Check Out the New Website Shop!

Teaching with a Mountain View

Novels & Picture Books

critical thinking and math

Anchor Charts

Classroom

  • Critical Thinking

How To Encourage Critical Thinking in Math

By Mary Montero

Share This Post:

  • Facebook Share
  • Twitter Share
  • Pinterest Share
  • Email Share

Critical thinking in math helps students learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different strategies.

Critical thinking is more than just a buzzword… It’s an essential skill that helps students develop problem-solving abilities and make logical connections between different concepts. By encouraging critical thinking in math, students learn to approach problems more thoughtfully, they learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different strategies for finding the solution. Critical thinking also involves a great deal of persistence. Those are critical life skills!

When you think about it, students are typically asked to solve math problems and find the answer. Showing their work is frequently stressed too, which is important, but not the end. Instead, students need to be able to look at math in different ways in order to truly grasp a complete understanding of math concepts. Mathematics requires logical reasoning, problem-solving, and abstract thinking.

Critical thinking in math helps students learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different strategies.

What Does Critical Thinking in Math Look Like?

When I think about critical thinking in math, I focus on:

  • Solving problems through logical thinking . Students learn how to break down complex problems, analyze the different parts, and understand how they fit together logically.
  • Identifying patterns and making connections. Students learn how to identify patterns across different math concepts, make connections between seemingly unrelated topics, and develop a more in-depth understanding of how math works.
  • Evaluating and comparing solutions. Students learn to evaluate which solution is best for a given problem and identify any flaws in their reasoning or others’ reasoning when looking at different solutions

Mathematician Posters

These FREE Marvelous Mathematician posters have been a staple in my classroom for the last 8+ years! I first started using a version from MissMathDork and adapted them for my classroom over the years. 

free marvelous mathematician posters

I print, laminate, and add magnetic stickers on the back. At the beginning of the year, I only put one or two up at a time depending on our area of focus. Now, they are all hanging on my board, and I’ll pull out different ones depending on our area of focus. They are so empowering to my mathematicians and help them stay on track!

A Marvelous Mathematician:

  • knows that quicker doesn’t mean better
  • looks for patterns
  • knows mistakes happen and keeps going
  • makes sense of the most important details
  • embraces challenges and works through frustrations
  • uses proper math vocabulary to explain their thinking
  • shows their work and models their thinking
  • discusses solutions and evaluates reasonableness
  • gives context by labeling answers
  • applies mathematical knowledge to similar situations
  • checks for errors (computational and conceptual)

Critical Thinking Math Activities

Here are a few of my favorite critical thinking activities. 

Square Of Numbers

I love to incorporate challenge problems (use Nrich and Openmiddle to get started) because they teach my students so much more than how to solve a math problem. They learn important lessons in teamwork, persistence, resiliency, and growth mindset. We talk about strategies for tackling difficult problems and the importance of not giving up when things get hard.

This square of numbers challenge was a hit!

ALL kids need to feel and learn to embrace challenge. Oftentimes, kids I see have rarely faced an academic challenge. Things have just come easy to them, so when it doesn’t, they can lack strategies that will help them. In fact, they will often give up before they even get started.

I tell them it’s my job to make sure I’m helping them stretch and grow their brain by giving them challenges. They don’t love it at first, but they eventually do! 

This domino challenge was another one from Nrich . I’m always on the hunt for problems like this!!  How would you guide students toward an answer??

Nrich domino challenge math puzzler for critical thinking in math

Fifteen Cards

This is a well-loved math puzzle with my students, and it’s amazing for encouraging students to consider all options when solving a math problem.

fifteen cards Nrich math puzzler for critical thinking in math

We have number cards 1-15 (one of each number) and only seven are laid out. With the given clues, students need to figure out which seven cards should be put out and in what order. My students love these, and after they’ve done a few, they enjoy creating their own, too! Use products, differences, and quotients to increase the challenge.

This is also adapted from Nrich, which is an AMAZING resource for math enrichment!

This is one of my favorite fraction lessons that I’ve done for years! Huge shout out to Meg from The Teacher Studio for this one. I give each child a slip of paper with this figure and they have to silently write their answer and justification. Then I tally up the answers and have students take a side and DEBATE with their reasoning! It’s an AMAZING conversation, and I highly recommend trying it with your students. 

Sometimes we leave it hanging overnight and work on visual models to make some proofs. 

fourths math puzzler

Logic Puzzles

Logic puzzles are always a hit too! You can enrich and extend your math lessons with these ‘Math Mystery’ logic puzzles that are the perfect challenge for 4th, 5th, and 6th grades. The puzzles are skills-based, so they integrate well with almost ANY math lesson. You can use them to supplement instruction or challenge your fast-finishers and gifted students… all while encouraging critical thinking about important math skills!

 math logic puzzles for critical thinking in math

Three levels are included, so they’re perfect to use for differentiation.

  • Introductory logic puzzles are great for beginners (4th grade and up!)
  • Advanced logic puzzles are great for students needing an extra challenge
  • Extra Advanced logic puzzles are perfect for expert solvers… we dare you to figure these puzzles out! 

Do you have a group of students who are ready for more of a fraction challenge? My well-loved fraction puzzlers are absolutely perfect for fraction enrichment. They’ll motivate your students to excel at even the most challenging tasks! 

fraction math puzzlers for critical thinking

Math Projects

Math projects are another way to differentiation while building critical thinking skills. Math projects hold so much learning power with their real-world connections, differentiation options, collaborative learning opportunities, and numerous avenues for cross curricular learning too. 

If you’re new to math projects, I shared my best tips and tricks for using math projects in this blog post . They’re perfect for cumulative review, seasonal practice, centers, early finisher work, and more.

math projects upper elementary

I use both concept-based math projects to focus on specific standards and seasonal math projects that integrate several skills.

Place Value Detectives Lay 804151 2642763 1

Error Analysis

Finally, error analysis is always a challenging way to encourage critical thinking. When we use error analysis, we encourage students to analyze their own mistakes to prevent making the same mistakes in the future.

For my gifted students, I use error analysis tasks as an assessment when they have shown mastery of a unit during other tasks. For students in the regular classroom needing enrichment, I usually have them complete the tasks in a center or with a partner.

For students needing extra support, we complete error analysis in small groups.  We go step-by-step through the concept and they are always able to eventually identify what the error is. It is so empowering to students when they finally figure out the error AND it helps prevent them from making the same error in the future!

My FREE addition error analysis is a good place to start, no matter the grade level. I show them the process of walking through the problem and how best to complete an error analysis task.

When you’re ready for more, this bundle of error analysis tasks contains more than 240 tasks to engage and enrich your students in critical thinking practice.

Division Strategies Error AnalysisIMG 0763 3512378 6647195 jpg

If you want to dig even deeper, visit this conceptual vs computational error analysis post to learn more about using error analysis in the classroom. 

analyzing errors anchor chart for error analysis

Related Critical Thinking Posts

  • How to Increase Critical Thinking and Creativity in Your “Spare” Time
  • More Tips to Increase Critical Thinking

Critical thinking is essential for students to develop a deeper understanding of math concepts, problem-solving skills, and a stronger ability to reason logically. When you learn how to encourage critical thinking in math, you’re setting your students up for success not only in more advanced math subjects they’ll encounter, but also in life. 

How do you integrate critical thinking in your classroom? Come share your ideas with us in our FREE Inspired In Upper Elementary Facebook group .

facebook group promo 3

Mary Montero

I’m so glad you are here. I’m a current gifted and talented teacher in a small town in Colorado, and I’ve been in education since 2009. My passion (other than my family and cookies) is for making teachers’ lives easier and classrooms more engaging.

You might also like…

Setting2BHigh2BAcademic2BStandards2B252812529

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

One Comment

Mary Thankyou for your inspirational activities. I have just read and loved the morning talk activities. I do have meetings with my students but usually at end of day. What time do you

Comment “EARTH” to grab a link to these math and reading Earth Day Resources! 🌎 There is everything from original podcasts to reader’s theatre tasks to planning and planting new grids of trees! It’s perfect for this week or next. ☀️

©2023 Teaching With a Mountain View . All Rights Reserved | Designed by Ashley Hughes

Username or Email Address

Remember Me

Lost your password?

Review Cart

No products in the cart.

Wonder Math

How to Improve Problem-Solving Skills: Mathematics and Critical Thinking

how-to-improve-problem-solving-skills

In today’s rapidly changing world, problem-solving has become a quintessential skill. When we discuss the topic, it’s natural to ask, “What is problem-solving?” and “How can we enhance this skill, particularly in children?” The discipline of mathematics offers a rich platform to explore these questions. Through math, not only do we delve into numbers and equations, but we also explore how to improve problem-solving skills and how to develop critical thinking skills in math. Let’s embark on this enlightening journey together.

What is Problem-Solving?

At its core, problem-solving involves identifying a challenge and finding a solution. But it’s not always as straightforward as it sounds. So, what is problem-solving? True problem-solving requires a combination of creative thinking and logical reasoning. Mathematics, in many ways, embodies this blend. When a student approaches a math problem, they must discern the issue at hand, consider various methods to tackle it, and then systematically execute their chosen strategy.

But what is problem-solving in a broader context? It’s a life skill. Whether we’re deciding the best route to a destination, determining how to save for a big purchase, or even figuring out how to fix a broken appliance, we’re using problem-solving.

How to Develop Critical Thinking Skills in Math

Critical thinking goes hand in hand with problem-solving. But exactly how to develop critical thinking skills in math might not be immediately obvious. Here are a few strategies:

  • Contextual Learning: Teaching math within a story or real-life scenario makes it relevant. When students see math as a tool to navigate the world around them, they naturally begin to think critically about solutions.
  • Open-ended Questions: Instead of merely seeking the “right” answer, encourage students to explain their thought processes. This nudges them to think deeply about their approach.
  • Group Discussions: Collaborative learning can foster different perspectives, prompting students to consider multiple ways to solve a problem.
  • Challenging Problems: Occasionally introducing problems that are a bit beyond a student’s current skill level can stimulate critical thinking. They will have to stretch their understanding and think outside the box.

What are the Six Basic Steps of the Problem-Solving Process?

Understanding how to improve problem-solving skills often comes down to familiarizing oneself with the systematic approach to challenges. So, what are the six basic steps of the problem-solving process?

  • Identification: Recognize and define the problem.
  • Analysis: Understand the problem’s intricacies and nuances.
  • Generation of Alternatives: Think of different ways to approach the challenge.
  • Decision Making: Choose the most suitable method to address the problem.
  • Implementation: Put the chosen solution into action.
  • Evaluation: Reflect on the solution’s effectiveness and learn from the outcome.

By embedding these steps into mathematical education, we provide students with a structured framework. When they wonder about how to improve problem-solving skills or how to develop critical thinking skills in math, they can revert to this process, refining their approach with each new challenge.

Making Math Fun and Relevant

At Wonder Math, we believe that the key to developing robust problem-solving skills lies in making math enjoyable and pertinent. When students see math not just as numbers on a page but as a captivating story or a real-world problem to be solved, their engagement skyrockets. And with heightened engagement comes enhanced understanding.

As educators and parents, it’s crucial to continuously ask ourselves: how can we demonstrate to our children what problem-solving is? How can we best teach them how to develop critical thinking skills in math? And how can we instill in them an understanding of the six basic steps of the problem-solving process?

The answer, we believe, lies in active learning, contextual teaching, and a genuine passion for the beauty of mathematics.

The Underlying Beauty of Mathematics

Often, people perceive mathematics as a rigid discipline confined to numbers and formulas. However, this is a limited view. Math, in essence, is a language that describes patterns, relationships, and structures. It’s a medium through which we can communicate complex ideas, describe our universe, and solve intricate problems. Understanding this deeper beauty of math can further emphasize how to develop critical thinking skills in math.

Why Mathematics is the Ideal Playground for Problem-Solving

Math provides endless opportunities for problem-solving. From basic arithmetic puzzles to advanced calculus challenges, every math problem offers a chance to hone our problem-solving skills. But why is mathematics so effective in this regard?

  • Structured Challenges: Mathematics presents problems in a structured manner, allowing learners to systematically break them down. This format mimics real-world scenarios where understanding the structure of a challenge can be half the battle.
  • Multiple Approaches: Most math problems can be approached in various ways . This teaches learners flexibility in thinking and the ability to view a single issue from multiple angles.
  • Immediate Feedback: Unlike many real-world problems where solutions might take time to show results, in math, students often get immediate feedback. They can quickly gauge if their approach works or if they need to rethink their strategy.

Enhancing the Learning Environment

To genuinely harness the power of mathematics in developing problem-solving skills, the learning environment plays a crucial role. A student who is afraid of making mistakes will hesitate to try out different approaches, stunting their critical thinking growth.

However, in a nurturing, supportive environment where mistakes are seen as learning opportunities, students thrive. They become more willing to take risks, try unconventional solutions, and learn from missteps. This mindset, where failure is not feared but embraced as a part of the learning journey, is pivotal for developing robust problem-solving skills.

Incorporating Technology

In our digital age, technology offers innovative ways to explore math. Interactive apps and online platforms can provide dynamic problem-solving scenarios, making the process even more engaging. These tools can simulate real-world challenges, allowing students to apply their math skills in diverse contexts, further answering the question of how to improve problem-solving skills.

More than Numbers 

In summary, mathematics is more than just numbers and formulas—it’s a world filled with challenges, patterns, and beauty. By understanding its depth and leveraging its structured nature, we can provide learners with the perfect platform to develop critical thinking and problem-solving skills. The key lies in blending traditional techniques with modern tools, creating a holistic learning environment that fosters growth, curiosity, and a lifelong love for learning.

Join us on this transformative journey at Wonder Math. Let’s make math an adventure, teaching our children not just numbers and equations, but also how to improve problem-solving skills and navigate the world with confidence. Enroll your child today and witness the magic of mathematics unfold before your eyes!

FAQ: Mathematics and Critical Thinking

1. what is problem-solving in the context of mathematics.

Problem-solving in mathematics refers to the process of identifying a mathematical challenge and systematically working through methods and strategies to find a solution.

2. Why is math considered a good avenue for developing problem-solving skills?

Mathematics provides structured challenges and allows for multiple approaches to find solutions. This promotes flexibility in thinking and encourages learners to view problems from various angles.

3. How does contextual learning enhance problem-solving abilities?

By teaching math within a story or real-life scenario, it becomes more relevant for the learner. This helps them see math as a tool to navigate real-world challenges , thereby promoting critical thinking.

4. What are the six basic steps of the problem-solving process in math?

The six steps are: Identification, Analysis, Generation of Alternatives, Decision Making, Implementation, and Evaluation.

5. How can parents support their children in developing mathematical problem-solving skills?

Parents can provide real-life contexts for math problems , encourage open discussions about different methods, and ensure a supportive environment where mistakes are seen as learning opportunities.

6. Are there any tools or apps that can help in enhancing problem-solving skills in math?

Yes, there are various interactive apps and online platforms designed specifically for math learning. These tools provide dynamic problem-solving scenarios and simulate real-world challenges, making the learning process engaging.

7. How does group discussion foster critical thinking in math?

Group discussions allow students to hear different perspectives and approaches to a problem. This can challenge their own understanding and push them to think about alternative methods.

8. Is it necessary to always follow the six steps of the problem-solving process sequentially?

While the six steps provide a structured approach, real-life problem-solving can sometimes be more fluid. It’s beneficial to know the steps, but adaptability and responsiveness to the situation are also crucial.

9. How does Wonder Math incorporate active learning in teaching mathematics?

Wonder Math integrates mathematics within engaging stories and real-world scenarios, making it fun and relevant. This active learning approach ensures that students are not just passive recipients but active participants in the learning process.

10. What if my child finds a math problem too challenging and becomes demotivated?

It’s essential to create a supportive environment where challenges are seen as growth opportunities. Remind them that every problem is a chance to learn, and it’s okay to seek help or approach it differently.

Related posts

Summer Math Programs: How They Can Prevent Learning Loss in Young Students

Summer Math Programs: How They Can Prevent Learning Loss in Young Students

As summer approaches, parents and educators alike turn their attention to how they can support young learners during the break. Summer is a time for relaxation, fun, and travel, yet it’s also a critical period when learning loss can occur. This phenomenon, often referred to as the “summer slide,” impacts students’ progress, especially in foundational subjects like mathematics. It’s reported…

I

Math Programs 101: What Every Parent Should Know When Looking For A Math Program

  As a parent, you know that a solid foundation in mathematics is crucial for your child’s success, both in school and in life. But with so many math programs and math help services out there, how do you choose the right one? Whether you’re considering Outschool classes, searching for “math tutoring near me,” or exploring tutoring services online, understanding…

  • Math Resources Links
  • Math in the Real World
  • Differentiated Math Unlocked
  • Math in the Real World Workshop

20 Math Critical Thinking Questions to Ask in Class Tomorrow

chaput.caroline

  • November 20, 2023

give intentional and effective feedback for students with 10 critical thinking prompts for algebra 1

The level of apathy towards math is only increasing as each year passes and it’s up to us as teachers to make math class more meaningful . This list of math critical thinking questions will give you a quick starting point for getting your students to think deeper about any concept or problem. 

Since artificial intelligence has basically changed schooling as we once knew it, I’ve seen a lot of districts and teachers looking for ways to lean into AI rather than run from it.

The idea of memorizing formulas and regurgitating information for a test is becoming more obsolete. We can now teach our students how to use their resources to make educated decisions and solve more complex problems.

With that in mind, teachers have more opportunities to get their students thinking about the why rather than the how.

Table of Contents

Looking for more about critical thinking skills? Check out these blog posts:

  • Why You Need to Be Teaching Writing in Math Class Today
  • How to Teach Problem Solving for Mathematics
  • Turn the Bloom’s Taxonomy Verbs into Engaging Math Activities

critical thinking questions for any math class

What skills do we actually want to teach our students?

As professionals, we talk a lot about transferable skills that can be valuable in multiple jobs, such as leadership, event planning, or effective communication. The same can be said for high school students. 

It’s important to think about the skills that we want them to have before they are catapulted into the adult world. 

Do you want them to be able to collaborate and communicate effectively with their peers? Maybe you would prefer that they can articulate their thoughts in a way that makes sense to someone who knows nothing about the topic.

Whatever you decide are the most essential skills your students should learn, make sure to add them into your lesson objectives.

algebra 1 critical thinking questions. 10 topics. 190+ prompts. click to learn more

When should I ask these math critical thinking questions?

Critical thinking doesn’t have to be complex or fill an entire lesson. There are simple ways that you can start adding these types of questions into your lessons daily!

Start small

Add specific math critical thinking questions to your warm up or exit ticket routine. This is a great way to start or end your class because your students will be able to quickly show you what they understand. 

Asking deeper questions at the beginning of your class can end up leading to really great discussions and get your students talking about math.

critical thinking and math

Add critical thinking questions to word problems

Word problems and real-life applications are the perfect place to add in critical thinking questions. Real-world applications offer a more choose-your-own-adventure style assignment where your students can expand on their thought processes. 

They also allow your students to get creative and think outside of the box. These problem-solving skills play a critical role in helping your students develop critical thinking abilities.

connect algebra concepts to geometry applications

Keep reading for math critical thinking questions that can be applied to any subject or topic!

When you want your students to defend their answers.

  • Explain the steps you took to solve this problem
  • How do you know that your answer is correct?
  • Draw a diagram to prove your solution.
  • Is there a different way to solve this problem besides the one you used?
  • How would you explain _______________ to a student in the grade below you?
  • Why does this strategy work?
  • Use evidence from the problem/data to defend your answer in complete sentences.

When you want your students to justify their opinions

  • What do you think will happen when ______?
  • Do you agree/disagree with _______?
  • What are the similarities and differences between ________ and __________?
  • What suggestions would you give to this student?
  • What is the most efficient way to solve this problem?
  • How did you decide on your first step for solving this problem?

critical thinking and math

When you want your students to think outside of the box

  • How can ______________ be used in the real world?
  • What might be a common error that a student could make when solving this problem?
  • How is _____________ topic similar to _______________ (previous topic)?
  • What examples can you think of that would not work with this problem solving method?
  • What would happen if __________ changed?
  • Create your own problem that would give a solution of ______________.
  • What other math skills did you need to use to solve this problem?

Let’s Recap:

  • Rather than running from AI, help your students use it as a tool to expand their thinking.
  • Identify a few transferable skills that you want your students to learn and make a goal for how you can help them develop these skills.
  • Add critical thinking questions to your daily warm ups or exit tickets.
  • Ask your students to explain their thinking when solving a word problem.
  • Get a free sample of my Algebra 1 critical thinking questions ↓

10 free math critical thinking writing prompts for algebra 1 and algebra 2

Share this:

7 thoughts on “20 math critical thinking questions to ask in class tomorrow”.

' src=

I would love to see your free math writing prompts, but there is no place for me to sign up. thank you

' src=

Ahh sorry about that! I just updated the button link!

Pingback:  How to Teach Problem Solving for Mathematics -

Pingback:  5 Ways Teaching Collaboration Can Transform Your Math Classroom

Pingback:  3 Ways Math Rubrics Will Revitalize Your Summative Assessments

Pingback:  How to Use Math Stations to Teach Problem Solving Skills

Pingback:  How to Seamlessly Add Critical Thinking Questions to Any Math Assessment

Leave a Reply Cancel reply

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of plosone

Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors

Clio cresswell.

1 School of Mathematics and Statistics, The University of Sydney, Sydney, Australia

Craig P. Speelman

2 School of Arts and Humanities, Edith Cowan University, Joondalup, Australia

Associated Data

All relevant data are within the paper and its Supporting Information files.

Mathematics is often promoted as endowing those who study it with transferable skills such as an ability to think logically and critically or to have improved investigative skills, resourcefulness and creativity in problem solving. However, there is scant evidence to back up such claims. This project tested participants with increasing levels of mathematics training on 11 well-studied rational and logical reasoning tasks aggregated from various psychological studies. These tasks, that included the Cognitive Reflection Test and the Wason Selection Task, are of particular interest as they have typically and reliably eluded participants in all studies, and results have been uncorrelated with general intelligence, education levels and other demographic information. The results in this study revealed that in general the greater the mathematics training of the participant, the more tasks were completed correctly, and that performance on some tasks was also associated with performance on others not traditionally associated. A ceiling effect also emerged. The work is deconstructed from the viewpoint of adding to the platform from which to approach the greater, and more scientifically elusive, question: are any skills associated with mathematics training innate or do they arise from skills transfer?

Introduction

Mathematics is often promoted as endowing those who study it with a number of broad thinking skills such as: an ability to think logically, analytically, critically and abstractly; having capacity to weigh evidence with impartiality. This is a view of mathematics as providing transferable skills which can be found across educational institutions, governments and corporations worldwide. A view material to the place of mathematics in curricula.

Consider the UK government’s commissioned inquiry into mathematics education “Making Mathematics Count” ascertaining the justification that “mathematical training disciplines the mind, develops logical and critical reasoning, and develops analytical and problem-solving skills to a high degree” [ 1 p11]. The Australian Mathematical Sciences Institute very broadly states in its policy document “Vision for a Maths Nation” that “Not only is mathematics the enabling discipline, it has a vital productive role planning and protecting our well-being” (emphasis in original) [ 2 ]. In Canada, British Columbia’s New 2016 curriculum K-9 expressly mentions as part of its “Goals and Rationale”: “The Mathematics program of study is designed to develop deep mathematical understanding and fluency, logical reasoning, analytical thought, and creative thinking.” [ 3 ]. Universities, too, often make such specific claims with respect to their teaching programs. “Mathematics and statistics will help you to think logically and clearly, and apply a range of problem-solving strategies” is claimed by The School of Mathematical Sciences at Monash University, Australia [ 4 ]. The School of Mathematics and Statistics at The University of Sydney, Australia, directly attributes as part of particular course objectives and outcomes skills that include “enhance your problem-solving skills” as part of studies in first year [ 5 ], “develop logical thinking” as part of studies in second year, which was a statement drafted by the lead author in fact [ 6 ], and “be fluent in analysing and constructing logical arguments” as part of studies in third year [ 7 ]. The University of Cambridge’s Faculty of Mathematics, UK, provides a dedicated document “Transferable Skills in the Mathematical Tripos” as part of its undergraduate mathematics course information, which again lists “analytic ability; creativity; initiative; logical and methodical reasoning; persistence” [ 8 ].

In contrast, psychological research, which has been empirically investigating the concept of transferability of skills since the early 1900s, points quite oppositely to reasoning skills as being highly domain specific [ 9 ]. Therefore, support for claims that studying mathematics engenders more than specific mathematics knowledge is highly pertinent. And yet it is largely absent. The 2014 Centre for Curriculum Redesign (CCR) four part paper “Mathematics for the 21st Century: What Should Students Learn?” concludes in its fourth paper titled “Does mathematics education enhance higher-order thinking skills?” with a call to action “… there is not sufficient evidence to conclude that mathematics enhances higher order cognitive functions. The CCR calls for a much stronger cognitive psychology and neuroscience research base to be developed on the effects of studying mathematics” [ 10 ].

Inglis and Simpson [ 11 ], bringing up this very issue, examined the ability of first-year undergraduate students from a high-ranking UK university mathematics department, on the “Four Cards Problem” thinking task, also known as the Wason Selection Task. It is stated as follows.

Each of the following cards have a letter on one side and a number on the other.

equation image

Here is a rule: “if a card has a D on one side, then it has a 3 on the other”. Your task is to select all those cards, but only those cards, which you would have to turn over in order to find out whether the rule is true or false. Which cards would you select?

This task involves understanding conditional inference, namely understanding the rule “If P then Q” and with this, deducing the answer as “P and not Q” or “D and 7”. Such logical deduction indeed presents as a good candidate to test for a potential ability of the mathematically trained. This task has also been substantially investigated in the domain of the psychology of reasoning [ 12 p8] revealing across a wide range of publications that only around 10% of the general population reach the correct result. The predominant mistake being to pick “D and 3”; where in the original study by Wason [ 13 ] it is suggested that this was picked by 65% of people. This poor success rate along with a standard mistake has fuelled interest in the task as well as attempts to understand why it occurs. A prevailing theory being the so named matching bias effect; the effect of disproportionately concentrating on items specifically mentioned in the situation, as opposed to reasoning according to logical rules.

Inglis and Simpson’s results isolated mathematically trained individuals with respect to this task. The participants were under time constraint and 13% of the first-year undergraduate mathematics students sampled reached the correct response, compared to 4% of the non-mathematics (arts) students that was included. Of note also was the 24% of mathematics students as opposed to 45% of the non-mathematics students who chose the standard mistake. The study indeed unveiled that mathematically trained individuals were significantly less affected by the matching bias effect with this problem than the individuals without mathematics training. However, the achievement of the mathematically trained group was still far from masterful and the preponderance for a non-standard mistake compared with non-mathematically trained people is suggestive. Mathematical training appears to engender a different thinking style, but it remains unclear what the difference is.

Inglis, Simpson and colleagues proceeded to follow up their results with a number of studies concentrated on conditional inference in general [ 14 , 15 ]. A justification for this single investigatory pathway being that if transfer of knowledge is present, something subtle to test for in the first place, a key consideration should be the generalisation of learning rather than the application of skills learned in one context to another (where experimenter bias in the choice of contexts is more likely to be an issue). For this they typically used sixteen “if P then Q” comprehension tasks, where their samples across a number of studies have included 16-year-old pre-university mathematics students (from England and Cyprus), mathematics honours students in their first year of undergraduate university study, third year university mathematics students, and associated control groups. The studies have encompassed controls for general intelligence and thinking disposition prior to training, as well as follows ups of up to two years to address the issue of causation. The conclusive thinking pattern that has emerged is a tendency of the mathematical groups towards a greater likelihood of rejecting the invalid denial of the antecedent and affirmation of the consequent inferences. But with this, and this was validated by a second separate study, the English mathematics group actually became less likely to endorse the valid modus tollens inference. So again, mathematical training appears to engender a different thinking style, but there are subtleties and it remains unclear what the exact difference is.

This project was designed to broaden the search on the notion that mathematics training leads to increased reasoning skills. We focused on a range of reasoning problems considered in psychological research to be particularly insightful into decision making, critical thinking and logical deduction, with their distinction in that the general population generally struggles with answering them correctly. An Australian sample adds diversity to the current enquiries that have been European focussed. Furthermore, in an effort to identify the impact of mathematics training through a possible gradation effect, different levels of mathematically trained individuals were tested for performance.

Well-studied thinking tasks from a variety of psychological studies were chosen. Their descriptions, associated success rates and other pertinent details follows. They were all chosen as the correct answer is typically eluded for a standard mistake.

The three-item Cognitive Reflection Test (CRT) was used as introduced by Frederick [ 16 ]. This test was devised in line with the theory that there are two general types of cognitive activity: one that operates quickly and without reflection, and another that requires not only conscious thought and effort, but also an ability to reflect on one’s own cognition by including a step of suppression of the first to reach it. The three items in the test involve an incorrect “gut” response and further cognitive skill is deemed required to reach the correct answer (although see [ 17 ] for evidence that correct responses can result from “intuition”, which could be related to intelligence [ 18 ]).

In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the lake?

If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?

Bat and ball

A bat and a ball cost $1.10 in total. The bat costs a dollar more than the ball. How much does the ball cost?

The solutions are: 47 days for the Lily Pads problem, 5 minutes for the Widgets problem and 5 cents for the Bat and Ball problem. The considered intuitive, but wrong, answers are 24 days, 100 minutes and 10 cents, respectively. These wrong answers are attributed to participants becoming over focused on the numbers so as to ignore the exponential growth pattern in the Lily Pads problem, merely complete a pattern in numbers in the Widgets problem, and neglect the relationship “more than” in the Bat and Ball problem [ 19 ]. The original study by Frederick [ 16 ] provides a composite measure of the performance on these three items, with only 17% of those studied (n = 3428) reaching the perfect score. The CRT has since been studied extensively [ 19 – 21 ]. Research using the CRT tends not to report performance on the individual items of the test, but rather a composite measure of performance. Attridge and Inglis [ 22 ] used the CRT as a test for thinking disposition of mathematics students as one way to attempt to disentangle the issue of filtering according to prior thinking styles rather than transference of knowledge in successful problem solving. They repeat tested 16-year old pre-university mathematics students and English literature students without mathematics subjects at a one-year interval and found no difference between groups.

Three problems were included that test the ability to reason about probability. All three problems were originally discussed by Kahneman and Tversky [ 23 ], with the typically poor performance on these problems explained by participants relying not on probability knowledge, but a short-cut method of thinking known as the representativeness heuristic. In the late 1980s, Richard Nisbett and colleagues showed that graduate level training in statistics, while not revealing any improvement in logical reasoning, did correlate with higher-quality statistical answers [ 24 ]. Their studies lead in particular to the conclusion that comprehension of, what is known as the law of large numbers, did show improvement with training. The first of our next three problems targeted this law directly.

A certain town is served by two hospitals. In the larger hospital, about 45 babies are born each day, and in the smaller hospital, about 15 babies are born each day. As you know, about 50 percent of all babies are boys. However, the exact percentage varies from day to day. Sometimes it may be higher than 50 percent, sometimes lower. For a period of one year, each hospital recorded the number of days on which more than 60 percent of the babies born were boys. Which hospital do you think recorded more such days? (Circle one letter.)

  • (a) the larger hospital
  • (b) the smaller hospital
  • (c) about the same (that is, within 5 percent of each other)

Kahneman and Tversky [ 23 ] reported that, of 50 participants, 12 chose (a), 10 chose (b), and 28 chose (c). The correct answer is (b), for the reason that small samples are more likely to exhibit extreme events than large samples from the same population. The larger the sample, the more likely it will exhibit characteristics of the parent population, such as the proportion of boys to girls. However, people tend to discount or be unaware of this feature of sampling statistics, which Kahneman and Tversky refer to as the law of large numbers. Instead, according to Kahneman and Tversky, people tend to adhere to a fallacious law of small numbers, where even small samples are expected to exhibit properties of the parent population, as illustrated by the proportion of participants choosing the answer (c) in their 1972 study. Such thinking reflects use of the representativeness heuristic, whereby someone will judge the likelihood of an uncertain event based on how similar it is to characteristics of the parent population of events.

Birth order

All families of six children in a city were surveyed. In 72 families the exact order of births of boys and girls was GBGBBG.

  • (a) What is your estimate of the number of families surveyed in which the exact order of births was BGBBBB?
  • (b) In the same survey set, which, if any, of the following two sequences would be more likely: BBBGGG or GBBGBG?

All of the events listed in the problem have an equal probability, so the correct answer to (a) is 72, and to (b) is “neither is more likely”. Kahneman and Tversky [ 23 ] reported that 75 of 92 participants judged the sequence in (a) as less likely than the given sequence. A similar number (unspecified by Kahneman and Tversky, but the statistical effect was reported to be of the same order as in (a)) reported that GBBGBG was the more likely sequence. Again, Kahneman and Tversky suggested that these results reflected use of the representativeness heuristic. In the context of this problem, the heuristic would have taken the following form: some birth orders appear less patterned than others, and less patterned is to be associated with the randomness of birth order, making them more likely.

Coin tosses

In a sequence of coin tosses (the coin is fair) which of the following outcomes would be most likely (circle one letter):

  • (a) H T H T H T H T
  • (b) H H H H T T T T
  • (c) T T H H T T H H
  • (d) H T T H T H H T
  • (e) all of the above are equally likely

The correct answer in this problem is (e). Kahneman and Tversky [ 23 ] reported that participants tend to choose less patterned looking sequences (e.g., H T T H T H H T) as more likely than more systematic looking sequences (e.g., H T H T H T H T). This reasoning again reflects the representativeness heuristic.

Three further questions from the literature were included to test problem solving skill.

Two drivers

Two drivers set out on a 100-mile race that is marked off into two 50-mile sections. Driver A travels at exactly 50 miles per hour during the entire race. Driver B travels at exactly 45 mph during the first half of the race (up to the 50-mile marker) and travels at exactly 55 mph during the last half of the race (up to the finish line). Which of the two drivers would win the race? (Circle one letter.)

  • (a) Driver A would win the race
  • (b) Driver B would win the race
  • (c) the two drivers would arrive at the same time (within a few seconds of one another)

This problem was developed by Pelham and Neter [ 25 ]. The correct answer is (a), which can be determined by calculations of driving times for each Driver, using time = distance/velocity. Pelham and Neter argue, however, that (c) is intuitively appealing, on the basis that both drivers appear to have the same overall average speed. Pelham and Neter reported that 67% of their sample gave this incorrect response to the problem, and a further 13% selected (b).

Petrol station

Imagine that you are driving along the road and you notice that your car is running low on petrol. You see two petrol stations next to each other, both advertising their petrol prices. Station A’s price is 65c/litre; Station B’s price is 60c/litre. Station A’s sign also announces: “5c/litre discount for cash!” Station B’s sign announces “5c/litre surcharge for credit cards.” All other factors being equal (for example, cleanliness of the stations, number of cars waiting at each etc), to which station would you choose to go, and why?

This problem was adapted from one described by Galotti [ 26 ], and is inspired by research reported by Thaler [ 27 ]. According to Thaler’s research, most people prefer Station A, even though both stations are offering the same deal: 60c/litre for cash, and 65c/litre for credit. Tversky and Kahneman [ 28 ] explain this preference by invoking the concept of framing effects. In the context of this problem, such an effect would involve viewing the outcomes as changes from some initial point. The initial point frames the problem, and provides a context for viewing the outcome. Thus, depending on the starting point, outcomes in this problem can be viewed as either a gain (in Station A, you gain a discount if you use cash) or a loss (in Station B, you are charged more (a loss) for using credit). Given that people are apparently more concerned about a loss than a gain [ 29 ], the loss associated with Station B makes it the less attractive option, and hence the preference for Station A. The correct answer, though, is that the stations are offering the same deal and so no station should be preferred.

And finally, a question described by Stanovich [ 30 , 31 ] as testing our predisposition for cognitive operations that require the least computational effort.

Jack looking at Anne

Jack is looking at Anne, but Anne is looking at George. Jack is married, but George is not. Is a married person looking at an unmarried person? (Circle one letter.)

  • (c) Cannot be determined

Stanovich reported that over 80% of people choose the “lazy” answer (c). The correct answer is (a).

The above questions survey, in a clear problem solving setting, an ability to engage advanced cognitive processing in order to critically evaluate and possibly override initial gut reasoning, an ability to reason about probability within the framework of the law of large numbers and the relationship between randomness and patterning, an ability to isolate salient features of a problem and, with the last question in particular, an ability to map logical relations. It might be hypothesised that according to degrees of mathematical training, in line with the knowledge base provided and the claims of associated broad and enhanced problem-solving abilities in general, that participants with greater degrees of such training would outperform others on these questions. This hypothesis was investigated in this study. In addition, given that no previous study on this issue has examined the variety of problems used in this study, we also undertook an exploratory analysis to investigate whether there exist any associations between the problems in terms of their likelihood of correct solution. Similarities between problems might indicate which problem solving domains could be susceptible to the effects of mathematics training.

A questionnaire was constructed containing the problems described in the previous sections plus the Four Cards Problem as tested by Inglis and Simpson [ 11 ] for comparison. The order of the problems was as follows: 1) Lily Pads; 2) Hospitals; 3) Widgets; 4) Four Cards; 5) Bat and Ball; 6) Birth Order; 7) Petrol Station; 8) Coin Tosses; 9) Two Drivers; 10) Jack looking at Anne. It was administered to five groups distinctive in mathematics training levels chosen from a high-ranking Australian university, where the teaching year is separated into two teaching semesters and where being a successful university applicant requires having been highly ranked against peers in terms of intellectual achievement:

  • Introductory—First year, second semester, university students with weak high school mathematical results, only enrolled in the current unit as a compulsory component for their chosen degree, a unit not enabling any future mathematical pathway, a typical student may be enrolled in a Biology or Geography major;
  • Standard—First year, second semester, university students with fair to good high school mathematical results, enrolled in the current mathematics unit as a compulsory component for their chosen degree with the possibility of including some further mathematical units in their degree pathway, a typical student may be enrolled in an IT or Computer Science major;
  • Advanced1—First year, second semester, university mathematics students with very strong interest as well as background in mathematics, all higher year mathematical units are included as possible future pathway, a typical student may be enrolled in a Mathematics or Physics major;
  • Advanced2—Second year, second semester, university mathematics students with strong interest as well as background in mathematics, typically a direct follow on from the previously mentioned Advanced1 cohort;
  • Academic—Research academics in the mathematical sciences.

Participants

123 first year university students volunteered during “help on demand” tutorial times containing up to 30 students. These are course allocated times that are supervised yet self-directed by students. This minimised disruption and discouraged coercion. 44 second year university students completed the questionnaire during a weekly one-hour time slot dedicated to putting the latest mathematical concepts to practice with the lecturer (whereby contrast to what occurs in tutorial times the lecturer does most of the work and all students enrolled are invited). All these university students completed the questionnaire in normal classroom conditions; they were not placed under strict examination conditions. The lead author walked around to prevent discussion and coercion and there was minimum disruption. 30 research academics responded to local advertising and answered the questionnaire in their workplace while supervised.

The questionnaires were voluntary, anonymous and confidential. Participants were free to withdraw from the study at any time and without any penalty. No participant took this option however. The questionnaires gathered demographic information which included age, level of education attained and current qualification pursued, name of last qualification and years since obtaining it, and an option to note current speciality for research academics. Each problem task was placed on a separate page. Participants were not placed under time constraint, but while supervised, were asked to write their start and finish times on the front page of the survey to note approximate completion times. Speed of completion was not incentivised. Participants were not allowed to use calculators. A final “Comments Page” gave the option for feedback including specifically if the participants had previously seen any of the questions. Questionnaires were administered in person and supervised to avoid collusion or consulting of external sources.

The responses were coded four ways: A) correct; B) standard error (the errors discussed above in The Study); C) other error; D) left blank.

The ethical aspects of the study were approved by the Human Research Ethics Committee of the University of Sydney, protocol number [2016/647].

The first analysis examined the total number of correct responses provided by the participants as a function of group. Scores ranged from 1 to 11 out of a total possible of 11 (Problem 6 had 2 parts) ( Fig 1 ). An ANOVA of this data indicated a significant effect of group (F(4, 192) = 20.426, p < .001, partial η 2 = .299). Pairwise comparisons using Tukey’s HSD test indicated that the Introductory group performed significantly worse than the Advanced1, Advanced2 and Academic groups. There were no significant differences between the Advanced1, Advanced2 and Academic groups.

An external file that holds a picture, illustration, etc.
Object name is pone.0236153.g001.jpg

Error bars are one standard error of the mean.

Overall solution time, while recorded manually and approximately, was positively correlated with group, such that the more training someone had received, the longer were these solution times (r(180) = 0.247, p = .001). However, as can be seen in Fig 2 , this relationship is not strong.

An external file that holds a picture, illustration, etc.
Object name is pone.0236153.g002.jpg

A series of chi-squared analyses, and their Bayesian equivalents, were performed on each problem, to determine whether the distribution of response types differed as a function of group. To minimise the number of cells in which expected values in some of these analyses were less than 5, the Standard Error, Other Error and Blank response categories were collapsed into one category (Incorrect Response). For three of the questions, the expected values of some cells did fall below 5, and this was due to most people getting the problem wrong (Four Cards), or most people correctly responding to the problem (Bat and Ball, Coin Tosses). In these cases, the pattern of results was so clear that a statistical analysis was barely required. Significant chi-squared results were examined further with pairwise posthoc comparisons (see Table 1 ).

Superscripts label the groups (e.g., Introductory = a). Within the table, these letters refer to which other group a particular group was significantly different to according to a series of pairwise post hoc chi squared analyses (Bonferroni corrected α = .005) (e.g., ‘d’ in the Introductory column indicates the Introductory and the Advanced2 (d) group were significantly different for a particular problem).

The three groups with the least amount of training in mathematics were far less likely than the other groups to give the correct solution (χ 2 (4) = 31.06, p < .001; BF 10 = 45,045) ( Table 1 ). People in the two most advanced groups (Advanced2 and Academic) were more likely to solve the card problem correctly, although it was still less than half of the people in these groups who did so. Further, these people were less likely to give the standard incorrect solution, so that most who were incorrect suggested some more cognitively elaborate answer, such as turning over all cards. The proportion of people in the Advanced2 and Academic groups (39 and 37%) who solved the problem correctly far exceeded the typical proportion observed with this problem (10%). Of note, also, is the relatively high proportion of those in the higher training groups who, when they made an error, did not make the standard error, a similar result to the one reported by Inglis and Simpson [ 11 ].

The cognitive reflection test

In the Lily Pads problem, although most people in the Standard, Advanced1, Advanced2 and Academic groups were likely to select the correct solution, it was also the case that the less training someone had received in mathematics, the more likely they were to select an incorrect solution (χ 2 (4) = 27.28, p < .001; BF 10 = 15,554), with the standard incorrect answer being the next most prevalent response for the two lower ability mathematics groups ( Table 1 ).

Performance on the Widgets problem was similar to performance on the Lily Pads problem in that most people in the Standard, Advanced1, Advanced2 and Academic groups were likely to select the correct solution, but that the less training someone had received in mathematics, the more likely they were to select an incorrect solution (χ 2 (4) = 23.76, p< .001; BF 10 = 516) ( Table 1 ). As with the Lily Pads and Widget problems, people in the Standard, Advanced1, Advanced2 and Academic groups were highly likely to solve the Bat and Ball problem (χ 2 (4) = 35.37, p < .001; BF 10 = 208,667). Errors were more likely from the least mathematically trained people (Introductory, Standard) than the other groups ( Table 1 ).

To compare performance on the CRT with previously published results, performance on the three problems (Lily Pads, Widgets, Bat and Ball) were combined. The number of people in each condition that solved 0, 1, 2, or 3 problems correctly is presented in Table 2 . The Introductory group were evenly distributed amongst the four categories, with 26% solving all three problems correctly. Around 70% of the rest of the groups solved all 3 problems correctly, which is vastly superior to the 17% reported by Frederick [ 16 ].

Responses to the Hospitals problem were almost universally split between correct and standard errors in the Standard, Advanced1, Advanced2 and Academic groups. Although this pattern of responses was also evident in the Introductory group, this group also exhibited more non-standard errors and non-responses than the other groups. However, the differences between the groups were not significant (χ 2 (4) = 4.93, p = .295; BF 10 = .068) ( Table 1 ). Nonetheless, the performance of all groups exceeds the 20% correct response rate reported by Kahneman and Tversky [ 23 ].

The two versions of the Birth Order problem showed similar results, with correct responses being more likely in the groups with more training (i.e., Advanced1, Advanced2 and Academic), and responses being shared amongst the various categories in the Introductory and Standard groups (χ a 2 (4) = 24.54, p < .001; BF 10 = 1,303; χ b 2 (4) = 25.77, p < .001; BF 10 = 2,970) ( Table 1 ). Nonetheless, performance on both versions of the problem in this study was significantly better than the 82% error rate reported by Kahneman and Tversky [ 23 ].

The Coin Tosses problem was performed well by all groups, with very few people in any condition committing errors. There were no obvious differences between the groups (χ 2 (4) = 3.70, p = .448; BF 10 = .160) ( Table 1 ). Kahneman and Tversky [ 23 ] reported that people tend to make errors on this type of problem by choosing less patterned looking sequences, but they did not report relative proportions of people making errors versus giving correct responses. Clearly the sample in this study did not perform like those in Kahneman and Tversky’s study.

Responses on the Two Drivers problem were clearly distinguished by a high chance of error in the Introductory and Standard groups (over 80%), and a fairly good chance of being correct in the Advanced1, Advanced2 and Academic groups (χ 2 (4) = 46.16, p < .001; BF 10 = 1.32 x 10 8 ) ( Table 1 ). Academics were the standout performers on this problem, although over a quarter of this group produced an incorrect response. Thus, the first two groups performed similarly to the participants in the Pelham and Neter [ 25 ] study, 80% of whom gave an incorrect response.

Responses on the Petrol Station problem were marked by good performance by the Academic group (73% providing a correct response), and just over half of each of the other groups correctly solving the problem. This difference was not significant (χ 2 (4) = 4.68, p = .322: BF 10 = .059) ( Table 1 ). Errors were fairly evenly balanced between standard and other, except for the Academic group, who were more likely to provide a creative answer if they made an error. Thaler [ 27 ] reported that most people get this problem wrong. In this study, however, on average, most people got this problem correct, although this average was boosted by the Academic group.

Responses on the Jack looking at Anne problem generally were standard errors, except for the Advanced2 and Academic groups, which were evenly split between standard errors and correct responses (χ 2 (4) = 18.03, p = .001; BF 10 = 46) ( Table 1 ). Thus, apart from these two groups, the error rate in this study was similar to that reported by Stanovich [ 30 ], where 80% of participants were incorrect.

A series of logistic regression analyses were performed in order to examine whether the likelihood of solving a particular problem correctly could be predicted on the basis of whether other problems were solved correctly. Each analysis involved selecting performance (correct or error) on one problem as the outcome variable, and performance on the other problems as predictor variables. Training (amount of training) was also included as a predictor variable in each analysis. A further logistic regression was performed with training as the outcome variable, and performance on all of the problems as predictor variables. The results of these analyses are summarised in Table 3 . There were three multi-variable relationships observed in these analyses, which can be interpreted as the likelihood of solving one problem in each group being associated with solving the others in the set. These sets were: (1) Lily Pads, Widgets and Petrol Station; (2) Hospitals, Four Cards and Two Drivers; (3) Birth Order and Coin Tosses. Training also featured in each of these sets, moderating the relationships as per the results presented above for each problem.

P = Problem (1 = Four Cards; 2 = Lily Pads; 3 = Widgets; 4 = Bat & Ball; 5 = Hospitals; 6a = Birth Order (a); 6b = Birth Order (b); 7 = Coin Tosses; 8 = Two Drivers; 9 = Petrol Station; 10 = Jack looking at Anne).

training = Amount of training condition.

p = significance level of logistic regression model.

% = percentage of cases correctly classified by the logistic regression model.

✓ = significant predictor, α < .05.

* = logistic regression for the training outcome variable is multinomial, whereas all other logistic regressions are binomial.

The final “Comments Page” revealed the participants as overwhelmingly enjoying the questions. Any analysis of previous exposure to the tasks proved impossible as there was little to no alignment on participant’s degree of recall, if any, and even perceptions of what exposure entailed. For example, some participants confused being exposed to the particular tasks with being habitually exposed to puzzles, or even mathematics problems, more broadly.

In general, the amount of mathematics training a group had received predicted their performance on the overall set of problems. The greater the training, the more problems were answered correctly, and the slower the recorded response times. There was not an obvious difference between the Advanced1, Advanced2 and Academic groups on either of these measures, however there were clear differences between this group and the Introductory and Standard groups, with the former exhibiting clearly superior accuracy. While time records were taken approximately, so as to avoid adding time pressure as a variable, that the Advanced1, Advanced2 and Academic groups recorded more time in their consideration of the problems, may suggest a “pause and consider” approach to such problems is a characteristic of the advanced groups. This is in line with what was suggested by an eye-movement tracking study of mathematically trained students attempting the Four Cards Problem; where participants that had not chosen the standard error had spent longer considering the card linked to the matching bias effect [ 14 ]. It is important to note, however, that longer response times may reflect other cognitive processes than deliberation [ 32 ].

Performance on some problems was associated with performance on other problems. That is, if someone correctly answered a problem in one of these sets, they were also highly likely to correctly answer the other problems in the set. These sets were: (1) Lily Pads, Widgets and Petrol Station; (2) Hospitals, Four Cards and Two Drivers; (3) Birth Order and Coin Tosses. This is different with how these problems have been typically clustered a priori in the research literature: (I) Lily Pads, Widgets and Bat and Ball (CRT); (II) Hospitals and Two Drivers (explained below); (III) Hospitals, Birth Order and Coin Tosses (representativeness heuristic); (IV) Birth Order and Coin Tosses (probability theory). Consideration of these problem groupings follows.

Correctly answering all three problems in (I) entailed not being distracted by particular pieces of information in the problems so as to stay focused on uncovering the real underlying relationships. The Lily Pads and Widget problems can mislead if attention is over focused on the numbers, and conversely, the Petrol Station problem can mislead if there is too much focus on the idea of a discount. While the Lily Pads and Widget problems are traditionally paired with the Bat and Ball problem in the CRT, it may be that performance on the Bat and Ball problem did not appear as part of this set due to an added level of difficulty. With the problems in (I), avoiding being distracted by certain parts of the questions at the expense of others almost leads directly to the correct answer. However, with the Bat and Ball problem, further steps in mathematical reasoning still need to occur in answering which two numbers add together to give a result while also subtracting one from the other for another.

With the problems in (II) it is of interest that the Two Drivers problem was created specifically to be paired with the Hospitals problem to test for motivation in problem solving [ 23 ]. Within this framework further transparent versions of these problems were successfully devised to manipulate for difficulty. The Two Drivers problem was amended to have Driver B travelling at exactly 5 mph during the first half of the race and at exactly 95 mph during the last half of the race. The Hospitals problem was amended so the smaller hospital would have “only 2” babies born each day and where for a period of one year the hospitals recorded the number of days on which all of the babies born were boys. Could the association in (II) be pointing to how participants overcome initial fictitious mathematical rules? Maybe they reframe the question in simpler terms to see the pattern. The Four Cards Problem also elicited a high number of incorrect answers where, associated with mathematical training, the standard incorrect solution was avoided for more cognitively elaborate ones. Indeed, a gradation effect appeared across the groups where the standard error of the “D and 3” cards becomes “D only” ( Table 4 ). Adrian Simpson and Derrick Watson found a comparable result across their two groups [14 p61]. This could again be pointing to having avoided an initial fictitious rule of simply concentrating on items directly found in the question, participants then seek to reframe the question to unearth the logical rule to be deduced. An added level of difficulty with this question may be why participants become trapped in a false answer. The eye-movement tracking study mentioned above supports this theory.

The problems in (III) fit naturally together as part of basic probability theory, a topic participants would have assimilated, or not, as part of various education curricula. While the equal likelihood of all possible outcomes with respect to a coin toss may be culturally assimilated, the same may not be as straightforward for birth gender outcomes where such assumptions could be swayed by biological hypothesis or folk wisdom [ 33 ]. The gradation of the results in terms of mathematical training does not support this possibility.

The effect of training on performance accuracy was more obvious in some problems compared to others, and to some extent, this was related to the type of problem. For instance, most of the problems in which performance was related to training (Four Cards, CRT [Lily Pads, Widgets, Bat and Ball], Two Drivers, Jack looking at Anne) could be classed as relying on logical and/or critical thinking. The one exception was the Birth Order problems, which are probability related.

In contrast, two of the three problems in which training did not appear to have much impact on performance (Hospitals and Coin Tosses) require domain-specific knowledge. The Hospitals problem requires a degree of knowledge about sampling statistics. This is a topic of quite distinct flavour that not all mathematically trained individuals gain familiarity with. On the other hand, all groups having performed well on the Coin Tosses problem is in line with a level of familiarity with basic probability having been originally presented at high school. While the questioning of patterning as negatively correlated with randomness is similar to that appearing in the Birth Order question, in the Birth Order question this aspect is arguably more concealed. These results and problem grouping (III) could be pointing to an area for improvement in teaching where the small gap in knowledge required to go from answering the Coin Tosses problem correctly to achieving similarly with the Birth Order problem could be easily addressed. A more formal introduction to sampling statistics in mathematical training could potentially bridge this gap as well as further be extended towards improvement on the Hospitals problem.

The other problem where performance was unrelated to training, the Petrol Station problem, cannot be characterised similarly. It is more of a logical/critical thinking type problem, where there remains some suggestion that training may have impacted performance, as the Academic group seemed to perform better than the rest of the sample. An alternate interpretation of this result is therefore that this problem should not be isolated but grouped with the other problems where performance is affected by training.

Although several aspects of the data suggest mathematics training improves the chances that someone will solve problems of the sort examined here, differences in the performance of participants in the Advanced1, Advanced2 and Academic groups were not obvious. This is despite the fact that large differences exist in the amount of training in these three groups. The first two groups were undergraduate students and the Academic group all had PhDs and many were experienced academic staff. One interpretation of this result is current mathematics training can only take someone so far in terms of improving their abilities with these problems. There is a point of demarcation to consider in terms of mathematical knowledge between the Advanced1, Advanced2 and Academic groups as compared to the Introductory and Standard groups. In Australia students are able to drop mathematical study at ages 15–16 years, or choose between a number of increasingly involved levels of mathematics. For the university in this study, students are filtered upon entry into mathematics courses according to their current knowledge status. All our groups involved students who had opted for post-compulsory mathematics at high school. And since our testing occurred in second semester, some of the mathematical knowledge shortfalls that were there upon arrival were bridged in first semester. Students must pass a first semester course to be allowed entry into the second semester course. A breakdown of the mathematics background of each group is as follows:

  • The Introductory group’s mathematics high school syllabus studied prior to first semester course entry covered: Functions, Trigonometric Functions, Calculus (Introduction to Differentiation, Applications of the Derivative, Antiderivatives, Areas and the Definite Integral), Financial Mathematics, Statistical Analysis. The Introductory group then explored concepts in mathematical modelling with emphasis on the importance of calculus in their first semester of mathematical studies.
  • The Standard group’s mathematics high school syllabus studied prior to first semester course entry covered: Functions, Trigonometric Functions, Calculus (Rates of Change, Integration including the method of substitution, trigonometric identities and inverse trigonometric functions, Areas and Volumes of solids of revolution, some differential equations), Combinatorics, Proof (with particular focus on Proof by Mathematical Induction), Vectors (with application to projectile motion), Statistical Analysis. In first semester their mathematical studies then covered a number of topics the Advanced1 group studied prior to gaining entrance at university; further details on this are given below.
  • The Advanced1 group’s mathematics high school syllabus studied prior to first semester course entry covered: the same course content the Standard group covered at high school plus extra topics on Proof (develop rigorous mathematical arguments and proofs, specifically in the context of number and algebra and further develop Proof by Mathematical Induction), Vectors (3 dimensional vectors, vector equations of lines), Complex Numbers, Calculus (Further Integration techniques with partial fractions and integration by parts), Mechanics (Application of Calculus to Mechanics with simple harmonic motion, modelling motion without and with resistance, projectiles and resisted motion). The Standard group cover these topics in their first semester university studies in mathematics with the exclusion of further concepts of Proof or Mechanics. In first semester the Advanced1 group have built on their knowledge with an emphasis on both theoretical and foundational aspects, as well as developing the skill of applying mathematical theory to solve practical problems. Theoretical topics include a host of theorems relevant to the study of Calculus.

In summary, at the point of our study, the Advanced1 group had more knowledge and practice on rigorous mathematical arguments and proofs in the context of number and algebra, and more in-depth experience with Proofs by Induction, but the bulk of extra knowledge rests with a much deeper knowledge of Calculus. They have had longer experience with a variety of integration techniques, and have worked with a variety of applications of calculus to solve practical problems, including a large section on mechanics at high school. In first semester at university there has been a greater focus on theoretical topics including a host of theorems and associated proofs relevant to the topics studied. As compared to the Introductory and Standard groups, the Advanced1 group have only widened the mathematics knowledge gap since their choice of post-compulsory mathematics at high school. The Advanced2 group come directly from an Advanced1 cohort. And the Academics group would have reached the Advanced1 group’s proficiency as part of their employment. So, are specific reasoning skills resulting from this level of abstract reasoning? Our findings suggest this should certainly be an area of investigation and links in interestingly with other research work. In studying one of the thinking tasks in particular (the Four Cards Problem) and its context of conditional inference more specifically, Inglis and Simpson [ 15 ] found a clear difference between undergraduates in mathematics and undergraduates in other university disciplines, yet also showed a lack of development over first-year university studies on conditional inference measures. A follow up study by Attridge and Inglis [ 22 ] then zeroed in on post-compulsory high school mathematical training and found that students with such training did develop their conditional reasoning to a greater extent than their control group over the course of a year, despite them having received no explicit tuition in conditional logic. The development though, whilst demonstrated as not being the result of a domain-general change in cognitive capacity or thinking disposition, and most likely associated with the domain-specific study of mathematics, revealed a complex pattern of endorsing more of some inferences and less of others. The study here focused on a much broader problem set associated with logical and critical thinking and it too is suggestive of a more complex picture in how mathematics training may be contributing to problem solving styles. A more intricate pattern to do with the impact of mathematical training on problem solving techniques is appearing as required for consideration.

There is also a final interpretation to consider: that people in the Advanced 1, Advanced2 and Academic groups did not gain anything from their mathematics training in terms of their ability to solve these problems. Instead, with studies denying any correlation of many of these problems with what is currently measured as intelligence [ 30 ], they might still be people of a particular intelligence or thinking disposition to start with, who have been able to use that intelligence to not only solve these problems, but also survive the challenges of their mathematics training.

That the CRT has been traditionally used as a measure of baseline thinking disposition and that performance has been found to be immutable across groups tested is of particular interest since our results show a clear possible training effect on these questions. CRT is tied with a willingness to engage in effortful thinking which presents as a suitable ability for training. It is beyond the scope of this study, but a thorough review of CRT testing is suggestive of a broader appreciation and better framework to understand thinking disposition, ability and potential ability.

Mathematical training appears associated with certain thinking skills, but there are clearly some subtleties that need to be extricated. The thinking tasks here add to the foundational results where the aim is for a firmer platform on which to eventually base more targeted and illustrative inquiry. If thinking skills can be fostered, could first year university mathematics teaching be improved so that all samples from that group reach the Advanced1 group level of reasoning? Do university mathematics courses become purely about domain-specific knowledge from this point on? Intensive training has been shown to impact the brain and cognition across a number of domains from music [ 34 ], to video gaming [ 35 ], to Braille reading [ 36 ]. The hypothesis that mathematics, with its highly specific practice, fits within this list remains legitimate, but simply unchartered. With our current level of understanding it is worth appreciating the careful wording of the NYU Courant Institute on ‘Why Study Math?’ where there is no assumption of causation: “Mathematicians need to have good reasoning ability in order to identify, analyze, and apply basic logical principles to technical problems.” [ 37 ].

Limitations

One possible limitation of the current study is that the problems may have been too easy for the more advanced people, and so we observed a ceiling effect (i.e., some people obtained 100% correct on all problems). This was most obvious in the Advanced1, Advanced2 and Academic groups. It is possible that participants in these groups had developed logical and critical thinking skills throughout their mathematical training that were sufficient to cope with most of the problems used in this study, and so this would support the contention that training in mathematics leads to the development of logical and critical thinking skills useful in a range of domains. Another interpretation is that participants in these groups already possessed the necessary thinking skills for solving the problems in this study, which is why they are able to cope with the material in the advanced units they were enrolled in, or complete a PhD in mathematics and hold down an academic position in a mathematics department. This would then suggest that training in mathematics had no effect on abstract thinking skills—people in this study possessed them to varying extents prior to their studies. This issue might be settled in a future study that used a greater number of problems of varying difficulties to maximise the chances of finding a difference between the three groups with the most amount of training. Alternatively, a longitudinal study that followed people through their mathematics training could determine whether their logical and critical thinking abilities changed throughout their course.

A further limitation of the study may be that several of the reasoning biases examined in this study were measured by only one problem each (i.e., Four Cards Problem, Two Drivers, Petrol Station, Jack looking at Anne). A more reliable measure of these biases could be achieved by including more problems that tap into these biases. This would, however, increase the time required of participants during data collection, and in the context of this study, would mean a different mode of testing would likely be required.

Broad sweeping intuitive claims of the transferable skills endowed by a study of mathematics require evidence. Our study uniquely covers a wide range of participants, from limited mathematics training through to research academics in the mathematical sciences. It furthermore considered performance on 11 well-studied thinking tasks that typically elude participants in psychological studies and on which results have been uncorrelated with general intelligence, education levels and other demographic information [ 15 , 16 , 30 ]. We identified different performances on these tasks with respect to different groups, based on level of mathematical training. This included the CRT which has developed into a method of measuring baseline thinking disposition. We identified different distributions of types of errors for the mathematically trained. We furthermore identified a performance threshold that exists in first year university for those with high level mathematics training. This study then provides insight into possible changes and adjustments to mathematics courses in order for them to fulfil their advertised goal of reaching improved rational and logical reasoning for a higher number of students.

It is central to any education program to have a clear grasp of the nature of what it delivers and how, but arguably especially so for the core discipline that is mathematics. In 2014 the Office of The Chief Scientist of Australia released a report “Australia’s STEM workforce: a survey of employers” where transferable skills attributed to mathematics were also ones that employers deemed as part of the most valuable [ 38 ]. A better understanding of what mathematics delivers in this space is an opportunity to truly capitalise on this historical culture-crossing subject.

Supporting information

Acknowledgments.

The authors would like to thank Jacqui Ramagge for her proof reading and input, as well as support towards data collection.

Funding Statement

The authors received no specific funding for this work.

Data Availability

  • PLoS One. 2020; 15(7): e0236153.

Decision Letter 0

17 Mar 2020

PONE-D-20-01159

Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors

Dear Professor Speelman,

Thank you for submitting your manuscript to PLOS ONE. I have sent it to two expert reviewers and have received their comments back. As you can see at the bottom of this email, both reviewers are positive about your manuscript but raise some issues that you would need to address before the manuscript can be considered for publication. Notably, reviewer #1 points out that the manuscript should include a discussion on the reasons why individuals with math training may have improved reasoning skills (e.g., logical intuitions versus deliberate thinking). The reviewer also rightly mentions that your sample sizes are limited, notably for the most advanced groups. This should be discussed and acknowledged. Reviewer #2 has a number of conceptual and methodological points that you will also have to address. The reviewer provides very thorough comments and I will not reiterate the points here. However, note that both reviewers suggest that you need to improve the figures and I agree with them.   

We would appreciate receiving your revised manuscript by May 01 2020 11:59PM. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.
  • A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.
  • An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

Jérôme Prado

Academic Editor

Journal Requirements:

When submitting your revision, we need you to address these additional requirements:

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at http://www.plosone.org/attachments/PLOSOne_formatting_sample_main_body.pdf and http://www.plosone.org/attachments/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. Please include additional information regarding the survey or questionnaire used in the study and ensure that you have provided sufficient details that others could replicate the analyses. For instance, if you developed a questionnaire as part of this study and it is not under a copyright more restrictive than CC-BY, please include a copy, in both the original language and English, as Supporting Information. Please also let us know if it would be possible to provide the anonymized data points necessary to replicate the statistical analyses, for instance, as shown in fig 1 and 2. If so, please deposit those to a suitable data repository or include them in the Supporting Information files.

3. Thank you for stating the following financial disclosure:

"The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."

  • Please provide an amended Funding Statement that declares *all* the funding or sources of support received during this specific study (whether external or internal to your organization) as detailed online in our guide for authors at http://journals.plos.org/plosone/s/submit-now .  
  • Please state what role the funders took in the study.  If any authors received a salary from any of your funders, please state which authors and which funder. If the funders had no role, please state: "The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."

Please include your amended statements within your cover letter; we will change the online submission form on your behalf.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer #1: I think this is a very good and interesting manuscript trying to answer an important research question. I propose some changes that I believe should be applied before publication.

1. Each reasoning bias is measured with only one problem. In reasoning research, it is rather common to measure each type of reasoning problem with a series of structurally equivalent reasoning problems, so the results will be independent of contexts effects and will be generalizable to that type of problem. Here, the authors only measured each reasoning bias with one single problem and this might be problematic (see, for example: Fiedler & Hertel, 1994). I think this can be addressed by simply discussing it in the limitation section.

2. This is rather a minor issue, but the discussion on the CRT problems is not up-to-date (page 7). Most recent experiments on dual process theory suggest that people who are able to correctly solve these reasoning problems (including the CRT) do so intuitively, and not because they engaged in careful deliberation (Bago & De Neys, 2019). Intelligence made people have better intuitive responses (Thompson, Pennycook, Trippas & Evans, 2018). Similarly, this problems persists in the discussion about reaction times (page 25). Longer reaction times does not necessarily mean that people engaged in deliberation (see: Evans, Kyle, Dillon & Rand, 2015). Response time might be driven by decision conflict or response rationalization. These issues could be clarified with some changes in the wording or some footnotes on page 7 and 25. Furthermore, it would be interesting to have a discussion on how mathematical education helps people overcome their biases. Is it because it creates better intuition, or helps people engage in deliberation? An interesting question this manuscript does not discuss. It’s on the authors whether or not they discuss this latter point now, but the changes on page 7 and 25 should be made.

3. A more serious problem is the rather small sample size (especially in the more advanced groups). This small sample size makes the appearance of both false negatives and false positives more likely. Perhaps, the authors could compute the Bayes Factors for the chi-square or logistic regression test, so we can actually see how strong the evidence is for or against the null. This is especially important as the authors run a great number of explorative analysis (Table 3), and some of those results might need to be interpreted with great caution (depending on the Bayes Factor).

The graphs are not looking good, they should comply with APA formatting. At the very least, the axis titles should be meaningful and measure units should be written there.

The presentation order of the problems is quite unusual; why isn’t it random? Why did the authors decide on this order?

Reviewer #2: The study reported in this paper compared five groups of participants with varying levels of mathematical expertise on a set of reasoning tasks. The study is interesting and informative. It extends the current literature on this topic (which is reviewed very nicely in the introduction). However, there are some issues with the current analysis and interpretation that should be resolved prior to publication. I have therefore recommended major revisions. My comments are organised in the order in which they came up in the paper and they explain my responses to the questions above.

1. Line 114 – “general population” a bit misleading – they were also students but from other disciplines.

2. Line 124 onwards reads:

“The ultimate question to consider here is: are any skills associated with mathematics training innate or do they arise from skills transfer? Though to investigate how mathematical training affects reasoning skills, randomised sampling and randomised intervention to reveal causal relationships are clearly not viable. With so many possible confounding variables and logistical issues, it is even questionable what conclusions such studies might provide. Furthermore, a firm baseline from which to propose more substantive investigations is still missing.”

I find this paragraph slightly problematic because the current study doesn’t inform us on this ultimate question, so it makes the outline of the current study in the following paragraph feel unsatisfactory. I think the current study is important but prefacing it with this paragraph underplays that importance. And I think a randomised controlled study, although not viable, would give the answers we need because the random allocation to groups would allow us to rule out any confounding variables. Finally, the last sentence in this paragraph is unclear to me.

3. In the descriptions of the five participants groups the authors refer to the group’s level of interest in mathematics, but this seems like an overgeneralisation to me. Surely the introductory group could contain a biology student who also happens to be good at mathematics and very much enjoy it? I would be more comfortable with the descriptions if the parts about interest level were removed.

4. How many of the 123 first year students were in each of the three first year groups?

5. Line 313 – the standard group is referred to as “university mathematics students”, but they are not taking mathematics degreed.

6. Line 331 - what is a practice class?

7. Were the data collection settings quiet? From the description it sounds like groups of participants were completing the study at the same time in the same room, but the authors should make this explicit for the sake of the method being reproducible. E.g. how many students were in the room at the time?

8. Line 355-356 – the authors should not use the term “marginally worse” because this is statistically inappropriate – in a frequentist approach results are either significant or non-significant.

9. Line 340 – “approximate completion times were noted.”

This doesn’t sound rigorous enough to justify analysing them. Their analysis is interesting, but the authors should remind readers clearly whenever the response times are analysed or discussed that their recording was only manual and approximate.

10. I suggest replacing Figure 1 with a bar chart showing standard error of the mean on the error bars. A table with mean score out of 11 and the standard deviation for each group may also be useful. Figure 2 should be a scatterplot rather than a box and whisker plot.

11. Was the 0-11 total correct score approximately normally distributed across the full sample?

12. Chi square analysis requires at least 5 cases in each cell, was this met? It seems not since Table 1 shows lots of cells in the “no response” row having 0% of cases.

13. The chi-square analyses should be followed up with post hoc tests to see exactly where the differences between groups are. The descriptions as they stand aren’t that informative (as readers can just look at Table 1) without being backed up by post hoc tests.

14. For each chi square analysis in the text, I would find it easier to read if the test statistics came at the top of the paragraph, before the description.

15. Line 381-383 – “Of note, also, is the relatively low proportion of those in the higher training groups who, when they made an error, did not make the standard error, a similar result to the one reported by Inglis and Simpson [11]."

I think this is supposed to say that a low proportion did make the standard error or that a high proportion did not make the standard error.

16. Line 403 - p values this small should be reported as p < .001 rather than p = .000 since they aren’t actually 0.

17. Line 476 – “…if a particular outcome variable was predicted significantly by a particular predictor variable, the converse relationship was also observed”

Isn’t that necessarily the case with regression analyses, like with correlations?

18. I don’t think the logistic regression analyses add much to the paper and at the moment they come across as potential p-hacking since they don’t clearly relate to the research question. To me they make the paper feel less focused. Having said that, there is some interesting discussion of them in the Discussion section. I’d recommend adding some justification to the introduction for why it is interesting to look at the relationships among tasks (without pretending to have made any specific hypotheses about the relationships, of course).

19. Line 509 would be clearer if it read “between these groups and the introductory and standard groups”

20. Lines 597 – 620 - This is an interesting discussion, especially the suggestion that advanced calculus may be responsible for the development. No development in reasoning skills from the beginning of a mathematics degree onwards was also found by Inglis and Simpson (2009), who suggested that the initial difference between mathematics and non-mathematics undergraduates could have been due to pre-university study of mathematics. Attridge & Inglis (2013) found evidence that this was the case (they found no difference between mathematics and non-mathematics students at age 16 but a significant difference at the end of the academic year, where the mathematics students had improved and the non-mathematics students had not).

Could the authors add some discussion of whether something similar may have been the case with their Australian sample? E.g. do students in Australia choose whether, or to what extent, to study mathematics towards the end of high school? If not, the description of the groups suggests that there were at least differences in high school mathematics attainment between groups 1-3, even if they studied the same mathematics curriculum. Do the authors think that this difference in attainment could have led to the differences between groups in the current study?

21. Line 617 – “Intensive training has been shown to impact the brain and cognition across a number of domains from music, to video gaming, to Braille reading [31].”

Reference 31 appears to only relate to music. Please add references for video gaming and Braille reading.

22. I recommend editing the figures from SPSS’s default style or re-making them in Excel or DataGraph to look more attractive.

23. I cannot find the associated datafile anywhere in the submission. Apologies if this is my mistake.

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files to be viewed.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/ . PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at gro.solp@serugif . Please note that Supporting Information files do not need this step.

Author response to Decision Letter 0

20 Apr 2020

All responses are detailed against the specific reviewers' comments in the Response to Reviewers document

Submitted filename: Response to Reviewers.docx

Decision Letter 1

11 Jun 2020

PONE-D-20-01159R1

Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors.

Dear Dr. Speelman,

Thank you for submitting your revised manuscript to PLOS ONE. I have sent it to reviewer #2 and have now received the reviewer's comment. As you can see, the reviewer thinks that the manuscript is improved but has some outstanding issues that you would need to address in another round of revision. I notably agree with the reviewer that you should provide the raw data, allowing readers to replicate your analyses. Therefore, I invite you submit a revised version of your manuscript.

Please submit your revised manuscript by Jul 26 2020 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at gro.solp@enosolp . When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.
  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.
  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see:  http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Reviewer #2: The manuscript has improved but there are still a few issues that should be resolved prior to publication.

1. On lines 96, 97, 100 and 102, the references to “general population” should be changed to reflect the fact that these participants were non-mathematics (arts) students.

2. Line 306 – change “mathematics students” to “university students”.

3. The method section doesn’t specify the gender split and mean age of the sample.

4. Table 3 - values the p values listed as .000 should be changed to <.001.

5. Table 3 - I suggest repeating the list of problem numbers and names in the legend. It may make for a long legend but would make it much easier for the reader to interpret the table.

6. I am not sure what the new post hoc tests are comparing. What I expected was to see group 1 compared to groups 2, 3, 4 and 5, and so on. This would tell us which groups are statistically different from each other. At the moment we only know from the overall chi square tests whether there are any differences among the groups or not, we don’t know specifically which groups are statistically different from each other and which ones are not. We only have the authors’ interpretations based on the observed counts.

7. Line 584 - change “performance was correlated with training” to “performance was related to training” to avoid any confusion since a correlation analysis was not performed.

8. Data file – I had expected the data file to give the raw data rather than summary data, i.e. with each participant in a separate row, and a column indicating their group membership, a column giving their age, a column for sex etc (including all the demographics mentioned in the method), and a column for each reasoning question. This would allow other researchers to replicate the regression analyses and look at other relationships within the dataset. Without being able to replicate all analyses in the paper, the data file does not meet the minimal data set definition for publication in PLOS journals: https://journals.plos.org/plosone/s/data-availability .

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool,  https://pacev2.apexcovantage.com/ . PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at  gro.solp@serugif . Please note that Supporting Information files do not need this step.

Author response to Decision Letter 1

16 Jun 2020

Please see "Response to Reviewers" document

Decision Letter 2

PONE-D-20-01159R2

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/ , click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at gro.solp@gnillibrohtua .

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact gro.solp@sserpeno .

Additional Editor Comments (optional):

Acceptance letter

Dear Dr. Speelman:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact gro.solp@sserpeno .

If we can help with anything else, please email us at gro.solp@enosolp .

Thank you for submitting your work to PLOS ONE and supporting open access.

PLOS ONE Editorial Office Staff

on behalf of

Dr. Jérôme Prado

3 Ways to Strengthen Math Instruction

critical thinking and math

  • Share article

Students’ math scores have plummeted, national assessments show , and educators are working hard to turn math outcomes around.

But it’s a challenge, made harder by factors like math anxiety , students’ feelings of deep ambivalence about how math is taught, and learning gaps that were exacerbated by the pandemic’s disruption of schools.

This week, three educators offered solutions on how districts can turn around poor math scores in a conversation moderated by Peter DeWitt, an opinion blogger for Education Week.

Here are three takeaways from the discussion. For more, watch the recording on demand .

1. Intervention is key

Research shows that early math skills are a key predictor of later academic success.

“Children who know more do better, and math is cumulative—so if you don’t grasp some of the earlier concepts, math gets increasingly harder,” said Nancy Jordan, a professor of education at the University of Delaware.

For example, many students struggle with the concept of fractions, she said. Her research has found that by 6th grade, some students still don’t really understand what a fraction is, which makes it harder for them to master more advanced concepts, like adding or subtracting fractions with unlike denominators.

At that point, though, teachers don’t always have the time in class to re-teach those basic or fundamental concepts, she said, which is why targeted intervention is so important.

 Conceptual photo of of a young boy studying mathematics using fingers in primary school.

Still, Jordan’s research revealed that in some middle schools, intervention time is not a priority: “If there’s an assembly, or if there is a special event or whatever, it takes place during intervention time,” she said. “Or ... the children might sit on computers, and they’re not getting any really explicit instruction.”

2. ‘Gamify’ math class

Students today need new modes of instruction that meet them where they are, said Gerilyn Williams, a math teacher at Pinelands Regional Junior High School in Little Egg Harbor Township, N.J.

“Most of them learn through things like TikTok or YouTube videos,” she said. “They like to play games, they like to interact. So how can I bring those same attributes into my lesson?”

Part of her solution is gamifying instruction. Williams avoids worksheets. Instead, she provides opportunities for students to practice skills that incorporate elements of game design.

That includes digital tools, which provide students with the instant feedback they crave, she said.

But not all the games are digital. Williams’ students sometimes play “trashketball,” a game in which they work in teams to answer math questions. If they get the question right, they can crumble the piece of paper and throw it into a trash can from across the room.

“The kids love this,” she said.

Gerilyn Williams, a middle school math teacher in New Jersey, stands in her classroom.

Williams also incorporates game-based vocabulary into her instruction, drawing on terms from video games.

For example, “instead of calling them quizzes and tests, I call them boss battles,” she said. “It’s less frightening. It reduces that math anxiety, and it makes them more engaging.

“We normalize things like failure, because when they play video games, think about what they’re doing,” Williams continued. “They fail—they try again and again and again and again until they achieve success.”

3. Strengthen teacher expertise

To turn around math outcomes, districts need to invest in teacher professional development and curriculum support, said Chaunté Garrett, the CEO of ELLE Education, which partners with schools and districts to support student learning.

“You’re not going to be able to replace the value of a well-supported and well-equipped mathematics teacher,” she said. “We also want to make sure that that teacher has a math curriculum that’s grounded in the standards and conceptually based.”

Students will develop more critical thinking skills and better understand math concepts if teachers are able to relate instruction to real life, Garrett said—so that “kids have relationships that they can pull on, and math has some type of meaning and context to them outside of just numbers and procedures.”

Tonya Clarke, coordinator of K–12 mathematics in the division of school leadership and improvement for Clayton County Public Schools in Jonesboro, Ga., in the hallway at Adamson Middle School.

It’s important for math curriculum to be both culturally responsive and relevant, she added. And teachers might need training on how to offer opportunities for students to analyze and solve real-world problems.

“So often, [in math problems], we want to go back to soccer and basketball and all of those things that we lived through, and it’s not that [current students] don’t enjoy those, but our students live social media—they literally live it,” Garrett said. “Those are the things that have to live out in classrooms right now, and if we’re not doing those things, we are doing a disservice.”

Sign Up for EdWeek Update

Edweek top school jobs.

Illustration of city buildings with financial, job, data, technology, and statistics iconography.

Sign Up & Sign In

module image 9

  • Our Mission

People writing math problems on a window

A Powerful Rethinking of Your Math Classroom

We look at strategies you can reset this year—adjusting your testing regimen, tackling math anxiety, encouraging critical thinking, and fostering a mistake-friendly environment.

The beginning of school is a great time for teachers—both veteran and early career—to consider ways they can improve upon their classroom practices over the next year. This may be especially important for math teachers, who often spend the early days of the school year confronting math anxiety , convincing students that they are indeed “math people,” and coming up with engaging practices to guide students to find pleasure in math challenges. Innovating in these areas has the potential to yield big benefits for students all year long.

To help you re-imagine some of your teaching practices this year, we’ve pulled together a collection of big and small strategies aimed at:

  • helping students adopt a more productive, curious mindset when they approach math,
  • engaging students as soon as they walk through the door,
  • rethinking how you handle testing,
  • fostering a mistake-friendly environment,
  • incorporating humanities-style discussions into math, and
  • building what Peter Liljedahl calls a “ thinking classroom .”

Tackle Negative Math Mindsets

“Most of my work as a math teacher isn’t even math ,” former middle school math teacher José Vilson has said. “It’s helping students believe that they can also do math.”

Striking a similar note, middle school math coordinator Alessandra King writes that supporting students—particularly students from marginalized backgrounds—to develop a “ positive mathematical identity ” is crucial to fostering a sense of belonging in a larger math community, boosting “their willingness and ability to engage” in challenging work.

King recommends spending the first few days of the school year spotlighting mathematicians from the past who reflect the makeup of your classroom. In her all-girls school, for example, she has students read and respond to a play about the achievements and struggles of Maria Agnesi, Sofya Kovalevskaya, and Emmy Noether, three historical female mathematicians. You can also hang up posters of famous Black or Latino mathematicians—such as Euphemia Haynes, the first African American woman to earn a PhD in math, or Robert Luis Santos, a Latino statistician and director of the U.S. Census Bureau—and devote lessons to discussing their achievements and backgrounds.

To get students thinking about—and challenging—their own math identity, educator Rolanda Baldwin suggests asking students early in the year to write a “ math autobiography .” They might respond to questions like: “How do you feel about math? How did your relationship with math change over time?” To draw students closer together—and make them realize that many students, of all backgrounds, struggle—have them share their responses in groups, or with the entire class.

Sometimes, our best intentions can go awry. Rachel Fuhrman, a former special education math teacher, notes that teachers can sometimes dampen a student’s math identity by wheeling out phrases that might seem helpful but can actually demotivate students , like: “This is so easy.” Framing something as “easy,” she writes, can leave students feeling uncomfortable or afraid of asking crucial, clarifying questions.

Engage Students the Moment They Enter the Classroom

To set a playful tone and lower the stakes of the work so students can effectively experiment and collaborate, high school math teacher Lorenzo Robinson suggests starting off class with fun, challenging brain teasers .

For example, ask students to draw a cross on a sheet of paper (you should draw one on the board as a point of reference). Ask students to draw two straight lines that will segment or cut the cross into pieces. The goal is to cut the cross in a way that produces the most pieces .

You could also try math riddles: Ask students to imagine they have two coins that total 30 cents. Tell them that one of the coins is not a nickel, and ask them to figure out what the two coins are.

Robinson finds that brain teasers like these can get students primed for problem solving and critical thinking, without even realizing it.

Lower the Stakes of Testing

Big tests—centered around units or near the end of a grading period—are staples of many math classrooms. But that doesn’t mean they have to be the only opportunity for students to show what they know. One way to lower the stakes for students and give them more opportunities to practice, while providing yourself more of an opportunity to both teach content and check for understanding is to give short assessments on a regular schedule. 

Math coordinator Steven Goldman’s school switched from tests to checkpoints . These short assessments include a mix of current and past topics—retrieval practice is a research-backed way to support greater learning , after all—with some repetition for the most important skills students need to know. The checkpoints are given every two weeks and are not formally graded, but mistakes are noted and teachers leave feedback to guide student revisions. The change, Goldman writes, resulted in a big reduction in student stress levels—something research shows is a benefit of frequent practice tests, alongside a boost in long-term retention. Because the checkpoints happen all the time, Goldman and his colleagues don’t have to “go through all kinds of contortions to finish a unit before a break or on a Thursday so that we could give the test at the right time.”

Fresno State math instructor Howie Hua suggests lowering the stake in your classroom by allowing students to discuss a test before starting to work on it . Hua recommends having students put their pencils on the floor so they can focus on their discussion. Hand out the test and give students five minutes to discuss strategies they can use to solve the problems. 

Good Mistakes, Better Mistakes

Mistakes are bound to happen in any math classroom, and how you respond to them throughout the year can make a world of difference. Making light of your own mistakes is a good first gambit, but research suggests a more advanced approach: Giving students space to make mistakes—and opportunities to analyze and discuss them with peers—can better encode information in their brains than simply providing them with the correct answer.

To use mistakes as building blocks to better solutions, math teacher Emma Chiapetta uses an ingenious, small-group activity that asks students to identify and reflect on common mistakes , and then explain the rationale behind them to their peers. Here’s how it works: Randomly separate students into groups and assign each group to a board to generate a problem and solve it incorrectly. Groups rotate so they’re looking at a problem and an incorrect solution, and have to identify the error and solve the problem correctly. After another rotation—so students are looking at a problem and both the incorrect and correct solutions—they explain to the class the mistake made by the first group and the correct solution provided by the second. The activity, Chiapetta writes, helps students think about the same content from various perspectives, which can lead to deeper understanding.

Not all mistakes are created equal, and they often conceal thoughtful, underlying work. Former math teacher Colin Seale asks students to reflect on which wrong answer to a problem is “ more right .” He suggests offering students two equations that are both incorrect—perhaps one is wrong conceptually and the other computationally. Seale notes that this exercise gets students to tease out nuances around the skills and concepts they’re learning, while also correcting their approach to similar problems moving forward.

Bring Humanities Strategies to Math Class

The discussion, analysis of reasoning, and argumentation that happen in humanities classrooms can be extremely useful in math classrooms to help students slow down and think through the work they’re doing , says middle school math teacher Connell Cloyd. 

He does this in his classroom by posting four incorrectly solved math problems around the room and having students rotate around each problem in groups to discuss the error and write down (in complete sentences) a claim and supporting evidence to show why they believe the error occurred. As they rotate around, students read the arguments of peers and either support an argument or refute it with new evidence. This is like adding techniques from debate to Chiappetta’s strategy.

Math journals can also inject more writing and reasoning into your classroom. Former math teacher Nell McAnelly prompts students to reflect on concepts they’re having trouble with : They work through a problem and then write about the strategy they used to solve it, or informally journal about other approaches they could have used. Doing so, she writes, gives students a chance to “synthesize learning and address unanswered questions.”

Driving Deep, Critical Thinking

A traditional math classroom, where the teacher demonstrates a skill numerous times before students take the reins, can inhibit higher order thinking and result in students who “mimic” teachers rather than develop their own strategies to solve complex problems , says Peter Liljedahl, a researcher and professor of mathematics at Simon Fraser University. 

Instead of starting lessons with direct instruction, Liljedahl says, give students novel “ thinking tasks ” to work on in groups. These are problem-solving activities and mental puzzles that should get students in the mindset of challenging themselves. Work groups should not be chosen based on ability or students’ preferences—Liljedahl’s research shows that students are more likely to contribute in randomized groups. Having students stand while they engage in this collaborative, messy thinking—as Chiappetta does in her mistake-analysis exercise—is another way to engage them.

Instead of using notebooks to compute, Liljedahl calls for groups to work at vertical, non-permanent surfaces, such as whiteboards, blackboards, or windows—surfaces that he says promote more risk-taking because students have the freedom to quickly erase false starts without feeling committed. As students work in groups, teachers bounce around the room and avoid directly answering questions such as “Is this right?” that circumvent student thinking and instead make suggestions that lead to further independent thinking. 

Because the goal of this approach is to get students to develop perseverance, curiosity, and collaboration, Liljedahl suggests evaluating them in a way that prioritizes these competencies. He developed formative assessments that focus on informing students “about where they are and where they’re going in their learning.” These include observations, check-for-understanding questions, and unmarked quizzes. Summative assessments, meanwhile, should focus less on end products and more on the process of learning through both group and individual work.

Shifting to this thinking classroom model requires a fundamental shift in how you run your classroom, but it could result in large rewards throughout the year.

critical thinking and math

JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.

  • Order Tracking
  • Create an Account

critical thinking and math

200+ Award-Winning Educational Textbooks, Activity Books, & Printable eBooks!

  • Compare Products

Reading, Writing, Math, Science, Social Studies

  • Search by Book Series
  • Algebra I & II  Gr. 7-12+
  • Algebra Magic Tricks  Gr. 2-12+
  • Algebra Word Problems  Gr. 7-12+
  • Balance Benders  Gr. 2-12+
  • Balance Math & More!  Gr. 2-12+
  • Basics of Critical Thinking  Gr. 4-7
  • Brain Stretchers  Gr. 5-12+
  • Building Thinking Skills  Gr. Toddler-12+
  • Building Writing Skills  Gr. 3-7
  • Bundles - Critical Thinking  Gr. PreK-9
  • Bundles - Language Arts  Gr. K-8
  • Bundles - Mathematics  Gr. PreK-9
  • Bundles - Multi-Subject Curriculum  Gr. PreK-12+
  • Bundles - Test Prep  Gr. Toddler-12+
  • Can You Find Me?  Gr. PreK-1
  • Complete the Picture Math  Gr. 1-3
  • Cornell Critical Thinking Tests  Gr. 5-12+
  • Cranium Crackers  Gr. 3-12+
  • Creative Problem Solving  Gr. PreK-2
  • Critical Thinking Activities to Improve Writing  Gr. 4-12+
  • Critical Thinking Coloring  Gr. PreK-2
  • Critical Thinking Detective  Gr. 3-12+
  • Critical Thinking Tests  Gr. PreK-6
  • Critical Thinking for Reading Comprehension  Gr. 1-5
  • Critical Thinking in United States History  Gr. 6-12+
  • CrossNumber Math Puzzles  Gr. 4-10
  • Crypt-O-Words  Gr. 2-7
  • Crypto Mind Benders  Gr. 3-12+
  • Daily Mind Builders  Gr. 5-12+
  • Dare to Compare Math  Gr. 2-7
  • Developing Critical Thinking through Science  Gr. 1-8
  • Dr. DooRiddles  Gr. PreK-12+
  • Dr. Funster's  Gr. 2-12+
  • Editor in Chief  Gr. 2-12+
  • Fun-Time Phonics!  Gr. PreK-2
  • Half 'n Half Animals  Gr. K-4
  • Hands-On Thinking Skills  Gr. K-1
  • Inference Jones  Gr. 1-6
  • James Madison  Gr. 10-12+
  • Jumbles  Gr. 3-5
  • Language Mechanic  Gr. 4-7
  • Language Smarts  Gr. 1-4
  • Mastering Logic & Math Problem Solving  Gr. 6-9
  • Math Analogies  Gr. K-9
  • Math Detective  Gr. 3-8
  • Math Games  Gr. 3-8
  • Math Mind Benders  Gr. 5-12+
  • Math Ties  Gr. 4-8
  • Math Word Problems  Gr. 4-10
  • Mathematical Reasoning  Gr. Toddler-11
  • Middle School Science  Gr. 6-8
  • Mind Benders  Gr. PreK-12+
  • Mind Building Math  Gr. K-1
  • Mind Building Reading  Gr. K-1
  • Novel Thinking  Gr. 3-6
  • OLSAT® Test Prep  Gr. PreK-K
  • Organizing Thinking  Gr. 2-8
  • Pattern Explorer  Gr. 3-9
  • Practical Critical Thinking  Gr. 8-12+
  • Punctuation Puzzler  Gr. 3-8
  • Reading Detective  Gr. 3-12+
  • Red Herring Mysteries  Gr. 4-12+
  • Red Herrings Science Mysteries  Gr. 4-9
  • Science Detective  Gr. 3-6
  • Science Mind Benders  Gr. PreK-3
  • Science Vocabulary Crossword Puzzles  Gr. 4-6
  • Sciencewise  Gr. 4-12+
  • Scratch Your Brain  Gr. 2-12+
  • Sentence Diagramming  Gr. 3-12+
  • Smarty Pants Puzzles  Gr. 3-12+
  • Snailopolis  Gr. K-4
  • Something's Fishy at Lake Iwannafisha  Gr. 5-9
  • Teaching Technology  Gr. 3-12+
  • Tell Me a Story  Gr. PreK-1
  • Think Analogies  Gr. 3-12+
  • Think and Write  Gr. 3-8
  • Think-A-Grams  Gr. 4-12+
  • Thinking About Time  Gr. 3-6
  • Thinking Connections  Gr. 4-12+
  • Thinking Directionally  Gr. 2-6
  • Thinking Skills & Key Concepts  Gr. PreK-2
  • Thinking Skills for Tests  Gr. PreK-5
  • U.S. History Detective  Gr. 8-12+
  • Understanding Fractions  Gr. 2-6
  • Visual Perceptual Skill Building  Gr. PreK-3
  • Vocabulary Riddles  Gr. 4-8
  • Vocabulary Smarts  Gr. 2-5
  • Vocabulary Virtuoso  Gr. 2-12+
  • What Would You Do?  Gr. 2-12+
  • Who Is This Kid? Colleges Want to Know!  Gr. 9-12+
  • Word Explorer  Gr. 6-8
  • Word Roots  Gr. 3-12+
  • World History Detective  Gr. 6-12+
  • Writing Detective  Gr. 3-6
  • You Decide!  Gr. 6-12+

critical thinking and math

Mathematical Reasoning™

Bridging the gap between computation and math reasoning.

Grades: Toddler-11

Mathematics

Full curriculum

  •  Multiple Award Winner

Forget boring math lessons and dreaded drill sheets.  These fun, colorful books use engaging lessons with easy-to-follow explanations, examples, and charts to make mathematical concepts easy to understand.  They can be used as textbooks or comprehensive workbooks with your textbooks to teach the math skills and concepts that students are expected to know in each grade—and several concepts normally taught in the next grade. Every lesson is followed with a variety of fun, colorful activities to ensure concept mastery.  The lessons and activities spiral slowly, allowing students to become comfortable with concepts, but also challenging them to continue building their problem-solving skills.  These books teach more than mathematical concepts; they teach mathematical reasoning, so students learn to devise different strategies to solve a wide variety of math problems.  All books are written to the standards of the National Council of Teachers of Mathematics.

Beginning 1 , Beginning 2 , and Level A Contents

Mathematical Reasoning Content Chart

Understanding Pre-Algebra This book teaches and develops the math concepts and critical thinking skills necessary for success in Algebra I and future mathematics courses at the high school level.  It was written with the premise that students cannot problem solve or take leaps of reasoning without understanding the concepts and elements that lead to discovery.  The author—with 35 years of experience teaching mathematics—is a firm believer that understanding leads to confidence and confidence gives students the resolve to succeed in higher level mathematics rather than fear it.   It is standards-based, but what makes it different from other pre-algebra books is that it organizes concepts in a logical fashion, stressing practice and critical thinking. It avoids the mistakes—found in many other math books—of trying to teach new concepts before students receive the prerequisite skills and practice necessary for success. The concepts are presented clearly and in connection to other concepts. Math vocabulary is very important to success in higher mathematics, so this book includes easy-to-follow explanations and a user-friendly glossary.

Free Detailed Solutions are available!

Understanding Pre-Algebra Contents

Understanding Geometry The successful completion of this colorful 272-page book will prepare middle schoolers for high school geometry. It covers more than 50% of the concepts taught in high school geometry using a step-by-step approach and teaches the reasoning behind the properties taught in geometry–instead of merely asking them to memorize them. Students are also taught the basics of geometric proofs and coordinate geometry in a way middle school students can understand. Students who struggle with high school geometry usually have lower standardized test scores because it is a fundamental subject in high school standardized testing. A glossary of terms that every student should master is included. This book can be used as a classroom textbook in Grades 7, 8, or 9 (usually over a two-year period) or as a reference for high school students. This book covers more than the National Math Standards for middle school mathematics.

Understanding Geometry Contents

NOTE:  It is our recommendation that students complete Understanding Pre-Algebra (see description above) before attempting Understanding Geometry .

Understanding Algebra I This is a one-year Algebra I course for Grades 7-9. Students who have a solid algebra background will have no trouble with the algebra problems from SAT and even the GRE.  This 384-page book highlights vocabulary and notation, and has examples from the history of math. What makes this book unique and different from other algebra textbooks is that it is built from the experiences of an award-winning algebra teacher with more than 30 years of teaching experience. Many textbooks are written by a committee of authors, and many of those authors have little experience teaching beginning algebra students in middle school or high school. Understanding Algebra I presents the most essential concepts and skills needed to fully understand and gain confidence in algebra in a step-by-step fashion, teaching students that algebra is generalized arithmetic. It helps students see the connection between mathematics that they already know and algebra, so that learning algebra becomes easier and less abstract. This book provides students with real strategies to succeed in solving word problems by using charts and translating strategies that guarantee success.

Understanding Algebra I Contents

Essential Algebra for Advanced High School and SAT

Discover Essential Algebra for Advanced High School and SAT , a 241-page math book in the esteemed Mathematical Reasoning series written by award-winning author and teacher with 30 years of expertise in secondary mathematics. This powerful resource teaches the ‘essential’ connection of arithmetic and geometric concepts with algebraic concepts. Without this understanding, students tend to memorize Algebra I problem-solving steps—which is sufficient to pass Algebra I—but leaves them unprepared for math courses beyond Algebra I and the SATs. Algebra, the essential language of all advanced mathematics, lies at the core of this book's teachings. By delving into the generalized arithmetic that underpins algebra, students develop a solid foundation in the rules governing number and fraction operations, including factors and multiples. This vital knowledge empowers students to move beyond mere memorization of Algebra I problem-solving steps and confidently tackle the complexities of math courses beyond Algebra I. Without the knowledge and skills taught in this book, students often struggle or even fail in advanced mathematics courses and on the SATs. Imagine a good high school student who sees a problem like 3•x•y•4 and hesitates to write 12xy due to uncertainty about the rules governing multiplication. Or not understanding how to add 2x to 1/4y to combine it into a single fraction. Or why –6 2 is different than (–6) 2 . It is easy to see that not having a strong understanding of the foundational rules of algebra can stop even the smartest students from succeeding in advanced high school math courses. Essential Algebra for Advanced High School and SAT serves as a companion to an Algebra I course or aids in post-Algebra I readiness. To ensure students’ long-term success in advanced math beyond Algebra I, this book teaches the following 'essential' mathematics skills and concepts:

  • Understanding Terms and Order of Operations
  • Understanding the Family of Real Numbers
  • Rationals and Irrationals
  • Working with Terms and Polynomials
  • Polynomial Division, Factoring, and Rational Expressions
  • Solving Equations and Inequalities
  • Ratio, Proportion, and Percent
  • How Algebra is Used in Geometry
  • Understanding Functions
  • Working With Quadratic Equations and Functions

Mathematical Reasoning™ Supplements These supplemental books reinforce grade math concepts and skills by asking students to apply these skills and concepts to non-routine problems. Applying mathematical knowledge to new problems is the ultimate test of concept mastery and mathematical reasoning. These user-friendly, engaging books are made up of 50 theme-based collections of problems, conveniently grouped in self-contained, double-sided activity sheets that provide space for student work. Each collection contains relevant math facts at the end of the worksheet in case students need hints to solve the problems. Calculators are allowed on activity sets that have a calculator icon at the top of the front side of the set. Each activity set is accompanied by a single-sided answer sheet containing strategy tips and detailed solutions. Teachers and parents will appreciate the easy-to-understand, comprehensive solutions. These books are a wonderful enrichment tool, but also can be used to assess how well students have learned their grade level's math concepts.

Description and Features

All products in this series.

    • Our eBooks digital, electronic versions of the book pages that you may print to any paper printer.     • You can open the PDF eBook from any device or computer that has a PDF reader such as Adobe® Reader®.     • Licensee can legally keep a copy of this eBook on three different devices. View our eBook license agreement details here .     • You can immediately download your eBook from "My Account" under the "My Downloadable Product" section after you place your order.

  • Add to Cart Add to Cart Remove This Item
  • Special of the Month
  • Sign Up for our Best Offers
  • Bundles = Greatest Savings!
  • Sign Up for Free Puzzles
  • Sign Up for Free Activities
  • Toddler (Ages 0-3)
  • PreK (Ages 3-5)
  • Kindergarten (Ages 5-6)
  • 1st Grade (Ages 6-7)
  • 2nd Grade (Ages 7-8)
  • 3rd Grade (Ages 8-9)
  • 4th Grade (Ages 9-10)
  • 5th Grade (Ages 10-11)
  • 6th Grade (Ages 11-12)
  • 7th Grade (Ages 12-13)
  • 8th Grade (Ages 13-14)
  • 9th Grade (Ages 14-15)
  • 10th Grade (Ages 15-16)
  • 11th Grade (Ages 16-17)
  • 12th Grade (Ages 17-18)
  • 12th+ Grade (Ages 18+)
  • Test Prep Directory
  • Test Prep Bundles
  • Test Prep Guides
  • Preschool Academics
  • Store Locator
  • Submit Feedback/Request
  • Sales Alerts Sign-Up
  • Technical Support
  • Mission & History
  • Articles & Advice
  • Testimonials
  • Our Guarantee
  • New Products
  • Free Activities
  • Libros en Español

Critical thinking definition

critical thinking and math

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

Critical Thinking in Mathematics Education

  • Reference work entry
  • First Online: 01 January 2014
  • Cite this reference work entry

critical thinking and math

  • Eva Jablonka 2  

820 Accesses

2 Citations

16 Altmetric

Characteristics

Educational psychologists frame critical thinking (CT) as a set of generic thinking and reasoning skills, including a disposition for using them, as well as a commitment to using the outcomes of CT as a basis for decision-making and problem solving. In such descriptions, CT is established as a general standard for making judgments and decisions. Some descriptions of CT activities and skills include a sense for fairness and the assessment of practical consequences of decisions as characteristics of CT (e.g., Paul and Elder 2001 ). This assumes autonomous subjects who share a common frame of reference for representation of facts and ideas, for their communication, as well as for appropriate (morally “good”) action. Important is also the difference as to what extent a critical examination of the criteria for CT is included in the definition: If education for CT is conceptualized as instilling a belief in a more or less fixed and shared system of skills and criteria for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Appelbaum P, Davila E (2009) Math education and social justice: gatekeepers, politics and teacher agency. In: Ernest P, Greer B, Sriraman B (eds) Critical issues in mathematics education. Information Age, Charlotte, pp 375–394

Google Scholar  

Applebaum M, Leikin R (2007) Looking back at the beginning: critical thinking in solving unrealistic problems. Mont Math Enthus 4(2):258–265

Bacon F (1605) Of the proficience and advancement of learning, divine and human. Second Book (transcribed from the 1893 Cassell & Company edition by David Price. Available at: http://www.gutenberg.org/dirs/etext04/adlr10h.htm

Common Core State Standards Initiative (2010) Mathematics standards. http://www.corestandards.org/Math . Accessed 20 July 2013

Ernest P (2010) The scope and limits of critical mathematics education. In: Alrø H, Ravn O, Valero P (eds) Critical mathematics education: past, present and future. Sense Publishers, Rotterdam, pp 65–87

Fawcett HP (1938) The nature of proof. Bureau of Publications, Columbia, New York City. University (Re-printed by the National Council of Teachers of Mathematics in 1995)

Fenner P (1994) Spiritual inquiry in Buddhism. ReVision 17(2):13–24

Fish M, Persaud A (2012) (Re)presenting critical mathematical thinking through sociopolitical narratives as mathematics texts. In: Hickman H, Porfilio BJ (eds) The new politics of the textbook. Sense Publishers, Rotterdam, pp 89–110

Chapter   Google Scholar  

Garfield JL (1990) Epoche and śūnyatā: skepticism east and west. Philos East West 40(3):285–307

Article   Google Scholar  

Jablonka E (1997) What makes a model effective and useful (or not)? In: Blum W, Huntley I, Houston SK, Neill N (eds) Teaching and learning mathematical modelling: innovation, investigation and applications. Albion Publishing, Chichester, pp 39–50

Keitel C, Kotzmann E, Skovsmose O (1993) Beyond the tunnel vision: analyzing the relationship between mathematics, society and technology. In: Keitel C, Ruthven K (eds) Learning from computers: mathematics education and technology. Springer, New York, pp 243–279

Legrand M (2001) Scientific debate in mathematics courses. In: Holton D (ed) The teaching and learning of mathematics at university level: an ICMI study. Kluwer, Dordrect, pp 127–137

National Council of Teachers of Mathematics (NCTM) (1989) Curriculum and evaluation standards for school mathematics. National Council of Teachers of Mathematics (NCTM), Reston

O’Daffer PG, Thomquist B (1993) Critical thinking, mathematical reasoning, and proof. In: Wilson PS (ed) Research ideas for the classroom: high school mathematics. MacMillan/National Council of Teachers of Mathematics, New York, pp 31–40

Paul R, Elder L (2001) The miniature guide to critical thinking concepts and tools. Foundation for Critical Thinking Press, Dillon Beach

Pimm D (1990) Mathematical versus political awareness: some political dangers inherent in the teaching of mathematics. In: Noss R, Brown A, Dowling P, Drake P, Harris M, Hoyles C et al (eds) Political dimensions of mathematics education: action and critique. Institute of Education, University of London, London

Skovsmose O (1989) Models and reflective knowledge. Zentralblatt für Didaktik der Mathematik 89(1):3–8

Stallman J (2003) John Dewey’s new humanism and liberal education for the 21st century. Educ Cult 20(2):18–22

Steiner H-G (1988) Theory of mathematics education and implications for scholarship. In: Steiner H-G, Vermandel A (eds) Foundations and methodology of the discipline mathematics education, didactics of mathematics. In: Proceedings of the second tme conference, Bielefeld-Antwerpen, pp 5–20

Walkerdine V (1988) The mastery of reason: cognitive development and the production of rationality. Routledge, London

Walshaw M (2003) Democratic education under scrutiny: connections between mathematics education and feminist political discourses. Philos Math Educ J 17. http://people.exeter.ac.uk/PErnest/pome17/contents.htm

Download references

Author information

Authors and affiliations.

Department of Education and Professional Studies, King’s College London, Waterloo Bridge Wing Franklin-Wilkins Building, SE1 9NH, London, UK

Eva Jablonka

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Eva Jablonka .

Editor information

Editors and affiliations.

Department of Education, Centre for Mathematics Education, London South Bank University, London, UK

Stephen Lerman

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry.

Jablonka, E. (2014). Critical Thinking in Mathematics Education. In: Lerman, S. (eds) Encyclopedia of Mathematics Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4978-8_35

Download citation

DOI : https://doi.org/10.1007/978-94-007-4978-8_35

Published : 31 July 2014

Publisher Name : Springer, Dordrecht

Print ISBN : 978-94-007-4977-1

Online ISBN : 978-94-007-4978-8

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

critical thinking and math

Learning Maths Is Important to a Child's Growth and Success

M athematics is a core subject in a child’s learning. It is taught in school but applies everywhere and every day. If you are keen, you will notice that counting is the most frequently used maths concept by any person, regardless of age. There is more: maths helps children and everyone else to understand the world and solve everyday problems critically.

Learning maths in the early years sets a strong foundation for children. That is why both teachers and parents should work together and use all resources to teach children maths. These resources include textbooks, physical items around us, maths games, and most importantly, online resources that are easily available these days such as maths worksheets from the Cazoom Maths website.

When there is a good mathematics foundation in a child, growth and success will follow. Here is why learning maths is important.

Helps to Understand the World

The world is full of surprises. There are always new things to learn from the day a child is born. Surprisingly, maths is all around everyone, so learning the subject will definitely help a child to understand the world. Through learning maths, kids can calculate the distance from their home to school and plan their time well. They can also understand the number of trees in their garden, and the toys they have, and also learn how to read the time.

Maths Develops Critical Thinking

The curiosity in children to tackle new challenges every day requires critical thinking to solve. Maths helps them understand how problems are solved through analysis and logical solutions. So, it is important to teach them this subject when they are young so they can have an idea of how to solve problems critically such as counting money, paying bills correctly, sharing equally, and the like. Critical thinking is important throughout life and mathematics will always be a crucial part of their development.

Maths Sets a Business Foundation

Entrepreneurs are some of the most successful people in the world. A child can set entrepreneurial skills in early years by loving and understanding maths. This could start with having an investment mindset that comes with simple maths concepts such as saving money in a piggy bank and then investing it. Parents and teachers should help children to learn how to go about this.

Maths Makes One Marketable in the Future

Maths is a core subject for many courses in colleges and universities. A good foundation will help a child to always get good grades and scores and help them become more marketable when they start looking for a job. Even after working for an employer, they will get good recommendations and endorsements everywhere they work.

Maths Brings Happiness

Maths is fun, especially when fun games are involved. Children always enjoy playing various maths games whether they are physical or mental. As we all know, this has more benefits to a child’s growth and success than just being fun. Therefore, teachers and parents should teach their children maths games that help them to learn mathematics and also bring happiness, growth, and success to them.

Mathematics is one of the most important subjects in life. Learning maths in the early years has a lot of benefits for children as we have discussed above. It is time to ensure that your child is learning this subject well.

The post Learning Maths Is Important to a Child’s Growth and Success appeared first on Things That Make People Go Aww .

Mathematics is a core subject in a child’s learning. It is taught in school but applies everywhere and every day. If you are keen, you will notice that counting is the most frequently used maths concept by any person, regardless of age. There is more: maths helps children and everyone else to understand the world...

  • Math for Kids
  • Parenting Resources
  • ELA for Kids
  • Teaching Resources

SplashLearn Blog

How to Teach Number Formation in 5 Easy Steps

13 Best Resources for Math Videos for Kids: Math Made Fun

How to Teach Skip Counting to Kids in 9 Easy Steps

10 Best Math Intervention Strategies for Struggling Students

How to Teach Division to Kids in 11 Easy Steps

How to Cope With Test Anxiety in 12 Easy Ways

Developmental Milestones for 4 Year Olds: The Ultimate Guide

Simple & Stress-Free After School Schedule for Kids of All Ages

When Do Kids Start Preschool: Age & Readiness Skills

Kindergarten Readiness Checklist: A Guide for Parents

How to Teach Letter Formtaion to Kids in 9 Easy Steps

15 Best Literacy Activities for Preschoolers in 2024

12 Best Poems About Teachers Who Change Lives

6 Effective Ways to Improve Writing Skills

40 Four Letter Words That Start With A

60 Fun Animal Facts for Kids

12 best behavior management techniques for the classroom.

13 Best Online Teaching Tips for Teachers

How to Teach Kids to Write in 9 Easy Steps

13 Challenges for Teachers and How to Address Them

15 Fun Decision Making Games for Kids

Children playing memory game

1. Online Decision Making Games 

3. connect four, 5. ticket to ride: first journey, 6. catan junior, 9. battleship, 10. guess who.

Making decisions is a big part of growing up. Learning to make good decisions early on is super important for kids. It helps them become more independent, confident, and ready to face the world. That’s where decision making games for kids come into play. These games teach kids how to think ahead, make choices, and understand what happens because of those choices—all while having a blast!

SplashLearn: Most Comprehensive Learning Program for PreK-5

Product logo

SplashLearn inspires lifelong curiosity with its game-based PreK-5 learning program loved by over 40 million children. With over 4,000 fun games and activities, it’s the perfect balance of learning and play for your little one.

In this blog, we’re going to dive into some fantastic games that do just that. From classic board games that have been around for years to new card games that will soon become favorites, we’ve got a list that will help any kid become a decision-making champ. 

Best for Which Ages: 3 years and up

Decision making games online are one of the best choice making activities for kids to sharpen their critical thinking, problem-solving, and strategic planning skills in a fun, interactive environment. Engaging with these games teaches children to make quick decisions, analyze outcomes, and adapt their strategies in real time. Here’s a look at some engaging online decision making games that are perfect for young minds:

  • Challenge Two of a Kind Game

Card Image

This game tests memory and attention to detail as players flip cards to find matching pairs. It’s about remembering what you saw and making strategic decisions on which cards to flip next. Perfect for developing concentration and memory recall, it’s a hit among kids looking to challenge their minds.

  • Play Jumble Mania Game

Card Image

Jumble Mania sharpens spelling and vocabulary by challenging players to rearrange jumbled letters to form words. This game enhances decision making by requiring players to choose the most logical order of letters, improving their language skills and quick thinking in a fun, engaging way.

  • Challenge Match-Up Puzzles Game

Card Image

Match-up puzzles take the challenge up by mixing memory skills with problem-solving. Players must match related items, not just identical ones, adding an extra layer of decision making. This game is excellent for kids who enjoy puzzles and are ready to think outside the box.

go fish card cover

Best for Which Age: 3 years and up

Go Fish is a card game that sharpens memory and introduces kids to strategic thinking. Players ask each other for cards to make sets, using strategy to remember who holds which cards.

How to Play:

  • Deal five cards to each player and place the rest in a “fish pond” in the center.
  • Players ask others for specific cards to make sets of four.
  • If the player has the card, they must hand it over; if not, they say “Go Fish,” and the asking player draws from the pond.
  • The game ends when all sets are made, and the player with the most sets wins.

Buy here: Amazon

connect four game cover

Best for Which Age: 6 years and up

Connect Four is all about strategic planning. Players aim to line up four discs in a row. This game challenges kids to think ahead and block their opponents, making it one of the most fun choice games for kids.

  • Players choose a color and take turns dropping their colored discs into a vertically standing grid.
  • The objective is to be the first to form a horizontal, vertical, or diagonal line of four of one’s discs.
  • Players must strategize to block their opponent’s moves while working towards their four-in-a-row.
  • The game ends when one player achieves a Connect Four or the grid fills up, indicating a tie.

Price: $12.51

Buy Here: Amazon

mancala game cover

Mancala is a classic game that requires players to strategically move pieces around the board to capture more stones than their opponent. It’s a brilliant choice among decision making games for kids, teaching them to plan ahead and predict their opponent’s moves.

  • The board is set up with an equal number of pieces in small pits.
  • Players take turns picking up all the pieces in one of their pits and distributing them one by one in subsequent pits.
  • The goal is to capture more pieces than the opponent by strategic placement and captures.

Price:  $12

Ticket to Ride First Journey game cover

Ticket to Ride: First Journey simplifies the classic game for younger audiences, focusing on strategic thinking as players plan train routes across a map. This making choices game is perfect for introducing basic strategy and planning skills to kids.

  • Players collect train cards that enable them to claim railway routes on a map.
  • The aim is to connect distant cities through a network of trains.
  • Strategic planning is required to block opponents and efficiently connect cities.

Price:  $27

Catan Junior game cover

Catan Junior takes the beloved strategy game and simplifies it for younger players, focusing on resource management and basic strategic planning. It’s an excellent choice among decision making activities for elementary students, teaching them the importance of resource allocation and strategy.

  • Players collect resources like wood and gold to build their pirate lairs.
  • Trading resources with other players is a key part of the game.
  • The first player to build all their pirate lairs wins, requiring careful planning and resource management.

Price:  $24.99

Uno game cover

Best for Which Age: 7 years and up

Uno is a popular card game that combines strategy with luck, requiring players to adapt their strategies based on the cards they have and the actions of their opponents. It’s one of the most fun and engaging decision making activities for children, teaching them adaptability and strategic thinking.

  • Players aim to match a card in their hand with the current card shown on top of the deck either by color or number.
  • Special action cards, like skips and reverses, add complexity.
  • The first player to rid themselves of all their cards wins, requiring strategic decision-making and adaptability to changing game dynamics.

Price:  $11.16

Chess game cover

Chess is one of the best decision making games, teaching players to think several moves ahead and consider the consequences of their actions. It’s a classic game of strategy and tactics where every move counts.

  • Each player starts with 16 pieces that move in specific ways across the board.
  • The objective is to checkmate the opponent’s king, meaning the king is in a position to be captured and cannot escape.
  • Players must protect their own pieces while strategizing to capture their opponent’s king.

Price:  $14.99

Battleship game cover

Battleship is a game that combines strategic planning and deduction, making it a great choice among decision making board games. Players guess the locations of their opponent’s ships and aim to sink them, all based on logical deduction and strategic thinking.

  • Each player places their ships secretly on a grid.
  • Players take turns calling out grid coordinates to guess the location of the opponent’s ships.
  • The first player to sink all of the opponent’s ships wins.

Guess Who game cover

Best for Which Age: 5 years and up

Guess Who? is a fun decision making situations game that enhances logical thinking and decision-making. Players ask yes or no questions to deduce the identity of the opponent’s character, using logic and deduction at every turn.

  • Each player chooses a character card and places it in front of them.
  • Players take turns asking yes or no questions to narrow down the possible characters their opponent has chosen.
  • The first player to correctly guess the opponent’s character wins.

11. Clue (Cluedo)

Clue game cover

Best for Which Age: 8 years and up

Clue, or Cluedo, is a classic among group decision making games, where players solve a mystery by deducing who committed the crime, with what weapon, and in which room. It’s a fantastic game for developing deductive reasoning and decision-making skills.

  • Players move around the game board, which represents the rooms of a mansion, to collect clues.
  • Through a process of elimination and deduction based on the clues gathered, players try to solve the mystery.
  • The first player to correctly accuse the murderer, the weapon, and the room wins the game.

Price:  $17.99

12. Tic-Tac-Toe (Noughts and Crosses)

Tic Tac Toe game cover

Tic-Tac-Toe, also known as Noughts and Crosses, is a perfect introductory decision making game for kids. It teaches young children the basics of strategy and foresight by encouraging them to think about their moves and anticipate their opponent’s next step.

  • Players take turns marking a space in a 3×3 grid with their symbol, either a nought or a cross.
  • The aim is to be the first to get three of your symbols in a row, either horizontally, vertically, or diagonally.
  • Players need to block their opponent’s moves while working towards their own line of three.

13. Checkers (Draughts)

Checkers game cover

Checkers, known as Draughts in some countries, simplifies strategy and decision-making, making it one of the easiest decision making games for kids. It teaches them to plan their moves and predict their opponent’s actions in a straightforward, engaging way.

  • Players move their pieces diagonally across a checkerboard, with the aim of capturing the opponent’s pieces by jumping over them.
  • The game encourages players to protect their own pieces while finding opportunities to capture their opponent’s.
  • The player who captures all of the opponent’s pieces wins.

Price:  $15.99

14. Rat-a-Tat Cat

Rat a Tat Cat game cover

Rat-a-Tat Cat is a card game that boosts memory and strategy through the use of card swaps and peeks. It’s a fun and engaging way to enhance decision-making skills in kids, as they must remember the cards’ values and decide the best times to swap.

  • Players are dealt cards that they can peek at but then must keep face down, trying to remember the values.
  • The aim is to end up with the lowest score by swapping out high-value cards for lower ones.
  • Strategic thinking is required to decide when to swap cards and when to stick with what you have.

Price:  $11.99

15. Memory Game

Memory game cover

The Memory Game, also known as Concentration, is a fantastic choice for kids to boost their memory and focus. By matching pairs of cards, children practice attention to detail and improve their recall abilities, making it a great pick from games on decision making.

  • Spread all cards face down on a table.
  • Players take turns flipping over two cards at a time.
  • If the cards match, they keep them and go again.
  • If they don’t match, they turn them back over, and the next player goes.
  • The game continues until all pairs are matched.

Price:  $9.99

Decision making games for kids offer fun and interactive ways to boost critical thinking and problem-solving skills. These games not only keep children engaged but also play a crucial role in their cognitive development. So, let’s encourage our kids to play more of these games and watch them grow smarter every day!

Frequently Asked Questions (FAQs)

How do you teach children decision-making.

Teaching children decision-making involves guiding them through the process of making choices, discussing possible outcomes, and allowing them to experience the consequences in a safe environment. Encouraging them to weigh options and think ahead helps build this skill.

What is a decision-making game?

Decision making games for kids are an interactive activities designed to simulate scenarios where players must make choices, often within a set of rules or constraints, to achieve a goal or solve a problem, thereby sharpening their decision-making skills.

What is decision-making icebreaker activity?

A decision-making icebreaker activity is a short, engaging task that encourages participants to make choices and share their reasoning. It’s often used to warm up a group, foster teamwork, and introduce the concept of decision-making in a fun way.

What are some fun decision-making questions?

Fun decision-making questions can range from hypothetical scenarios like “Would you rather have the ability to fly or be invisible?” to practical choices such as “If you could only eat one food for the rest of your life, what would it be?” These fun would you rather questions stimulate thinking and conversation.

critical thinking and math

20 Best Board Games for Preschoolers in 2024

12 Best Indoor Recess Games For Kids

12 Best Dice Games for Kids to Play

Preschool

Most Popular

critical thinking and math

15 Best Report Card Comments Samples

A working mom and her daughter in the bedroom, Mom is working while daughter is playing with her toys.

101 Best Riddles for Kids (With Explanation)

Good vibes quotes by SplashLearn

40 Best Good Vibes Quotes to Brighten Your Day

Recent posts.

Animal facts

Math & ELA | PreK To Grade 5

Kids see fun., you see real learning outcomes..

Watch your kids fall in love with math & reading through our scientifically designed curriculum.

Parents, try for free Teachers, use for free

Banner Image

  • Games for Kids
  • Worksheets for Kids
  • Math Worksheets
  • ELA Worksheets
  • Math Vocabulary
  • Number Games
  • Addition Games
  • Subtraction Games
  • Multiplication Games
  • Division Games
  • Addition Worksheets
  • Subtraction Worksheets
  • Multiplication Worksheets
  • Division Worksheets
  • Times Tables Worksheets
  • Reading Games
  • Writing Games
  • Phonics Games
  • Sight Words Games
  • Letter Tracing Games
  • Reading Worksheets
  • Writing Worksheets
  • Phonics Worksheets
  • Sight Words Worksheets
  • Letter Tracing Worksheets
  • Prime Number
  • Order of Operations
  • Long multiplication
  • Place value
  • Parallelogram
  • SplashLearn Success Stories
  • SplashLearn Apps
  • [email protected]

© Copyright - SplashLearn

Banner Image

Make study-time fun with 14,000+ games & activities, 450+ lesson plans, and more—free forever.

Parents, Try for Free Teachers, Use for Free

Castleton University is now part of Vermont State University! Please visit VermontState.edu for accurate information.

Critical Thinking in the Math Classroom, Taylor, Summer 2024

Course description.

Participants in this course will collaborate with their professor and peers to build a deeper understanding of research-based practices that build mathematical thinkers.  This includes the exploration of practical strategies that promote student thinking through collaboration.  Participants will explore the “Building Thinking Classrooms’ framework with an emphasis on the first few practices.  A final project will include a plan on how to implement practices that will help build a thinking classroom.

Audience: K-12 Mathematics Educators

Course Goals & Objectives

To understand the types of mathematical tasks that encourage student thinking.

To learn techniques for turning textbook tasks into thinking tasks.

To explore techniques that encourage student problem solving through collaboration.

To learn strategies for developing and facilitating student collaboration.

To develop an evidence-based plan for building more student thinking in their classroom. 

Curtis Taylor, M.S.

Curtis Taylor has been a 5th and 6th grade teacher at Crossett Brook Middle School in Duxbury, Vermont for the past 11 years. He earned his Master of Science in Teaching Mathematics through the Vermont Mathematics Initiative at the University of Vermont. He holds endorsements in K-6 Elementary Education and 7-12 Mathematics. Curtis is passionate about implementing practices in the math classroom that encourage students to think critically through collaborative problem solving. He has worked on district level math leadership teams and facilitated professional development at the district level. He enjoys spending time with his family, running, skiing or mountain biking on local trails.

Required Texts

Required Texts are not included in the course tuition.

Lilijedhal, Peter.  Building a Thinking Classroom in Mathematics

Other Suggested Readings/Texts:

In addition, there will also be articles provided by the instructor.

For additional course information

Curtis Taylor (802) 922-0004

For additional registration information

Center for Schools Team

(802) 468-1325

Register Now!

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies. Cookie Policy

IMAGES

  1. PSLE Mathematics Critical Thinking Practice In Challenging Problem Sums

    critical thinking and math

  2. Critical Thinking in Mathematics: KS2

    critical thinking and math

  3. Increasing Critical Thinking Skills in Math

    critical thinking and math

  4. Critical Thinking: Test-taking Practice for Math Grade 5

    critical thinking and math

  5. Critical Thinking / Writing In Math FREE SAMPLE: Pre-Algebra

    critical thinking and math

  6. Critical Thinking Mathematics Grade 3 Student Edition

    critical thinking and math

VIDEO

  1. Someone Makes This A Necklace (emirp) #shorts

  2. Critical Thinking Math Fact Practice

  3. Time and Work ।Type 1। Tricky

  4. Math Series Quiz: Next Number in the Sequence #mathstricks #quiz #maths #series #mathspuzzle

  5. 30 Detik with Booklet CTM || WA : 0895-1407-5000

  6. ಸಂಖ್ಯಾ ವಿನ್ಯಾಸ

COMMENTS

  1. How To Encourage Critical Thinking in Math

    Critical thinking is more than just a buzzword… It's an essential skill that helps students develop problem-solving abilities and make logical connections between different concepts. By encouraging critical thinking in math, students learn to approach problems more thoughtfully, they learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different ...

  2. (PDF) Students' Critical Thinking Skills in Solving Mathematical

    To develop mathematical critical thinking skills, students are expected to have a fighting attitude in solving mathematical problems. This can support learning that is oriented towards students ...

  3. PDF Mathematical Teaching Strategies: Pathways to Critical Thinking and

    critical thinking skills by indicating optional methods and perhaps simplifying the process. Below is an example of how critical thinking can be used with simple mathematics. Students can develop and enhance their critical thinking skills as a result of instructors providing optional methods for simplifying the mathematical process.

  4. Building a Thinking Classroom in Math

    Building a Thinking Classroom in Math. Over more than a decade, the author has developed a 14-point plan for encouraging students to engage deeply with math content. One day in 2003, I was invited to help June implement problem solving in her grade 8 classroom.

  5. Critical Thinking in Elementary Math

    By focusing on authentic moments of inquiry, elementary students engage in critical thinking in math class. Most of the math problems we present to elementary students are scripted. They might come from the curriculum we are teaching, or maybe they are a three-act math task we learned at a workshop or found in a blog.

  6. Critical Thinking in Mathematics Education

    Definition. Mainstream educational psychologists view critical thinking (CT) as the strategic use of a set of reasoning skills for developing a form of reflective thinking that ultimately optimizes itself, including a commitment to using its outcomes as a basis for decision-making and problem solving. In such descriptions, CT is established as ...

  7. Promoting Independent Critical Thinking in Math

    5 Ways to Get Your Students to Think. 1. Answer questions with a refocus on the students' point of view. Liljedahl found in his research that students ask three types of questions: " (1) proximity questions—asked when the teacher is close; (2) stop thinking questions—most often of the form 'is this right' or 'will this be on the ...

  8. PDF Learners' Critical Thinking About Learning Mathematics

    Therefore, learners' critical thinking about their own mathematics learning process was analyzed by using the self-examination and self-correction sub-skills of the sixth core cognitive critical thinking, self-regulation (Figure 1). The APA consensus' definitions of sub-skills self-examination and self-correction were adapted to analyze ...

  9. Critical Thinking Math Problems: Examples and Activities

    Critical thinking is an important factor in understanding math. Discover how critical thinking can help with real-world problem solving, using examples and activities like asking questions ...

  10. PDF High-Leverage Critical Thinking Practices and Mathematics

    developing skills that can be applied to other subjects inside and outside the discipline of mathematics. Critical Thinking and Mathematics While core critical thinking skills, such as logic and argumentation, have a home in every discipline, certain fields provide opportunities to focus on specific critical thinking topics.

  11. Creative and Critical Thinking in Primary Mathematics

    In mathematics, creative thinking occurs when students generalise. Generalising involves identifying common properties or patterns across more than one case and communicating a rule (conjecture) to describe the common property, pattern or relationship. In order to generalise students need to first analyse the problem to notice things that are ...

  12. Promoting Creative and Critical thinking in Mathematics and Numeracy

    The mathematics curriculum in Australia provides teachers with the perfect opportunity to teach mathematics through critical and creative thinking. In fact, it's mandated. Consider the core processes of the curriculum. The Australian Curriculum (ACARA, 2017), requires teachers to address four proficiencies: Problem Solving, Reasoning, Fluency ...

  13. Full article: Promoting critical thinking through mathematics and

    1 Introduction and background. Critical thinking has been considered a key twenty-first century competence by different frameworks (Voogt and Roblin Citation 2012) and by STEM educators (Jang Citation 2016).An education contributing to the development of twenty-first century competences requires, among other things, a reconsideration of instructional processes and a shift from teaching to know ...

  14. How to Improve Problem-Solving Skills: Mathematics and Critical Thinking

    This helps them see math as a tool to navigate real-world challenges, thereby promoting critical thinking. 4. What are the six basic steps of the problem-solving process in math? The six steps are: Identification, Analysis, Generation of Alternatives, Decision Making, Implementation, and Evaluation.

  15. 20 Math Critical Thinking Questions to Ask in Class Tomorrow

    Start small. Add critical thinking questions to word problems. Keep reading for math critical thinking questions that can be applied to any subject or topic! When you want your students to defend their answers. When you want your students to justify their opinions. When you want your students to think outside of the box.

  16. PDF 81 Fresh & Fun Critical-Thinking Activities

    This arrangement will help you and your students more clearly understand and identify the specific critical-thinking skills they are using. For each thinking skill in this book, there are two kinds of activities: (1) those that you, as the teacher, will lead, and (2) student reproducibles for indepen- dent work.

  17. Mathematics Improves Your Critical Thinking and Problem-Solving

    Mathematics provides a systematic and logical framework for problem-solving and critical thinking. The study of math helps to develop analytical skills, logical reasoning, and problem-solving abilities that can be applied to many areas of life.By using critical thinking skills to solve math problems, we can develop a deeper understanding of concepts, enhance our problem-solving skills, and ...

  18. Does mathematics training lead to better logical thinking and reasoning

    The other problem where performance was unrelated to training, the Petrol Station problem, cannot be characterised similarly. It is more of a logical/critical thinking type problem, where there remains some suggestion that training may have impacted performance, as the Academic group seemed to perform better than the rest of the sample.

  19. (PDF) Developing Critical Thinking Skills of Students in Mathematics

    In this study, evaluation of critical thinking. 228 Developing Critical Thinking Skills of Students in Mathematics Learning. skills in mathem atics using three components, na mely (1 ...

  20. Critical Thinking and Logic in Mathematics

    Critical Thinking and Logic in Mathematics. Amy has a master's degree in secondary education and has been teaching math for over 9 years. Amy has worked with students at all levels from those with ...

  21. 3 Ways to Strengthen Math Instruction

    Students will develop more critical thinking skills and better understand math concepts if teachers are able to relate instruction to real life, Garrett said—so that "kids have relationships ...

  22. Rethinking Teaching Strategies in Math

    A Powerful Rethinking of Your Math Classroom. We look at strategies you can reset this year—adjusting your testing regimen, tackling math anxiety, encouraging critical thinking, and fostering a mistake-friendly environment. The beginning of school is a great time for teachers—both veteran and early career—to consider ways they can improve ...

  23. Mathematical Reasoning™ Series

    Essential Algebra for Advanced High School and SAT. Discover Essential Algebra for Advanced High School and SAT, a 241-page math book in the esteemed Mathematical Reasoning series written by award-winning author and teacher with 30 years of expertise in secondary mathematics. This powerful resource teaches the 'essential' connection of ...

  24. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  25. Critical Thinking in Mathematics Education

    Educational psychologists frame critical thinking (CT) as a set of generic thinking and reasoning skills, including a disposition for using them, as well as a commitment to using the outcomes of CT as a basis for decision-making and problem solving. In such descriptions, CT is established as a general standard for making judgments and decisions.

  26. Learning Maths Is Important to a Child's Growth and Success

    Mathematics is a core subject in a child's learning. It is taught in school but applies everywhere and every day. ... Critical thinking is important throughout life and mathematics will always ...

  27. 15 Decision Making Games for Kids to Develop Critical Thinking

    Decision making games online are one of the best choice making activities for kids to sharpen their critical thinking, problem-solving, and strategic planning skills in a fun, interactive environment. Engaging with these games teaches children to make quick decisions, analyze outcomes, and adapt their strategies in real time.

  28. Critical Thinking in the Math Classroom, Taylor, Summer 2024

    He holds endorsements in K-6 Elementary Education and 7-12 Mathematics. Curtis is passionate about implementing practices in the math classroom that encourage students to think critically through collaborative problem solving. He has worked on district level math leadership teams and facilitated professional development at the district level.