edition notes that “The essence of the scientific method involves observations that can be repeated and verified by others.” (p. 12). However, a systematic investigation of the replicability of psychology findings published in  Science  revealed that over half of psychology findings do not replicate (see a related commentary in  Nature ). Even more disturbing, a  Bayesian reanalysis of the reproducibility project  showed that 64% of studies had sample sizes so small that strong evidence for or against the null or alternative hypotheses did not exist. Indeed, Morey and Lakens (2016) concluded that most of psychology is statistically unfalsifiable due to small sample sizes and correspondingly low power (see  article ). Our discipline’s reputation is suffering. News of the replication crisis has reached the popular press (e.g.,  The Atlantic ,   The Economist ,   Slate , Last Week Tonight ).

An increasing number of psychologists have responded by promoting new research standards that involve open science and the elimination of  Questionable Research Practices . The open science perspective is made manifest in the  Transparency and Openness Promotion (TOP) guidelines  for journal publications. These guidelines were adopted some time ago by the  Association for Psychological Science . More recently, the guidelines were adopted by American Psychological Association journals ( see details ) and journals published by Elsevier ( see details ). It appears likely that, in the very near future, most journals in psychology will be using an open science approach. We strongly advise readers to take a moment to inspect the  TOP Guidelines Summary Table . 

A key aspect of open science and the TOP guidelines is the sharing of data associated with published research (with respect to medical research, see point #35 in the  World Medical Association Declaration of Helsinki ). This practice is viewed widely as highly important. Indeed, open science is recommended by  all G7 science ministers . All Tri-Agency grants must include a data-management plan that includes plans for sharing: “ research data resulting from agency funding should normally be preserved in a publicly accessible, secure and curated repository or other platform for discovery and reuse by others.”  Moreover, a 2017 editorial published in the  New England Journal of Medicine announced that the  International Committee of Medical Journal Editors believes there is  “an ethical obligation to responsibly share data.”  As of this writing,  60% of highly ranked psychology journals require or encourage data sharing .

The increasing importance of demonstrating that findings are replicable is reflected in calls to make replication a requirement for the promotion of faculty (see details in  Nature ) and experts in open science are now refereeing applications for tenure and promotion (see details at the  Center for Open Science  and  this article ). Most dramatically, in one instance, a paper resulting from a dissertation was retracted due to misleading findings attributable to Questionable Research Practices. Subsequent to the retraction, the Ohio State University’s Board of Trustees unanimously revoked the PhD of the graduate student who wrote the dissertation ( see details ). Thus, the academic environment is changing and it is important to work toward using new best practices in lieu of older practices—many of which are synonymous with Questionable Research Practices. Doing so should help you avoid later career regrets and subsequent  public mea culpas . One way to achieve your research objectives in this new academic environment is  to incorporate replications into your research . Replications are becoming more common and there are even websites dedicated to helping students conduct replications (e.g.,  Psychology Science Accelerator ) and indexing the success of replications (e.g., Curate Science ). You might even consider conducting a replication for your thesis (subject to committee approval).

As early-career researchers, it is important to be aware of the changing academic environment. Senior principal investigators may be  reluctant to engage in open science  (see this student perspective in a  blog post  and  podcast ) and research on resistance to data sharing indicates that one of the barriers to sharing data is that researchers do not feel that they have knowledge of  how to share data online . This document is an educational aid and resource to provide students with introductory knowledge of how to participate in open science and online data sharing to start their education on these subjects. 

Guidelines and Explanations

In light of the changes in psychology, faculty members who teach statistics/methods have reviewed the literature and generated this guide for graduate students. The guide is intended to enhance the quality of student theses by facilitating their engagement in open and transparent research practices and by helping them avoid Questionable Research Practices, many of which are now deemed unethical and covered in the ethics section of textbooks.

This document is an informational tool.

How to Start

In order to follow best practices, some first steps need to be followed. Here is a list of things to do:

  • Get an Open Science account. Registration at  osf.io  is easy!
  • If conducting confirmatory hypothesis testing for your thesis, pre-register your hypotheses (see Section 1-Hypothesizing). The Open Science Foundation website has helpful  tutorials  and  guides  to get you going.
  • Also, pre-register your data analysis plan. Pre-registration typically includes how and when you will stop collecting data, how you will deal with violations of statistical assumptions and points of influence (“outliers”), the specific measures you will use, and the analyses you will use to test each hypothesis, possibly including the analysis script. Again, there is a lot of help available for this. 

Exploratory and Confirmatory Research Are Both of Value, But Do Not Confuse the Two

We note that this document largely concerns confirmatory research (i.e., testing hypotheses). We by no means intend to devalue exploratory research. Indeed, it is one of the primary ways that hypotheses are generated for (possible) confirmation. Instead, we emphasize that it is important that you clearly indicate what of your research is exploratory and what is confirmatory. Be clear in your writing and in your preregistration plan. You should explicitly indicate which of your analyses are exploratory and which are confirmatory. Please note also that if you are engaged in exploratory research, then Null Hypothesis Significance Testing (NHST) should probably be avoided (see rationale in  Gigerenzer  (2004) and  Wagenmakers et al., (2012) ). 

This document is structured around the stages of thesis work:  hypothesizing, design, data collection, analyses, and reporting – consistent with the headings used by Wicherts et al. (2016). We also list the Questionable Research Practices associated with each stage and provide suggestions for avoiding them. We strongly advise going through all of these sections during thesis/dissertation proposal meetings because a priori decisions need to be made prior to data collection (including analysis decisions). 

To help to ensure that the student has informed the committee about key decisions at each stage, there are check boxes at the end of each section.

How to Use This Document in a Proposal Meeting

  • Print off a copy of this document and take it to the proposal meeting.
  • During the meeting, use the document to seek assistance from faculty to address potential problems.
  • Revisit responses to issues raised by this document (especially the Analysis and Reporting Stages) when you are seeking approval to proceed to defense.

Consultation and Help Line

Note that the Center for Open Science now has a help line (for individual researchers and labs) you can call for help with open science issues. They also have training workshops. Please see their  website  for details.

  • Hypothesizing
  • Data Collection
  • Printer-friendly version
  • PDF version

Digital Commons @ University of South Florida

  • USF Research
  • USF Libraries

Digital Commons @ USF > College of Arts and Sciences > Mathematics and Statistics > Theses and Dissertations

Mathematics and Statistics Theses and Dissertations

Theses/dissertations from 2023 2023.

Classification of Finite Topological Quandles and Shelves via Posets , Hitakshi Lahrani

Applied Analysis for Learning Architectures , Himanshu Singh

Rational Functions of Degree Five That Permute the Projective Line Over a Finite Field , Christopher Sze

Theses/Dissertations from 2022 2022

New Developments in Statistical Optimal Designs for Physical and Computer Experiments , Damola M. Akinlana

Advances and Applications of Optimal Polynomial Approximants , Raymond Centner

Data-Driven Analytical Predictive Modeling for Pancreatic Cancer, Financial & Social Systems , Aditya Chakraborty

On Simultaneous Similarity of d-tuples of Commuting Square Matrices , Corey Connelly

Symbolic Computation of Lump Solutions to a Combined (2+1)-dimensional Nonlinear Evolution Equation , Jingwei He

Boundary behavior of analytic functions and Approximation Theory , Spyros Pasias

Stability Analysis of Delay-Driven Coupled Cantilevers Using the Lambert W-Function , Daniel Siebel-Cortopassi

A Functional Optimization Approach to Stochastic Process Sampling , Ryan Matthew Thurman

Theses/Dissertations from 2021 2021

Riemann-Hilbert Problems for Nonlocal Reverse-Time Nonlinear Second-order and Fourth-order AKNS Systems of Multiple Components and Exact Soliton Solutions , Alle Adjiri

Zeros of Harmonic Polynomials and Related Applications , Azizah Alrajhi

Combination of Time Series Analysis and Sentiment Analysis for Stock Market Forecasting , Hsiao-Chuan Chou

Uncertainty Quantification in Deep and Statistical Learning with applications in Bio-Medical Image Analysis , K. Ruwani M. Fernando

Data-Driven Analytical Modeling of Multiple Myeloma Cancer, U.S. Crop Production and Monitoring Process , Lohuwa Mamudu

Long-time Asymptotics for mKdV Type Reduced Equations of the AKNS Hierarchy in Weighted L 2 Sobolev Spaces , Fudong Wang

Online and Adjusted Human Activities Recognition with Statistical Learning , Yanjia Zhang

Theses/Dissertations from 2020 2020

Bayesian Reliability Analysis of The Power Law Process and Statistical Modeling of Computer and Network Vulnerabilities with Cybersecurity Application , Freeh N. Alenezi

Discrete Models and Algorithms for Analyzing DNA Rearrangements , Jasper Braun

Bayesian Reliability Analysis for Optical Media Using Accelerated Degradation Test Data , Kun Bu

On the p(x)-Laplace equation in Carnot groups , Robert D. Freeman

Clustering methods for gene expression data of Oxytricha trifallax , Kyle Houfek

Gradient Boosting for Survival Analysis with Applications in Oncology , Nam Phuong Nguyen

Global and Stochastic Dynamics of Diffusive Hindmarsh-Rose Equations in Neurodynamics , Chi Phan

Restricted Isometric Projections for Differentiable Manifolds and Applications , Vasile Pop

On Some Problems on Polynomial Interpolation in Several Variables , Brian Jon Tuesink

Numerical Study of Gap Distributions in Determinantal Point Process on Low Dimensional Spheres: L -Ensemble of O ( n ) Model Type for n = 2 and n = 3 , Xiankui Yang

Non-Associative Algebraic Structures in Knot Theory , Emanuele Zappala

Theses/Dissertations from 2019 2019

Field Quantization for Radiative Decay of Plasmons in Finite and Infinite Geometries , Maryam Bagherian

Probabilistic Modeling of Democracy, Corruption, Hemophilia A and Prediabetes Data , A. K. M. Raquibul Bashar

Generalized Derivations of Ternary Lie Algebras and n-BiHom-Lie Algebras , Amine Ben Abdeljelil

Fractional Random Weighted Bootstrapping for Classification on Imbalanced Data with Ensemble Decision Tree Methods , Sean Charles Carter

Hierarchical Self-Assembly and Substitution Rules , Daniel Alejandro Cruz

Statistical Learning of Biomedical Non-Stationary Signals and Quality of Life Modeling , Mahdi Goudarzi

Probabilistic and Statistical Prediction Models for Alzheimer’s Disease and Statistical Analysis of Global Warming , Maryam Ibrahim Habadi

Essays on Time Series and Machine Learning Techniques for Risk Management , Michael Kotarinos

The Systems of Post and Post Algebras: A Demonstration of an Obvious Fact , Daviel Leyva

Reconstruction of Radar Images by Using Spherical Mean and Regular Radon Transforms , Ozan Pirbudak

Analyses of Unorthodox Overlapping Gene Segments in Oxytricha Trifallax , Shannon Stich

An Optimal Medium-Strength Regularity Algorithm for 3-uniform Hypergraphs , John Theado

Power Graphs of Quasigroups , DayVon L. Walker

Theses/Dissertations from 2018 2018

Groups Generated by Automata Arising from Transformations of the Boundaries of Rooted Trees , Elsayed Ahmed

Non-equilibrium Phase Transitions in Interacting Diffusions , Wael Al-Sawai

A Hybrid Dynamic Modeling of Time-to-event Processes and Applications , Emmanuel A. Appiah

Lump Solutions and Riemann-Hilbert Approach to Soliton Equations , Sumayah A. Batwa

Developing a Model to Predict Prevalence of Compulsive Behavior in Individuals with OCD , Lindsay D. Fields

Generalizations of Quandles and their cohomologies , Matthew J. Green

Hamiltonian structures and Riemann-Hilbert problems of integrable systems , Xiang Gu

Optimal Latin Hypercube Designs for Computer Experiments Based on Multiple Objectives , Ruizhe Hou

Human Activity Recognition Based on Transfer Learning , Jinyong Pang

Signal Detection of Adverse Drug Reaction using the Adverse Event Reporting System: Literature Review and Novel Methods , Minh H. Pham

Statistical Analysis and Modeling of Cyber Security and Health Sciences , Nawa Raj Pokhrel

Machine Learning Methods for Network Intrusion Detection and Intrusion Prevention Systems , Zheni Svetoslavova Stefanova

Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane , Meng Yang

Theses/Dissertations from 2017 2017

Modeling in Finance and Insurance With Levy-It'o Driven Dynamic Processes under Semi Markov-type Switching Regimes and Time Domains , Patrick Armand Assonken Tonfack

Prevalence of Typical Images in High School Geometry Textbooks , Megan N. Cannon

On Extending Hansel's Theorem to Hypergraphs , Gregory Sutton Churchill

Contributions to Quandle Theory: A Study of f-Quandles, Extensions, and Cohomology , Indu Rasika U. Churchill

Linear Extremal Problems in the Hardy Space H p for 0 p , Robert Christopher Connelly

Statistical Analysis and Modeling of Ovarian and Breast Cancer , Muditha V. Devamitta Perera

Statistical Analysis and Modeling of Stomach Cancer Data , Chao Gao

Structural Analysis of Poloidal and Toroidal Plasmons and Fields of Multilayer Nanorings , Kumar Vijay Garapati

Dynamics of Multicultural Social Networks , Kristina B. Hilton

Cybersecurity: Stochastic Analysis and Modelling of Vulnerabilities to Determine the Network Security and Attackers Behavior , Pubudu Kalpani Kaluarachchi

Generalized D-Kaup-Newell integrable systems and their integrable couplings and Darboux transformations , Morgan Ashley McAnally

Patterns in Words Related to DNA Rearrangements , Lukas Nabergall

Time Series Online Empirical Bayesian Kernel Density Segmentation: Applications in Real Time Activity Recognition Using Smartphone Accelerometer , Shuang Na

Schreier Graphs of Thompson's Group T , Allen Pennington

Cybersecurity: Probabilistic Behavior of Vulnerability and Life Cycle , Sasith Maduranga Rajasooriya

Bayesian Artificial Neural Networks in Health and Cybersecurity , Hansapani Sarasepa Rodrigo

Real-time Classification of Biomedical Signals, Parkinson’s Analytical Model , Abolfazl Saghafi

Lump, complexiton and algebro-geometric solutions to soliton equations , Yuan Zhou

Theses/Dissertations from 2016 2016

A Statistical Analysis of Hurricanes in the Atlantic Basin and Sinkholes in Florida , Joy Marie D'andrea

Statistical Analysis of a Risk Factor in Finance and Environmental Models for Belize , Sherlene Enriquez-Savery

Putnam's Inequality and Analytic Content in the Bergman Space , Matthew Fleeman

On the Number of Colors in Quandle Knot Colorings , Jeremy William Kerr

Statistical Modeling of Carbon Dioxide and Cluster Analysis of Time Dependent Information: Lag Target Time Series Clustering, Multi-Factor Time Series Clustering, and Multi-Level Time Series Clustering , Doo Young Kim

Some Results Concerning Permutation Polynomials over Finite Fields , Stephen Lappano

Hamiltonian Formulations and Symmetry Constraints of Soliton Hierarchies of (1+1)-Dimensional Nonlinear Evolution Equations , Solomon Manukure

Modeling and Survival Analysis of Breast Cancer: A Statistical, Artificial Neural Network, and Decision Tree Approach , Venkateswara Rao Mudunuru

Generalized Phase Retrieval: Isometries in Vector Spaces , Josiah Park

Leonard Systems and their Friends , Jonathan Spiewak

Resonant Solutions to (3+1)-dimensional Bilinear Differential Equations , Yue Sun

Statistical Analysis and Modeling Health Data: A Longitudinal Study , Bhikhari Prasad Tharu

Global Attractors and Random Attractors of Reaction-Diffusion Systems , Junyi Tu

Time Dependent Kernel Density Estimation: A New Parameter Estimation Algorithm, Applications in Time Series Classification and Clustering , Xing Wang

On Spectral Properties of Single Layer Potentials , Seyed Zoalroshd

Theses/Dissertations from 2015 2015

Analysis of Rheumatoid Arthritis Data using Logistic Regression and Penalized Approach , Wei Chen

Active Tile Self-assembly and Simulations of Computational Systems , Daria Karpenko

Nearest Neighbor Foreign Exchange Rate Forecasting with Mahalanobis Distance , Vindya Kumari Pathirana

Statistical Learning with Artificial Neural Network Applied to Health and Environmental Data , Taysseer Sharaf

Radial Versus Othogonal and Minimal Projections onto Hyperplanes in l_4^3 , Richard Alan Warner

Ensemble Learning Method on Machine Maintenance Data , Xiaochuang Zhao

Theses/Dissertations from 2014 2014

Properties of Graphs Used to Model DNA Recombination , Ryan Arredondo

Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability , Jonathan Burns

On the Classification of Groups Generated by Automata with 4 States over a 2-Letter Alphabet , Louis Caponi

Statistical Analysis, Modeling, and Algorithms for Pharmaceutical and Cancer Systems , Bong-Jin Choi

Topological Data Analysis of Properties of Four-Regular Rigid Vertex Graphs , Grant Mcneil Conine

Trend Analysis and Modeling of Health and Environmental Data: Joinpoint and Functional Approach , Ram C. Kafle

Advanced Search

  • Email Notifications and RSS
  • All Collections
  • USF Faculty Publications
  • Open Access Journals
  • Conferences and Events
  • Theses and Dissertations
  • Textbooks Collection

Useful Links

  • Mathematics and Statistics Department
  • Rights Information
  • SelectedWorks
  • Submit Research

Home | About | Help | My Account | Accessibility Statement | Language and Diversity Statements

Privacy Copyright

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organisations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organise and summarise the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalise your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarise your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, frequently asked questions about statistics.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalise your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Population vs sample

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalisable findings, you should use a probability sampling method. Random selection reduces sampling bias and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to be biased, they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalising your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalise your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialised, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalised in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardised indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarise them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organising data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualising the relationship between two variables using a scatter plot .

By visualising your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimise the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasises null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Statistical analysis is the main method for analyzing quantitative research data . It uses probabilities and models to test predictions about a population from sample data.

Is this article helpful?

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, between-subjects design | examples, pros & cons, more interesting articles.

  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Correlation Coefficient | Types, Formulas & Examples
  • Descriptive Statistics | Definitions, Types, Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | Meaning, Formula & Examples
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Inferential Statistics | An Easy Introduction & Examples
  • Levels of measurement: Nominal, ordinal, interval, ratio
  • Missing Data | Types, Explanation, & Imputation
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Skewness | Definition, Examples & Formula
  • T-Distribution | What It Is and How To Use It (With Examples)
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Interval Data? | Examples & Definition
  • What Is Nominal Data? | Examples & Definition
  • What Is Ordinal Data? | Examples & Definition
  • What Is Ratio Data? | Examples & Definition
  • What Is the Mode in Statistics? | Definition, Examples & Calculator

Statistical Consulting | AMSTAT Consulting

AMSTAT Consulting: 19 Years of National Recognition in Dissertation Consulting

dashboard-01

OUR DISSERTATION CONSULTING TEAM’S EXPERTISE

Our clients cite the following reasons for choosing AMSTAT Consulting:

  • We have PhDs from leading universities, such as Harvard, Stanford, and Columbia.
  • Our consultants have extensive backgrounds in statistics and over 100 years of practical experience in quantitative and qualitative methods.
  • Our editors have over 100 years of practical experience in editing.
  • Our statisticians are experts in statistical analysis (e.g., t-test, ANOVA, ANCOVA, traditional regression, logistic regression, MANOVA, MANCOVA, factor analysis, cluster analysis, survival analysis, time series analysis, correlation analysis, meta-analysis, and more advanced statistical techniques such as structural equation modeling (SEM), hierarchical linear modeling (HLM), and path analysis).
  • Our analysts use various statistical software tools, including SPSS, SAS, Stata, HLM, Mplus, R, SPSS Amos, SPSS Modeler, Azure, JMP, Python, WinBUGS, Minitab, SYSTAT, LISREL, EQS, Smart PLS, WarpPLS, EViews, and many others.
  • Our analysts are experts in qualitative analysis software, including NVivo, NUD*IST, HyperResearch, Atlas.ti, and MAXQDA.
  • We have expertise in the requirements of traditional and online universities.
  • We are more reasonably priced than most other consultants offering dissertation help.
  • We offer ultra-fast turnaround times, often completing sections within 4-5 business days.
  • Over 90% of clients request our assistance more than once, as they are almost universally happy with our different dissertation consulting brands.
  • We offer personalized, comprehensive, and friendly support during and after you consult with us.
  • We customize our help to assist you in specifying your methodology.
  • The Association for Support of Graduate Students highly recommends us, and we are members in good standing of the Statistical Consulting section of the American Statistical Association.
  • We participate in the preparation of all five chapters of your dissertation.
  • We are committed to quality and excellence, reflected in our record of five-star reviews.

OUR CUSTOMERS LOVE US!

5A04F6ED-2642-4EF8-B9B4-695558590684

FREE DISSERTATION CONSULTING

Unlock your dissertation’s potential – free personalized feedback service available now.

Embark on a journey to academic excellence with our bespoke dissertation feedback service. Our seasoned team of academics and researchers provides expert advice on the critical aspects of your dissertation, including the introduction, literature review, methodology, data, results, and discussion. 

WHY DO OUR CLIENTS CHOOSE OUR FREE FEEDBACK SERVICE?

Personalized Support:  Direct, one-on-one feedback on your dissertation, ensuring every piece of advice is tailored to your project’s unique needs.

Expert Insights:  Our experts bring years of academic experience to offer you invaluable insights, enhancing the clarity of your research question, the feasibility of your methodology, and the coherence of your literature review.

Success Stories : Join our community of successful graduates—’ The feedback session was transformative for my dissertation!’

DON’T MISS THIS LIMITED OFFER.

Take advantage of this exclusive offer to take the first step towards refining your research with expert guidance. Contact us now to secure your spot.

LOOKING BEYOND THE REPORT.

After receiving our free feedback report, your journey doesn’t have to end there. We offer comprehensive dissertation consulting services to support you from proposal to defense.

TAKE ACTION TODAY. 

Are you ready to enhance your dissertation? Contact us today and discover how our expert advice can help you achieve your research goals. With personalized support and insights, we’ll collaborate to elevate your dissertation and achieve excellence.

CONTACT US FOR  FREE DISSERTATION CONSULTING

Contact Form

Please fill out the following contact form. We will respond within 1 hour during business hours.

Phone Support : +1 (650) 460-7431

Email :  [email protected] 

24/7 Chat Support : Immediate assistance via our chat icon in the right corner of our website

Visit Us : 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301

Your confidentiality is our priority. Non-disclosure agreements are available upon request.

HOW WE CAN HELP YOU WITH EACH CHAPTER

Don’t let dissertation writing stress you out. Let us help you achieve your academic goals!

dissertation consulting

Dissertation Consulting

Introduction chapter.

Our dissertation consulting team can help you with any or all of the following steps:

  • Identifying and articulating the research problem
  • Describing the theoretical construct
  • Talking about the nature of the study.

Literature Review Chapter

Our dissertation consultants can help you with any or all of the following steps:

  • Effectively searching, selecting, organizing, and synthesizing articles
  • Presenting your literature review in a way that tells a story and aligns with your research questions
  • Ensuring the gap in the literature is clearly stated and aligns with the problem statement
  • Replacing and updating articles as necessary.

dissertation consulting

Methodology Chapter

  • Selecting and discussing the research design
  • Providing the steps necessary for a qualitative or quantitative study
  • Ensuring the data plan and sample size are accurate
  • Choosing the correct analyses.

Results Chapter:  Statistical Analysis

Our dissertation consulting team can help you with any or all of the following steps in statistical analysis:

  • Getting your dataset ready for analysis
  • Inputting, organizing, coding, merging, managing, and cleaning your data
  • Creating composite scores and labeling your data
  • Dealing with missing data
  • Detecting and correcting your database’s inaccurate and unexpected records
  • Testing reliability (e.g., Cronbach’s alpha, test-retest reliability, split-half reliability, inter-rater reliability)
  • Testing validity (e.g., convergent validity, construct validity, discriminant validity)
  • Conducting analyses and assessing their assumptions
  • Providing you with syntax and raw output files
  • Writing up the results, including tables and figures.

dissertation consulting

Results Chapter:  Qualitative Analysis

Our dissertation consultants can help you with any or all of the following steps in qualitative analysis:

  • Coding your qualitative data
  • Identifying themes and sub-themes
  • Providing frequencies and percentages for each theme and sub-theme

Discussion Chapter

  • Interpreting your results
  • Discussing your findings’ theoretical and practical implications and their relation to existing literature
  • Discussing limitations of the study and recommendations for future studies.

dissertation consulting

Statistical Analysis

We can design and perform the required statistical analyses. Here is a sample of some of the analytical tools with which we are familiar:

  • Traditional regression
  • Logistic regression
  • Factor analysis
  • Survival analysis
  • Time series analysis
  • Correlation analysis
  • Chi-square test
  • Meta-analysis
  • Cluster analysis
  • Advanced techniques such as Structural Equation Modeling (SEM), Hierarchical Linear Modeling (HLM), and Path Analysis
  • Bayesian analysis
  • Latent class analysis
  • Longitudinal growth modeling
  • Mixture models
  • Linear mixed models
  • Distribution analysis
  • Predictive analytics
  • Ensemble analysis
  • De-identification
  • Trend analysis
  • Sensitivity analysis
  • Negative binomial regression
  • Interim analysis
  • Decision trees
  • Item analysis
  • Nonparametric tests
  • Statistical and decision modeling
  • Segmentation analysis
  • Conjoint/discrete choice analysis
  • Propensity score analysis

We have expertise with virtually every statistical and qualitative software package, including:

  • SPSS Modeler
  • HyperResearch

FIVE-STAR REVIEWS

Zenovia B., 5-star Trustpilot Review

I am very impressed by the professionalism AMSTAT Consulting has provided for my educational research. I have been working with the company for the last few years, and all editing projects were completed promptly with high-quality results. The friendliness and the customer service are excellent. I highly recommend them!

Kulwant K., 5-star Trustpilot Review

They are excellent people. I always got the response in a timely fashion. They never show any frustration. They have the best writers.

Vicki A., 5-star Trustpilot Review

AMSTAT Consulting was recommended to me to edit my dissertation. Their work significantly improved the quality and readability of my writing. While working with them, I found them efficient, and their pleasing way of working gave me great peace of mind. The result was a high-quality dissertation and a distinction for my Ph.D. I recommend AMSTAT Consulting to work its magic on your dissertation.

Rose Z., 5-star Trustpilot Review

This service is one of the best that helped me do my dissertation. AMSTAT Consulting’s consultants provide completed work on time, and quality is what they produce. I recommend this service to all other students looking for writing help. Work with this service if you want a top-quality paper to be presented to you. It is one of the best agencies I have worked with, so you do not have to panic. Try it out and enjoy the results.

Jeremy P., 5-star Trustpilot Review

Excellent job. Highly recommend. I am completely satisfied.

Amy W., 5-star Manta Review

They did a fantastic job on my thesis. The editor made several helpful suggestions. I will use them again.

Ross K., 5-star Manta Review

Your consultants exceeded my expectations, and I am forever thankful for that. My thesis shone above everything I thought it would. All I can say is wow. Wow. Wow. Wow. And thank you.

Amy G., 5-star Manta Review

The service is very professional, and I am pleased about receiving the paper before the due time. I am so glad to pass on AMSTAT Consulting’s services to others I know in the same situation.

Katherine D., 5-star Manta Review

We were delighted with AMSTAT Consulting as an editor, statistician, advisor, and companion. We can highly recommend their work ethic. Their perfectionist approach resolved my fears of writing my dissertation, and I can assure everyone who contemplates working with them: You will be pleased with the final product. It is wonderful to work with consistently reliable people who have a genuine interest and in-depth knowledge of the subject matter and have a way with words. They are very talented.

Shinerena S., 5-star Facebook Review

I would highly recommend AMSTAT Consulting! Amazing customer service! I worked with Ann, who was very knowledgeable! She answered all my questions promptly. The service I requested resulted in a fast turnaround! You won’t be disappointed!

Sophia H., 5-star Facebook Review

Great staff, great service. The main benefit is the level of support and service provided. AMSTAT Consulting has been extremely helpful throughout the process. Thanks, guys!

Ross Z., 5-star BBB Review

I am very impressed with this service because of the seriousness it displays. I got a top-notch paper, and I urge you to keep on with the good spirit.

RECENT QUANTITATIVE PROJECTS 

independent-samples t-test

Internet Use

The National Science Foundation funded a project to explore the effect of internet use on perceived performance. With the increasing integration of technology into education and daily life, the client sought to investigate whether the extent of internet use had a discernible effect on how individuals perceived their performance. To comprehensively address this research question, […]

Paired-Samples T-Test

Relative Risk of Lung Cancer

The National Institute of Health funded a research project to address a critical public health concern about lung cancer risk and the intervention of smoking cessation. The study aimed to investigate lung cancer’s relative risk (RR) and its potential variation between the intervention of smoking cessation and control groups over time. The goal was to […]

binomial logistic regression

Mathematics Performance

We were involved in a research project commissioned by the National Science Foundation. The project’s objective was to explore the effect of motivation on students’ mathematics performance. The client, committed to advancing education and understanding the factors that influence academic achievement, wanted to investigate the role of motivation in mathematics performance using data from the […]

  • Next »

RECENT QUALITATIVE PROJECTS 

Managers’ spirituality.

The National Science Foundation funded a research project to explore the role of managers’ spirituality in responsible managerial behavior. The client sought to understand the potential role of spirituality in promoting responsible decision-making among managerial staff. To address this issue, we collected diverse data from interviews and observations. Over two years, we gathered data from […]

Prostate Cancer Screening

The National Institute of Health funded a research project aimed at identifying and understanding the barriers that impede individuals from accessing prostate cancer screening, recognizing the importance of early detection in combating prostate cancer. We collected data from 103 participants over a meticulous two-year study comprising interviews and observations to explore this issue comprehensively. The […]

Business Success

The National Science Foundation provided critical funding for a research project aimed at unraveling the role of leadership behavior in the success of businesses. The client recognized leadership’s pivotal role in influencing organizations’ performance, growth, and success. We collected a diverse dataset comprising interviews and observations to explore this multifaceted issue comprehensively. Over a meticulous […]

SAMPLE OF PAST CLIENTS

columbia-university-logo-2F21GAD

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Writing with Descriptive Statistics

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Usually there is no good way to write a statistic. It rarely sounds good, and often interrupts the structure or flow of your writing. Oftentimes the best way to write descriptive statistics is to be direct. If you are citing several statistics about the same topic, it may be best to include them all in the same paragraph or section.

The mean of exam two is 77.7. The median is 75, and the mode is 79. Exam two had a standard deviation of 11.6.

Overall the company had another excellent year. We shipped 14.3 tons of fertilizer for the year, and averaged 1.7 tons of fertilizer during the summer months. This is an increase over last year, where we shipped only 13.1 tons of fertilizer, and averaged only 1.4 tons during the summer months. (Standard deviations were as followed: this summer .3 tons, last summer .4 tons).

Some fields prefer to put means and standard deviations in parentheses like this:

If you have lots of statistics to report, you should strongly consider presenting them in tables or some other visual form. You would then highlight statistics of interest in your text, but would not report all of the statistics. See the section on statistics and visuals for more details.

If you have a data set that you are using (such as all the scores from an exam) it would be unusual to include all of the scores in a paper or article. One of the reasons to use statistics is to condense large amounts of information into more manageable chunks; presenting your entire data set defeats this purpose.

At the bare minimum, if you are presenting statistics on a data set, it should include the mean and probably the standard deviation. This is the minimum information needed to get an idea of what the distribution of your data set might look like. How much additional information you include is entirely up to you. In general, don't include information if it is irrelevant to your argument or purpose. If you include statistics that many of your readers would not understand, consider adding the statistics in a footnote or appendix that explains it in more detail.

Demo

  • Environment
  • Foreign Policy
  • Health & Healthcare
  • Privacy Policy
  • Sponsored Content & Advertorials

8 Tips for Writing Dissertation Data Analysis to Elevate Your Scholarship

Our Friends

Dissertation data analysis is the process by which researchers interpret findings to drive useful insights. In this way, they can divide the big chunks of results into smaller fragments that make more sense to the reader. It helps to draw evidence-based conclusions and provides the basis for making claims and recommendations. 

Writing up such data analysis is not a skill that someone is born with. You need guidance or practice to meet the standards. If you want to elevate your research skills by writing an exceptional data analysis for your thesis, then consider the guidance provided in this article. Here are the top tips that can help you while you are describing your approach to draw results. If a deeper understanding of the process stresses its complexity, then asking for dissertation help online can take away this academic anxiety. The experts are well aware of the patterns, trends and relationships within the data. So, the write-up can stand out as unique due to the exceptional organizations involved. 

Keep reading to learn the top tips for writing a data analysis chapter in your dissertation. This way, you can stand out in the increasing competition by showcasing your research skills to readers. 

What Is a Data Analysis Dissertation?

Dissertation data analysis is the systematic examination, organization, or interpretation of data from your research findings. The intent is to define patterns to provide a deeper understanding of the qualitative or quantitative results. It addresses the intriguing research question in data analysis dissertations. 

How Do You Write Data Analysis Dissertation? 8 Tips

In presenting data analysis for dissertation, you need to define the statistical test conducted for the process. You will also crack the assumptions underlying these tests, the sample size and how to conclude. Here we will demystify the process of writing the data analysis of your dissertation. These are the expert tips that can assist you in addition to a basic understanding of the process. 

1. The Data Must Be Relevant 

Do not blindly follow all the data collected in the data analysis and findings dissertation. For the data analysis, you will check which part of the data has a close resemblance with your research objectives. The inclusion of irrelevant data will showcase the incoherence of the findings. Ultimately, it can raise questions about your research expertise. 

2. Use Appropriate Methods 

You must use appropriate dissertation data analysis methods to fulfill your aims. These methods need to be justified by providing proper reasoning. Remember that the reader should not feel that you chose your method haphazardly. Rather write in the data analysis chapter dissertation how you find these approaches meaningful. 

3. Make Use of Info Graphics 

It can be difficult to cover large amounts of information within a given word count limit in dissertation data analysis. So, you should use all the possible means to present the data that you collected. Consider using diagrams, graphs, charts, and formulas to provide a unique advantage to the paper. If it seems difficult for you to present your findings in a presentational way, then availing yourself of dissertation writing services UK can be one of the best possible options. These experts can better illustrate the data in a succinate manner that no longer bores the reader with long phrases. 

4. Explain Thoroughly 

Most of the students make this mistake when conducting qualitative data analysis in dissertations. They think that writing a quote is enough for the reader to understand. Remember, a qualitative data analysis dissertation never speaks for itself. You should demonstrate all the areas with a critical perspective so that no ambiguity remains for the reader.  

5. Write Some Data in the Appendix  

It is always scary for the writer to remove long information from dissertation data analysis if it seems irrelevant after proofreading. If you feel unwilling to cut down the long data that you spend hours collecting, then simply shift it to the appendix. Only the most relevant snippet of the information should be part of the dissertation itself. 

The National Academies Press presents a sample of the appendix where questionnaires are used to illustrate the data. 

statistical analysis in dissertation

6. Consider Various Interpretations 

You will cover this part in the discussion chapter of the data collection and analysis dissertation. Here demonstrate the trends, patterns and themes within the data. Highlight the strengths as well as limitations so that there must not be any bias in the findings. 

7. Relate With Previous Literature 

It is advisable to compare your dissertation data analysis with other academia to highlight the points of agreement and differences. Make sure that your findings are consistent with the previous data or does it create some sort of controversy in the literature? It is important to create this link explicitly. 

8. Seek Professional Help 

Writing a dissertation itself is not a difficult process. A researcher who can go through the complex research process can also perform well in writing those findings. However, the critical analysis of these findings may be challenging. Dissertation data analysis is more than presenting what has been found out after experimentation. 

If including a critical perspective in your writing is difficult for you, ask a dissertation writer to conduct these critiques for you. These experts offer customized assistance tailored to the specific needs of the researcher. 

How Do You Write a Statistical Analysis for A Dissertation?

To write the statistical dissertation data analysis, the below five-step guide can direct you to its effective implementation. 

  • Describe your hypothesis and research design.
  • Data collection. 
  • Summarise your findings and give a descriptive explanation. 
  • Test your hypothesis. 
  • Interpret findings. 

Data Analysis Dissertation Examples

The Bridge Point Education describes the whole dissertation writing process. The dissertation data analysis chapter can be helpful for students struggling with the complexity of it. All the related details, such as what to discuss here and how to align with the research design, are mentioned in side notes as,  

Conclusion 

The dissertation data analysis is one of the most important chapters of your dissertation. It involves the critical evaluation of your results. Consequently, you will tell the reader how the specific methodology and the draw conclusions are sound to be used in your research design. 

The data analysis section of a dissertation is not only essential but also difficult. Many students struggle here as they do not know how to identify the related pattern and organize their thoughts. That is why we presented expert tips to assist the process smoothly. It involves using relevant data, an appropriate approach, a thorough explanation, infographics, an appendix, or relating your findings to previous literature. All of this means contributing to the quality of your paper.

CLICK HERE TO DONATE TO OUR NONPROFIT NEWSROOM

Our Friends

Our Friends is the by-line for Sponsored Content on DC Report. The content is provided by a sponsoring party to provide information to our readers. Image by kiquebg from Pixabay.

View all posts

Comments are closed.

Type above and press Enter to search. Press Esc to cancel.

  • How it works

service image 										book imgae

Dissertation Statistical Analysis Samples and Examples

Are you done with the rest of your dissertation but unable to perform the statistical analysis? To help you overcome this issue, our professionals have gathered a list of samples of dissertation statistical analysis for you to take inspiration from and start working on your dissertation. These high-quality dissertation statistical analysis samples have been specially prepared to provide students with a path to follow. Our writers can work with all statistical analysis softwares, including SPSS, Stata, SAS, R, MATLAB, JMP, Python, and Excel.

Dissertation Statistical Analysis Sample

Discipline: Linguistic

Quality: 2:1 / 69%

Discipline: Public Health

Based on the graphical representation, at least 49% of the total participants have a household..

Statistical Analysis

Geography Statistical

The graphs below show the distribution companies’ operating margins..

Our dissertation statistical analysis service features, subject specialists.

We have writers specialising in their respective subjects to ensure high quality.

Thoroughly Researched

We make sure that the content is thoroughly researched and referenced.

Analysis Software

We work in all statistical softwares and can use the one according to your requirements.

Free Revisions

We offer free unlimited revisions until the client is satisfied with the results.

Our focus is on providing services that are affordable to everyone to help the majority of people.

On-Time Delivery

We deliver work timely, and if for some reason we fail, our refund policy is smooth.

Loved by over 100,000 students

Thousands of students have used ResearchProspect academic support services to improve their grades. Why are you waiting?

sitejabber

“I couldn’t figure out how to do statistical analysis for my literature dissertation. I saw their dissertation statistical analysis sample and placed my order. Very happy with the results!"

review image

Law Student

“I want to thank ResearchProspect for my excellent grades in my dissertation. Their statistical analysis was very helpful."

review image

Economics Student

Frequently Ask Questions?

How our statistical analysis samples can help.

Statistical analysis is a critical aspect of a dissertation and makes up the fourth chapter of a thesis, i.e., results and findings. Statistical analysis is the collection and interpretation of data to reveal trends and patterns or test a hypothesis.

SPSS, STATA, reviews, R, Nvivo, SAS, and others are some of the most commonly used statistical analysis software in colleges and universities worldwide.

When conducting statistical analysis for your dissertation, you can expect to work with numbers, descriptions, and themes. Accurately identify your research variables in the preceding chapters. The data interpretation stems from establishing the aim and objectives.

Choosing the correct variables will help you group data according to your research objectives and conduct statistical analysis accurately.

Your topic, academic level, and academic subjective determine what type of statistical test you should conduct. Based on your research aim and objective, you will have to decide which tests should be conducted.

We suggest that you start your data analysis off by considering the following seven statistical techniques before moving to more complex techniques for quantitative data.

  • Arithmetic Mean Statistical Analysis Technique
  • Standard Deviation Statistical Analysis Technique
  • Skewness Statistical Analysis Technique
  • Hypothesis Testing Statistical Analysis Technique
  • Regression Statistical Analysis Technique
  • Correlation Statistical Analysis Technique
  • Monte Carlo Simulation Statistical Analysis Technique

Interpret the results after statistical analysis. Include all relevant tables, graphs, and charts to present your data and results explicitly. You must provide a brief explanation justifying the relevance and signification of each table, graph, and chart.

Your data interpretation and results explanation should be simple and easy to understand so that readers can comprehend all results.

The  dissertation statistical analysis  is the meat of your study. After you have presented and interpreted the results, it is recommended that you crosscheck the data and the results. Errors in data handling can lead to incorrect analysis and interpretation.

Recheck the identified variables to make sure they are appropriate. Validate whether the data input process was error-free and the results obtained are reliable.

Finally, make sure to move any less relevant graphics and visuals to the appendices section.

Do not be hasty when conducting statistical analysis because readers are particularly interested in your research findings. Presenting incorrect data and misleading patterns can undermine your academic integrity. Make sure that you verify your data and results immediately after running tests.

How ResearchProspect can help?

Are you stuck with the statistical analysis of your dissertation? Unsure about the accuracy of the results? Whatever your situation is, get in touch with our team now if you have hit the dead end.

Our statistical analysis experts and highly qualified writers are here to help! We will handle your data collection and testing woes. The statistical analysis will be exactly in line with your research question or hypothesis and make your dissertation stand out.

What is the dissertation statistical analysis process?

On receiving your order, our customer services team will get in touch. We request prompt payment to avoid delays. We’ll find a suitable writer to get into your statistical analysis. It will require input from you so we can conduct appropriate analysis on your complete and uncontaminated data. This is how we can produce the cleanest most concise results.

What are the features of our dissertation statistical analysis service?

  • Using our dissertation statistics service means you can be sure your data analysis will be completed by a writer with the relevant skills and experience.
  • Every statistical analysis order we fulfil is measured against our strict quality control process. This ensures it’s in line with the necessary academic standards.
  • You can specify the software you prefer the writer to use to carry out the statistical analysis: SPSS, Excel, STATA, eViews… we are familiar with them all.
  • The dissertation statistical analysis service allows you free unlimited revisions until you are fully satisfied with the work. This is a standard part of the services we offer.
  • When you receive your analysis, you will also get a plagiarism report, produced by our in-house plagiarism-checking software. It will confirm that your work is totally original and free of plagiarism.

Explore More Samples

View our professional samples to be certain that we have the portofilio and capabilities to deliver what you need.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

IMAGES

  1. Analysis In A Research Paper

    statistical analysis in dissertation

  2. 7 Types of Statistical Analysis: Definition and Explanation

    statistical analysis in dissertation

  3. Statistical Analysis in a Dissertation: 4 Expert Tips for Academic Success

    statistical analysis in dissertation

  4. Standard statistical tools in research and data analysis

    statistical analysis in dissertation

  5. How do I write a statistical analysis and results section?

    statistical analysis in dissertation

  6. (PDF) Practical Data Analysis: An Example

    statistical analysis in dissertation

VIDEO

  1. Demographic Analysis in SPSS

  2. Simplify Your Quantitative Results Chapter

  3. Quantitative Analysis Webinar: Conducting, Interpreting, & Writing

  4. Day 2: Statistical Data Analysis using R Programming for Staff and Students of Makerere University

  5. Selecting Statistical Analyses Made Easy

  6. Analysis of Covariance (ANOVA)

COMMENTS

  1. Dissertation Results/Findings Chapter (Quantitative)

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

  2. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  3. Step 7: Data analysis techniques for your dissertation

    As a result, you have to run another statistical test (e.g., a Wilcoxon signed-rank test instead of a dependent t-test). At this stage in the dissertation process, it is important, or at the very least, useful to think about the data analysis techniques you may apply to your data when it is collected. We suggest that you do this for two reasons:

  4. How to Write a Results Section

    The results chapter of a thesis or dissertation presents your research results concisely and objectively. In quantitative research, for each question or hypothesis, state: The type of analysis used; Relevant results in the form of descriptive and inferential statistics; Whether or not the alternative hypothesis was supported

  5. Introduction to Research Statistical Analysis: An Overview of the

    Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

  6. Dissertation Data Analysis Plan

    Dissertation methodologies require a data analysis plan. Your dissertation data analysis plan should clearly state the statistical tests and assumptions of these tests to examine each of the research questions, how scores are cleaned and created, and the desired sample size for that test. The selection of statistical tests depend on two factors ...

  7. What Is a Research Methodology?

    Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, ... 1987). The data were then analyzed using a two-way ANOVA with statistical software SPSS. Qualitative methods. In qualitative research, your analysis will be based on ...

  8. Consideration 1: The data analysis process for a ...

    The data analysis process involves three steps: (STEP ONE) select the correct statistical tests to run on your data; (STEP TWO) prepare and analyse the data you have collected using a relevant statistics package; and (STEP THREE) interpret the findings properly so that you can write up your results (i.e., usually in Chapter Four: Results ).

  9. Basic statistical tools in research and data analysis

    Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if ...

  10. Raw Data to Excellence: Master Dissertation Analysis

    When conducting dissertation data analysis, researchers often utilize basic statistical analysis techniques to gain insights and draw conclusions from their data. These techniques involve the application of statistical measures to summarize and examine the data. Here are some common types of basic statistical analysis used in dissertation research:

  11. Statistical Analysis in a Dissertation: 4 Expert Tips for Academic Success

    How To Conduct Statistical Analysis in a Dissertation 1. Selecting the Appropriate Statistical Test. Depending on the variables being examined and the nature/type of the queries that need to be resolved, we assist in choosing the most suitable statistical test. Whether category or numerical data is being evaluated also makes a difference.

  12. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  13. Statistical Methods in Theses: Guidelines and Explanations

    Guidelines and Explanations. In light of the changes in psychology, faculty members who teach statistics/methods have reviewed the literature and generated this guide for graduate students. The guide is intended to enhance the quality of student theses by facilitating their engagement in open and transparent research practices and by helping ...

  14. PDF Guideline to Writing a Master's Thesis in Statistics

    A master's thesis is an independent scientific work and is meant to prepare students for future professional or academic work. Largely, the thesis is expected to be similar to papers published in statistical journals. It is not set in stone exactly how the thesis should be organized. The following outline should however be followed. Title Page

  15. Mathematics and Statistics Theses and Dissertations

    Theses/Dissertations from 2016 PDF. A Statistical Analysis of Hurricanes in the Atlantic Basin and Sinkholes in Florida, Joy Marie D'andrea. PDF. Statistical Analysis of a Risk Factor in Finance and Environmental Models for Belize, Sherlene Enriquez-Savery. PDF

  16. PDF Study Design and Statistical Analysis

    Study Design and Statistical Analysis A Practical Guide for Clinicians This book takes the reader through the entire research process: choosing a question, designing a study, collecting the data, using univariate, bivariate and multivariable analysis, and publishing the results. It does so by using plain language rather than complex

  17. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarise your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  18. Dissertation Consulting

    Dissertation Consulting Results Chapter: Statistical Analysis. Our dissertation consulting team can help you with any or all of the following steps in statistical analysis: Getting your dataset ready for analysis; Inputting, organizing, coding, merging, managing, and cleaning your data; Creating composite scores and labeling your data

  19. Descriptive Statistics

    There are 3 main types of descriptive statistics: The distribution concerns the frequency of each value. The central tendency concerns the averages of the values. The variability or dispersion concerns how spread out the values are. You can apply these to assess only one variable at a time, in univariate analysis, or to compare two or more, in ...

  20. Writing with Descriptive Statistics

    Usually there is no good way to write a statistic. It rarely sounds good, and often interrupts the structure or flow of your writing. Oftentimes the best way to write descriptive statistics is to be direct. If you are citing several statistics about the same topic, it may be best to include them all in the same paragraph or section.

  21. 8 Tips for Writing Dissertation Data Analysis

    How Do You Write Data Analysis Dissertation? 8 Tips. In presenting data analysis for dissertation, you need to define the statistical test conducted for the process. You will also crack the assumptions underlying these tests, the sample size and how to conclude. Here we will demystify the process of writing the data analysis of your dissertation.

  22. Choosing the Right Statistical Test

    Categorical variables represent groupings of things (e.g. the different tree species in a forest). Types of categorical variables include: Ordinal: represent data with an order (e.g. rankings). Nominal: represent group names (e.g. brands or species names). Binary: represent data with a yes/no or 1/0 outcome (e.g. win or lose).

  23. Dissertation Statistical Analysis Samples and Examples

    Statistical analysis is a critical aspect of a dissertation and makes up the fourth chapter of a thesis, i.e., results and findings. Statistical analysis is the collection and interpretation of data to reveal trends and patterns or test a hypothesis. SPSS, STATA, reviews, R, Nvivo, SAS, and others are some of the most commonly used statistical ...