U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Yale J Biol Med
  • v.95(1); 2022 Mar

Logo of yjbm

Focus: The Science of Stress

Introduction: the science of stress.

The term stress was widely popularized in its biological connotation in 1936 by Hans Selye, who defined it as “the non-specific response of the body to any demand for change” [ 1 ]. Stress was originally understood to be a collection of peripheral symptoms that accompany a variety of chronic illnesses affecting different parts of the body. However, since its conception, the term has taken on a broader meaning and encompasses the body’s response to any mental, emotional, or physical disturbance. It is now well accepted that stress is both a symptom and a major risk factor for anxiety, migraines, substance abuse, obesity, and heart disease [ 2 ]. In 2007, the American Psychological Association launched a Stress in America™ survey to document national levels of stress, assess mental and physical impacts, and correlate stress intensity to external factors, including the political climate and the state of the economy. The outcomes of subsequent surveys have established stress as a major contributor to the national mental health crisis that disproportionately impacts different groups across the country [ 3 ].

In a perspectives piece on the neuroscience of stress, Simisola Johnson discusses the evolution of the stress response and the role of the nervous system in eliciting neuroendocrine and behavioral responses that promote survival. However, as opposed to acute stress that can have beneficial effects, chronic stress can lead to severe impairments in circuits that regulate neuroendocrine signaling. For example, in addition to the direct biological consequences of SARS-CoV2 infection on the brain, chronic stress associated with the COVID-19 pandemic impacts similar neuronal signaling pathways in the CNS and PNS that hamper normal physiological function. In addition to impacting the brain, chronic stress also alters metabolism at the cellular level. Using a house sparrow model system, Beattie et al. combined chronic psychological stress and daily food restriction to test whether chronic stress decreases the animals’ ability to cope with acute stressors. The study measures a variety of parameters including levels of metabolites, total activity, and markers of the neuroendocrine stress response to assess overall stress responses. Both of these papers highlight the importance of studying the compounding effects of stress that are increasingly prevalent in a post-pandemic era.

Stress experienced by mothers during pregnancy can have deleterious effects on both the infant’s neuropsychiatric and behavioral health. Various studies have found associations between maternal prenatal distress and child developmental outcomes. Children exposed to prenatal stress are at increased risk for displaying disruptive behavioral problems, possessing lower motor function, and even developing neuropsychiatric illnesses at later stages. However, in a self-reported study examining the initiation and course of breastfeeding and room-sharing, Simons et al. found that there was no link between the quality of maternal caregiving and maternal prenatal distress. Although they found that levels of prenatal evening cortisol (a physiological marker of stress) at the end of pregnancy are positively correlated with their study parameters, a lack of homology with other stress markers urges future studies to examine alternative mechanisms. Davis et al. examine how increased reactive oxygen species in the embryonic brain generated due to prenatal stress affect the morphology and activity of neuronal cells during development and in mature brains. The authors found that treatment with antioxidant agents reversed the observed effects on neuronal cells but did not prevent behavioral impacts. The results of these studies emphasize a need to study intergenerational transmission of stress and its long-term effects.

The World Health Organization estimates that approximately 3.6% of the world’s population has experienced post-traumatic stress disorder (PTSD) [ 4 ]. Risk factors for developing PTSD include exposure to a traumatic life event, lack of social support, and a genetic predisposition. Liu et al. examined the relationship between personality type, social support, and prevalence of PTSD among Shidu Parents in China. They determined that those with social support and extroverted personalities were least likely to develop PTSD after losing a child. Nagy Youssef provides a perspectives piece on studying the transgenerational epigenetic inheritance of trauma. Conducting more studies on the inheritance of DNA methylation across generations can provide new insights into the impact of trauma and resilience across communities.

In this issue, the biological and social dynamics of stress are examined. Original research, reviews, and perspectives are presented on how stress affects development, metabolism, and various cellular and organ level processes of physiology. We hope this issue contributes to an emerging field and highlights the importance of an interdisciplinary approach to understanding the wide implications of stress.

  • Selye H. The Stress of Life . New York: McGraw-Hill; 1956. [ Google Scholar ]
  • What is stress? The American Institute of Stress . 2017. Retrieved March 22, 2022. Available from: https://www.stress.org/what-is-stress
  • American Psychological Association . 2020. Stress in America™ 2020: A National Mental Health Crisis. American Psychological Association . Retrieved March 22, 2022. Available from: https://www.apa.org/news/press/releases/stress/2020/report-october
  • World Health Organization . 2013. Who releases guidance on mental health care after trauma. World Health Organization . Retrieved March 23, 2022. Available from: https://www.who.int/news/item/06-08-2013-who-releases-guidance-on-mental-health-care-after-trauma#:~:text=Traumatic%20events%20and%20loss%20a%20common%20experience&text=An%20estimated%203.6%25%20of%20the,previous%20year%2C%20the%20study%20showed

Recent developments in stress and anxiety research

  • Published: 01 September 2021
  • Volume 128 , pages 1265–1267, ( 2021 )

Cite this article

  • Urs M. Nater 1 , 2  

4980 Accesses

2 Citations

Explore all metrics

Avoid common mistakes on your manuscript.

Stress and anxiety are virtually omnipresent in today´s society, pervading almost all aspects of our daily lives. While each and every one of us experiences “stress” and/or “anxiety” at least to some extent at times, the phenomena themselves are far from being completely understood. In stress research, scientists are particularly grappling with the conceptual issue of how to define stress, also with regard to delimiting stress from anxiety or negative affectivity in general. Interestingly, there is no unified theory of stress, despite many attempts at defining stress and its characteristics. Consequently, the available literature relies on a variety of different theoretical approaches, though the theories of Lazarus and Folkman ( 1984 ) or McEwen ( 1998 ) are relatively pervasive in the literature. One key issue in conceptualizing stress is that research has not always differentiated between the perception of a stimulus or a situation as a stressor and the subsequent biobehavioral response (often called the “stress response”). This is important, since, for example, psychological factors such as uncontrollability and social evaluation, i.e. factors that may influence how an individual perceives a potentially stressful stimulus or situation, have been identified as characteristics that elicit particularly powerful physiological stressful responses (Dickerson and Kemeny 2004 ). At the core of the physiological stress response is a complex physiological system, which is located in both the central nervous system (CNS) and the body´s periphery. The complexity of this system necessitates a multi-dimensional assessment approach involving variables that adequately reflect all relevant components. It is also important to consider that the experience of stress and its psychobiological correlates do not occur in a vacuum, but are being shaped by numerous contextual factors (e.g. societal and cultural context, work and leisure time, family and dyadic systems, environmental variables, physical fitness, nutritional status, etc.) and dispositional factors (e.g. genetics, personality, resilience, regulatory capacities, self-efficacy, etc.). Thus, a theoretical framework needs to incorporate these factors. In sum, as stress is considered a multi-faceted and inherently multi-dimensional construct, its conceptualization and operationalization needs to reflect this (Nater 2018 ).

The goal of the World Association for Stress Related and Anxiety Disorders (WASAD) is to promote and make available basic and clinical research on stress-related and anxiety disorders. Coinciding with WASAD’s 3rd International Congress held in September 2021 in Vienna, Austria, this journal publishes a Special Issue encompassing state-of-the art research in the field of stress and anxiety. This special issue collects answers to a number of important questions that need to be addressed in current and future research. Among the most relevant issues are (1) the multi-dimensional assessment that arises as a consequence of a multi-faceted consideration of stress and anxiety, with a particular focus on doing so under ecologically valid conditions. Skoluda et al. 2021 (in this issue) argue that hair as an important source of the stress hormone cortisol should not only be taken as a complementary stress biomarker by research staff, but that lay persons could be also trained to collect hair at the study participants’ homes, thus increasing the ecological validity of studies incorporating this important measure; (2) the incongruence between psychological and biological facets of stress and anxiety that has been observed both in laboratory and field research (Campbell and Ehlert 2012 ). Interestingly, there are behavioral constructs that do show relatively high congruence. As shown in the paper of Vatheuer et al. ( 2021 ), gaze behavior while exposed to an acute social stressor correlates with salivary cortisol, thus indicating common underlying mechanisms; (3) the complex dynamics of stress-related measures that may extend over shorter (seconds to minutes), medium (hours and diurnal/circadian fluctuations), and longer (months, seasonal) time periods. In particular, momentary assessment studies are highly qualified to examine short to medium term fluctuations and interactions. In their study employing such a design, Stoffel and colleagues (Stoffel et al. 2021 ) show ecologically valid evidence for direct attenuating effects of social interactions on psychobiological stress. Using an experimental approach, on the other hand, Denk et al. ( 2021 ) examined the phenomenon of physiological synchrony between study participants; they found both cortisol and alpha-amylase physiological synchrony in participants who were in the same group while being exposed to a stressor. Importantly, these processes also unfold over time in relation to other biological systems; al’Absi and colleagues showed in their study (al’Absi et al. 2021 ) the critical role of the endogenous opioid system and its relation to stress-related analgesia; (4) the influence of contextual and dispositional factors on the biological stress response in various target samples (e.g., humans, animals, minorities, children, employees, etc.) both under controlled laboratory conditions and in everyday life environments. In this issue, Sattler and colleagues show evidence that contextual information may only matter to a certain extent, as in their study (Sattler et al. 2021 ), the biological response to a gay-specific social stressor was equally pronounced as the one to a general social stressor in gay men. Genetic information is probably the most widely researched dispositional factor; Kuhn et al. show in their paper (Kuhn et al. 2021 ) that the low expression variant of the serotonin transporter gene serves as a risk factor for increased stress reactivity, thus clearly indicating the important role of dispositional factors in stress processing. An interesting factor combining both aspects of dispositional and contextual information is maternal care; Bentele et al. ( 2021 ) in their study are able to show that there was an effect of maternal care on the amylase stress response, while no such effect was observed for cortisol. In a similar vein, Keijser et al. ( 2021 ) showed in their gene-environment interaction study that the effects of FKBP5, a gene very closely related to HPA axis regulation, and early life stress on depressive symptoms among young adults was moderated by a positive parenting style; and (5) the role of stress and anxiety as transdiagnostic factors in mental disorders, be it as an etiological factor, a variable contributing to symptom maintenance, or as a consequence of the condition itself. Stress, e.g., as a common denominator for a broad variety of psychiatric diagnoses has been extensively discussed, and stress as an etiological factor holds specific significance in the context of transdiagnostic approaches to the conceptualization and treatment of mental disorders (Wilamowska et al. 2010 ). The HPA axis, specifically, is widely known to be dysregulated in various conditions. Fischer et al. ( 2021 ) discuss in their comprehensive review the role of this important stress system in the context of patients with post-traumatic disorder. Specifically focusing on the cortisol awakening response, Rausch and colleagues provide evidence for HPA axis dysregulation in patients diagnosed with borderline personality disorder (Rausch et al. 2021 ). As part of a longitudinal project on ADHD, Szep et al. ( 2021 ) investigated the possible impact of child and maternal ADHD symptoms on mothers’ perceived chronic stress and hair cortisol concentration; although there was no direct association, the findings underline the importance of taking stress-related assessments into consideration in ADHD studies. As the HPA axis is closely interacting with the immune system, Rhein et al. ( 2021 ) examined in their study the predicting role of the cytokine IL-6 on psychotherapy outcome in patients with PTSD, indicating that high reactivity of IL-6 to a stressor at the beginning of the therapy was associated with a negative therapy outcome. The review of Kyunghee Kim et al. ( 2021 ) also demonstrated the critical role of immune pathways in the molecular changes due to antidepressant treatment. As for the therapy, the important role of cognitive-behavioral therapy with its key elements to address both stress and anxiety reduction have been shown in two studies in this special issue, evidencing its successful application in obsessive–compulsive disorder (Ivarsson et al. 2021 ; Hollmann et al. 2021 ). Thus, both stress and anxiety are crucial transdiagnostic factors in various mental disorders, and future research needs elaborate further on their role in etiology, maintenance, and treatment.

In conclusion, a number of important questions are being asked in stress and anxiety research, as has become evident above. The Special Issue on “Recent developments in stress and anxiety research” attempts to answer at least some of the raised questions, and I want to invite you to inspect the individual papers briefly introduced above in more detail.

al’Absi M, Nakajima M, Bruehl S (2021) Stress and pain: modality-specific opioid mediation of stress-induced analgesia. J Neural Transm. https://doi.org/10.1007/s00702-021-02401-4

Article   PubMed   Google Scholar  

Bentele UU, Meier M, Benz ABE, Denk BF, Dimitroff SJ, Pruessner JC, Unternaehrer E (2021) The impact of maternal care and blood glucose availability on the cortisol stress response in fasted women. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02350-y

Article   Google Scholar  

Campbell J, Ehlert U (2012) Acute psychosocial stress: does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology 37(8):1111–1134. https://doi.org/10.1016/j.psyneuen.2011.12.010

Denk B, Dimitroff SJ, Meier M, Benz ABE, Bentele UU, Unternaehrer E, Popovic NF, Gaissmaier W, Pruessner JC (2021) Influence of stress on physiological synchrony in a stressful versus non-stressful group setting. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02384-2

Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130(3):355–391

Fischer S, Schumacher T, Knaevelsrud C, Ehlert U, Schumacher S (2021) Genes and hormones of the hypothalamic-pituitary-adrenal axis in post-traumatic stress disorder. What is their role in symptom expression and treatment response? J Neural Transm (vienna). https://doi.org/10.1007/s00702-021-02330-2

Hollmann K, Allgaier K, Hohnecker CS, Lautenbacher H, Bizu V, Nickola M, Wewetzer G, Wewetzer C, Ivarsson T, Skokauskas N, Wolters LH, Skarphedinsson G, Weidle B, de Haan E, Torp NC, Compton SN, Calvo R, Lera-Miguel S, Haigis A, Renner TJ, Conzelmann A (2021) Internet-based cognitive behavioral therapy in children and adolescents with obsessive compulsive disorder: a feasibility study. J Neural Transm. https://doi.org/10.1007/s00702-021-02409-w

Ivarsson T, Melin K, Carlsson A, Ljungberg M, Forssell-Aronsson E, Starck G, Skarphedinsson G (2021) Neurochemical properties measured by 1 H magnetic resonance spectroscopy may predict cognitive behaviour therapy outcome in paediatric OCD: a pilot study. J Neural Transm. https://doi.org/10.1007/s00702-021-02407-y

Keijser R, Olofsdotter S, Nilsson WK, Åslund C (2021) Three-way interaction effects of early life stress, positive parenting and FKBP5 in the development of depressive symptoms in a general population. J Neural Transm. https://doi.org/10.1007/s00702-021-02405-0

Kuhn L, Noack H, Skoluda N, Wagels L, Rohr AK, Schulte C, Eisenkolb S, Nieratschker V, Derntl B, Habel U (2021) The association of the 5-HTTLPR polymorphism and the response to different stressors in healthy males. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02390-4

Kyunghee Kim H, Zai G, Hennings J, Müller DJ, Kloiber S (2021) Changes in RNA expression levels during antidepressant treatment: a systematic review. J Neural Transm. https://doi.org/10.1007/s00702-021-02394-0

Lazarus RS, Folkman S (1984) Stress, appraisal, and coping. Springer Publisher Company Inc, New York

Google Scholar  

McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179

Article   CAS   Google Scholar  

Nater UM (2018) The multidimensionality of stress and its assessment. Brain Behav Immun 73:159–160. https://doi.org/10.1016/j.bbi.2018.07.018

Rausch J, Flach E, Panizza A, Brunner R, Herpertz SC, Kaess M, Bertsch K (2021) Associations between age and cortisol awakening response in patients with borderline personality disorder. J Neural Transm. https://doi.org/10.1007/s00702-021-02402-3

Rhein C, Hepp T, Kraus O, von Majewski K, Lieb M, Rohleder N, Erim Y (2021) Interleukin-6 secretion upon acute psychosocial stress as a potential predictor of psychotherapy outcome in posttraumatic stress disorder. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02346-8

Sattler FA, Nater UM, Mewes R (2021) Gay men’s stress response to a general and a specific social stressor. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02380-6

Skoluda N, Piroth I, Gao W, Nater UM (2021) HOME vs. LAB hair samples for the determination of long-term steroid concentrations: a comparison between hair samples collected by laypersons and trained research staff. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02367-3

Stoffel M, Abbruzzese E, Rahn S, Bossmann U, Moessner M, Ditzen B (2021) Covariation of psychobiological stress regulation with valence and quantity of social interactions in everyday life: disentangling intra- and interindividual sources of variation. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02359-3

Szep A, Skoluda N, Schloss S, Becker K, Pauli-Pott U, Nater UM (2021) The impact of preschool child and maternal attention-deficit/hyperactivity disorder (ADHD) symptoms on mothers’ perceived chronic stress and hair cortisol. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02377-1

Vatheuer CC, Vehlen A, von Dawans B, Domes G (2021) Gaze behavior is associated with the cortisol response to acute psychosocial stress in the virtual TSST. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-021-02344-w

Wilamowska ZA, Thompson-Hollands J, Fairholme CP, Ellard KK, Farchione TJ, Barlow DH (2010) Conceptual background, development, and preliminary data from the unified protocol for transdiagnostic treatment of emotional disorders. Depress Anxiety 27(10):882–890. https://doi.org/10.1002/da.20735

Download references

Author information

Authors and affiliations.

Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria

Urs M. Nater

University Research Platform ‘The Stress of Life – Processes and Mechanisms Underlying Everyday Life Stress’, University of Vienna, Vienna, Austria

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Urs M. Nater .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Nater, U.M. Recent developments in stress and anxiety research. J Neural Transm 128 , 1265–1267 (2021). https://doi.org/10.1007/s00702-021-02410-3

Download citation

Accepted : 13 August 2021

Published : 01 September 2021

Issue Date : September 2021

DOI : https://doi.org/10.1007/s00702-021-02410-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Stress and Health: A Review of Psychobiological Processes

Affiliations.

  • 1 School of Psychology, University of Leeds, Leeds LS2 9JT, United Kingdom; email: [email protected].
  • 2 Department of Psychological Science, School of Social Ecology, University of California, Irvine, California 92697, USA; email: [email protected].
  • 3 Division of Primary Care, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; email: [email protected].
  • PMID: 32886587
  • DOI: 10.1146/annurev-psych-062520-122331

The cumulative science linking stress to negative health outcomes is vast. Stress can affect health directly, through autonomic and neuroendocrine responses, but also indirectly, through changes in health behaviors. In this review, we present a brief overview of ( a ) why we should be interested in stress in the context of health; ( b ) the stress response and allostatic load; ( c ) some of the key biological mechanisms through which stress impacts health, such as by influencing hypothalamic-pituitary-adrenal axis regulation and cortisol dynamics, the autonomic nervous system, and gene expression; and ( d ) evidence of the clinical relevance of stress, exemplified through the risk of infectious diseases. The studies reviewed in this article confirm that stress has an impact on multiple biological systems. Future work ought to consider further the importance of early-life adversity and continue to explore how different biological systems interact in the context of stress and health processes.

Keywords: HPA axis; allostatic load; autonomic nervous system; cortisol; genomics.

Publication types

  • Autonomic Nervous System / metabolism
  • Hydrocortisone / metabolism
  • Hypothalamo-Hypophyseal System / metabolism
  • Pituitary-Adrenal System / metabolism
  • Stress, Psychological / metabolism*
  • Hydrocortisone

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 27 June 2019

The human stress response

  • Georgina Russell 1 &
  • Stafford Lightman   ORCID: orcid.org/0000-0002-8546-9646 1  

Nature Reviews Endocrinology volume  15 ,  pages 525–534 ( 2019 ) Cite this article

23k Accesses

399 Citations

833 Altmetric

Metrics details

  • Adrenal cortex hormones
  • Circadian rhythms
  • Multihormonal system disorders
  • Stress signalling

The human stress response has evolved to maintain homeostasis under conditions of real or perceived stress. This objective is achieved through autoregulatory neural and hormonal systems in close association with central and peripheral clocks. The hypothalamic–pituitary–adrenal axis is a key regulatory pathway in the maintenance of these homeostatic processes. The end product of this pathway — cortisol — is secreted in a pulsatile pattern, with changes in pulse amplitude creating a circadian pattern. During acute stress, cortisol levels rise and pulsatility is maintained. Although the initial rise in cortisol follows a large surge in adrenocorticotropic hormone levels, if long-term inflammatory stress occurs, adrenocorticotropic hormone levels return to near basal levels while cortisol levels remain raised as a result of increased adrenal sensitivity. In chronic stress, hypothalamic activation of the pituitary changes from corticotropin-releasing hormone-dominant to arginine vasopressin-dominant, and cortisol levels remain raised due at least in part to decreased cortisol metabolism. Acute elevations in cortisol levels are beneficial to promoting survival of the fittest as part of the fight-or-flight response. However, chronic exposure to stress results in reversal of the beneficial effects, with long-term cortisol exposure becoming maladaptive, which can lead to a broad range of problems including the metabolic syndrome, obesity, cancer, mental health disorders, cardiovascular disease and increased susceptibility to infections. Neuroimmunoendocrine modulation in disease states and glucocorticoid-based therapeutics are also discussed.

The hypothalamic–pituitary–adrenal (HPA) axis is a key system that synchronizes the stress response with circadian regulatory processes.

Regulation of the HPA axis is very dynamic with both ultradian and circadian oscillations.

Short-term and longer-term stress result in different regulatory mechanisms involving hypothalamic, pituitary and adrenal activity, as well as cortisol metabolism.

Chronic elevation and nonphysiological patterns of cortisol result in poor cognitive, metabolic and immune function.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

195,33 € per year

only 16,28 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

stress research paper

Similar content being viewed by others

stress research paper

Resilient anatomy and local plasticity of naive and stress haematopoiesis

Qingqing Wu, Jizhou Zhang, … Daniel Lucas

stress research paper

Microdosing with psilocybin mushrooms: a double-blind placebo-controlled study

Federico Cavanna, Stephanie Muller, … Enzo Tagliazucchi

stress research paper

Emotions and brain function are altered up to one month after a single high dose of psilocybin

Frederick S. Barrett, Manoj K. Doss, … Roland R. Griffiths

Szabo, S., Tache, Y. & Somogyi, A. The legacy of Hans Selye and the origins of stress research: a retrospective 75 years after his landmark brief “letter” to the editor of Nature . Stress 15 , 472–478 (2012).

CAS   PubMed   Google Scholar  

Levine, S. Influence of psychological variables on the activity of the hypothalamic-pituitary-adrenal axis. Eur. J. Pharmacol. 405 , 149–160 (2000).

Brown, S. A. & Azzi, A. Peripheral circadian oscillators in mammals. Handb. Exp. Pharmacol. 2013 , 45–66 (2013).

Google Scholar  

Roenneberg, T. & Merrow, M. The circadian clock and human health. Curr. Biol. 26 , R432–R443 (2016).

Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. Science 354 , 994–999 (2016).

Turek, F. W. Circadian neural rhythms in mammals.  Annu. Rev. Physiol. 47 , 49–64 (1985).

Skene, D. J. et al. Separation of circadian- and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism. Proc. Natl Acad. Sci. USA 115 , 7825–7830 (2018).

Buhr, E. D. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Handb. Exp. Pharmacol. 217 , 3–27 (2013).

CAS   Google Scholar  

Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18 , 164–179 (2017).

Baron, K. G. & Reid, K. J. Circadian misalignment and health. Int. Rev. Psychiatry 26 , 139–154 (2014).

PubMed   PubMed Central   Google Scholar  

Potter, G. D. et al. Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. Endocr. Rev. 37 , 584–608 (2016).

CAS   PubMed   PubMed Central   Google Scholar  

Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111 , 16219–16224 (2014).

Smarr, B. L. & Schirmer, A. E. 3.4 million real-world learning management system logins reveal the majority of students experience social jet lag correlated with decreased performance. Sci. Rep. 8 , 4793 (2018).

Gardner, M. et al. Dysregulation of the hypothalamic pituitary adrenal (HPA) axis and cognitive capability at older ages: individual participant meta-analysis of five cohorts. Sci. Rep. 9 , 4555 (2019).

Selye, H. Stress and the general adaptation syndrome. BMJ 1 , 1383–1392 (1950).

Russell, G. M. & Lightman, S. L. Can side effects of steroid treatments be minimized by the temporal aspects of delivery method? Expert Opin. Drug Saf. 13 , 1501–1513 (2014).

Sorrells, S. F. & Sapolsky, R. M. An inflammatory review of glucocorticoid actions in the CNS. Brain Behav. Immun. 21 , 259–272 (2007).

Busillo, J. M. & Cidlowski, J. A. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol. Metab. 24 , 109–119 (2013).

McEwen, B. S. et al. The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res. Rev. 23 , 79–133 (1997).

Elenkov, I. J. & Chrousos, G. P. Stress system — organization, physiology and immunoregulation. Neuroimmunomodulation 13 , 257–267 (2006).

Brinkmann, V. & Kristofic, C. Regulation by corticosteroids of Th1 and Th2 cytokine production in human CD4+ effector T cells generated from CD45RO- and CD45RO+ subsets. J. Immunol. 155 , 3322–3328 (1995).

Wiegers, G. J. & Reul, J. M. Induction of cytokine receptors by glucocorticoids: functional and pathological significance. Trends Pharmacol. Sci. 19 , 317–321 (1998).

Abraham, I. M., Meerlo, P. & Luiten, P. G. Concentration dependent actions of glucocorticoids on neuronal viability and survival. Dose Response 4 , 38–54 (2006).

Plaschke, K., Muller, D. & Hoyer, S. Effect of adrenalectomy and corticosterone substitution on glucose and glycogen metabolism in rat brain. J. Neural Transm. 103 , 89–100 (1996).

Belanoff, J. K., Gross, K., Yager, A. & Schatzberg, A. F. Corticosteroids and cognition. J. Psychiatr. Res. 35 , 127–145 (2001).

Roozendaal, B. Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol. Learn. Mem. 78 , 578–595 (2002).

Brown, E. S. Effects of glucocorticoids on mood, memory, and the hippocampus. Treatment and preventive therapy. Ann. NY Acad. Sci. 1179 , 41–55 (2009).

de Kloet, E. R., Oitzl, M. S. & Joels, M. Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci. 22 , 422–426 (1999).

PubMed   Google Scholar  

Decani, S., Federighi, V., Baruzzi, E., Sardella, A. & Lodi, G. Iatrogenic Cushing’s syndrome and topical steroid therapy: case series and review of the literature. J. Dermatolog. Treat. 25 , 495–500 (2014).

Kenna, H. A., Poon, A. W., de los Angeles, C. P. & Koran, L. M. Psychiatric complications of treatment with corticosteroids: review with case report. Psychiatry Clin. Neurosci. 65 , 549–560 (2011).

Buijs, R. M., Markman, M., Nunes-Cardoso, B., Hou, Y. X. & Shinn, S. Projections of the suprachiasmatic nucleus to stress-related areas in the rat hypothalamus: a light and electron microscopic study. J. Comp. Neurol. 335 , 42–54 (1993).

Watts, A. G. & Swanson, L. W. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J. Comp. Neurol. 258 , 230–252 (1987).

Jacobson, L. Hypothalamic-pituitary-adrenocortical axis regulation. Endocrinol. Metab. Clin. North Am. 34 , 271–292 (2005).

Herman, J. P., Ostrander, M. M., Mueller, N. K. & Figueiredo, H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29 , 1201–1213 (2005).

Dallman, M. F. et al. Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Ann. NY Acad. Sci. 746 , 22–31 (1994).

Jasper, M. S. & Engeland, W. C. Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology 59 , 97–109 (1994).

Buijs, R. M. et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur. J. Neurosci. 11 , 1535–1544 (1999).

Kiessling, S., Sollars, P. J. & Pickard, G. E. Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PLOS ONE 9 , e92959 (2014).

Husse, J., Leliavski, A., Tsang, A. H., Oster, H. & Eichele, G. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J. 28 , 4950–4960 (2014).

Ishida, A. et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2 , 297–307 (2005).

Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4 , 163–173 (2006).

Charmandari, E. et al. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLOS ONE 6 , e25612 (2011).

Bailey, S. L. & Heitkemper, M. M. Circadian rhythmicity of cortisol and body temperature: morningness-eveningness effects. Chronobiol. Int. 18 , 249–261 (2001).

Donner, N. C., Montoya, C. D., Lukkes, J. L. & Lowry, C. A. Chronic non-invasive corticosterone administration abolishes the diurnal pattern of tph2 expression. Psychoneuroendocrinology 37 , 645–661 (2012).

Lightman, S. L. The neuroendocrinology of stress: a never ending story. J. Neuroendocrinol. 20 , 880–884 (2008).

Nicolaides, N. C., Kyratzi, E., Lamprokostopoulou, A., Chrousos, G. P. & Charmandari, E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 22 , 6–19 (2015).

Gibbison, B. et al. Dynamic pituitary-adrenal interactions in response to cardiac surgery. Crit. Care Med. 43 , 791–800 (2015).

Spiga, F. et al. Dynamic responses of the adrenal steroidogenic regulatory network. Proc. Natl Acad. Sci. USA 114 , E6466–E6474 (2017).

Ma, X. M., Levy, A. & Lightman, S. L. Emergence of an isolated arginine vasopressin (AVP) response to stress after repeated restraint: a study of both AVP and corticotropin-releasing hormone messenger ribonucleic acid (RNA) and heteronuclear RNA. Endocrinology 138 , 4351–4357 (1997).

Dallman, M. F. Stress update: adaptation of the hypothalamic-pituitary-adrenal axis to chronic stress. Trends. Endocrinol. Metab. 4 , 62–69 (1993).

Henley, D. E. et al. Hypothalamic-pituitary-adrenal axis activation in obstructive sleep apnea: the effect of continuous positive airway pressure therapy. J. Clin. Endocrinol. Metab. 94 , 4234–4242 (2009).

Boonen, E. et al. Reduced cortisol metabolism during critical illness. N. Engl. J. Med. 368 , 1477–1488 (2013).

Peeters, B. et al. Adrenocortical function during prolonged critical illness and beyond: a prospective observational study. Intensive Care Med. 44 , 1720–1729 (2018).

De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. & Joels, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19 , 269–301 (1998).

Reul, J. M. & de Kloet, E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117 , 2505–2511 (1985).

Dallman, M. F. Fast glucocorticoid actions on brain: back to the future. Front. Neuroendocrinol. 26 , 103–108 (2005).

Russell, G. M. et al. Rapid glucocorticoid receptor-mediated inhibition of hypothalamic-pituitary-adrenal ultradian activity in healthy males. J. Neurosci. 30 , 6106–6115 (2010).

Lowenberg, M., Verhaar, A. P., van den Brink, G. R. & Hommes, D. W. Glucocorticoid signaling: a nongenomic mechanism for T cell immunosuppression. Trends Mol. Med. 13 , 158–163 (2007).

Orchinik, M., Murray, T. F., Franklin, P. H. & Moore, F. L. Guanyl nucleotides modulate binding to steroid receptors in neuronal membranes. Proc. Natl Acad. Sci. USA 89 , 3830–3834 (1992).

Orchinik, M., Murray, T. F. & Moore, F. L. A corticosteroid receptor in neuronal membranes. Science 252 , 1848–1851 (1991).

Joels, M., Pasricha, N. & Karst, H. The interplay between rapid and slow corticosteroid actions in brain. Eur. J. Pharmacol. 719 , 44–52 (2013).

Walker, J. J. et al. The origin of glucocorticoid hormone oscillations. PLOS Biol. 10 , e1001341 (2012).

Patel, P. D. et al. Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain. J. Psychiatr. Res. 34 , 383–392 (2000).

Groeneweg, F. L., Karst, H., de Kloet, E. R. & Joels, M. Rapid non-genomic effects of corticosteroids and their role in the central stress response. J. Endocrinol. 209 , 153–167 (2011).

de Kloet, E. R., Fitzsimons, C. P., Datson, N. A., Meijer, O. C. & Vreugdenhil, E. Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. Brain Res. 1293 , 129–141 (2009).

Russell, G. M., Kalafatakis, K. & Lightman, S. L. The importance of biological oscillators for HPA activity and tissue glucocorticoid response: coordinating stress and neurobehavioural adaptation. J. Neuroendocrinol. 27 , 378–388 (2015).

Lewis, J. G. et al. Plasma variation of corticosteroid-binding globulin and sex hormone-binding globulin. Horm. Metab. Res. 38 , 241–245 (2006).

Lewis, J. G., Bagley, C. J., Elder, P. A., Bachmann, A. W. & Torpy, D. J. Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin. Clin. Chim. Acta 359 , 189–194 (2005).

Hammond, G. L., Smith, C. L. & Underhill, D. A. Molecular studies of corticosteroid binding globulin structure, biosynthesis and function. J. Steroid Biochem. Mol. Biol. 40 , 755–762 (1991).

Frairia, R. et al. Influence of naturally occurring and synthetic glucocorticoids on corticosteroid-binding globulin-steroid interaction in human peripheral plasma. Ann. NY Acad. Sci. 538 , 287–303 (1988).

Cameron, A. et al. Temperature-responsive release of cortisol from its binding globulin: a protein thermocouple. J. Clin. Endocrinol. Metab. 95 , 4689–4695 (2010).

Kyrou, I., Chrousos, G. P. & Tsigos, C. Stress, visceral obesity, and metabolic complications. Ann. NY Acad. Sci. 1083 , 77–110 (2006).

Chapman, K., Holmes, M. & Seckl, J. 11beta-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol. Rev. 93 , 1139–1206 (2013).

Seckl, J. R. 11beta-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr. Opin. Pharmacol. 4 , 597–602 (2004).

Verma, M. et al. 11beta-hydroxysteroid dehydrogenase-1 deficiency alters brain energy metabolism in acute systemic inflammation. Brain Behav. Immun. 69 , 223–234 (2018).

Follenius, M., Simon, C., Brandenberger, G. & Lenzi, P. Ultradian plasma corticotropin and cortisol rhythms: time-series analyses. J. Endocrinol. Invest. 10 , 261–266 (1987).

Hartmann, A., Veldhuis, J. D., Deuschle, M., Standhardt, H. & Heuser, I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol. Aging 18 , 285–289 (1997).

Rivest, R. W., Schulz, P., Lustenberger, S. & Sizonenko, P. C. Differences between circadian and ultradian organization of cortisol and melatonin rhythms during activity and rest. J. Clin. Endocrinol. Metab. 68 , 721–729 (1989).

Waite, E. J. et al. Ultradian corticosterone secretion is maintained in the absence of circadian cues. Eur. J. Neurosci. 36 , 3142–3150 (2012).

Ixart, G., Barbanel, G., Nouguier-Soule, J. & Assenmacher, I. A quantitative study of the pulsatile parameters of CRH-41 secretion in unanesthetized free-moving rats. Exp. Brain Res. 87 , 153–158 (1991).

Spiga, F. et al. ACTH-dependent ultradian rhythm of corticosterone secretion. Endocrinology 152 , 1448–1457 (2011).

Spiga, F., Liu, Y., Aguilera, G. & Lightman, S. L. Temporal effect of adrenocorticotrophic hormone on adrenal glucocorticoid steroidogenesis: involvement of the transducer of regulated cyclic AMP-response element-binding protein activity. J. Neuroendocrinol. 23 , 136–142 (2011).

Lim, C. & Allada, R. Emerging roles for post-transcriptional regulation in circadian clocks. Nat. Neurosci. 16 , 1544–1550 (2013).

Liston, C. et al. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat. Neurosci. 16 , 698–705 (2013).

Lightman, S. L. & Conway-Campbell, B. L. The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat. Rev. Neurosci. 11 , 710–718 (2010).

Stavreva, D. A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11 , 1093–1102 (2009).

Conway-Campbell, B. L., Pooley, J. R., Hager, G. L. & Lightman, S. L. Molecular dynamics of ultradian glucocorticoid receptor action. Mol. Cell. Endocrinol. 348 , 383–393 (2012).

George, C. L., Lightman, S. L. & Biddie, S. C. Transcription factor interactions in genomic nuclear receptor function. Epigenomics 3 , 471–485 (2011).

So, A. Y., Chaivorapol, C., Bolton, E. C., Li, H. & Yamamoto, K. R. Determinants of cell- and gene-specific transcriptional regulation by the glucocorticoid receptor. PLOS Genet. 3 , e94 (2007).

Zalachoras, I., Houtman, R. & Meijer, O. C. Understanding stress-effects in the brain via transcriptional signal transduction pathways. Neuroscience 242 , 97–109 (2013).

Sarabdjitsingh, R. A. et al. Stress responsiveness varies over the ultradian glucocorticoid cycle in a brain-region-specific manner. Endocrinology 151 , 5369–5379 (2010).

Sarabdjitsingh, R. A. et al. Ultradian corticosterone pulses balance glutaminergic transmission and synaptic plasticity. Proc. Natl Acad. Sci. USA 111 , 14265–14270 (2014).

Kalafatakis, K. et al. Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man. Proc. Natl Acad. Sci. USA 115 , E4091–E4100 (2018).

Gjerstad, J. K., Lightman, S. L. & Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21 , 403–416 (2018).

Bornstein, S. R., Engeland, W. C., Ehrhart-Bornstein, M. & Herman, J. P. Dissociation of ACTH and glucocorticoids. Trends Endocrinol. Metab. 19 , 175–180 (2008).

Silverman, M. N., Miller, A. H., Biron, C. A. & Pearce, B. D. Characterization of an interleukin-6- and adrenocorticotropin-dependent, immune-to-adrenal pathway during viral infection. Endocrinology 145 , 3580–3589 (2004).

Franchimont, D. et al. Adrenal cortical activation in murine colitis. Gastroenterology 119 , 1560–1568 (2000).

Viblanc, V. A. et al. An integrative appraisal of the hormonal and metabolic changes induced by acute stress using king penguins as a model. Gen. Comp. Endocrinol. 269 , 1–10 (2018).

Cruz-Topete, D. & Cidlowski, J. A. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 22 , 20–32 (2015).

Biddie, S. C., Conway-Campbell, B. L. & Lightman, S. L. Dynamic regulation of glucocorticoid signalling in health and disease. Rheumatology 51 , 403–412 (2012).

Miller, G. E., Cohen, S. & Ritchey, A. K. Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health Psychol. 21 , 531–541 (2002).

Oster, H. et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr. Rev. 38 , 3–45 (2017).

Keller, M. et al. A circadian clock in macrophages controls inflammatory immune responses. Proc. Natl Acad. Sci. USA 106 , 21407–21412 (2009).

Boivin, D. B. et al. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102 , 4143–4145 (2003).

Koo, J. W., Russo, S. J., Ferguson, D., Nestler, E. J. & Duman, R. S. Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc. Natl Acad. Sci. USA 107 , 2669–2674 (2010).

Pace, T. W., Hu, F. & Miller, A. H. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav. Immun. 21 , 9–19 (2007).

Pace, T. W. et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am. J. Psychiatry 163 , 1630–1633 (2006).

Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl Acad. Sci. USA 109 , 5995–5999 (2012).

Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354 , 1435–1439 (1999).

Hauner, H., Schmid, P. & Pfeiffer, E. F. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J. Clin. Endocrinol. Metab. 64 , 832–835 (1987).

Dallman, M. F. et al. Glucocorticoids, chronic stress, and obesity. Prog. Brain Res. 153 , 75–105 (2006).

Tsigos, C. et al. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J. Clin. Endocrinol. Metab. 82 , 4167–4170 (1997).

McEwen, B. S. Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load. Metabolism 55 , S20–S23 (2006).

Zhu, B., Shi, C., Park, C. G., Zhao, X. & Reutrakul, S. Effects of sleep restriction on metabolism-related parameters in healthy adults: a comprehensive review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 45 , 18–30 (2019).

Gavrila, A. et al. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J. Clin. Endocrinol. Metab. 88 , 2838–2843 (2003).

Knutson, K. L. & Van Cauter, E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. NY Acad. Sci. 1129 , 287–304 (2008).

Adam, T. C. & Epel, E. S. Stress, eating and the reward system. Physiol. Behav. 91 , 449–458 (2007).

Young, E. A., Carlson, N. E. & Brown, M. B. Twenty-four-hour ACTH and cortisol pulsatility in depressed women. Neuropsychopharmacology 25 , 267–276 (2001).

Heuser, I., Yassouridis, A. & Holsboer, F. The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J. Psychiatr. Res. 28 , 341–356 (1994).

Ising, M. et al. The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 29 , 1085–1093 (2005).

Krishnan, V. & Nestler, E. J. The molecular neurobiology of depression. Nature 455 , 894–902 (2008).

Miller, A. H. Depression and immunity: a role for T cells? Brain Behav. Immun. 24 , 1–8 (2010).

Koo, J. W. & Duman, R. S. IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl Acad. Sci. USA 105 , 751–756 (2008).

Horowitz, M. A., Zunszain, P. A., Anacker, C., Musaelyan, K. & Pariante, C. M. Glucocorticoids and inflammation: a double-headed sword in depression? How do neuroendocrine and inflammatory pathways interact during stress to contribute to the pathogenesis of depression? Mod. Trends Pharmacopsychiatry 28 , 127–143 (2013).

Munhoz, C. D. et al. Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J. Neurosci. 26 , 3813–3820 (2006).

Pariante, C. M. Glucocorticoid receptor function in vitro in patients with major depression. Stress 7 , 209–219 (2004).

Kenis, G. & Maes, M. Effects of antidepressants on the production of cytokines. Int. J. Neuropsychopharmacol. 5 , 401–412 (2002).

Bjornsdottir, S. et al. Drug prescription patterns in patients with Addison’s disease: a Swedish population-based cohort study. J. Clin. Endocrinol. Metab. 98 , 2009–2018 (2013).

Dunlop, D. Eighty-six cases of Addison’s disease. BMJ 2 , 887–891 (1963).

Giordano, R. et al. Metabolic and cardiovascular profile in patients with Addison’s disease under conventional glucocorticoid replacement. J. Endocrinol. Invest. 32 , 917–923 (2009).

Johannsson, G. et al. Adrenal insufficiency: review of clinical outcomes with current glucocorticoid replacement therapy. Clin. Endocrinol. 82 , 2–11 (2015).

Lovas, K., Loge, J. H. & Husebye, E. S. Subjective health status in Norwegian patients with Addison’s disease. Clin. Endocrinol. 56 , 581–588 (2002).

Feek, C. M. et al. Patterns of plasma cortisol and ACTH concentrations in patients with Addison’s disease treated with conventional corticosteroid replacement. Clin. Endocrinol. 14 , 451–458 (1981).

Isidori, A. M. et al. Effect of once-daily, modified-release hydrocortisone versus standard glucocorticoid therapy on metabolism and innate immunity in patients with adrenal insufficiency (DREAM): a single-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 6 , 173–185 (2018).

Bancos, I. et al. Primary adrenal insufficiency is associated with impaired natural killer cell function: a potential link to increased mortality. Eur. J. Endocrinol. 176 , 471–480 (2017).

Bjanesoy, T. E. et al. Altered DNA methylation profile in Norwegian patients with autoimmune Addison’s disease. Mol. Immunol. 59 , 208–216 (2014).

Langenheim, J., Ventz, M., Hinz, A. & Quinkler, M. Modified-release prednisone decreases complaints and fatigue compared to standard prednisolone in patients with adrenal insufficiency. Horm. Metab. Res. 45 , 96–101 (2013).

Mallappa, A. et al. A phase 2 study of Chronocort, a modified-release formulation of hydrocortisone, in the treatment of adults with classic congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 100 , 1137–1145 (2015).

Lovas, K. & Husebye, E. S. Continuous subcutaneous hydrocortisone infusion in Addison’s disease. Eur. J. Endocrinol. 157 , 109–112 (2007).

Venneri, M. A. et al. Circadian rhythm of glucocorticoid administration entrains clock genes in immune cells: a DREAM trial ancillary study. J. Clin. Endocrinol. Metab. 103 , 2998–3009 (2018).

Oksnes, M. et al. Continuous subcutaneous hydrocortisone infusion versus oral hydrocortisone replacement for treatment of Addison’s disease: a randomized clinical trial. J. Clin. Endocrinol. Metab. 99 , 1665–1674 (2014).

Riedel, M., Wiese, A., Schurmeyer, T. H. & Brabant, G. Quality of life in patients with Addison’s disease: effects of different cortisol replacement modes. Exp. Clin. Endocrinol. 101 , 106–111 (1993).

van Staa, T. P. et al. Use of oral corticosteroids in the United Kingdom. QJM 93 , 105–111 (2000).

Overman, R. A., Yeh, J. Y. & Deal, C. L. Prevalence of oral glucocorticoid usage in the United States: a general population perspective. Arthritis Care Res. 65 , 294–298 (2013).

Curtis, J. R. et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum. 55 , 420–426 (2006).

McDonough, A. K., Curtis, J. R. & Saag, K. G. The epidemiology of glucocorticoid-associated adverse events. Curr. Opin. Rheumatol. 20 , 131–137 (2008).

Leung, D. Y. & Bloom, J. W. Update on glucocorticoid action and resistance. J. Allergy Clin. Immunol. 111 , 3–22 (2003).

Download references

Author information

Authors and affiliations.

Translational Health Sciences, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol, UK

Georgina Russell & Stafford Lightman

You can also search for this author in PubMed   Google Scholar

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Georgina Russell or Stafford Lightman .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cues that entrain or synchronize the body’s 24-h cycle

Biological rhythms that occur with a frequency of <24 h.

A biochemical oscillator with phases synchronized with solar time.

Neural pathways involving at least one relay.

The microcirculation that allows transport of hypothalamic hormones to the pituitary gland.

The threshold power of (solar) electromagnetic radiation needed to exert an effect.

Repetitive body movements that serve no biological function.

Behaviours engaged for a specific functional purpose.

Any biological process that displays an oscillation of approximately 24 h.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Russell, G., Lightman, S. The human stress response. Nat Rev Endocrinol 15 , 525–534 (2019). https://doi.org/10.1038/s41574-019-0228-0

Download citation

Accepted : 05 June 2019

Published : 27 June 2019

Issue Date : September 2019

DOI : https://doi.org/10.1038/s41574-019-0228-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Key hpi axis receptors facilitate light adaptive behavior in larval zebrafish.

  • Soaleha Shams
  • Karl J. Clark

Scientific Reports (2024)

Evaluation of the benefits of neutral bicarbonate ionized water baths in an open-label, randomized, crossover trial

  • Ryoko Ushikoshi-Nakayama
  • Tomoe Yamazaki
  • Ichiro Saito

Sex-specific associations of serum cortisol with brain biomarkers of Alzheimer’s risk

  • Lisa Mosconi
  • Schantel Williams
  • Jonathan P. Dyke

Evaluation of indicators of acute emotional states in dogs

  • Hannah E. Flint
  • Jennifer E. Weller
  • Tammie King

Early Childhood Education Teacher Workforce: Stress in Relation to Identity and Choices

  • Cynthia A. Wiltshire

Early Childhood Education Journal (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

stress research paper

COMMENTS

  1. STRESS AND HEALTH: Psychological, Behavioral, and Biological

    The relationship between psychosocial stressors and disease is affected by the nature, number, and persistence of the stressors as well as by the individual’s biological vulnerability (i.e., genetics, constitutional factors), psychosocial resources, and learned patterns of coping.

  2. (PDF) Stress and Stress Management: A Review

    Stress and Stress Management: A Review. November 2022. Authors: Maha Lakshmi. Saveetha college of pharmacy, Saveetha institute of medical and technical sciences, SIMATS. References (53)...

  3. (PDF) Stress: Definition and history

    Furthermore, this article reviews relatively new stress concepts based on findings that (1) polymorphisms in certain genes involved in neurotransmission, as well as epigenetic factors, may...

  4. Focus: The Science of Stress: Introduction: The Science of Stress

    In this issue, the biological and social dynamics of stress are examined. Original research, reviews, and perspectives are presented on how stress affects development, metabolism, and various cellular and organ level processes of physiology.

  5. Recent developments in stress and anxiety research

    Recent developments in stress and anxiety research. Editorial. Published: 01 September 2021. Volume 128 , pages 1265–1267, ( 2021 ) Cite this article. Download PDF. Urs M. Nater. 4946 Accesses. 2 Citations. Explore all metrics. Stress and anxiety are virtually omnipresent in today´s society, pervading almost all aspects of our daily lives.

  6. Stress and Health: A Review of Psychobiological Processes

    In this review, we present a brief overview of ( a) why we should be interested in stress in the context of health; ( b) the stress response and allostatic load; ( c) some of the key biological mechanisms through which stress impacts health, such as by influencing hypothalamic-pituitary-adrenal axis regulation and cortisol dynamics, the autonomi...

  7. The human stress response

    Abstract. The human stress response has evolved to maintain homeostasis under conditions of real or perceived stress. This objective is achieved through autoregulatory neural and hormonal...

  8. International Journal of Stress Management

    IJSM publishes articles that advance theory and practice and promotes methodologically sound research in stress identification and management across disciplines that include psychology and other social sciences, psychiatry, medicine, therapy and other healthcare, business and industry, humanities, arts, education, engineering, and others.