Java Tutorial

Java methods, java classes, java file handling, java how to, java reference, java examples, java operators.

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Try it Yourself »

Although the + operator is often used to add together two values, like in the example above, it can also be used to add together a variable and a value, or a variable and another variable:

Java divides the operators into the following groups:

  • Arithmetic operators
  • Assignment operators
  • Comparison operators
  • Logical operators
  • Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

Advertisement

Java Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator ( = ) to assign the value 10 to a variable called x :

The addition assignment operator ( += ) adds a value to a variable:

A list of all assignment operators:

Java Comparison Operators

Comparison operators are used to compare two values (or variables). This is important in programming, because it helps us to find answers and make decisions.

The return value of a comparison is either true or false . These values are known as Boolean values , and you will learn more about them in the Booleans and If..Else chapter.

In the following example, we use the greater than operator ( > ) to find out if 5 is greater than 3:

Java Logical Operators

You can also test for true or false values with logical operators.

Logical operators are used to determine the logic between variables or values:

Java Bitwise Operators

Bitwise operators are used to perform binary logic with the bits of an integer or long integer.

Note: The Bitwise examples above use 4-bit unsigned examples, but Java uses 32-bit signed integers and 64-bit signed long integers. Because of this, in Java, ~5 will not return 10. It will return -6. ~00000000000000000000000000000101 will return 11111111111111111111111111111010

In Java, 9 >> 1 will not return 12. It will return 4. 00000000000000000000000000001001 >> 1 will return 00000000000000000000000000000100

Test Yourself With Exercises

Multiply 10 with 5 , and print the result.

Start the Exercise

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

Java Assignment Operators

Java programming tutorial index.

The Java Assignment Operators are used when you want to assign a value to the expression. The assignment operator denoted by the single equal sign = .

In a Java assignment statement, any expression can be on the right side and the left side must be a variable name. For example, this does not mean that "a" is equal to "b", instead, it means assigning the value of 'b' to 'a'. It is as follows:

Java also has the facility of chain assignment operators, where we can specify a single value for multiple variables.

what is meant by assignment in java

  • Table of Contents
  • Course Home
  • Assignments
  • Peer Instruction (Instructor)
  • Peer Instruction (Student)
  • Change Course
  • Instructor's Page
  • Progress Page
  • Edit Profile
  • Change Password
  • Scratch ActiveCode
  • Scratch Activecode
  • Instructors Guide
  • About Runestone
  • Report A Problem
  • 1.1 Preface
  • 1.2 Why Programming? Why Java?
  • 1.3 Variables and Data Types
  • 1.4 Expressions and Assignment Statements
  • 1.5 Compound Assignment Operators
  • 1.6 Casting and Ranges of Variables
  • 1.7 Java Development Environments (optional)
  • 1.8 Unit 1 Summary
  • 1.9 Unit 1 Mixed Up Code Practice
  • 1.10 Unit 1 Coding Practice
  • 1.11 Multiple Choice Exercises
  • 1.12 Lesson Workspace
  • 1.3. Variables and Data Types" data-toggle="tooltip">
  • 1.5. Compound Assignment Operators' data-toggle="tooltip" >

Before you keep reading...

Runestone Academy can only continue if we get support from individuals like you. As a student you are well aware of the high cost of textbooks. Our mission is to provide great books to you for free, but we ask that you consider a $10 donation, more if you can or less if $10 is a burden.

Making great stuff takes time and $$. If you appreciate the book you are reading now and want to keep quality materials free for other students please consider a donation to Runestone Academy. We ask that you consider a $10 donation, but if you can give more thats great, if $10 is too much for your budget we would be happy with whatever you can afford as a show of support.

1.4. Expressions and Assignment Statements ¶

In this lesson, you will learn about assignment statements and expressions that contain math operators and variables.

1.4.1. Assignment Statements ¶

Remember that a variable holds a value that can change or vary. Assignment statements initialize or change the value stored in a variable using the assignment operator = . An assignment statement always has a single variable on the left hand side of the = sign. The value of the expression on the right hand side of the = sign (which can contain math operators and other variables) is copied into the memory location of the variable on the left hand side.

Assignment statement

Figure 1: Assignment Statement (variable = expression) ¶

Instead of saying equals for the = operator in an assignment statement, say “gets” or “is assigned” to remember that the variable on the left hand side gets or is assigned the value on the right. In the figure above, score is assigned the value of 10 times points (which is another variable) plus 5.

The following video by Dr. Colleen Lewis shows how variables can change values in memory using assignment statements.

As we saw in the video, we can set one variable to a copy of the value of another variable like y = x;. This won’t change the value of the variable that you are copying from.

coding exercise

Click on the Show CodeLens button to step through the code and see how the values of the variables change.

The program is supposed to figure out the total money value given the number of dimes, quarters and nickels. There is an error in the calculation of the total. Fix the error to compute the correct amount.

Calculate and print the total pay given the weekly salary and the number of weeks worked. Use string concatenation with the totalPay variable to produce the output Total Pay = $3000 . Don’t hardcode the number 3000 in your print statement.

exercise

Assume you have a package with a given height 3 inches and width 5 inches. If the package is rotated 90 degrees, you should swap the values for the height and width. The code below makes an attempt to swap the values stored in two variables h and w, which represent height and width. Variable h should end up with w’s initial value of 5 and w should get h’s initial value of 3. Unfortunately this code has an error and does not work. Use the CodeLens to step through the code to understand why it fails to swap the values in h and w.

1-4-7: Explain in your own words why the ErrorSwap program code does not swap the values stored in h and w.

Swapping two variables requires a third variable. Before assigning h = w , you need to store the original value of h in the temporary variable. In the mixed up programs below, drag the blocks to the right to put them in the right order.

The following has the correct code that uses a third variable named “temp” to swap the values in h and w.

The code is mixed up and contains one extra block which is not needed in a correct solution. Drag the needed blocks from the left into the correct order on the right, then check your solution. You will be told if any of the blocks are in the wrong order or if you need to remove one or more blocks.

After three incorrect attempts you will be able to use the Help Me button to make the problem easier.

Fix the code below to perform a correct swap of h and w. You need to add a new variable named temp to use for the swap.

1.4.2. Incrementing the value of a variable ¶

If you use a variable to keep score you would probably increment it (add one to the current value) whenever score should go up. You can do this by setting the variable to the current value of the variable plus one (score = score + 1) as shown below. The formula looks a little crazy in math class, but it makes sense in coding because the variable on the left is set to the value of the arithmetic expression on the right. So, the score variable is set to the previous value of score + 1.

Click on the Show CodeLens button to step through the code and see how the score value changes.

1-4-11: What is the value of b after the following code executes?

  • It sets the value for the variable on the left to the value from evaluating the right side. What is 5 * 2?
  • Correct. 5 * 2 is 10.

1-4-12: What are the values of x, y, and z after the following code executes?

  • x = 0, y = 1, z = 2
  • These are the initial values in the variable, but the values are changed.
  • x = 1, y = 2, z = 3
  • x changes to y's initial value, y's value is doubled, and z is set to 3
  • x = 2, y = 2, z = 3
  • Remember that the equal sign doesn't mean that the two sides are equal. It sets the value for the variable on the left to the value from evaluating the right side.
  • x = 1, y = 0, z = 3

1.4.3. Operators ¶

Java uses the standard mathematical operators for addition ( + ), subtraction ( - ), multiplication ( * ), and division ( / ). Arithmetic expressions can be of type int or double. An arithmetic operation that uses two int values will evaluate to an int value. An arithmetic operation that uses at least one double value will evaluate to a double value. (You may have noticed that + was also used to put text together in the input program above – more on this when we talk about strings.)

Java uses the operator == to test if the value on the left is equal to the value on the right and != to test if two items are not equal. Don’t get one equal sign = confused with two equal signs == ! They mean different things in Java. One equal sign is used to assign a value to a variable. Two equal signs are used to test a variable to see if it is a certain value and that returns true or false as you’ll see below. Use == and != only with int values and not doubles because double values are an approximation and 3.3333 will not equal 3.3334 even though they are very close.

Run the code below to see all the operators in action. Do all of those operators do what you expected? What about 2 / 3 ? Isn’t surprising that it prints 0 ? See the note below.

When Java sees you doing integer division (or any operation with integers) it assumes you want an integer result so it throws away anything after the decimal point in the answer, essentially rounding down the answer to a whole number. If you need a double answer, you should make at least one of the values in the expression a double like 2.0.

With division, another thing to watch out for is dividing by 0. An attempt to divide an integer by zero will result in an ArithmeticException error message. Try it in one of the active code windows above.

Operators can be used to create compound expressions with more than one operator. You can either use a literal value which is a fixed value like 2, or variables in them. When compound expressions are evaluated, operator precedence rules are used, so that *, /, and % are done before + and -. However, anything in parentheses is done first. It doesn’t hurt to put in extra parentheses if you are unsure as to what will be done first.

In the example below, try to guess what it will print out and then run it to see if you are right. Remember to consider operator precedence .

1-4-15: Consider the following code segment. Be careful about integer division.

What is printed when the code segment is executed?

  • 0.666666666666667
  • Don't forget that division and multiplication will be done first due to operator precedence.
  • Yes, this is equivalent to (5 + ((a/b)*c) - 1).
  • Don't forget that division and multiplication will be done first due to operator precedence, and that an int/int gives an int result where it is rounded down to the nearest int.

1-4-16: Consider the following code segment.

What is the value of the expression?

  • Dividing an integer by an integer results in an integer
  • Correct. Dividing an integer by an integer results in an integer
  • The value 5.5 will be rounded down to 5

1-4-17: Consider the following code segment.

  • Correct. Dividing a double by an integer results in a double
  • Dividing a double by an integer results in a double

1-4-18: Consider the following code segment.

  • Correct. Dividing an integer by an double results in a double
  • Dividing an integer by an double results in a double

1.4.4. The Modulo Operator ¶

The percent sign operator ( % ) is the mod (modulo) or remainder operator. The mod operator ( x % y ) returns the remainder after you divide x (first number) by y (second number) so 5 % 2 will return 1 since 2 goes into 5 two times with a remainder of 1. Remember long division when you had to specify how many times one number went into another evenly and the remainder? That remainder is what is returned by the modulo operator.

../_images/mod-py.png

Figure 2: Long division showing the whole number result and the remainder ¶

In the example below, try to guess what it will print out and then run it to see if you are right.

The result of x % y when x is smaller than y is always x . The value y can’t go into x at all (goes in 0 times), since x is smaller than y , so the result is just x . So if you see 2 % 3 the result is 2 .

1-4-21: What is the result of 158 % 10?

  • This would be the result of 158 divided by 10. modulo gives you the remainder.
  • modulo gives you the remainder after the division.
  • When you divide 158 by 10 you get a remainder of 8.

1-4-22: What is the result of 3 % 8?

  • 8 goes into 3 no times so the remainder is 3. The remainder of a smaller number divided by a larger number is always the smaller number!
  • This would be the remainder if the question was 8 % 3 but here we are asking for the reminder after we divide 3 by 8.
  • What is the remainder after you divide 3 by 8?

1.4.5. FlowCharting ¶

Assume you have 16 pieces of pizza and 5 people. If everyone gets the same number of slices, how many slices does each person get? Are there any leftover pieces?

In industry, a flowchart is used to describe a process through symbols and text. A flowchart usually does not show variable declarations, but it can show assignment statements (drawn as rectangle) and output statements (drawn as rhomboid).

The flowchart in figure 3 shows a process to compute the fair distribution of pizza slices among a number of people. The process relies on integer division to determine slices per person, and the mod operator to determine remaining slices.

Flow Chart

Figure 3: Example Flow Chart ¶

A flowchart shows pseudo-code, which is like Java but not exactly the same. Syntactic details like semi-colons are omitted, and input and output is described in abstract terms.

Complete the program based on the process shown in the Figure 3 flowchart. Note the first line of code declares all 4 variables as type int. Add assignment statements and print statements to compute and print the slices per person and leftover slices. Use System.out.println for output.

1.4.6. Storing User Input in Variables ¶

Variables are a powerful abstraction in programming because the same algorithm can be used with different input values saved in variables.

Program input and output

Figure 4: Program input and output ¶

A Java program can ask the user to type in one or more values. The Java class Scanner is used to read from the keyboard input stream, which is referenced by System.in . Normally the keyboard input is typed into a console window, but since this is running in a browser you will type in a small textbox window displayed below the code. The code below shows an example of prompting the user to enter a name and then printing a greeting. The code String name = scan.nextLine() gets the string value you enter as program input and then stores the value in a variable.

Run the program a few times, typing in a different name. The code works for any name: behold, the power of variables!

Run this program to read in a name from the input stream. You can type a different name in the input window shown below the code.

Try stepping through the code with the CodeLens tool to see how the name variable is assigned to the value read by the scanner. You will have to click “Hide CodeLens” and then “Show in CodeLens” to enter a different name for input.

The Scanner class has several useful methods for reading user input. A token is a sequence of characters separated by white space.

Run this program to read in an integer from the input stream. You can type a different integer value in the input window shown below the code.

A rhomboid (slanted rectangle) is used in a flowchart to depict data flowing into and out of a program. The previous flowchart in Figure 3 used a rhomboid to indicate program output. A rhomboid is also used to denote reading a value from the input stream.

Flow Chart

Figure 5: Flow Chart Reading User Input ¶

Figure 5 contains an updated version of the pizza calculator process. The first two steps have been altered to initialize the pizzaSlices and numPeople variables by reading two values from the input stream. In Java this will be done using a Scanner object and reading from System.in.

Complete the program based on the process shown in the Figure 5 flowchart. The program should scan two integer values to initialize pizzaSlices and numPeople. Run the program a few times to experiment with different values for input. What happens if you enter 0 for the number of people? The program will bomb due to division by zero! We will see how to prevent this in a later lesson.

The program below reads two integer values from the input stream and attempts to print the sum. Unfortunately there is a problem with the last line of code that prints the sum.

Run the program and look at the result. When the input is 5 and 7 , the output is Sum is 57 . Both of the + operators in the print statement are performing string concatenation. While the first + operator should perform string concatenation, the second + operator should perform addition. You can force the second + operator to perform addition by putting the arithmetic expression in parentheses ( num1 + num2 ) .

More information on using the Scanner class can be found here https://www.w3schools.com/java/java_user_input.asp

1.4.7. Programming Challenge : Dog Years ¶

In this programming challenge, you will calculate your age, and your pet’s age from your birthdates, and your pet’s age in dog years. In the code below, type in the current year, the year you were born, the year your dog or cat was born (if you don’t have one, make one up!) in the variables below. Then write formulas in assignment statements to calculate how old you are, how old your dog or cat is, and how old they are in dog years which is 7 times a human year. Finally, print it all out.

Calculate your age and your pet’s age from the birthdates, and then your pet’s age in dog years. If you want an extra challenge, try reading the values using a Scanner.

1.4.8. Summary ¶

Arithmetic expressions include expressions of type int and double.

The arithmetic operators consist of +, -, * , /, and % (modulo for the remainder in division).

An arithmetic operation that uses two int values will evaluate to an int value. With integer division, any decimal part in the result will be thrown away, essentially rounding down the answer to a whole number.

An arithmetic operation that uses at least one double value will evaluate to a double value.

Operators can be used to construct compound expressions.

During evaluation, operands are associated with operators according to operator precedence to determine how they are grouped. (*, /, % have precedence over + and -, unless parentheses are used to group those.)

An attempt to divide an integer by zero will result in an ArithmeticException to occur.

The assignment operator (=) allows a program to initialize or change the value stored in a variable. The value of the expression on the right is stored in the variable on the left.

During execution, expressions are evaluated to produce a single value.

The value of an expression has a type based on the evaluation of the expression.

The Java Tutorials have been written for JDK 8. Examples and practices described in this page don't take advantage of improvements introduced in later releases and might use technology no longer available. See Java Language Changes for a summary of updated language features in Java SE 9 and subsequent releases. See JDK Release Notes for information about new features, enhancements, and removed or deprecated options for all JDK releases.

Now that you've learned how to declare and initialize variables, you probably want to know how to do something with them. Learning the operators of the Java programming language is a good place to start. Operators are special symbols that perform specific operations on one, two, or three operands , and then return a result.

As we explore the operators of the Java programming language, it may be helpful for you to know ahead of time which operators have the highest precedence. The operators in the following table are listed according to precedence order. The closer to the top of the table an operator appears, the higher its precedence. Operators with higher precedence are evaluated before operators with relatively lower precedence. Operators on the same line have equal precedence. When operators of equal precedence appear in the same expression, a rule must govern which is evaluated first. All binary operators except for the assignment operators are evaluated from left to right; assignment operators are evaluated right to left.

In general-purpose programming, certain operators tend to appear more frequently than others; for example, the assignment operator " = " is far more common than the unsigned right shift operator " >>> ". With that in mind, the following discussion focuses first on the operators that you're most likely to use on a regular basis, and ends focusing on those that are less common. Each discussion is accompanied by sample code that you can compile and run. Studying its output will help reinforce what you've just learned.

About Oracle | Contact Us | Legal Notices | Terms of Use | Your Privacy Rights

Copyright © 1995, 2022 Oracle and/or its affiliates. All rights reserved.

  • Enterprise Java
  • Web-based Java
  • Data & Java
  • Project Management
  • Visual Basic
  • Ruby / Rails
  • Java Mobile
  • Architecture & Design
  • Open Source
  • Web Services

Developer.com

Developer.com content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More .

Java Programming tutorials

Java provides many types of operators to perform a variety of calculations and functions, such as logical , arithmetic , relational , and others. With so many operators to choose from, it helps to group them based on the type of functionality they provide. This programming tutorial will focus on Java’s numerous a ssignment operators.

Before we begin, however, you may want to bookmark our other tutorials on Java operators, which include:

  • Arithmetic Operators
  • Comparison Operators
  • Conditional Operators
  • Logical Operators
  • Bitwise and Shift Operators

Assignment Operators in Java

As the name conveys, assignment operators are used to assign values to a variable using the following syntax:

The left side operand of the assignment operator must be a variable, whereas the right side operand of the assignment operator may be a literal value or another variable. Moreover, the value or variable on the right side must be of the same data type of the operand on the left side. Otherwise, the compiler will raise an error. Assignment operators have a right to left associativity in that the value given on the right-hand side of the operator is assigned to the variable on the left. Therefore, the right-hand side variable must be declared before assignment.

You can learn more about variables in our programming tutorial: Working with Java Variables .

Types of Assignment Operators in Java

Java assignment operators are classified into two types: simple and compound .

The Simple assignment operator is the equals ( = ) sign, which is the most straightforward of the bunch. It simply assigns the value or variable on the right to the variable on the left.

Compound operators are comprised of both an arithmetic, bitwise, or shift operator in addition to the equals ( = ) sign.

Equals Operator (=) Java Example

First, let’s learn to use the one-and-only simple assignment operator – the Equals ( = ) operator – with the help of a Java program. It includes two assignments: a literal value to num1 and the num1 variable to num2 , after which both are printed to the console to show that the values have been assigned to the numbers:

The += Operator Java Example

A compound of the + and = operators, the += adds the current value of the variable on the left to the value on the right before assigning the result to the operand on the left. Here is some sample code to demonstrate how to use the += operator in Java:

The -= Operator Java Example

Made up of the – and = operators, the -= first subtracts the variable’s value on the right from the current value of the variable on the left before assigning the result to the operand on the left. We can see it at work below in the following code example showing how to decrement in Java using the -= operator:

The *= Operator Java Example

This Java operator is comprised of the * and = operators. It operates by multiplying the current value of the variable on the left to the value on the right and then assigning the result to the operand on the left. Here’s a program that shows the *= operator in action:

The /= Operator Java Example

A combination of the / and = operators, the /= Operator divides the current value of the variable on the left by the value on the right and then assigns the quotient to the operand on the left. Here is some example code showing how to use the  /= operator in Java:

%= Operator Java Example

The %= operator includes both the % and = operators. As seen in the program below, it divides the current value of the variable on the left by the value on the right and then assigns the remainder to the operand on the left:

Compound Bitwise and Shift Operators in Java

The Bitwise and Shift Operators that we just recently covered can also be utilized in compound form as seen in the list below:

  • &= – Compound bitwise Assignment operator.
  • ^= – Compound bitwise ^ assignment operator.
  • >>= – Compound right shift assignment operator.
  • >>>= – Compound right shift filled 0 assignment operator.
  • <<= – Compound left shift assignment operator.

The following program demonstrates the working of all the Compound Bitwise and Shift Operators :

Final Thoughts on Java Assignment Operators

This programming tutorial presented an overview of Java’s simple and compound assignment Operators. An essential building block to any programming language, developers would be unable to store any data in their programs without them. Though not quite as indispensable as the equals operator, compound operators are great time savers, allowing you to perform arithmetic and bitwise operations and assignment in a single line of code.

Read more Java programming tutorials and guides to software development .

Get the Free Newsletter!

Subscribe to Developer Insider for top news, trends & analysis

Latest Posts

What is the role of a project manager in software development, how to use optional in java, overview of the jad methodology, microsoft project tips and tricks, how to become a project manager in 2023, related stories, understanding types of thread synchronization errors in java, understanding memory consistency in java threads.

Developer.com

1.7 Java | Assignment Statements & Expressions

An assignment statement designates a value for a variable. An assignment statement can be used as an expression in Java.

After a variable is declared, you can assign a value to it by using an assignment statement . In Java, the equal sign = is used as the assignment operator . The syntax for assignment statements is as follows:

An expression represents a computation involving values, variables, and operators that, when taking them together, evaluates to a value. For example, consider the following code:

You can use a variable in an expression. A variable can also be used on both sides of the =  operator. For example:

In the above assignment statement, the result of x + 1  is assigned to the variable x . Let’s say that x is 1 before the statement is executed, and so becomes 2 after the statement execution.

To assign a value to a variable, you must place the variable name to the left of the assignment operator. Thus the following statement is wrong:

Note that the math equation  x = 2 * x + 1  ≠ the Java expression x = 2 * x + 1

Java Assignment Statement vs Assignment Expression

Which is equivalent to:

And this statement

is equivalent to:

Note: The data type of a variable on the left must be compatible with the data type of a value on the right. For example, int x = 1.0 would be illegal, because the data type of x is int (integer) and does not accept the double value 1.0 without Type Casting .

◄◄◄BACK | NEXT►►►

What's Your Opinion? Cancel reply

Enhance your Brain

Subscribe to Receive Free Bio Hacking, Nootropic, and Health Information

HTML for Simple Website Customization My Personal Web Customization Personal Insights

DISCLAIMER | Sitemap | ◘

SponserImageUCD

HTML for Simple Website Customization My Personal Web Customization Personal Insights SEO Checklist Publishing Checklist My Tools

Top Posts & Pages

The Best Keyboard Tilt for Reducing Wrist Pain to Zero

What Is an Assignment Statement in Java?

...

Java programs store data values in variables. When a programmer creates a variable in a Java application, he declares the type and name of the variable, then assigns a value to it. The value of a variable can be altered at subsequent points in execution using further assignment operations. The assignment statement in Java involves using the assignment operator to set the value of a variable. The exact syntax depends on the type of variable receiving a value.

Advertisement

Video of the Day

In Java, variables are strongly typed. This means that when you declare a variable in a Java program, you must declare its type, followed by its name. The following sample Java code demonstrates declaring two variables, one of primitive-type integer and one of an object type for a class within the application: int num; ApplicationHelper myHelp;

Once a program contains a variable declaration, the kind of value assigned to the variable must be suited to the type declared. These variable declarations could be followed by assignment statements on subsequent lines. However, the assignment operation could also take place on the same line as the declaration.

Assignment in Java is the process of giving a value to a primitive-type variable or giving an object reference to an object-type variable. The equals sign acts as assignment operator in Java, followed by the value to assign. The following sample Java code demonstrates assigning a value to a primitive-type integer variable, which has already been declared: num = 5;

The assignment operation could alternatively appear within the same line of code as the declaration of the variable, as follows: int num = 5;

The value of the variable can be altered again in subsequent processing as in this example: num++;

This code increments the variable value, adding a value of one to it.

Instantiation

When the assignment statement appears with object references, the assignment operation may also involve object instantiation. When Java code creates a new object instance of a Java class in an application, the "new" keyword causes the constructor method of the class to execute, instantiating the object. The following sample code demonstrates instantiating an object variable: myHelp = new ApplicationHelper();

This could also appear within the same line as the variable declaration as follows: ApplicationHelper myHelp = new ApplicationHelper();

When this line of code executes, the class constructor method executes, returning an instance of the class, a reference to which is stored by the variable.

Referencing

Once a variable has been declared and assigned a value, a Java program can refer to the variable in subsequent processing. For primitive-type variables, the variable name refers to a stored value. For object types, the variable refers to the location of the object instance in memory. This means that two object variables can point to the same instance, as in the following sample code: ApplicationHelper myHelp = new ApplicationHelper(); ApplicationHelper sameHelp = myHelp;

This syntax appears commonly when programs pass object references as parameters to class methods.

  • Oracle: The Java Tutorials - Variables
  • Oracle: The Java Tutorials - Assignment, Arithmetic, and Unary Operators
  • Oracle: The Java Tutorials - Primitive Data Types
  • Oracle: The Java Tutorials - Creating Objects
  • Oracle: The Java Tutorials - What Is an Object?
  • Oracle: The Java Tutorials - Summary of Variables
  • Java Language Specification; Types, Values, and Variables; 2000
  • Oracle: The Java Tutorials - Understanding Instance and Class Members

Report an Issue

Screenshot loading...

  • TutorialKart
  • SAP Tutorials
  • Salesforce Admin
  • Salesforce Developer
  • Visualforce
  • Informatica
  • Kafka Tutorial
  • Spark Tutorial
  • Tomcat Tutorial
  • Python Tkinter

Programming

  • Bash Script
  • Julia Tutorial
  • CouchDB Tutorial
  • MongoDB Tutorial
  • PostgreSQL Tutorial
  • Android Compose
  • Flutter Tutorial
  • Kotlin Android

Web & Server

  • Selenium Java
  • Java Basics
  • Java Tutorial
  • Java HelloWorld Program
  • Java Program Structure
  • Java Datatypes
  • Java Variable Types
  • Java Access Modifiers
  • Java Operators
  • Java Decision Making
  • Print array
  • Initialize array
  • Array of integers
  • Array of strings
  • Array of objects
  • Array of arrays
  • Iterate over array
  • Array For loop
  • Array while loop
  • Append element to array
  • Check if array is empty
  • Array average
  • Check if array contains
  • Array ForEach
  • Array - Find Index of Item
  • Concatenate arrays
  • Find smallest number in array
  • Find largest number in array
  • Array reverse
  • Classes and Objects
  • Inheritance
  • Polymorphism
  • Method Overloading
  • Method Overriding/
  • Abstraction
  • Abstract methods and classes
  • Encapsulation
  • Print string
  • Read string from console
  • Create string from Char array
  • Create string from Byte array
  • Concatenate two strings
  • Get index of the first Occurrence of substring
  • Get index of nth occurrence of substring
  • Check if two strings are equal
  • Check if string ends with specific suffix
  • Check if string starts with specific prefix
  • Check if string is blank
  • Check if string is empty
  • Check if string contains search substring
  • Validate if string is a Phone Number
  • Character Level
  • Get character at specific index in string
  • Get first character in string
  • Get last character from string
  • Transformations
  • Replace first occurrence of string
  • Replace all occurrences of a string
  • Join strings
  • Join strings in string array
  • Join strings in ArrayList
  • Reverse a string
  • Trim string
  • Split string
  • Remove whitespaces in string
  • Replace multiple spaces with single space
  • Comparisons
  • Compare strings lexicographically
  • Compare String and CharSequence
  • Compare String and StringBuffer
  • Java Exception Handling StringIndexOutOfBoundsException
  • Convert string to int
  • Convert string to float
  • Convert string to double
  • Convert string to long
  • Convert string to boolean
  • Convert int to string
  • Convert int to float
  • Convert int to double
  • Convert int to long
  • Convert int to char
  • Convert float to string
  • Convert float to int
  • Convert float to double
  • Convert float to long
  • Convert long to string
  • Convert long to float
  • Convert long to double
  • Convert long to int
  • Convert double to string
  • Convert double to float
  • Convert double to int
  • Convert double to long
  • Convert char to int
  • Convert boolean to string
  • Create a file
  • Read file as string
  • Write string to file
  • Delete File
  • Rename File
  • Download File from URL
  • Replace a String in File
  • Filter list of files or directories
  • Check if file is readable
  • Check if file is writable
  • Check if file is executable
  • Read contents of a file line by line using BufferedReader
  • Read contents of a File line by line using Stream
  • Check if n is positive or negative
  • Read integer from console
  • Add two integers
  • Count digits in number
  • Largest of three numbers
  • Smallest of three numbers
  • Even numbers
  • Odd numbers
  • Reverse a number
  • Prime Number
  • Print All Prime Numbers
  • Factors of a Number
  • Check Palindrome number
  • Check Palindrome string
  • Swap two numbers
  • Even or Odd number
  • Java Classes
  • ArrayList add()
  • ArrayList addAll()
  • ArrayList clear()
  • ArrayList clone()
  • ArrayList contains()
  • ArrayList ensureCapacity()
  • ArrayList forEach()
  • ArrayList get()
  • ArrayList indexOf()
  • ArrayList isEmpty()
  • ArrayList iterator()
  • ArrayList lastIndexOf()
  • ArrayList listIterator()
  • ArrayList remove()
  • ArrayList removeAll()
  • ArrayList removeIf()
  • ArrayList removeRange()
  • ArrayList retainAll()
  • ArrayList set()
  • ArrayList size()
  • ArrayList spliterator()
  • ArrayList subList()
  • ArrayList toArray()
  • ArrayList trimToSize()
  • HashMap clear()
  • HashMap clone()
  • HashMap compute()
  • HashMap computeIfAbsent()
  • HashMap computeIfPresent()
  • HashMap containsKey()
  • HashMap containsValue()
  • HashMap entrySet()
  • HashMap get()
  • HashMap isEmpty()
  • HashMap keySet()
  • HashMap merge()
  • HashMap put()
  • HashMap putAll()
  • HashMap remove()
  • HashMap size()
  • HashMap values()
  • HashSet add()
  • HashSet clear()
  • HashSet clone()
  • HashSet contains()
  • HashSet isEmpty()
  • HashSet iterator()
  • HashSet remove()
  • HashSet size()
  • HashSet spliterator()
  • Integer bitCount()
  • Integer byteValue()
  • Integer compare()
  • Integer compareTo()
  • Integer compareUnsigned()
  • Integer decode()
  • Integer divideUnsigned()
  • Integer doubleValue()
  • Integer equals()
  • Integer floatValue()
  • Integer getInteger()
  • Integer hashCode()
  • Integer highestOneBit()
  • Integer intValue()
  • Integer longValue()
  • Integer lowestOneBit()
  • Integer max()
  • Integer min()
  • Integer numberOfLeadingZeros()
  • Integer numberOfTrailingZeros()
  • Integer parseInt()
  • Integer parseUnsignedInt()
  • Integer remainderUnsigned()
  • Integer reverse()
  • Integer reverseBytes()
  • Integer rotateLeft()
  • Integer rotateRight()
  • Integer shortValue()
  • Integer signum()
  • Integer sum()
  • Integer toBinaryString()
  • Integer toHexString()
  • Integer toOctalString()
  • Integer toString()
  • Integer toUnsignedLong()
  • Integer toUnsignedString()
  • Integer valueOf()
  • StringBuilder append()
  • StringBuilder appendCodePoint()
  • StringBuilder capacity()
  • StringBuilder charAt()
  • StringBuilder chars()
  • StringBuilder codePointAt()
  • StringBuilder codePointBefore()
  • StringBuilder codePointCount()
  • StringBuilder codePoints()
  • StringBuilder delete()
  • StringBuilder deleteCharAt()
  • StringBuilder ensureCapacity()
  • StringBuilder getChars()
  • StringBuilder indexOf()
  • StringBuilder insert()
  • StringBuilder lastIndexOf()
  • StringBuilder length()
  • StringBuilder offsetByCodePoints()
  • StringBuilder replace()
  • StringBuilder reverse()
  • StringBuilder setCharAt()
  • StringBuilder setLength()
  • StringBuilder subSequence()
  • StringBuilder substring()
  • StringBuilder toString()
  • StringBuilder trimToSize()
  • Arrays.asList()
  • Arrays.binarySearch()
  • Arrays.copyOf()
  • Arrays.copyOfRange()
  • Arrays.deepEquals()
  • Arrays.deepToString()
  • Arrays.equals()
  • Arrays.fill()
  • Arrays.hashCode()
  • Arrays.sort()
  • Arrays.toString()
  • Random doubles()
  • Random ints()
  • Random longs()
  • Random next()
  • Random nextBoolean()
  • Random nextBytes()
  • Random nextDouble()
  • Random nextFloat()
  • Random nextGaussian()
  • Random nextInt()
  • Random nextLong()
  • Random setSeed()
  • Math random
  • Math signum
  • Math toDegrees
  • Math toRadians
  • Java Date & Time
  • ❯ Java Tutorial

Java Bitwise AND Assignment (&=) Operator

Java bitwise and assignment.

In Java, Bitwise AND Assignment Operator is used to compute the Bitwise AND operation of left and right operands, and assign the result back to left operand. In this tutorial, we will learn how to use Bitwise AND Assignment operator in Java, with examples.

The syntax to compute bitwise AND a value of 2 and value in variable x , and assign the result back to x using Bitwise AND Assignment Operator is

In the following example, we take a variable x with an initial value of 9 , add bitwise AND it with value of 2 , and assign the result to x , using Bitwise AND Assignment Operator.

In this Java Tutorial , we learned about Bitwise AND Assignment Operator in Java, with examples.

Popular Courses by TutorialKart

App developement, web development, online tools.

  • Java Arrays
  • Java Strings
  • Java Collection
  • Java 8 Tutorial
  • Java Multithreading
  • Java Exception Handling
  • Java Programs
  • Java Project
  • Java Collections Interview
  • Java Interview Questions
  • Spring Boot

Compound assignment operators in Java

  • Java Assignment Operators with Examples
  • Basic Operators in Java
  • Bitwise Operators in Java
  • Difference between Simple and Compound Assignment in Java
  • Java Arithmetic Operators with Examples
  • Interesting facts about Increment and Decrement operators in Java
  • Java Logical Operators with Examples
  • Java | Operators | Question 8
  • Java | Operators | Question 1
  • Java | Operators | Question 3
  • Java | Operators | Question 7
  • Java | Operators | Question 4
  • Assignment Operators in C
  • Assignment Operators In C++
  • Augmented Assignment Operators in Python
  • Assignment Operators in Programming
  • Operators in Java
  • Solidity - Assignment Operators
  • Arithmetic Operators in Solidity
  • Arrays in Java
  • Spring Boot - Start/Stop a Kafka Listener Dynamically
  • Parse Nested User-Defined Functions using Spring Expression Language (SpEL)
  • Split() String method in Java with examples
  • Arrays.sort() in Java with examples
  • For-each loop in Java
  • Object Oriented Programming (OOPs) Concept in Java
  • Reverse a string in Java
  • HashMap in Java
  • How to iterate any Map in Java

Compound-assignment operators provide a shorter syntax for assigning the result of an arithmetic or bitwise operator. They perform the operation on the two operands before assigning the result to the first operand. The following are all possible assignment operator in java:

Implementation of all compound assignment operator

Rules for resolving the Compound assignment operators

At run time, the expression is evaluated in one of two ways.Depending upon the programming conditions:

  • First, the left-hand operand is evaluated to produce a variable. If this evaluation completes abruptly, then the assignment expression completes abruptly for the same reason; the right-hand operand is not evaluated and no assignment occurs.
  • Otherwise, the value of the left-hand operand is saved and then the right-hand operand is evaluated. If this evaluation completes abruptly, then the assignment expression completes abruptly for the same reason and no assignment occurs.
  • Otherwise, the saved value of the left-hand variable and the value of the right-hand operand are used to perform the binary operation indicated by the compound assignment operator. If this operation completes abruptly, then the assignment expression completes abruptly for the same reason and no assignment occurs.
  • Otherwise, the result of the binary operation is converted to the type of the left-hand variable, subjected to value set conversion to the appropriate standard value set, and the result of the conversion is stored into the variable.
  • First, the array reference sub-expression of the left-hand operand array access expression is evaluated. If this evaluation completes abruptly, then the assignment expression completes abruptly for the same reason; the index sub-expression (of the left-hand operand array access expression) and the right-hand operand are not evaluated and no assignment occurs.
  • Otherwise, the index sub-expression of the left-hand operand array access expression is evaluated. If this evaluation completes abruptly, then the assignment expression completes abruptly for the same reason and the right-hand operand is not evaluated and no assignment occurs.
  • Otherwise, if the value of the array reference sub-expression is null, then no assignment occurs and a NullPointerException is thrown.
  • Otherwise, the value of the array reference sub-expression indeed refers to an array. If the value of the index sub-expression is less than zero, or greater than or equal to the length of the array, then no assignment occurs and an ArrayIndexOutOfBoundsException is thrown.
  • Otherwise, the value of the index sub-expression is used to select a component of the array referred to by the value of the array reference sub-expression. The value of this component is saved and then the right-hand operand is evaluated. If this evaluation completes abruptly, then the assignment expression completes abruptly for the same reason and no assignment occurs.

Examples : Resolving the statements with Compound assignment operators

We all know that whenever we are assigning a bigger value to a smaller data type variable then we have to perform explicit type casting to get the result without any compile-time error. If we did not perform explicit type-casting then we will get compile time error. But in the case of compound assignment operators internally type-casting will be performed automatically, even we are assigning a bigger value to a smaller data-type variable but there may be a chance of loss of data information. The programmer will not responsible to perform explicit type-casting. Let’s see the below example to find the difference between normal assignment operator and compound assignment operator. A compound assignment expression of the form E1 op= E2 is equivalent to E1 = (T) ((E1) op (E2)), where T is the type of E1, except that E1 is evaluated only once.

For example, the following code is correct:

and results in x having the value 7 because it is equivalent to:

Because here 6.6 which is double is automatically converted to short type without explicit type-casting.

Refer: When is the Type-conversion required?

Explanation: In the above example, we are using normal assignment operator. Here we are assigning an int (b+1=20) value to byte variable (i.e. b) that’s results in compile time error. Here we have to do type-casting to get the result.

Explanation: In the above example, we are using compound assignment operator. Here we are assigning an int (b+1=20) value to byte variable (i.e. b) apart from that we get the result as 20 because In compound assignment operator type-casting is automatically done by compile. Here we don’t have to do type-casting to get the result.

Reference: http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.26.2

Please Login to comment...

Similar reads.

  • Java-Operators

advertisewithusBannerImg

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Javatpoint Logo

Java Tutorial

Control statements, java object class, java inheritance, java polymorphism, java abstraction, java encapsulation, java oops misc.

JavaTpoint

Java Operator Associativity

Operators with the same precedence follow the operator group's operator associativity. Operators in Java can be left-associative, right-associative, or have no associativity at all. Left-associative operators are assessed from left to right, right-associative operators are reviewed from right to left, and operators with no associativity are evaluated in any order.

Operator Precedence Vs. Operator Associativity

The operator's precedence refers to the order in which operators are evaluated within an expression whereas associativity refers to the order in which the consecutive operators within the same group are carried out.

Precedence rules specify the priority (which operators will be evaluated first) of operators.

Youtube

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Interview Questions

Company Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Computer Network

Compiler Design tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

IMAGES

  1. Assignment Operators in Java

    what is meant by assignment in java

  2. Java Tutorial #7

    what is meant by assignment in java

  3. Java Assignment Operators

    what is meant by assignment in java

  4. Java Augmented Assignment Operators

    what is meant by assignment in java

  5. Java 1

    what is meant by assignment in java

  6. Assignment operator in Java

    what is meant by assignment in java

VIDEO

  1. Demo qua Assignment Java 3

  2. ASSIGNMENT JAVA4

  3. Core

  4. Demo Assignment Java 4 Fpoly

  5. Huong dan Assignment

  6. #20. Assignment Operators in Java

COMMENTS

  1. Java: define terms initialization, declaration and assignment

    assignment: throwing away the old value of a variable and replacing it with a new one. initialization: it's a special kind of assignment: the first.Before initialization objects have null value and primitive types have default values such as 0 or false.Can be done in conjunction with declaration. declaration: a declaration states the type of a variable, along with its name.

  2. Java Assignment Operators with Examples

    This is the most straightforward assignment operator, which is used to assign the value on the right to the variable on the left. This is the basic definition of an assignment operator and how it functions. Syntax: num1 = num2; Example: a = 10; ch = 'y'; Java. import java.io.*;

  3. Assignment, Arithmetic, and Unary Operators (The Java™ Tutorials

    This beginner Java tutorial describes fundamentals of programming in the Java programming language ... The Simple Assignment Operator. One of the most common operators that you'll encounter is the simple assignment operator "=". You saw this operator in the Bicycle class; it assigns the value on its right to the operand on its left: ...

  4. Java Operators

    Java Comparison Operators. Comparison operators are used to compare two values (or variables). This is important in programming, because it helps us to find answers and make decisions. The return value of a comparison is either true or false. These values are known as Boolean values, and you will learn more about them in the Booleans and If ...

  5. Java Assignment Operators

    Java Assignment Operators. The Java Assignment Operators are used when you want to assign a value to the expression. The assignment operator denoted by the single equal sign =. In a Java assignment statement, any expression can be on the right side and the left side must be a variable name. For example, this does not mean that "a" is equal to ...

  6. All Java Assignment Operators (Explained With Examples)

    There are mainly two types of assignment operators in Java, which are as follows: Simple Assignment Operator ; We use the simple assignment operator with the "=" sign, where the left side consists of an operand and the right side is a value. The value of the operand on the right side must be of the same data type defined on the left side.

  7. 1.4. Expressions and Assignment Statements

    Assignment statements initialize or change the value stored in a variable using the assignment operator =. An assignment statement always has a single variable on the left hand side of the = sign. ... They mean different things in Java. One equal sign is used to assign a value to a variable. Two equal signs are used to test a variable to see if ...

  8. Operators (The Java™ Tutorials > Learning the Java Language

    Learning the operators of the Java programming language is a good place to start. Operators are special symbols that perform specific operations on one, two, or three operands, and then return a result. As we explore the operators of the Java programming language, it may be helpful for you to know ahead of time which operators have the highest ...

  9. Java Assignment Operators

    Java assignment operators are classified into two types: simple and compound. The Simple assignment operator is the equals ( =) sign, which is the most straightforward of the bunch. It simply assigns the value or variable on the right to the variable on the left. Compound operators are comprised of both an arithmetic, bitwise, or shift operator ...

  10. 1.7 Java

    An assignment statement designates a value for a variable. An assignment statement can be used as an expression in Java. After a variable is declared, you can assign a value to it by using an assignment statement. In Java, the equal sign = is used as the assignment operator. The syntax for assignment statements is as follows: variable ...

  11. Java Assignment operators

    The Java Assignment operators are used to assign the values to the declared variables. The equals ( = ) operator is the most commonly used Java assignment operator. For example: int i = 25; The table below displays all the assignment operators in the Java programming language. Operators.

  12. Assignment Operators in Java

    Description:Welcome to Lecture 14 of our Java Programming series! In this enlightening tutorial, we're going to explore a crucial component of Java programmi...

  13. Types of Assignment Operators in Java

    To assign a value to a variable, use the basic assignment operator (=). It is the most fundamental assignment operator in Java. It assigns the value on the right side of the operator to the variable on the left side. Example: int x = 10; int x = 10; In the above example, the variable x is assigned the value 10.

  14. What Is an Assignment Statement in Java?

    Assignment. Assignment in Java is the process of giving a value to a primitive-type variable or giving an object reference to an object-type variable. The equals sign acts as assignment operator in Java, followed by the value to assign. The following sample Java code demonstrates assigning a value to a primitive-type integer variable, which has ...

  15. Assignment Operators in Programming

    Assignment operators are used in programming to assign values to variables. We use an assignment operator to store and update data within a program. They enable programmers to store data in variables and manipulate that data. The most common assignment operator is the equals sign (=), which assigns the value on the right side of the operator to ...

  16. Assigning in Java?

    In Java, your variables can be split into two categories: Objects, and everything else (int, long, byte, etc). A primitive type (int, long, etc), holds whatever value you assign it. An object variable, by contrast, holds a reference to an object somewhere. So if you assign one object variable to another, you have copied the reference, both A ...

  17. Java Operators : |= bitwise OR and assign example

    a |= b; is the same as. a = (a | b); It calculates the bitwise OR of the two operands, and assigns the result to the left operand. To explain your example code: for (String search : textSearch.getValue()) matches |= field.contains(search); I presume matches is a boolean; this means that the bitwise operators behave the same as logical operators.

  18. Operators in Java

    3. Assignment Operator '=' Assignment operator is used to assign a value to any variable. It has right-to-left associativity, i.e. value given on the right-hand side of the operator is assigned to the variable on the left, and therefore right-hand side value must be declared before using it or should be a constant.

  19. What is += Addition Assignment Operator in Java?

    It's the Addition assignment operator. Let's understand the += operator in Java and learn to use it for our day to day programming. x += y in Java is the same as x = x + y. It is a compound assignment operator. Most commonly used for incrementing the value of a variable since x++ only increments the value by one.

  20. Java Bitwise AND Assignment (&=) Operator

    In Java, Bitwise AND Assignment Operator is used to compute the Bitwise AND operation of left and right operands, and assign the result back to left operand. In this tutorial, we will learn how to use Bitwise AND Assignment operator in Java, with examples. The syntax to compute bitwise AND a value of 2 and value in variable x, and assign the ...

  21. Definite Assignment in Java

    The definite assignment will consider the structure of expressions and statements. The Java compiler will decide that "k" is assigned before its access, like an argument with the method invocation in the code. It is because the access will occur if the value of the expression is accurate.

  22. Compound assignment operators in Java

    The following are all possible assignment operator in java: 1. += (compound addition assignment operator) 2. -= (compound subtraction assignment operator) 3. *= (compound multiplication assignment operator) 4. /= (compound division assignment operator) 5. %= (compound modulo assignment operator)

  23. Associativity of Operators in Java

    Associativity specifies the order in which operators are executed, which can be left to right or right to left. For example, in the phrase a = b = c = 8, the assignment operator is used from right to left. It means that the value 8 is assigned to c, then c is assigned to b, and at last b is assigned to a. This phrase can be parenthesized as (a ...