REALIZING THE PROMISE:

Leading up to the 75th anniversary of the UN General Assembly, this “Realizing the promise: How can education technology improve learning for all?” publication kicks off the Center for Universal Education’s first playbook in a series to help improve education around the world.

It is intended as an evidence-based tool for ministries of education, particularly in low- and middle-income countries, to adopt and more successfully invest in education technology.

While there is no single education initiative that will achieve the same results everywhere—as school systems differ in learners and educators, as well as in the availability and quality of materials and technologies—an important first step is understanding how technology is used given specific local contexts and needs.

The surveys in this playbook are designed to be adapted to collect this information from educators, learners, and school leaders and guide decisionmakers in expanding the use of technology.  

Introduction

While technology has disrupted most sectors of the economy and changed how we communicate, access information, work, and even play, its impact on schools, teaching, and learning has been much more limited. We believe that this limited impact is primarily due to technology being been used to replace analog tools, without much consideration given to playing to technology’s comparative advantages. These comparative advantages, relative to traditional “chalk-and-talk” classroom instruction, include helping to scale up standardized instruction, facilitate differentiated instruction, expand opportunities for practice, and increase student engagement. When schools use technology to enhance the work of educators and to improve the quality and quantity of educational content, learners will thrive.

Further, COVID-19 has laid bare that, in today’s environment where pandemics and the effects of climate change are likely to occur, schools cannot always provide in-person education—making the case for investing in education technology.

Here we argue for a simple yet surprisingly rare approach to education technology that seeks to:

  • Understand the needs, infrastructure, and capacity of a school system—the diagnosis;
  • Survey the best available evidence on interventions that match those conditions—the evidence; and
  • Closely monitor the results of innovations before they are scaled up—the prognosis.

RELATED CONTENT

teacher and technology essay

Podcast: How education technology can improve learning for all students

teacher and technology essay

To make ed tech work, set clear goals, review the evidence, and pilot before you scale

The framework.

Our approach builds on a simple yet intuitive theoretical framework created two decades ago by two of the most prominent education researchers in the United States, David K. Cohen and Deborah Loewenberg Ball. They argue that what matters most to improve learning is the interactions among educators and learners around educational materials. We believe that the failed school-improvement efforts in the U.S. that motivated Cohen and Ball’s framework resemble the ed-tech reforms in much of the developing world to date in the lack of clarity improving the interactions between educators, learners, and the educational material. We build on their framework by adding parents as key agents that mediate the relationships between learners and educators and the material (Figure 1).

Figure 1: The instructional core

Adapted from Cohen and Ball (1999)

As the figure above suggests, ed-tech interventions can affect the instructional core in a myriad of ways. Yet, just because technology can do something, it does not mean it should. School systems in developing countries differ along many dimensions and each system is likely to have different needs for ed-tech interventions, as well as different infrastructure and capacity to enact such interventions.

The diagnosis:

How can school systems assess their needs and preparedness.

A useful first step for any school system to determine whether it should invest in education technology is to diagnose its:

  • Specific needs to improve student learning (e.g., raising the average level of achievement, remediating gaps among low performers, and challenging high performers to develop higher-order skills);
  • Infrastructure to adopt technology-enabled solutions (e.g., electricity connection, availability of space and outlets, stock of computers, and Internet connectivity at school and at learners’ homes); and
  • Capacity to integrate technology in the instructional process (e.g., learners’ and educators’ level of familiarity and comfort with hardware and software, their beliefs about the level of usefulness of technology for learning purposes, and their current uses of such technology).

Before engaging in any new data collection exercise, school systems should take full advantage of existing administrative data that could shed light on these three main questions. This could be in the form of internal evaluations but also international learner assessments, such as the Program for International Student Assessment (PISA), the Trends in International Mathematics and Science Study (TIMSS), and/or the Progress in International Literacy Study (PIRLS), and the Teaching and Learning International Study (TALIS). But if school systems lack information on their preparedness for ed-tech reforms or if they seek to complement existing data with a richer set of indicators, we developed a set of surveys for learners, educators, and school leaders. Download the full report to see how we map out the main aspects covered by these surveys, in hopes of highlighting how they could be used to inform decisions around the adoption of ed-tech interventions.

The evidence:

How can school systems identify promising ed-tech interventions.

There is no single “ed-tech” initiative that will achieve the same results everywhere, simply because school systems differ in learners and educators, as well as in the availability and quality of materials and technologies. Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages and complement the work of educators to accelerate student learning (Figure 2). These comparative advantages include:

  • Scaling up quality instruction, such as through prerecorded quality lessons.
  • Facilitating differentiated instruction, through, for example, computer-adaptive learning and live one-on-one tutoring.
  • Expanding opportunities to practice.
  • Increasing learner engagement through videos and games.

Figure 2: Comparative advantages of technology

Here we review the evidence on ed-tech interventions from 37 studies in 20 countries*, organizing them by comparative advantage. It’s important to note that ours is not the only way to classify these interventions (e.g., video tutorials could be considered as a strategy to scale up instruction or increase learner engagement), but we believe it may be useful to highlight the needs that they could address and why technology is well positioned to do so.

When discussing specific studies, we report the magnitude of the effects of interventions using standard deviations (SDs). SDs are a widely used metric in research to express the effect of a program or policy with respect to a business-as-usual condition (e.g., test scores). There are several ways to make sense of them. One is to categorize the magnitude of the effects based on the results of impact evaluations. In developing countries, effects below 0.1 SDs are considered to be small, effects between 0.1 and 0.2 SDs are medium, and those above 0.2 SDs are large (for reviews that estimate the average effect of groups of interventions, called “meta analyses,” see e.g., Conn, 2017; Kremer, Brannen, & Glennerster, 2013; McEwan, 2014; Snilstveit et al., 2015; Evans & Yuan, 2020.)

*In surveying the evidence, we began by compiling studies from prior general and ed-tech specific evidence reviews that some of us have written and from ed-tech reviews conducted by others. Then, we tracked the studies cited by the ones we had previously read and reviewed those, as well. In identifying studies for inclusion, we focused on experimental and quasi-experimental evaluations of education technology interventions from pre-school to secondary school in low- and middle-income countries that were released between 2000 and 2020. We only included interventions that sought to improve student learning directly (i.e., students’ interaction with the material), as opposed to interventions that have impacted achievement indirectly, by reducing teacher absence or increasing parental engagement. This process yielded 37 studies in 20 countries (see the full list of studies in Appendix B).

Scaling up standardized instruction

One of the ways in which technology may improve the quality of education is through its capacity to deliver standardized quality content at scale. This feature of technology may be particularly useful in three types of settings: (a) those in “hard-to-staff” schools (i.e., schools that struggle to recruit educators with the requisite training and experience—typically, in rural and/or remote areas) (see, e.g., Urquiola & Vegas, 2005); (b) those in which many educators are frequently absent from school (e.g., Chaudhury, Hammer, Kremer, Muralidharan, & Rogers, 2006; Muralidharan, Das, Holla, & Mohpal, 2017); and/or (c) those in which educators have low levels of pedagogical and subject matter expertise (e.g., Bietenbeck, Piopiunik, & Wiederhold, 2018; Bold et al., 2017; Metzler & Woessmann, 2012; Santibañez, 2006) and do not have opportunities to observe and receive feedback (e.g., Bruns, Costa, & Cunha, 2018; Cilliers, Fleisch, Prinsloo, & Taylor, 2018). Technology could address this problem by: (a) disseminating lessons delivered by qualified educators to a large number of learners (e.g., through prerecorded or live lessons); (b) enabling distance education (e.g., for learners in remote areas and/or during periods of school closures); and (c) distributing hardware preloaded with educational materials.

Prerecorded lessons

Technology seems to be well placed to amplify the impact of effective educators by disseminating their lessons. Evidence on the impact of prerecorded lessons is encouraging, but not conclusive. Some initiatives that have used short instructional videos to complement regular instruction, in conjunction with other learning materials, have raised student learning on independent assessments. For example, Beg et al. (2020) evaluated an initiative in Punjab, Pakistan in which grade 8 classrooms received an intervention that included short videos to substitute live instruction, quizzes for learners to practice the material from every lesson, tablets for educators to learn the material and follow the lesson, and LED screens to project the videos onto a classroom screen. After six months, the intervention improved the performance of learners on independent tests of math and science by 0.19 and 0.24 SDs, respectively but had no discernible effect on the math and science section of Punjab’s high-stakes exams.

One study suggests that approaches that are far less technologically sophisticated can also improve learning outcomes—especially, if the business-as-usual instruction is of low quality. For example, Naslund-Hadley, Parker, and Hernandez-Agramonte (2014) evaluated a preschool math program in Cordillera, Paraguay that used audio segments and written materials four days per week for an hour per day during the school day. After five months, the intervention improved math scores by 0.16 SDs, narrowing gaps between low- and high-achieving learners, and between those with and without educators with formal training in early childhood education.

Yet, the integration of prerecorded material into regular instruction has not always been successful. For example, de Barros (2020) evaluated an intervention that combined instructional videos for math and science with infrastructure upgrades (e.g., two “smart” classrooms, two TVs, and two tablets), printed workbooks for students, and in-service training for educators of learners in grades 9 and 10 in Haryana, India (all materials were mapped onto the official curriculum). After 11 months, the intervention negatively impacted math achievement (by 0.08 SDs) and had no effect on science (with respect to business as usual classes). It reduced the share of lesson time that educators devoted to instruction and negatively impacted an index of instructional quality. Likewise, Seo (2017) evaluated several combinations of infrastructure (solar lights and TVs) and prerecorded videos (in English and/or bilingual) for grade 11 students in northern Tanzania and found that none of the variants improved student learning, even when the videos were used. The study reports effects from the infrastructure component across variants, but as others have noted (Muralidharan, Romero, & Wüthrich, 2019), this approach to estimating impact is problematic.

A very similar intervention delivered after school hours, however, had sizeable effects on learners’ basic skills. Chiplunkar, Dhar, and Nagesh (2020) evaluated an initiative in Chennai (the capital city of the state of Tamil Nadu, India) delivered by the same organization as above that combined short videos that explained key concepts in math and science with worksheets, facilitator-led instruction, small groups for peer-to-peer learning, and occasional career counseling and guidance for grade 9 students. These lessons took place after school for one hour, five times a week. After 10 months, it had large effects on learners’ achievement as measured by tests of basic skills in math and reading, but no effect on a standardized high-stakes test in grade 10 or socio-emotional skills (e.g., teamwork, decisionmaking, and communication).

Drawing general lessons from this body of research is challenging for at least two reasons. First, all of the studies above have evaluated the impact of prerecorded lessons combined with several other components (e.g., hardware, print materials, or other activities). Therefore, it is possible that the effects found are due to these additional components, rather than to the recordings themselves, or to the interaction between the two (see Muralidharan, 2017 for a discussion of the challenges of interpreting “bundled” interventions). Second, while these studies evaluate some type of prerecorded lessons, none examines the content of such lessons. Thus, it seems entirely plausible that the direction and magnitude of the effects depends largely on the quality of the recordings (e.g., the expertise of the educator recording it, the amount of preparation that went into planning the recording, and its alignment with best teaching practices).

These studies also raise three important questions worth exploring in future research. One of them is why none of the interventions discussed above had effects on high-stakes exams, even if their materials are typically mapped onto the official curriculum. It is possible that the official curricula are simply too challenging for learners in these settings, who are several grade levels behind expectations and who often need to reinforce basic skills (see Pritchett & Beatty, 2015). Another question is whether these interventions have long-term effects on teaching practices. It seems plausible that, if these interventions are deployed in contexts with low teaching quality, educators may learn something from watching the videos or listening to the recordings with learners. Yet another question is whether these interventions make it easier for schools to deliver instruction to learners whose native language is other than the official medium of instruction.

Distance education

Technology can also allow learners living in remote areas to access education. The evidence on these initiatives is encouraging. For example, Johnston and Ksoll (2017) evaluated a program that broadcasted live instruction via satellite to rural primary school students in the Volta and Greater Accra regions of Ghana. For this purpose, the program also equipped classrooms with the technology needed to connect to a studio in Accra, including solar panels, a satellite modem, a projector, a webcam, microphones, and a computer with interactive software. After two years, the intervention improved the numeracy scores of students in grades 2 through 4, and some foundational literacy tasks, but it had no effect on attendance or classroom time devoted to instruction, as captured by school visits. The authors interpreted these results as suggesting that the gains in achievement may be due to improving the quality of instruction that children received (as opposed to increased instructional time). Naik, Chitre, Bhalla, and Rajan (2019) evaluated a similar program in the Indian state of Karnataka and also found positive effects on learning outcomes, but it is not clear whether those effects are due to the program or due to differences in the groups of students they compared to estimate the impact of the initiative.

In one context (Mexico), this type of distance education had positive long-term effects. Navarro-Sola (2019) took advantage of the staggered rollout of the telesecundarias (i.e., middle schools with lessons broadcasted through satellite TV) in 1968 to estimate its impact. The policy had short-term effects on students’ enrollment in school: For every telesecundaria per 50 children, 10 students enrolled in middle school and two pursued further education. It also had a long-term influence on the educational and employment trajectory of its graduates. Each additional year of education induced by the policy increased average income by nearly 18 percent. This effect was attributable to more graduates entering the labor force and shifting from agriculture and the informal sector. Similarly, Fabregas (2019) leveraged a later expansion of this policy in 1993 and found that each additional telesecundaria per 1,000 adolescents led to an average increase of 0.2 years of education, and a decline in fertility for women, but no conclusive evidence of long-term effects on labor market outcomes.

It is crucial to interpret these results keeping in mind the settings where the interventions were implemented. As we mention above, part of the reason why they have proven effective is that the “counterfactual” conditions for learning (i.e., what would have happened to learners in the absence of such programs) was either to not have access to schooling or to be exposed to low-quality instruction. School systems interested in taking up similar interventions should assess the extent to which their learners (or parts of their learner population) find themselves in similar conditions to the subjects of the studies above. This illustrates the importance of assessing the needs of a system before reviewing the evidence.

Preloaded hardware

Technology also seems well positioned to disseminate educational materials. Specifically, hardware (e.g., desktop computers, laptops, or tablets) could also help deliver educational software (e.g., word processing, reference texts, and/or games). In theory, these materials could not only undergo a quality assurance review (e.g., by curriculum specialists and educators), but also draw on the interactions with learners for adjustments (e.g., identifying areas needing reinforcement) and enable interactions between learners and educators.

In practice, however, most initiatives that have provided learners with free computers, laptops, and netbooks do not leverage any of the opportunities mentioned above. Instead, they install a standard set of educational materials and hope that learners find them helpful enough to take them up on their own. Students rarely do so, and instead use the laptops for recreational purposes—often, to the detriment of their learning (see, e.g., Malamud & Pop-Eleches, 2011). In fact, free netbook initiatives have not only consistently failed to improve academic achievement in math or language (e.g., Cristia et al., 2017), but they have had no impact on learners’ general computer skills (e.g., Beuermann et al., 2015). Some of these initiatives have had small impacts on cognitive skills, but the mechanisms through which those effects occurred remains unclear.

To our knowledge, the only successful deployment of a free laptop initiative was one in which a team of researchers equipped the computers with remedial software. Mo et al. (2013) evaluated a version of the One Laptop per Child (OLPC) program for grade 3 students in migrant schools in Beijing, China in which the laptops were loaded with a remedial software mapped onto the national curriculum for math (similar to the software products that we discuss under “practice exercises” below). After nine months, the program improved math achievement by 0.17 SDs and computer skills by 0.33 SDs. If a school system decides to invest in free laptops, this study suggests that the quality of the software on the laptops is crucial.

To date, however, the evidence suggests that children do not learn more from interacting with laptops than they do from textbooks. For example, Bando, Gallego, Gertler, and Romero (2016) compared the effect of free laptop and textbook provision in 271 elementary schools in disadvantaged areas of Honduras. After seven months, students in grades 3 and 6 who had received the laptops performed on par with those who had received the textbooks in math and language. Further, even if textbooks essentially become obsolete at the end of each school year, whereas laptops can be reloaded with new materials for each year, the costs of laptop provision (not just the hardware, but also the technical assistance, Internet, and training associated with it) are not yet low enough to make them a more cost-effective way of delivering content to learners.

Evidence on the provision of tablets equipped with software is encouraging but limited. For example, de Hoop et al. (2020) evaluated a composite intervention for first grade students in Zambia’s Eastern Province that combined infrastructure (electricity via solar power), hardware (projectors and tablets), and educational materials (lesson plans for educators and interactive lessons for learners, both loaded onto the tablets and mapped onto the official Zambian curriculum). After 14 months, the intervention had improved student early-grade reading by 0.4 SDs, oral vocabulary scores by 0.25 SDs, and early-grade math by 0.22 SDs. It also improved students’ achievement by 0.16 on a locally developed assessment. The multifaceted nature of the program, however, makes it challenging to identify the components that are driving the positive effects. Pitchford (2015) evaluated an intervention that provided tablets equipped with educational “apps,” to be used for 30 minutes per day for two months to develop early math skills among students in grades 1 through 3 in Lilongwe, Malawi. The evaluation found positive impacts in math achievement, but the main study limitation is that it was conducted in a single school.

Facilitating differentiated instruction

Another way in which technology may improve educational outcomes is by facilitating the delivery of differentiated or individualized instruction. Most developing countries massively expanded access to schooling in recent decades by building new schools and making education more affordable, both by defraying direct costs, as well as compensating for opportunity costs (Duflo, 2001; World Bank, 2018). These initiatives have not only rapidly increased the number of learners enrolled in school, but have also increased the variability in learner’ preparation for schooling. Consequently, a large number of learners perform well below grade-based curricular expectations (see, e.g., Duflo, Dupas, & Kremer, 2011; Pritchett & Beatty, 2015). These learners are unlikely to get much from “one-size-fits-all” instruction, in which a single educator delivers instruction deemed appropriate for the middle (or top) of the achievement distribution (Banerjee & Duflo, 2011). Technology could potentially help these learners by providing them with: (a) instruction and opportunities for practice that adjust to the level and pace of preparation of each individual (known as “computer-adaptive learning” (CAL)); or (b) live, one-on-one tutoring.

Computer-adaptive learning

One of the main comparative advantages of technology is its ability to diagnose students’ initial learning levels and assign students to instruction and exercises of appropriate difficulty. No individual educator—no matter how talented—can be expected to provide individualized instruction to all learners in his/her class simultaneously . In this respect, technology is uniquely positioned to complement traditional teaching. This use of technology could help learners master basic skills and help them get more out of schooling.

Although many software products evaluated in recent years have been categorized as CAL, many rely on a relatively coarse level of differentiation at an initial stage (e.g., a diagnostic test) without further differentiation. We discuss these initiatives under the category of “increasing opportunities for practice” below. CAL initiatives complement an initial diagnostic with dynamic adaptation (i.e., at each response or set of responses from learners) to adjust both the initial level of difficulty and rate at which it increases or decreases, depending on whether learners’ responses are correct or incorrect.

Existing evidence on this specific type of programs is highly promising. Most famously, Banerjee et al. (2007) evaluated CAL software in Vadodara, in the Indian state of Gujarat, in which grade 4 students were offered two hours of shared computer time per week before and after school, during which they played games that involved solving math problems. The level of difficulty of such problems adjusted based on students’ answers. This program improved math achievement by 0.35 and 0.47 SDs after one and two years of implementation, respectively. Consistent with the promise of personalized learning, the software improved achievement for all students. In fact, one year after the end of the program, students assigned to the program still performed 0.1 SDs better than those assigned to a business as usual condition. More recently, Muralidharan, et al. (2019) evaluated a “blended learning” initiative in which students in grades 4 through 9 in Delhi, India received 45 minutes of interaction with CAL software for math and language, and 45 minutes of small group instruction before or after going to school. After only 4.5 months, the program improved achievement by 0.37 SDs in math and 0.23 SDs in Hindi. While all learners benefited from the program in absolute terms, the lowest performing learners benefited the most in relative terms, since they were learning very little in school.

We see two important limitations from this body of research. First, to our knowledge, none of these initiatives has been evaluated when implemented during the school day. Therefore, it is not possible to distinguish the effect of the adaptive software from that of additional instructional time. Second, given that most of these programs were facilitated by local instructors, attempts to distinguish the effect of the software from that of the instructors has been mostly based on noncausal evidence. A frontier challenge in this body of research is to understand whether CAL software can increase the effectiveness of school-based instruction by substituting part of the regularly scheduled time for math and language instruction.

Live one-on-one tutoring

Recent improvements in the speed and quality of videoconferencing, as well as in the connectivity of remote areas, have enabled yet another way in which technology can help personalization: live (i.e., real-time) one-on-one tutoring. While the evidence on in-person tutoring is scarce in developing countries, existing studies suggest that this approach works best when it is used to personalize instruction (see, e.g., Banerjee et al., 2007; Banerji, Berry, & Shotland, 2015; Cabezas, Cuesta, & Gallego, 2011).

There are almost no studies on the impact of online tutoring—possibly, due to the lack of hardware and Internet connectivity in low- and middle-income countries. One exception is Chemin and Oledan (2020)’s recent evaluation of an online tutoring program for grade 6 students in Kianyaga, Kenya to learn English from volunteers from a Canadian university via Skype ( videoconferencing software) for one hour per week after school. After 10 months, program beneficiaries performed 0.22 SDs better in a test of oral comprehension, improved their comfort using technology for learning, and became more willing to engage in cross-cultural communication. Importantly, while the tutoring sessions used the official English textbooks and sought in part to help learners with their homework, tutors were trained on several strategies to teach to each learner’s individual level of preparation, focusing on basic skills if necessary. To our knowledge, similar initiatives within a country have not yet been rigorously evaluated.

Expanding opportunities for practice

A third way in which technology may improve the quality of education is by providing learners with additional opportunities for practice. In many developing countries, lesson time is primarily devoted to lectures, in which the educator explains the topic and the learners passively copy explanations from the blackboard. This setup leaves little time for in-class practice. Consequently, learners who did not understand the explanation of the material during lecture struggle when they have to solve homework assignments on their own. Technology could potentially address this problem by allowing learners to review topics at their own pace.

Practice exercises

Technology can help learners get more out of traditional instruction by providing them with opportunities to implement what they learn in class. This approach could, in theory, allow some learners to anchor their understanding of the material through trial and error (i.e., by realizing what they may not have understood correctly during lecture and by getting better acquainted with special cases not covered in-depth in class).

Existing evidence on practice exercises reflects both the promise and the limitations of this use of technology in developing countries. For example, Lai et al. (2013) evaluated a program in Shaanxi, China where students in grades 3 and 5 were required to attend two 40-minute remedial sessions per week in which they first watched videos that reviewed the material that had been introduced in their math lessons that week and then played games to practice the skills introduced in the video. After four months, the intervention improved math achievement by 0.12 SDs. Many other evaluations of comparable interventions have found similar small-to-moderate results (see, e.g., Lai, Luo, Zhang, Huang, & Rozelle, 2015; Lai et al., 2012; Mo et al., 2015; Pitchford, 2015). These effects, however, have been consistently smaller than those of initiatives that adjust the difficulty of the material based on students’ performance (e.g., Banerjee et al., 2007; Muralidharan, et al., 2019). We hypothesize that these programs do little for learners who perform several grade levels behind curricular expectations, and who would benefit more from a review of foundational concepts from earlier grades.

We see two important limitations from this research. First, most initiatives that have been evaluated thus far combine instructional videos with practice exercises, so it is hard to know whether their effects are driven by the former or the latter. In fact, the program in China described above allowed learners to ask their peers whenever they did not understand a difficult concept, so it potentially also captured the effect of peer-to-peer collaboration. To our knowledge, no studies have addressed this gap in the evidence.

Second, most of these programs are implemented before or after school, so we cannot distinguish the effect of additional instructional time from that of the actual opportunity for practice. The importance of this question was first highlighted by Linden (2008), who compared two delivery mechanisms for game-based remedial math software for students in grades 2 and 3 in a network of schools run by a nonprofit organization in Gujarat, India: one in which students interacted with the software during the school day and another one in which students interacted with the software before or after school (in both cases, for three hours per day). After a year, the first version of the program had negatively impacted students’ math achievement by 0.57 SDs and the second one had a null effect. This study suggested that computer-assisted learning is a poor substitute for regular instruction when it is of high quality, as was the case in this well-functioning private network of schools.

In recent years, several studies have sought to remedy this shortcoming. Mo et al. (2014) were among the first to evaluate practice exercises delivered during the school day. They evaluated an initiative in Shaanxi, China in which students in grades 3 and 5 were required to interact with the software similar to the one in Lai et al. (2013) for two 40-minute sessions per week. The main limitation of this study, however, is that the program was delivered during regularly scheduled computer lessons, so it could not determine the impact of substituting regular math instruction. Similarly, Mo et al. (2020) evaluated a self-paced and a teacher-directed version of a similar program for English for grade 5 students in Qinghai, China. Yet, the key shortcoming of this study is that the teacher-directed version added several components that may also influence achievement, such as increased opportunities for teachers to provide students with personalized assistance when they struggled with the material. Ma, Fairlie, Loyalka, and Rozelle (2020) compared the effectiveness of additional time-delivered remedial instruction for students in grades 4 to 6 in Shaanxi, China through either computer-assisted software or using workbooks. This study indicates whether additional instructional time is more effective when using technology, but it does not address the question of whether school systems may improve the productivity of instructional time during the school day by substituting educator-led with computer-assisted instruction.

Increasing learner engagement

Another way in which technology may improve education is by increasing learners’ engagement with the material. In many school systems, regular “chalk and talk” instruction prioritizes time for educators’ exposition over opportunities for learners to ask clarifying questions and/or contribute to class discussions. This, combined with the fact that many developing-country classrooms include a very large number of learners (see, e.g., Angrist & Lavy, 1999; Duflo, Dupas, & Kremer, 2015), may partially explain why the majority of those students are several grade levels behind curricular expectations (e.g., Muralidharan, et al., 2019; Muralidharan & Zieleniak, 2014; Pritchett & Beatty, 2015). Technology could potentially address these challenges by: (a) using video tutorials for self-paced learning and (b) presenting exercises as games and/or gamifying practice.

Video tutorials

Technology can potentially increase learner effort and understanding of the material by finding new and more engaging ways to deliver it. Video tutorials designed for self-paced learning—as opposed to videos for whole class instruction, which we discuss under the category of “prerecorded lessons” above—can increase learner effort in multiple ways, including: allowing learners to focus on topics with which they need more help, letting them correct errors and misconceptions on their own, and making the material appealing through visual aids. They can increase understanding by breaking the material into smaller units and tackling common misconceptions.

In spite of the popularity of instructional videos, there is relatively little evidence on their effectiveness. Yet, two recent evaluations of different versions of the Khan Academy portal, which mainly relies on instructional videos, offer some insight into their impact. First, Ferman, Finamor, and Lima (2019) evaluated an initiative in 157 public primary and middle schools in five cities in Brazil in which the teachers of students in grades 5 and 9 were taken to the computer lab to learn math from the platform for 50 minutes per week. The authors found that, while the intervention slightly improved learners’ attitudes toward math, these changes did not translate into better performance in this subject. The authors hypothesized that this could be due to the reduction of teacher-led math instruction.

More recently, Büchel, Jakob, Kühnhanss, Steffen, and Brunetti (2020) evaluated an after-school, offline delivery of the Khan Academy portal in grades 3 through 6 in 302 primary schools in Morazán, El Salvador. Students in this study received 90 minutes per week of additional math instruction (effectively nearly doubling total math instruction per week) through teacher-led regular lessons, teacher-assisted Khan Academy lessons, or similar lessons assisted by technical supervisors with no content expertise. (Importantly, the first group provided differentiated instruction, which is not the norm in Salvadorian schools). All three groups outperformed both schools without any additional lessons and classrooms without additional lessons in the same schools as the program. The teacher-assisted Khan Academy lessons performed 0.24 SDs better, the supervisor-led lessons 0.22 SDs better, and the teacher-led regular lessons 0.15 SDs better, but the authors could not determine whether the effects across versions were different.

Together, these studies suggest that instructional videos work best when provided as a complement to, rather than as a substitute for, regular instruction. Yet, the main limitation of these studies is the multifaceted nature of the Khan Academy portal, which also includes other components found to positively improve learner achievement, such as differentiated instruction by students’ learning levels. While the software does not provide the type of personalization discussed above, learners are asked to take a placement test and, based on their score, educators assign them different work. Therefore, it is not clear from these studies whether the effects from Khan Academy are driven by its instructional videos or to the software’s ability to provide differentiated activities when combined with placement tests.

Games and gamification

Technology can also increase learner engagement by presenting exercises as games and/or by encouraging learner to play and compete with others (e.g., using leaderboards and rewards)—an approach known as “gamification.” Both approaches can increase learner motivation and effort by presenting learners with entertaining opportunities for practice and by leveraging peers as commitment devices.

There are very few studies on the effects of games and gamification in low- and middle-income countries. Recently, Araya, Arias Ortiz, Bottan, and Cristia (2019) evaluated an initiative in which grade 4 students in Santiago, Chile were required to participate in two 90-minute sessions per week during the school day with instructional math software featuring individual and group competitions (e.g., tracking each learner’s standing in his/her class and tournaments between sections). After nine months, the program led to improvements of 0.27 SDs in the national student assessment in math (it had no spillover effects on reading). However, it had mixed effects on non-academic outcomes. Specifically, the program increased learners’ willingness to use computers to learn math, but, at the same time, increased their anxiety toward math and negatively impacted learners’ willingness to collaborate with peers. Finally, given that one of the weekly sessions replaced regular math instruction and the other one represented additional math instructional time, it is not clear whether the academic effects of the program are driven by the software or the additional time devoted to learning math.

The prognosis:

How can school systems adopt interventions that match their needs.

Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning.

1. Take stock of how your current schools, educators, and learners are engaging with technology .

Carry out a short in-school survey to understand the current practices and potential barriers to adoption of technology (we have included suggested survey instruments in the Appendices); use this information in your decisionmaking process. For example, we learned from conversations with current and former ministers of education from various developing regions that a common limitation to technology use is regulations that hold school leaders accountable for damages to or losses of devices. Another common barrier is lack of access to electricity and Internet, or even the availability of sufficient outlets for charging devices in classrooms. Understanding basic infrastructure and regulatory limitations to the use of education technology is a first necessary step. But addressing these limitations will not guarantee that introducing or expanding technology use will accelerate learning. The next steps are thus necessary.

“In Africa, the biggest limit is connectivity. Fiber is expensive, and we don’t have it everywhere. The continent is creating a digital divide between cities, where there is fiber, and the rural areas.  The [Ghanaian] administration put in schools offline/online technologies with books, assessment tools, and open source materials. In deploying this, we are finding that again, teachers are unfamiliar with it. And existing policies prohibit students to bring their own tablets or cell phones. The easiest way to do it would have been to let everyone bring their own device. But policies are against it.” H.E. Matthew Prempeh, Minister of Education of Ghana, on the need to understand the local context.

2. Consider how the introduction of technology may affect the interactions among learners, educators, and content .

Our review of the evidence indicates that technology may accelerate student learning when it is used to scale up access to quality content, facilitate differentiated instruction, increase opportunities for practice, or when it increases learner engagement. For example, will adding electronic whiteboards to classrooms facilitate access to more quality content or differentiated instruction? Or will these expensive boards be used in the same way as the old chalkboards? Will providing one device (laptop or tablet) to each learner facilitate access to more and better content, or offer students more opportunities to practice and learn? Solely introducing technology in classrooms without additional changes is unlikely to lead to improved learning and may be quite costly. If you cannot clearly identify how the interactions among the three key components of the instructional core (educators, learners, and content) may change after the introduction of technology, then it is probably not a good idea to make the investment. See Appendix A for guidance on the types of questions to ask.

3. Once decisionmakers have a clear idea of how education technology can help accelerate student learning in a specific context, it is important to define clear objectives and goals and establish ways to regularly assess progress and make course corrections in a timely manner .

For instance, is the education technology expected to ensure that learners in early grades excel in foundational skills—basic literacy and numeracy—by age 10? If so, will the technology provide quality reading and math materials, ample opportunities to practice, and engaging materials such as videos or games? Will educators be empowered to use these materials in new ways? And how will progress be measured and adjusted?

4. How this kind of reform is approached can matter immensely for its success.

It is easy to nod to issues of “implementation,” but that needs to be more than rhetorical. Keep in mind that good use of education technology requires thinking about how it will affect learners, educators, and parents. After all, giving learners digital devices will make no difference if they get broken, are stolen, or go unused. Classroom technologies only matter if educators feel comfortable putting them to work. Since good technology is generally about complementing or amplifying what educators and learners already do, it is almost always a mistake to mandate programs from on high. It is vital that technology be adopted with the input of educators and families and with attention to how it will be used. If technology goes unused or if educators use it ineffectually, the results will disappoint—no matter the virtuosity of the technology. Indeed, unused education technology can be an unnecessary expenditure for cash-strapped education systems. This is why surveying context, listening to voices in the field, examining how technology is used, and planning for course correction is essential.

5. It is essential to communicate with a range of stakeholders, including educators, school leaders, parents, and learners .

Technology can feel alien in schools, confuse parents and (especially) older educators, or become an alluring distraction. Good communication can help address all of these risks. Taking care to listen to educators and families can help ensure that programs are informed by their needs and concerns. At the same time, deliberately and consistently explaining what technology is and is not supposed to do, how it can be most effectively used, and the ways in which it can make it more likely that programs work as intended. For instance, if teachers fear that technology is intended to reduce the need for educators, they will tend to be hostile; if they believe that it is intended to assist them in their work, they will be more receptive. Absent effective communication, it is easy for programs to “fail” not because of the technology but because of how it was used. In short, past experience in rolling out education programs indicates that it is as important to have a strong intervention design as it is to have a solid plan to socialize it among stakeholders.

teacher and technology essay

Beyond reopening: A leapfrog moment to transform education?

On September 14, the Center for Universal Education (CUE) will host a webinar to discuss strategies, including around the effective use of education technology, for ensuring resilient schools in the long term and to launch a new education technology playbook “Realizing the promise: How can education technology improve learning for all?”

file-pdf Full Playbook – Realizing the promise: How can education technology improve learning for all? file-pdf References file-pdf Appendix A – Instruments to assess availability and use of technology file-pdf Appendix B – List of reviewed studies file-pdf Appendix C – How may technology affect interactions among students, teachers, and content?

About the Authors

Alejandro j. ganimian, emiliana vegas, frederick m. hess.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

How technology is reinventing education

Stanford Graduate School of Education Dean Dan Schwartz and other education scholars weigh in on what's next for some of the technology trends taking center stage in the classroom.

teacher and technology essay

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational technology at the GSE and faculty director of the Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately worried that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or coach students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the AI + Education initiative at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of CRAFT (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the Digital Learning initiative at the Stanford Accelerator for Learning, which runs a program exploring the use of virtual field trips to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

How Important Is Technology in Education? Benefits, Challenges, and Impact on Students

A group of students use their electronics while sitting at their desks.

Many of today’s high-demand jobs were created in the last decade, according to the International Society for Technology in Education (ISTE). As advances in technology drive globalization and digital transformation, teachers can help students acquire the necessary skills to succeed in the careers of the future.

How important is technology in education? The COVID-19 pandemic is quickly demonstrating why online education should be a vital part of teaching and learning. By integrating technology into existing curricula, as opposed to using it solely as a crisis-management tool, teachers can harness online learning as a powerful educational tool.

The effective use of digital learning tools in classrooms can increase student engagement, help teachers improve their lesson plans, and facilitate personalized learning. It also helps students build essential 21st-century skills.

Virtual classrooms, video, augmented reality (AR), robots, and other technology tools can not only make class more lively, they can also create more inclusive learning environments that foster collaboration and inquisitiveness and enable teachers to collect data on student performance.

Still, it’s important to note that technology is a tool used in education and not an end in itself. The promise of educational technology lies in what educators do with it and how it is used to best support their students’ needs.

Educational Technology Challenges

BuiltIn reports that 92 percent of teachers understand the impact of technology in education. According to Project Tomorrow, 59 percent of middle school students say digital educational tools have helped them with their grades and test scores. These tools have become so popular that the educational technology market is projected to expand to $342 billion by 2025, according to the World Economic Forum.

However, educational technology has its challenges, particularly when it comes to implementation and use. For example, despite growing interest in the use of AR, artificial intelligence, and other emerging technology, less than 10 percent of schools report having these tools in their classrooms, according to Project Tomorrow. Additional concerns include excessive screen time, the effectiveness of teachers using the technology, and worries about technology equity.

Prominently rising from the COVID-19 crisis is the issue of content. Educators need to be able to develop and weigh in on online educational content, especially to encourage students to consider a topic from different perspectives. The urgent actions taken during this crisis did not provide sufficient time for this. Access is an added concern — for example, not every school district has resources to provide students with a laptop, and internet connectivity can be unreliable in homes.

Additionally, while some students thrive in online education settings, others lag for various factors, including support resources. For example, a student who already struggled in face-to-face environments may struggle even more in the current situation. These students may have relied on resources that they no longer have in their homes.

Still, most students typically demonstrate confidence in using online education when they have the resources, as studies have suggested. However, online education may pose challenges for teachers, especially in places where it has not been the norm.

Despite the challenges and concerns, it’s important to note the benefits of technology in education, including increased collaboration and communication, improved quality of education, and engaging lessons that help spark imagination and a search for knowledge in students.

The Benefits of Technology in Education

Teachers want to improve student performance, and technology can help them accomplish this aim. To mitigate the challenges, administrators should help teachers gain the competencies needed to enhance learning for students through technology. Additionally, technology in the classroom should make teachers’ jobs easier without adding extra time to their day.

Technology provides students with easy-to-access information, accelerated learning, and fun opportunities to practice what they learn. It enables students to explore new subjects and deepen their understanding of difficult concepts, particularly in STEM. Through the use of technology inside and outside the classroom, students can gain 21st-century technical skills necessary for future occupations.

Still, children learn more effectively with direction. The World Economic Forum reports that while technology can help young students learn and acquire knowledge through play, for example, evidence suggests that learning is more effective through guidance from an adult, such as a teacher.

Leaders and administrators should take stock of where their faculty are in terms of their understanding of online spaces. From lessons learned during this disruptive time, they can implement solutions now for the future. For example, administrators could give teachers a week or two to think carefully about how to teach courses not previously online. In addition to an exploration of solutions, flexibility during these trying times is of paramount importance.

Below are examples of how important technology is in education and the benefits it offers to students and teachers.

Increased Collaboration and Communication

Educational technology can foster collaboration. Not only can teachers engage with students during lessons, but students can also communicate with each other. Through online lessons and learning games, students get to work together to solve problems. In collaborative activities, students can share their thoughts and ideas and support each other. At the same time, technology enables one-on-one interaction with teachers. Students can ask classroom-related questions and seek additional help on difficult-to-understand subject matter. At home, students can upload their homework, and teachers can access and view completed assignments using their laptops.

Personalized Learning Opportunities

Technology allows 24/7 access to educational resources. Classes can take place entirely online via the use of a laptop or mobile device. Hybrid versions of learning combine the use of technology from anywhere with regular in-person classroom sessions. In both scenarios, the use of technology to tailor learning plans for each student is possible. Teachers can create lessons based on student interests and strengths. An added benefit is that students can learn at their own pace. When they need to review class material to get a better understanding of essential concepts, students can review videos in the lesson plan. The data generated through these online activities enable teachers to see which students struggled with certain subjects and offer additional assistance and support.

Curiosity Driven by Engaging Content

Through engaging and educational content, teachers can spark inquisitiveness in children and boost their curiosity, which research says has ties to academic success. Curiosity helps students get a better understanding of math and reading concepts. Creating engaging content can involve the use of AR, videos, or podcasts. For example, when submitting assignments, students can include videos or interact with students from across the globe.

Improved Teacher Productivity and Efficiency

Teachers can leverage technology to achieve new levels of productivity, implement useful digital tools to expand learning opportunities for students, and increase student support and engagement. It also enables teachers to improve their instruction methods and personalize learning. Schools can benefit from technology by reducing the costs of physical instructional materials, enhancing educational program efficiency, and making the best use of teacher time.

Become a Leader in Enriching Classrooms through Technology

Educators unfamiliar with some of the technology used in education may not have been exposed to the tools as they prepared for their careers or as part of their professional development. Teachers looking to make the transition and acquire the skills to incorporate technology in education can take advantage of learning opportunities to advance their competencies. For individuals looking to help transform the education system through technology, American University’s School of Education online offers a Master of Arts in Teaching and a Master of Arts in Education Policy and Leadership to prepare educators with essential tools to become leaders. Courses such as Education Program and Policy Implementation and Teaching Science in Elementary School equip graduate students with critical competencies to incorporate technology into educational settings effectively.

Learn more about American University’s School of Education online and its master’s degree programs.

Virtual Reality in Education: Benefits, Tools, and Resources

Data-Driven Decision Making in Education: 11 Tips for Teachers & Administration

Helping Girls Succeed in STEM

BuiltIn, “Edtech 101”

EdTech, “Teaching Teachers to Put Tech Tools to Work”

International Society for Technology in Education, “Preparing Students for Jobs That Don’t Exist”

The Journal, “How Teachers Use Technology to Enrich Learning Experiences”

Pediatric Research, “Early Childhood Curiosity and Kindergarten Reading and Math Academic Achievement”

Project Tomorrow, “Digital Learning: Peril or Promise for Our K-12 Students”

World Economic Forum, “The Future of Jobs Report 2018”

World Economic Forum, “Learning through Play: How Schools Can Educate Students through Technology”

Request Information

  • Open access
  • Published: 27 December 2022

How does technology challenge teacher education?

  • Lina Kaminskienė 1 ,
  • Sanna Järvelä 2 &
  • Erno Lehtinen 1 , 3  

International Journal of Educational Technology in Higher Education volume  19 , Article number:  64 ( 2022 ) Cite this article

10k Accesses

8 Citations

8 Altmetric

Metrics details

The paper presents an overview of challenges and demands related to teachers’ digital skills and technology integration into educational content and processes. The paper raises a debate how technologies have created new skills gaps in pre-service and in-service teacher training and how that affected traditional forms of teacher education. Accordingly, it is discussed what interventions might be applicable to different contexts to address these challenges. It is argued that technologies should be viewed both as the field where new competences should be developed and at the same time as the method used in developing learning environments for teacher students.

Introduction

In the last few decades, national authorities and multinational organisations have emphasised the importance of increasing the use of information and communication technologies (ICT) in schools and universities (Flecknoe, 2002 ; Roztocki et al., 2019 ; UNESCO ICT Competency Framework for Teachers, 2018 ). This poses a double challenge for teacher education: determining how new technologies can be used to improve the quality of learning experiences that student teachers receive during their university studies and identifying what kinds of new skills future teachers will need for teaching in technologically rich school environments. Several of the arguments in favour of greater use of ICT in schools are based on the belief that due to the general digitisation of the workforce, it is vital that students acquire good digital skills at an early age. However, it has also been argued that the use of ICT will be engaging for students and can thus result in better learning outcomes (Cheung & Slavin, 2013 ; Gloria, 2015 ). A number of large meta-analyses have shown that intervention studies utilising technology have positive effects on students’ motivation and learning (Fadda et al., 2022 ; Wouters et al., 2013 ).

However, when large-scale national and international evaluation studies have examined the relationship between the use of ICT and student achievement, the results have been mixed. Researchers have reported that re-analyses of large international evaluation studies, including the Trends in International Mathematics and Science Study (TIMMS) and Programme for International Student Assessment (PISA), indicate that there is either no relationship or a negative relationship between the frequency of ICT use in teaching and students’ achievements (Eickelmann et al., 2016 ; Papanastasiou et al., 2003 ).

The mixed results regarding the impact of ICT suggest that there are qualitative differences between the ways in which technology is implemented. In intervention studies, ICT applications have typically been used with careful planning, with extensive professional development for teachers conducting the experiment and with continuous support from researchers, whereas large-scale evaluation studies have focused on regular classrooms without such support. When technology is implemented in these latter situations, the pedagogical quality of the technology application is determined by the teachers’ knowledge and skills. However, there is a great deal of variation in the knowledge and competences of teachers when it comes to using technology in their classrooms (Valtonen et al., 2016 ). This highlights the importance of the in-service training of teachers while at the same time calling attention to pre-service teachers’ opportunities to acquire the competencies necessary to implement technology in their classrooms.

What does the development of technology mean for teacher education and how does it challenge traditional forms and content of the discipline? During the past few decades, a large number of policy documents and scientific studies have addressed this issue (Bakir, 2015 ). Different perspectives can be taken into account when discussing the influence of technology on teacher education. Several studies have examined the skills that will be necessary to apply technology to pedagogical practice in the future. This topic has been explored from several perspectives, such as teacher students’ technology literacy or their knowledge of technological pedagogical content (Mishra & Koehler, 2006 ). To ensure that future teachers possess adequate technical skills, standards and recommendations have been developed regarding the content of teacher education programmes. Rather than simply focusing on basic technological skills, the main emphasis has been on the knowledge and skills associated with the pedagogical use of technology (Erstad et al., 2021 ). Moreover, technology can provide many opportunities to develop novel methods to improve the quality of teacher education, such as the development of new methods for conducting research in the field of teacher education. In this special issue, these issues are addressed from a variety of theoretical and methodological perspectives.

Technology integration and content in teacher education

Given the many ways in which technology can be used in education, pre-service teachers’ pedagogical and technical competences in using ICT in teaching have different dimensions. For instance, Tondeur et al. ( 2017 ) developed a test to measure pre-service teachers’ ICT abilities and applied it to a large sample of Belgian teacher candidates. According to the findings, there are two dimensions to ICT competences: (1) competencies for supporting students’ use of ICT in class and (2) competencies for using ICT to create instructional materials. Some studies have also reported barriers that hinder the organisation of adequate teacher education to develop these skills, such as faculty beliefs and skills (Bakir, 2015 ; Polly et al., 2010 ).

The experiences pre-service teachers acquire during their teacher studies have also been shown to influence how willing and skilled they are when it comes to integrating technology in their classrooms (Agyei & Voogt, 2011 ). Additionally, studies have shown that the opportunity for teacher students to observe advanced technology applications in real-world settings is important for their future professional development (Gromseth et al., 2010 ). Hence, it is not sufficient to take formal courses in ICT or educational technology without applying these skills in the classroom.

Finnish pre-service teacher education stresses not only ICT skills but also teachers’ competences, such as strategic learning skills and collaboration competences. Häkkinen et al. ( 2017 ) identified five profiles among Finnish first-year pre-service teachers (N = 872) using perceptions of the teachers’ strategic learning skills and collaboration dispositions and investigated what background variables explained membership to those profiles. The most robust factor explaining membership in the profiles was life satisfaction. For example, pre-service teachers in a profile group with high strategic learning skills and high collaboration dispositions showed the highest anticipated life satisfaction after 5 years. Their results demonstrate the need to develop both ICT skills and learning competences in pre-service teacher education.

Use of technological innovations in organising teacher education

An analysis of the nature of experience and how practise can optimally enhance expertise has demonstrated the importance of deliberate practise (Ericsson et al., 1993 ), defined as an intensive practise that is purposefully focused on developing specific aspects of performance. To achieve this, it is necessary to have the opportunity to practise the most demanding aspects of performance with a large number of repetitions. Feedback from a tutor or coach also plays an important role in deliberate practise (Ericsson, 1993 ). Although deliberate practise has already been applied in some teacher education studies (e.g. Bronkhorst, 2011 ), its main aspect, repeated practise of challenging tasks and informed feedback, has been difficult to apply in traditional teacher education settings. Recent studies have shown that technology can contribute to the development of training methods that better reflect the main principles of deliberate practise.

There is a long tradition of using video technology in teacher education; such technology was first applied in a systematic manner in the 1970s (Nagro & Cornelius, 2013 ). Since then, a number of video-assisted instructional designs have been developed to provide teacher students with opportunities to learn from expert teachers, reflect on their own teaching behaviour and practise professional skills that would not otherwise be possible without this technology. Digital videos that are easy to use and various web platforms that facilitate the sharing and annotation of videos have opened up new opportunities for the development of novel learning environments in the field of teacher education (e.g. Sommerhoff et al., 2022 ). In the past few years, models for using videos recorded by mobile eye-tracking technology in teacher education have also been developed (e.g. Pouta et al., 2021 ).

Simulations are widely used in medical education, and a meta-analysis found that deliberate practise with simulations is superior to traditional clinical training in medical education (McGaghie et al., 2011 ). The use of simulations in teacher education is also gradually increasing. In their review of the use of simulations in teacher education, Theelen et al. ( 2019 ) synthesised the findings of 15 studies that applied computer-based simulations in teacher education. Several studies have demonstrated (Ferdig & Pytash, 2020 ; Samuelsson et al., 2022 ) that classroom simulations increase students’ self-efficacy and confidence in their teaching abilities. Classroom simulations were also found to have a positive impact on the development of classroom management skills.

New technologies can also be used in research on teaching and learning. Digitalisation has provided more ways to collect data and understand the teaching–learning process with multiple data channels and modalities. Multiple layers of data can be collected from contextual interactions, such as high-quality video data, psychophysiological measures and computer logs. With learning analytics, for example, these data can be used to create teacher dashboards, thus fulfilling students’ need for teacher scaffolds (Knoop-van Campen & Molenaar, 2020 ). Recently, eye-tracking technology has also been used to analyse teachers’ and student teachers’ abilities to notice relevant events in classrooms (Gegenfurtner et al., 2020 ; Pouta et al., 2021 ). Eye-movement technology, which has been used to model expert performance in other professional fields (Gegenfurtner et al., 2017 ), could also lead to promising training methods for teacher education.

Articles in this special issue

Three of the articles (Basilotta‑Gómez‑Pablos et al., 2022 ; Peciuliauskiene et al.’s, 2022 ; Kulaksız & Toran, 2022 ) included in this special issue deal with digital competences and interventions aimed at enhancing them.

Basilotta‑Gómez‑Pablos et al. (in this issue) synthesised 56 studies on higher education teachers’ digital competences. The authors used special software called SciMAT to analyse the content of the articles and to present thematic networks. Their review of the literature revealed that the topic is timely and that the number of relevant studies is increasing rapidly. The reviewed studies generally relied on teachers’ self-reports and self-evaluations of their abilities. Overall, the results indicated that the participants were aware of their insufficient knowledge and skills in the area of digital technology. According to the synthesis, many of the articles describe teachers’ experiences of various projects and activities aimed at improving their digital competences; however, many of these articles describe informal learning using internet tools and social networks. The authors conclude that their review clearly shows the gap in the evaluation of teachers’ competence in teaching and learning practice. Their recommendation is that more interventions and training programmes be created to support the development of teachers’ digital competence.

The recent challenges in education caused by the pandemic situation raised teachers’ awareness on the gap of their digital skills.

Despite the developed national or EU digital competences frameworks the trend remains that the development of digital skills is not systemic and lacks coherence in in-service and pre-service teacher education.

Further studies may bring more insights regarding more effective interventions to teaching practices with a wider application of digital technologies.

Peciuliauskiene et al.’s ( 2022 ) paper presents the results of their survey of two Lithuanian universities that offer teacher education programmes. Their questionnaire focused on information literacy (search and evaluation) and ICT self-efficacy. According to their results, both information literacy variables predicted teacher students’ ICT self-efficacy. Additionally, there was an indirect relationship between information evaluation and ICT self-efficacy. The findings of the study are discussed in terms of their theoretical and practical implications. The research indicates that information search ability does not depend on a person’s digital nativity, contrary to what is sometimes assumed when referring to the younger generation of pre-service teachers. As an ICT literacy component, information evaluation has become particularly pertinent during the COVID-19 situation and recent challenges related to distinguishing credible information from the vast amount of fake news and propaganda. It is also noted that optimal time and resources should be planned for the development of information search and evaluation abilities; however, more time should be allocated for the development of information search literacy, as it directly predicts pre-service teachers’ ICT self-efficacy. Based on the findings of this study, we identify the following trends and implications for further studies:

ICT self-efficacy of teachers contribute to the enhancement of teaching and learning process however, ICT self-efficacy should not be limited to specific ICT skills but rather on rethinking the organisation of the teaching process and rethinking the principles of teaching. In other words, the development of digital skills alone without integrating them with specific pedagogical content knowledge and teaching strategies would be less beneficial.

Further studies could be focused on how digital skills development could be better aligned with the development of teacher pedagogical strategies and specific subject areas.

The starting point of Kulaksız and Toran’s study ( 2022 ) was the observation that, despite pre-service teachers’ participation in courses on ICT integration, these teachers are still not confident about their competences to apply their knowledge in practice. In their study, Kulaksız and Toran used the so-called praxeological approach, which aims to produce beneficial knowledge and skills and to organise a democratic and participatory environment. The results indicate that the participants were prepared to transform their skills into practical pedagogical situations due to the personal development they experienced during and after the completion of the co-created course. As pre-service teachers could co-create the technology course, this allowed them to develop not only digital competences but also self-regulated learning skills, collaborative project development skills and peer mentoring skills, which contributed to building their sustainable motivation—an important component of teachers’ self-efficacy. This article highlights that.

Teachers’ motivation is increased through participatory design in their professional development practices which allows to achieve a more holistic development of digital skills in combination with cognitive and non-cognitive competences.

Further studies on how co-teaching contributes to digital skills development and innovative teaching strategies would allow to find more attractive models for teachers professional development.

The aforementioned three articles about digital competencies provide different perspectives on the issue, but they all emphasise the complexity of those competencies while also suggesting new approaches to deal with these challenges. In two of the articles, technology was not the focus of the studies but a method used in developing learning environments for teacher students.

In their study, Martin et al. (in this issue) investigated whether a video-based multimedia application about classroom teaching could be used to enhance teacher students’ professional vision. A teacher’s professional vision is their ability to observe and interpret important events in the classroom and determine the most appropriate teaching activities related to these events. Teacher education faces a variety of challenges because teacher students are unable to readily translate the knowledge they learn through formal teacher education into situation-specific skills that can be applied in actual classroom settings. The aim of the study was to help students make this translation with the aid of a video-based simulation developed using the findings of multimedia research. The simulation presented the classroom videos as short segments and provided prompts aimed at facilitating the students’ self-explanations. In the intervention study, they applied two versions of the video-based simulation: one with features based on multimedia research and one without these features. During the training, the segmented simulation with the self-explanation prompt resulted in increased noticing of relevant events in the teaching–learning process. In the comparison of pre-test and post-test results, all groups participating in the video training developed considerably in their professional vision, but the video simulation with the two multimedia elements did not differ significantly from the video training without these elements. The authors concluded that further research on the optimal implementation of the simulation is needed. Major issues raised by this article were:

It confirms previous studies which have shown that the importance of the use of classroom videos in teacher education.

When new methods (e.g. the multimedia elements added to the videos) are applied in interventions, it is important to pay attention to qualitative changes in learning processes and not only on immediate learning gains.

The results also indicate that methods which have been effective in one context do not necessarily work in a new environment.

Nickl et al.’s study (in this issue) examined how video-based simulations can be used to enhance pre-service teachers’ assessment skills. The aim was to analyse individual learning processes in a simulated environment by taking into account learners’ cognitive and motivational-affective characteristics. Their study applied a person-oriented approach to analyse how these learner characteristics relate to students’ situated learning experiences and performance. In the latent profile analysis, three profiles were identified: one with high knowledge and average motivation-affect, one with high motivation-affect and average knowledge and one with below average knowledge and motivation-affect. Based on the results, it was confirmed that the motivated profile resulted in positive motivational experiences in the situation, while the knowledgeable profile resulted in relevant cognitive demands when working on the tasks. Situational experiences were also found to be related to learning outcomes when working with the simulation. In comparison to the other profiles, the cognitive profile demonstrated the most effective navigation and deep learning processes. The authors concluded that the identification of learner profiles is a promising approach that can uncover individual learner needs when working in technology-based learning environments. There lessons to learn from this study include:

Learners prior learning and their personal characteristics can strongly mediate the outcomes of intervention programs

Person oriented statistical analyses are promising approaches to focus on sub-groups with unique profiles.

The challenge is to decide which individual characteristics are relevant in explaining varying effects of interventions.

Practices which stimulate change

This collection of papers disclosing different aspects of the application of technology in todays’ teacher education clearly highlights that the development of digital competences should become an integral part of pre-service and in-service teacher education. In line with the holistic view on teacher competencies (Metsäpelto et al., 2022 ), this special issue suggests that digital competences appear as a strong component within cognitive and non-cognitive competences that contribute to high-quality teaching.

The results of the studies presented in this special issue strongly reflect recent studies (Falloon, 2020 ; Lin et al., 2022 ) demonstrating that the development of mere digital skills is not sufficient; we should instead structure teacher education to promote the development of digital teaching competences, including ICT attitudes, ICT skills, data literacy and deep pedagogical understanding of the opportunities and limitations of the use of technology in education. Digitally competent teachers are more capable of integrating technologies into their regular teaching practices while also creating more appropriate conditions for personalised learning (Schmid & Petko, 2019 ). This is important because large international evaluation studies (OECD, 2014 , 2019 , 2020 ) have shown that the inadequate use of technology can be harmful for student learning.

It should also be noted that the COVID-19 pandemic created additional challenges for teachers and contributed to changes in their teaching practices and digital habits (Blume, 2020 ). Reflecting school situations caused by COVID-19, numerous studies from the last 2 years have revealed a much wider scope of application of digital technologies in education and a need to create active interactions with learners (Greenhow et al., 2021 ). They have also identified a widening gap between learners who are more digitally advanced and less digitally competent teachers (Blume, 2020 ).

Likewise, simulations and other technological applications can be used to provide richer learning opportunities in teacher education. These new tools can help develop more effective models to connect theoretical content and practical skills. A big challenge for teacher education is to create opportunities for students to deliberately practise skills that are needed in classroom teaching while at the same time deepening student teachers’ theoretical understanding of teaching–learning processes.

Availability of data and materials

The paper is based on openly available data.

Agyei, D. D., & Voogt, J. (2011). Exploring the potential of the Will Skill Tool model in Ghana: Predicting prospective and practicing teachers’ use of technology. Computers & Education, 56 , 91–100. https://doi.org/10.1016/j.compedu.2010.08.017

Article   Google Scholar  

Bakir, N. (2015). An exploration of contemporary realities of technology and teacher education: Lessons learned. Journal of Digital Learning in Teacher Education, 31 (3), 117–130. https://doi.org/10.1080/21532974.2015.1040930

Basilotta-Gómez-Pablos, V., Matarranz, M., Casado-Aranda, L. A., et al. (2022) Teachers’ digital competencies in higher education: a systematic literature review. International Journal of Educational Technology in Higher Education, 19 , 8 (2022). https://doi.org/10.1186/s41239-021-00312-8

Blume, C. (2020). German teachers’ digital habitus and their pandemic pedagogy. Post Digit Science Education, 2 , 879–905. https://doi.org/10.1007/s42438-020-00174-9

Bronkhorst, L. H., Meijer, P. C., Koster, B., & Vermung, J. D. (2011). Fostering meaning-oriented learning and deliberate practice in teacher education. Teaching and Teacher Education, 27 , 1120–1130. https://doi.org/10.1016/j.tate.2011.05.008

Cheung, A. C., & Slavin, R. E. (2013). The effectiveness of education technology applications for enhancing mathematics achievement in K-12 classrooms: A meta-analysis. Educational Research Review, 9 , 88–113.

Eickelmann, B., Gerick, J., & Koop, C. (2016). ICT use in mathematics lessons and the mathematics achievement of secondary school students by international comparison: Which role do school level factors play? Education and Information Technologies, 22 , 1527–1551. https://doi.org/10.1007/s10639-016-9498-5

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100 , 363–406. https://doi.org/10.1037/0033-295X.87.3.215

Erstad, O., Kjällander, S., & Järvelä, S. (2021). Facing the challenges of ‘digital competence’—A Nordic agenda on curriculum development for the 21st century. Nordic Journal of Digital Literacy, 16 (2), 77–87. https://doi.org/10.18261/issn.1891-943x-2021-02-02

Fadda, D., Pellegrini, M., Vivanet, G., & Callegher, C. Z. (2022). Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. Journal of Computer Assisted Learning, 38 , 304–325.

Falloon, G. (2020). From digital literacy to digital competence: The teacher digital competency (TDC) framework. Educational Technology Research and Development, 68 , 2449–2472. https://doi.org/10.1007/s11423-020-09767-4

Ferdig RE, Pytash KE. What teacher educators should have learned from 2020, AACE – Association for the Advancement of Computing in Education , 229–242; 2020.

Flecknoe, M. (2002). How can ICT help us to improve education? Innovations in Education and Teaching International, 39 (4), 271–279. https://doi.org/10.1080/13558000210161061

Gegenfurtner, A., Lehtinen, E., Jarodzka, H., & Säljö, R. (2017). Effects of eye movement modeling examples on adaptive expertise in medical image diagnosis. Computers & Education, 13 , 212–225. https://doi.org/10.1016/j.compedu.2017.06.001

Gegenfurtner, A., Lewalter, D., Lehtinen, E., Schmidt, M., & Gruber, H. (2020). Teacher expertise and professional vision: Examining knowledge-based reasoning of pre-service teachers, in-service teachers, and school principals. Frontiers in Education . https://doi.org/10.3389/feduc.2020.00059

Gloria, M. (2015). A Meta-Analysis of the Relationship between E-Learning and Students’ Academic Achievement in Higher Education. Journal of Education and Practice, 6 (9), 6–9.

Google Scholar  

Greenhow, Ch., Cathy, L. C., & Willet, B. S. (2021). The educational response to Covid-19 across two countries: A critical examination of initial digital pedagogy adoption. Technology, Pedagogy and Education, 30 (1), 7–25. https://doi.org/10.1080/1475939X.2020.1866654

Gronseth, S., Brush, T., Ottenbreit-Leftwich, A., Strycker, J., Abaci, S., Easterling, W., Roman, T., Shin, S., & van Leusen, P. (2010). Equipping the next generation of teachers. Journal of Digital Learning in Teacher Education, 27 (1), 30–36. https://doi.org/10.1080/21532974.2010.10784654

Häkkinen, P., Järvelä, S., Mäkitalo-Siegl, K., Ahonen, A., Näykki, P., & Valtonen, T. (2017). Preparing teacher students for 21st century learning practices (PREP 21): A framework for enhancing collaborative problem solving and strategic learning skills. Teachers and Teaching: Theory and Practice, 23 (1), 25–41. https://doi.org/10.1080/13540602.2016.1203772

Huang, Y., Miller, K. F., Cortina, K., & Richter, D. (2020). Teachers’ professional vision in action. Comparing expert and novice teacher’s real-life eye movements in the classroom. Zeitschrift Für Pädagogische Psychologie, 1 , 18.

Knoop-vanCampen, C., & Molenaar, I. (2020). How teachers integrate dashboards into their feedback practices. Frontline Learning Research, 8 (4), 37–51. https://doi.org/10.14786/flr.v8i4.641

Kulaksız, T., & Toran, M. (2022) Development of pre-service early childhood teachers’ technology integrations skills through a praxeological approach. International Journal of Educational Technology in Higher Education, 19 , 36. https://doi.org/10.1186/s41239-022-00344-8

Lin, R., Yang, J., Jiang, F., et al. (2022). Does teacher’s data literacy and digital teaching competence influence empowering students in the classroom? Evidence from China. Education and Information Technologies . https://doi.org/10.1007/s10639-022-11274-3

McGaghie, W. C., Issenberg, S. B., Cohen, E. R., Barsuk, J. H., & Wayne, D. B. (2011). Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Academic Medicine, 86 (6), 706–711. https://doi.org/10.1097/ACM.0b013e318217e119

Metsäpelto, R. L., Poikkeus, A. M., Heikkilä, M., et al. (2022). A multidimensional adapted process model of teaching. Educational Assessment, Evaluation and Accountability, 34 , 143–172. https://doi.org/10.1007/s11092-021-09373-9

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108 (6), 1017–1054.

Nagro, S. A., & Cornelius, K. E. (2013). Evaluating the evidence base of video analysis: A special education teacher development tool. Teacher Education and Special Education, 36 (4), 312–329. https://doi.org/10.1177/0888406413501090

OECD. (2014). TALIS 2013 results: An international perspective on teaching and learning. TALIS, OECD Publishing, Paris, . https://doi.org/10.1787/9789264196261-en

OECD. (2019). TALIS 2018 results (volume I): Teachers and school leaders as lifelong learners. TALIS, OECD Publishing, Paris, . https://doi.org/10.1787/1d0bc92a-en

OECD. (2020). TALIS 2018 results (volume II): Teachers and school leaders as valued professionals. TALIS, OECD Publishing, Paris, . https://doi.org/10.1787/19cf08df-en

Papanastasiou, E. C., Zembylas, M., & Vrasidas, C. (2003). Can computer use hurt science achievement? The USA results from PISA. Journal of Science Education and Technology, 12 (3), 325–332.

Peciuliauskiene, P., Tamoliune, G. & Trepule, E. (2022). Exploring the roles of information search and information evaluation literacy and pre-service teachers’ ICT self-efficacy in teaching. International Journal of Educational Technology in Higher Education, 19 , 33. https://doi.org/10.1186/s41239-022-00339-5

Polly, D., Mims, C., Shepherd, C. E., & Inan, F. (2010). Evidence of impact: Transforming teacher education with preparing tomorrow’s teachers to teach with technology (PT3) grants. Teaching and Teacher Education, 26 , 863–870.

Pouta, M., Palonen, T., & Lehtinen, E. (2021). Student teachers’ and experienced teachers’ professional vision of students’ rational number concept understanding. Educational Psychology Review., 33 (1), 109–128. https://doi.org/10.1007/s10648-020-09536-y

Roztocki, N., Soja, P., & Weistroffer, H. R. (2019). The role of information and communication technologies in socioeconomic development: Towards a multi-dimensional framework. Information Technology for Development, 25 (2), 171–183. https://doi.org/10.1080/02681102.2019.1596654

Samuelsson, M., Samuelsson, J., & Thorsten, A. (2022). Simulation training-a boost for pre-service teachers’ efficacy beliefs. Computers and Education Open, 3 , 100074. https://doi.org/10.1016/j.caeo.2022.100074

Schmid, R., & Petko, D. (2019). Does the use of educational technology in personalized learning environments correlate with self-reported digital skills and beliefs of secondary-school students? Computers & Education, 136 , 75–86. https://doi.org/10.1016/j.compedu.2019.03.006

Sommerhoff, D., Codreanu, E., Nickl, M., Ufer, S., & Seidel, T. (2022). Pre-service teachers’ learning of diagnostic skills in a video-based simulation: Effects of conceptual vs interconnecting prompts on judgment accuracy and the diagnostic process. Learning and Instruction . https://doi.org/10.1016/j.learninstruc.2022.101689

Theelen, H., Van den Beem, A., & den Brok, P. (2019). Classroom simulations in teacher education to support preservice teachers’ interpersonal competence: A systematic literature review. Computers & Education, 129 , 14–26. https://doi.org/10.1016/j.compedu.2018.10.015

Tondeur, J., Aesaert, K., Pynoo, B., van Braak, F., & J.N., & Erstad, O. (2017). Developing a validated instrument to measure preserviceteachers’ ICT competencies: Meeting the demands of the21st century. British Journal of Educational Technology, 48 (2), 462–472. https://doi.org/10.1111/bjet.12380

UNESCO ICT Competency Framework for Teachers. (2018). UNESCO, Paris: France. https://unesdoc.unesco.org/ark:/48223/pf0000265721

Valtonen, T., Sointu, E., Kukkonen, J., Häkkinen, P., Järvelä, S., Ahonen, A., Näykki, P., Pöysä-Tarhonen, J., & Mäkitalo-Siegl, K. (2016). Insights into Finnish first-year pre-service teachers’ twenty-first century skills. Education and Information Technologies, 22 , 2055–2069. https://doi.org/10.1007/s10639-016-9529-2

Wouters, P., van Nimwegen, C., van Oostendorp, H., & van der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105 (2), 249–265. https://doi.org/10.1037/a0031311

Download references

Author information

Authors and affiliations.

Education Academy, Vytautas Magnus University, Kaunas, Lithuania

Lina Kaminskienė & Erno Lehtinen

Faculty of Education and Psychology, University of Oulu, Oulu, Finland

Sanna Järvelä

Department of Teacher Education, University of Turku, Turku, Finland

Erno Lehtinen

You can also search for this author in PubMed   Google Scholar

Contributions

This is a collaboratively developed and discussed paper. The contribution of each author is equal. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lina Kaminskienė .

Ethics declarations

Competing interests.

The authors state that they have no conflicting interests regarding the ideas of this study.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Kaminskienė, L., Järvelä, S. & Lehtinen, E. How does technology challenge teacher education?. Int J Educ Technol High Educ 19 , 64 (2022). https://doi.org/10.1186/s41239-022-00375-1

Download citation

Published : 27 December 2022

DOI : https://doi.org/10.1186/s41239-022-00375-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Teachers’ digital competences
  • Teachers’ initial and continuous training
  • Technology integration
  • Digital innovations in education

teacher and technology essay

World Bank Blogs Logo

How to use technology to help teachers be better and to make life better for teachers

David evans.

Teacher with students

Teachers matter enormously to student learning. Teachers deliver academic knowledge. Teachers impart model socioemotional skills. Good teachers boost students’ long-term life outcomes. Teachers can inspire (and in another demonstration of their importance, in some cases, sadly, teachers can disappoint or even abuse ). 

Yet teachers, often lionized and occasionally villainized , are people. They enter the profession for a wide range of reasons, they have their own families to feed, and – like most professionals – they respond to incentives, support, accountability, and the quality of the management around them. In short, they are part of a system . 

Getting teacher policies right isn’t always easy, and sometimes education technology solutions can seem like a shortcut. It’s tempting to search for the perfect app that will “disrupt” the learning process and allow countries to “leapfrog” to high-quality, equitable education without having to engage with these complicated people near the center of the learning process. (Let’s keep learners at the actual center.) Education technology interventions have had both successes and failures . Even as the COVID crisis has heightened attention to education technology, many parts of the world lack the infrastructure for it have an extended, effective reach, with big implications for educational inequality .

In a recent note—“ Education Technology for Effective Teachers ”—I look for examples of how education technology—rather than seeking to circumvent teachers—can help teachers to be as effective as possible and make their jobs and lives easier in the process. Looking at a wide range of experiences, mostly in low- and middle-income countries, I identify and discuss four principles to guide investments in technology to boost teacher effectiveness.

Figure 1

Beyond these principles, which may seem obvious but which anyone who has worked in the implementation or evaluation of education technology can tell you are often not applied, I provide practical examples of six ways that education systems are using technology to support teachers. I summarize these in the table below, but you can find more country experiences in the note.

Technology is not the solution, but just like books and classrooms and blackboards, technological tools can help teachers to improve their skills, to use their skills most effectively, and to be accountable. These investments should never be made on the basis of evidence-free optimism but rather evidence-based realism in terms of systems’ capacity to maintain the technology, teacher willingness to engage the technology, and whether the technology will perform better than the cheaper, analog alternative.

(In Kenya, a tablet-based literacy program boosted learning, but no more so than the analog alternative and at higher cost.) 

But in cases where technology passes those tests, it can be a valuable complement to teachers. It can also make teachers’ jobs a little bit easier so they can focus their energy on teaching.

Further reading:

  • For more on how this brief fits within the World Bank’s program for teachers, check out Saavedra’s blog post from earlier this month, “ Realizing the promise of effective teachers for every child – a global platform for successful teachers ”
  • For more on how to foster effective teachers, check out Béteille’s and my approach paper “ Successful Teachers, Successful Students: Recruiting and Supporting Society’s Most Crucial Profession ” or the World Development Report 2018 chapter on teachers . 
  • For a broader framework on how to apply education technology in systems (beyond its interactions with teachers), check out Ganimian, Vegas, and Hess’s 2020 report “ Realizing the Promise: How Can Education Technology Improve Learning for All? ”

David Evans's picture

Senior Fellow, Center for Global Development

Join the Conversation

  • Share on mail
  • comments added

Purdue University Graduate School

HOW TECHNOLOGY IMPACTS STUDENT ACHIEVEMENT IN THE CLASSROOM

The integration of technology in classrooms has become increasingly prevalent, presenting both opportunities and challenges for educators. This study examines the impact of technology on student performance and behavior, particularly in seventh and eighth-grade classrooms. The COVID-19 pandemic accelerated the shift to online learning, raising concerns about learning loss and disparities in access to technology. Using a needs-based assessment survey, this research investigates teachers' perceptions of technology's effects on student engagement, academic achievement, and retention of curriculum content. The study explores the positive and negative implications of technology use, as well as non-technological strategies employed by teachers to support student learning. Findings reveal that while technology offers benefits such as student-centered education and immediate feedback, it also poses challenges such as distractions and decreased engagement. The study underscores the importance of understanding how technology impacts student learning and behavior and provides insights for developing effective intervention strategies. By considering the perspectives of educators, this research contributes to the ongoing dialogue on technology integration in education and informs evidence-based practices for promoting student success in technology-rich classrooms.

Degree Type

  • Master of Science
  • Educational Studies

Campus location

Advisor/supervisor/committee chair, advisor/supervisor/committee co-chair, additional committee member 2, usage metrics.

  • Secondary education

CC BY 4.0

  • Faculty of Arts and Sciences
  • FAS Theses and Dissertations
  • Communities & Collections
  • By Issue Date
  • FAS Department
  • Quick submit
  • Waiver Generator
  • DASH Stories
  • Accessibility
  • COVID-related Research

Terms of Use

  • Privacy Policy
  • By Collections
  • By Departments

Essays on Technology in Education

Thumbnail

Citable link to this page

Collections.

  • FAS Theses and Dissertations [6136]

Contact administrator regarding this item (to report mistakes or request changes)

Introduction: Educational Technology in Teacher Education

  • First Online: 24 March 2023

Cite this chapter

teacher and technology essay

  • Michael Thomas 6 &
  • Karim Sadeghi 7  

Part of the book series: Digital Education and Learning ((DEAL))

482 Accesses

In this first chapter, we briefly survey the history of the use of educational technology in language teacher education and professional development. We identify different types of digital technologies that are commonly used in training language teachers and discuss the affordances these tools offer for running teachers’ professional development programmes. We also consider the challenges and concerns in using technology for such purposes in contexts with limited access to technological resources. The chapter ends with an outline of the chapters included in the rest of the volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Arnold, N., Ducate, L., & Lomicka, L. (2007). Virtual communities of practice in teacher education. In M. Kassen, R. Lavine, K. Murphy-Judy, & M. Peters (Eds.), Preparing and developing technology-proficient L2 teachers (pp. 103–132). CALICO.

Google Scholar  

Cummins, P. (2007). LinguaFolio and electronic portfolios in teacher training. In M. Kassen, R. Lavine, K. Murphy-Judy, & M. Peters (Eds.), Preparing and developing technology-proficient L2 teachers (pp. 321–344). CALICO.

Cutrim-Schmid, E. (2019). Teacher education in computer-assisted language learning: A sociocultural and linguistic Perspective . Bloomsbury.

Dudeney, G., & Hockly, N. (2016). Blended learning in a mobile context: New tools, new learning experiences? In M. McCarthy (Ed.), Blended learning for language teaching (pp. 219–233). Cambridge University Press.

Egbert, J. (2006). Learning in context: Situating language teacher learning in CALL. In P. Hubbard & M. Levy (Eds.), Teacher education in CALL (pp. 167–182). John Benjamins.

Chapter   Google Scholar  

Hanson-Smith, E. (2006). Communities of practice for pre- and in-service teacher education. In P. Hubbard & M. Levy (Eds.), Teacher education in CALL (pp. 301–315). John Benjamins.

Hong, K. H. (2010). CALL teacher education as an impetus for L2 teachers in integrating technology. ReCALL, 22 (1), 53–69.

Article   Google Scholar  

Hubbard, P. (2021). Revisiting the TESOL technology standards for teachers: Integration and adaptation. CALICO Journal, 38 (3), 319–337.

Hubbard, P., & Levy, M. (Eds.). (2006). Teacher education in CALL . John Benjamins.

Karatay, Y., & Hegelheimer, V. (2021). CALL teacher training – Considerations for low-resource environments: Overview of CALL teacher training. CALICO, 38 (3), 271–295.

Kessler, G. (2006). Assessing CALL teacher training: What are we doing and what could we do better? In P. Hubbard & M. Levy (Eds.), Teacher education in CALL (pp. 23–42). John Benjamins.

Kessler, G. (2021). Editorial: Current realities and future challenges for CALL teacher preparation. CALICO Journal, 38 (3), i–xx.

Kitade, K. (2015). Second language teacher development through CALL practice: The emergence of teachers’ agency. CALICO Journal, 32 , 396–425.

Mononey, D., & O'Keeffe, A. (2016). A case study in language teacher education. In M. McCarthy (Ed.), Blended learning for language teaching (pp. 176–199). Cambridge University Press.

Pasternak, D. L. (2020). Integrating technology in English language arts and teacher education . Routledge.

Schmid, E. C., & Hegelheimer, V. (2014). Collaborative research projects in the technology-enhanced language classroom: Pre-service and in-service teachers exchange knowledge about technology. ReCALL, 26 , 315–332.

Shaltry, C., Henriksen, D., Wu, M. L., & Dickson, W. P. (2013). Teaching prospective teachers to integrate technology: Situated learning with online portfolios, classroom websites and Facebook. TechTrends, 57 , 20–25.

TESOL. (2008). TESOL technology standards framework . TESOL.

Thomas, M., & Schneider, C. (2020). Language teaching with video-based technologies: Creativity and CALL teacher education. Routledge.

Torsani, S. (2016). CALL teacher education: Language teachers and technology integration . Springer.

Book   Google Scholar  

UNESCO. (2008a). ICT competency standards for teachers: Policy framework. UNESCO.

UNESCO. (2008b). ICT competency standards for teachers: Competency standards modules. UNESCO.

Wiebe, G., & Kabata, K. (2010). Students’ and instructors’ attitudes toward the use of CALL in foreign language teaching and learning. Computer Assisted Language Learning, 23 , 221–234.

Download references

Author information

Authors and affiliations.

Liverpool John Moores University, Liverpool, UK

Michael Thomas

Urmia University, Urmia, Iran

Karim Sadeghi

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Karim Sadeghi .

Editor information

Editors and affiliations, rights and permissions.

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Thomas, M., Sadeghi, K. (2023). Introduction: Educational Technology in Teacher Education. In: Sadeghi, K., Thomas, M. (eds) Second Language Teacher Professional Development. Digital Education and Learning. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-12070-1_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-12070-1_1

Published : 24 March 2023

Publisher Name : Palgrave Macmillan, Cham

Print ISBN : 978-3-031-12069-5

Online ISBN : 978-3-031-12070-1

eBook Packages : Social Sciences Social Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

New global data reveal education technology’s impact on learning

The promise of technology in the classroom is great: enabling personalized, mastery-based learning; saving teacher time; and equipping students with the digital skills they will need  for 21st-century careers. Indeed, controlled pilot studies have shown meaningful improvements in student outcomes through personalized blended learning. 1 John F. Pane et al., “How does personalized learning affect student achievement?,” RAND Corporation, 2017, rand.org. During this time of school shutdowns and remote learning , education technology has become a lifeline for the continuation of learning.

As school systems begin to prepare for a return to the classroom , many are asking whether education technology should play a greater role in student learning beyond the immediate crisis and what that might look like. To help inform the answer to that question, this article analyzes one important data set: the 2018 Programme for International Student Assessment (PISA), published in December 2019 by the Organisation for Economic Co-operation and Development (OECD).

Every three years, the OECD uses PISA to test 15-year-olds around the world on math, reading, and science. What makes these tests so powerful is that they go beyond the numbers, asking students, principals, teachers, and parents a series of questions about their attitudes, behaviors, and resources. An optional student survey on information and communications technology (ICT) asks specifically about technology use—in the classroom, for homework, and more broadly.

In 2018, more than 340,000 students in 51 countries took the ICT survey, providing a rich data set for analyzing key questions about technology use in schools. How much is technology being used in schools? Which technologies are having a positive impact on student outcomes? What is the optimal amount of time to spend using devices in the classroom and for homework? How does this vary across different countries and regions?

From other studies we know that how education technology is used, and how it is embedded in the learning experience, is critical to its effectiveness. This data is focused on extent and intensity of use, not the pedagogical context of each classroom. It cannot therefore answer questions on the eventual potential of education technology—but it can powerfully tell us the extent to which that potential is being realized today in classrooms around the world.

Five key findings from the latest results help answer these questions and suggest potential links between technology and student outcomes:

  • The type of device matters—some are associated with worse student outcomes.
  • Geography matters—technology is associated with higher student outcomes in the United States than in other regions.
  • Who is using the technology matters—technology in the hands of teachers is associated with higher scores than technology in the hands of students.
  • Intensity matters—students who use technology intensely or not at all perform better than those with moderate use.
  • A school system’s current performance level matters—in lower-performing school systems, technology is associated with worse results.

This analysis covers only one source of data, and it should be interpreted with care alongside other relevant studies. Nonetheless, the 2018 PISA results suggest that systems aiming to improve student outcomes should take a more nuanced and cautious approach to deploying technology once students return to the classroom. It is not enough add devices to the classroom, check the box, and hope for the best.

What can we learn from the latest PISA results?

How will the use, and effectiveness, of technology change post-covid-19.

The PISA assessment was carried out in 2018 and published in December 2019. Since its publication, schools and students globally have been quite suddenly thrust into far greater reliance on technology. Use of online-learning websites and adaptive software has expanded dramatically. Khan Academy has experienced a 250 percent surge in traffic; smaller sites have seen traffic grow fivefold or more. Hundreds of thousands of teachers have been thrown into the deep end, learning to use new platforms, software, and systems. No one is arguing that the rapid cobbling together of remote learning under extreme time pressure represents best-practice use of education technology. Nonetheless, a vast experiment is underway, and innovations often emerge in times of crisis. At this point, it is unclear whether this represents the beginning of a new wave of more widespread and more effective technology use in the classroom or a temporary blip that will fade once students and teachers return to in-person instruction. It is possible that a combination of software improvements, teacher capability building, and student familiarity will fundamentally change the effectiveness of education technology in improving student outcomes. It is also possible that our findings will continue to hold true and technology in the classroom will continue to be a mixed blessing. It is therefore critical that ongoing research efforts track what is working and for whom and, just as important, what is not. These answers will inform the project of reimagining a better education for all students in the aftermath of COVID-19.

PISA data have their limitations. First, these data relate to high-school students, and findings may not be applicable in elementary schools or postsecondary institutions. Second, these are single-point observational data, not longitudinal experimental data, which means that any links between technology and results should be interpreted as correlation rather than causation. Third, the outcomes measured are math, science, and reading test results, so our analysis cannot assess important soft skills and nonacademic outcomes.

It is also worth noting that technology for learning has implications beyond direct student outcomes, both positive and negative. PISA cannot address these broader issues, and neither does this paper.

But PISA results, which we’ve broken down into five key findings, can still provide powerful insights. The assessment strives to measure the understanding and application of ideas, rather than the retention of facts derived from rote memorization, and the broad geographic coverage and sample size help elucidate the reality of what is happening on the ground.

Finding 1: The type of device matters

The evidence suggests that some devices have more impact than others on outcomes (Exhibit 1). Controlling for student socioeconomic status, school type, and location, 2 Specifically, we control for a composite indicator for economic, social, and cultural status (ESCS) derived from questions about general wealth, home possessions, parental education, and parental occupation; for school type “Is your school a public or a private school” (SC013); and for school location (SC001) where the options are a village, hamlet or rural area (fewer than 3,000 people), a small town (3,000 to about 15,000 people), a town (15,000 to about 100,000 people), a city (100,000 to about 1,000,000 people), and a large city (with more than 1,000,000 people). the use of data projectors 3 A projector is any device that projects computer output, slides, or other information onto a screen in the classroom. and internet-connected computers in the classroom is correlated with nearly a grade-level-better performance on the PISA assessment (assuming approximately 40 PISA points to every grade level). 4 Students were specifically asked (IC009), “Are any of these devices available for you to use at school?,” with the choices being “Yes, and I use it,” “Yes, but I don’t use it,” and “No.” We compared the results for students who have access to and use each device with those who do not have access. The full text for each device in our chart was as follows: Data projector, eg, for slide presentations; Internet-connected school computers; Desktop computer; Interactive whiteboard, eg, SmartBoard; Portable laptop or notebook; and Tablet computer, eg, iPad, BlackBerry PlayBook.

On the other hand, students who use laptops and tablets in the classroom have worse results than those who do not. For laptops, the impact of technology varies by subject; students who use laptops score five points lower on the PISA math assessment, but the impact on science and reading scores is not statistically significant. For tablets, the picture is clearer—in every subject, students who use tablets in the classroom perform a half-grade level worse than those who do not.

Some technologies are more neutral. At the global level, there is no statistically significant difference between students who use desktop computers and interactive whiteboards in the classroom and those who do not.

Finding 2: Geography matters

Looking more closely at the reading results, which were the focus of the 2018 assessment, 5 PISA rotates between focusing on reading, science, and math. The 2018 assessment focused on reading. This means that the total testing time was two hours for each student, of which one hour was reading focused. we can see that the relationship between technology and outcomes varies widely by country and region (Exhibit 2). For example, in all regions except the United States (representing North America), 6 The United States is the only country that took the ICT Familiarity Questionnaire survey in North America; thus, we are comparing it as a country with the other regions. students who use laptops in the classroom score between five and 12 PISA points lower than students who do not use laptops. In the United States, students who use laptops score 17 PISA points higher than those who do not. It seems that US students and teachers are doing something different with their laptops than those in other regions. Perhaps this difference is related to learning curves that develop as teachers and students learn how to get the most out of devices. A proxy to assess this learning curve could be penetration—71 percent of US students claim to be using laptops in the classroom, compared with an average of 37 percent globally. 7 The rate of use excludes nulls. The United States measures higher than any other region in laptop use by students in the classroom. US = 71 percent, Asia = 40 percent, EU = 35 percent, Latin America = 31 percent, MENA = 21 percent, Non-EU Europe = 41 percent. We observe a similar pattern with interactive whiteboards in non-EU Europe. In every other region, interactive whiteboards seem to be hurting results, but in non-EU Europe they are associated with a lift of 21 PISA points, a total that represents a half-year of learning. In this case, however, penetration is not significantly higher than in other developed regions.

Finding 3: It matters whether technology is in the hands of teachers or students

The survey asks students whether the teacher, student, or both were using technology. Globally, the best results in reading occur when only the teacher is using the device, with some benefit in science when both teacher and students use digital devices (Exhibit 3). Exclusive use of the device by students is associated with significantly lower outcomes everywhere. The pattern is similar for science and math.

Again, the regional differences are instructive. Looking again at reading, we note that US students are getting significant lift (three-quarters of a year of learning) from either just teachers or teachers and students using devices, while students alone using a device score significantly lower (half a year of learning) than students who do not use devices at all. Exclusive use of devices by the teacher is associated with better outcomes in Europe too, though the size of the effect is smaller.

Finding 4: Intensity of use matters

PISA also asked students about intensity of use—how much time they spend on devices, 8 PISA rotates between focusing on reading, science, and math. The 2018 assessment focused on reading. This means that the total testing time was two hours for each student, of which one hour was reading focused. both in the classroom and for homework. The results are stark: students who either shun technology altogether or use it intensely are doing better, with those in the middle flailing (Exhibit 4).

The regional data show a dramatic picture. In the classroom, the optimal amount of time to spend on devices is either “none at all” or “greater than 60 minutes” per subject per week in every region and every subject (this is the amount of time associated with the highest student outcomes, controlling for student socioeconomic status, school type, and location). In no region is a moderate amount of time (1–30 minutes or 31–60 minutes) associated with higher student outcomes. There are important differences across subjects and regions. In math, the optimal amount of time is “none at all” in every region. 9 The United States is the only country that took the ICT Familiarity Questionnaire survey in North America; thus, we are comparing it as a country with the other regions. In reading and science, however, the optimal amount of time is greater than 60 minutes for some regions: Asia and the United States for reading, and the United States and non-EU Europe for science.

The pattern for using devices for homework is slightly less clear cut. Students in Asia, the Middle East and North Africa (MENA), and non-EU Europe score highest when they spend “no time at all” on devices for their homework, while students spending a moderate amount of time (1–60 minutes) score best in Latin America and the European Union. Finally, students in the United States who spend greater than 60 minutes are getting the best outcomes.

One interpretation of these data is that students need to get a certain familiarity with technology before they can really start using it to learn. Think of typing an essay, for example. When students who mostly write by hand set out to type an essay, their attention will be focused on the typing rather than the essay content. A competent touch typist, however, will get significant productivity gains by typing rather than handwriting.

Would you like to learn more about our Social Sector Practice ?

Finding 5: the school systems’ overall performance level matters.

Diving deeper into the reading outcomes, which were the focus of the 2018 assessment, we can see the magnitude of the impact of device use in the classroom. In Asia, Latin America, and Europe, students who spend any time on devices in their literacy and language arts classrooms perform about a half-grade level below those who spend none at all. In MENA, they perform more than a full grade level lower. In the United States, by contrast, more than an hour of device use in the classroom is associated with a lift of 17 PISA points, almost a half-year of learning improvement (Exhibit 5).

At the country level, we see that those who are on what we would call the “poor-to-fair” stage of the school-system journey 10 Michael Barber, Chinezi Chijoke, and Mona Mourshed, “ How the world’s most improved school systems keep getting better ,” November 2010. have the worst relationships between technology use and outcomes. For every poor-to-fair system taking the survey, the amount of time on devices in the classroom associated with the highest student scores is zero minutes. Good and great systems are much more mixed. Students in some very highly performing systems (for example, Estonia and Chinese Taipei) perform highest with no device use, but students in other systems (for example, Japan, the United States, and Australia) are getting the best scores with over an hour of use per week in their literacy and language arts classrooms (Exhibit 6). These data suggest that multiple approaches are effective for good-to-great systems, but poor-to-fair systems—which are not well equipped to use devices in the classroom—may need to rethink whether technology is the best use of their resources.

What are the implications for students, teachers, and systems?

Looking across all these results, we can say that the relationship between technology and outcomes in classrooms today is mixed, with variation by device, how that device is used, and geography. Our data do not permit us to draw strong causal conclusions, but this section offers a few hypotheses, informed by existing literature and our own work with school systems, that could explain these results.

First, technology must be used correctly to be effective. Our experience in the field has taught us that it is not enough to “add technology” as if it were the missing, magic ingredient. The use of tech must start with learning goals, and software selection must be based on and integrated with the curriculum. Teachers need support to adapt lesson plans to optimize the use of technology, and teachers should be using the technology themselves or in partnership with students, rather than leaving students alone with devices. These lessons hold true regardless of geography. Another ICT survey question asked principals about schools’ capacity using digital devices. Globally, students performed better in schools where there were sufficient numbers of devices connected to fast internet service; where they had adequate software and online support platforms; and where teachers had the skills, professional development, and time to integrate digital devices in instruction. This was true even accounting for student socioeconomic status, school type, and location.

COVID-19 and student learning in the United States: The hurt could last a lifetime

COVID-19 and student learning in the United States: The hurt could last a lifetime

Second, technology must be matched to the instructional environment and context. One of the most striking findings in the latest PISA assessment is the extent to which technology has had a different impact on student outcomes in different geographies. This corroborates the findings of our 2010 report, How the world’s most improved school systems keep getting better . Those findings demonstrated that different sets of interventions were needed at different stages of the school-system reform journey, from poor-to-fair to good-to-great to excellent. In poor-to-fair systems, limited resources and teacher capabilities as well as poor infrastructure and internet bandwidth are likely to limit the benefits of student-based technology. Our previous work suggests that more prescriptive, teacher-based approaches and technologies (notably data projectors) are more likely to be effective in this context. For example, social enterprise Bridge International Academies equips teachers across several African countries with scripted lesson plans using e-readers. In general, these systems would likely be better off investing in teacher coaching than in a laptop per child. For administrators in good-to-great systems, the decision is harder, as technology has quite different impacts across different high-performing systems.

Third, technology involves a learning curve at both the system and student levels. It is no accident that the systems in which the use of education technology is more mature are getting more positive impact from tech in the classroom. The United States stands out as the country with the most mature set of education-technology products, and its scale enables companies to create software that is integrated with curricula. 11 Common Core State Standards sought to establish consistent educational standards across the United States. While these have not been adopted in all states, they cover enough states to provide continuity and consistency for software and curriculum developers. A similar effect also appears to operate at the student level; those who dabble in tech may be spending their time learning the tech rather than using the tech to learn. This learning curve needs to be built into technology-reform programs.

Taken together, these results suggest that systems that take a comprehensive, data-informed approach may achieve learning gains from thoughtful use of technology in the classroom. The best results come when significant effort is put into ensuring that devices and infrastructure are fit for purpose (fast enough internet service, for example), that software is effective and integrated with curricula, that teachers are trained and given time to rethink lesson plans integrating technology, that students have enough interaction with tech to use it effectively, and that technology strategy is cognizant of the system’s position on the school-system reform journey. Online learning and education technology are currently providing an invaluable service by enabling continued learning over the course of the pandemic; this does not mean that they should be accepted uncritically as students return to the classroom.

Jake Bryant is an associate partner in McKinsey’s Washington, DC, office; Felipe Child is a partner in the Bogotá office; Emma Dorn is the global Education Practice manager in the Silicon Valley office; and Stephen Hall is an associate partner in the Dubai office.

The authors wish to thank Fernanda Alcala, Sujatha Duraikkannan, and Samuel Huang for their contributions to this article.

Explore a career with us

Related articles.

COVID-19 and student learning in the United States: The hurt could last a lifetime

Safely back to school after coronavirus closures

How_the_worlds_most_improved_school_systems_keep_getting_better_500_Standard

How the world’s most improved school systems keep getting better

  • Share full article

Advertisement

Subscriber-only Newsletter

Jessica Grose

Every tech tool in the classroom should be ruthlessly evaluated.

An illustration of students seated at desks looking on as a teacher, standing, holds a laptop in one hand and throws another laptop in a garbage can with the other hand.

By Jessica Grose

Opinion Writer

Educational technology in schools is sometimes described as a wicked problem — a term coined by a design and planning professor, Horst Rittel, in the 1960s , meaning a problem for which even defining the scope of the dilemma is a struggle, because it has so many interconnected parts that never stop moving.

When you have a wicked problem, solutions have to be holistic, flexible and developmentally appropriate. Which is to say that appropriate tech use for elementary schoolers in rural Oklahoma isn’t going to be the same as appropriate tech use in a Chicago high school.

I spent the past few weeks speaking with parents, teachers, public school administrators and academics who study educational technology. And while there are certainly benefits to using tech as a classroom tool, I’m convinced that when it comes to the proliferation of tech in K-12 education, we need “ a hard reset ,” as Julia Freeland Fisher of the Christensen Institute put it, concurring with Jonathan Haidt in his call for rolling back the “phone-based childhood.” When we recently spoke, Fisher stressed that when we weigh the benefits of ed tech, we’re often not asking, “What’s happening when it comes to connectedness and well-being?”

Well said. We need a complete rethink of the ways that we’re evaluating and using tech in classrooms; the overall change that I want to see is that tech use in schools — devices and apps — should be driven by educators, not tech companies.

In recent years, tech companies have provided their products to schools either free or cheap , and then schools have tried to figure out how to use those products. Wherever that dynamic exists, it should be reversed: Districts and individual schools should first figure out what tech would be most useful to their students, and their bar for “useful” should be set by available data and teacher experience. Only then should they acquire laptops, tablets and educational software.

As Mesut Duran — a professor of educational technology at the University of Michigan, Dearborn, and the author of “Learning Technologies: Research, Trends and Issues in the U.S. Education System” — told me, a lot of the technology that’s used in classrooms wasn’t developed with students in mind. “Most of the technologies are initially created for commercial purposes,” he said, “and then we decide how to use them in schools.”

In many cases, there’s little or no evidence that the products actually work, and “work” can have various meanings here: It’s not conclusive that tech, as opposed to hard-copy materials, improves educational outcomes. And sometimes devices or programs simply don’t function the way they’re supposed to. For example, artificial intelligence in education is all the rage, but then we get headlines like this one, in February, from The Wall Street Journal: “ We Tested an A.I. Tutor for Kids. It Struggled With Basic Math. ”

Alex Molnar, one of the directors of the National Educational Policy Center at the University of Colorado, Boulder, said that every school should be asking if the tech it’s using is both necessary and good. “The tech industry’s ethos is: If it’s doable, it is necessary. But for educators, that has to be an actual question: Is this necessary?” Even after you’ve cleared the bar of necessary, he said, educators should be asking, “Is doing it this way good, or could we do it another way that would be better? Better in the ethical sense and the pedagogical sense.”

With that necessary and good standard in mind, here are some specific recommendations that I’ve taken away from several discussions and a lot of reading. It’s unrealistic — and considering that we’re in a tech-saturated world, not ideal — to get rid of every last bit of educational technology. But we’re currently failing too many children by letting it run rampant.

At the State and Federal Levels: Privacy Protections and Better Evaluation

A complaint I heard from many public school parents who responded to my March 27 questionnaire and wanted a lower-tech environment for their kids is that they’re concerned about their children’s privacy. They couldn’t opt out of things like Google Classroom, they said, because in many cases, all of their children’s homework assignments were posted there. Molnar has a radical but elegant solution for this problem: “All data gathered must be destroyed after its intended purpose has been accomplished.” So if the intended purpose of a platform or application is grading, for example, the data would be destroyed at the end of the school year; it couldn’t be sold to a third party or used to further enhance the product or as a training ground for artificial intelligence.

Another recommendation — from a recent paper by the University of Edinburgh’s Ben Williamson, Molnar and the University of Colorado, Boulder’s Faith Boninger outlining the risks of A.I. in the classroom — is for the creation of an “independent government entity charged with ensuring the quality of digital educational products used in schools” that would evaluate tech before it is put into schools and “periodically thereafter.” Because the technology is always evolving, our oversight of it needs to be, as well.

At the District Level: Centralize the Tech-Vetting Process

Stephanie Sheron is the chief of strategic initiatives for the Montgomery County Public Schools, the largest district in Maryland, and all the district’s technology departments report to her. She likened the tech landscape, coming out of the Covid-19 pandemic remote school period, to the “Wild West.” School districts were flooded with different kinds of ed tech in an emergency situation in which teachers were desperately trying to engage their students, and a lot of relief money was pouring in from the federal government. When the dust settled, she said, the question was, “Now what do we do? How do we control this? How do we make sure that we’re in alignment with FERPA and COPPA and all of those other student data privacy components?”

To address this, Sheron said, her district has secured grant funding to hire a director of information security, who will function as the hub for all the educational technology vending and evaluate new tech. Part of the standardization that the district has been undergoing is a requirement that to be considered, curriculum vendors must offer both digital and hard-copy resources. She said her district tried to look at tech as a tool, adding: “A pencil is a tool for learning, but it’s not the only modality. Same thing with technology. We look at it as a tool, not as the main driver of the educational experience.”

At the Classroom Level: Ruthlessly Evaluate Every Tool

In my conversations with teachers, I’ve been struck by their descriptions of the cascade of tech use — that more tech is often offered as a solution to problems created by tech. For example, paid software like GoGuardian, which allows teachers to monitor every child’s screen, has been introduced to solve the problem of students goofing off on their laptops. But there’s a simple, free, low-tech solution to this problem that Doug Showley, a high school English teacher in Indiana I spoke to, employs: He makes all his students face their computer screens in his direction.

Every teacher who is concerned about tech use in his or her classroom should do a tech audit. There are several frameworks ; I like the worksheet created by Beth Pandolpho and Katie Cubano, the authors of “Choose Your Own Master Class: Urgent Ideas to Invigorate Your Professional Learning.” In the chapter “Balancing Technology Use in the Classroom,” they suggest that teachers list every tech tool they are using and evaluate its specific functions, asking, “Are these novel or duplicative?” They also encourage teachers to write out a defense of the tool and the frequency of use.

I like these questions because they make clear that the solutions are not going to be one size fits all.

Students Deserve Authentic Connection

As I close out this series, I want to return to what Fisher said about the importance of student connection and well-being. Of course academic outcomes matter. I want our kids to learn as much about as many different topics as they can. I care about falling test scores and think they’re an important piece of data.

But test scores are only one kind of information. A key lesson we should have learned from 2020 and ’21 is that school is about so much more than just academics. It’s about socialization, critical thinking, community and learning how to coexist with people who are different from you. I don’t know that all of these are things that can be tracked in a scientific way, which brings me back to the idea of tech in schools as a wicked problem: These aren’t easily measurable outcomes.

Jeff Frank, a professor of education at St. Lawrence University, expresses a sense that I’ve had very well in a paper , “Sounding the Call to Teach in a Social Media Age: Renewing the Importance of Philosophy in Teacher Education.” He says students are “hungry for experiences that make them feel alive and authentically connected to other people and to deeper sources of value. Though filtering and managing life through technologies offers safety, predictability and a sense of control, it also leads to life that can feel extremely small, constraining and lonely. Teaching can offer a powerful way to pierce this bubble.”

Ultimately, I believe the only way kids will be able to find that deeper meaning is through human relationships with their peers and teachers, no matter how shiny an A.I. tutor appears to be at first blush.

Jessica Grose is an Opinion writer for The Times, covering family, religion, education, culture and the way we live now.

  • International edition
  • Australia edition
  • Europe edition

Boy with iPad

How has technology transformed the role of a teacher?

When I went to school it was common place for a teacher to place a text book in front a set of students and offer the simple yet daunting line, "copy that". There would be no talking to either the teacher or fellow pupils. For me lessons seemed to drag so much that I wasn't engaged in the subject material. I'm proud to say that I became a teacher in spite of the education I received; I believed that I could and would do a better job. This task was made easier through the use of technology in the classroom.

During 10 years in the profession, I've seen technology alter the role the teacher almost beyond all recognition. Teachers have undergone a Kafkaesque metamorphosis from Mr Chips to Mr Jobs; wooden, flip-lid desks have been replaced by iPads. The question we have to ask is, has this change from teacher to that of facilitator of learning been positive? Undeniably so, in my opinion.

Making use of technology to allow students the freedom to discover solutions to problems both independently and collaboratively is a force for good. As educators we strive for students to engage with our subject beyond a superficial level. We want them to be active learners, learners who have a thirst for discovery and knowledge. Technology places the world in the hands of every student inside the confines of your classroom.

There are many ways in which technology can be used in the classroom to engage students and facilitate exciting, engaging and interesting lessons. I'm not going to ignore the fact that there is a cost attached to most things, but it's about getting more bang for your buck, as our American cousins would say. Whatever you choose to use you need to make sure that you're getting it for the right reasons.

If you're not used to allowing your students space to guide their own learning then I can see how this all might seem intimidating; don't let it be. For many of us it feels counterintuitive to allow our students the space to discover solutions as these might not be the ones that we want them to find. Allowing the use of technology in my classroom has freed me from my lesson-plan shackles. It feels strange at first but the this type of emancipation is addictive

We all feel the stresses of getting students through exam courses and allowing them the freedom to wander is sometimes too much for some to allow. However, in my experience allowing the freedom to search and discover the subject through technology has fostered a love for my subject.

The best teachers that I have seen using technology to aid independent learning are the ones who have embraced the power that is already in the pockets of students. Most students have powerful devices, primed and ready to go in their pockets – the dreaded mobile phone. If you're lucky like me, your school will see the power that these wonders hold. Allowing students to unholster these weapons is a liberating experience for both teacher and student. Filming a peer assessment or recording a group discussions and uploading to AudioBoo is yet another way of engaging students.

Allowing yourself the opportunity to do something new and using technology as the tool can open up a cave of treasures that hooks the attention of the student and once you have that it can lead them anywhere.

Mike's tips for getting started with technology in the classroom

Do plan how you're going to use the technology in advance. How is it going to aid the learning of your students? If it isn't going to aid teaching and learning then you shouldn't use it

Don't buy the latest fad product. There has been a temptation for schools to replace laptops for tablets. This might have been successful for some schools but as good as tablets are, they aren't ready to replace laptops … yet

Do invest in good CPD in brushing up your ICT skills. This doesn't mean that you have to pay an expensive consultant. Simply ask your ICT department for some training or advice. Also, ask colleagues, NQTs or PGCE students for some fresh technology ideas

Don't give up. You might try something once and it doesn't work but don't let that put you off. Try and discover what works best for you and your students. If that doesn't work then try something else

Do focus on how technology can aid not hinder student progress

This content is brought to you by Guardian Professional . Looking for your next role? Take a look at Guardian jobs for schools for thousands of the latest teaching, leadership and support jobs.

  • Professional development
  • Teacher's blog
  • Teaching tips
  • IT for schools

Comments (…)

Most viewed.

Technology in Education Essay Examples and Topics

Importance of ict in education.

  • Words: 1177

The Use of Mobile Phones in the Classroom Can Help Students Learn Better

The impact of technology on the teaching and learning of mathematics report.

  • Words: 2469

Internet Positive and Negative Impacts on Education

The role of technology in education, digital libraries pros and cons.

  • Words: 2236

Classroom of the Future

Use of technology as a learning tool, the impact of technology in education, how technology is changing education, data flow diagrams for student attendance systems, using smartphones in learning.

  • Words: 6084

Advantages & Disadvantages of Using Technology in Education

Educational technology during the covid-19 pandemic.

  • Words: 1170

Cellphones as an Education Tool

  • Words: 1388

Technology: Shaping the Future of Education

  • Words: 5258

Calculator Use in Education

Teachers’ attitudes towards the use of technology in teaching and learning.

  • Words: 1421

Using Technology in Classrooms

  • Words: 1440

Scanning Software as a Learning Aid

Twitter usage in education: advantages and disadvantages.

  • Words: 1539

Computers Will Not Replace Teachers

Use of cellphones in education, tablets vs. textbooks, web-based school management mobile application.

  • Words: 9824

Computers Have Changed Education for the Better

Handheld devices for student learning.

  • Words: 14893

Texting Effects on Students Academic Performance

  • Words: 1692

Technology in Classrooms: Learning and Teaching Geometry

  • Words: 1744

Effects of Technology in Education

Legal issues of the multimedia usage in classrooms, sliderocket use in education: step-by-step guide.

  • Words: 1638

Tablets Instead of Textbooks

  • Words: 2003

YouTube as an Educational Tool

  • Words: 1988

Academic Writing Under Impact of Technology

  • Words: 1264

Mobile Applications in Learning

  • Words: 1415

Social Media in Education

  • Words: 1370

Application of Technology in Education

  • Words: 1107

Computer Technology in the Student Registration Process

Smart classroom and its effect on student learning.

  • Words: 1628

Mobile Phone Use Effects on People’s Lifestyles

  • Words: 1161

Effectiveness of Integrating ICT in Schools

  • Words: 2908

Massive Open Online Courses

Virtual and augmented reality in education.

  • Words: 1153

“Virtual Students, Digital Classroom” by Neil Postman

Internet for learning and knowledge acquisition.

  • Words: 1376

The Role of Diversity in the Use of Technology by Educational Organizations

  • Words: 2492

Article Review on Technology in Education

Effects of technology on tertiary education, computers in education: more a boon than a bane.

  • Words: 1571

Online Collaborative Learning

Technology effect on early learning, technology misuse in the educational settings, future trends in educational technology, technology for learning: digital students, using cohesive devices during the course of lectures.

  • Words: 1137

Online Communication in Learning and Teaching

Badrul khan’s web-based framework.

  • Words: 1110

Technology-Based Learning and Learning Outcomes

  • Words: 1128

Mobile Learning and Its Impact on the Learning Process

  • Words: 1397

Integrating Technology in Curriculum

Technology trends in education, the importance of virtual learning communities.

  • Words: 1679

Multimedia Technology for Teaching and Learning

Learning objectives implementation.

  • Words: 1013

Webinars in Education

Preparing teachers to use the technologies in the educational institutions.

  • Words: 1756

Types of Learning Environments

Computer based learning in elementary schools.

  • Words: 2230

Metaverse Potential in the Education and Training Industry

  • Words: 2221

Science Learning: Technological Tools

Ubiquitous computing in social studies, notetaking in an online environment, education: impact of technology, an assistive technology for supporting student admission by university.

  • Words: 13349

Acceptable Use Policy in Miami Public Schools

  • Words: 1106

Reading and Writing with Use of Technology

The use of technologies in the classroom, human performance and technology in education.

  • Words: 1214

Information Technology’s Impact on Education

Digital pedagogy and student achievement.

  • Words: 1742

Personalization and Learning Analytics Relationship

Administration of school technology programs.

  • Words: 1669

An Instructional Technology Facilitator’s Reflection

  • Words: 1237

Technology in Education and Business

Technology promoting learning in education, the kindle device’s use in education, discussion: led lighting in schools, 3d metrics in online education.

  • Words: 1126

K-12 Learning and Technology in a Post-COVID-19 Era

  • Words: 1197

The Use of Technology in American Schools

Incorporating technology in science curriculum.

  • Words: 1706

Information Technology and Pedagogy in Nigeria

  • Words: 1768

Online Learning Perception and Effectiveness

  • Words: 1171

Google Docs as a Tool for Collaborative Writing

Digital technology for learning and development.

  • Words: 1654

Educational Technologies for Interprofessional Interaction

Technology in nursing education, user involvement in education technologies through participatory design, technological developments in country and its impact on education, learning digitalization and its challenges in the workplace.

  • Words: 1181

Overreliance on Technology in Educational Institutes

Digitally-based emerging trends in education, using technologies in kindergarten classrooms.

  • Words: 1671

Technological Literacy and Technical Fluency

E-learning and associated ethical issues, a distance learning program: strategies for successful starting or expanding, starting and expanding distance learning program, e-learning as a prospective new method for education, harvard and yale: comparing information security policies, integrating technology in the curriculum, business administration education reform in teaching style, information systems in the education sector.

  • Words: 2067

Use of Technology in the Educational System

Technological role in students’ transcripts, the role of blockchain technology in education, the importance of blockchain technology in education, automation processes: blockchain technology in education, blockchain technology in education, co-teaching and use of technology in education.

Logo

Essay on Impact of Technology on Education

Students are often asked to write an essay on Impact of Technology on Education in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Impact of Technology on Education

Introduction.

Technology has greatly influenced education. It has changed the way we learn and teach, making education more accessible and engaging.

Interactive Learning

Technology has introduced interactive learning tools like smart boards and tablets. They make lessons more engaging and fun, helping students understand better.

Online Education

With the internet, learning is not limited to classrooms. Online courses, video lectures, and digital libraries have made education accessible to everyone, everywhere.

Improved Communication

Technology has improved communication between students and teachers. Emails, chats, and video calls make it easier to discuss and solve doubts.

In conclusion, technology’s impact on education is profound. It has made learning more interactive, accessible, and communicative.

250 Words Essay on Impact of Technology on Education

The advent of technology in education.

The advent of technology has revolutionized various sectors, with education being one of the most impacted. It has transformed traditional teaching methods, making learning more engaging, accessible, and efficient.

Enhancing Accessibility and Flexibility

Technology has democratized education, breaking down geographical barriers. Online learning platforms and digital libraries provide easy access to a vast range of resources. This flexibility allows students to learn at their own pace, fostering a self-driven learning environment.

Interactive Learning Experience

Technological tools like virtual reality, digital simulations, and gamified learning apps have made education more interactive. These tools cater to different learning styles, enhancing comprehension, and retention of knowledge.

Collaborative Learning

Tools like cloud-based applications and social media platforms promote collaborative learning. They enable students to work together on projects, share ideas, and gain diverse perspectives, fostering critical thinking and problem-solving skills.

Challenges Posed by Technology

Despite its benefits, technology also poses challenges. The digital divide, where some students lack access to technology, can exacerbate educational inequalities. Additionally, over-reliance on technology might hinder the development of interpersonal skills and critical thinking.

In conclusion, the impact of technology on education is profound, offering immense benefits while posing certain challenges. It’s crucial to balance the use of technology in education, maximizing its advantages while mitigating its potential drawbacks.

500 Words Essay on Impact of Technology on Education

The advent of technology has dramatically transformed various sectors globally, and education is no exception. Over the years, technology has played a pivotal role in reshaping educational landscapes, creating new opportunities for both students and educators. This essay explores the impact of technology on education, focusing on its benefits, challenges, and future implications.

The Benefits of Technology in Education

One of the most significant benefits of technology in education is the democratization of knowledge. Digital platforms such as online libraries, e-books, and educational websites have made information accessible to anyone with an internet connection, breaking down geographical and socio-economic barriers.

Technology has also fostered a more personalized learning experience. Adaptive learning systems and educational apps can tailor content to individual students’ needs, enhancing their understanding and engagement. Furthermore, technology facilitates collaborative learning through platforms that allow students to work together remotely, fostering teamwork and communication skills.

The Challenges of Technology in Education

Despite the numerous benefits, technology’s integration into education is not without challenges. One of the primary issues is the digital divide, which refers to the disparity in access to technology between different socioeconomic groups. This divide exacerbates educational inequalities, as students who lack access to digital resources are disadvantaged.

Another challenge is the potential for distraction. With the proliferation of digital devices, students may be tempted to use them for non-educational purposes, which can hinder their academic progress. Additionally, the over-reliance on technology may diminish critical thinking and problem-solving skills, as students may resort to quick online solutions rather than engaging in deep, thoughtful analysis.

Future Implications

As we look towards the future, the role of technology in education is set to grow even more prominent. Virtual Reality (VR) and Augmented Reality (AR) are expected to revolutionize the classroom experience, making learning more immersive and engaging. Artificial Intelligence (AI) will likely automate administrative tasks, freeing up teachers’ time to focus more on instruction and student interaction.

However, as technology continues to evolve, it is crucial to address its challenges. Policymakers and educators must work together to bridge the digital divide, ensuring that all students can benefit from technological advancements. Additionally, digital literacy programs should be implemented to teach students how to use technology responsibly and effectively.

In conclusion, technology has had a profound impact on education, offering numerous benefits but also presenting significant challenges. As we navigate the digital age, it is essential to harness technology’s potential to enhance education while mitigating its drawbacks. This balanced approach will ensure that technology serves as a powerful tool in shaping a more equitable, engaging, and efficient educational landscape.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Future Education Challenges
  • Essay on Traffic Education
  • Essay on Islamic Education

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

How Has Technology Changed Education?

Technology has impacted almost every aspect of life today, and education is no exception. Or is it? In some ways, education seems much the same as it has been for many years. A 14th century illustration by Laurentius de Voltolina depicts a university lecture in medieval Italy. The scene is easily recognizable because of its parallels to the modern day. The teacher lectures from a podium at the front of the room while the students sit in rows and listen. Some of the students have books open in front of them and appear to be following along. A few look bored. Some are talking to their neighbors. One appears to be sleeping. Classrooms today do not look much different, though you might find modern students looking at their laptops, tablets, or smart phones instead of books (though probably open to Facebook). A cynic would say that technology has done nothing to change education.

However, in many ways, technology has profoundly changed education. For one, technology has greatly expanded access to education. In medieval times, books were rare and only an elite few had access to educational opportunities. Individuals had to travel to centers of learning to get an education. Today, massive amounts of information (books, audio, images, videos) are available at one’s fingertips through the Internet, and opportunities for formal learning are available online worldwide through the Khan Academy, MOOCs, podcasts, traditional online degree programs, and more. Access to learning opportunities today is unprecedented in scope thanks to technology.

Opportunities for communication and collaboration have also been expanded by technology. Traditionally, classrooms have been relatively isolated, and collaboration has been limited to other students in the same classroom or building. Today, technology enables forms of communication and collaboration undreamt of in the past. Students in a classroom in the rural U.S., for example, can learn about the Arctic by following the expedition of a team of scientists in the region, read scientists’ blog posting, view photos, e-mail questions to the scientists, and even talk live with the scientists via a videoconference. Students can share what they are learning with students in other classrooms in other states who are tracking the same expedition. Students can collaborate on group projects using technology-based tools such as wikis and Google docs. The walls of the classrooms are no longer a barrier as technology enables new ways of learning, communicating, and working collaboratively.

Technology has also begun to change the roles of teachers and learners. In the traditional classroom, such as what we see depicted in de Voltolina’s illustration, the teacher is the primary source of information, and the learners passively receive it. This model of the teacher as the “sage on the stage” has been in education for a long time, and it is still very much in evidence today. However, because of the access to information and educational opportunity that technology has enabled, in many classrooms today we see the teacher’s role shifting to the “guide on the side” as students take more responsibility for their own learning using technology to gather relevant information. Schools and universities across the country are beginning to redesign learning spaces to enable this new model of education, foster more interaction and small group work, and use technology as an enabler.

Technology is a powerful tool that can support and transform education in many ways, from making it easier for teachers to create instructional materials to enabling new ways for people to learn and work together. With the worldwide reach of the Internet and the ubiquity of smart devices that can connect to it, a new age of anytime anywhere education is dawning. It will be up to instructional designers and educational technologies to make the most of the opportunities provided by technology to change education so that effective and efficient education is available to everyone everywhere.

You can help shape the influence of technology in education with an Online Master of Science in Education in Learning Design and Technology from Purdue University Online. This accredited program offers studies in exciting new technologies that are shaping education and offers students the opportunity to take part in the future of innovation.

Learn more about the online MSEd in Learning Design and Technology at Purdue University today and help redefine the way in which individuals learn. Call (877) 497-5851 to speak with an admissions advisor or to request more information.

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Main Question Paper
  • JEE Main Cutoff
  • JEE Main Answer Key
  • JEE Main Result
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • JEE Advanced Registration
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2023
  • CAT 2023 College Predictor
  • CMAT 2024 Registration
  • TS ICET 2024 Registration
  • CMAT Exam Date 2024
  • MAH MBA CET Cutoff 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • DNB CET College Predictor
  • DNB PDCET College Predictor
  • NEET Application Form 2024
  • NEET PG Application Form 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • LSAT India 2024
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top Law Collages in Indore
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • AIBE 18 Result 2023
  • NID DAT Exam
  • Pearl Academy Exam

Animation Courses

  • Animation Courses in India
  • Animation Courses in Bangalore
  • Animation Courses in Mumbai
  • Animation Courses in Pune
  • Animation Courses in Chennai
  • Animation Courses in Hyderabad
  • Design Colleges in India
  • Fashion Design Colleges in Bangalore
  • Fashion Design Colleges in Mumbai
  • Fashion Design Colleges in Pune
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Hyderabad
  • Fashion Design Colleges in India
  • Top Design Colleges in India
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET Exam City Intimation Slip 2024
  • IGNOU Date Sheet
  • CUET Mock Test 2024
  • CUET Admit card 2024
  • CUET PG Syllabus 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Syllabus 2024
  • IGNOU Exam Form 2024
  • IGNOU Result
  • CUET Courses List 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Access premium articles, webinars, resources to make the best decisions for career, course, exams, scholarships, study abroad and much more with

Plan, Prepare & Make the Best Career Choices

Technology In Education Essay

Essay On Technology In Education- Technology makes education very easy. Technology is now very essential to maintaining society, and it will definitely have an impact on education. In today's life, technology has made study easier. Here are 100, 200 and 500 word essays on Technology In Education

Technology plays a huge part in education. The students' learning process gets simpler as technology advances. Students can easily learn the concepts thanks to technologies utilised in schools and universities, such as computer labs and high-end equipment and instruments. In today's life, technology has made study easier. Here are some sample essays on Technology In Education

Technology In Education Essay

100 Words Essay On Technology In Education

Technology makes education very easy. Technology is now essential to maintaining society, and it will definitely have an impact on education. Previously teachers didn't allow students to use technology in education. Today's everything is connected to technology including education,communication, etc. Although technology has been a part of our lives for many years, the development and use of technology in education have only lately started to take shape. One of the most crucial things we have now that can help students perform better academically is technology. As technology advances, it creates new opportunities for students to interact and learn through a variety of sources. Online classes are the best example of technology.

200 Words Essay On Technology In Education

The word "technology" is derived from the Greek word "tekhnologia," where "tekh" signifies an art, a skill, etc., and "logy" defines a subject of interest. Technology makes our tasks easy and makes life easy. Today, technology plays a significant role in our lives and offers a digital platform. The term "smart classes" is being used increasingly in schools and colleges, and these classes are the best use of technology.

Technology And Education

Technology made education easy and attractive. Students study because of technology with their mobile phones and laptops.

By using technology, online classes have started, and students love doing smart classes.

Technology keeps students updated on the world and shows the right direction to do good in education.

Through technology, students can read newspapers daily wise. Technology made education easy and attractive.

From technology, schools make their app and take attendance online, which helps the environment also by not using paper and pen.

Technology attracts children more, which helps them to choose their path.

Education should not be done with only books; students should get a chance to explore their knowledge and try something new. Technology is the best thing to explore. By using technology, students' knowledge will grow faster than before.

500 Words Essay On Technology In Education

Technology has become an integral part of education because of different apps and websites. Nowadays, if you want to clear your doubts or to know your syllabus, everything is available online. Nowadays, education is nothing without technology.

Is Technology Helpful In Education?

Yes, technology is helpful to education. Nowadays, you will see the difference in how technology has changed teaching. In older days, students read from their books, and if they faced any problem, they would ask their teachers the next day at school or for tuition.

But nowadays, students clear their doubts by using apps and websites. Due to technology, they can also ask a question or can have live interaction with their teachers personally. Education has progressed a lot.

Technology has made education easy, and today we have multiple options to clear our doubts and interact online with our teachers. Nowadays, we have easy access to the internet, and other helping apps have made education accessible and exciting.

Technology is essential for students. Parents and teachers should permit their children to use technology for their students because time has changed, and the mode of education should also be changed. Students should be given a chance to learn something new and exciting and technology makes it possible.

Different Technologies for Education

Many devices make education easier for students and clear students' doubts. Some of them are-

Laptops | One of the best tools for learning is a laptop. You can obtain information on the Internet either in written form, video form, or audio form. On several applications and websites, you can find tutors who can give you a thorough explanation. Students can acquire extensive information and have their questions answered thanks to it. You may effortlessly visit several educational portals using a laptop.

Smartphone | Smartphones are smaller versions of laptops; you can use them more easily than laptops and take them with you wherever you go. It is user-friendly due to its compact size and simple internet connection. Students can speak with their teacher about questions using a smartphone. Many students have smartphones, which they use for academic purposes. Numerous apps were available for students on mobile devices.

Kindle for Textbooks | Kindle Textbooks are a type of online book. Kindle books are available at half the price of paper books. This helps to reduce the production of paper, which allows our environment and online books to be easily stored. Kindle Textbooks are popular these days. Many students use them.

My Experience

From the 12th standard, I used a smartphone and laptop for education. Technology makes study easier. When I didn't understand something from school, I used to look for those online and try to clear all my doubts by watching topic specific videos. In my school days, I learned different crafts and drawing skills by watching videos online. I used to take help from online videos to understand many science experiments and easy tricks to solve various mathematical questions. Technology in education is perfect for the future because the use of technology in education will bring a drastic change in our education system.

Explore Career Options (By Industry)

  • Construction
  • Entertainment
  • Manufacturing
  • Information Technology

Data Administrator

Database professionals use software to store and organise data such as financial information, and customer shipping records. Individuals who opt for a career as data administrators ensure that data is available for users and secured from unauthorised sales. DB administrators may work in various types of industries. It may involve computer systems design, service firms, insurance companies, banks and hospitals.

Bio Medical Engineer

The field of biomedical engineering opens up a universe of expert chances. An Individual in the biomedical engineering career path work in the field of engineering as well as medicine, in order to find out solutions to common problems of the two fields. The biomedical engineering job opportunities are to collaborate with doctors and researchers to develop medical systems, equipment, or devices that can solve clinical problems. Here we will be discussing jobs after biomedical engineering, how to get a job in biomedical engineering, biomedical engineering scope, and salary. 

Ethical Hacker

A career as ethical hacker involves various challenges and provides lucrative opportunities in the digital era where every giant business and startup owns its cyberspace on the world wide web. Individuals in the ethical hacker career path try to find the vulnerabilities in the cyber system to get its authority. If he or she succeeds in it then he or she gets its illegal authority. Individuals in the ethical hacker career path then steal information or delete the file that could affect the business, functioning, or services of the organization.

GIS officer work on various GIS software to conduct a study and gather spatial and non-spatial information. GIS experts update the GIS data and maintain it. The databases include aerial or satellite imagery, latitudinal and longitudinal coordinates, and manually digitized images of maps. In a career as GIS expert, one is responsible for creating online and mobile maps.

Data Analyst

The invention of the database has given fresh breath to the people involved in the data analytics career path. Analysis refers to splitting up a whole into its individual components for individual analysis. Data analysis is a method through which raw data are processed and transformed into information that would be beneficial for user strategic thinking.

Data are collected and examined to respond to questions, evaluate hypotheses or contradict theories. It is a tool for analyzing, transforming, modeling, and arranging data with useful knowledge, to assist in decision-making and methods, encompassing various strategies, and is used in different fields of business, research, and social science.

Geothermal Engineer

Individuals who opt for a career as geothermal engineers are the professionals involved in the processing of geothermal energy. The responsibilities of geothermal engineers may vary depending on the workplace location. Those who work in fields design facilities to process and distribute geothermal energy. They oversee the functioning of machinery used in the field.

Database Architect

If you are intrigued by the programming world and are interested in developing communications networks then a career as database architect may be a good option for you. Data architect roles and responsibilities include building design models for data communication networks. Wide Area Networks (WANs), local area networks (LANs), and intranets are included in the database networks. It is expected that database architects will have in-depth knowledge of a company's business to develop a network to fulfil the requirements of the organisation. Stay tuned as we look at the larger picture and give you more information on what is db architecture, why you should pursue database architecture, what to expect from such a degree and what your job opportunities will be after graduation. Here, we will be discussing how to become a data architect. Students can visit NIT Trichy , IIT Kharagpur , JMI New Delhi . 

Remote Sensing Technician

Individuals who opt for a career as a remote sensing technician possess unique personalities. Remote sensing analysts seem to be rational human beings, they are strong, independent, persistent, sincere, realistic and resourceful. Some of them are analytical as well, which means they are intelligent, introspective and inquisitive. 

Remote sensing scientists use remote sensing technology to support scientists in fields such as community planning, flight planning or the management of natural resources. Analysing data collected from aircraft, satellites or ground-based platforms using statistical analysis software, image analysis software or Geographic Information Systems (GIS) is a significant part of their work. Do you want to learn how to become remote sensing technician? There's no need to be concerned; we've devised a simple remote sensing technician career path for you. Scroll through the pages and read.

Budget Analyst

Budget analysis, in a nutshell, entails thoroughly analyzing the details of a financial budget. The budget analysis aims to better understand and manage revenue. Budget analysts assist in the achievement of financial targets, the preservation of profitability, and the pursuit of long-term growth for a business. Budget analysts generally have a bachelor's degree in accounting, finance, economics, or a closely related field. Knowledge of Financial Management is of prime importance in this career.

Underwriter

An underwriter is a person who assesses and evaluates the risk of insurance in his or her field like mortgage, loan, health policy, investment, and so on and so forth. The underwriter career path does involve risks as analysing the risks means finding out if there is a way for the insurance underwriter jobs to recover the money from its clients. If the risk turns out to be too much for the company then in the future it is an underwriter who will be held accountable for it. Therefore, one must carry out his or her job with a lot of attention and diligence.

Finance Executive

Product manager.

A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

Operations Manager

Individuals in the operations manager jobs are responsible for ensuring the efficiency of each department to acquire its optimal goal. They plan the use of resources and distribution of materials. The operations manager's job description includes managing budgets, negotiating contracts, and performing administrative tasks.

Stock Analyst

Individuals who opt for a career as a stock analyst examine the company's investments makes decisions and keep track of financial securities. The nature of such investments will differ from one business to the next. Individuals in the stock analyst career use data mining to forecast a company's profits and revenues, advise clients on whether to buy or sell, participate in seminars, and discussing financial matters with executives and evaluate annual reports.

A Researcher is a professional who is responsible for collecting data and information by reviewing the literature and conducting experiments and surveys. He or she uses various methodological processes to provide accurate data and information that is utilised by academicians and other industry professionals. Here, we will discuss what is a researcher, the researcher's salary, types of researchers.

Welding Engineer

Welding Engineer Job Description: A Welding Engineer work involves managing welding projects and supervising welding teams. He or she is responsible for reviewing welding procedures, processes and documentation. A career as Welding Engineer involves conducting failure analyses and causes on welding issues. 

Transportation Planner

A career as Transportation Planner requires technical application of science and technology in engineering, particularly the concepts, equipment and technologies involved in the production of products and services. In fields like land use, infrastructure review, ecological standards and street design, he or she considers issues of health, environment and performance. A Transportation Planner assigns resources for implementing and designing programmes. He or she is responsible for assessing needs, preparing plans and forecasts and compliance with regulations.

Environmental Engineer

Individuals who opt for a career as an environmental engineer are construction professionals who utilise the skills and knowledge of biology, soil science, chemistry and the concept of engineering to design and develop projects that serve as solutions to various environmental problems. 

Safety Manager

A Safety Manager is a professional responsible for employee’s safety at work. He or she plans, implements and oversees the company’s employee safety. A Safety Manager ensures compliance and adherence to Occupational Health and Safety (OHS) guidelines.

Conservation Architect

A Conservation Architect is a professional responsible for conserving and restoring buildings or monuments having a historic value. He or she applies techniques to document and stabilise the object’s state without any further damage. A Conservation Architect restores the monuments and heritage buildings to bring them back to their original state.

Structural Engineer

A Structural Engineer designs buildings, bridges, and other related structures. He or she analyzes the structures and makes sure the structures are strong enough to be used by the people. A career as a Structural Engineer requires working in the construction process. It comes under the civil engineering discipline. A Structure Engineer creates structural models with the help of computer-aided design software. 

Highway Engineer

Highway Engineer Job Description:  A Highway Engineer is a civil engineer who specialises in planning and building thousands of miles of roads that support connectivity and allow transportation across the country. He or she ensures that traffic management schemes are effectively planned concerning economic sustainability and successful implementation.

Field Surveyor

Are you searching for a Field Surveyor Job Description? A Field Surveyor is a professional responsible for conducting field surveys for various places or geographical conditions. He or she collects the required data and information as per the instructions given by senior officials. 

Orthotist and Prosthetist

Orthotists and Prosthetists are professionals who provide aid to patients with disabilities. They fix them to artificial limbs (prosthetics) and help them to regain stability. There are times when people lose their limbs in an accident. In some other occasions, they are born without a limb or orthopaedic impairment. Orthotists and prosthetists play a crucial role in their lives with fixing them to assistive devices and provide mobility.

Pathologist

A career in pathology in India is filled with several responsibilities as it is a medical branch and affects human lives. The demand for pathologists has been increasing over the past few years as people are getting more aware of different diseases. Not only that, but an increase in population and lifestyle changes have also contributed to the increase in a pathologist’s demand. The pathology careers provide an extremely huge number of opportunities and if you want to be a part of the medical field you can consider being a pathologist. If you want to know more about a career in pathology in India then continue reading this article.

Veterinary Doctor

Speech therapist, gynaecologist.

Gynaecology can be defined as the study of the female body. The job outlook for gynaecology is excellent since there is evergreen demand for one because of their responsibility of dealing with not only women’s health but also fertility and pregnancy issues. Although most women prefer to have a women obstetrician gynaecologist as their doctor, men also explore a career as a gynaecologist and there are ample amounts of male doctors in the field who are gynaecologists and aid women during delivery and childbirth. 

Audiologist

The audiologist career involves audiology professionals who are responsible to treat hearing loss and proactively preventing the relevant damage. Individuals who opt for a career as an audiologist use various testing strategies with the aim to determine if someone has a normal sensitivity to sounds or not. After the identification of hearing loss, a hearing doctor is required to determine which sections of the hearing are affected, to what extent they are affected, and where the wound causing the hearing loss is found. As soon as the hearing loss is identified, the patients are provided with recommendations for interventions and rehabilitation such as hearing aids, cochlear implants, and appropriate medical referrals. While audiology is a branch of science that studies and researches hearing, balance, and related disorders.

An oncologist is a specialised doctor responsible for providing medical care to patients diagnosed with cancer. He or she uses several therapies to control the cancer and its effect on the human body such as chemotherapy, immunotherapy, radiation therapy and biopsy. An oncologist designs a treatment plan based on a pathology report after diagnosing the type of cancer and where it is spreading inside the body.

Are you searching for an ‘Anatomist job description’? An Anatomist is a research professional who applies the laws of biological science to determine the ability of bodies of various living organisms including animals and humans to regenerate the damaged or destroyed organs. If you want to know what does an anatomist do, then read the entire article, where we will answer all your questions.

For an individual who opts for a career as an actor, the primary responsibility is to completely speak to the character he or she is playing and to persuade the crowd that the character is genuine by connecting with them and bringing them into the story. This applies to significant roles and littler parts, as all roles join to make an effective creation. Here in this article, we will discuss how to become an actor in India, actor exams, actor salary in India, and actor jobs. 

Individuals who opt for a career as acrobats create and direct original routines for themselves, in addition to developing interpretations of existing routines. The work of circus acrobats can be seen in a variety of performance settings, including circus, reality shows, sports events like the Olympics, movies and commercials. Individuals who opt for a career as acrobats must be prepared to face rejections and intermittent periods of work. The creativity of acrobats may extend to other aspects of the performance. For example, acrobats in the circus may work with gym trainers, celebrities or collaborate with other professionals to enhance such performance elements as costume and or maybe at the teaching end of the career.

Video Game Designer

Career as a video game designer is filled with excitement as well as responsibilities. A video game designer is someone who is involved in the process of creating a game from day one. He or she is responsible for fulfilling duties like designing the character of the game, the several levels involved, plot, art and similar other elements. Individuals who opt for a career as a video game designer may also write the codes for the game using different programming languages.

Depending on the video game designer job description and experience they may also have to lead a team and do the early testing of the game in order to suggest changes and find loopholes.

Radio Jockey

Radio Jockey is an exciting, promising career and a great challenge for music lovers. If you are really interested in a career as radio jockey, then it is very important for an RJ to have an automatic, fun, and friendly personality. If you want to get a job done in this field, a strong command of the language and a good voice are always good things. Apart from this, in order to be a good radio jockey, you will also listen to good radio jockeys so that you can understand their style and later make your own by practicing.

A career as radio jockey has a lot to offer to deserving candidates. If you want to know more about a career as radio jockey, and how to become a radio jockey then continue reading the article.

Choreographer

The word “choreography" actually comes from Greek words that mean “dance writing." Individuals who opt for a career as a choreographer create and direct original dances, in addition to developing interpretations of existing dances. A Choreographer dances and utilises his or her creativity in other aspects of dance performance. For example, he or she may work with the music director to select music or collaborate with other famous choreographers to enhance such performance elements as lighting, costume and set design.

Social Media Manager

A career as social media manager involves implementing the company’s or brand’s marketing plan across all social media channels. Social media managers help in building or improving a brand’s or a company’s website traffic, build brand awareness, create and implement marketing and brand strategy. Social media managers are key to important social communication as well.

Photographer

Photography is considered both a science and an art, an artistic means of expression in which the camera replaces the pen. In a career as a photographer, an individual is hired to capture the moments of public and private events, such as press conferences or weddings, or may also work inside a studio, where people go to get their picture clicked. Photography is divided into many streams each generating numerous career opportunities in photography. With the boom in advertising, media, and the fashion industry, photography has emerged as a lucrative and thrilling career option for many Indian youths.

An individual who is pursuing a career as a producer is responsible for managing the business aspects of production. They are involved in each aspect of production from its inception to deception. Famous movie producers review the script, recommend changes and visualise the story. 

They are responsible for overseeing the finance involved in the project and distributing the film for broadcasting on various platforms. A career as a producer is quite fulfilling as well as exhaustive in terms of playing different roles in order for a production to be successful. Famous movie producers are responsible for hiring creative and technical personnel on contract basis.

Copy Writer

In a career as a copywriter, one has to consult with the client and understand the brief well. A career as a copywriter has a lot to offer to deserving candidates. Several new mediums of advertising are opening therefore making it a lucrative career choice. Students can pursue various copywriter courses such as Journalism , Advertising , Marketing Management . Here, we have discussed how to become a freelance copywriter, copywriter career path, how to become a copywriter in India, and copywriting career outlook. 

In a career as a vlogger, one generally works for himself or herself. However, once an individual has gained viewership there are several brands and companies that approach them for paid collaboration. It is one of those fields where an individual can earn well while following his or her passion. 

Ever since internet costs got reduced the viewership for these types of content has increased on a large scale. Therefore, a career as a vlogger has a lot to offer. If you want to know more about the Vlogger eligibility, roles and responsibilities then continue reading the article. 

For publishing books, newspapers, magazines and digital material, editorial and commercial strategies are set by publishers. Individuals in publishing career paths make choices about the markets their businesses will reach and the type of content that their audience will be served. Individuals in book publisher careers collaborate with editorial staff, designers, authors, and freelance contributors who develop and manage the creation of content.

Careers in journalism are filled with excitement as well as responsibilities. One cannot afford to miss out on the details. As it is the small details that provide insights into a story. Depending on those insights a journalist goes about writing a news article. A journalism career can be stressful at times but if you are someone who is passionate about it then it is the right choice for you. If you want to know more about the media field and journalist career then continue reading this article.

Individuals in the editor career path is an unsung hero of the news industry who polishes the language of the news stories provided by stringers, reporters, copywriters and content writers and also news agencies. Individuals who opt for a career as an editor make it more persuasive, concise and clear for readers. In this article, we will discuss the details of the editor's career path such as how to become an editor in India, editor salary in India and editor skills and qualities.

Individuals who opt for a career as a reporter may often be at work on national holidays and festivities. He or she pitches various story ideas and covers news stories in risky situations. Students can pursue a BMC (Bachelor of Mass Communication) , B.M.M. (Bachelor of Mass Media) , or  MAJMC (MA in Journalism and Mass Communication) to become a reporter. While we sit at home reporters travel to locations to collect information that carries a news value.  

Corporate Executive

Are you searching for a Corporate Executive job description? A Corporate Executive role comes with administrative duties. He or she provides support to the leadership of the organisation. A Corporate Executive fulfils the business purpose and ensures its financial stability. In this article, we are going to discuss how to become corporate executive.

Multimedia Specialist

A multimedia specialist is a media professional who creates, audio, videos, graphic image files, computer animations for multimedia applications. He or she is responsible for planning, producing, and maintaining websites and applications. 

Quality Controller

A quality controller plays a crucial role in an organisation. He or she is responsible for performing quality checks on manufactured products. He or she identifies the defects in a product and rejects the product. 

A quality controller records detailed information about products with defects and sends it to the supervisor or plant manager to take necessary actions to improve the production process.

Production Manager

A QA Lead is in charge of the QA Team. The role of QA Lead comes with the responsibility of assessing services and products in order to determine that he or she meets the quality standards. He or she develops, implements and manages test plans. 

Process Development Engineer

The Process Development Engineers design, implement, manufacture, mine, and other production systems using technical knowledge and expertise in the industry. They use computer modeling software to test technologies and machinery. An individual who is opting career as Process Development Engineer is responsible for developing cost-effective and efficient processes. They also monitor the production process and ensure it functions smoothly and efficiently.

AWS Solution Architect

An AWS Solution Architect is someone who specializes in developing and implementing cloud computing systems. He or she has a good understanding of the various aspects of cloud computing and can confidently deploy and manage their systems. He or she troubleshoots the issues and evaluates the risk from the third party. 

Azure Administrator

An Azure Administrator is a professional responsible for implementing, monitoring, and maintaining Azure Solutions. He or she manages cloud infrastructure service instances and various cloud servers as well as sets up public and private cloud systems. 

Computer Programmer

Careers in computer programming primarily refer to the systematic act of writing code and moreover include wider computer science areas. The word 'programmer' or 'coder' has entered into practice with the growing number of newly self-taught tech enthusiasts. Computer programming careers involve the use of designs created by software developers and engineers and transforming them into commands that can be implemented by computers. These commands result in regular usage of social media sites, word-processing applications and browsers.

Information Security Manager

Individuals in the information security manager career path involves in overseeing and controlling all aspects of computer security. The IT security manager job description includes planning and carrying out security measures to protect the business data and information from corruption, theft, unauthorised access, and deliberate attack 

ITSM Manager

Automation test engineer.

An Automation Test Engineer job involves executing automated test scripts. He or she identifies the project’s problems and troubleshoots them. The role involves documenting the defect using management tools. He or she works with the application team in order to resolve any issues arising during the testing process. 

Applications for Admissions are open.

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

PACE IIT & Medical, Financial District, Hyd

PACE IIT & Medical, Financial District, Hyd

Enrol in PACE IIT & Medical, Financial District, Hyd for JEE/NEET preparation

ALLEN JEE Exam Prep

ALLEN JEE Exam Prep

Start your JEE preparation with ALLEN

ALLEN NEET Coaching

ALLEN NEET Coaching

Ace your NEET preparation with ALLEN Online Programs

SAT® | CollegeBoard

SAT® | CollegeBoard

Registeration closing on 19th Apr for SAT® | One Test-Many Universities | 90% discount on registrations fee | Free Practice | Multiple Attempts | no penalty for guessing

Everything about Education

Latest updates, Exclusive Content, Webinars and more.

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Cetifications

student

We Appeared in

Economic Times

Home / Essay Samples / Information Science and Technology / Technology in Education / The Future is Now: The Impact of Technology on Education

The Future is Now: The Impact of Technology on Education

  • Category: Information Science and Technology , Education
  • Topic: E-Learning , Technology in Education

Pages: 2 (1130 words)

Views: 1125

  • Downloads: -->

Introduction

Modern technology in education, importance of technology in education.

  • Internet connection and around the clock connectivity.
  • Using projectors and visuals
  • Online degrees with the employment of technology
  • The Global Impact of Online Classrooms
  • The Tablet in Place of Text Books

Factors Affecting Technology in Education

  • Lack of time;
  • Lack of access;
  • Lack of resources;
  • Lack of experience and
  • Lack of support.

--> ⚠️ Remember: This essay was written and uploaded by an--> click here.

Found a great essay sample but want a unique one?

are ready to help you with your essay

You won’t be charged yet!

Mobile Phone Essays

Graphic Design Essays

Open Source Software Essays

Digital Era Essays

Computer Essays

Related Essays

We are glad that you like it, but you cannot copy from our website. Just insert your email and this sample will be sent to you.

By clicking “Send”, you agree to our Terms of service  and  Privacy statement . We will occasionally send you account related emails.

Your essay sample has been sent.

In fact, there is a way to get an original essay! Turn to our writers and order a plagiarism-free paper.

samplius.com uses cookies to offer you the best service possible.By continuing we’ll assume you board with our cookie policy .--> -->