Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

hypotheses and research question

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Question Vs Hypothesis

Research Question Vs Hypothesis

Table of Contents

Research Question Vs Hypothesis

Research questions and hypotheses are both important elements of a research study, but they serve different purposes.

Research Question

A Research Question is a clear, concise, and specific question that a researcher asks to guide their study. Research questions are used to define the scope of the research project and to guide the collection and analysis of data. Research questions are often used in exploratory or descriptive studies, and they are open-ended in nature. Research questions should be answerable through data collection and analysis and should be linked to the research objectives or goals of the study.

A Hypothesis is a statement that predicts the relationship between two or more variables in a research study. Hypotheses are used in studies that aim to test cause-and-effect relationships between variables. A hypothesis is a tentative explanation for an observed phenomenon, and it is often derived from existing theory or previous research. Hypotheses are typically expressed as an “if-then” statement, where the “if” part refers to the independent variable, and the “then” part refers to the dependent variable. Hypotheses can be either directional (predicting the direction of the relationship between variables) or non-directional (predicting the presence of a relationship without specifying its direction).

Difference Between Research Question and Hypothesis

Here are some key differences between research questions and hypotheses:

Both Research Questions and Hypotheses are essential elements of a research study, but they serve different purposes. Research questions guide the study and help researchers define its scope, while hypotheses are used to test specific cause-and-effect relationships between variables. The choice of which to use depends on the nature of the research question, the study design, and the research objectives.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Inductive Vs Deductive Research

Inductive Vs Deductive Research

Exploratory Vs Explanatory Research

Exploratory Vs Explanatory Research

Basic Vs Applied Research

Basic Vs Applied Research

Generative Vs Evaluative Research

Generative Vs Evaluative Research

Reliability Vs Validity

Reliability Vs Validity

Longitudinal Vs Cross-Sectional Research

Longitudinal Vs Cross-Sectional Research

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

hypotheses and research question

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic &amp; molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids &amp; bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals &amp; rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants &amp; mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition &amp; subtraction addition & subtraction, sciencing_icons_multiplication &amp; division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations &amp; expressions equations & expressions, sciencing_icons_ratios &amp; proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents &amp; logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅
  • Probability & Statistics

The Difference Between Research Questions & Hypothesis

Researchers use one or both of these tools to guide their research.

To Calculate Arcsine, What Buttons Do You Press on a Scientific ...

Research questions and hypothesis are tools used in similar ways for different research methods. Both hypothesis and research questions are written before research begins and are used to help guide the research. Hypothesis are used in deductive research, where researchers use logic and scientific findings to either prove or disprove assumptions. Heuristic research is based on experience, where researchers use observations to learn about the research subject.

Definitions

A hypothesis is defined as an educated guess, while a research question is simply the researcher wondering about the world. Hypothesis are part of the scientific research method. They are employed in research in science, sociology, mathematics and more. Research questions are part of heuristic research methods, and are also used in many fields including literature, and sociology.

As its name suggests, research questions are always written as questions. Hypothesis are written as statements preceded with the words "I predict." For example, a research question would ask, "What is the effect of heat on the effectiveness of bleach?" A hypothesis would state, "I predict heat will diminish the effectiveness of bleach."

Before Writing

Before writing a hypothesis, the researcher must determine what others have discovered about this subject. On the other hand, a research question requires less preparation, but focus and structure is critical.

For example, a researcher using a hypothesis would look up studies about bleach, information on the chemical properties of the chemical when heated and data about its effectiveness before writing the hypothesis. When using a research question, the researcher would think about how to phrase the question to ensure its scope is not too broad, too narrow or impossible to answer.

Writing Conclusions

When writing the conclusion for research conducted using a hypothesis, the researcher will write whether the hypothesis was correct or incorrect, followed by an explanation of the results of the research. The researcher using only a research question will write the answer to the question, followed by the findings of the research.

Related Articles

To calculate arcsine, what buttons do you press on..., what does data mean in a science fair project, how to test for acidity with litmus paper, how to write a hypothesis of magic milk for 5th grade, difference between proposition & hypothesis, what are the 8 steps in scientific research, how to write a summary on a science project, how to calculate a p-value, what is a quotient & dividend, how to calculate calibration curves, research methods in science, test your knowledge on middle school science, how to use log on a ti-83, how to calculate solubilities, how to calculate a standard score, science project ideas & the scientific method, how to convert pounds per square foot to psi, density vs. concentration, what is an engineering goal in a science project, what is the purpose of factor analysis.

  • The Research Assistant: The Relationship Between the Research Question, Hypotheses, Specific Aims, and Long-Term Goals of the Project

About the Author

Alane Michaelson began writing professionally in 2002. Her work has appeared in Michigan publications such as the "Detroit Free Press" and the "Flint Journal." Michaelson graduated from Oakland University in 2006, earning a Bachelor of Arts in journalism.

Photo Credits

Photos.com/liquidlibrary/Getty Images

Find Your Next Great Science Fair Project! GO

We Have More Great Sciencing Articles!

To Calculate Arcsine, What Buttons Do You Press on a Scientific Calculator?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • 10 Research Question Examples to Guide Your Research Project

10 Research Question Examples to Guide your Research Project

Published on October 30, 2022 by Shona McCombes . Revised on October 19, 2023.

The research question is one of the most important parts of your research paper , thesis or dissertation . It’s important to spend some time assessing and refining your question before you get started.

The exact form of your question will depend on a few things, such as the length of your project, the type of research you’re conducting, the topic , and the research problem . However, all research questions should be focused, specific, and relevant to a timely social or scholarly issue.

Once you’ve read our guide on how to write a research question , you can use these examples to craft your own.

Note that the design of your research question can depend on what method you are pursuing. Here are a few options for qualitative, quantitative, and statistical research questions.

Other interesting articles

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, October 19). 10 Research Question Examples to Guide your Research Project. Scribbr. Retrieved April 13, 2024, from https://www.scribbr.com/research-process/research-question-examples/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, writing strong research questions | criteria & examples, how to choose a dissertation topic | 8 steps to follow, evaluating sources | methods & examples, what is your plagiarism score.

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Good Research Question (w/ Examples)

hypotheses and research question

What is a Research Question?

A research question is the main question that your study sought or is seeking to answer. A clear research question guides your research paper or thesis and states exactly what you want to find out, giving your work a focus and objective. Learning  how to write a hypothesis or research question is the start to composing any thesis, dissertation, or research paper. It is also one of the most important sections of a research proposal . 

A good research question not only clarifies the writing in your study; it provides your readers with a clear focus and facilitates their understanding of your research topic, as well as outlining your study’s objectives. Before drafting the paper and receiving research paper editing (and usually before performing your study), you should write a concise statement of what this study intends to accomplish or reveal.

Research Question Writing Tips

Listed below are the important characteristics of a good research question:

A good research question should:

  • Be clear and provide specific information so readers can easily understand the purpose.
  • Be focused in its scope and narrow enough to be addressed in the space allowed by your paper
  • Be relevant and concise and express your main ideas in as few words as possible, like a hypothesis.
  • Be precise and complex enough that it does not simply answer a closed “yes or no” question, but requires an analysis of arguments and literature prior to its being considered acceptable. 
  • Be arguable or testable so that answers to the research question are open to scrutiny and specific questions and counterarguments.

Some of these characteristics might be difficult to understand in the form of a list. Let’s go into more detail about what a research question must do and look at some examples of research questions.

The research question should be specific and focused 

Research questions that are too broad are not suitable to be addressed in a single study. One reason for this can be if there are many factors or variables to consider. In addition, a sample data set that is too large or an experimental timeline that is too long may suggest that the research question is not focused enough.

A specific research question means that the collective data and observations come together to either confirm or deny the chosen hypothesis in a clear manner. If a research question is too vague, then the data might end up creating an alternate research problem or hypothesis that you haven’t addressed in your Introduction section .

The research question should be based on the literature 

An effective research question should be answerable and verifiable based on prior research because an effective scientific study must be placed in the context of a wider academic consensus. This means that conspiracy or fringe theories are not good research paper topics.

Instead, a good research question must extend, examine, and verify the context of your research field. It should fit naturally within the literature and be searchable by other research authors.

References to the literature can be in different citation styles and must be properly formatted according to the guidelines set forth by the publishing journal, university, or academic institution. This includes in-text citations as well as the Reference section . 

The research question should be realistic in time, scope, and budget

There are two main constraints to the research process: timeframe and budget.

A proper research question will include study or experimental procedures that can be executed within a feasible time frame, typically by a graduate doctoral or master’s student or lab technician. Research that requires future technology, expensive resources, or follow-up procedures is problematic.

A researcher’s budget is also a major constraint to performing timely research. Research at many large universities or institutions is publicly funded and is thus accountable to funding restrictions. 

The research question should be in-depth

Research papers, dissertations and theses , and academic journal articles are usually dozens if not hundreds of pages in length.

A good research question or thesis statement must be sufficiently complex to warrant such a length, as it must stand up to the scrutiny of peer review and be reproducible by other scientists and researchers.

Research Question Types

Qualitative and quantitative research are the two major types of research, and it is essential to develop research questions for each type of study. 

Quantitative Research Questions

Quantitative research questions are specific. A typical research question involves the population to be studied, dependent and independent variables, and the research design.

In addition, quantitative research questions connect the research question and the research design. In addition, it is not possible to answer these questions definitively with a “yes” or “no” response. For example, scientific fields such as biology, physics, and chemistry often deal with “states,” in which different quantities, amounts, or velocities drastically alter the relevance of the research.

As a consequence, quantitative research questions do not contain qualitative, categorical, or ordinal qualifiers such as “is,” “are,” “does,” or “does not.”

Categories of quantitative research questions

Qualitative research questions.

In quantitative research, research questions have the potential to relate to broad research areas as well as more specific areas of study. Qualitative research questions are less directional, more flexible, and adaptable compared with their quantitative counterparts. Thus, studies based on these questions tend to focus on “discovering,” “explaining,” “elucidating,” and “exploring.”

Categories of qualitative research questions

Quantitative and qualitative research question examples.

stacks of books in black and white; research question examples

Good and Bad Research Question Examples

Below are some good (and not-so-good) examples of research questions that researchers can use to guide them in crafting their own research questions.

Research Question Example 1

The first research question is too vague in both its independent and dependent variables. There is no specific information on what “exposure” means. Does this refer to comments, likes, engagement, or just how much time is spent on the social media platform?

Second, there is no useful information on what exactly “affected” means. Does the subject’s behavior change in some measurable way? Or does this term refer to another factor such as the user’s emotions?

Research Question Example 2

In this research question, the first example is too simple and not sufficiently complex, making it difficult to assess whether the study answered the question. The author could really only answer this question with a simple “yes” or “no.” Further, the presence of data would not help answer this question more deeply, which is a sure sign of a poorly constructed research topic.

The second research question is specific, complex, and empirically verifiable. One can measure program effectiveness based on metrics such as attendance or grades. Further, “bullying” is made into an empirical, quantitative measurement in the form of recorded disciplinary actions.

Steps for Writing a Research Question

Good research questions are relevant, focused, and meaningful. It can be difficult to come up with a good research question, but there are a few steps you can follow to make it a bit easier.

1. Start with an interesting and relevant topic

Choose a research topic that is interesting but also relevant and aligned with your own country’s culture or your university’s capabilities. Popular academic topics include healthcare and medical-related research. However, if you are attending an engineering school or humanities program, you should obviously choose a research question that pertains to your specific study and major.

Below is an embedded graph of the most popular research fields of study based on publication output according to region. As you can see, healthcare and the basic sciences receive the most funding and earn the highest number of publications. 

hypotheses and research question

2. Do preliminary research  

You can begin doing preliminary research once you have chosen a research topic. Two objectives should be accomplished during this first phase of research. First, you should undertake a preliminary review of related literature to discover issues that scholars and peers are currently discussing. With this method, you show that you are informed about the latest developments in the field.

Secondly, identify knowledge gaps or limitations in your topic by conducting a preliminary literature review . It is possible to later use these gaps to focus your research question after a certain amount of fine-tuning.

3. Narrow your research to determine specific research questions

You can focus on a more specific area of study once you have a good handle on the topic you want to explore. Focusing on recent literature or knowledge gaps is one good option. 

By identifying study limitations in the literature and overlooked areas of study, an author can carve out a good research question. The same is true for choosing research questions that extend or complement existing literature.

4. Evaluate your research question

Make sure you evaluate the research question by asking the following questions:

Is my research question clear?

The resulting data and observations that your study produces should be clear. For quantitative studies, data must be empirical and measurable. For qualitative, the observations should be clearly delineable across categories.

Is my research question focused and specific?

A strong research question should be specific enough that your methodology or testing procedure produces an objective result, not one left to subjective interpretation. Open-ended research questions or those relating to general topics can create ambiguous connections between the results and the aims of the study. 

Is my research question sufficiently complex?

The result of your research should be consequential and substantial (and fall sufficiently within the context of your field) to warrant an academic study. Simply reinforcing or supporting a scientific consensus is superfluous and will likely not be well received by most journal editors.  

reverse triangle chart, how to write a research question

Editing Your Research Question

Your research question should be fully formulated well before you begin drafting your research paper. However, you can receive English paper editing and proofreading services at any point in the drafting process. Language editors with expertise in your academic field can assist you with the content and language in your Introduction section or other manuscript sections. And if you need further assistance or information regarding paper compositions, in the meantime, check out our academic resources , which provide dozens of articles and videos on a variety of academic writing and publication topics.

Pediaa.Com

Home » Education » Difference Between Hypothesis and Research Question

Difference Between Hypothesis and Research Question

Main difference – hypothesis vs research question.

Research question and hypothesis are the foundations of a research study. Formulating the research question or developing the hypothesis can help you to decide on the approach of the research. A research question is the question the research study sets out to answer. Hypothesis is the statement the research study sets out to prove or disprove. The main difference between hypothesis and research question is that hypothesis is predictive in nature whereas research question is inquisitive in nature.

In this article, we’ll discuss,

1. What is a Hypothesis? – Meaning, Features, Characteristics, and Usage

2. What is a Research Question? – Meaning, Features, Characteristics, and Usage

Difference Between Hypothesis and Research Question - Comparison Summary

What is a Hypothesis

A hypothesis is a prediction about the relationship between two or more variables. It can be described as an educated guess about what happens in an experiment. Researchers usually tend to use hypotheses when significant knowledge is already available on the subject. The hypothesis is based on this existing knowledge. After the hypothesis is developed, the researcher can develop data, analyze and use them to support or negate the hypothesis.

Not all studies have hypotheses. They are usually used in experimental quantitative research studies. They are useful in testing a specific theory or model.  A complete hypothesis always includes the variables, population and the predicted relationship between the variables. The main disadvantage of hypotheses is that their tendency to blind a researcher to unexpected results. 

Difference Between Hypothesis and Research Question

What is a Research Question

A research question is the question a research study sets to answer. However, a research study can have more than one research question. The research methodologies , tools used to collect data, etc. all depend on the research question.

Research questions are often used in qualitative research, which seek to answer open-ended questions . But they can also be used in quantitative studies. Research questions can be used instead of hypotheses when there is little previous research on the subject. Research questions allow the researcher to conduct more open-ended queries, and a wide range of results can be reported.

A properly constructed research question should always be clear and concise. It should include the variables, population and the topic being studied.

Hypothesis is a tentative prediction about the relationship between two or more variables.

Research Question is the question a research study sets to answer.

Hypothesis is predictive in nature.

Research Question is inquisitive in nature.

Existing Research

Hypothesis can be used if there is significant knowledge or previous research on this subject.

Research Question can be used if there is little previous research on the subject.

Quantitative vs Qualitative

Hypothesis is mainly used in experimental quantitative studies.

Research Question can be used in both quantitative and qualitative studies.

Hypothesis doesn’t allow a wide range of outcomes.

Research Question allows a wide range of outcomes.

Image Courtesy: 

“Research: Mediterranean Center of Medical Sciences” by  McmScience Mediterranean Center of Medical Sciences   (CC BY 2.0)  via Flickr

' src=

About the Author: Hasa

Hasanthi is a seasoned content writer and editor with over 8 years of experience. Armed with a BA degree in English and a knack for digital marketing, she explores her passions for literature, history, culture, and food through her engaging and informative writing.

​You May Also Like These

The Research Question and the Hypothesis

  • First Online: 17 May 2017

Cite this chapter

Book cover

  • Peter R. Nelson 3  

1374 Accesses

Clinical trial design starts with the development of a focused, concise, answerable primary research question. The time spent defining this question up front is as valuable as the time that will be spent conducting the trial itself. Start simple with real ideas that are meaningful to your clinical practice and specialty. Refine your ideas into a more defined research question. This research question needs to be relevant, needs to translate to the primary hypothesis to be tested, needs to set the steps in motion to define the research methodology and analytic plan for the trial, needs to be answerable, and ultimately needs to offer promise that this answer will provide critical new knowledge that will change clinical practice for the better and improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Fisher B, Bauer M, Margolese R, et al. Five-year results of a randomized clinical trial comparing total mastectomy and segmental mastectomy with or without radiation in the treatment of breast cancer. N Engl J Med. 1985;31:665–73.

Article   Google Scholar  

Moseley JB, O’Malley K, Peterson N, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002;347:81–8.

Article   PubMed   Google Scholar  

Neumayer L, Gobbie-Hurder A, Jonasson O, et al. Open mesh versus laparoscopic mesh repair of inguinal hernia. N Engl J Med. 2004;350:1819–27.

Article   CAS   PubMed   Google Scholar  

Grant AM, Wileman SM, Ramsay CR, et al. Minimal access surgery compared with medical management for chronic gastrooesophageal reflux disease: UK collaborative randomized trial. Br Med J. 2008;337:a2664.

Nelson PR, Kracjer Z, Kansal N, Rao V, Bianchi C, Hashemi H, Jones P, Bacharach JM. Multicenter, randomized, controlled trial outcomes of totally percutaneous aortic aneurysm repair (The PEVAR Trial). J Vasc Surg. 2014;59:1181–94.

Download references

Author information

Authors and affiliations.

Surgical Service, James A. Haley VA Medical Center, 13000 Bruce B. Downs Boulevard, Tampa, FL, 33612, USA

Peter R. Nelson

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Peter R. Nelson .

Editor information

Editors and affiliations.

Department of Surgery, Boston VA Healthcare System Department of Surgery, West Roxbury, Massachusetts, USA

Kamal M.F. Itani

Depatment of Veteran Affairs, Cooperative Studies Program Coordinating Center, Hines VA Hospital, Hines, Illinois, USA

Domenic J. Reda

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Nelson, P.R. (2017). The Research Question and the Hypothesis. In: Itani, K., Reda, D. (eds) Clinical Trials Design in Operative and Non Operative Invasive Procedures. Springer, Cham. https://doi.org/10.1007/978-3-319-53877-8_1

Download citation

DOI : https://doi.org/10.1007/978-3-319-53877-8_1

Published : 17 May 2017

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-53876-1

Online ISBN : 978-3-319-53877-8

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Grad Coach

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

hypotheses and research question

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

hypotheses and research question

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Narrative analysis explainer

38 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Loading metrics

Open Access

Essays articulate a specific perspective on a topic of broad interest to scientists.

See all article types »

Modeling endosymbioses: Insights and hypotheses from theoretical approaches

Contributed equally to this work with: Lucas Santana Souza, Josephine Solowiej-Wedderburn

Roles Conceptualization, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft, Writing – review & editing

Affiliations Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden, Integrated Science Lab, Umeå University, Umeå, Sweden

Affiliations Integrated Science Lab, Umeå University, Umeå, Sweden, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden, Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden

Roles Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

ORCID logo

  • Lucas Santana Souza, 
  • Josephine Solowiej-Wedderburn, 
  • Adriano Bonforti, 

PLOS

Published: April 10, 2024

  • https://doi.org/10.1371/journal.pbio.3002583
  • Reader Comments

Fig 1

Endosymbiotic relationships are pervasive across diverse taxa of life, offering key avenues for eco-evolutionary dynamics. Although a variety of experimental and empirical frameworks have shed light on critical aspects of endosymbiosis, theoretical frameworks (mathematical models) are especially well-suited for certain tasks. Mathematical models can integrate multiple factors to determine the net outcome of endosymbiotic relationships, identify broad patterns that connect endosymbioses with other systems, simplify biological complexity, generate hypotheses for underlying mechanisms, evaluate different hypotheses, identify constraints that limit certain biological interactions, and open new lines of inquiry. This Essay highlights the utility of mathematical models in endosymbiosis research, particularly in generating relevant hypotheses. Despite their limitations, mathematical models can be used to address known unknowns and discover unknown unknowns.

Citation: Souza LS, Solowiej-Wedderburn J, Bonforti A, Libby E (2024) Modeling endosymbioses: Insights and hypotheses from theoretical approaches. PLoS Biol 22(4): e3002583. https://doi.org/10.1371/journal.pbio.3002583

Academic Editor: Thomas A. Richards, University of Oxford, UNITED KINGDOM

Copyright: © 2024 Souza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was funded by the Swedish Research council (2018-03630 to EL) as well as the Kempe foundation grants (SMK21-0004 to EL for LSS), (JCK22-0026.1 for AB), and (JCK-2129.2 to EL for JSW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Endosymbioses are important drivers of eco-evolutionary dynamics that have the potential to forge entirely new kinds of individuals [ 1 – 4 ]. For example, the emergence of eukaryotes is intertwined with an endosymbiosis that would eventually evolve into mitochondria. Since gaining mitochondria, eukaryotes have demonstrated a great facility for establishing additional endosymbioses [ 5 – 7 ] and some may depend on their endosymbiotic associations for survival (e.g., aphids with Buchnera [ 8 ] and nemotodes with Wolbachia [ 9 ]). Yet, even in associations with incredible functional integration, endosymbioses are dynamic: relationships change, partners are abandoned or swapped, and new types or levels of interactions emerge. The signatures of these past associations can persist in genomes and may influence future relationships [ 10 , 11 ]. It is the complexity, ubiquity, and significance of endosymbioses that make them fascinating subjects to study.

Given the pervasiveness of endosymbioses, it is perhaps not surprising that there is a wide range of empirical and experimental systems that vary across environments and taxa. If we consider systems organized by the size of the host cell, we can start with prokaryote hosts. Endosymbioses among prokaryotes are extremely rare and so, as a proxy, most attention has been dedicated to the origin and evolution of the mitochondria within protoeukaryotes [ 12 , 13 ]. Within eukaryotes, there are many unicellular hosts with prokaryote endosymbionts (e.g., protists [ 14 ]), and some have been used as experimental models of endosymbioses, such as Paramecium bursaria [ 15 ]. Even in these relatively small organisms, there can be multiple types of endosymbionts and associated microbial communities. Similarly, large-scale organisms such as multicellular eukaryotes can have many endosymbionts and even endosymbionts that have their own endosymbionts [ 16 ]. Experimental models of these larger organisms often purposely select for relationships based on their ease of study and control, for example, the endosymbiosis between the Hawaiian bobtail squid Euprymna scolopes and Vibrio fischeri [ 17 ]. There are also many systems that lie somewhere on the spectrum of endosymbioses, such as plasmids and microbiomes that overlap with other fields of research including virology and microbial ecology. With all of this variation, it can be difficult to tease apart general features from organismal idiosyncrasies.

Mathematical modeling can serve as a useful complement to empirical techniques by allowing researchers to better understand their systems and place them in a wider context. By making the theory explicit, they can also serve as a universal language for collaboration, enabling research to be integrated from a range of disciplines [ 18 , 19 ] (see also [ 20 , 21 ] for how to interpret and integrate models with experiments), at times offering remarkable insights into biological systems [ 22 ] and simultaneously opening new fields of mathematics research [ 23 ]. Some recent reviews highlight the particular usefulness of mathematical models in evolutionary biology [ 24 , 25 ]. The first demonstrates how the rigorous logic of a mathematical formulation can identify the factors that facilitate the evolution of sexes or new species. The second outlines the insight that mathematical models can bring to the evolution of stress responses by integrating physiological mechanisms with an evolutionary optimality analysis. In this Essay, we consider the use of models to specifically address topics concerning endosymbioses and the types of hypotheses modeling can generate.

Integration of contrasting effects

A key question in the evolution of endosymbioses concerns the nature of the relationship between a host and its endosymbiont [ 26 – 28 ]. If the relationship is exploitative, then a coevolutionary arms race might ensue. If, instead, the relationship is mutualistic, then tighter integration and division of labor may evolve. Determining the nature of the interaction can thus lead to different predictions concerning the evolution of the relationship.

Empirical evidence suggests that the nature of the host–endosymbiont relationship is highly dynamic, changing across environmental conditions and time [ 29 , 30 ]. For example, changing the intensity of light shifted whether carrying green algal endosymbionts was costly or beneficial for its host [ 15 ]. In another interesting example, a five-year coculture evolved to change the interaction between the host and endosymbiont from initially exploitative to mutualistic [ 31 ]. A major determinant of such social evolution is the overall impact of the costs and benefits associated with behaviors, which influences the strength and mode of selection [ 32 , 33 ]. Since costs and benefits can change across environments and time scales, it can be difficult to determine their net effect over different contexts without using quantitative approaches.

Mathematical models can reveal surprising biological patterns when the interaction between costs and benefits is dynamic. For example, while vertical transmission was thought to be the primary way to reduce virulence in viruses, a mathematical model showed the opposite (i.e., that horizontal transmission also selects for lower virulence in viruses) [ 34 ]. Within the context of endosymbiosis research, an experiment showed that the Dictyostelium discoideum amoebae carrying Paraburkholderia bacteria intracellularly experienced a benefit in nutrient-poor environments but not in nutrient-rich ones [ 29 , 35 ]. However, it was unclear whether carrying an endosymbiont would be beneficial in environments that switched between nutrient-rich and nutrient-poor conditions. Since the environments fluctuate, it might be reasonable to hypothesize that bet-hedging strategies would occur so that some, but not all, members of the population would carry endosymbionts. A mathematical model integrating the various costs and benefits tested this hypothesis and found that, contrary to expectation, bet-hedging strategies were rarely selected [ 29 ]. These examples highlight how mathematical models that integrate across different contexts can offer new insights into the dynamic nature of endosymbiosis interactions ( Fig 1 ).

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

( A ) Sketch illustrating how the fitness of a host with or without endosymbionts changes in different contexts. These contexts affect whether selection favors mutualistic or exploitative relationships. Integrating over all contexts (e.g., the whole life cycle) gives a perspective on the overall behavior. ( B ) Schematic showing how 2 contrasting behaviors might be observed under different contexts. Integrating over the whole time period identifies the net outcome. ( C ) An example hypothesis generated for an endosymbiosis that appears to exhibit 2 contrasting behaviors—exploitation and mutualism—in different contexts.

https://doi.org/10.1371/journal.pbio.3002583.g001

Revealing cross-system patterns

By employing abstractions to concentrate on processes and interactions, mathematical models effectively highlight connections between different fields and identify general themes. The typical modeling procedure entails abstracting a biological system, analyzing the model, and subsequently deducing implications for the biological system. This final stage offers an opportunity to generalize beyond the initial system. In modeling an endosymbiosis, the extent of these generalizations typically depends on how restrictive a model is. For example, a theoretical model was designed to investigate if a microbiome could induce cooperative behavior in its host, with minimal restrictions on the microbiome itself [ 36 ]. The degree of abstraction present in this model allows its predictions to be applied to a broader range of entities that transmit between organisms, including plasmids, viruses, and multicellular symbionts.

Theoretical approaches can also identify fields that may benefit from exchange. For example, endosymbioses and certain microbial communities share similar patterns of division of labor, with both undergoing significant gene loss and evolving obligatory dependencies [ 37 , 38 ]. A challenge arising from such division of labor is coordination (i.e., who does what and when). If a host relies on its endosymbiont to produce energy, but sufficient energy is not provided, then the system can collapse. Understanding how coordination evolves is relevant to many areas of research in biology, including endosymbiosis, microbiomes, microbial community assembly, multicellularity, and mutualisms. These research areas all explore the ways in which selection acting on a system as a whole can lead to improved system performance, usually through some measure of fitness or function. Exchanges between these areas may help elucidate important mechanisms and common features of how multispecies systems can coordinate division of labor.

Another productive outcome of generalizing a mathematical model lies in exploring what happens when it does not apply to another system. Such failures in generalization can reveal useful distinctions that serve to organize scientific fields ( Fig 2 ). For example, a model for insect–aphid symbiosis may not apply to plasmids because of the different frequencies in vertical versus horizontal transmission; this would indicate that transmission mode may be a useful axis to draw distinctions between endosymbioses. Indeed, a theoretical framework for endosymbioses organized them by the mode of transmission of endosymbionts in order to place them in the broader context of major transitions theory [ 2 ]. The value of such organization frameworks is 3-fold. First, they group systems together into categories that share similar abstractions and models, where results from one system can inform predictions about another. Second, they identify areas where empirical systems are missing, which indicates either that model systems should be developed or some constraints prevent these systems from occurring. Third, they can offer predictions on how categories evolve or transform into others (e.g., how endosymbioses may evolve into integrated units of selection/multispecies individuals) [ 2 , 39 – 42 ]. Overall, these generalizations provide a common language to explore questions spanning the spectrum of different endosymbioses.

thumbnail

( A ) Sketch illustrating how theoretical abstraction can be used to compare between different biological systems. For example, this can help to identify similarities in division of labor between some endosymbioses and microbial communities. Theoretical abstractions also highlight distinctions between systems (e.g., lichens have a lower frequency of horizontal gene transfer [ 43 ] than microbial communities). ( B ) Schematic showing how different axes can be used to separate biological systems. Here, systems A, B, and C could display similar dynamics along axis 2, but system C might be incomparable with A and B along axis 1. Moving along the axes could be interpreted in 2 ways depending on the scenario: (i) changing a parameter value, such as rate of horizontal gene transfer, shifts the system into a different regime where categorically different behaviors are observed; and (ii) entirely different models, such as mode of transfer, are required. ( C ) An example hypothesis generated for endosymbioses that broadly share similar rates of horizontal gene transfer.

https://doi.org/10.1371/journal.pbio.3002583.g002

Evaluating mechanisms

Biological systems are composed of a tangled web of interconnected components, which makes it difficult to identify the primary mechanisms responsible for a given phenomenon or behavior. To make matters worse, it is often unclear whether a crucial piece of information is missing. In such situations mathematical models can be extremely useful, providing a way to evaluate whether a set of components are sufficient to “explain” the phenomenon ( Fig 3 ). An example in endosymbiosis research is how hosts and endosymbionts navigate their relationships to maintain stability. Relationships between hosts and their endosymbionts are often regulated by a vast repertoire of chemical exchanges and physical interactions. Developing mathematical models for specific subsets of these exchanges and interactions can provide hypotheses for the primary mechanisms driving them. These hypotheses can then be experimentally explored as part of a collaborative experimentation–modeling process to identify underlying mechanisms.

thumbnail

( A ) Sketch illustrating 2 models for the growth of an endosymbiont under different nutrient concentrations with experimental results (inspired by [ 15 ]); model B is a better fit for the data. ( B ) Schematic showing how models can propose mechanisms for an observed phenomenon when the full details of the underlying mechanism are unknown. More than 1 model system can be explored to see when the outputs match the observations. ( C ) An example hypothesis generated for the regulation of endosymbionts where the primary mechanism is currently unknown.

https://doi.org/10.1371/journal.pbio.3002583.g003

When we lack empirical observations or a complete underlying molecular description, mathematical models can be used to assess whether a proposed mechanism is sufficient. An example of this in the endosymbiosis literature is a mathematical model that was developed to explain how the unicellular ciliate P . bursaria maintains a stable population size of its algal endosymbiont [ 44 ]. Since many of the molecular details of the underlying mechanism were missing, there were competing hypotheses for how stability could be maintained. In a combination of experiments and mathematical modeling, the authors demonstrated that a difference in the nutritional growth requirements of the host and endosymbiont was sufficient to replicate empirical observations and give rise to a stable maintenance of the population. The simple mechanism uncovered by this paper has additional properties with further implications (i.e., the mechanism functions across different growth conditions and does not require extensive coordination, which suggests it could evolve readily in different endosymbioses).

In addition to hypotheses for specific empirical systems, mathematical models can offer hypotheses concerning as yet unobserved phenomena and where to look for them. A particularly pertinent question is how host–endosymbiont relationships can become more intertwined, leading to a greater reliance on vertical rather than horizontal transmission. One model tackling this issue revealed that self-regulation would only evolve if the benefits of the relationship are sufficiently high for both the host and endosymbiont [ 45 ]. Analysis of the model also provided an explanation as to why benefits to both were necessary: when the benefit to hosts is large, then those without endosymbionts are outcompeted and lost in the population. As a result, endosymbionts effectively lose the horizontal route of transmission and stay with their hosts longer, leading them to evolve regulation of their own population size. A second theoretical study examined the costs endosymbionts face in finding new hosts and how this implicates host–endosymbiont relationship dynamics [ 46 ]. This model showed that it is more likely for endosymbionts to lose the ability to live freely and reproduce independently when host encounters are both rare and costly. Together, these results not only show when and why it might be possible for endosymbionts to control their own population, but also provide some prediction of what kinds of endosymbioses might foster this behavior.

Explore the unknown

Within the field of endosymbiosis, there is a glaring absence of endosymbioses featuring prokaryote hosts. There are only a few observed examples besides possibly the endosymbiosis that would give rise to the mitochondria [ 16 , 47 , 48 ]. This rarity is surprising when compared to the frequency of eukaryote endosymbioses and when considering the diversity and abundance of prokaryotes. There have been different qualitative arguments as to why prokaryote endosymbioses may be rare [ 13 , 49 , 50 ], but since we lack experimental systems, it is difficult to identify what factors are responsible for the rarity. Here, mathematical models can be particularly helpful in evaluating and comparing hypotheses for rarity and determining what constraints limit the successful establishment of prokaryotic endosymbioses ( Fig 4 ).

thumbnail

( A ) Several examples of endosymbioses with a eukaryote are known and well studied, but prokaryote hosts are lacking. Prokaryote hosts with eukaryote endosymbionts have not been observed and might be unfeasible due to space limitations. Prokaryote–prokaryote endosymbioses are extremely rarely observed. These endosymbioses can be explored with theoretical models, for example, to estimate the proportion of prokaryote–prokaryote pairs that could form viable endosymbioses based on metabolism (as in [ 51 ]). ( B ) Schematic showing how modeling can be used to give insights for empirical systems where lab experiments have yet to be devised. The model can suggest potential experimental systems, for example, by identifying species that have a high propensity to become hosts and endosymbionts. ( C ) An example hypothesis generated for prokaryote–prokaryote endosymbioses where experimental systems are currently unknown.

https://doi.org/10.1371/journal.pbio.3002583.g004

An example of this use of mathematical modeling can be seen in a recent study that considered the role of metabolic compatibility in prokaryote endosymbioses [ 51 ]. Prior to this work, some had argued that prokaryote endosymbioses may not be viable without a prior history of coevolution (see [ 13 ] for an excellent review). For example, if an endosymbiont needs some essential compound to grow but the host cell lacks a way of transporting this compound into the cell, then the endosymbiosis would not be viable. However, it is unclear how often this type of scenario would be expected to occur in pairs of prokaryotes (i.e., to what extent is this actually a driver of the rarity). Mathematical models can be used to estimate this and thus offer a null model prediction that can later be refined or assessed by incorporating other, possibly empirical, data. In this particular case, bacterial metabolic models were randomly paired as in silico endosymbioses. Over half of the pairs tested were metabolically viable, though very rarely did they have higher fitness (growth rate) than their ancestors. Without empirical systems, it can be difficult to validate these quantitative models or assess their accuracy, yet they provide a null prediction that can be used to set expectations and compare with future findings.

New lines of inquiry

Mathematical models can be used to establish new lines of inquiry both in terms of scale and direction. These uses of modeling are well-illustrated in studies of corals and their dinoflagellate endosymbionts, which provide an exceptional system for studying endosymbiosis because there is abundant data in terms of spatial variation of coral communities, as well as a rich historical record of environmental conditions and coral growth. This data has led to the development of intricate models that explicitly define the many mechanisms and processes that affect individual organism behaviors and their interactions with the environment. In particular, agent-based models excel in capturing heterogeneity and spatial interactions among individuals and other components of the system, crucial for accurately modeling complex ecosystems like coral reefs [ 52 – 54 ]. Because these models are very complex, they are often calibrated and validated by comparing their hindcast predictions with historical data, thereby improving their reliability for future projections about coral health in response to a changing climate [ 55 ]. Given the relevance of such historic data, recent efforts have focused on extending the temporal timescale further back to procure more robust data [ 56 ], creating lines of inquiry for endosymbiosis that consider timescales beyond human lifetimes.

Both creating a mathematical model and analyzing it can uncover hidden assumptions and reveal new directions to explore ( Fig 5 ). The process of writing down a model, such as an agent-based model, forces one to make many explicit decisions on how agents behave and within what space they interact. Reflecting on these decisions can identify unknown details and outstanding questions. For example, in [ 54 ], the authors extended a spatially explicit agent-based model for corals [ 53 ] to assess the long-term benefits of switching from thermally sensitive to thermally tolerant symbionts after heat waves. In developing the model, the authors faced the decision of whether to include symbiont reversal to the original composition after some time or to keep the switch from sensitive to tolerant symbionts unidirectional. Including symbiont reversal would require also knowing the relationship between the dynamics of symbiont switching and coral growth. The authors concluded that the empirical data to characterize this was insufficient at the time and assumed the switch from sensitive to tolerant symbionts was unidirectional. This is a clear example of a situation in which the implementation of a model forces the authors to make certain assumptions explicit (the reversibility of symbiont switching) and points to new lines of inquiry (how to characterize the switching dynamics).

thumbnail

( A ) A representative output from agent-based model simulations of a coral ecosystem, adapted from [ 53 ]. Each grid square’s color represents the relative proportions of sand, various coral species, and algal types. To enhance this model by incorporating the impact of endosymbionts on coral growth rates and mortality during stressful events, such as heatwaves [ 54 ], assumptions are required regarding the interactions between corals and their endosymbiotic algae (for example, how corals may alter their internal symbiont composition in response to such events). ( B ) Schematic illustrating the assumptions necessary for constructing a model. Two potential assumptions for component C are presented. By running simulations with both assumptions, we can test the robustness of the results; identical outcomes suggest that the model’s results are not sensitive to the assumptions about C. Conversely, divergent outcomes indicate that further investigation into assumption C could lead to new research avenues. ( C ) An example hypothesis generated for a coral endosymbiosis where different assumptions can be made.

https://doi.org/10.1371/journal.pbio.3002583.g005

In some cases, there is not enough evidence to distinguish between competing assumptions in a model. Experiments may help determine which assumption is better supported, but conducting experiments for every modeling assumption is not cost-effective. By analyzing a model using each assumption, we can explore whether the competing assumptions actually lead to different outcomes. To see how this works, we consider the earlier case of the assumption concerning symbiont switching. Models could be run with different assumed relationships between coral growth and symbiont switching dynamics as a kind of sensitivity analysis. If a wide swath of dynamic relationships produce the same behavior, then this would suggest that while the exact relationship is unknown, it may not be as important to investigate as other parameters. If instead different dynamic relationships produce different behaviors, then this would indicate that this parameter should be investigated. Since computations tend to be cheaper and faster than experiments, this methodology can determine which of the unknowns in a model are the most important to learn.

Frameworks for integration

With the variety of empirical systems and theoretical approaches available, we also need ways of combining them into common frameworks to address central questions on endosymbioses. This comes with challenges, such as simplifying complex problems, ensuring realistic results, identifying influential variables, and requiring iterative refinement. Although in principle there are many ways of doing this (e.g., Bayesian models), an interesting way that may be relevant for questions in endosymbiosis research is the use of Fermi estimates. Fermi estimates simplify complex problems by dividing them into smaller, more manageable parts and using educated guesses. Possibly the most famous example of a Fermi estimate is the Drake equation, which tries to estimate the number of radio-communicative civilizations in the Milky Way [ 57 , 58 ]. This involves estimating factors such as the rate of star formation, the fraction of those stars with planets, and the likelihood of life developing intelligence.

To see how Fermi estimates may be useful in endosymbiosis research, one could consider the question of why prokaryote endosymbioses are rare. This question could be addressed by estimating the likelihood of establishing a prokaryote endosymbiosis, which in turn could be broken down into the following terms: the total number of interactions between different prokaryotic species; the fraction of those encounters that lead to one cell getting inside another; the fraction of those newly created endosymbioses that can reproduce; and the fraction of those viable endosymbioses that persist long enough to fix in a population. Though we might not know the precise value of any of these terms, we can make educated guesses for some by using existing empirical data. For example, we can estimate the first term by multiplying the average number of interactions per species [ 59 ] with the number of prokaryote species [ 60 ]. Where data is unavailable, theoretical approaches can provide approximations for some of the gaps; for example, metabolic models have been used to estimate the fraction of newly created endosymbioses that are viable [ 51 ]. Of course, this approach to estimation raises all sorts of possible issues and omissions; however, addressing these factors and determining how to incorporate them is part of the value of such a formulation.

Conclusions

In this Essay, we have explored how mathematical models can serve as useful tools in endosymbiosis research, showcasing the types of hypotheses mathematical models can generate and how they can be used to complement empirical approaches. We purposely selected examples representing a diverse set of models and model systems to highlight the breadth of possibilities in terms of the utility and application of mathematical models. To get a sense of the types of questions within endosymbiosis research that mathematical modeling may be particularly well-suited to address, we outline some key questions in Box 1 . Many of the modeling examples considered in this Essay address one of these questions (e.g., coral endosymbiosis models often address the first question, concerning the effects of environmental conditions). Yet, there are some questions that have been relatively unexplored. For example, the third question poses how an endosymbiosis may respond to an additional element such as another endosymbiont or a virus. This question is relevant in terms of plastid acquisition, whereby eukaryotes have gained additional endosymbionts following the mitochondria. Regardless of the extent to which these questions have been considered, the tremendous diversity of endosymbioses means there is plenty of room for exploration, both building on existing models and in new directions.

Box 1. Topics in endosymbiosis fit for mathematical modeling

  • Dynamic environments and evolving relationships: Do changing environmental conditions alter the costs/benefits of endosymbioses and their evolution along the mutualism–exploitation spectrum?
  • Coordination of reproduction: How do endosymbioses ensure consistent, synchronized reproduction of host and endosymbionts in the face of possible conflicts over resource use and selection to maximize growth rate?
  • Third party influence: How do endosymbioses respond to the introduction of a third species such as another endosymbiont or a virus?
  • Division of labor: In what ways can endosymbioses partition labor (e.g., energy transformation or metabolism) to gain sustainable, synergistic benefits?
  • Comparative effects of spatial organization: When does the specific spatial arrangement of endosymbioses offer different outcomes than symbioses between partners that are not arranged in a nested architecture?
  • Harmonious pairings: Are there certain types of species that are more likely to produce a successful endosymbiosis than others?
  • Long-term horizon: What factors influence whether an endosymbiont remains a long-term partner, evolves into an organelle, or deteriorates until lost or replaced?

Certainly mathematical models have their limitations, and for many relevant questions in endosymbioses it is better to interrogate an experimental system or empirical data. But there are some tasks for which mathematical models are particularly well suited. Moreover, the act of producing a model can be informative in and of itself, because it requires explicitly formulating assumptions and identifying what necessary information is missing. For now, there is a distinction in many fields of biology, such as endosymbiosis, between modelers and empiricists/experimentalists. They often collaborate, but owing to their different methodologies and academic backgrounds, they sometimes occupy different spaces within the same field. In this way, modelers exist as a type of endosymbiont within their host biological fields, seeking inspiration and exciting questions from the complexities and mysteries of biological systems. While there are costs to having modelers, hopefully the net exchange is positive, with modelers providing useful generalizations, identifying key mechanisms, and offering new insight and lines of inquiry.

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 5. Hackett JD, Yoon HS, Butterfield NJ, Sanderson MJ, Bhattacharya D. Plastid endosymbiosis: sources and timing of the major events. Evolution of Primary Producers in the Sea. Academic Press; 2007. p. 109–132.
  • 33. Okasha S. Evolution and the levels of selection. Clarendon Press; 2006.
  • 42. Andersson R, Isaksson H, Libby E. Multi-Species Multicellular Life Cycles. In: The Evolution of Multicellularity. CRC Press; 2022. p. 343–356.
  • 52. Bozec YM, Mumby JP. Australian Institute of Marine Science. Supplementary report to the final report of the coral reef expert group. S7. Coral reef models as assessment and reporting tools for the Reef 2050 Integrated Monitoring and Reporting Program—a review. 2020. Available from: http://hdl.handle.net/11017/3570 .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.63(8); 2019 Aug

Formulating a good research question: Pearls and pitfalls

Wilson fandino.

Guys' and St Thomas' Hospital National Health Service Foundation Trust, London, United Kingdom

The process of formulating a good research question can be challenging and frustrating. While a comprehensive literature review is compulsory, the researcher usually encounters methodological difficulties in the conduct of the study, particularly if the primary study question has not been adequately selected in accordance with the clinical dilemma that needs to be addressed. Therefore, optimising time and resources before embarking in the design of a clinical protocol can make an impact on the final results of the research project. Researchers have developed effective ways to convey the message of how to build a good research question that can be easily recalled under the acronyms of PICOT (population, intervention, comparator, outcome, and time frame) and FINER (feasible, interesting, novel, ethical, and relevant). In line with these concepts, this article highlights the main issues faced by clinicians, when developing a research question.

INTRODUCTION

What is your research question? This is very often one of the first queries made by statisticians, when researchers come up with an interesting idea. In fact, the findings of a study may only acquire relevance if they provide an accurate and unbiased answer to a specific question,[ 1 , 2 ] and it has been suggested that up to one-third of the time spent in the whole process—from the conception of an idea to the publication of the manuscript—could be invested in finding the right primary study question.[ 3 ] Furthermore, selecting a good research question can be a time-consuming and challenging task: in one retrospective study, Mayo et al . reported that 3 out of 10 articles published would have needed a major rewording of the question.[ 1 ] This paper explores some recommendations to consider before starting any research project, and outlines the main difficulties faced by young and experienced clinicians, when it comes time to turn an exciting idea into a valuable and feasible research question.

OPTIMISATION OF TIME AND RESOURCES

Focusing on the primary research question.

The process of developing a new idea usually stems from a dilemma inherent to the clinical practice.[ 2 , 3 , 4 ] However, once the problem has been identified, it is tempting to formulate multiple research questions. Conducting a clinical trial with more than one primary study question would not be feasible. First, because each question may require a different research design, and second, because the necessary statistical power of the study would demand unaffordable sample sizes. It is the duty of editors and reviewers to make sure that authors clearly identify the primary research question, and as a consequence, studies approaching more than one primary research question may not be suitable for publication.

Working in the right environment

Teamwork is essential to find the appropriate research question. Working in the right environment will enable the investigator to interact with colleagues with different backgrounds, and create opportunities to exchange experiences in a collaborative way between clinicians and researchers. Likewise, it is of paramount importance to get involved colleagues with expertise in the field (lead clinicians, education supervisors, research mentors, department chairs, epidemiologists, biostatisticians, and ethical consultants, among others), and ask for their guidance.[ 5 , 6 , 7 , 8 ]

Evaluating the pertinence of the study

The researcher should wonder if, on the basis of the research question formulated, there is a need for a study to address the problem, as clinical research usually entails a large investment of resources and workforce involvement. Thus, if the answer to the posed clinical question seems to be evident before starting the study, investing in research to address the problem would become superfluous. For example, in a clinical trial, Herzog-Niescery et al . compared laryngeal masks with cuffed and uncuffed tracheal tubes, in the context of surgeons' exposure to sevoflurane, in infants undergoing adenoidectomy. However, it appears obvious that cuffed tracheal tubes are preferred to minimise surgeons' exposure to volatile gases, as authors concluded after recruiting 60 patients.[ 9 ]

Conducting a thorough literature review

Any research project requires the identification of at least one of three problems: the evidence is scarce, the existing literature yields conflicting results, or the results could be improved. Hence, a comprehensive review of the topic is imperative, as it allows the researcher to identify this gap in the literature, formulate a hypothesis and develop a research question.[ 2 ] To this end, it is crucial to be attentive to new ideas, keep the imagination roaming with reflective attitude, and remain sceptical to the new-gained information.[ 4 , 7 ]

Narrowing the research question

A broad research question may encompass an unaffordable extensive topic. For instance, do supraglottic devices provide similar conditions for the visualization of the glottis aperture in a German hospital? Such a general research question usually needs to be narrowed, not only by cutting away unnecessary components (a German hospital is irrelevant in this context), but also by defining a target population, a specific intervention, an alternative treatment or procedure to be compared with the intervention, a measurable primary outcome, and a time frame of the study. In contrast, an example of a good research question would be: among children younger than 1 year of age undergoing elective minor procedures, to what extent the insertion times are different, comparing the Supreme™ laryngeal mask airway (LMA) to Proseal™ LMA, when placed after reaching a BIS index <60?[ 10 ] In this example, the core ingredients of the research question can be easily identified as: children <1 year of age undergoing minor elective procedures, Supreme™ LMA, Proseal™ LMA and insertion times at anaesthetic induction when reaching a BIS index <60. These components are usually gathered in the literature under the acronym of PICOT (population, intervention, comparator, outcome and time frame, respectively).[ 1 , 3 , 5 ]

PICOT FRAMEWORK

Table 1 summarises the foremost questions likely to be addressed when working on PICOT frame.[ 1 , 6 , 8 ] These components are also applicable to observational studies, where the exposure takes place of the intervention.[ 1 , 11 ] Remarkably, if after browsing the title and the abstract of a paper, the reader is not able to clearly identify the PICOT parameters, and elucidate the question posed by the authors, there should be reasonable scepticism regarding the scientific rigor of the work.[ 12 , 13 ] All these elements are crucial in the design and methodology of a clinical trial, as they can affect the feasibility and reliability of results. Having formulated the primary study question in the context of the PICOT framework [ Table 1 ],[ 1 , 6 , 8 ] the researcher should be able to elucidate which design is most suitable for their work, determine what type of data needs to be collected, and write a structured introduction tailored to what they want to know, explicitly mentioning the primary study hypothesis, which should lead to formulate the main research question.[ 1 , 2 , 6 , 8 ]

Key questions to be answered when working with the PICOT framework (population, intervention, comparator, outcome, and time frame) in a clinical research design

Occasionally, the intended population of the study needs to be modified, in order to overcome any potential ethical issues, and/or for the sake of convenience and feasibility of the project. Yet, the researcher must be aware that the external validity of the results may be compromised. As an illustration, in a randomised clinical trial, authors compared the ease of tracheal tube insertion between C-MAC video laryngoscope and direct laryngoscopy, in patients presenting to the emergency department with an indication of rapid sequence intubation. However, owing to the existence of ethical concerns, a substantial amount of patients requiring emergency tracheal intubation, including patients with major maxillofacial trauma and ongoing cardiopulmonary resuscitation, had to be excluded from the trial.[ 14 ] In fact, the design of prospective studies to explore this subset of patients can be challenging, not only because of ethical considerations, but because of the low incidence of these cases. In another study, Metterlein et al . compared the glottis visualisation among five different supraglottic airway devices, using fibreroptic-guided tracheal intubation in an adult population. Despite that the study was aimed to explore the ease of intubation in patients with anticipated difficult airway (thus requiring fibreoptic tracheal intubation), authors decided to enrol patients undergoing elective laser treatment for genital condylomas, as a strategy to hasten the recruitment process and optimise resources.[ 15 ]

Intervention

Anaesthetic interventions can be classified into pharmacological (experimental treatment) and nonpharmacological. Among nonpharmacological interventions, the most common include anaesthetic techniques, monitoring instruments and airway devices. For example, it would be appropriate to examine the ease of insertion of Supreme™ LMA, when compared with ProSeal™ LMA. Notwithstanding, a common mistake is the tendency to be focused on the data aimed to be collected (the “stated” objective), rather than the question that needs to be answered (the “latent” objective).[ 1 , 4 ] In one clinical trial, authors stated: “we compared the Supreme™ and ProSeal™ LMAs in infants by measuring their performance characteristics, including insertion features, ventilation parameters, induced changes in haemodynamics, and rates of postoperative complications”.[ 10 ] Here, the research question has been centered on the measurements (insertion characteristics, haemodynamic variables, LMA insertion characteristics, ventilation parameters) rather than the clinical problem that needs to be addressed (is Supreme™ LMA easier to insert than ProSeal™ LMA?).

Comparators in clinical research can also be pharmacological (e.g., gold standard or placebo) or nonpharmacological. Typically, not more than two comparator groups are included in a clinical trial. Multiple comparisons should be generally avoided, unless there is enough statistical power to address the end points of interest, and statistical analyses have been adjusted for multiple testing. For instance, in the aforementioned study of Metterlein et al .,[ 15 ] authors compared five supraglottic airway devices by recruiting only 10--12 participants per group. In spite of the authors' recommendation of using two supraglottic devices based on the results of the study, there was no mention of statistical adjustments for multiple comparisons, and given the small sample size, larger clinical trials will undoubtedly be needed to confirm or refute these findings.[ 15 ]

A clear formulation of the primary outcome results of vital importance in clinical research, as the primary statistical analyses, including the sample size calculation (and therefore, the estimation of the effect size and statistical power), will be derived from the main outcome of interest. While it is clear that using more than one primary outcome would not be appropriate, it would be equally inadequate to include multiple point measurements of the same variable as the primary outcome (e.g., visual analogue scale for pain at 1, 2, 6, and 12 h postoperatively).

Composite outcomes, in which multiple primary endpoints are combined, may make it difficult to draw any conclusions based on the study findings. For example, in a clinical trial, 200 children undergoing ophthalmic surgery were recruited to explore the incidence of respiratory adverse events, when comparing desflurane with sevoflurane, following the removal of flexible LMA during the emergence of the anaesthesia. The primary outcome was the number of respiratory events, including breath holding, coughing, secretions requiring suction, laryngospasm, bronchospasm, and mild desaturation.[ 16 ] Should authors had claimed a significant difference between these anaesthetic volatiles, it would have been important to elucidate whether those differences were due to serious adverse events, like laryngospasm or bronchospasm, or the results were explained by any of the other events (e.g., secretions requiring suction). While it is true that clinical trials evaluating the occurrence of adverse events like laryngospasm/bronchospasm,[ 16 , 17 ] or life-threating complications following a tracheal intubation (e.g., inadvertent oesophageal placement, dental damage or injury of the larynx/pharynx)[ 14 ] are almost invariably underpowered, because the incidence of such events is expected to be low, subjective outcomes like coughing or secretions requiring suction should be avoided, as they are highly dependent on the examiner's criteria.[ 16 ]

Secondary outcomes are useful to document potential side effects (e.g., gastric insufflation after placing a supraglottic device), and evaluate the adherence (say, airway leak pressure) and safety of the intervention (for instance, occurrence, or laryngospasm/bronchospasm).[ 17 ] Nevertheless, the problem of addressing multiple secondary outcomes without the adequate statistical power is habitual in medical literature. A good illustration of this issue can be found in a study evaluating the performance of two supraglottic devices in 50 anaesthetised infants and neonates, whereby authors could not draw any conclusions in regard to potential differences in the occurrence of complications, because the sample size calculated made the study underpowered to explore those differences.[ 17 ]

Among PICOT components, the time frame is the most likely to be omitted or inappropriate.[ 1 , 12 ] There are two key aspects of the time component that need to be clearly specified in the research question: the time of measuring the outcome variables (e.g. visual analogue scale for pain at 1, 2, 6, and 12 h postoperatively), and the duration of each measurement (when indicated). The omission of these details in the study protocol might lead to substantial differences in the methodology used. For instance, if a study is designed to compare the insertion times of three different supraglottic devices, and researchers do not specify the exact moment of LMA insertion in the clinical trial protocol (i.e., at the anaesthetic induction after reaching a BIS index < 60), placing an LMA with insufficient depth of anaesthesia would have compromised the internal validity of the results, because inserting a supraglottic device in those patients would have resulted in failed attempts and longer insertion times.[ 10 ]

FINER CRITERIA

A well-elaborated research question may not necessarily be a good question. The proposed study also requires being achievable from both ethical and realistic perspectives, interesting and useful to the clinical practice, and capable to formulate new hypotheses, that may contribute to the generation of knowledge. Researchers have developed an effective way to convey the message of how to build a good research question, that is usually recalled under the acronym of FINER (feasible, interesting, novel, ethical and relevant).[ 5 , 6 , 7 ] Table 2 highlights the main characteristics of FINER criteria.[ 7 ]

Main features of FINER criteria (Feasibility, interest, novelty, ethics, and relevance) to formulate a good research question. Adapted from Cummings et al .[ 7 ]

Novelty and relevance

Although it is clear that any research project should commence with an accurate literature interpretation, in many instances it represents the start and the end of the research: the reader will soon realise that the answer to several questions can be easily found in the published literature.[ 5 ] When the question overcomes the test of a thorough literature review, the project may become novel (there is a gap in the knowledge, and therefore, there is a need for new evidence on the topic) and relevant (the paper may contribute to change the clinical practice). In this context, it is important to distinguish the difference between statistical significance and clinical relevance: in the aforementioned study of Oba et al .,[ 10 ] despite the means of insertion times were reported as significant for the Supreme™ LMA, as compared with ProSeal™ LMA, the difference found in the insertion times (528 vs. 486 sec, respectively), although reported as significant, had little or no clinical relevance.[ 10 ] Conversely, a statistically significant difference of 12 sec might be of clinical relevance in neonates weighing <5 kg.[ 17 ] Thus, statistical tests must be interpreted in the context of a clinically meaningful effect size, which should be previously defined by the researcher.

Feasibility and ethical aspects

Among FINER criteria, there are two potential barriers that may prevent the successful conduct of the project and publication of the manuscript: feasibility and ethical aspects. These obstacles are usually related to the target population, as discussed above. Feasibility refers not only to the budget but also to the complexity of the design, recruitment strategy, blinding, adequacy of the sample size, measurement of the outcome, time of follow-up of participants, and commitment of clinicians, among others.[ 3 , 7 ] Funding, as a component of feasibility, may also be implicated in the ethical principles of clinical research, because the choice of the primary study question may be markedly influenced by the specific criteria demanded in the interest of potential funders.

Discussing ethical issues with local committees is compulsory, as rules applied might vary among countries.[ 18 ] Potential risks and benefits need to be carefully weighed, based upon the four principles of respect for autonomy, beneficence, non-maleficence, and justice.[ 19 ] Although many of these issues may be related to the population target (e.g., conducting a clinical trial in patients with ongoing cardiopulmonary resuscitation would be inappropriate, as would be anaesthetising patients undergoing elective LASER treatment for condylomas, to examine the performance of supraglottic airway devices),[ 14 , 15 ] ethical conflicts may also arise from the intervention (particularly those involving the occurrence of side effects or complications, and their potential for reversibility), comparison (e.g., use of placebo or sham procedures),[ 19 ] outcome (surrogate outcomes should be considered in lieu of long term outcomes), or time frame (e.g., unnecessary longer exposition to an intervention). Thus, FINER criteria should not be conceived without a concomitant examination of the PICOT checklist, and consequently, PICOT framework and FINER criteria should not be seen as separated components, but rather complementary ingredients of a good research question.

Undoubtedly, no research project can be conducted if it is deemed unfeasible, and most institutional review boards would not be in a position to approve a work with major ethical problems. Nonetheless, whether or not the findings are interesting, is a subjective matter. Engaging the attention of readers also depends upon a number of factors, including the manner of presenting the problem, the background of the topic, the intended audience, and the reader's expectations. Furthermore, the interest is usually linked to the novelty and relevance of the topic, and it is worth nothing that editors and peer reviewers of high-impact medical journals are usually reluctant to accept any publication, if there is no novelty inherent to the research hypothesis, or there is a lack of relevance in the results.[ 11 ] Nevertheless, a considerable number of papers have been published without any novelty or relevance in the topic addressed. This is probably reflected in a recent survey, according to which only a third of respondents declared to have read thoroughly the most recent papers downloaded, and at least half of those manuscripts remained unread.[ 20 ] The same study reported that up to one-third of papers examined remained uncited after 5 years of publication, and only 20% of papers accounted for 80% of the citations.[ 20 ]

Formulating a good research question can be fascinating, albeit challenging, even for experienced investigators. While it is clear that clinical experience in combination with the accurate interpretation of literature and teamwork are essential to develop new ideas, the formulation of a clinical problem usually requires the compliance with PICOT framework in conjunction with FINER criteria, in order to translate a clinical dilemma into a researchable question. Working in the right environment with the adequate support of experienced researchers, will certainly make a difference in the generation of knowledge. By doing this, a lot of time will be saved in the search of the primary study question, and undoubtedly, there will be more chances to become a successful researcher.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    hypotheses and research question

  2. How to Write a Good Research Question (w/ Examples)

    hypotheses and research question

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips

    hypotheses and research question

  4. What is a Research Hypothesis And How to Write it?

    hypotheses and research question

  5. How to Write a Strong Hypothesis in 6 Simple Steps

    hypotheses and research question

  6. PPT

    hypotheses and research question

VIDEO

  1. محاضرة Research Hypotheses and Question ❙ طرق البحث العلمي ❙ الفرقة الرابعة ❙ 2024

  2. December 25, 2023

  3. M&DRTW: Conceptualising Research- Formulating Research problems/ research questions/hypothesis

  4. Research S5

  5. Research questions and hypotheses

  6. Research Questions and Hypotheses

COMMENTS

  1. Research Questions & Hypotheses

    However, both research questions and hypotheses serve different purposes and can be beneficial when used together. Research Questions Clarify the research's aim (Farrugia et al., 2010) Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.

  2. Research Questions vs Hypothesis: Understanding the Difference

    A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement. Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption. Researchers use the null approach for ...

  3. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  4. PDF Research Questions and Hypotheses

    Research Questions and Hypotheses I nvestigators place signposts to carry the reader through a plan for a study. The first signpost is the purpose statement, which establishes the central direction for the study. From the broad, general purpose state-

  5. Research questions, hypotheses and objectives

    The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently ...

  6. Research Question Vs Hypothesis

    Research questions and hypotheses are both important elements of a research study, but they serve different purposes. Research Question. A Research Question is a clear, concise, and specific question that a researcher asks to guide their study. Research questions are used to define the scope of the research project and to guide the collection ...

  7. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Quick tips on writing a hypothesis. 1. Be clear about your research question. A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem.

  8. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  9. The Difference Between Research Questions & Hypothesis

    A hypothesis is defined as an educated guess, while a research question is simply the researcher wondering about the world. Hypothesis are part of the scientific research method. They are employed in research in science, sociology, mathematics and more. Research questions are part of heuristic research methods, and are also used in many fields ...

  10. Clarifying the Research Questions or Hypotheses

    What is the difference between a research question and a hypothesis? A research question is exactly what it says: it asks a question and is punctuated with a question mark. A research project requires at least one question, but there may be several (Nunan 1992). A hypothesis contains the researcher's prediction/s (Dörnyei 2007).

  11. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  12. Research Questions and Hypotheses

    A hypothesis is a predictive statement about the relationship between 2 or more variables. Research questions are similar to hypotheses, but they are in question format. We expand on that general definition by splitting research questions into 3 basic types: difference questions, associational questions, and descriptive questions. For difference and associational questions, basic means that ...

  13. Research Question 101

    As the name suggests, these types of research questions seek to explore the relationships between variables. Here, an example could be something like "What is the relationship between X and Y" or "Does A have an impact on B". As you can see, these types of research questions are interested in understanding how constructs or variables ...

  14. PDF DEVELOPING HYPOTHESIS AND RESEARCH QUESTIONS

    HYPOTHESES & RESEARCH QUESTIONS Nature of Hypothesis The hypothesis is a clear statement of what is intended to be investigated. It should be specified before research is conducted and openly stated in reporting the results. This allows to: Identify the research objectives Identify the key abstract concepts involved in the research

  15. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  16. Research: Articulating Questions, Generating Hypotheses, and Choosing

    Articulating a clear and concise research question is fundamental to conducting a robust and useful research study. Although "getting stuck into" the data collection is the exciting part of research, this preparation stage is crucial. Clear and concise research questions are needed for a number of reasons. Initially, they are needed to ...

  17. How to Write a Good Research Question (w/ Examples)

    A good research question should: Be clear and provide specific information so readers can easily understand the purpose. Be focused in its scope and narrow enough to be addressed in the space allowed by your paper. Be relevant and concise and express your main ideas in as few words as possible, like a hypothesis.

  18. Difference Between Hypothesis and Research Question

    A research question is the question the research study sets out to answer. Hypothesis is the statement the research study sets out to prove or disprove. The main difference between hypothesis and research question is that hypothesis is predictive in nature whereas research question is inquisitive in nature. In this article, we'll discuss,

  19. The Research Question and the Hypothesis

    The Hypothesis. The primary research question, once defined, then sets the foundation for subsequent trial design and conduct. First, the primary question must be restated as the primary hypothesis to be tested by the trial. For the researcher, it is more than just simply restating or rewording the question to a statement, but this is where you ...

  20. Research Questions, Objectives & Aims (+ Examples)

    Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

  21. How to Write a Research Question in 2024: Types, Steps, and Examples

    Research questions, along with hypotheses, also serve as a guiding framework for research. These questions also specifically reveal the boundaries of the study, setting its limits, and ensuring cohesion. Moreover, the research question has a domino effect on the rest of the study.

  22. Formulation of Research Question

    A good research question (RQ) forms backbone of a good research, which in turn is vital in unraveling mysteries of nature and giving insight into a problem.[1,2,3,4] RQ identifies the problem to be studied and guides to the methodology. It leads to building up of an appropriate hypothesis (Hs).

  23. PDF Department of Psychology

    It describes the topic and scientific questions that your thesis addresses, reviews the relevant scientific literature, and describes the objectives of the research. In essence, the introduction should make clear to the reader what hypothesis or question your research addresses, why it is important, and how your research will provide an answer.

  24. Modeling endosymbioses: Insights and hypotheses from theoretical

    Endosymbiotic relationships are pervasive across diverse taxa of life, offering key insights into eco-evolutionary dynamics. This Essay highlights the utility of mathematical models in endosymbiosis research, particularly in generating novel hypotheses, arguing that they serve as a useful complement to empirical approaches.

  25. Formulating a good research question: Pearls and pitfalls

    The process of formulating a good research question can be challenging and frustrating. While a comprehensive literature review is compulsory, the researcher usually encounters methodological difficulties in the conduct of the study, particularly if the primary study question has not been adequately selected in accordance with the clinical dilemma that needs to be addressed.