• Privacy Policy

Research Method

Home » Variables in Research – Definition, Types and Examples

Variables in Research – Definition, Types and Examples

Table of Contents

Variables in Research

Variables in Research

Definition:

In Research, Variables refer to characteristics or attributes that can be measured, manipulated, or controlled. They are the factors that researchers observe or manipulate to understand the relationship between them and the outcomes of interest.

Types of Variables in Research

Types of Variables in Research are as follows:

Independent Variable

This is the variable that is manipulated by the researcher. It is also known as the predictor variable, as it is used to predict changes in the dependent variable. Examples of independent variables include age, gender, dosage, and treatment type.

Dependent Variable

This is the variable that is measured or observed to determine the effects of the independent variable. It is also known as the outcome variable, as it is the variable that is affected by the independent variable. Examples of dependent variables include blood pressure, test scores, and reaction time.

Confounding Variable

This is a variable that can affect the relationship between the independent variable and the dependent variable. It is a variable that is not being studied but could impact the results of the study. For example, in a study on the effects of a new drug on a disease, a confounding variable could be the patient’s age, as older patients may have more severe symptoms.

Mediating Variable

This is a variable that explains the relationship between the independent variable and the dependent variable. It is a variable that comes in between the independent and dependent variables and is affected by the independent variable, which then affects the dependent variable. For example, in a study on the relationship between exercise and weight loss, the mediating variable could be metabolism, as exercise can increase metabolism, which can then lead to weight loss.

Moderator Variable

This is a variable that affects the strength or direction of the relationship between the independent variable and the dependent variable. It is a variable that influences the effect of the independent variable on the dependent variable. For example, in a study on the effects of caffeine on cognitive performance, the moderator variable could be age, as older adults may be more sensitive to the effects of caffeine than younger adults.

Control Variable

This is a variable that is held constant or controlled by the researcher to ensure that it does not affect the relationship between the independent variable and the dependent variable. Control variables are important to ensure that any observed effects are due to the independent variable and not to other factors. For example, in a study on the effects of a new teaching method on student performance, the control variables could include class size, teacher experience, and student demographics.

Continuous Variable

This is a variable that can take on any value within a certain range. Continuous variables can be measured on a scale and are often used in statistical analyses. Examples of continuous variables include height, weight, and temperature.

Categorical Variable

This is a variable that can take on a limited number of values or categories. Categorical variables can be nominal or ordinal. Nominal variables have no inherent order, while ordinal variables have a natural order. Examples of categorical variables include gender, race, and educational level.

Discrete Variable

This is a variable that can only take on specific values. Discrete variables are often used in counting or frequency analyses. Examples of discrete variables include the number of siblings a person has, the number of times a person exercises in a week, and the number of students in a classroom.

Dummy Variable

This is a variable that takes on only two values, typically 0 and 1, and is used to represent categorical variables in statistical analyses. Dummy variables are often used when a categorical variable cannot be used directly in an analysis. For example, in a study on the effects of gender on income, a dummy variable could be created, with 0 representing female and 1 representing male.

Extraneous Variable

This is a variable that has no relationship with the independent or dependent variable but can affect the outcome of the study. Extraneous variables can lead to erroneous conclusions and can be controlled through random assignment or statistical techniques.

Latent Variable

This is a variable that cannot be directly observed or measured, but is inferred from other variables. Latent variables are often used in psychological or social research to represent constructs such as personality traits, attitudes, or beliefs.

Moderator-mediator Variable

This is a variable that acts both as a moderator and a mediator. It can moderate the relationship between the independent and dependent variables and also mediate the relationship between the independent and dependent variables. Moderator-mediator variables are often used in complex statistical analyses.

Variables Analysis Methods

There are different methods to analyze variables in research, including:

  • Descriptive statistics: This involves analyzing and summarizing data using measures such as mean, median, mode, range, standard deviation, and frequency distribution. Descriptive statistics are useful for understanding the basic characteristics of a data set.
  • Inferential statistics : This involves making inferences about a population based on sample data. Inferential statistics use techniques such as hypothesis testing, confidence intervals, and regression analysis to draw conclusions from data.
  • Correlation analysis: This involves examining the relationship between two or more variables. Correlation analysis can determine the strength and direction of the relationship between variables, and can be used to make predictions about future outcomes.
  • Regression analysis: This involves examining the relationship between an independent variable and a dependent variable. Regression analysis can be used to predict the value of the dependent variable based on the value of the independent variable, and can also determine the significance of the relationship between the two variables.
  • Factor analysis: This involves identifying patterns and relationships among a large number of variables. Factor analysis can be used to reduce the complexity of a data set and identify underlying factors or dimensions.
  • Cluster analysis: This involves grouping data into clusters based on similarities between variables. Cluster analysis can be used to identify patterns or segments within a data set, and can be useful for market segmentation or customer profiling.
  • Multivariate analysis : This involves analyzing multiple variables simultaneously. Multivariate analysis can be used to understand complex relationships between variables, and can be useful in fields such as social science, finance, and marketing.

Examples of Variables

  • Age : This is a continuous variable that represents the age of an individual in years.
  • Gender : This is a categorical variable that represents the biological sex of an individual and can take on values such as male and female.
  • Education level: This is a categorical variable that represents the level of education completed by an individual and can take on values such as high school, college, and graduate school.
  • Income : This is a continuous variable that represents the amount of money earned by an individual in a year.
  • Weight : This is a continuous variable that represents the weight of an individual in kilograms or pounds.
  • Ethnicity : This is a categorical variable that represents the ethnic background of an individual and can take on values such as Hispanic, African American, and Asian.
  • Time spent on social media : This is a continuous variable that represents the amount of time an individual spends on social media in minutes or hours per day.
  • Marital status: This is a categorical variable that represents the marital status of an individual and can take on values such as married, divorced, and single.
  • Blood pressure : This is a continuous variable that represents the force of blood against the walls of arteries in millimeters of mercury.
  • Job satisfaction : This is a continuous variable that represents an individual’s level of satisfaction with their job and can be measured using a Likert scale.

Applications of Variables

Variables are used in many different applications across various fields. Here are some examples:

  • Scientific research: Variables are used in scientific research to understand the relationships between different factors and to make predictions about future outcomes. For example, scientists may study the effects of different variables on plant growth or the impact of environmental factors on animal behavior.
  • Business and marketing: Variables are used in business and marketing to understand customer behavior and to make decisions about product development and marketing strategies. For example, businesses may study variables such as consumer preferences, spending habits, and market trends to identify opportunities for growth.
  • Healthcare : Variables are used in healthcare to monitor patient health and to make treatment decisions. For example, doctors may use variables such as blood pressure, heart rate, and cholesterol levels to diagnose and treat cardiovascular disease.
  • Education : Variables are used in education to measure student performance and to evaluate the effectiveness of teaching strategies. For example, teachers may use variables such as test scores, attendance, and class participation to assess student learning.
  • Social sciences : Variables are used in social sciences to study human behavior and to understand the factors that influence social interactions. For example, sociologists may study variables such as income, education level, and family structure to examine patterns of social inequality.

Purpose of Variables

Variables serve several purposes in research, including:

  • To provide a way of measuring and quantifying concepts: Variables help researchers measure and quantify abstract concepts such as attitudes, behaviors, and perceptions. By assigning numerical values to these concepts, researchers can analyze and compare data to draw meaningful conclusions.
  • To help explain relationships between different factors: Variables help researchers identify and explain relationships between different factors. By analyzing how changes in one variable affect another variable, researchers can gain insight into the complex interplay between different factors.
  • To make predictions about future outcomes : Variables help researchers make predictions about future outcomes based on past observations. By analyzing patterns and relationships between different variables, researchers can make informed predictions about how different factors may affect future outcomes.
  • To test hypotheses: Variables help researchers test hypotheses and theories. By collecting and analyzing data on different variables, researchers can test whether their predictions are accurate and whether their hypotheses are supported by the evidence.

Characteristics of Variables

Characteristics of Variables are as follows:

  • Measurement : Variables can be measured using different scales, such as nominal, ordinal, interval, or ratio scales. The scale used to measure a variable can affect the type of statistical analysis that can be applied.
  • Range : Variables have a range of values that they can take on. The range can be finite, such as the number of students in a class, or infinite, such as the range of possible values for a continuous variable like temperature.
  • Variability : Variables can have different levels of variability, which refers to the degree to which the values of the variable differ from each other. Highly variable variables have a wide range of values, while low variability variables have values that are more similar to each other.
  • Validity and reliability : Variables should be both valid and reliable to ensure accurate and consistent measurement. Validity refers to the extent to which a variable measures what it is intended to measure, while reliability refers to the consistency of the measurement over time.
  • Directionality: Some variables have directionality, meaning that the relationship between the variables is not symmetrical. For example, in a study of the relationship between smoking and lung cancer, smoking is the independent variable and lung cancer is the dependent variable.

Advantages of Variables

Here are some of the advantages of using variables in research:

  • Control : Variables allow researchers to control the effects of external factors that could influence the outcome of the study. By manipulating and controlling variables, researchers can isolate the effects of specific factors and measure their impact on the outcome.
  • Replicability : Variables make it possible for other researchers to replicate the study and test its findings. By defining and measuring variables consistently, other researchers can conduct similar studies to validate the original findings.
  • Accuracy : Variables make it possible to measure phenomena accurately and objectively. By defining and measuring variables precisely, researchers can reduce bias and increase the accuracy of their findings.
  • Generalizability : Variables allow researchers to generalize their findings to larger populations. By selecting variables that are representative of the population, researchers can draw conclusions that are applicable to a broader range of individuals.
  • Clarity : Variables help researchers to communicate their findings more clearly and effectively. By defining and categorizing variables, researchers can organize and present their findings in a way that is easily understandable to others.

Disadvantages of Variables

Here are some of the main disadvantages of using variables in research:

  • Simplification : Variables may oversimplify the complexity of real-world phenomena. By breaking down a phenomenon into variables, researchers may lose important information and context, which can affect the accuracy and generalizability of their findings.
  • Measurement error : Variables rely on accurate and precise measurement, and measurement error can affect the reliability and validity of research findings. The use of subjective or poorly defined variables can also introduce measurement error into the study.
  • Confounding variables : Confounding variables are factors that are not measured but that affect the relationship between the variables of interest. If confounding variables are not accounted for, they can distort or obscure the relationship between the variables of interest.
  • Limited scope: Variables are defined by the researcher, and the scope of the study is therefore limited by the researcher’s choice of variables. This can lead to a narrow focus that overlooks important aspects of the phenomenon being studied.
  • Ethical concerns: The selection and measurement of variables may raise ethical concerns, especially in studies involving human subjects. For example, using variables that are related to sensitive topics, such as race or sexuality, may raise concerns about privacy and discrimination.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Control Variable

Control Variable – Definition, Types and Examples

Moderating Variable

Moderating Variable – Definition, Analysis...

Categorical Variable

Categorical Variable – Definition, Types and...

Independent Variable

Independent Variable – Definition, Types and...

Ratio Variable

Ratio Variable – Definition, Purpose and Examples

Ordinal Variable

Ordinal Variable – Definition, Purpose and...

  • How it works

researchprospect post subheader

Types of Variables – A Comprehensive Guide

Published by Carmen Troy at August 14th, 2021 , Revised On October 26, 2023

A variable is any qualitative or quantitative characteristic that can change and have more than one value, such as age, height, weight, gender, etc.

Before conducting research, it’s essential to know what needs to be measured or analysed and choose a suitable statistical test to present your study’s findings. 

In most cases, you can do it by identifying the key issues/variables related to your research’s main topic.

Example:  If you want to test whether the hybridisation of plants harms the health of people. You can use the key variables like agricultural techniques, type of soil, environmental factors, types of pesticides used, the process of hybridisation, type of yield obtained after hybridisation, type of yield without hybridisation, etc.

Variables are broadly categorised into:

  • Independent variables
  • Dependent variable
  • Control variable

Independent Vs. Dependent Vs. Control Variable

The research includes finding ways:

  • To change the independent variables.
  • To prevent the controlled variables from changing.
  • To measure the dependent variables.

Note:  The term dependent and independent is not applicable in  correlational research  as this is not a  controlled experiment.  A researcher doesn’t have control over the variables. The association and between two or more variables are measured. If one variable affects another one, then it’s called the predictor variable and outcome variable.

Example:  Correlation between investment (predictor variable) and profit (outcome variable)

What data collection best suits your research?

  • Find out by hiring an expert from ResearchProspect today!
  • Despite how challenging the subject may be, we are here to help you.

data collection best suits your research

Types of Variables Based on the Types of Data

A data is referred to as the information and statistics gathered for analysis of a research topic. Data is broadly divided into two categories, such as:

Quantitative/Numerical data  is associated with the aspects of measurement, quantity, and extent. 

Categorial data  is associated with groupings.

A qualitative variable consists of qualitative data, and a quantitative variable consists of a quantitative variable.

Types of variable

Quantitative Variable

The quantitative variable is associated with measurement, quantity, and extent, like how many . It follows the statistical, mathematical, and computational techniques in numerical data such as percentages and statistics. The research is conducted on a large group of population.

Example:  Find out the weight of students of the fifth standard studying in government schools.

The quantitative variable can be further categorised into continuous and discrete.

Categorial Variable

The categorical variable includes measurements that vary in categories such as names but not in terms of rank or degree. It means one level of a categorical variable cannot be considered better or greater than another level. 

Example: Gender, brands, colors, zip codes

The categorical variable is further categorised into three types:

Note:  Sometimes, an ordinal variable also acts as a quantitative variable. Ordinal data has an order, but the intervals between scale points may be uneven.

Example: Numbers on a rating scale represent the reviews’ rank or range from below average to above average. However, it also represents a quantitative variable showing how many stars and how much rating is given.

Not sure which statistical tests to use for your data?

Let the experts at researchprospect do the daunting work for you..

Using our approach, we illustrate how to collect data, sample sizes, validity, reliability, credibility, and ethics, so you won’t have to do it all by yourself!

Other Types of Variables

It’s important to understand the difference between dependent and independent variables and know whether they are quantitative or categorical to choose the appropriate statistical test.

There are many other types of variables to help you differentiate and understand them.

Also, read a comprehensive guide written about inductive and deductive reasoning .

  • Entertainment
  • Online education
  • Database management, storage, and retrieval

Frequently Asked Questions

What are the 10 types of variables in research.

The 10 types of variables in research are:

  • Independent
  • Confounding
  • Categorical
  • Extraneous.

What is an independent variable?

An independent variable, often termed the predictor or explanatory variable, is the variable manipulated or categorized in an experiment to observe its effect on another variable, called the dependent variable. It’s the presumed cause in a cause-and-effect relationship, determining if changes in it produce changes in the observed outcome.

What is a variable?

In research, a variable is any attribute, quantity, or characteristic that can be measured or counted. It can take on various values, making it “variable.” Variables can be classified as independent (manipulated), dependent (observed outcome), or control (kept constant). They form the foundation for hypotheses, observations, and data analysis in studies.

What is a dependent variable?

A dependent variable is the outcome or response being studied in an experiment or investigation. It’s what researchers measure to determine the effect of changes in the independent variable. In a cause-and-effect relationship, the dependent variable is presumed to be influenced or caused by the independent variable.

What is a variable in programming?

In programming, a variable is a symbolic name for a storage location that holds data or values. It allows data storage and retrieval for computational operations. Variables have types, like integer or string, determining the nature of data they can hold. They’re fundamental in manipulating and processing information in software.

What is a control variable?

A control variable in research is a factor that’s kept constant to ensure that it doesn’t influence the outcome. By controlling these variables, researchers can isolate the effects of the independent variable on the dependent variable, ensuring that other factors don’t skew the results or introduce bias into the experiment.

What is a controlled variable in science?

In science, a controlled variable is a factor that remains constant throughout an experiment. It ensures that any observed changes in the dependent variable are solely due to the independent variable, not other factors. By keeping controlled variables consistent, researchers can maintain experiment validity and accurately assess cause-and-effect relationships.

How many independent variables should an investigation have?

Ideally, an investigation should have one independent variable to clearly establish cause-and-effect relationships. Manipulating multiple independent variables simultaneously can complicate data interpretation.

However, in advanced research, experiments with multiple independent variables (factorial designs) are used, but they require careful planning to understand interactions between variables.

You May Also Like

Content analysis is used to identify specific words, patterns, concepts, themes, phrases, or sentences within the content in the recorded communication.

This post provides the key disadvantages of secondary research so you know the limitations of secondary research before making a decision.

A case study is a detailed analysis of a situation concerning organizations, industries, and markets. The case study generally aims at identifying the weak areas.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Types of Variables in Research | Definitions & Examples

Types of Variables in Research | Definitions & Examples

Published on 19 September 2022 by Rebecca Bevans . Revised on 28 November 2022.

In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design .

You need to know which types of variables you are working with in order to choose appropriate statistical tests and interpret the results of your study.

You can usually identify the type of variable by asking two questions:

  • What type of data does the variable contain?
  • What part of the experiment does the variable represent?

Table of contents

Types of data: quantitative vs categorical variables, parts of the experiment: independent vs dependent variables, other common types of variables, frequently asked questions about variables.

Data is a specific measurement of a variable – it is the value you record in your data sheet. Data is generally divided into two categories:

  • Quantitative data represents amounts.
  • Categorical data represents groupings.

A variable that contains quantitative data is a quantitative variable ; a variable that contains categorical data is a categorical variable . Each of these types of variable can be broken down into further types.

Quantitative variables

When you collect quantitative data, the numbers you record represent real amounts that can be added, subtracted, divided, etc. There are two types of quantitative variables: discrete and continuous .

Categorical variables

Categorical variables represent groupings of some kind. They are sometimes recorded as numbers, but the numbers represent categories rather than actual amounts of things.

There are three types of categorical variables: binary , nominal , and ordinal variables.

*Note that sometimes a variable can work as more than one type! An ordinal variable can also be used as a quantitative variable if the scale is numeric and doesn’t need to be kept as discrete integers. For example, star ratings on product reviews are ordinal (1 to 5 stars), but the average star rating is quantitative.

Example data sheet

To keep track of your salt-tolerance experiment, you make a data sheet where you record information about the variables in the experiment, like salt addition and plant health.

To gather information about plant responses over time, you can fill out the same data sheet every few days until the end of the experiment. This example sheet is colour-coded according to the type of variable: nominal , continuous , ordinal , and binary .

Example data sheet showing types of variables in a plant salt tolerance experiment

Prevent plagiarism, run a free check.

Experiments are usually designed to find out what effect one variable has on another – in our example, the effect of salt addition on plant growth.

You manipulate the independent variable (the one you think might be the cause ) and then measure the dependent variable (the one you think might be the effect ) to find out what this effect might be.

You will probably also have variables that you hold constant ( control variables ) in order to focus on your experimental treatment.

In this experiment, we have one independent and three dependent variables.

The other variables in the sheet can’t be classified as independent or dependent, but they do contain data that you will need in order to interpret your dependent and independent variables.

Example of a data sheet showing dependent and independent variables for a plant salt tolerance experiment.

What about correlational research?

When you do correlational research , the terms ‘dependent’ and ‘independent’ don’t apply, because you are not trying to establish a cause-and-effect relationship.

However, there might be cases where one variable clearly precedes the other (for example, rainfall leads to mud, rather than the other way around). In these cases, you may call the preceding variable (i.e., the rainfall) the predictor variable and the following variable (i.e., the mud) the outcome variable .

Once you have defined your independent and dependent variables and determined whether they are categorical or quantitative, you will be able to choose the correct statistical test .

But there are many other ways of describing variables that help with interpreting your results. Some useful types of variable are listed below.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, November 28). Types of Variables in Research | Definitions & Examples. Scribbr. Retrieved 13 May 2024, from https://www.scribbr.co.uk/research-methods/variables-types/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, construct validity | definition, types, & examples.

research variable types

Variables in Research | Types, Definiton & Examples

research variable types

Introduction

What is a variable, what are the 5 types of variables in research, other variables in research.

Variables are fundamental components of research that allow for the measurement and analysis of data. They can be defined as characteristics or properties that can take on different values. In research design , understanding the types of variables and their roles is crucial for developing hypotheses , designing methods , and interpreting results .

This article outlines the the types of variables in research, including their definitions and examples, to provide a clear understanding of their use and significance in research studies. By categorizing variables into distinct groups based on their roles in research, their types of data, and their relationships with other variables, researchers can more effectively structure their studies and achieve more accurate conclusions.

research variable types

A variable represents any characteristic, number, or quantity that can be measured or quantified. The term encompasses anything that can vary or change, ranging from simple concepts like age and height to more complex ones like satisfaction levels or economic status. Variables are essential in research as they are the foundational elements that researchers manipulate, measure, or control to gain insights into relationships, causes, and effects within their studies. They enable the framing of research questions, the formulation of hypotheses, and the interpretation of results.

Variables can be categorized based on their role in the study (such as independent and dependent variables ), the type of data they represent (quantitative or categorical), and their relationship to other variables (like confounding or control variables). Understanding what constitutes a variable and the various variable types available is a critical step in designing robust and meaningful research.

research variable types

ATLAS.ti makes complex data easy to understand

Turn to our powerful data analysis tools to make the most of your research. Get started with a free trial.

Variables are crucial components in research, serving as the foundation for data collection , analysis , and interpretation . They are attributes or characteristics that can vary among subjects or over time, and understanding their types is essential for any study. Variables can be broadly classified into five main types, each with its distinct characteristics and roles within research.

This classification helps researchers in designing their studies, choosing appropriate measurement techniques, and analyzing their results accurately. The five types of variables include independent variables, dependent variables, categorical variables, continuous variables, and confounding variables. These categories not only facilitate a clearer understanding of the data but also guide the formulation of hypotheses and research methodologies.

Independent variables

Independent variables are foundational to the structure of research, serving as the factors or conditions that researchers manipulate or vary to observe their effects on dependent variables. These variables are considered "independent" because their variation does not depend on other variables within the study. Instead, they are the cause or stimulus that directly influences the outcomes being measured. For example, in an experiment to assess the effectiveness of a new teaching method on student performance, the teaching method applied (traditional vs. innovative) would be the independent variable.

The selection of an independent variable is a critical step in research design, as it directly correlates with the study's objective to determine causality or association. Researchers must clearly define and control these variables to ensure that observed changes in the dependent variable can be attributed to variations in the independent variable, thereby affirming the reliability of the results. In experimental research, the independent variable is what differentiates the control group from the experimental group, thereby setting the stage for meaningful comparison and analysis.

Dependent variables

Dependent variables are the outcomes or effects that researchers aim to explore and understand in their studies. These variables are called "dependent" because their values depend on the changes or variations of the independent variables.

Essentially, they are the responses or results that are measured to assess the impact of the independent variable's manipulation. For instance, in a study investigating the effect of exercise on weight loss, the amount of weight lost would be considered the dependent variable, as it depends on the exercise regimen (the independent variable).

The identification and measurement of the dependent variable are crucial for testing the hypothesis and drawing conclusions from the research. It allows researchers to quantify the effect of the independent variable , providing evidence for causal relationships or associations. In experimental settings, the dependent variable is what is being tested and measured across different groups or conditions, enabling researchers to assess the efficacy or impact of the independent variable's variation.

To ensure accuracy and reliability, the dependent variable must be defined clearly and measured consistently across all participants or observations. This consistency helps in reducing measurement errors and increases the validity of the research findings. By carefully analyzing the dependent variables, researchers can derive meaningful insights from their studies, contributing to the broader knowledge in their field.

Categorical variables

Categorical variables, also known as qualitative variables, represent types or categories that are used to group observations. These variables divide data into distinct groups or categories that lack a numerical value but hold significant meaning in research. Examples of categorical variables include gender (male, female, other), type of vehicle (car, truck, motorcycle), or marital status (single, married, divorced). These categories help researchers organize data into groups for comparison and analysis.

Categorical variables can be further classified into two subtypes: nominal and ordinal. Nominal variables are categories without any inherent order or ranking among them, such as blood type or ethnicity. Ordinal variables, on the other hand, imply a sort of ranking or order among the categories, like levels of satisfaction (high, medium, low) or education level (high school, bachelor's, master's, doctorate).

Understanding and identifying categorical variables is crucial in research as it influences the choice of statistical analysis methods. Since these variables represent categories without numerical significance, researchers employ specific statistical tests designed for a nominal or ordinal variable to draw meaningful conclusions. Properly classifying and analyzing categorical variables allow for the exploration of relationships between different groups within the study, shedding light on patterns and trends that might not be evident with numerical data alone.

Continuous variables

Continuous variables are quantitative variables that can take an infinite number of values within a given range. These variables are measured along a continuum and can represent very precise measurements. Examples of continuous variables include height, weight, temperature, and time. Because they can assume any value within a range, continuous variables allow for detailed analysis and a high degree of accuracy in research findings.

The ability to measure continuous variables at very fine scales makes them invaluable for many types of research, particularly in the natural and social sciences. For instance, in a study examining the effect of temperature on plant growth, temperature would be considered a continuous variable since it can vary across a wide spectrum and be measured to several decimal places.

When dealing with continuous variables, researchers often use methods incorporating a particular statistical test to accommodate a wide range of data points and the potential for infinite divisibility. This includes various forms of regression analysis, correlation, and other techniques suited for modeling and analyzing nuanced relationships between variables. The precision of continuous variables enhances the researcher's ability to detect patterns, trends, and causal relationships within the data, contributing to more robust and detailed conclusions.

Confounding variables

Confounding variables are those that can cause a false association between the independent and dependent variables, potentially leading to incorrect conclusions about the relationship being studied. These are extraneous variables that were not considered in the study design but can influence both the supposed cause and effect, creating a misleading correlation.

Identifying and controlling for a confounding variable is crucial in research to ensure the validity of the findings. This can be achieved through various methods, including randomization, stratification, and statistical control. Randomization helps to evenly distribute confounding variables across study groups, reducing their potential impact. Stratification involves analyzing the data within strata or layers that share common characteristics of the confounder. Statistical control allows researchers to adjust for the effects of confounders in the analysis phase.

Properly addressing confounding variables strengthens the credibility of research outcomes by clarifying the direct relationship between the dependent and independent variables, thus providing more accurate and reliable results.

research variable types

Beyond the primary categories of variables commonly discussed in research methodology , there exists a diverse range of other variables that play significant roles in the design and analysis of studies. Below is an overview of some of these variables, highlighting their definitions and roles within research studies:

  • Discrete variables : A discrete variable is a quantitative variable that represents quantitative data , such as the number of children in a family or the number of cars in a parking lot. Discrete variables can only take on specific values.
  • Categorical variables : A categorical variable categorizes subjects or items into groups that do not have a natural numerical order. Categorical data includes nominal variables, like country of origin, and ordinal variables, such as education level.
  • Predictor variables : Often used in statistical models, a predictor variable is used to forecast or predict the outcomes of other variables, not necessarily with a causal implication.
  • Outcome variables : These variables represent the results or outcomes that researchers aim to explain or predict through their studies. An outcome variable is central to understanding the effects of predictor variables.
  • Latent variables : Not directly observable, latent variables are inferred from other, directly measured variables. Examples include psychological constructs like intelligence or socioeconomic status.
  • Composite variables : Created by combining multiple variables, composite variables can measure a concept more reliably or simplify the analysis. An example would be a composite happiness index derived from several survey questions .
  • Preceding variables : These variables come before other variables in time or sequence, potentially influencing subsequent outcomes. A preceding variable is crucial in longitudinal studies to determine causality or sequences of events.

research variable types

Master qualitative research with ATLAS.ti

Turn data into critical insights with our data analysis platform. Try out a free trial today.

research variable types

Types of Variable

All experiments examine some kind of variable(s). A variable is not only something that we measure, but also something that we can manipulate and something we can control for. To understand the characteristics of variables and how we use them in research, this guide is divided into three main sections. First, we illustrate the role of dependent and independent variables. Second, we discuss the difference between experimental and non-experimental research. Finally, we explain how variables can be characterised as either categorical or continuous.

Dependent and Independent Variables

An independent variable, sometimes called an experimental or predictor variable, is a variable that is being manipulated in an experiment in order to observe the effect on a dependent variable, sometimes called an outcome variable.

Imagine that a tutor asks 100 students to complete a maths test. The tutor wants to know why some students perform better than others. Whilst the tutor does not know the answer to this, she thinks that it might be because of two reasons: (1) some students spend more time revising for their test; and (2) some students are naturally more intelligent than others. As such, the tutor decides to investigate the effect of revision time and intelligence on the test performance of the 100 students. The dependent and independent variables for the study are:

Dependent Variable: Test Mark (measured from 0 to 100)

Independent Variables: Revision time (measured in hours) Intelligence (measured using IQ score)

The dependent variable is simply that, a variable that is dependent on an independent variable(s). For example, in our case the test mark that a student achieves is dependent on revision time and intelligence. Whilst revision time and intelligence (the independent variables) may (or may not) cause a change in the test mark (the dependent variable), the reverse is implausible; in other words, whilst the number of hours a student spends revising and the higher a student's IQ score may (or may not) change the test mark that a student achieves, a change in a student's test mark has no bearing on whether a student revises more or is more intelligent (this simply doesn't make sense).

Therefore, the aim of the tutor's investigation is to examine whether these independent variables - revision time and IQ - result in a change in the dependent variable, the students' test scores. However, it is also worth noting that whilst this is the main aim of the experiment, the tutor may also be interested to know if the independent variables - revision time and IQ - are also connected in some way.

In the section on experimental and non-experimental research that follows, we find out a little more about the nature of independent and dependent variables.

Experimental and Non-Experimental Research

  • Experimental research : In experimental research, the aim is to manipulate an independent variable(s) and then examine the effect that this change has on a dependent variable(s). Since it is possible to manipulate the independent variable(s), experimental research has the advantage of enabling a researcher to identify a cause and effect between variables. For example, take our example of 100 students completing a maths exam where the dependent variable was the exam mark (measured from 0 to 100), and the independent variables were revision time (measured in hours) and intelligence (measured using IQ score). Here, it would be possible to use an experimental design and manipulate the revision time of the students. The tutor could divide the students into two groups, each made up of 50 students. In "group one", the tutor could ask the students not to do any revision. Alternately, "group two" could be asked to do 20 hours of revision in the two weeks prior to the test. The tutor could then compare the marks that the students achieved.
  • Non-experimental research : In non-experimental research, the researcher does not manipulate the independent variable(s). This is not to say that it is impossible to do so, but it will either be impractical or unethical to do so. For example, a researcher may be interested in the effect of illegal, recreational drug use (the independent variable(s)) on certain types of behaviour (the dependent variable(s)). However, whilst possible, it would be unethical to ask individuals to take illegal drugs in order to study what effect this had on certain behaviours. As such, a researcher could ask both drug and non-drug users to complete a questionnaire that had been constructed to indicate the extent to which they exhibited certain behaviours. Whilst it is not possible to identify the cause and effect between the variables, we can still examine the association or relationship between them. In addition to understanding the difference between dependent and independent variables, and experimental and non-experimental research, it is also important to understand the different characteristics amongst variables. This is discussed next.

Categorical and Continuous Variables

Categorical variables are also known as discrete or qualitative variables. Categorical variables can be further categorized as either nominal , ordinal or dichotomous .

  • Nominal variables are variables that have two or more categories, but which do not have an intrinsic order. For example, a real estate agent could classify their types of property into distinct categories such as houses, condos, co-ops or bungalows. So "type of property" is a nominal variable with 4 categories called houses, condos, co-ops and bungalows. Of note, the different categories of a nominal variable can also be referred to as groups or levels of the nominal variable. Another example of a nominal variable would be classifying where people live in the USA by state. In this case there will be many more levels of the nominal variable (50 in fact).
  • Dichotomous variables are nominal variables which have only two categories or levels. For example, if we were looking at gender, we would most probably categorize somebody as either "male" or "female". This is an example of a dichotomous variable (and also a nominal variable). Another example might be if we asked a person if they owned a mobile phone. Here, we may categorise mobile phone ownership as either "Yes" or "No". In the real estate agent example, if type of property had been classified as either residential or commercial then "type of property" would be a dichotomous variable.
  • Ordinal variables are variables that have two or more categories just like nominal variables only the categories can also be ordered or ranked. So if you asked someone if they liked the policies of the Democratic Party and they could answer either "Not very much", "They are OK" or "Yes, a lot" then you have an ordinal variable. Why? Because you have 3 categories, namely "Not very much", "They are OK" and "Yes, a lot" and you can rank them from the most positive (Yes, a lot), to the middle response (They are OK), to the least positive (Not very much). However, whilst we can rank the levels, we cannot place a "value" to them; we cannot say that "They are OK" is twice as positive as "Not very much" for example.

Testimonials

Continuous variables are also known as quantitative variables. Continuous variables can be further categorized as either interval or ratio variables.

  • Interval variables are variables for which their central characteristic is that they can be measured along a continuum and they have a numerical value (for example, temperature measured in degrees Celsius or Fahrenheit). So the difference between 20°C and 30°C is the same as 30°C to 40°C. However, temperature measured in degrees Celsius or Fahrenheit is NOT a ratio variable.
  • Ratio variables are interval variables, but with the added condition that 0 (zero) of the measurement indicates that there is none of that variable. So, temperature measured in degrees Celsius or Fahrenheit is not a ratio variable because 0°C does not mean there is no temperature. However, temperature measured in Kelvin is a ratio variable as 0 Kelvin (often called absolute zero) indicates that there is no temperature whatsoever. Other examples of ratio variables include height, mass, distance and many more. The name "ratio" reflects the fact that you can use the ratio of measurements. So, for example, a distance of ten metres is twice the distance of 5 metres.

Ambiguities in classifying a type of variable

In some cases, the measurement scale for data is ordinal, but the variable is treated as continuous. For example, a Likert scale that contains five values - strongly agree, agree, neither agree nor disagree, disagree, and strongly disagree - is ordinal. However, where a Likert scale contains seven or more value - strongly agree, moderately agree, agree, neither agree nor disagree, disagree, moderately disagree, and strongly disagree - the underlying scale is sometimes treated as continuous (although where you should do this is a cause of great dispute).

It is worth noting that how we categorise variables is somewhat of a choice. Whilst we categorised gender as a dichotomous variable (you are either male or female), social scientists may disagree with this, arguing that gender is a more complex variable involving more than two distinctions, but also including measurement levels like genderqueer, intersex and transgender. At the same time, some researchers would argue that a Likert scale, even with seven values, should never be treated as a continuous variable.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

Types of Variables

  • Last updated
  • Save as PDF
  • Page ID 31273

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

CO-4: Distinguish among different measurement scales, choose the appropriate descriptive and inferential statistical methods based on these distinctions, and interpret the results.

CO-7: Use statistical software to analyze public health data.

Classifying Types of Variables

Learning objectives.

LO 4.1: Determine the type (categorical or quantitative) of a given variable.

LO 4.2: Classify a given variable as nominal, ordinal, discrete, or continuous.

Types of Variables (3 Parts; 13:25 total time)

Variables can be broadly classified into one of two types :

  • Quantitative
  • Categorical

Below we define these two main types of variables and provide further sub-classifications for each type.

Categorical variables take category or label values, and place an individual into one of several groups .

Categorical variables are often further classified as either:

  • Nominal, when there is no natural ordering among the categories .

Common examples would be gender, eye color, or ethnicity.

  • Ordinal , when there is a natural order among the categories , such as, ranking scales or letter grades.

However, ordinal variables are still categorical and do not provide precise measurements.

Differences are not precisely meaningful, for example, if one student scores an A and another a B on an assignment, we cannot say precisely the difference in their scores, only that an A is larger than a B.

Quantitative variables take numerical values, and represent some kind of measurement .

Quantitative variables are often further classified as either:

  • Discrete , when the variable takes on a countable number of values.

Most often these variables indeed represent some kind of count such as the number of prescriptions an individual takes daily.

  • Continuous , when the variable can take on any value in some range of values .

Our precision in measuring these variables is often limited by our instruments.

Units should be provided.

Common examples would be height (inches), weight (pounds), or time to recovery (days).

One special variable type occurs when a variable has only two possible values.

A variable is said to be Binary or Dichotomous , when there are only two possible levels.

These variables can usually be phrased in a “yes/no” question. Whether nor not someone is a smoker is an example of a binary variable.

Currently we are primarily concerned with classifying variables as either categorical or quantitative.

Sometimes, however, we will need to consider further and sub-classify these variables as defined above.

These concepts will be discussed and reviewed as needed but here is a quick practice on sub-classifying categorical and quantitative variables.

Did I Get This?

Example: medical records.

Let’s revisit the dataset showing medical records for a sample of patients

In our example of medical records, there are several variables of each type:

  • Age, Weight, and Height are quantitative variables.
  • Race, Gender, and Smoking are categorical variables.
  • Notice that the values of the categorical variable Smoking have been coded as the numbers 0 or 1.

It is quite common to code the values of a categorical variable as numbers, but you should remember that these are just codes.

They have no arithmetic meaning (i.e., it does not make sense to add, subtract, multiply, divide, or compare the magnitude of such values).

Usually, if such a coding is used, all categorical variables will be coded and we will tend to do this type of coding for datasets in this course.

  • Sometimes, quantitative variables are divided into groups for analysis, in such a situation, although the original variable was quantitative, the variable analyzed is categorical.

A common example is to provide information about an individual’s Body Mass Index by stating whether the individual is underweight, normal, overweight, or obese.

This categorized BMI is an example of an ordinal categorical variable.

  • Categorical variables are sometimes called qualitative variables, but in this course we’ll use the term “categorical.”

Software Activity

LO 7.1: View a dataset in EXCEL, text editor, or other spreadsheet or statistical software.

Learn By Doing:

Exploring a Dataset using Software

Why Does the Type of Variable Matter?

The types of variables you are analyzing directly relate to the available descriptive and inferential statistical methods .

It is important to:

  • assess how you will measure the effect of interest and
  • know how this determines the statistical methods you can use.

As we proceed in this course, we will continually emphasize the types of variables that are appropriate for each method we discuss .

For example:

To compare the number of polio cases in the two treatment arms of the Salk Polio vaccine trial, you could use

  • Fisher’s Exact Test
  • Chi-Square Test

To compare blood pressures in a clinical trial evaluating two blood pressure-lowering medications, you could use

  • Two-sample t-Test
  • Wilcoxon Rank-Sum Test

(Optional) Great Resource: : UCLA Institute for Digital Research and Education – What statistical analysis should I use?

Grad Coach

Research Variables 101

Independent variables, dependent variables, control variables and more

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to the world of research, especially scientific research, you’re bound to run into the concept of variables , sooner or later. If you’re feeling a little confused, don’t worry – you’re not the only one! Independent variables, dependent variables, confounding variables – it’s a lot of jargon. In this post, we’ll unpack the terminology surrounding research variables using straightforward language and loads of examples .

Overview: Variables In Research

What (exactly) is a variable.

The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.

Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:

  • How someone’s age impacts their sleep quality
  • How different teaching methods impact learning outcomes
  • How diet impacts weight (gain or loss)

As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…

The “Big 3” Variables

Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:

  • Independent variables (IV)
  • Dependant variables (DV)
  • Control variables

What is an independent variable?

Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.

For example:

  • Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
  • Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
  • Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).

It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.

Need a helping hand?

research variable types

What is a dependent variable?

While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.

Keeping with the previous example, let’s look at some dependent variables in action:

  • Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
  • Students’ scores (DV) could be impacted by teaching methods (IV)
  • Weight gain or loss (DV) could be impacted by diet (IV)

In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.

As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.

To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!

As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.

Free Webinar: Research Methodology 101

What is a control variable?

In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂

As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.

Some examples of variables that you may need to control include:

  • Temperature
  • Time of day
  • Noise or distractions

Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.

Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations , so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!

 A control variable is intentionally held constant (it doesn't vary) to ensure it doesn’t have an influence on any other variables.

Other types of variables

As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.

  • Moderating variables
  • Mediating variables
  • Confounding variables
  • Latent variables

Let’s jump into it…

What is a moderating variable?

A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).

For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.

It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.

What is a mediating variable?

Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.

Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.

In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.

Mediating variables can explain the relationship between the independent and dependent variable, including whether it's causal or not.

What is a confounding variable?

A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:

  • It must be correlated with the independent variable (this can be causal or not)
  • It must have a causal impact on the dependent variable (i.e., influence the DV)

Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.

Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.

What is a latent variable?

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.

For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:

  • Emotional intelligence
  • Quality of life
  • Business confidence
  • Ease of use

One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study.

Let’s recap

In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .

To recap, we’ve explored:

  • Independent variables (the “cause”)
  • Dependent variables (the “effect”)
  • Control variables (the variable that’s not allowed to vary)

If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .

research variable types

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Survey Design 101: The Basics

Very informative, concise and helpful. Thank you

Ige Samuel Babatunde

Helping information.Thanks

Ancel George

practical and well-demonstrated

Michael

Very helpful and insightful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

helpful professor logo

27 Types of Variables in Research and Statistics

types of variables in research, explained below

In research and statistics, a variable is a characteristic or attribute that can take on different values or categories. It represents data points or information that can be measured, observed, or manipulated within a study.

Statistical and experimental analysis aims to explore the relationships between variables. For example, researchers may hypothesize a connection between a particular variable and an outcome, like the association between physical activity levels (an independent variable) and heart health (a dependent variable).

Variables play a crucial role in data analysis . Data sets collected through research typically consist of multiple variables, and the analysis is driven by how these variables are related, how they influence each other, and what patterns emerge from these relationships.

Therefore, as a researcher, your understanding of variables and their manipulation forms the crux of your study.

To help with your understanding, I’ve presented 27 of the most common types of variables below.

Types of Variables

1. quantitative (numerical) variables.

Definition: Quantitative variables, also known as numerical variables, are quantifiable in nature and represented in numbers, allowing the data collected to be measured on a scale or range (Moodie & Johnson, 2021). These variables generally yield data that can be organized, ranked, measured, and subjected to mathematical operations.

Explanation: The values of quantitative variables can either be counted (referred to as discrete variables) or measured (continuous variables). Quantifying data in numerical form allows for a range of statistical analysis techniques to be applied, from calculating averages to finding correlations.

Quantitative Variable Example : Consider a marketing survey where you ask respondents to rate their satisfaction with your product on a scale of 1 to 10. The satisfaction score here represents a quantitative variable. The data can be quantified and used to calculate average satisfaction scores, identify the scope for product improvement, or compare satisfaction levels across different demographic groups.

2. Continuous Variables

Definition: Continuous variables are a subtype of quantitative variables that can have an infinite number of measurements within a specified range. They provide detailed insights based on precise measurements and are often representative on a continuous scale (Christmann & Badgett, 2009).

Explanation: The variable is “continuous” because there are an infinite number of possible values within the chosen range. For instance, variables like height, weight, or time are measured continuously.

Continuous Variable Example : The best real-world example of a continuous variable is time. For instance, the time it takes for a customer service representative to resolve a customer issue can range anywhere from few seconds to several hours, and can accurately be measured down to the second, providing an almost finite set of possible values.

3. Discrete Variables

Definition: Discrete variables are a form of quantitative variable that can only assume a finite number of values. They are typically count-based (Frankfort-Nachmias & Leon-Guerrero, 2006).

Explanation: Discrete variables are commonly used in situations where the “count” or “quantity” is distinctly separate. For instance, the number of children in a family is a common example – you can’t have 2.5 kids.

Discrete Variable Example : The number of times a customer contacts customer service within a month. This is a discrete variable because it can only take a whole number of values – you can’t call customer service 2.5 times.

4. Qualitative (Categorical) Variables

Definition: Qualitative, or categorical variables, are non-numerical data points that categorize or group data entities based on shared features or qualities (Moodie & Johnson, 2021).

Explanation: They are often used in research to classify particular traits, characteristics, or properties of subjects that are not easily quantifiable, such as colors, textures, tastes, or smells.

Qualitative Variable Example : Consider a survey that asks respondents to identify their favorite color from a list of choices. The color preference would be a qualitative variable as it categorizes data into different categories corresponding to different colors.

5. Nominal Variables

Definition: Nominal variables, a subtype of qualitative variables, represent categories without any inherent order or ranking (Norman & Streiner, 2008).

Explanation: Nominal variables are often used to label or categorize particular sets of items or individuals, with no intention of giving numerical value or order. For example, race, gender, or religion.

Nominal Variable Example : For instance, the type of car someone owns (sedan, SUV, truck, etc.) is a nominal variable. Each category is unique and one is not inherently higher, better, or larger than the others.

6. Ordinal Variables

Definition: Ordinal variables are a subtype of categorical (qualitative) variables with a key feature of having a clear, distinct, and meaningful order or ranking to the categories (De Vaus, 2001).

Explanation: Ordinal variables represent categories that can be logically arranged in a specific order or sequence but the difference between categories is unknown or doesn’t matter, such as satisfaction rating scale (unsatisfied, neutral, satisfied).

Ordinal Variable Example : A classic example is asking survey respondents how strongly they agree or disagree with a statement (strongly disagree, disagree, neither agree nor disagree, agree, strongly agree). The answers form an ordinal scale; they can be ranked, but the intervals between responses are not necessarily equal.

7. Dichotomous (Binary) Variables

Definition: Dichotomous or binary variables are a type of categorical variable that consist of only two opposing categories like true/false, yes/no, success/failure, and so on (Adams & McGuire, 2022).

Explanation: Dichotomous variables refer to situations where there can only be two, and just two, possible outcomes – there is no middle ground.

Dichotomous Variable Example : Whether a customer completed a transaction (Yes or No) is a binary variable. Either they completed the purchase (yes) or they did not (no).

8. Ratio Variables

Definition: Ratio variables are the highest level of quantitative variables that contain a zero point or absolute zero, which represents a complete absence of the quantity (Norman & Streiner, 2008).

Explanation: Besides being able to categorize and order units, ratio variables also allow for the relative degree of difference between them to be calculated. For example, income, height, weight, and temperature (in Kelvin) are ratio variables.

Ratio Variable Example : An individual’s annual income is a ratio variable. You can say someone earning $50,000 earns twice as much as someone making $25,000. The zero point in this case would be an income of $0, which indicates that no income is being earned.

9. Interval Variables

Definition: Interval variables are quantitative variables that have equal, predictable differences between values, but they do not have a true zero point (Norman & Streiner, 2008).

Explanation: Interval variables are similar to ratio variables; both provide a clear ordering of categories and have equal intervals between successive values. The primary difference is the absence of an absolute zero.

Interval Variable Example : The classic example of an interval variable is the temperature in Fahrenheit or Celsius. The difference between 20 degrees and 30 degrees is the same as the difference between 70 degrees and 80 degrees, but there isn’t a true zero because the scale doesn’t start from absolute nonexistence of the quantity being measured.

Related: Quantitative Reasoning Examples

10. Dependent Variables

Definition: The dependent variable is the outcome or effect that the researcher wants to study. Its value depends on or is influenced by one or more other variables known as independent variables.

Explanation: In a research study, the dependent variable is the phenomenon or behavior that may be affected by manipulations in the independent variable. It’s what you measure to see if your predictions about the effects of the independent variable are correct.

Dependent Variable Example: Suppose you want to study the impact of exercise frequency on weight loss. In this case, the dependent variable is weight loss, which changes based on how often the subject exercises (the independent variable).

11. Independent Variables

Definition: The independent variable, or the predictor variable, is what the researcher manipulates to test its effect on the dependent variable.

Explanation: The independent variable is presumed to have some effect on the dependent variable in a study. It can often be thought of as the cause in a cause-and-effect relationship.

Independent Variable Example: In a study looking at how different dosages of a medication affect the severity of symptoms, the medication dosage is an independent variable. Researchers will adjust the dosage to see what effect it has on the symptoms (the dependent variable).

See Also: Independent and Dependent Variable Examples

12. Confounding Variables

Definition: Confounding variables—also known as confounders—are variables that might distort, confuse or interfere with the relationship between an independent variable and a dependent variable, leading to a false correlation (Boniface, 2019).

Explanation: Confounders are typically related in some way to both the independent and dependent variables. Because of this, they can create or hide relationships, leading researchers to make inaccurate conclusions about causality.

Confounding Variable Example : If you’re studying the relationship between physical activity and heart health, diet could potentially act as a confounding variable. People who are physically active often also eat healthier diets, which could independently improve heart health [National Heart, Lung, and Blood Institute].

13. Control Variables

Definition: Control variables are variables in a research study that the researcher keeps constant to prevent them from interfering with the relationship between the independent and dependent variables (Sproull, 2002).

Explanation: Control variables allow researchers to isolate the effects of the independent variable on the dependent variable, ensuring that any changes observed are solely due to the manipulation of the independent variable and not an external factor.

Control Variable Example : In a study evaluating the impact of a tutoring program on student performance, some control variables could include the teacher’s experience, the type of test used to measure performance, and the student’s previous grades.

14. Latent Variables

Definition: Latent variables—also referred to as hidden or unobserved variables—are variables that are not directly observed or measured but are inferred from other variables that are observed (measured directly).

Explanation: Latent variables can represent abstract concepts like intelligence, socioeconomic status, or even happiness. They are often used in psychological and sociological research, where certain concepts can’t be measured directly.

Latent Variable Example: In a study on job satisfaction, factors like job stress, financial reward, work-life balance, or relationship with colleagues can be measured directly. However, “job satisfaction” itself is a latent variable as it is inferred from these observed variables.

15. Derived Variables

Definition: Derived variables are variables that are created or developed based on existing variables in a dataset. They involve applying certain calculations or manipulations to one or more variables to create a new one.

Explanation: Derived variables can be created by either transforming a single variable (like taking the square root) or combining multiple variables (computing the ratio of two variables).

Derived Variable Example: In a dataset containing a person’s height and weight, a derived variable could be the Body Mass Index (BMI). The BMI is calculated by dividing weight (in kilograms) by the square of height (in meters).

16. Time-series Variables

Definition: Time-series variables are a set of data points ordered or indexed in time order. They provide a sequence of data points, each associated with a specific instance in time.

Explanation: Time-series variables are often used in statistical models to study trends, analyze patterns over time, make forecasts, and understand underlying causes and characteristics of the trend.

Time-series Variable Example : The quarterly GDP (Gross Domestic Product) data over a period of several years would be an example of a time series variable. Economists use such data to examine economic trends over time.

17. Cross-sectional Variables

Definition: Cross-sectional variables are data collected from many subjects at the same point in time or without regard to differences in time.

Explanation: This type of data provides a “snapshot” of the variables at a specific time. They’re often used in research to compare different population groups at a single point in time.

Cross-sectional Variable Example: A basic example of a set of cross-sectional data could be a national survey that asks respondents about their current employment status. The data captured represents a single point in time and does not track changes in employment over time.

18. Predictor Variables

Definition: A predictor variable—also known as independent or explanatory variable—is a variable that is being manipulated in an experiment or study to see how it influences the dependent or response variable.

Explanation: In a cause-and-effect relationship, the predictor variable is the cause. Its modification allows the researcher to study its effect on the response variable.

Predictor Variable Example : In a study evaluating the impact of studying hours on exam score, the number of studying hours is a predictor variable. Researchers alter the study duration to see its impact on the exam results (response variable).

19. Response Variables

Definition: A response variable—also known as the dependent or outcome variable—is what the researcher observes for any changes in an experiment or study. Its value depends on the predictor or independent variable.

Explanation: The response variable is the “effect” in a cause-and-effect scenario. Any changes occurring to this variable due to the predictor variable are observed and recorded.

Response Variable Example: Continuing from the previous example, the exam score is the response variable. It changes based on the manipulation of the predictor variable, i.e., the number of studying hours.

20. Exogenous Variables

Definition: Exogenous variables are variables that are not affected by other variables in the system but can affect other variables within the same system.

Explanation: In a model, an exogenous variable is considered to be an input, it’s determined outside the model, and its value is simply imposed on the system.

Exogenous Variable Example: In an economic model, the government’s taxation rate may be considered an exogenous variable. The rate is set externally (not determined within the economic model) but impacts variables within the model, such as business profitability.

21. Endogenous Variables

Definition: In contrast, endogenous variables are variables whose value is determined by the functional relationships within the system in an economic or statistical model. They depend on the values of other variables in the model.

Explanation: These are the “output” variables of a system, determined through cause-and-effect relationships within the system.

Endogenous Variable Example: To continue the previous example, business profitability in an economic model may be considered an endogenous variable. It is influenced by several other variables within the model, including the exogenous taxation rate set by the government.

22. Causal Variables

Definition: Causal variables are variables which can directly cause an effect on the outcome or dependent variable. Their value or level determines the value or level of other variables.

Explanation: In a cause-and-effect relationship, a causal variable is the cause. The understanding of causal relationships is the basis of scientific enquiry, allowing researchers to manipulate variables to see the effect.

Causal Variable Example: In a study examining the effect of fertilizer on plant growth, the type or amount of fertilizer used is the causal variable. Changing its type or amount should directly affect the outcome—plant growth.

23. Moderator Variables

Definition: Moderator variables are variables that can affect the strength or direction of the association between the predictor (independent) and response (dependent) variable. They specify when or under what conditions a relationship holds.

Explanation: The role of a moderator is to illustrate “how” or “when” an independent variable’s effect on a dependent variable changes.

Moderator Variable Example: If you are studying the effect of a training program on job performance, a potential moderator variable could be the employee’s education level. The influence of the training program on job performance could depend on the employee’s initial level of education.

24. Mediator Variables

Definition: Mediator variables are variables that account for, or explain, the relationship between an independent variable and a dependent variable, providing an understanding of “why” or “how” an effect occurs.

Explanation: Often, the relationship between an independent and a dependent variable isn’t direct—it’s through a third, intervening, variable known as a mediator variable.

Mediator Variable Example: In a study looking at the relationship between socioeconomic status and academic performance, a mediator variable might be the access to educational resources. Socioeconomic status may influence access to educational resources, which in turn affects academic performance. The relationship between socioeconomic status and academic performance isn’t direct but through access to resources.

25. Extraneous Variables

Definition: Extraneous variables are variables that are not of primary interest to a researcher but might influence the outcome of a study. They can add “noise” to the research data if not controlled.

Explanation: An extraneous variable is anything else that has the potential to influence our dependent variable or confound our results if not kept in check, other than our independent variable.

Extraneous Variable Example : Consider an experiment to test whether temperature influences the rate of a chemical reaction. Potential extraneous variables could include the light level, humidity, or impurities in the chemicals used—each could affect the reaction rate and, thus, should be controlled to ensure valid results.

26. Dummy Variables

Definition: Dummy variables, often used in regression analysis, are artificial variables created to represent an attribute with two or more distinct categories or levels.

Explanation: They are used to turn a qualitative variable into a quantitative one to facilitate mathematical processing. Typically, dummy variables are binary – taking a value of either 0 or 1.

Dummy Variable Example: Consider a dataset that includes a variable “Gender” with categories “male” and “female”. A corresponding dummy variable “IsMale” could be introduced, where males get classified as 1 and females as 0.

27. Composite Variables

Definition: Composite variables are new variables created by combining or grouping two or more variables.

Explanation: Depending upon their complexity, composite variables can help assess concepts that are explicit (e.g., “total score”) or relatively abstract (e.g., “life quality index”).

Composite Variable Example: A “Healthy Living Index” might be created as a composite of multiple variables such as eating habits, physical activity level, sleep quality, and stress level. Each of these variables contributes to the overall “Healthy Living Index”.

Knowing your variables will make you a better researcher. Some you need to keep an eye out for: confounding variables , for instance, always need to be in the backs of our minds. Others you need to think about during study design, matching the research design to the research objectives.

Adams, K. A., & McGuire, E. K. (2022). Research Methods, Statistics, and Applications . SAGE Publications.

Allen, M. (2017). The SAGE Encyclopedia of Communication Research Methods (Vol. 1). New York: SAGE Publications.

Babbie, E., Halley, F., & Zaino, J. (2007).  Adventures in Social Research: Data Analysis Using SPSS 14.0 and 15.0 for Windows  (6th ed.). New York: SAGE Publications.

Boniface, D. R. (2019). Experiment Design and Statistical Methods For Behavioural and Social Research . CRC Press. ISBN: 9781351449298.

Christmann, E. P., & Badgett, J. L. (2009). Interpreting Assessment Data: Statistical Techniques You Can Use. New York: NSTA Press.

Coolidge, F. L. (2012). Statistics: A Gentle Introduction (3rd ed.). SAGE Publications.

Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . New York: SAGE Publications.

De Vaus, D. A. (2001). Research Design in Social Research . New York: SAGE Publications.

Katz, M. (2006) . Study Design and Statistical Analysis: A Practical Guide for Clinicians . Cambridge: Cambridge University Press.

Knapp, H. (2017). Intermediate Statistics Using SPSS. SAGE Publications.

Moodie, P. F., & Johnson, D. E. (2021). Applied Regression and ANOVA Using SAS. CRC Press.

Norman, G. R., & Streiner, D. L. (2008). Biostatistics: The Bare Essentials . New York: B.C. Decker.

Privitera, G. J. (2022). Research Methods for the Behavioral Sciences . New Jersey: SAGE Publications.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ Social-Emotional Learning (Definition, Examples, Pros & Cons)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ What is Educational Psychology?
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ What is IQ? (Intelligence Quotient)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Variables: Definition, Examples, Types of Variables in Research

Variables: Definition, Examples, Types of Variables in Research

What is a Variable?

Within the context of a research investigation, concepts are generally referred to as variables. A variable is, as the name applies, something that varies.

Examples of Variable

These are all examples of variables because each of these properties varies or differs from one individual to another.

  • income and expenses,
  • family size,
  • country of birth,
  • capital expenditure,
  • class grades,
  • blood pressure readings,
  • preoperative anxiety levels,
  • eye color, and
  • vehicle type.

What is Variable in Research?

A variable is any property, characteristic, number, or quantity that increases or decreases over time or can take on different values (as opposed to constants, such as n , that do not vary) in different situations.

When conducting research, experiments often manipulate variables. For example, an experimenter might compare the effectiveness of four types of fertilizers.

In this case, the variable is the ‘type of fertilizers.’ A social scientist may examine the possible effect of early marriage on divorce. Her early marriage is variable.

A business researcher may find it useful to include the dividend in determining the share prices . Here, the dividend is the variable.

Effectiveness, divorce, and share prices are variables because they also vary due to manipulating fertilizers, early marriage, and dividends.

11 Types of Variables in Research

Qualitative variables.

An important distinction between variables is the qualitative and quantitative variables.

Qualitative variables are those that express a qualitative attribute, such as hair color, religion, race, gender, social status, method of payment, and so on. The values of a qualitative variable do not imply a meaningful numerical ordering.

The value of the variable ‘religion’ (Muslim, Hindu.., etc..) differs qualitatively; no ordering of religion is implied. Qualitative variables are sometimes referred to as categorical variables.

For example, the variable sex has two distinct categories: ‘male’ and ‘female.’ Since the values of this variable are expressed in categories, we refer to this as a categorical variable.

Similarly, the place of residence may be categorized as urban and rural and thus is a categorical variable.

Categorical variables may again be described as nominal and ordinal.

Ordinal variables can be logically ordered or ranked higher or lower than another but do not necessarily establish a numeric difference between each category, such as examination grades (A+, A, B+, etc., and clothing size (Extra large, large, medium, small).

Nominal variables are those that can neither be ranked nor logically ordered, such as religion, sex, etc.

A qualitative variable is a characteristic that is not capable of being measured but can be categorized as possessing or not possessing some characteristics.

Quantitative Variables

Quantitative variables, also called numeric variables, are those variables that are measured in terms of numbers. A simple example of a quantitative variable is a person’s age.

Age can take on different values because a person can be 20 years old, 35 years old, and so on. Likewise, family size is a quantitative variable because a family might be comprised of one, two, or three members, and so on.

Each of these properties or characteristics referred to above varies or differs from one individual to another. Note that these variables are expressed in numbers, for which we call quantitative or sometimes numeric variables.

A quantitative variable is one for which the resulting observations are numeric and thus possess a natural ordering or ranking.

Discrete and Continuous Variables

Quantitative variables are again of two types: discrete and continuous.

Variables such as some children in a household or the number of defective items in a box are discrete variables since the possible scores are discrete on the scale.

For example, a household could have three or five children, but not 4.52 children.

Other variables, such as ‘time required to complete an MCQ test’ and ‘waiting time in a queue in front of a bank counter,’ are continuous variables.

The time required in the above examples is a continuous variable, which could be, for example, 1.65 minutes or 1.6584795214 minutes.

Of course, the practicalities of measurement preclude most measured variables from being continuous.

Discrete Variable

A discrete variable, restricted to certain values, usually (but not necessarily) consists of whole numbers, such as the family size and a number of defective items in a box. They are often the results of enumeration or counting.

A few more examples are;

  • The number of accidents in the twelve months.
  • The number of mobile cards sold in a store within seven days.
  • The number of patients admitted to a hospital over a specified period.
  • The number of new branches of a bank opened annually during 2001- 2007.
  • The number of weekly visits made by health personnel in the last 12 months.

Continuous Variable

A continuous variable may take on an infinite number of intermediate values along a specified interval. Examples are:

  • The sugar level in the human body;
  • Blood pressure reading;
  • Temperature;
  • Height or weight of the human body;
  • Rate of bank interest;
  • Internal rate of return (IRR),
  • Earning ratio (ER);
  • Current ratio (CR)

No matter how close two observations might be, if the instrument of measurement is precise enough, a third observation can be found, falling between the first two.

A continuous variable generally results from measurement and can assume countless values in the specified range.

Dependent Variables and Independent Variable

In many research settings, two specific classes of variables need to be distinguished from one another: independent variable and dependent variable.

Many research studies aim to reveal and understand the causes of underlying phenomena or problems with the ultimate goal of establishing a causal relationship between them.

Look at the following statements:

  • Low intake of food causes underweight.
  • Smoking enhances the risk of lung cancer.
  • Level of education influences job satisfaction.
  • Advertisement helps in sales promotion.
  • The drug causes improvement of health problems.
  • Nursing intervention causes more rapid recovery.
  • Previous job experiences determine the initial salary.
  • Blueberries slow down aging.
  • The dividend per share determines share prices.

In each of the above queries, we have two independent and dependent variables. In the first example, ‘low intake of food’ is believed to have caused the ‘problem of being underweight.’

It is thus the so-called independent variable. Underweight is the dependent variable because we believe this ‘problem’ (the problem of being underweight) has been caused by ‘the low intake of food’ (the factor).

Similarly, smoking, dividend, and advertisement are all independent variables, and lung cancer, job satisfaction, and sales are dependent variables.

In general, an independent variable is manipulated by the experimenter or researcher, and its effects on the dependent variable are measured.

Independent Variable

The variable that is used to describe or measure the factor that is assumed to cause or at least to influence the problem or outcome is called an independent variable.

The definition implies that the experimenter uses the independent variable to describe or explain its influence or effect of it on the dependent variable.

Variability in the dependent variable is presumed to depend on variability in the independent variable.

Depending on the context, an independent variable is sometimes called a predictor variable, regressor, controlled variable, manipulated variable, explanatory variable, exposure variable (as used in reliability theory), risk factor (as used in medical statistics), feature (as used in machine learning and pattern recognition) or input variable.

The explanatory variable is preferred by some authors over the independent variable when the quantities treated as independent variables may not be statistically independent or independently manipulable by the researcher.

If the independent variable is referred to as an explanatory variable, then the term response variable is preferred by some authors for the dependent variable.

Dependent Variable

The variable used to describe or measure the problem or outcome under study is called a dependent variable.

In a causal relationship, the cause is the independent variable, and the effect is the dependent variable. If we hypothesize that smoking causes lung cancer, ‘smoking’ is the independent variable and cancer the dependent variable.

A business researcher may find it useful to include the dividend in determining the share prices. Here dividend is the independent variable, while the share price is the dependent variable.

The dependent variable usually is the variable the researcher is interested in understanding, explaining, or predicting.

In lung cancer research, the carcinoma is of real interest to the researcher, not smoking behavior per se. The independent variable is the presumed cause of, antecedent to, or influence on the dependent variable.

Depending on the context, a dependent variable is sometimes called a response variable, regressand, predicted variable, measured variable, explained variable, experimental variable, responding variable, outcome variable, output variable, or label.

An explained variable is preferred by some authors over the dependent variable when the quantities treated as dependent variables may not be statistically dependent.

If the dependent variable is referred to as an explained variable, then the term predictor variable is preferred by some authors for the independent variable.

Levels of an Independent Variable

If an experimenter compares an experimental treatment with a control treatment, then the independent variable (a type of treatment) has two levels: experimental and control.

If an experiment were to compare five types of diets, then the independent variables (types of diet) would have five levels.

In general, the number of levels of an independent variable is the number of experimental conditions.

Background Variable

In almost every study, we collect information such as age, sex, educational attainment, socioeconomic status, marital status, religion, place of birth, and the like. These variables are referred to as background variables.

These variables are often related to many independent variables, so they indirectly influence the problem. Hence they are called background variables.

The background variables should be measured if they are important to the study. However, we should try to keep the number of background variables as few as possible in the interest of the economy.

Moderating Variable

In any statement of relationships of variables, it is normally hypothesized that in some way, the independent variable ’causes’ the dependent variable to occur.

In simple relationships, all other variables are extraneous and are ignored.

In actual study situations, such a simple one-to-one relationship needs to be revised to take other variables into account to explain the relationship better.

This emphasizes the need to consider a second independent variable that is expected to have a significant contributory or contingent effect on the originally stated dependent-independent relationship.

Such a variable is termed a moderating variable.

Suppose you are studying the impact of field-based and classroom-based training on the work performance of health and family planning workers. You consider the type of training as the independent variable.

If you are focusing on the relationship between the age of the trainees and work performance, you might use ‘type of training’ as a moderating variable.

Extraneous Variable

Most studies concern the identification of a single independent variable and measuring its effect on the dependent variable.

But still, several variables might conceivably affect our hypothesized independent-dependent variable relationship, thereby distorting the study. These variables are referred to as extraneous variables.

Extraneous variables are not necessarily part of the study. They exert a confounding effect on the dependent-independent relationship and thus need to be eliminated or controlled for.

An example may illustrate the concept of extraneous variables. Suppose we are interested in examining the relationship between the work status of mothers and breastfeeding duration.

It is not unreasonable in this instance to presume that the level of education of mothers as it influences work status might have an impact on breastfeeding duration too.

Education is treated here as an extraneous variable. In any attempt to eliminate or control the effect of this variable, we may consider this variable a confounding variable.

An appropriate way of dealing with confounding variables is to follow the stratification procedure, which involves a separate analysis of the different levels of lies in confounding variables.

For this purpose, one can construct two cross­tables for illiterate mothers and the other for literate mothers.

Suppose we find a similar association between work status and duration of breast­feeding in both the groups of mothers. In that case, we conclude that mothers’ educational level is not a confounding variable.

Intervening Variable

Often an apparent relationship between two variables is caused by a third variable.

For example, variables X and Y may be highly correlated, but only because X causes the third variable, Z, which in turn causes Y. In this case, Z is the intervening variable.

An intervening variable theoretically affects the observed phenomena but cannot be seen, measured, or manipulated directly; its effects can only be inferred from the effects of the independent and moderating variables on the observed phenomena.

We might view motivation or counseling as the intervening variable in the work-status and breastfeeding relationship.

Thus, motive, job satisfaction, responsibility, behavior, and justice are some of the examples of intervening variables.

Suppressor Variable

In many cases, we have good reasons to believe that the variables of interest have a relationship, but our data fail to establish any such relationship. Some hidden factors may suppress the true relationship between the two original variables.

Such a factor is referred to as a suppressor variable because it suppresses the relationship between the other two variables.

The suppressor variable suppresses the relationship by being positively correlated with one of the variables in the relationship and negatively correlated with the other. The true relationship between the two variables will reappear when the suppressor variable is controlled for.

Thus, for example, low age may pull education up but income down. In contrast, a high age may pull income up but education down, effectively canceling the relationship between education and income unless age is controlled for.

4 Relationships Between Variables

Variables: Definition, Examples, Types of Variables in Research

In dealing with relationships between variables in research, we observe a variety of dimensions in these relationships.

Positive and Negative Relationship

Symmetrical relationship, causal relationship, linear and non-linear relationship.

Two or more variables may have a positive, negative, or no relationship. In the case of two variables, a positive relationship is one in which both variables vary in the same direction.

However, they are said to have a negative relationship when they vary in opposite directions.

When a change in the other variable does not accompany the change or movement of one variable, we say that the variables in question are unrelated.

For example, if an increase in wage rate accompanies one’s job experience, the relationship between job experience and the wage rate is positive.

If an increase in an individual’s education level decreases his desire for additional children, the relationship is negative or inverse.

If the level of education does not have any bearing on the desire, we say that the variables’ desire for additional children and ‘education’ are unrelated.

Strength of Relationship

Once it has been established that two variables are related, we want to ascertain how strongly they are related.

A common statistic to measure the strength of a relationship is the so-called correlation coefficient symbolized by r. r is a unit-free measure, lying between -1 and +1 inclusive, with zero signifying no linear relationship.

As far as the prediction of one variable from the knowledge of the other variable is concerned, a value of r= +1 means a 100% accuracy in predicting a positive relationship between the two variables, and a value of r = -1 means a 100% accuracy in predicting a negative relationship between the two variables.

So far, we have discussed only symmetrical relationships in which a change in the other variable accompanies a change in either variable.

This relationship does not indicate which variable is the independent variable and which variable is the dependent variable.

In other words, you can label either of the variables as the independent variable.

Such a relationship is a symmetrical  relationship. In an asymmetrical relationship, a change in variable X (say) is accompanied by a change in variable Y, but not vice versa.

The amount of rainfall, for example, will increase productivity, but productivity will not affect the rainfall. This is an asymmetrical relationship.

Similarly, the relationship between smoking and lung cancer would be asymmetrical because smoking could cause cancer, but lung cancer could not cause smoking.

Indicating a relationship between two variables does not automatically ensure that changes in one variable cause changes in another.

It is, however, very difficult to establish the existence of causality between variables. While no one can ever be certain that variable A causes variable B , one can gather some evidence that increases our belief that A leads to B.

In an attempt to do so, we seek the following evidence:

  • Is there a relationship between A and B?  When such evidence exists, it indicates a possible causal link between the variables.
  • Is the relationship asymmetrical so that a change in A results in B but not vice-versa? In other words, does A occur before B? If we find that B occurs before A, we can have little confidence that A causes.
  • Does a change in A result in a change in B regardless of the actions of other factors? Or, is it possible to eliminate other possible causes of B? Can one determine that C, D, and E (say) do not co-vary with B in a way that suggests possible causal connections?

A linear relationship is a straight-line relationship between two variables, where the variables vary at the same rate regardless of whether the values are low, high, or intermediate.

This is in contrast with the non-linear (or curvilinear) relationships, where the rate at which one variable changes in value may differ for different values of the second variable.

Whether a variable is linearly related to the other variable or not can simply be ascertained by plotting the K values against X values.

If the values, when plotted, appear to lie on a straight line, the existence of a linear relationship between X and Y is suggested.

Height and weight almost always have an approximately linear relationship, while age and fertility rates have a non-linear relationship.

Frequently Asked Questions about Variable

What is a variable within the context of a research investigation.

A variable, within the context of a research investigation, refers to concepts that vary. It can be any property, characteristic, number, or quantity that can increase or decrease over time or take on different values.

How is a variable used in research?

In research, a variable is any property or characteristic that can take on different values. Experiments often manipulate variables to compare outcomes. For instance, an experimenter might compare the effectiveness of different types of fertilizers, where the variable is the ‘type of fertilizers.’

What distinguishes qualitative variables from quantitative variables?

Qualitative variables express a qualitative attribute, such as hair color or religion, and do not imply a meaningful numerical ordering. Quantitative variables, on the other hand, are measured in terms of numbers, like a person’s age or family size.

How do discrete and continuous variables differ in terms of quantitative variables?

Discrete variables are restricted to certain values, often whole numbers, resulting from enumeration or counting, like the number of children in a household. Continuous variables can take on an infinite number of intermediate values along a specified interval, such as the time required to complete a test.

What are the roles of independent and dependent variables in research?

In research, the independent variable is manipulated by the researcher to observe its effects on the dependent variable. The independent variable is the presumed cause or influence, while the dependent variable is the outcome or effect that is being measured.

What is a background variable in a study?

Background variables are information collected in a study, such as age, sex, or educational attainment. These variables are often related to many independent variables and indirectly influence the main problem or outcome, hence they are termed background variables.

How does a suppressor variable affect the relationship between two other variables?

A suppressor variable can suppress or hide the true relationship between two other variables. It does this by being positively correlated with one of the variables and negatively correlated with the other. When the suppressor variable is controlled for, the true relationship between the two original variables can be observed.

30 Accounting Research Paper Topics and Ideas for Writing

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Types of Variables in Psychology Research

Examples of Independent and Dependent Variables

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

research variable types

 James Lacy, MLS, is a fact-checker and researcher.

research variable types

Dependent and Independent Variables

  • Intervening Variables
  • Extraneous Variables
  • Controlled Variables
  • Confounding Variables
  • Operationalizing Variables

Frequently Asked Questions

Variables in psychology are things that can be changed or altered, such as a characteristic or value. Variables are generally used in psychology experiments to determine if changes to one thing result in changes to another.

Variables in psychology play a critical role in the research process. By systematically changing some variables in an experiment and measuring what happens as a result, researchers are able to learn more about cause-and-effect relationships.

The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about psychological phenomena.

This article discusses different types of variables that are used in psychology research. It also covers how to operationalize these variables when conducting experiments.

Students often report problems with identifying the independent and dependent variables in an experiment. While this task can become more difficult as the complexity of an experiment increases, in a psychology experiment:

  • The independent variable is the variable that is manipulated by the experimenter. An example of an independent variable in psychology: In an experiment on the impact of sleep deprivation on test performance, sleep deprivation would be the independent variable. The experimenters would have some of the study participants be sleep-deprived while others would be fully rested.
  • The dependent variable is the variable that is measured by the experimenter. In the previous example, the scores on the test performance measure would be the dependent variable.

So how do you differentiate between the independent and dependent variables? Start by asking yourself what the experimenter is manipulating. The things that change, either naturally or through direct manipulation from the experimenter, are generally the independent variables. What is being measured? The dependent variable is the one that the experimenter is measuring.

Intervening Variables in Psychology

Intervening variables, also sometimes called intermediate or mediator variables, are factors that play a role in the relationship between two other variables. In the previous example, sleep problems in university students are often influenced by factors such as stress. As a result, stress might be an intervening variable that plays a role in how much sleep people get, which may then influence how well they perform on exams.

Extraneous Variables in Psychology

Independent and dependent variables are not the only variables present in many experiments. In some cases, extraneous variables may also play a role. This type of variable is one that may have an impact on the relationship between the independent and dependent variables.

For example, in our previous example of an experiment on the effects of sleep deprivation on test performance, other factors such as age, gender, and academic background may have an impact on the results. In such cases, the experimenter will note the values of these extraneous variables so any impact can be controlled for.

There are two basic types of extraneous variables:

  • Participant variables : These extraneous variables are related to the individual characteristics of each study participant that may impact how they respond. These factors can include background differences, mood, anxiety, intelligence, awareness, and other characteristics that are unique to each person.
  • Situational variables : These extraneous variables are related to things in the environment that may impact how each participant responds. For example, if a participant is taking a test in a chilly room, the temperature would be considered an extraneous variable. Some participants may not be affected by the cold, but others might be distracted or annoyed by the temperature of the room.

Other extraneous variables include the following:

  • Demand characteristics : Clues in the environment that suggest how a participant should behave
  • Experimenter effects : When a researcher unintentionally suggests clues for how a participant should behave

Controlled Variables in Psychology

In many cases, extraneous variables are controlled for by the experimenter. A controlled variable is one that is held constant throughout an experiment.

In the case of participant variables, the experiment might select participants that are the same in background and temperament to ensure that these factors don't interfere with the results. Holding these variables constant is important for an experiment because it allows researchers to be sure that all other variables remain the same across all conditions.  

Using controlled variables means that when changes occur, the researchers can be sure that these changes are due to the manipulation of the independent variable and not caused by changes in other variables.

It is important to also note that a controlled variable is not the same thing as a control group . The control group in a study is the group of participants who do not receive the treatment or change in the independent variable.

All other variables between the control group and experimental group are held constant (i.e., they are controlled). The dependent variable being measured is then compared between the control group and experimental group to see what changes occurred because of the treatment.

Confounding Variables in Psychology

If a variable cannot be controlled for, it becomes what is known as a confounding variabl e. This type of variable can have an impact on the dependent variable, which can make it difficult to determine if the results are due to the influence of the independent variable, the confounding variable, or an interaction of the two.

Operationalizing Variables in Psychology

An operational definition describes how the variables are measured and defined in the study. Before conducting a psychology experiment , it is essential to create firm operational definitions for both the independent variable and dependent variables.

For example, in our imaginary experiment on the effects of sleep deprivation on test performance, we would need to create very specific operational definitions for our two variables. If our hypothesis is "Students who are sleep deprived will score significantly lower on a test," then we would have a few different concepts to define:

  • Students : First, what do we mean by "students?" In our example, let’s define students as participants enrolled in an introductory university-level psychology course.
  • Sleep deprivation : Next, we need to operationally define the "sleep deprivation" variable. In our example, let’s say that sleep deprivation refers to those participants who have had less than five hours of sleep the night before the test.
  • Test variable : Finally, we need to create an operational definition for the test variable. For this example, the test variable will be defined as a student’s score on a chapter exam in the introductory psychology course.

Once all the variables are operationalized, we're ready to conduct the experiment.

Variables play an important part in psychology research. Manipulating an independent variable and measuring the dependent variable allows researchers to determine if there is a cause-and-effect relationship between them.

A Word From Verywell

Understanding the different types of variables used in psychology research is important if you want to conduct your own psychology experiments. It is also helpful for people who want to better understand what the results of psychology research really mean and become more informed consumers of psychology information .

Independent and dependent variables are used in experimental research. Unlike some other types of research (such as correlational studies ), experiments allow researchers to evaluate cause-and-effect relationships between two variables.

Researchers can use statistical analyses to determine the strength of a relationship between two variables in an experiment. Two of the most common ways to do this are to calculate a p-value or a correlation. The p-value indicates if the results are statistically significant while the correlation can indicate the strength of the relationship.

In an experiment on how sugar affects short-term memory, sugar intake would be the independent variable and scores on a short-term memory task would be the independent variable.

In an experiment looking at how caffeine intake affects test anxiety, the amount of caffeine consumed before a test would be the independent variable and scores on a test anxiety assessment would be the dependent variable.

Just as with other types of research, the independent variable in a cognitive psychology study would be the variable that the researchers manipulate. The specific independent variable would vary depending on the specific study, but it might be focused on some aspect of thinking, memory, attention, language, or decision-making.

American Psychological Association. Operational definition . APA Dictionary of Psychology.

American Psychological Association. Mediator . APA Dictionary of Psychology.

Altun I, Cınar N, Dede C. The contributing factors to poor sleep experiences in according to the university students: A cross-sectional study .  J Res Med Sci . 2012;17(6):557-561. PMID:23626634

Skelly AC, Dettori JR, Brodt ED. Assessing bias: The importance of considering confounding .  Evid Based Spine Care J . 2012;3(1):9-12. doi:10.1055/s-0031-1298595

  • Evans, AN & Rooney, BJ. Methods in Psychological Research. Thousand Oaks, CA: SAGE Publications; 2014.
  • Kantowitz, BH, Roediger, HL, & Elmes, DG. Experimental Psychology. Stamfort, CT: Cengage Learning; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

research variable types

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

Types of Variables in Research – Definition & Examples

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

types-of-variables-in-research-Definition

A fundamental component in statistical investigations is the methodology you employ in selecting your research variables. The careful selection of appropriate variable types can significantly enhance the robustness of your experimental design . This piece explores the diverse array of variable classifications within the field of statistical research. Additionally, understanding the different types of variables in research can greatly aid in shaping your experimental hypotheses and outcomes.

Inhaltsverzeichnis

  • 1 Types of Variables in Research – In a Nutshell
  • 2 Definition: Types of variables in research
  • 3 Types of variables in research – Quantitative vs. Categorical
  • 4 Types of variables in research – Independent vs. Dependent
  • 5 Other useful types of variables in research

Types of Variables in Research – In a Nutshell

  • A variable is an attribute of an item of analysis in research.
  • The types of variables in research can be categorized into: independent vs. dependent , or categorical vs. quantitative .
  • The types of variables in research (correlational) can be classified into predictor or outcome variables.
  • Other types of variables in research are confounding variables , latent variables , and composite variables.

Definition: Types of variables in research

A variable is a trait of an item of analysis in research. Types of variables in research are imperative, as they describe and measure places, people, ideas , or other research objects . There are many types of variables in research. Therefore, you must choose the right types of variables in research for your study.

Note that the correct variable will help with your research design , test selection, and result interpretation.

In a study testing whether some genders are more stress-tolerant than others, variables you can include are the level of stressors in the study setting, male and female subjects, and productivity levels in the presence of stressors.

Also, before choosing which types of variables in research to use, you should know how the various types work and the ideal statistical tests and result interpretations you will use for your study. The key is to determine the type of data the variable contains and the part of the experiment the variable represents.

Types of variables in research – Quantitative vs. Categorical

Data is the precise extent of a variable in statistical research that you record in a data sheet. It is generally divided into quantitative and categorical classes.

Quantitative or numerical data represents amounts, while categorical data represents collections or groupings.

The type of data contained in your variable will determine the types of variables in research. For instance, variables consisting of quantitative data are called quantitative variables, while those containing categorical data are called categorical variables. The section below explains these two types of variables in research better.

Quantitative variables

The scores you record when collecting quantitative data usually represent real values you can add, divide , subtract , or multiply . There are two types of quantitative variables: discrete variables and continuous variables .

The table below explains the elements that set apart discrete and continuous types of variables in research:

Categorical variables

Categorical variables contain data representing groupings. Additionally, the data in categorical variables is sometimes recorded as numbers . However, the numbers represent categories instead of real amounts.

There are three categorical types of variables in research: nominal variables, ordinal variables , and binary variables . Here is a tabular summary.

It is worth mentioning that some categorical variables can function as multiple types. For example, in some studies, you can use ordinal variables as quantitative variables if the scales are numerical and not discrete.

Data sheet of quantitative and categorical variables

A data sheet is where you record the data on the variables in your experiment.

In a study of the salt-tolerance levels of various plant species, you can record the data on salt addition and how the plant responds in your datasheet.

The key is to gather the information and draw a conclusion over a specific period and filling out a data sheet along the process.

Below is an example of a data sheet containing binary, nominal, continuous , and ordinal types of variables in research.

Ireland

Types of variables in research – Independent vs. Dependent

types-of-variables-in-research-Dependent-independet-and-constant-variable

The purpose of experiments is to determine how the variables affect each other. As stated in our experiment above, the study aims to find out how the quantity of salt introduce in the water affects the plant’s growth and survival.

Therefore, the researcher manipulates the independent variables and measures the dependent variables . Additionally, you may have control variables that you hold constant.

The table below summarizes independent variables, dependent variables , and control variables .

Data sheet of independent and dependent variables

In salt-tolerance research, there is one independent variable (salt amount) and three independent variables. All other variables are neither dependent nor independent.

Below is a data sheet based on our experiment:

Types of variables in correlational research

The types of variables in research may differ depending on the study.

In correlational research , dependent and independent variables do not apply because the study objective is not to determine the cause-and-effect link between variables.

However, in correlational research, one variable may precede the other, as illness leads to death, and not vice versa. In such an instance, the preceding variable, like illness, is the predictor variable, while the other one is the outcome variable.

Other useful types of variables in research

The key to conducting effective research is to define your types of variables as independent and dependent. Next, you must determine if they are categorical or numerical types of variables in research so you can choose the proper statistical tests for your study.

Below are other types of variables in research worth understanding.

What is the definition for independent and dependent variables?

An autonomous or independent variable is the one you believe is the origin of the outcome, while the dependent variable is the one you believe affects the outcome of your study.

What are quantitative and categorical variables?

Knowing the types of variables in research that you can work with will help you choose the best statistical tests and result representation techniques. It will also help you with your study design.

Discrete and continuous variables: What is their difference?

Discrete variables are types of variables in research that represent counts, like the quantities of objects. In contrast, continuous variables are types of variables in research that represent measurable quantities like age, volume, and weight.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

IMAGES

  1. Types of variables in scientific research

    research variable types

  2. 27 Types of Variables in Research and Statistics (2024)

    research variable types

  3. Variable types and examples

    research variable types

  4. Types of Variables in Statistics with Examples- Pickl.AI

    research variable types

  5. 10 Types of Variables in Research

    research variable types

  6. Types of Research Variable in Research with Example

    research variable types

VIDEO

  1. RM #VARIABLE #MCQ# VIDEO

  2. Practical Research 2 Quarter 1 Module 3: Kinds of Variables and Their Uses

  3. MCQ on Independent & Dependent Variables |Basic Concepts of Statistics| Level of Measurements

  4. HNBGU PhD2024 preparation||PhD entrance 2024 class-4||variable/चर/चरों के प्रकार||measurement||

  5. Research Variables

  6. What is Qualitative Variables

COMMENTS

  1. Types of Variables in Research & Statistics

    Types of Variables in Research & Statistics | Examples. Published on September 19, 2022 by Rebecca Bevans. Revised on June 21, 2023. In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good ...

  2. Variables in Research

    Types of Variables in Research. Types of Variables in Research are as follows: Independent Variable. This is the variable that is manipulated by the researcher. It is also known as the predictor variable, as it is used to predict changes in the dependent variable. Examples of independent variables include age, gender, dosage, and treatment type.

  3. Types of Variables

    Types of Variables Based on the Types of Data. A data is referred to as the information and statistics gathered for analysis of a research topic. Data is broadly divided into two categories, such as: Quantitative/Numerical data is associated with the aspects of measurement, quantity, and extent. Categorial data is associated with groupings.

  4. Types of Variables and Commonly Used Statistical Designs

    By understanding the types of variables and choosing tests that are appropriate to the data, individuals can draw appropriate conclusions and promote their work for an application. Variables. To determine which statistical design is appropriate for the data and research plan, one must first examine the scales of each measurement. Multiple types ...

  5. Types of Variables in Research

    Types of Variables in Research | Definitions & Examples. Published on 19 September 2022 by Rebecca Bevans. Revised on 28 November 2022. In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design.

  6. Variables in Research

    Examples of categorical variables include gender (male, female, other), type of vehicle (car, truck, motorcycle), or marital status (single, married, divorced). These categories help researchers organize data into groups for comparison and analysis. Categorical variables can be further classified into two subtypes: nominal and ordinal.

  7. Understanding the different types of variable in statistics

    Experimental and Non-Experimental Research. Experimental research: In experimental research, the aim is to manipulate an independent variable(s) and then examine the effect that this change has on a dependent variable(s).Since it is possible to manipulate the independent variable(s), experimental research has the advantage of enabling a researcher to identify a cause and effect between variables.

  8. Variables in Research: Breaking Down the Essentials of Experimental

    The Role of Variables in Research. In scientific research, variables serve several key functions: Define Relationships: Variables allow researchers to investigate the relationships between different factors and characteristics, providing insights into the underlying mechanisms that drive phenomena and outcomes. Establish Comparisons: By manipulating and comparing variables, scientists can ...

  9. Types of Variables

    In our example of medical records, there are several variables of each type: Age, Weight, and Height are quantitative variables. Race, Gender, and Smoking are categorical variables. Comments: Notice that the values of the categorical variable Smoking have been coded as the numbers 0 or 1. It is quite common to code the values of a categorical ...

  10. Types of Variables in Statistics and Research

    Study Variable (Research Variable): can mean any variable used in a study, but does have a more formal definition when used in a clinical trial. Test Variable: another name for the Dependent Variable. Treatment variable: another name for independent variable. Types of Variables: References. Dodge, Y. (2008). The Concise Encyclopedia of ...

  11. Independent & Dependent Variables (With Examples)

    Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, ... In the world of scientific research, there's no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, ...

  12. 10 Types of Variables in Research and Statistics

    Types. Discrete and continuous. Binary, nominal and ordinal. Researchers can further categorize quantitative variables into discrete or continuous types of variables: Discrete: Any numerical variables you can realistically count, such as the coins in your wallet or the money in your savings account.

  13. 27 Types of Variables in Research and Statistics (2024)

    18. Predictor Variables. Definition: A predictor variable—also known as independent or explanatory variable—is a variable that is being manipulated in an experiment or study to see how it influences the dependent or response variable. Explanation: In a cause-and-effect relationship, the predictor variable is the cause.

  14. Variables in Research

    Compare the independent variable and dependent variable in research. See other types of variables in research, including confounding and extraneous variables.

  15. Variables: Definition, Examples, Types of Variables in Research

    How is a variable used in research? In research, a variable is any property or characteristic that can take on different values. Experiments often manipulate variables to compare outcomes. For instance, an experimenter might compare the effectiveness of different types of fertilizers, where the variable is the 'type of fertilizers.'

  16. Types of Variables, Descriptive Statistics, and Sample Size

    Abstract. This short "snippet" covers three important aspects related to statistics - the concept of variables, the importance, and practical aspects related to descriptive statistics and issues related to sampling - types of sampling and sample size estimation. Keywords: Biostatistics, descriptive statistics, sample size, variables.

  17. Types of Variables in Psychology Research

    The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about psychological phenomena. This article discusses different types of variables that are used in psychology research. It also covers how to operationalize these variables when ...

  18. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  19. Types of Variables in Research ~ Definition & Examples

    A variable is an attribute of an item of analysis in research. The types of variables in research can be categorized into: independent vs. dependent, or categorical vs. quantitative. The types of variables in research (correlational) can be classified into predictor or outcome variables. Other types of variables in research are confounding ...

  20. Research Variables: Types, Uses and Definition of Terms

    The purpose of research is to describe and explain variance in the world, that is, variance that. occurs naturally in the world or chang e that we create due to manipulation. Variables are ...

  21. Types of Research Designs Compared

    You can also create a mixed methods research design that has elements of both. Descriptive research vs experimental research. Descriptive research gathers data without controlling any variables, while experimental research manipulates and controls variables to determine cause and effect.

  22. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question: