• Climate Change - A Global Issue
  • Dag Hammarskjöld Library
  • Research Guides

Major Reports

  • A Global Issue
  • At the United Nations
  • Books & Journals
  • Consulting the Experts
  • Keeping up to date
  • Data & Statistics
  • AR6 - 6th IPCC Assessment Report / Intergovernmental Panel on Climate Change The main activity of the IPCC is to, at regular intervals, provide Assessment Reports of the state of knowledge on climate change. The IPCC is now in its sixth assessment cycle, in which it is producing the Sixth Assessment Report (AR6) with contributions by its three Working Groups and a Synthesis Report, three Special Reports, and a refinement to its latest Methodology Report.

Cover Art

  • Global Landscape of Climate Finance 2023 / Climate Policy Initiative Date: 2023 Provides information about which sources and financial instruments are driving investments, and how much climate finance is flowing globally. The report aims to provide an updated picture on how, where, and from whom finance is flowing toward low-carbon and climate-resilient actions globally, and to improve understanding of how public and private sources of finance interact.

climate change research topics report

This site contains links and references to third-party databases, web sites, books and articles. It does not imply the endorsement of the content by the United Nations.

  • << Previous: At the United Nations
  • Next: Books & Journals >>
  • Last Updated: Jan 5, 2024 5:23 PM
  • URL: https://research.un.org/en/climate-change

climate change research topics report

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The Fifth National Climate Assessment

The Fifth National Climate Assessment is the US Government’s preeminent report on climate change impacts, risks, and responses. It is a congressionally mandated interagency effort that provides the scientific foundation to support informed decision-making across the United States.

Fifth National Climate Assessment 1. Overview Understanding Risks, Impacts, and Responses

  • Addressing Climate Change
  • Experiencing Climate Change
  • Current and Future Risks
  • Determining the Future
  • A Resilient Nation

How the United States Is Addressing Climate Change

The effects of human-caused climate change are already far-reaching and worsening across every region of the United States. Rapidly reducing greenhouse gas emissions can limit future warming and associated increases in many risks. Across the country, efforts to adapt to climate change and reduce emissions have expanded since 2018, and US emissions have fallen since peaking in 2007. However, without deeper cuts in global net greenhouse gas emissions and accelerated adaptation efforts, severe climate risks to the United States will continue to grow.

Future climate change impacts depend on choices made today

The more the planet warms, the greater the impacts. Without rapid and deep reductions in global greenhouse gas emissions from human activities, the risks of accelerating sea level rise, intensifying extreme weather, and other harmful climate impacts will continue to grow. Each additional increment of warming is expected to lead to more damage and greater economic losses compared to previous increments of warming, while the risk of catastrophic or unforeseen consequences also increases. { 2.3 , 19.1 }

However, this also means that each increment of warming that the world avoids—through actions that cut emissions or remove carbon dioxide (CO 2 ) from the atmosphere—reduces the risks and harmful impacts of climate change. While there are still uncertainties about how the planet will react to rapid warming, the degree to which climate change will continue to worsen is largely in human hands. { 2.3 , 3.4 }

In addition to reducing risks to future generations, rapid emissions cuts are expected to have immediate health and economic benefits (Figure 1.1 ). At the national scale, the benefits of deep emissions cuts for current and future generations are expected to far outweigh the costs. { 2.1 , 2.3 , 13.3 , 14.5 , 15.3 , 32.4 ; Ch. 2, Introduction }

Climate Change Risks and Opportunities in the US

US emissions have decreased, while the economy and population have grown

Annual US greenhouse gas emissions fell 12% between 2005 and 2019. This trend was largely driven by changes in electricity generation: coal use has declined, while the use of natural gas and renewable technologies has increased, leading to a 40% drop in emissions from the electricity sector. Since 2017, the transportation sector has overtaken electricity generation as the largest emitter. { 11.1 , 13.1 , 32.1 ; Figures 32.1 , 32.3 }

As US emissions have declined from their peak in 2007, the country has also seen sustained reductions in the amount of energy required for a given quantity of economic activity and the emissions produced per unit of energy consumed. Meanwhile, both population and per capita GDP have continued to grow. { 32.1 ; Figures 32.1 , 32.2 }

Recent growth in the capacities of wind, solar, and battery storage technologies is supported by rapidly falling costs of zero- and low-carbon energy technologies, which can support even deeper emissions reductions. For example, wind and solar energy costs dropped 70% and 90%, respectively, over the last decade, while 80% of new generation capacity in 2020 came from renewable sources (Figures 1.2 , 1.3 ). { 5.3 , 12.3 , 32.1 , 32.2 ; Figure A4.17 }

Across all sectors, innovation is expanding options for reducing energy demand and increasing energy efficiency, moving to zero- and low-carbon electricity and fuels, electrifying energy use in buildings and transportation, and adopting practices that protect and improve natural carbon sinks that remove and store CO 2 from the atmosphere, such as sustainable agricultural and land-management practices. { 11.1 , 32.2 , 32.3 ; Boxes 32.1 , 32.2 ; Focus on Blue Carbon }

Historical Trends in Unit Costs and Deployment of Low-Carbon Energy Technologies in the United States

Accelerating advances in adaptation can help reduce rising climate risks

As more people face more severe climate impacts, individuals, organizations, companies, communities, and governments are taking advantage of adaptation opportunities that reduce risks. State climate assessments and online climate services portals are providing communities with location- and sector-specific information on climate hazards to support adaptation planning and implementation across the country. New tools, more data, advancements in social and behavioral sciences, and better consideration of practical experiences are facilitating a range of actions (Figure 1.3 ). { 7.3 , 12.3 , 21.4 , 25.4 , 31.1 , 31.5 , 32.5 ; Table 31.1 }

Actions include:

Implementing nature-based solutions—such as restoring coastal wetlands or oyster reefs—to reduce shoreline erosion { 8.3 , 9.3 , 21.2 , 23.5 }

Upgrading stormwater infrastructure to account for heavier rainfall { 4.2 }

Applying innovative agricultural practices to manage increasing drought risk { 11.1 , 22.4 , 25.5 }

Assessing climate risks to roads and public transit { 13.1 }

Managing vegetation to reduce wildfire risk { 5.3 }

Developing urban heat plans to reduce health risks from extreme heat { 12.3 , 21.1 , 28.4 }

Planning relocation from high-risk coastal areas { 9.3 }

Despite an increase in adaptation actions across the country, current adaptation efforts and investments are insufficient to reduce today’s climate-related risks and keep pace with future changes in the climate. Accelerating current efforts and implementing new ones that involve more fundamental shifts in systems and practices can help address current risks and prepare for future impacts (see “Mitigation and adaptation actions can result in systemic, cascading benefits” below). { 31.1 , 31.3 }

Climate action has increased in every region of the US

Efforts to adapt to climate change and reduce net greenhouse gas emissions are underway in every US region and have expanded since 2018 (Figure 1.3 ; Table 1.1 ). Many actions can achieve both adaptation and mitigation goals. For example, improved forest- or land-management strategies can both increase carbon storage and protect ecosystems, and expanding renewable energy options can reduce emissions while also improving resilience. { 31.1 , 32.5 }

US Adaptation and Mitigation Actions

Climate adaptation and mitigation efforts involve trade-offs, as climate actions that benefit some or even most people can result in burdens to others. To date, some communities have prioritized equitable and inclusive planning processes that consider the social impacts of these trade-offs and help ensure that affected communities can participate in decision-making. As additional measures are implemented, more widespread consideration of their social impact can help inform decisions around how to distribute the outcomes of investments. { 12.4 , 13.4 , 20.2 , 21.3 , 21.4 , 26.4 , 27.1 , 31.2 , 32.4 , 32.5 ; Box 20.1 }

Meeting US mitigation targets means reaching net-zero emissions

The global warming observed over the industrial era is unequivocally caused by greenhouse gas emissions from human activities—primarily burning fossil fuels. Atmospheric concentrations of carbon dioxide (CO 2 )—the primary greenhouse gas produced by human activities—and other greenhouse gases continue to rise due to ongoing global emissions. Stopping global warming would require both reducing emissions of CO 2 to net zero and rapid and deep reductions in other greenhouse gases. Net-zero CO 2 emissions means that CO 2 emissions decline to zero or that any residual emissions are balanced by removal from the atmosphere. { 2.3 , 3.1 ; Ch. 32 }

Once CO 2 emissions reach net zero, the global warming driven by CO 2 is expected to stop: additional warming over the next few centuries is not necessarily “locked in” after net CO 2 emissions fall to zero. However, global average temperatures are not expected to fall for centuries unless CO 2 emissions become net negative, which is when CO 2 removal from the atmosphere exceeds CO 2 emissions from human activities. Regardless of when or if further warming is avoided, some long-term responses to the temperature changes that have already occurred will continue. These responses include sea level rise, ice sheet losses, and associated disruptions to human health, social systems, and ecosystems. In addition, the ocean will continue to acidify after the world reaches net-zero CO 2 emissions, as it continues to gradually absorb CO 2 in the atmosphere from past emissions. { 2.1 , 2.3 , 3.1 ; Ch. 2, Introduction }

National and international commitments seek to limit global warming to well below 2°C (3.6°F), and preferably to 1.5°C (2.7°F), compared to preindustrial temperature conditions (defined as the 1850–1900 average). To achieve this, global CO 2 emissions would have to reach net zero by around 2050 (Figure 1.4 ); global emissions of all greenhouse gases would then have to reach net zero within the following few decades. { 2.3 , 32.1 }

Future Global Carbon Dioxide Emissions Pathways

While US greenhouse gas emissions are falling, the current rate of decline is not sufficient to meet national and international climate commitments and goals. US net greenhouse gas emissions remain substantial and would have to decline by more than 6% per year on average, reaching net-zero emissions around midcentury, to meet current national mitigation targets and international temperature goals; by comparison, US greenhouse gas emissions decreased by less than 1% per year on average between 2005 and 2019. { 32.1 }

Many cost-effective options that are feasible now have the potential to substantially reduce emissions over the next decade. Faster and more widespread deployment of renewable energy and other zero- and low-carbon energy options can accelerate the transition to a decarbonized economy and increase the chances of meeting a 2050 national net-zero greenhouse gas emissions target for the US. However, to reach the US net-zero emissions target, additional mitigation options need to be explored and advanced (see “Available mitigation strategies can deliver substantial emissions reductions, but additional options are needed to reach net zero” below). { 5.3 , 6.3 , 32.2 , 32.3 }

Jay, A.K., A.R. Crimmins, C.W. Avery, T.A. Dahl, R.S. Dodder, B.D. Hamlington, A. Lustig, K. Marvel, P.A. Méndez-Lazaro, M.S. Osler, A. Terando, E.S. Weeks, and A. Zycherman, 2023: Ch. 1. Overview: Understanding risks, impacts, and responses. In: Fifth National Climate Assessment . Crimmins, A.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, B.C. Stewart, and T.K. Maycock, Eds. U.S. Global Change Research Program, Washington, DC, USA. https://doi.org/10.7930/NCA5.2023.CH1

Download citation: BibTeX     |     RIS

How the United States Is Experiencing Climate Change

As extreme events and other climate hazards intensify, harmful impacts on people across the United States are increasing. Climate impacts—combined with other stressors—are leading to ripple effects across sectors and regions that multiply harms, with disproportionate effects on underserved and overburdened communities.

Current climate changes are unprecedented over thousands of years

Global greenhouse gas emissions from human activities continue to increase, resulting in rapid warming (Figure 1.5 ) and other large-scale changes, including rising sea levels, melting ice, ocean warming and acidification, changing rainfall patterns, and shifts in timing of seasonal events. Many of the climate conditions and impacts people are experiencing today are unprecedented for thousands of years (Figure 1.6 ). { 2.1 , 3.1 ; Figures A4.6 , A4.7 , A4.10 , A4.13 }

US and Global Changes in Average Surface Temperature

As the world’s climate has shifted toward warmer conditions, the frequency and intensity of extreme cold events have declined over much of the US, while the frequency, intensity, and duration of extreme heat have increased. Across all regions of the US, people are experiencing warming temperatures and longer-lasting heatwaves. Over much of the country, nighttime temperatures and winter temperatures have warmed more rapidly than daytime and summer temperatures. Many other extremes, including heavy precipitation, drought, flooding, wildfire, and hurricanes, are becoming more frequent and/or severe, with a cascade of effects in every part of the country. { 2.1 , 2.2 , 3.4 , 4.1 , 4.2 , 7.1 , 9.1 ; Ch. 2, Introduction ; App. 4 ; Focus on Compound Events }

Risks from extreme events are increasing

One of the most direct ways that people experience climate change is through changes in extreme events. Harmful impacts from more frequent and severe extremes are increasing across the country—including increases in heat-related illnesses and death, costlier storm damages, longer droughts that reduce agricultural productivity and strain water systems, and larger, more severe wildfires that threaten homes and degrade air quality. { 2.2 , 4.2 , 12.2 , 14.2 , 15.1 , 19.2 ; Focus on Western Wildfires }

Extreme weather events cause direct economic losses through infrastructure damage, disruptions in labor and public services, and losses in property values. The number and cost of weather-related disasters have increased dramatically over the past four decades, in part due to the increasing frequency and intensity of extreme events and in part due to increases in assets at risk (through population growth, rising property values, and continued development in hazard-prone areas). Low-income communities, communities of color, and Tribes and Indigenous Peoples experience high exposure and vulnerability to extreme events due to both their proximity to hazard-prone areas and lack of adequate infrastructure or disaster management resources. { 2.2 , 4.2 , 17.3 , 19.1 ; Focus on Compound Events }

In the 1980s, the country experienced, on average, one (inflation-adjusted) billion-dollar disaster every four months. Now, there is one every three weeks, on average. Between 2018 and 2022, the US experienced 89 billion-dollar events (Figure 1.7 ). Extreme events cost the US close to $150 billion each year—a conservative estimate that does not account for loss of life, healthcare-related costs, or damages to ecosystem services. { 2.2 , 19.1 ; Ch. 2, Introduction ; Figures 4.1 , A4.5 }

Damages by State from Billion-Dollar Disasters (2018–2022)

Cascading and compounding impacts increase risks

The impacts and risks of climate change unfold across interacting sectors and regions. For example, wildfire in one region can affect air quality and human health in other regions, depending on where winds transport smoke. Further, climate change impacts interact with other stressors, such as the COVID-19 pandemic, environmental degradation, or socioeconomic stressors like poverty and lack of adequate housing that disproportionately impact overburdened communities. These interactions and interdependencies can lead to cascading impacts and sudden failures. For example, climate-related shocks to the food supply chain have led to local to global impacts on food security and human migration patterns that affect US economic and national security interests. { 11.3 , 17.1 , 17.2 , 17.3 , 18.1 , 22.3 , 23.4 , 31.3 ; Introductions in Chs. 2 , 17 , 18 ; Focus on Compound Events ; Focus on Risks to Supply Chains ; Focus on COVID-19 and Climate Change }

The risk of two or more extreme events occurring simultaneously or in quick succession in the same region—known as compound events—is increasing. Climate change is also increasing the risk of multiple extremes occurring simultaneously in different locations that are connected by complex human and natural systems. For instance, simultaneous megafires across multiple western states and record back-to-back Atlantic hurricanes in 2020 caused unprecedented demand on federal emergency response resources. { 2.2 , 3.2 , 15.1 , 22.2 , 26.4 ; Focus on Compound Events ; Ch. 4, Introduction }

Compound events often have cascading impacts that cause greater harm than individual events. For example, in 2020, record-breaking heat and widespread drought contributed to concurrent destructive wildfires across California, Oregon, and Washington, exposing millions to health hazards and straining firefighting resources. Ongoing drought amplified the record-breaking Pacific Northwest heatwave of June 2021, which was made 2° to 4°F hotter by climate change. The heatwave led to more than 1,400 heat-related deaths, another severe wildfire season, mass die-offs of fishery species important to the region’s economy and Indigenous communities, and total damages exceeding $38.5 billion (in 2022 dollars). { 27.3 ; Ch. 2, Introduction ; Focus on Compound Events , Focus on Western Wildfires }

Climate change exacerbates inequities

Some communities are at higher risk of negative impacts from climate change due to social and economic inequities caused by ongoing systemic discrimination, exclusion, and under- or disinvestment. Many such communities are also already overburdened by the cumulative effects of adverse environmental, health, economic, or social conditions. Climate change worsens these long-standing inequities, contributing to persistent disparities in the resources needed to prepare for, respond to, and recover from climate impacts. { 4.2 , 9.2 , 12.2 , 14.3 , 15.2 , 16.1 , 16.2 , 18.2 , 19.1 , 20.1 , 20.3 , 21.3 , 22.1 , 23.1 , 26.4 , 27.1 , 31.2 }

For example, low-income communities and communities of color often lack access to adequate flood infrastructure, green spaces, safe housing, and other resources that help protect people from climate impacts. In some areas, patterns of urban growth have led to the displacement of under-resourced communities to suburban and rural areas with less access to climate-ready housing and infrastructure. Extreme heat can lead to higher rates of illness and death in low-income neighborhoods, which are hotter on average (Figure 1.8 ). Neighborhoods that are home to racial minorities and low-income people have the highest inland (riverine) flood exposures in the South, and Black communities nationwide are expected to bear a disproportionate share of future flood damages—both coastal and inland (Figure 1.9 ). { 4.2 , 11.3 , 12.2 , 15.1 , 22.1 , 22.2 , 26.4 , 27.1 ; Ch. 2, Introduction }

Land Surface Temperature and Its Relationship to Median Household Income for Three Cities

These disproportionate impacts are partly due to exclusionary housing practices—both past and ongoing—that leave underserved communities with less access to heat and flood risk-reduction strategies and other economic, health, and social resources. For example, areas that were historically redlined—a practice in which lenders avoided providing services to communities, often based on their racial or ethnic makeup—continue to be deprived of equitable access to environmental amenities like urban green spaces that reduce exposure to climate impacts. These neighborhoods can be as much as 12°F hotter during a heatwave than nearby wealthier neighborhoods. { 8.3 , 9.2 , 12.2 , 15.2 , 20.3 , 21.3 , 22.1 , 26.4 , 27.1 , 32.4 ; Ch. 2, Introduction }

Projected Increases in Average Annual Losses (AALs) from Floods by 2050

Harmful impacts will increase in the near term

Even if greenhouse gas emissions fall substantially, the impacts of climate change will continue to intensify over the next decade (see “Meeting US mitigation targets means reaching net-zero emissions” above; Box 1.4 ), and all US regions are already experiencing increasingly harmful impacts. Although a few US regions or sectors may experience limited or short-term benefits from climate change, adverse impacts already far outweigh any positive effects and will increasingly eclipse benefits with additional warming. { 2.3 , 19.1 ; Ch. 2, Introduction ; Chs. 21–30}

Table 1.2 shows examples of critical impacts expected to affect people in each region between now and 2030, with disproportionate effects on overburdened communities. While these examples affect particular regions in the near term, impacts often cascade through social and ecological systems and across borders and may lead to longer-term losses. { 15.2 , 18.2 , 20.1 ; Figure 15.5 ; Ch. 20, Introduction }

Current and Future Climate Risks to the United States

Climate changes are making it harder to maintain safe homes and healthy families; reliable public services; a sustainable economy; thriving ecosystems, cultures, and traditions; and strong communities. Many of the extreme events and harmful impacts that people are already experiencing will worsen as warming increases and new risks emerge.

Safe, reliable water supplies are threatened by flooding, drought, and sea level rise

More frequent and intense heavy precipitation events are already evident, particularly in the Northeast and Midwest. Urban and agricultural environments are especially vulnerable to runoff and flooding. Between 1981 and 2016, US corn yield losses from flooding were comparable to those from extreme drought. Runoff and flooding also transport debris and contaminants that cause harmful algal blooms and pollute drinking water supplies. Communities of color and low-income communities face disproportionate flood risks. { 2.2 , 4.2 , 6.1 , 9.2 , 21.3 , 24.1 , 24.5 , 26.4 ; Figure A4.8 }

Between 1980 and 2022, drought and related heatwaves caused approximately $328 billion in damages (in 2022 dollars). Recent droughts have strained surface water and groundwater supplies, reduced agricultural productivity, and lowered water levels in major reservoirs, threatening hydropower generation. As higher temperatures increase irrigation demand, increased pumping could endanger groundwater supplies, which are already declining in many major aquifers. { 4.1, 4.2 ; Figure A4.9 }

Droughts are projected to increase in intensity, duration, and frequency, especially in the Southwest, with implications for surface water and groundwater supplies. Human and natural systems are threatened by rapid shifts between wet and dry periods that make water resources difficult to predict and manage. { 2.2 , 2.3 , 4.1 , 4.2 , 5.1 , 28.1 }

In coastal environments, dry conditions, sea level rise, and saltwater intrusion endanger groundwater aquifers and stress aquatic ecosystems. Inland, decreasing snowpack alters the volume and timing of streamflow and increases wildfire risk. Small rural water providers that often depend on a single water source or have limited capacity are especially vulnerable. { 4.2 , 7.2 , 9.2 , 21.2 , 22.1 , 23.1 , 23.3 , 25.1 , 27.4 , 28.1 , 28.2 , 28.5 , 30.1 ; Figure A4.7 }

Many options are available to protect water supplies, including reservoir optimization, nature-based solutions, and municipal management systems to conserve and reuse water. Collaboration on flood hazard management at regional scales is particularly important in areas where flood risk is increasing, as cooperation can provide solutions unavailable at local scales. { 4.3 , 9.3 , 26.5 ; Focus on Blue Carbon }

Overview Filler photo 1

Disruptions to food systems are expected to increase

As the climate changes, increased instabilities in US and global food production and distribution systems are projected to make food less available and more expensive. These price increases and disruptions are expected to disproportionately affect the nutrition and health of women, children, older adults, and low-wealth communities. { 11.2 , 15.2 }

Climate change also disproportionately harms the livelihoods and health of communities that depend on agriculture, fishing, and subsistence lifestyles, including Indigenous Peoples reliant on traditional food sources. Heat-related stress and death are significantly greater for farmworkers than for all US civilian workers. { 11.2 , 11.3 , 15.1 , 15.2 , 16.1 ; Focus on Risks to Supply Chains }

While farmers, ranchers, and fishers have always faced unpredictable weather, climate change heightens risks in many ways:

Increasing temperatures, along with changes in precipitation, reduce productivity, yield, and nutritional content of many crops. These changes can introduce disease, disrupt pollination, and result in crop failure, outweighing potential benefits of longer growing seasons and increased CO 2 fertilization. { 11.1 , 19.1 , 21.1 , 22.4 , 23.3 , 24.1 , 26.2 }

Heavy rain and more frequent storms damage crops and property and contaminate water supplies. Longer-lasting droughts and larger wildfires reduce forage production and nutritional quality, diminish water supplies, and increase heat stress on livestock. { 23.2, 25.3 , 28.3 }

Increasing water temperatures, invasive aquatic species, harmful algal blooms, and ocean acidification and deoxygenation put fisheries at risk. Fishery collapses can result in large economic losses, as well as loss of cultural identity and ways of life. { 11.3 , 29.3 }

In response, some farmers and ranchers are adopting innovations—such as agroecological practices, data-driven precision agriculture, and carbon monitoring—to improve resilience, enhance soil carbon storage, and reduce emissions. Across the Nation, Indigenous food security efforts are helping improve community resilience to climate change while also improving cultural resilience. Some types of aquaculture have the potential to increase climate-smart protein production, human nutrition, and food security, although some communities have raised concerns over issues such as conflict with traditional livelihoods and the introduction of disease or pollution. { 10.2 , 11.1 , 29.6 , 25.5 ; Boxes 22.3 , 27.2 }

Overview Filler photo 2

Homes and property are at risk from sea level rise and more intense extreme events

Homes, property, and critical infrastructure are increasingly exposed to more frequent and intense extreme events, increasing the cost of maintaining a safe and healthy place to live. Development in fire-prone areas and increases in area burned by wildfires have heightened risks of loss of life and property damage in many areas across the US. Coastal communities across the country—home to 123 million people (40% of the total US population)—are exposed to sea level rise (Figure 1.10 ), with millions of people at risk of being displaced from their homes by the end of the century. { 2.3 , 9.1 , 12.2 , 22.1 , 27.4 , 30.3 ; Figures A4.10 , A4.14 ; Focus on Western Wildfires }

People who regularly struggle to afford energy bills—such as rural, low-income, and older fixed-income households and communities of color—are especially vulnerable to more intense extreme heat events and associated health risks, particularly if they live in homes with poor insulation and inefficient cooling systems. For example, Black Americans are more likely to live in older, less energy efficient homes and face disproportionate heat-related health risks. { 5.2 , 15.2 , 15.3 , 22.2 , 26.4 , 32.4 ; Figure A4.4 }

Accessible public cooling centers can help protect people who lack adequate air-conditioning on hot days. Strategic land-use planning in cities, urban greenery, climate-smart building codes, and early warning communication can also help neighborhoods adapt. However, other options at the household scale, such as hardening homes against weather extremes or relocation, may be out of reach for renters and low-income households without assistance. { 12.3 , 15.3 , 19.3 , 22.2 }

US Flooding Risks in 2020 and 2050

Infrastructure and services are increasingly damaged and disrupted by extreme weather and sea level rise

Climate change threatens vital infrastructure that moves people and goods, powers homes and businesses, and delivers public services. Many infrastructure systems across the country are at the end of their intended useful life and are not designed to cope with additional stress from climate change. For example, extreme heat causes railways to buckle, severe storms overload drainage systems, and wildfires result in roadway obstruction and debris flows. Risks to energy, water, healthcare, transportation, telecommunications, and waste management systems will continue to rise with further climate change, with many infrastructure systems at risk of failing. { 12.2 , 13.1 , 15.2 , 23.4 , 26.5 ; Focus on Risks to Supply Chains }

In coastal areas, sea level rise threatens permanent inundation of infrastructure, including roadways, railways, ports, tunnels, and bridges; water treatment facilities and power plants; and hospitals, schools, and military bases. More intense storms also disrupt critical services like access to medical care, as seen after Hurricanes Irma and Maria in the US Virgin Islands and Puerto Rico. { 9.2 , 23.1 , 28.2 , 30.3 }

At the same time, climate change is expected to place multiple demands on infrastructure and public services. For example, higher temperatures and other effects of climate change, such as greater exposure to stormwater or wastewater, will increase demand for healthcare. Continued increases in average temperatures and more intense heatwaves will heighten electricity and water demand, while wetter storms and intensified hurricanes will strain wastewater and stormwater management systems. In the Midwest and other regions, aging energy grids are expected to be strained by disruptions and transmission efficiency losses from climate change. { 23.4 , 24.4 , 30.2 }

Forward-looking designs of infrastructure and services can help build resilience to climate change, offset costs from future damage to transportation and electrical systems, and provide other benefits, including meeting evolving standards to protect public health, safety, and welfare. Mitigation and adaptation activities are advancing from planning stages to deployment in many areas, including improved grid design and workforce training for electrification, building upgrades, and land-use choices. Grid managers are gaining experience planning and operating electricity systems with growing shares of renewable generation and working toward understanding the best approaches for dealing with the natural variability of wind and solar sources alongside increases in electrification. { 5.3 , 12.3 , 13.1 , 13.2 , 22.3 , 24.4 , 32.3 ; Figure 22.17 }

Overview Filler photo 4

Climate change exacerbates existing health challenges and creates new ones

Climate change is already harming human health across the US, and impacts are expected to worsen with continued warming. Climate change harms individuals and communities by exposing them to a range of compounding health hazards, including the following:

More severe and frequent extreme events { 2.2 , 2.3 , 15.1 }

Wider distribution of infectious and vector-borne pathogens { 15.1 , 26.1 ; Figure A4.16 }

Air quality worsened by smog, wildfire smoke, dust, and increased pollen { 14.1 , 14.2 , 14.4 , 23.1 , 26.1 }

Threats to food and water security { 11.2 , 15.1 }

Mental and spiritual health stressors { 15.1 }

While climate change can harm everyone’s health, its impacts exacerbate long-standing disparities that result in inequitable health outcomes for historically marginalized people, including people of color, Indigenous Peoples, low-income communities, and sexual and gender minorities, as well as older adults, people with disabilities or chronic diseases, outdoor workers, and children. { 14.3 , 15.2 }

The disproportionate health impacts of climate change compound with similar disparities in other health contexts. For example, climate-related disasters during the COVID-19 pandemic, such as drought along the Colorado River basin, western wildfires, and Hurricane Laura, disproportionately magnified COVID-19 exposure, transmission, and disease severity and contributed to worsened health conditions for essential workers, older adults, farmworkers, low-wealth communities, and communities of color. { 15.2 ; Focus on COVID-19 and Climate Change }

Large reductions in greenhouse gas emissions are expected to result in widespread health benefits and avoided death or illness that far outweigh the costs of mitigation actions. Improving early warning, surveillance, and communication of health threats; strengthening the resilience of healthcare systems; and supporting community-driven adaptation strategies can reduce inequities in the resources and capabilities needed to adapt as health threats from climate change continue to grow. { 14.5 , 15.3 , 26.1 , 30.2 , 32.4 }

Overview Filler photo 5

Ecosystems are undergoing transformational changes

Together with other stressors, climate change is harming the health and resilience of ecosystems, leading to reductions in biodiversity and ecosystem services. Increasing temperatures continue to shift habitat ranges as species expand into new regions or disappear from unfavorable areas, altering where people can hunt, catch, or gather economically important and traditional food sources. Degradation and extinction of local flora and fauna in vulnerable ecosystems like coral reefs and montane rainforests are expected in the near term, especially where climate changes favor invasive species or increase susceptibility to pests and pathogens. Without significant emissions reductions, rapid shifts in environmental conditions are expected to lead to irreversible ecological transformations by mid- to late century. { 2.3 , 6.2 , 7.1 , 7.2 , 8.1 , 8.2 , 10.1 , 10.2 , 21.1 , 24.2 , 27.2 , 28.5 , 29.3 , 29.5 , 30.4 ; Figure A4.12 }

Changes in ocean conditions and extreme events are already transforming coastal, aquatic, and marine ecosystems. Coral reefs are being lost due to warming and ocean acidification, harming important fisheries; coastal forests are converting to ghost forests, shrublands, and marsh due to sea level rise, reducing coastal protection; lake and stream habitats are being degraded by warming, heavy rainfall, and invasive species, leading to declines in economically important species. { 8.1 , 10.1 , 21.2 , 23.2 , 24.2 , 27.2 ; Figures 8.7 , A4.11 }

Increased risks to ecosystems are expected with further climate change and other environmental changes, such as habitat fragmentation, pollution, and overfishing. For example, mass fish die-offs from extreme summertime heat are projected to double by midcentury in northern temperate lakes under a very high scenario (RCP8.5). Continued climate changes are projected to exacerbate runoff and erosion, promote harmful algal blooms, and expand the range of invasive species. { 4.2 , 7.1 , 8.2 , 10.1 , 21.2 , 23.2 , 24.2 , 27.2 , 28.2 , 30.4 }

While adaptation options to protect fragile ecosystems may be limited, particularly under higher levels of warming, management and restoration measures can reduce stress on ecological systems and build resilience. These measures include migration assistance for vulnerable species and protection of essential habitats, such as establishing wildlife corridors or places where species can avoid heat. Opportunities for nature-based solutions that assist in mitigation exist across the US, particularly those focused on protecting existing carbon sinks and increasing carbon storage by natural ecosystems. { 8.3 , 10.3 , 23.2 , 27.2 ; Focus on Blue Carbon }

Overview Filler photo 6

Climate change slows economic growth, while climate action presents opportunities

With every additional increment of global warming, costly damages are expected to accelerate. For example, 2°F of warming is projected to cause more than twice the economic harm induced by 1°F of warming. Damages from additional warming pose significant risks to the US economy at multiple scales and can compound to dampen economic growth. { 19.1 }

International impacts can disrupt trade, amplify costs along global supply chains, and affect domestic markets. { 17.3 , 19.2 ; Focus on Risks to Supply Chains }

While some economic impacts of climate change are already being felt across the country, the impacts of future changes are projected to be more significant and apparent across the US economy. { 19.1 }

States, cities, and municipalities confront climate-driven pressures on public budgets and borrowing costs amid spending increases on healthcare and disaster relief. { 19.2 }

Household consumers face higher costs for goods and services, like groceries and health insurance premiums, as prices change to reflect both current and projected climate-related damages. { 19.2 }

Mitigation and adaptation actions present economic opportunities. Public and private measures—such as climate financial risk disclosures, carbon offset credit markets, and investments in green bonds—can avoid economic losses and improve property values, resilience, and equity. However, climate responses are not without risk. As innovation and trade open further investment opportunities in renewable energy and the country continues to transition away from fossil fuels, loss and disposal costs of stranded capital assets such as coal mines, oil and gas wells, and outdated power plants are expected. Climate solutions designed without input from affected communities can also result in increased vulnerability and cost burden. { 17.3 , 19.2 , 19.3 , 20.2 , 20.3 , 27.1 , 31.6 }

Many regional economies and livelihoods are threatened by damages to natural resources and intensifying extremes

Climate change is projected to reduce US economic output and labor productivity across many sectors, with effects differing based on local climate and the industries unique to each region. Climate-driven damages to local economies especially disrupt heritage industries (e.g., fishing traditions, trades passed down over generations, and cultural heritage–based tourism) and communities whose livelihoods depend on natural resources. { 11.3 , 19.1 , 19.3 }

As fish stocks in the Northeast move northward and to deeper waters in response to rapidly rising ocean temperatures, important fisheries like scallops, shrimp, and cod are at risk. In Alaska, climate change has already played a role in 18 major fishery disasters that were especially damaging for coastal Indigenous Peoples, subsistence fishers, and rural communities. { 10.2 , 21.2 , 29.3 }

While the Southeast and US Caribbean face high costs from projected labor losses and heat health risks to outdoor workers, small businesses are already confronting higher costs of goods and services and potential closures as they struggle to recover from the effects of compounding extreme weather events. { 22.3 , 23.1 }

Agricultural losses in the Midwest, including lower corn yields and damages to specialty crops like apples, are linked to rapid shifts between wet and dry conditions and stresses from climate-induced increases in pests and pathogens. Extreme heat and more intense wildfire and drought in the Southwest are already threatening agricultural worker health, reducing cattle production, and damaging wineries. { 24.1 , 28.5 }

In the Northern Great Plains, agriculture and recreation are expected to see primarily negative effects related to changing temperature and rainfall patterns. By 2070, the Southern Great Plains is expected to lose cropland acreage as lands transition to pasture or grassland. { 25.3 , 26.2 }

Outdoor-dependent industries, such as tourism in Hawai‘i and the US-Affiliated Pacific Islands and skiing in the Northwest, face significant economic loss from projected rises in park closures and reductions in workforce as continued warming leads to deterioration of coastal ecosystems and shorter winter seasons with less snowfall. { 7.2 , 8.3 , 10.1 , 10.3 , 19.1 , 27.3 , 30.4 }

Mitigation and adaptation actions taken by businesses and industries promote resilience and offer long-term benefits to employers, employees, and surrounding communities. For example, as commercial fisheries adapt, diversifying harvest and livelihoods can help stabilize income or buffer risk. In addition, regulators and investors are increasingly requiring businesses to disclose climate risks and management strategies. { 10.2 , 19.3 , 26.2 }

Overview Filler photo 7

Job opportunities are shifting due to climate change and climate action

Many US households are already feeling the economic impacts of climate change. Climate change is projected to impose a variety of new or higher costs on most households as healthcare, food, insurance, building, and repair costs become more expensive. Compounding climate stressors can increase segregation, income inequality, and reliance on social safety net programs. Quality of life is also threatened by climate change in ways that can be more difficult to quantify, such as increased crime and domestic violence, harm to mental health, reduced happiness, and fewer opportunities for outdoor recreation and play. { 11.3 , 19.1, 19.3 }

Climate change, and how the country responds, is expected to alter demand for workers and shift where jobs are available. For example, energy-related livelihoods in the Northern and Southern Great Plains are expected to shift as the energy sector transforms toward more renewables, low-carbon technologies, and electrification of more sectors of the economy. Losses in fossil fuel–related jobs are projected to be completely offset by greater increases in mitigation-related jobs, as increased demand for renewable energy and low-carbon technologies is expected to lead to long-term expansion in most states’ energy and decarbonization workforce (Figure 1.12 ). Grid expansion and energy efficiency efforts are already creating new jobs in places like Nevada, Vermont, and Alaska, and advancements in biofuels and agrivoltaics (combined renewable energy and agriculture) provide economic opportunities in rural communities. { 10.2 , 11.3 , 19.3 , 25.3 , 26.2 , 29.3 , 32.4 }

Additional opportunities include jobs in ecosystem restoration and construction of energy-efficient and climate-resilient housing and infrastructure. Workforce training and equitable access to clean energy jobs, which have tended to exclude women and people of color, are essential elements of a just transition to a decarbonized economy. { 5.3 , 19.3 , 20.3 , 22.3 , 25.3 , 26.2 , 27.3 , 32.4 }

Energy Employment (2020–2050) for Alternative Net-Zero Pathways

Climate change is disrupting cultures, heritages, and traditions

As climate change transforms US landscapes and ecosystems, many deeply rooted community ties, pastimes, Traditional Knowledges, and cultural or spiritual connections to place are at risk. Cultural heritage—including buildings, monuments, livelihoods, and practices—is threatened by impacts on natural ecosystems and the built environment. Damages to archaeological, cultural, and historical sites further reduce opportunities to transfer important knowledge and identity to future generations. { 6.1 , 7.2 , 8.3 , 9.2 , 10.1 , 12.2 , 16.1 , 22.1 , 23.1 , 26.1 , 27.6 , 28.2 ; Introductions in Chs. 10 , 30 }

Many outdoor activities and traditions are already being affected by climate change, with overall impacts projected to further hinder recreation, cultural practices, and the ability of communities to maintain local heritage and a sense of place. { 19.1 }

For example:

The prevalence of invasive species and harmful algal blooms is increasing as waters warm, threatening activities like swimming along Southeast beaches, boating and fishing for walleye in the Great Lakes, and viewing whooping cranes along the Gulf Coast. In the Northwest, water-based recreation demand is expected to increase in spring and summer months, but reduced water quality and harmful algal blooms are expected to restrict these opportunities. { 24.2 , 24.5 , 26.3 , 27.6 }

Ranges of culturally important species are shifting as temperatures warm, making them harder to find in areas where Indigenous Peoples have access (see Box 1.3 ). { 11.2 , 24.2 , 26.1 }

Hikers, campers, athletes, and spectators face increasing threats from more severe heatwaves, wildfires, and floods and greater exposure to infectious disease. { 22.2 , 15.1 , 26.3 , 27.6 }

Nature-based solutions and ecosystem restoration can preserve cultural heritage while also providing valuable local benefits, such as flood protection and new recreational opportunities. Cultural heritage can also play a key role in climate solutions, as incorporating local values, Indigenous Knowledge, and equity into design and planning can help reaffirm a community’s connection to place, strengthen social networks, and build new traditions. { 7.3 , 26.1 , 26.3 , 30.5 }

Overview Filler photo 9

The Choices That Will Determine the Future

With each additional increment of warming, the consequences of climate change increase. The faster and further the world cuts greenhouse gas emissions, the more future warming will be avoided, increasing the chances of limiting or avoiding harmful impacts to current and future generations.

Societal choices drive greenhouse gas emissions

The choices people make on a day-to-day basis—how to power homes and businesses, get around, and produce and use food and other goods—collectively determine the amount of greenhouse gases emitted. Human use of fossil fuels for transportation and energy generation, along with activities like manufacturing and agriculture, has increased atmospheric levels of carbon dioxide (CO 2 ) and other heat-trapping greenhouse gases. Since 1850, CO 2 concentrations have increased by almost 50%, methane by more than 156%, and nitrous oxide by 23%, resulting in long-term global warming. { 2.1 , 3.1 ; Ch. 2, Introduction }

The CO 2 not removed from the atmosphere by natural sinks lingers for thousands of years. This means that CO 2 emitted long ago continues to contribute to climate change today. Because of historical trends, cumulative CO 2 emissions from fossil fuels and industry in the US are higher than from any other country. To understand the total contributions of past actions to observed climate change, additional warming from CO 2 emissions from land use, land-use change, and forestry, as well as emissions of nitrous oxide and the shorter-lived greenhouse gas methane, should also be taken into account. Accounting for all of these factors and emissions from 1850–2021, emissions from the US are estimated to comprise approximately 17% of current global warming. { 2.1 }

Carbon dioxide, along with other greenhouse gases like methane and nitrous oxide, is well-mixed in the atmosphere. This means these gases warm the planet regardless of where they were emitted. For the first half of the 20th century, the vast majority of greenhouse gas emissions came from the US and Europe. But as US and European emissions have been falling (US emissions in 2021 were 17% lower than 2005 levels), emissions from the rest of the world, particularly Asia, have been rising rapidly. The choices the US and other countries make now will determine the trajectory of climate change and associated impacts for many generations to come (Figure 1.13 ). { 2.1 , 2.3 ; Ch. 32 }

Rising global emissions are driving global warming, with faster warming in the US

The observed global warming of about 2°F (1.1°C) over the industrial era is unequivocally caused by greenhouse gas emissions from human activities, with only very small effects from natural sources. About three-quarters of total emissions and warming (1.7°F [0.95°C]) have occurred since 1970. Warming would have been even greater without the land and ocean carbon sinks, which have absorbed more than half of the CO 2 emitted by humans. { 2.1 , 3.1 , 7.2 ; Ch. 2, Introduction ; Figures 3.1 , 3.8 }

The US is warming faster than the global average, reflecting a broader global pattern: land areas are warming faster than the ocean, and higher latitudes are warming faster than lower latitudes. Additional global warming is expected to lead to even greater warming in some US regions, particularly Alaska (Figure 1.14 ). { 2.1 , 3.4 ; Ch. 2, Introduction ; App. 4 }

Regional Changes in Climate Compared to Present-Day Conditions

Warming increases risks to the US

Rising temperatures lead to many large-scale changes in Earth’s climate system, and the consequences increase with warming (Figure 1.15 ). Some of these changes can be further amplified through feedback processes at higher levels of warming, increasing the risk of potentially catastrophic outcomes. For example, uncertainty in the stability of ice sheets at high warming levels means that increases in sea level along the continental US of 3–7 feet by 2100 and 5–12 feet by 2150 are distinct possibilities that cannot be ruled out. The chance of reaching the upper end of these ranges increases as more warming occurs. In addition to warming more, the Earth warms faster in high and very high scenarios (SSP3-7.0 and SSP5-8.5, respectively), making adaptation more challenging. { 2.3 , 3.1 , 3.4 , 9.1 }

Consequences Are Greater at Higher Global Warming Levels

How Climate Action Can Create a More Resilient and Just Nation

Large near-term cuts in greenhouse gas emissions are achievable through many currently available and cost-effective mitigation options. However, reaching net-zero emissions by midcentury cannot be achieved without exploring additional mitigation options. Even if the world decarbonizes rapidly, the Nation will continue to face climate impacts and risks. Adequately and equitably addressing these risks involves longer-term inclusive planning, investments in transformative adaptation, and mitigation approaches that consider equity and justice.

Available mitigation strategies can deliver substantial emissions reductions, but additional options are needed to reach net zero

Limiting global temperature change to well below 2°C (3.6°F) requires reaching net-zero CO 2 emissions globally by 2050 and net-zero emissions of all greenhouse gases from human activities within the following few decades (see “Meeting US mitigation targets means reaching net-zero emissions” above). Net-zero emissions pathways involve widespread implementation of currently available and cost-effective options for reducing emissions alongside rapid expansion of technologies and methods to remove carbon from the atmosphere to balance remaining emissions. However, to reach net-zero emissions, additional mitigation options need to be explored (Figure 1.16 ). Pathways to net zero involve large-scale technological, infrastructure, land-use, and behavioral changes and shifts in governance structures. { 5.3 , 6.3 , 9.2 , 9.3 , 10.4 , 13.2 , 16.2 , 18.4 , 20.1 , 24.1 , 25.5 , 30.5 , 32.2 , 32.3 ; Focus on Blue Carbon }

Scenarios that reach net-zero emissions include some of the following key options:

Decarbonizing the electricity sector, primarily through expansion of wind and solar energy, supported by energy storage { 32.2 }

Transitioning to transportation and heating systems that use zero-carbon electricity or low-carbon fuels, such as hydrogen { 5.3 , 13.1 , 32.2 , 32.3 }

Improving energy efficiency in buildings, appliances, and light- and heavy-duty vehicles and other transportation modes { 5.3 , 13.3 , 32.2 }

Implementing urban planning and building design that reduces energy demands through more public transportation and active transportation and lower cooling demands for buildings { 12.3 , 13.1 , 32.2 }

Increasing the efficiency and sustainability of food production, distribution, and consumption { 11.1 , 32.2 }

Improving land management to decrease greenhouse gas emissions and increase carbon removal and storage, with options ranging from afforestation, reforestation, and restoring coastal ecosystems to industrial processes that directly capture and store carbon from the air { 5.3 , 6.3 , 8.3 , 32.2 , 32.3 ; Focus on Blue Carbon }

Portfolio of Mitigation Options for Achieving Net Zero by 2050

Due to large declines in technology and deployment costs over the last decade (Figure 1.2 ), decarbonizing the electricity sector is expected to be largely driven by rapid growth in renewable energy. Recent legislation is also expected to increase deployment rates of low- and zero-carbon technology. To reach net-zero targets, the US will need to add new electricity-generating capacity, mostly wind and solar, faster than ever before. This infrastructure expansion may drastically increase demand for products (batteries, solar photovoltaics) and resources, such as metals and critical minerals. Near-term shortages in minerals and metals due to increased demand can be addressed by increased recycling, for example, which can also reduce dependence on imported materials. { 5.2, 5.3 , 17.2 , 25.3 , 32.2 , 32.4 ; Focus on Risks to Supply Chains }

Most US net-zero scenarios require CO 2 removal from the atmosphere to balance residual emissions, particularly from sectors where decarbonization is difficult. In these scenarios, nuclear and hydropower capacity are maintained but not greatly expanded; natural gas–fired generation declines, but more slowly if coupled with carbon capture and storage. { 32.2 }

Nature-based solutions that restore degraded ecosystems and preserve or enhance carbon storage in natural systems like forests, oceans, and wetlands, as well as agricultural lands, are cost-effective mitigation strategies. For example, with conservation and restoration, marine and coastal ecosystems could capture and store enough atmospheric carbon each year to offset about 3% of global emissions (based on 2019 and 2020 emissions). Many nature-based solutions can provide additional benefits, like improved ecosystem resilience, food production, improved water quality, and recreational opportunities. { 8.3 ; Boxes 7.2 , 32.2 ; Focus on Blue Carbon }

Adequately addressing climate risks involves transformative adaptation

While adaptation planning and implementation has advanced in the US, most adaptation actions to date have been incremental and small in scale (see Table 1.3 ). In many cases, more transformative adaptation will be necessary to adequately address the risks of current and future climate change. { 31.1 , 31.3 }.

Transformative adaptation involves fundamental shifts in systems, values, and practices, including assessing potential trade-offs, intentionally integrating equity into adaptation processes, and making systemic changes to institutions and norms. While barriers to adaptation remain, many of these can be overcome with financial, cultural, technological, legislative, or institutional changes. { 31.1 , 31.2 , 31.3 }.

Adaptation planning can more effectively reduce climate risk when it identifies not only disparities in how people are affected by climate change but also the underlying causes of climate vulnerability. Transformative adaptation would involve consideration of both the physical and social drivers of vulnerability and how they interact to shape local experiences of vulnerability and disparities in risk. Examples include understanding how differing levels of access to disaster assistance constrain recovery outcomes or how disaster damage exacerbates long-term wealth inequality. Effective adaptation, both incremental and transformative, involves developing and investing in new monitoring and evaluation methods to understand the different values of, and impacts on, diverse individuals and communities. { 9.3 , 19.3 , 31.2 , 31.3 , 31.5 }

Transformative adaptation would require new and better-coordinated governance mechanisms and cooperation across all levels of government, the private sector, and society. A coordinated, systems-based approach can support consideration of risks that cut across multiple sectors and scales, as well as the development of context-specific adaptations. For example, California, Florida, and other states have used informal regional collaborations to develop adaptation strategies tailored to their area. Adaptation measures that are designed and implemented using inclusive, participatory planning approaches and leverage coordinated governance and financing have the greatest potential for long-term benefits, such as improved quality of life and increased economic productivity. { 10.3 , 18.4 , 20.2 , 31.4 }

Mitigation and adaptation actions can result in systemic, cascading benefits

Actions taken now to accelerate net emissions reductions and adapt to ongoing changes can reduce risks to current and future generations. Mitigation and adaptation actions, from international to individual scales, can also result in a range of benefits beyond limiting harmful climate impacts, including some immediate benefits (Figure 1.1 ). The benefits of mitigation and proactive adaptation investments are expected to outweigh the costs. { 2.3 , 13.3 , 14.5 , 15.3 , 17.4 , 22.1 , 31.6 , 32.4 ; Introductions in Chs. 17 , 31 }

Accelerating the deployment of low-carbon technologies, expanding renewable energy, and improving building efficiency can have significant near-term social and economic benefits like reducing energy costs and creating jobs. { 32.4 }

Transitioning to a carbon-free, sustainable, and resilient transportation system can lead to improvements in air quality, fewer traffic fatalities, lower costs to travelers, improved mental and physical health, and healthier ecosystems. { 13.3 }

Reducing emissions of short-lived climate pollutants like methane, black carbon, and ozone provides immediate air quality benefits that save lives and decrease the burden on healthcare systems while also slowing near-term warming. { 11.1 , 14.5 , 15.3 }

Green infrastructure and nature-based solutions that accelerate pathways to net-zero emissions through restoration and protection of ecological resources can improve water quality, strengthen biodiversity, provide protection from climate hazards like heat extremes or flooding, preserve cultural heritage and traditions, and support more equitable access to environmental amenities. { 8.3 , 15.3 , 20.3 , 24.4 , 30.4 ; Focus on Blue Carbon }

Strategic planning and investment in resilience can reduce the economic impacts of climate change, including costs to households and businesses, risks to markets and supply chains, and potential negative impacts on employment and income, while also providing opportunities for economic gain. { 9.2 , 19.3 , 26.2 , 31.6 ; Focus on Risks to Supply Chains }

Improving cropland management and climate-smart agricultural practices can strengthen the resilience and profitability of farms while also increasing soil carbon uptake and storage, reducing emissions of nitrous oxide and methane, and enhancing agricultural efficiency and yields. { 11.1 , 24.1 , 32.2 }

Climate actions that incorporate inclusive and sustained engagement with overburdened and underserved communities in the design, planning, and implementation of evidence-based strategies can also reduce existing disparities and address social injustices. { 24.3 , 31.2 , 32.4 }

Transformative climate actions can strengthen resilience and advance equity

Fossil fuel–based energy systems have resulted in disproportionate public health burdens on communities of color and/or low-income communities. These same communities are also disproportionately harmed by climate change impacts. { 13.4 , 15.2 , 32.4 }

A “just transition” is the process of responding to climate change with transformative actions that address the root causes of climate vulnerability while ensuring equitable access to jobs; affordable, low-carbon energy; environmental benefits such as reduced air pollution; and quality of life for all. This involves reducing impacts to overburdened communities, increasing resources to underserved communities, and integrating diverse worldviews, cultures, experiences, and capacities into mitigation and adaptation actions. As the country shifts to low-carbon energy industries, a just transition would include job creation and training for displaced fossil fuel workers and addressing existing racial and gender disparities in energy workforces. For example, Colorado agencies are creating plans to guide the state’s transition away from coal, with a focus on economic diversification, job creation, and workforce training for former coal workers. The state’s plan also acknowledges a commitment to communities disproportionately impacted by coal power pollution. { 5.3 , 13.4 , 14.3 , 15.2 , 16.2 , 20.3 , 31.2 , 32.4 ; Figure 20.1 }

A just transition would take into account key aspects of environmental justice:

Recognizing that certain people have borne disparate burdens related to current and historical social injustices and, thus, may have different needs

Ensuring that people interested in and affected by outcomes of decision-making processes are included in those procedures through fair and meaningful engagement

Distributing resources and opportunities over time, including access to data and information, so that no single group or set of individuals receives disproportionate benefits or burdens

{ 20.3 ; Figure 20.1 }

An equitable and sustainable US response to climate change has the potential to reduce climate impacts while improving well-being, strengthening resilience, benefiting the economy, and, in part, redressing legacies of racism and injustice. Transformative adaptation and the transition to a net-zero energy system come with challenges and trade-offs that would need to be considered to avoid exacerbating or creating new social injustices. For example, transforming car-centric transportation systems to emphasize public transit and walkability could increase accessibility for underserved communities and people with limited mobility—if user input and equity are intentionally considered. { 13.4 , 20.3 , 31.3 , 32.4 ; Ch. 31, Introduction }

Equitable responses that assess trade-offs strengthen community resilience and self-determination, often fostering innovative solutions. Engaging communities in identifying challenges and bringing together diverse voices to participate in decision-making allows for more inclusive, effective, and transparent planning processes that account for the structural factors contributing to inequitable climate vulnerability. { 9.3 , 12.4 , 13.4 , 20.2 , 31.4 }

Cover image

Two volunteers help demonstrate and install solar panels in Highland Park, Michigan, in May 2021. The event was hosted by the local nonprofit Soulardarity, which teaches local residents about solar power, installs solar-powered streetlights that also provide wireless internet access, and helps local communities build a just and equitable energy system. Adopting energy storage with decentralized solutions, such as microgrids or off-grid systems, can promote energy equity in overburdened communities. Photo credit: Nick Hagen.

Confidence Level

  • Understanding Poverty
  • Climate Change

Image

Shock Waves : Managing the Impacts of Climate Change on Poverty

Ending poverty and stabilizing climate change will be two unprecedented global achievements and two major steps toward sustainable development. But the two objectives cannot be considered in isolation: they need to be jointly tackled through an integrated strategy. This report brings together those two objectives and explores how they can more easily be achieved if considered together.

Xueman Wang, team leader for the World Bank's Partnership for Market Readiness

Xueman Wang

Christophe Crepin, sector leader of the social, environmental and rural development unit in the East Asia and Pacific region of the World Bank.

Christophe Crepin

Cover of Mobilizing Public and Private Funds for Inclusive Green Growth Investment in Developing Countries

Mobilizing Public and Private Funds for Inclusive Green Growth Investment in Developing Countries

This report takes stock of existing innovative mechanisms to mobilize private capital for inclusive green growth investments and ways to scale them up.

You have clicked on a link to a page that is not part of the beta version of the new worldbank.org. Before you leave, we’d love to get your feedback on your experience while you were here. Will you take two minutes to complete a brief survey that will help us to improve our website?

Feedback Survey

Thank you for agreeing to provide feedback on the new version of worldbank.org; your response will help us to improve our website.

Thank you for participating in this survey! Your feedback is very helpful to us as we work to improve the site functionality on worldbank.org.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

Kashif abbass.

1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China

Muhammad Zeeshan Qasim

2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People’s Republic of China

Huaming Song

Muntasir murshed.

3 School of Business and Economics, North South University, Dhaka, 1229 Bangladesh

4 Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Haider Mahmood

5 Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942 Saudi Arabia

Ijaz Younis

Associated data.

Data sources and relevant links are provided in the paper to access data.

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig1_HTML.jpg

Methodology search for finalized articles for investigations.

Source : constructed by authors

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig2_HTML.jpg

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig3_HTML.jpg

Global deaths from natural disasters, 1978 to 2020.

Source EMDAT ( 2020 )

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table ​ (Table1). 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Main natural danger statistics for 1985–2020 at the global level

Source: EM-DAT ( 2020 )

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig4_HTML.jpg

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig5_HTML.jpg

A typical interaction between the susceptible and resistant strains.

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table ​ (Table2 2 ).

Examples of how various environmental changes affect various infectious diseases in humans

Source: Aron and Patz ( 2001 )

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table ​ Table3 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Essential considerations while mitigating the climate change impacts on the forestry sector

Source : Fischer ( 2019 )

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig6_HTML.jpg

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

  • The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Author contribution

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Availability of data and material

Declarations.

Not applicable.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kashif Abbass, Email: nc.ude.tsujn@ssabbafihsak .

Muhammad Zeeshan Qasim, Email: moc.kooltuo@888misaqnahseez .

Huaming Song, Email: nc.ude.tsujn@gnimauh .

Muntasir Murshed, Email: [email protected] .

Haider Mahmood, Email: moc.liamtoh@doomhamrediah .

Ijaz Younis, Email: nc.ude.tsujn@sinuoyzaji .

  • Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054
  • Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech
  • Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14 [ PubMed ]
  • Abbass K, Song H, Shah SM, Aziz B. Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff. 2019; 8 (370):2167–0234. [ Google Scholar ]
  • Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan
  • Abraham E, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988; 10 (4):677. [ PubMed ] [ Google Scholar ]
  • Adger WN, Arnell NW, Tompkins EL. Successful adaptation to climate change across scales. Glob Environ Chang. 2005; 15 (2):77–86. doi: 10.1016/j.gloenvcha.2004.12.005. [ CrossRef ] [ Google Scholar ]
  • Akkari C, Bryant CR. The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research. 2016; 5 (2):162–173. doi: 10.1007/s40003-016-0208-8. [ CrossRef ] [ Google Scholar ]
  • Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740
  • Ali A, Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag. 2017; 16 :183–194. doi: 10.1016/j.crm.2016.12.001. [ CrossRef ] [ Google Scholar ]
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010; 259 (4):660–684. doi: 10.1016/j.foreco.2009.09.001. [ CrossRef ] [ Google Scholar ]
  • Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. 10.1007/s10668-021-01716-2
  • Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci. 2008; 27 (6):377–412. doi: 10.1080/07352680802467736. [ CrossRef ] [ Google Scholar ]
  • Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press
  • Arshad MI, Iqbal MA, Shahbaz M. Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research. 2018; 23 (2):121–132. doi: 10.1080/10941665.2017.1410192. [ CrossRef ] [ Google Scholar ]
  • Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports. 2015; 2 (1):95–106. doi: 10.1007/s40572-014-0037-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543
  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang. 2013; 3 (9):827–832. doi: 10.1038/nclimate1916. [ CrossRef ] [ Google Scholar ]
  • Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.
  • Ayers J, Huq S, Wright H, Faisal A, Hussain S. Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev. 2014; 6 :293–305. doi: 10.1080/17565529.2014.977761. [ CrossRef ] [ Google Scholar ]
  • Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451
  • Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy. 2022; 185 :1441–1455. doi: 10.1016/j.renene.2021.10.059. [ CrossRef ] [ Google Scholar ]
  • Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank
  • Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)
  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang. 2014; 26 :27–38. doi: 10.1016/j.gloenvcha.2014.03.009. [ CrossRef ] [ Google Scholar ]
  • Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009; 323 (5911):240–244. doi: 10.1126/science.1164363. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T. Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish. 2019; 28 (3):434–445. doi: 10.1111/eff.12466. [ CrossRef ] [ Google Scholar ]
  • Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916 [ PMC free article ] [ PubMed ]
  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015; 13 (5):310–317. doi: 10.1038/nrmicro3439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J. Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol. 2010; 16 (2):587–598. doi: 10.1111/j.1365-2486.2009.02014.x. [ CrossRef ] [ Google Scholar ]
  • Blum A, Klueva N, Nguyen H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica. 2001; 117 (2):117–123. doi: 10.1023/A:1004083305905. [ CrossRef ] [ Google Scholar ]
  • Bonacci O. Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia) Acta Hydrotechnica. 2019; 32 (57):135–150. doi: 10.15292/acta.hydro.2019.10. [ CrossRef ] [ Google Scholar ]
  • Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214 [ PMC free article ] [ PubMed ]
  • Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol. 2018; 250 :47–63. doi: 10.1016/j.agrformet.2017.11.036. [ CrossRef ] [ Google Scholar ]
  • Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN. Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio. 2014; 43 (6):759–769. doi: 10.1007/s13280-014-0493-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bujosa A, Riera A, Torres CM. Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage. 2015; 47 :233–239. doi: 10.1016/j.tourman.2014.09.023. [ CrossRef ] [ Google Scholar ]
  • Calderini D, Abeledo L, Savin R, Slafer GA. Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci. 1999; 132 (4):453–459. doi: 10.1017/S0021859699006504. [ CrossRef ] [ Google Scholar ]
  • Cammell M, Knight J. Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res. 1992; 22 :117–162. doi: 10.1016/S0065-2504(08)60135-X. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci. 2014; 111 (2):723–727. doi: 10.1073/pnas.1315800111. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF
  • Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag
  • Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513
  • Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587
  • Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018; 18 (1):1–14. doi: 10.1186/s12874-018-0545-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M. Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet. 2009; 373 (9676):1693–1733. doi: 10.1016/S0140-6736(09)60935-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, 10.7208/9780226315072
  • Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare [ PMC free article ] [ PubMed ]
  • Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang. 2016; 6 (5):433–435. doi: 10.1038/nclimate3007. [ CrossRef ] [ Google Scholar ]
  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci. 2017; 114 (19):4881–4886. doi: 10.1073/pnas.1618082114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dimri A, Kumar D, Choudhary A, Maharana P. Future changes over the Himalayas: mean temperature. Global Planet Change. 2018; 162 :235–251. doi: 10.1016/j.gloplacha.2018.01.014. [ CrossRef ] [ Google Scholar ]
  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang: Nature Publishing Group; 2012. [ Google Scholar ]
  • Dupuis I, Dumas C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990; 94 (2):665–670. doi: 10.1104/pp.94.2.665. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Otegui ME. Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res. 2013; 142 :58–67. doi: 10.1016/j.fcr.2012.11.009. [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Carpici EB, Sammarro D, Otegui M. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res. 2011; 123 (2):62–73. doi: 10.1016/j.fcr.2011.04.015. [ CrossRef ] [ Google Scholar ]
  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J. Trees, forests and water: Cool insights for a hot world. Glob Environ Chang. 2017; 43 :51–61. doi: 10.1016/j.gloenvcha.2017.01.002. [ CrossRef ] [ Google Scholar ]
  • Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem. 2021; 36 (1):384–393. doi: 10.1080/14756366.2020.1868450. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be
  • EPA U (2018) United States Environmental Protection Agency, EPA Year in Review
  • Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience
  • Fand BB, Kamble AL, Kumar M. Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ. 2012; 2 (11):1–14. [ Google Scholar ]
  • FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.
  • Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204
  • Farooq M, Bramley H, Palta JA, Siddique KH. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci. 2011; 30 (6):491–507. doi: 10.1080/07352689.2011.615687. [ CrossRef ] [ Google Scholar ]
  • Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18
  • Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770
  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T. Changing climates, changing forests: a western North American perspective. J Forest. 2013; 111 (3):214–228. doi: 10.5849/jof.12-085. [ CrossRef ] [ Google Scholar ]
  • Fischer AP. Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan. 2019; 188 :72–79. doi: 10.1016/j.landurbplan.2018.09.024. [ CrossRef ] [ Google Scholar ]
  • Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manage. 2013; 294 :54–61. doi: 10.1016/j.foreco.2012.10.022. [ CrossRef ] [ Google Scholar ]
  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang. 2015; 5 (7):673–677. doi: 10.1038/nclimate2647. [ CrossRef ] [ Google Scholar ]
  • Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer
  • Gambín BL, Borrás L, Otegui ME. Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res. 2006; 95 (2–3):316–326. doi: 10.1016/j.fcr.2005.04.002. [ CrossRef ] [ Google Scholar ]
  • Gambín B, Borrás L. Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology. 2010; 156 (1):91–102. doi: 10.1111/j.1744-7348.2009.00367.x. [ CrossRef ] [ Google Scholar ]
  • Gampe D, Nikulin G, Ludwig R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ. 2016; 573 :1503–1518. doi: 10.1016/j.scitotenv.2016.08.053. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • García GA, Dreccer MF, Miralles DJ, Serrago RA. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol. 2015; 21 (11):4153–4164. doi: 10.1111/gcb.13009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019; 151 :75–86. doi: 10.1016/j.watres.2018.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010; 327 (5967):812–818. doi: 10.1126/science.1185383. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509
  • Gorst A, Dehlavi A, Groom B. Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ. 2018; 23 (6):679–701. doi: 10.1017/S1355770X18000232. [ CrossRef ] [ Google Scholar ]
  • Gosling SN, Arnell NW. A global assessment of the impact of climate change on water scarcity. Clim Change. 2016; 134 (3):371–385. doi: 10.1007/s10584-013-0853-x. [ CrossRef ] [ Google Scholar ]
  • Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G. Consumer behaviour and demand response of tourists to climate change. Ann Tour Res. 2012; 39 (1):36–58. doi: 10.1016/j.annals.2011.11.002. [ CrossRef ] [ Google Scholar ]
  • Gourdji SM, Sibley AM, Lobell DB. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett. 2013; 8 (2):024041. doi: 10.1088/1748-9326/8/2/024041. [ CrossRef ] [ Google Scholar ]
  • Grieg E Responsible Consumption and Production
  • Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)
  • Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D. On climate change skepticism and denial in tourism. J Sustain Tour. 2015; 23 (1):4–25. doi: 10.1080/09669582.2014.953544. [ CrossRef ] [ Google Scholar ]
  • Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018; 218 (1):15–28. doi: 10.1111/nph.15048. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 2015; 10 :4–10. doi: 10.1016/j.wace.2015.08.001. [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D. Climate impacts on agriculture: implications for crop production. Agron J. 2011; 103 (2):351–370. doi: 10.2134/agronj2010.0303. [ CrossRef ] [ Google Scholar ]
  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019; 10 (1):1124. doi: 10.1038/s41467-019-08853-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06
  • Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C. Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res. 2016; 7 (4):247–252. doi: 10.1016/j.accre.2016.12.003. [ CrossRef ] [ Google Scholar ]
  • Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853
  • Hubbart JA, Guyette R, Muzika R-M. More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ. 2016; 566 :463–467. doi: 10.1016/j.scitotenv.2016.05.108. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess. 2020; 192 (1):48. doi: 10.1007/s10661-019-7956-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR. Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod. 2018; 200 :791–808. doi: 10.1016/j.jclepro.2018.07.272. [ CrossRef ] [ Google Scholar ]
  • Intergov. Panel Clim Chang 33 from 10.1017/CBO9781107415324
  • Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R. Towards a formal framework of vulnerability to climate change. Environ Model Assess. 2009; 14 (1):1–16. doi: 10.1007/s10666-008-9179-x. [ CrossRef ] [ Google Scholar ]
  • IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep
  • Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham
  • Izaguirre C, Losada I, Camus P, Vigh J, Stenek V. Climate change risk to global port operations. Nat Clim Chang. 2021; 11 (1):14–20. doi: 10.1038/s41558-020-00937-z. [ CrossRef ] [ Google Scholar ]
  • Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science [ PubMed ]
  • Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE. 2020; 15 (3):e0229588. doi: 10.1371/journal.pone.0229588. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jurgilevich A, Räsänen A, Groundstroem F, Juhola S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett. 2017; 12 (1):013002. doi: 10.1088/1748-9326/aa5508. [ CrossRef ] [ Google Scholar ]
  • Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference
  • Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991
  • Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018; 26 (3):220–228. doi: 10.1016/j.tim.2017.09.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF. Role of marine biology in glacial-interglacial CO2 cycles. Science. 2005; 308 (5718):74–78. doi: 10.1126/science.1105375. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kongsager R. Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land. 2018; 7 (4):158. doi: 10.3390/land7040158. [ CrossRef ] [ Google Scholar ]
  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008; 452 (7190):987. doi: 10.1038/nature06777. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875
  • Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414 [ PubMed ]
  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett. 2017; 44 (14):7419–7428. doi: 10.1002/2017GL074117. [ CrossRef ] [ Google Scholar ]
  • Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons
  • Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo
  • Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ. 2018; 640 :1548–1565. doi: 10.1016/j.scitotenv.2018.05.376. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020
  • Lobell DB, Field CB. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett. 2007; 2 (1):014002. doi: 10.1088/1748-9326/2/1/014002. [ CrossRef ] [ Google Scholar ]
  • Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012; 160 (4):1686–1697. doi: 10.1104/pp.112.208298. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ma L, Li B, Zhang T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 2019; 152 :191–201. doi: 10.1016/j.watres.2018.12.069. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza
  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier
  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070
  • Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier
  • Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ. Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett. 2018; 13 (4):044002. doi: 10.1088/1748-9326/aaae3a. [ CrossRef ] [ Google Scholar ]
  • Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science. 2001; 4 (2):90–93. doi: 10.1626/pps.4.90. [ CrossRef ] [ Google Scholar ]
  • Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228
  • Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing
  • Mihiretu A, Okoyo EN, Lemma T. Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences. 2021; 1 (2):1–18. [ Google Scholar ]
  • Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015; 349 (6250):823–826. doi: 10.1126/science.aaa9933. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210 [ PMC free article ] [ PubMed ]
  • Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332
  • Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. 10.1007/s11356-020-09497-3 [ PMC free article ] [ PubMed ]
  • Murshed M. Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption. 2022; 30 :396–412. doi: 10.1016/j.spc.2021.12.016. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Dao NTT. Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. 2020 doi: 10.1007/s10708-020-10270-9. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Abbass K, Rashid S. Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco. 2021; 26 (4):5425–5450. doi: 10.1002/ijfe.2073. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Elheddad M, Ahmed R. Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res. 2020; 27 (31):38951–38973. doi: 10.1007/s11356-020-09593-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. 10.1080/15567249.2022.2038730
  • Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR. Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour. 2015; 11 :64–79. doi: 10.1016/j.jort.2015.06.010. [ CrossRef ] [ Google Scholar ]
  • npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.
  • Ogden LE. Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience. 2018; 68 (10):733–739. doi: 10.1093/biosci/biy101. [ CrossRef ] [ Google Scholar ]
  • Ortiz AMD, Outhwaite CL, Dalin C, Newbold T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth. 2021; 4 (1):88–101. doi: 10.1016/j.oneear.2020.12.008. [ CrossRef ] [ Google Scholar ]
  • Ortiz R. Crop genetic engineering under global climate change. Ann Arid Zone. 2008; 47 (3):343. [ Google Scholar ]
  • Otegui MAE, Bonhomme R. Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res. 1998; 56 (3):247–256. doi: 10.1016/S0378-4290(97)00093-2. [ CrossRef ] [ Google Scholar ]
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc
  • Pal JK. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics. 2021; 126 (5):4173–4193. doi: 10.1007/s11192-021-03912-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Panda R, Behera S, Kashyap P. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag. 2003; 63 (1):37–56. doi: 10.1016/S0378-3774(03)00099-4. [ CrossRef ] [ Google Scholar ]
  • Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv. 2019; 5 (3):eaau9124. doi: 10.1126/sciadv.aau9124. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005; 438 (7066):310–317. doi: 10.1038/nature04188. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000; 30 (12–13):1395–1405. doi: 10.1016/S0020-7519(00)00141-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ. Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol. 2012; 133 (1):295–313. doi: 10.1007/s10658-012-9936-1. [ CrossRef ] [ Google Scholar ]
  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci. 2004; 101 (27):9971–9975. doi: 10.1073/pnas.0403720101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A. Essential biodiversity variables. Science. 2013; 339 (6117):277–278. doi: 10.1126/science.1229931. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Perera K, De Silva K, Amarasinghe M. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change. 2018; 161 :162–171. doi: 10.1016/j.gloplacha.2017.12.016. [ CrossRef ] [ Google Scholar ]
  • Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham
  • Phillips JD. Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA. 2018; 169 :107–118. doi: 10.1016/j.catena.2018.05.036. [ CrossRef ] [ Google Scholar ]
  • Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228 [ PMC free article ] [ PubMed ]
  • Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013; 121 (8):878–885. doi: 10.1289/ehp.1206446. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S. The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res. 2020; 27 (1):133–142. doi: 10.1007/s11356-019-06554-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity
  • Rahman M, Alam K. Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate. 2016; 4 (1):12. doi: 10.3390/cli4010012. [ CrossRef ] [ Google Scholar ]
  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH. Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol. 2018; 69 :789–815. doi: 10.1146/annurev-arplant-042817-040256. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460
  • Reichstein M, Carvalhais N. Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys. 2019; 40 (4):693–707. doi: 10.1007/s10712-019-09551-x. [ CrossRef ] [ Google Scholar ]
  • Reidsma P, Ewert F, Boogaard H, van Diepen K. Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst. 2009; 100 (1–3):51–60. doi: 10.1016/j.agsy.2008.12.009. [ CrossRef ] [ Google Scholar ]
  • Ritchie H, Roser M (2014) Natural disasters. Our World in Data
  • Rizvi AR, Baig S, Verdone M. Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. Gland, Switzerland: IUCN; 2015. p. 48. [ Google Scholar ]
  • Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol. 2013; 14 (3):187–198. doi: 10.1016/j.baae.2013.01.003. [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014; 111 (9):3268–3273. doi: 10.1073/pnas.1222463110. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests
  • Sadras VO, Slafer GA. Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res. 2012; 127 :215–224. doi: 10.1016/j.fcr.2011.11.014. [ CrossRef ] [ Google Scholar ]
  • Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004; 120 (2):179–186. doi: 10.1111/j.0031-9317.2004.0173.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F. Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE. 2021; 16 (5):e0252071. doi: 10.1371/journal.pone.0252071. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757 [ PMC free article ] [ PubMed ]
  • Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci. 2009; 106 (37):15594–15598. doi: 10.1073/pnas.0906865106. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schoene DH, Bernier PY. Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ. 2012; 24 :12–19. doi: 10.1016/j.forpol.2011.04.007. [ CrossRef ] [ Google Scholar ]
  • Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press
  • Scott D. Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability. 2021; 13 (4):1966. doi: 10.3390/su13041966. [ CrossRef ] [ Google Scholar ]
  • Scott D, McBoyle G, Schwartzentruber M. Climate change and the distribution of climatic resources for tourism in North America. Climate Res. 2004; 27 (2):105–117. doi: 10.3354/cr027105. [ CrossRef ] [ Google Scholar ]
  • Semenov MA. Impacts of climate change on wheat in England and Wales. J R Soc Interface. 2009; 6 (33):343–350. doi: 10.1098/rsif.2008.0285. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shaffril HAM, Krauss SE, Samsuddin SF. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ. 2018; 644 :683–695. doi: 10.1016/j.scitotenv.2018.06.349. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614
  • Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690
  • Sharma R. Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev. 2012; 32 (4):480–486. doi: 10.1659/MRD-JOURNAL-D-12-00068.1. [ CrossRef ] [ Google Scholar ]
  • Sharma R, Sinha A, Kautish P. Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res. 2020; 27 (29):36970–36982. doi: 10.1007/s11356-020-09659-3. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer
  • Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20 [ PMC free article ] [ PubMed ]
  • Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759
  • Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH. Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr. 2015; 42 (5):880–890. doi: 10.1111/jbi.12466. [ CrossRef ] [ Google Scholar ]
  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p
  • Stone P, Nicolas M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol. 1994; 21 (6):887–900. doi: 10.1071/PP9940887. [ CrossRef ] [ Google Scholar ]
  • Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018; 616 :453–461. doi: 10.1016/j.scitotenv.2017.10.318. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S. Livelihoods, forests, and conservation in developing countries: an overview. World Dev. 2005; 33 (9):1383–1402. doi: 10.1016/j.worlddev.2004.10.004. [ CrossRef ] [ Google Scholar ]
  • Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4 [ PMC free article ] [ PubMed ]
  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol. 2006; 138 (1–4):82–92. doi: 10.1016/j.agrformet.2006.03.014. [ CrossRef ] [ Google Scholar ]
  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA. Going to the extremes. Clim Change. 2006; 79 (3–4):185–211. doi: 10.1007/s10584-006-9051-4. [ CrossRef ] [ Google Scholar ]
  • Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
  • Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst
  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003; 14 (3):207–222. doi: 10.1111/1467-8551.00375. [ CrossRef ] [ Google Scholar ]
  • UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest
  • Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780
  • Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28
  • Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy. 2022; 183 :90–102. doi: 10.1016/j.renene.2021.10.067. [ CrossRef ] [ Google Scholar ]
  • Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515
  • Usman M, Khalid K, Mehdi MA. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy. 2021; 168 :1165–1176. doi: 10.1016/j.renene.2021.01.012. [ CrossRef ] [ Google Scholar ]
  • Urban MC. Accelerating extinction risk from climate change. Science. 2015; 348 (6234):571–573. doi: 10.1126/science.aaa4984. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer
  • Vedwan N, Rhoades RE. Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res. 2001; 19 (2):109–117. doi: 10.3354/cr019109. [ CrossRef ] [ Google Scholar ]
  • Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001; 41 (3):748–754. doi: 10.2135/cropsci2001.413748x. [ CrossRef ] [ Google Scholar ]
  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci. 2016; 113 (48):13791–13796. doi: 10.1073/pnas.1610725113. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers
  • Waheed A, Fischer TB, Khan MI. Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage. 2021; 67 (5):793–810. doi: 10.1007/s00267-021-01449-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank
  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A. Health and climate change: policy responses to protect public health. The Lancet. 2015; 386 (10006):1861–1914. doi: 10.1016/S0140-6736(15)60854-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weed AS, Ayres MP, Hicke JA. Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr. 2013; 83 (4):441–470. doi: 10.1890/13-0160.1. [ CrossRef ] [ Google Scholar ]
  • Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)
  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016; 353 (6295):169–172. doi: 10.1126/science.aad8745. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • WHO (2018) WHO, 2018. Antimicrobial resistance
  • Wilkinson DM, Sherratt TN. Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers. 2016; 9 (2):127–140. doi: 10.1080/17550874.2016.1178353. [ CrossRef ] [ Google Scholar ]
  • Wiranata IJ, Simbolon K. Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations. 2021; 5 (2):129–146. doi: 10.22303/pir.5.2.2021.129-146. [ CrossRef ] [ Google Scholar ]
  • Wiréhn L. Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy. 2018; 77 :63–74. doi: 10.1016/j.landusepol.2018.04.059. [ CrossRef ] [ Google Scholar ]
  • Wu D, Su Y, Xi H, Chen X, Xie B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019; 158 :11–21. doi: 10.1016/j.watres.2019.03.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier
  • Wu H, Qian H, Chen J, Huo C. Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management. 2017; 31 (5):1557–1574. doi: 10.1007/s11269-017-1594-9. [ CrossRef ] [ Google Scholar ]
  • Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev
  • Xu J, Sharma R, Fang J, Xu Y. Critical linkages between land-use transition and human health in the Himalayan region. Environ Int. 2008; 34 (2):239–247. doi: 10.1016/j.envint.2007.08.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M. Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol. 2015; 17 (2):179–184. doi: 10.54386/jam.v17i2.1000. [ CrossRef ] [ Google Scholar ]
  • Yang B, Usman M. Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons. 2021; 28 :893–910. [ Google Scholar ]
  • Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16
  • Zarnetske PL, Skelly DK, Urban MC. Biotic multipliers of climate change. Science. 2012; 336 (6088):1516–1518. doi: 10.1126/science.1222732. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol. 2017; 546 :44–59. doi: 10.1016/j.jhydrol.2016.12.040. [ CrossRef ] [ Google Scholar ]
  • Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. 10.1016/j.renene.2022.03.050

Climate change, energy, environment and sustainability topics research guide

What is climate change.

Climate change refers to long-term shifts in temperatures and weather patterns. The world is now warming faster than at any point in recorded history, which disrupts the usual balance of nature and is a threat to human beings and other forms of life on Earth. This topic guide includes sample keywords and search terms, databases to find sources, and samples of online books.

Example keywords and subtopics

Example keywords or search terms:  

  • Climate change
  • global warming
  • greenhouse effect or greenhouse gas
  • climate crisis
  • environmental change
  • clean energy
  • alternative energy or renewable energy
  • green energy or renewable energy or clean energy
  • Low carbon or carbon neutral
  • Carbon offsetting
  • sustainability environment or sustainability
  • environmental protection
  • pollution or contamination
  • impact or effect or influence
  • cost or price or expense or money or financial
  • fossil fuels or coal or oil or gas

Tip: This is a big topic with lots written so you can often focus on one or two subtopics. This will help to find more relevant sources, more quickly and be a better fit for an assignment. 

Possible subtopics ideas:  Pick one or two subtopics and then add those words to your search.

  • Health impacts of climate changes (e.g. air pollution, water pollution, etc.)
  • impacts on a specific city, state, region or country
  • political impacts (e.g. voting, government policy, etc.)
  • impact on specific population or culture (e.g. children, elderly, racial or ethic group, country, etc.)
  • specific types of renewable or alternative energy (e.g. solar, wind, bio, etc.) 
  • example of new technology (e.g. electric cars or electric vehicles or hybrid vehicles
  • economic impacts (e.g. business, employment, industry (e.g. oil, coal, etc.)
  • weather and impacts (e.g. rising sea levels, flooding, droughts or heat waves, etc.)
  • media aspects (e.g. news coverage, advertising, misinformation, movies, music, etc.) 
  • Tutorial: Creating an effective search strategy

Creating an effective search strategy tutorial video. 3 minutes 24 seconds.

  • Use meaningful keywords to find the best sources
  • Apply search strategies like AND and OR to connect keywords
  • Tutorial: What is a library database and why should I use one?

What is a library database and why should I use one tutorial video. 3 minutes.

  • Identify what a library database is
  • Recognize the two main types of library databases
  • Know why you should use them
  • Understand why searching a library database is different than searching the general internet

Databases for finding sources

Article Databases - 

Use articles to find new research, specific information and evidence to support or refute a claim. You can also look at the bibliography or works cited to find additional sources. Some articles give an overview of a specific topic -- sometimes called "review articles" or "meta-analyses" or "systematic review." Databases are like mini-search engines for finding articles (e.g. Business Source Premier database searches business journals, business magazines and business newspapers). Pick a database that searches the subject of articles you want to find. 

  • Agricultural & Environmental Science Database Search journals and literature on agriculture, pollution, animals, environment, policy, natural resources, water issues and more. Searches tools like AGRICOLA, Environmental Sciences & Pollution Management (ESPM), and Digests of Environmental Impact Statements (EIS) databases.
  • GreenFILE Collection of scholarly, government and general-interest titles. Multidisciplinary by nature, GreenFILE draws on the connections between the environment and agriculture, education, law, health and technology. Topics covered include global climate change, green building, pollution, sustainable agriculture, renewable energy, recycling, and more.
  • Ethnic NewsWatch Ethnic NewsWatch is a current resource of full-text newspapers, magazines, and journals of the ethnic and minority press from 1990, providing researchers access to essential, often overlooked perspectives.
  • Opposing Viewpoints in Context Find articles on current issues, including viewpoint articles, topic overviews, statistics, primary documents, magazine and newspaper articles.

Sample of online books

Below are a selection of online books and readings on the broad topic. We have more online books, journal articles, and sources in our Libraries Search and article databases.  

Cover Art

  • A climate policy revolution : what the science of complexity reveals about saving our planet by Roland Kupers ISBN: 9780674246812 Publication Date: 2020 "In this book, Roland Kupers argues that the climate crisis is well suited to the bottom-up, rapid, and revolutionary change complexity science theorizes; he succinctly makes the case that complexity science promises policy solutions to address climate change."

Cover Art

Get help from the U Libraries - Online!

  • Peer Research Consultants Make an online 30 minute appointment for one-on-one peer assistance with your research. Get help with researching your topic, finding sources, citing sources and more. Peer Research Consultants can also help you get started with faculty-sponsored research.
  • Chat 24/7 online with the Libraries Ask us anything! Chat with a librarian, 24 hours a day, 7 days a week with any research or library questions.
  • Meet with a librarian Schedule an online consultations for personalized research support primarily for University of Minnesota faculty, instructors, graduate and undergraduate students and staff.
  • University of Wisconsin–Madison
  • University of Wisconsin-Madison
  • Research Guides
  • College Undergraduate Research Group
  • Current Topics: An Undergraduate Research Guide
  • Climate Change

Current Topics: An Undergraduate Research Guide : Climate Change

  • Writing, Citing, & Research Help
  • Black Lives Matter Movement
  • Hate Crimes
  • Fast Fashion
  • Health Care
  • Sexual Assault/Rape
  • Sexual Harassment
  • Newspaper Source Plus Newspaper Source Plus includes 1,520 full-text newspapers, providing more than 28 million full-text articles.
  • Newspaper Research Guide This guide describes sources for current and historical newspapers available in print, electronically, and on microfilm through the UW-Madison Libraries. These sources are categorized by pages: Current, Historical, Local/Madison, Wisconsin, US, Alternative/Ethnic, and International.

Organizations

  • Carbon Migration Initative The Carbon Mitigation Initiative (CMI) is a 20-year partnership between Princeton University and BP with the goal of finding solutions to the carbon and climate problem.
  • Climate Change and Wisconsin's Great Lakes From the State of Wisconsin's Department of Natural Resources (DNR)
  • Environmental Protection Agency (EPA) - Climate Change
  • Kyoto Protocol The Kyoto Protocol is an international agreement linked to the United Nations Framework Convention on Climate Change, which commits its Parties by setting internationally binding emission reduction targets.
  • Union of Concerned Scientists Our scientists and engineers develop and implement innovative, practical solutions to some of our planet’s most pressing problems—from combating global warming and developing sustainable ways to feed, power, and transport ourselves, to fighting misinformation and reducing the threat of nuclear war.

About Climate Change

Rising global temperatures have been accompanied by changes in weather and climate. It is usually attributed to an enhanced greenhouse effect, tending to intensify with the increase in atmospheric carbon dioxide. This Research Guide includes sources relevant to the investigation for causes and effects on the environment of the atmospheric greenhouse effect and global climate change.

Try searching these terms using the resources linked on this page: climate change*, greenhouse effect, greenhouse gas*, global climate change, global warming, greenhouse gas mitigation , carbon dioxide mitigation , carbon sequestration , global temperature changes, paleoclimatology , deglaciation , fossil fuel* and climate change*

Overview Resources - Background Information

  • Global Climate Change From NASA
  • Opposing Viewpoints Resource Center Opposing Viewpoints Resource Center (OVRC) provides viewpoint articles, topic overviews, statistics, primary documents, links to websites, and full-text magazine and newspaper articles related to controversial social issues.
  • State of the Climate Fact sheets & briefs from the Pew Center on Global Climate Change

Cover Art

Articles - Scholarly and Popular

  • Academic Search Includes scholarly and popular articles on many topics.
  • Environmental Sciences and Pollution Management Includes articles on basic science areas of bacteriology, ecology, toxicology, environmental engineering, environmental biotechnology, waste management, and water resources.
  • Meteorological & Geoastrophysical Abstracts Includes articles on the fields of meteorology, climatology, physical oceanography, hydrology, glaciology, and atmospheric chemistry and physics
  • Web of Science Includes predominately scholarly articles on a wide range of scientific disciplines.

Statistics and Data

  • Center for Climate and Energy Solutions (C2ES) An independent, nonpartisan, nonprofit organization working to advance strong policy and action to address our climate and energy challenges.
  • National Climatic Data Center NOAA's National Climatic Data Center (NCDC) provids public access to the largest archive of climatic and historical weather data.
  • U.S. Global Change Research Program The U.S. Global Change Research Program (USGCRP) was established by Presidential Initiative in 1989 and mandated by Congress in the Global Change Research Act (GCRA) of 1990 to “assist the Nation and the world to understand, assess, predict, and respond to human-induced and natural processes of global change.”
  • U.S. Greenhouse Gas Inventory Report: 1990-2014 EPA develops an annual report called the Inventory of U.S. Greenhouse Gas Emissions and Sinks (Inventory). This report tracks total annual U.S. emissions and removals by source, economic sector, and greenhouse gas going back to 1990. EPA uses national energy data, data on national agricultural activities, and other national statistics to provide a comprehensive accounting of total greenhouse gas emissions for all man-made sources in the United States.
  • << Previous: Black Lives Matter Movement
  • Next: Hate Crimes >>
  • Last Updated: Feb 15, 2024 10:29 AM
  • URL: https://researchguides.library.wisc.edu/current

Read our research on: Abortion | International Conflict | Election 2024

Regions & Countries

Climate, energy & environment, how americans view future harms from climate change in their community and around the u.s..

A majority of Americans believe climate change is causing harm to people in the U.S. today and 63% expect things to get worse in their lifetime.

Americans continue to have doubts about climate scientists’ understanding of climate change

Why some americans do not see urgency on climate change.

As the Earth’s temperature continues to rise, climate change remains a lower priority for some Americans, and a subset of the public rejects that it’s happening at all. To better understand the perspectives of those who see less urgency to address climate change, the Center conducted a series of in-depth interviews designed to provide deeper insight into the motivations and views of those most skeptical about climate change.

How Republicans view climate change and energy issues

Just 12% of Republicans and Republican leaners say dealing with climate change should be a top priority for the president and Congress.

All Climate, Energy & Environment Publications

The share of Americans who say climate scientists understand very well whether climate change is occurring decreased from 37% in 2021 to 32% this year.

Growing share of Americans favor more nuclear power

A majority of Americans (57%) say they favor more nuclear power plants to generate electricity in the country, up from 43% who said this in 2020.

What the data says about Americans’ views of climate change

Two-thirds of Americans say the United States should prioritize developing renewable energy sources over expanding the production of fossil fuels.

How Americans view electric vehicles

About four-in-ten Americans (38%) say they’re very or somewhat likely to seriously consider an electric vehicle (EV) for their next vehicle purchase.

Majorities of Americans Prioritize Renewable Energy, Back Steps to Address Climate Change

Large shares of Americans support the U.S. taking steps to address global climate change and prioritize renewable energy development in the country. Still, fewer than half are ready to phase out fossil fuels completely and 59% oppose ending the production of gas-powered cars.

Younger evangelicals in the U.S. are more concerned than their elders about climate change

Evangelical Protestant adults under 40 are more likely than older evangelicals to say climate change is an extremely or very serious problem.

How Religion Intersects With Americans’ Views on the Environment

Most U.S. adults – including a solid majority of Christians and large numbers of people who identify with other religious traditions – consider the Earth sacred and believe God gave humans a duty to care for it. But highly religious Americans are far less likely than other U.S. adults to express concern about warming temperatures around the globe.

Refine Your Results

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JavaScript appears to be disabled on this computer. Please click here to see any active alerts .

Human Health and Climate Change Research

climate change research topics report

Climate change is having direct and indirect impacts on the health and well-being of people. More frequent heat waves, wildfires, flooding and other extreme events driven by climate change are causing new or worsening health conditions and even death. People who live in areas prone to changes in climate and those who are more vulnerable because of their age, health or socio-economic position may be at greater health risk.

Research is needed to further understand the human health implications of the changing climate. The information can be used by individuals to protect their health and by medical and public professionals to develop plans and strategies to prevent or minimize public health impacts from climate change.

On this page:

Health Effects of Air Pollution Research

Research on the impacts of extreme events on human health, research on long-term impacts of climate change on human health  , research on ecosystem-mediated effects on human health and well-being, research to build environmental health literacy to inform health decision making, related links.

Research is being conducted to examine whether changes in climate may exacerbate or reduce the response to air pollution in healthy and susceptible individuals. As part of this work, researchers are evaluating the cumulative effects and impacts of air pollution in combinations with climate change related stressors, and psychosocial stressors over acute, intermittent, and chronic exposure durations. Research is also being conducted to quantify and characterize the spatial distribution of the public health impacts of projected worsening of air quality in many parts of the U.S., including in communities with environmental justice concerns.

The research goals are to:

  • E valuate how changes in temperature, temperature patterns, humidity, and aeroallergens may have on the cardiopulmonary system when healthy and susceptible individuals are exposed to air pollution.
  • Study how different climate conditions impact a person’s biochemistry and how that affects their response to air pollution exposure.  
  • Investigate the biological mechanisms that underlie the interaction of psychosocial stress, climate-change related stressors, air pollution exposure and increased risk of adverse effects.
  • Investigate the role of rising temperatures on reproductive complications and explore interactions between temperature and air pollution on developmental outcomes.
  • Evaluate the interactions between chemical stressors from air pollution and non-chemical stressors, such as social determinants of health, in worsening the health impacts from air pollution in communities with environmental justice and equity concerns.
  • Assess future health impacts resulting from changes in indoor and outdoor air quality associated with projected changes in climate.

Establish biomarkers for adverse health outcome pathways, including mental health, from changing climate conditions.  

Understanding climate change impacts of wildfires, floods, heat waves and other extreme events on public health requires both rapid assessment techniques to evaluate health risks before and during events, as well as more forward-looking approaches to prepare for future events.

  • Investigate the health effects of smoke from wildland fires including differences between smoke from prescribed fires and wildfires using toxicological, clinical and epidemiological methods.
  • Study the health effects from wildfire smoke that results in burning of houses and buildings or hazardous waste sites.
  • Improve understanding of the short-term health effects and chronic health effects related to extreme heat events.
  • Investigate health effects and chronic effects from exposure to chemical and non-chemical flood-related contaminants. 

Additional information is needed on how climate change impacts public health over the long term, including populations living in communities with environmental justice concerns, vector-borne disease that results from infection by mosquitoes or tick bites, for example, and mental health impacts.

  • Investigate health effects from changes in disease vectors due to shifts in ecological regimes that bring large, abrupt and persistent changes in the structure and function of ecosystems and climate conditions.
  • Understand the mental health effects from long-term changes in climate.
  • Study the health effects from changes in the built environments resulting from long-term adaptation to changing climate conditions.
  • Develop quantitative relationships between changes in climatic conditions and health metrics for key health effects associated with climate change and characterize the uncertainty in those relationships and their application at different spatial scales and in different locations.

Healthy ecosystems are important to supporting all life on the planet yet human actions--including those that are causing climate change--are causing declines in ecosystem health. Understanding how ecosystem processes undergo change under different climate conditions and various land management practices can provide information on the health impacts to people.

  • Evaluate the effects of climate change on ecosystem structure and functioning and how it affects human health.
  • Identify processes and species composition of ecosystems that influence air and water pollution from wildland and prescribed fires.
  • Evaluate how different types of land management approaches impact air and water quality.
  • Examine how climate change impacts the effectiveness of forests and water buffer zones in filtering toxic compounds from air and water.

Despite the increasing evidence and availability of information about adverse impacts of climate change to our health, overall awareness and action to mitigate these effects remains low among individuals, health care providers, organizations and communities. Innovative tools and approaches are needed to increase environmental health awareness. Examples include educational games and virtual reality experiences for individuals to learn about how to protect their health and application of electronic health record data to engage health care providers in decision making.    

The research goals are to:   

  • Develop innovative approaches to increase environmental health literacy.
  • Explore the application and use of these approaches to support decision making about exposure to air pollution and other impacts of climate-change-related health effects.
  • Evaluate the impact of these approaches on learning and decision making.
  • Integrate citizen participatory science approaches that enhance or expand environmental awareness.
  • National Climate Assessment  - EPA contributes to the U.S. Global Change Research Program’s development of the National Climate Assessment, including chapters on the impacts of climate on air quality. The Fifth National Climate Assessment was published in November 2023.
  • The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment   -- This is a 2016 report from the U.S. Global Change Research Program, developed by 100 scientists across 7 agencies, including EPA.
  • Clean Cookstove Research  -- The majority of cookstoves used in developing countries emit black carbon, an air pollutant that contributes to warming of the atmosphere.
  • Wildland Fire Science Research  -- EPA is using its expertise in air quality research to fill the gaps in scientific information and to develop tools to prevent and reduce the impact of smoke from wildfires and controlled or prescribed burns.
  • Publications, Presentations, and Other Research Products in Science Inventory
  • Climate Change Research Home
  • Air Quality
  • Community Resilience
  • Ecosystems & Water
  • Human Health
  • Tools & Resources

Melting polar ice is slowing the Earth's rotation, with possible consequences for timekeeping

Midnight sun on the ice sheet.

Global warming has slightly slowed the Earth’s rotation — and it could affect how we measure time. 

A study published Wednesday found that the melting of polar ice — an accelerating trend driven primarily by human-caused climate change — has caused the Earth to spin less quickly than it would otherwise. 

The author of the study, Duncan Agnew, a geophysicist at the Scripps Institution of Oceanography at the University of California San Diego, said that as ice at the poles melts, it changes where the Earth’s mass is concentrated. The change, in turn, affects the planet’s angular velocity. 

Agnew compared the dynamic to a figure skater twirling on ice: “If you have a skater who starts spinning, if she lowers her arms or stretches out her legs, she will slow down,” he said. But if a skater’s arms are drawn inward, the skater will twirl faster. 

Less solid ice at the poles, then, means more mass around the equator — Earth’s waist.

“What you’re doing with the ice melt is you’re taking water that’s frozen solid in places like Antarctica and Greenland, and that frozen water is melting, and you move the fluids to other places on the planet,” said Thomas Herring, a professor of geophysics at the Massachusetts Institute of Technology who was not involved in the new study. “The water flows off towards the equator.” 

The study suggests, in other words, that human influence has monkeyed with a force that scholars, stargazers and scientists have puzzled over for millennia — something long considered a constant that was out of humanity’s control.

“It’s kind of impressive, even to me, we’ve done something that measurably changes how fast the Earth rotates,” Agnew said. “Things are happening that are unprecedented.”

His study, which was published in the journal Nature, suggests that climate change is playing a significant enough role in the Earth’s rotation to counteract an opposing trend. Because of a combination of factors, the Earth has begun to spin faster in recent decades, a temporary trend that has prompted scientists for the first time to consider subtracting a single “negative leap second” from clocks worldwide as soon as 2026. But the melting of polar ice has delayed that possibility by about three years, according to Agnew.

If timekeeping organizations do eventually decide to add a negative leap second, the adjustment could disrupt computer networks.

View of Earth captured by the Deep Space Climate Observatory satellite

The reason leap second adjustments have historically been needed is that even without climate change, Earth’s daily rotation has trended slower over millions of years, even though it may seem constant. 

About 70 million years ago, days were shorter and lasted roughly 23.5 hours, a study in Paleoceanography and Paleoclimatology suggests . That means Cretaceous dinosaurs experienced a planet with 372 days in each year.  

Several key factors affect the planet’s spin — sometimes working in opposition. 

The friction of ocean tides, due in part to the moon’s gravitational pull, slows the Earth’s rotation. Meanwhile, since the last Ice Age, the Earth’s crust has been uplifting in some regions as it responds to the removal of ice sheets’ weight. That effect shifts where mass is distributed and speeds up the planet’s spin. Both of those processes are fairly constant and have predictable rates. 

Yet another factor is the movement of fluid within the Earth’s liquid inner core — a wild card that can either speed or slow how fast the Earth rotates, Agnew said.   Fluctuations in Earth's core are a primary reason that the planet has rotated faster than would be otherwise expected in recent decades.

That faster spin has led timekeepers to consider — for the first time since Coordinated Universal Time was officially adopted in the 1960s — whether it might make sense to subtract a leap second to keep universal time in lockstep with Earth’s rotation.  

But polar ice melt is counteracting that trend and has forestalled any decision point about whether to add a negative leap second. According to Agnew’s estimates, it has delayed that possibility from 2026 to 2029 —  if the current pace of Earth’s rotation holds. 

As climate change intensifies, researchers expect ice melt to have an even more profound effect on how the planet spins. 

“It will have a bigger contribution as time goes on and as melt accelerates, as we expect it’s likely to do,” Herring said. He added that the new study was a thorough, solid analysis that combined research from several disciplines of science.

The need for timekeepers to adjust universal time to stay in line with the Earth’s rotation is not a new phenomenon. But historically, that has involved adding leap seconds to the common standard for clocks when Earth’s slowing spin causes astronomical time to fall behind atomic time (which is measured by the vibration of atoms in atomic clocks). 

Adding or subtracting leap seconds is a pain, because they have the potential to disrupt satellite, financial and energy transmission systems that rely on extremely precise timing. Because of that, global timekeepers voted in 2022 to do away with the leap second additions and subtractions by 2035 and let universal time drift away from the pace of the Earth’s rotation. 

“There’s been a push since about 2000 to get rid of leap seconds,” Agnew said. 

Regardless of whether clocks wind up changing, the notion that melting polar ice is affecting the Earth’s rotation speaks to how significant an issue it has become. Research has already described the profound impact that ice loss will have on coastal communities.  

Scientists expect sea level rise to accelerate as the climate warms, a process that will continue for hundreds of years. Last year, top polar researchers warned in a report that parts of key ice sheets could collapse and that coastal communities should prepare for many feet of sea level rise. If humanity allows average global temperatures to rise by 2 degrees Celsius, the planet could be committed to more than 40 feet of sea level rise .

Evan Bush is a science reporter for NBC News. He can be reached at [email protected].

ScienceDaily

Melting glaciers in a warmer climate provide new ground for invasive species

A case study on the island of south georgia.

Invasive species have rapidly colonised new ground exposed by melting glaciers in the sub-Antarctic island of South Georgia, according to new research.

Invasive species brought to new territories through human activities are one of the main causes of the ongoing biodiversity crisis. Even on South Georgia, a remote island located in the very south of the Atlantic Ocean, exotic species are present.

In a new study published in the open access journal Neobiota and funded by Darwin Plus, the researchers Pierre Tichit (Durham University, now Swedish Agricultural University), Paul Brickle (South Atlantic Environmental Research Institute), Rosemary Newton (Royal Botanic Gardens, Kew), Peter Convey (British Antarctic Survey) and Wayne Dawson (Durham University, now University of Liverpool) look at how living organisms colonise new ground provided by melting glaciers on the British overseas territory.

Many were inadvertently introduced by whalers and sealers in the 19 th and early 20 th centuries. Like other cold regions of the world, South Georgia has another problem: many of its glaciers are melting at a fast pace because of climate change, leaving behind large areas of newly uncovered bare ground.

The authors surveyed the forelands biodiversity of six glaciers by counting plants, turning rocks, laying traps and using sweep nets, enabling an inventory of the flora and fauna that colonises forelands at different stages of their retreat.

Their results indicate that invasive species will likely spread on South Georgia as fast as glaciers are retreating. Whether this has or will have negative consequences on local species needs to be investigated to help protect this unique ecosystem.

Just a few years after bare ground is exposed by glacier melting, pioneer plants arrive, progressively covering more ground with time and followed by an increasing number of species. The study discovered that not only native, but also exotic plants and invertebrates, are taking advantage of this opportunity. Even more surprising, two temperate plant species from the Northern Hemisphere, annual meadow grass and mouse-ear chickweed, colonised sites faster than any other species.

Scientific expeditions to such an isolated and inhospitable island are challenging. The crossing from the Falkland Islands to reach South Georgia takes several days on a notoriously temperamental ocean. Once on the island, most glaciers are only accessible with small boats followed by hikes through difficult terrain.

  • New Species
  • Endangered Animals
  • Ecology Research
  • Global Warming
  • Exotic Species
  • Environmental Awareness
  • Invasive species
  • Water hyacinth
  • Larsen Ice Shelf
  • Zebra mussel
  • Water resources

Story Source:

Materials provided by Pensoft Publishers . Note: Content may be edited for style and length.

Journal Reference :

  • Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson. Introduced species infiltrate recent stages of succession after glacial retreat on sub-Antarctic South Georgia . NeoBiota , 2024; 92: 85 DOI: 10.3897/neobiota.92.117226

Cite This Page :

Explore More

  • 100 Kilometers of Quantum-Encrypted Transfer
  • Intelligent Liquid
  • New Approach to Searching for Dark Matter
  • We've Had Bird Evolution All Wrong
  • Physical Activity Protects Against Chronic Pain
  • Australia On Track for Decades-Long Megadroughts
  • Speed of Visual Perception Ranges Widely
  • 3D Printed Replica of an Adult Human Ear
  • Extremely Fast Wound Healing: New Treatment
  • Micro-Lisa! Novel Nano-Scale Laser Writing

Trending Topics

Strange & offbeat.

  • Share full article

Advertisement

Supported by

‘Garbage Lasagna’: Dumps Are a Big Driver of Warming, Study Says

Decades of buried trash is releasing methane, a powerful greenhouse gas, at higher rates than previously estimated, the researchers said.

A large, gray dump truck tips a load of trash bags, boxes, plastic buckets and other rubbish onto an open pile of garbage.

By Hiroko Tabuchi

They’re vast expanses that can be as big as towns: open landfills where household waste ends up, whether it’s vegetable scraps or old appliances.

These landfills also belch methane, a powerful, planet-warming gas, on average at almost three times the rate reported to federal regulators, according to a study published Thursday in the journal Science.

The study measured methane emissions at roughly 20 percent of 1,200 or so large, operating landfills in the United States. It adds to a growing body of evidence that landfills are a significant driver of climate change, said Riley Duren, founder of the public-private partnership Carbon Mapper, who took part in the study.

“We’ve largely been in the dark, as a society, about actual emissions from landfills,” said Mr. Duren, a former NASA engineer and scientist. “This study pinpoints the gaps.”

Methane emissions from oil and gas production , as well as from livestock, have come under increasing scrutiny in recent years. Like carbon dioxide, the main greenhouse gas that’s warming the world, methane acts like a blanket in the sky, trapping the sun’s heat.

And though methane lasts for a shorter time in the atmosphere than carbon dioxide, it is more potent. Its warming effect is more than 80 times as powerful as the same amount of carbon dioxide over a 20-year period.

The Environmental Protection Agency estimates that landfills are the third largest source of human-caused methane emissions in the United States, emitting as much greenhouse gas as 23 million gasoline cars driven for a year.

But those estimates have been largely based on computer modeling, rather than direct measurements. A big reason: It can be difficult and even dangerous for workers with methane “sniffers” to measure emissions on-site, walking up steep slopes or near active dump sites.

Organic waste like food scraps can emit copious amounts of methane when they decompose under conditions lacking oxygen, which can happen deep in landfills. Composting, on the other hand, generally doesn’t produce methane, which is why experts say it can be effective in reducing methane emissions.

For the new study, scientists gathered data from airplane flyovers using a technology called imaging spectrometers designed to measure concentrations of methane in the air. Between 2018 and 2022, they flew planes over 250 sites across 18 states, about 20 percent of the nation’s open landfills.

At more than half the landfills they surveyed, researchers detected emissions hot spots, or sizable methane plumes that sometimes lasted months or years. That suggested something had gone awry at the site, like a big leak of trapped methane from layers of long-buried, decomposing trash, the researchers said.

“You can sometimes get decades of trash that’s sitting under the landfill,” said Daniel H. Cusworth, a climate scientist at Carbon Mapper and the University of Arizona, who led the study. “We call it a garbage lasagna.”

Many landfills are fitted with specialized wells and pipes that collect the methane gas that seeps out of rotting garbage in order to either burn it off or sometimes to use it to generate electricity or heat. But those wells and pipes can leak.

The researchers said pinpointing leaks doesn’t just help scientists get a better picture of emissions, it also helps landfill operators fix leaks.

Overseas, the picture can be less clear, particularly in countries where landfills aren’t strictly regulated. Previous surveys using satellite technology have estimated that globally, landfill methane makes up nearly 20 percent of human-linked methane emissions.

“The waste sector clearly is going to be a critical part of society’s ambition to slash methane emissions,” said Mr. Duren of Carbon Mapper. “We’re not going to meet the global methane pledge targets just by slashing oil and gas emissions.”

A growing constellation of methane-detecting satellites could provide a fuller picture. Last month, another nonprofit, the Environmental Defense Fund, launched MethaneSat , a satellite dedicated to tracking methane emissions around the world.

Carbon Mapper, with partners including NASA’s Jet Propulsion Laboratory, Rocky Mountain Institute, and the University of Arizona, intends to launch the first of its own methane-tracking satellites later this year.

Hiroko Tabuchi covers the intersection of business and climate for The Times. She has been a journalist for more than 20 years in Tokyo and New York. More about Hiroko Tabuchi

Learn More About Climate Change

Have questions about climate change? Our F.A.Q. will tackle your climate questions, big and small .

Decades of buried trash in landfills is releasing methane , a powerful greenhouse gas, at higher rates than previously estimated, a study says.

Ocean Conservation Namibia is disentangling a record number of seals, while broadcasting the perils of marine debris in a largely feel-good way. Here’s how .

To decarbonize the electrical grid, companies are finding creative ways to store energy during periods of low demand in carbon dioxide storage balloons .

New satellite-based research reveals how land along the East Coast is slumping into the ocean, compounding the danger from global sea level rise . A major culprit: overpumping of groundwater.

Did you know the ♻ symbol doesn’t mean something is actually recyclable ? Read on about how we got here, and what can be done.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 05 January 2022

How researchers can help fight climate change in 2022 and beyond

You have full access to this article via your institution.

Military personnel floats on a boat on a river as the roof of a damaged house hangs in the water

Devastating floods that hit Germany last July were made more likely by the warming climate. Credit: Christof Stache/AFP/Getty

Late last year, the major climate summit in Glasgow, UK — the 26th Conference of the Parties to the United Nations climate convention (COP26) — injected much-needed momentum into the political and business community in the fight to stop climate change. The year ahead represents an opportunity for scientists of all stripes to offer up expertise and ensure that they have a voice in this monumental effort.

Science is already baked into the UN’s formal climate agenda for 2022. In February, the Intergovernmental Panel on Climate Change (IPCC) is scheduled to release its assessment of the latest research into how climate warming is affecting people and ecosystems; a month later, the panel is set to provide an analysis of the options for curbing emissions and halting global warming. Combined with last year’s report on climate science , the governments of the world will have a solid review of the state-of-the-art of research on climate change. But the research community’s work stretches far beyond the IPCC.

At the top of governments’ climate agenda is innovation. Existing technologies such as wind and solar power, whose price has plummeted over the past decade, and more-efficient lighting, buildings and vehicles will help to reduce emissions. But if green energy is to push out fossil fuels and fulfil the rising demand for reliable power in low-income countries, scientists and engineers will be needed to solve a range of problems. These include finding ways to cut the price of grid-scale electricity storage and to address technical challenges that arise when integrating massive amounts of intermittent renewable energy. Research will also be required to provide a new generation of affordable vehicles powered by electricity and hydrogen, and low-carbon fuels for those that are harder to electrify, such as aircraft.

Even in the most optimistic scenarios, such clean-energy deployments are unlikely to be enough to enable countries to keep their climate commitments. More innovation will also be needed — for example, in the form of technologies that can pull carbon dioxide out of the atmosphere. These have yet to be tested and demonstrated at any significant scale. Governments and funders also need to support scientists in efforts to understand the safety and efficacy of various controversial geoengineering technologies — methods for artificially cooling the planet, such as the addition of particles to the stratosphere to reflect sunlight back into space — if only to determine whether there is sense in even contemplating such alternatives.

climate change research topics report

Give research into solar geoengineering a chance

There are signs of renewed support for research and innovation in helping to address climate change. In Glasgow, 22 countries, as well as the European Commission (EC), announced plans to cooperate on innovation focused on greening cities, curbing industrial emissions, promoting CO 2 capture and developing renewable fuels, chemicals and materials. The EC has also announced efforts to drive new funds into demonstration projects to help commercialize low-carbon technologies. And China, currently the world’s largest emitter of greenhouse gases, is creating a vast research infrastructure focused on technologies that will help to eliminate carbon emissions.

climate change research topics report

China creates vast research infrastructure to support ambitious climate goals

In the United States, under President Joe Biden, the Democrats have also made innovation a linchpin of efforts to address climate change. A bipartisan bill enacted in November will expand green-infrastructure investments, as well as providing nearly US$42 billion for clean-energy research and development at the US Department of Energy over the next 5 years, roughly doubling the current budget, according to the Information Technology and Innovation Foundation, a think tank in Washington DC. Another $550 billion for climate and clean-energy programmes is included in a larger budget bill that Democrats hope to pass this year. Economic modelling suggests that the spending surge could help to lower emissions in the coming decade while teeing up technologies that will be crucial to eliminating greenhouse-gas emissions in the latter half of the century.

In addition to enabling green innovation, scientists have an important part to play in evaluating climate policies and tracking commitments made by governments and businesses. Many of the initiatives that gained traction at COP26 need science to succeed. That includes evaluating how climate finance — money that wealthy nations have committed to help low-income nations to curb emissions and cope with climate change — is spent. Research is also needed to understand the impacts of carbon offsets and carbon trading, for which new rules were agreed at COP26.

climate change research topics report

COP26 climate pledges: What scientists think so far

Climate science, too, must continue apace, helping governments and the public to understand the impact of climate change. From floods in Germany to fires in Australia, the evolving field of climate attribution has already made it clear that global warming is partly to blame for numerous tragedies. Attribution science will also feed into an ongoing geopolitical debate about who should pay for the rising costs of climate-related natural disasters, as many low-income countries seek compensation from wealthy countries that are responsible for the bulk of the greenhouse-gas emissions so far.

These and other issues will be discussed again in November at COP27 in Sharm El-Sheikh, Egypt, where it will be crucial to make sure that everyone has a voice and that research supports climate monitoring and innovation everywhere, not just in richer nations.

A new agreement made at COP26 that requires governments to report annually on their climate progress should help to maintain pressure on them to act on climate change. But science and innovation will be equally important to driving ever-bolder climate policies.

Nature 601 , 7 (2022)

doi: https://doi.org/10.1038/d41586-021-03817-4

Reprints and permissions

Related Articles

climate change research topics report

  • Climate change

The EU’s ominous emphasis on ‘open strategic autonomy’ in research

The EU’s ominous emphasis on ‘open strategic autonomy’ in research

Editorial 03 APR 24

Don’t dismiss carbon credits that aim to avoid future emissions

Correspondence 02 APR 24

A 2023 hurricane caught Mexico off guard: we must work together to prepare better

A 2023 hurricane caught Mexico off guard: we must work together to prepare better

Comment 02 APR 24

Larger or longer grants unlikely to push senior scientists towards high-risk, high-reward work

Larger or longer grants unlikely to push senior scientists towards high-risk, high-reward work

Nature Index 25 MAR 24

China–US climate collaboration concerns as Xie and Kerry step down

China–US climate collaboration concerns as Xie and Kerry step down

News 12 MAR 24

Cuts to postgraduate funding threaten Brazilian science — again

Correspondence 26 MAR 24

Don’t underestimate the rising threat of groundwater to coastal cities

Faculty Positions, Aging and Neurodegeneration, Westlake Laboratory of Life Sciences and Biomedicine

Applicants with expertise in aging and neurodegeneration and related areas are particularly encouraged to apply.

Hangzhou, Zhejiang, China

Westlake Laboratory of Life Sciences and Biomedicine (WLLSB)

climate change research topics report

Faculty Positions in Chemical Biology, Westlake University

We are seeking outstanding scientists to lead vigorous independent research programs focusing on all aspects of chemical biology including...

School of Life Sciences, Westlake University

climate change research topics report

Faculty Positions in Neurobiology, Westlake University

We seek exceptional candidates to lead vigorous independent research programs working in any area of neurobiology.

Seeking Global Talents, the International School of Medicine, Zhejiang University

Welcome to apply for all levels of professors based at the International School of Medicine, Zhejiang University.

Yiwu, Zhejiang, China

International School of Medicine, Zhejiang University

climate change research topics report

Nanjing Forestry University is globally seeking Metasequoia Scholars and Metasequoia Talents

Located next to Purple Mountain and Xuanwu Lake, Nanjing Forestry University (NJFU) is a key provincial university jointly built by Jiangsu Province

Nanjing, Jiangsu, China

Nanjing Forestry University (NFU)

climate change research topics report

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

share this!

April 2, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Companies ignoring climate risks get punished by markets, new study reveals

by University of Florida

greenhouse gas

A pioneering study from the University of Florida has quantified corporations' exposure to climate change risks like hurricanes, wildfires, and climate-related regulations and the extent to which climate risks are priced into their market valuations. The research also exposes a costly divide—companies that proactively manage climate risks fare much better than those that ignore the threats.

Using textual analysis of earnings call transcripts from almost 5,000 U.S. public companies , researchers developed novel measures of firms' physical climate risk exposure from weather extremes as well as the 'transition risks' that firms face from the global shift to a low-carbon economy, like shifting to renewable energy and reduced carbon emissions . They found companies facing high transition risks from things like emissions regulations tended to be valued at a discount by investors.

"In recent years, overall investor attention to climate change has increased," explained Qing Li, Clinical Assistant Professor at the University of Florida Warrington College of Business. "As our research shows, companies that have high exposure to transition risk seem to be punished by markets."

However, the valuation discount didn't apply to companies actively working to adapt their business models and reduce climate impacts through strategies like increasing sustainable investments and green technologies. These 'proactive' firms tend to ramp up sustainable innovations and avoid cuts to research spending as transition risks intensify.

In contrast, companies that discuss transition risks but take a passive stance tend to slash R&D budgets and jobs when facing higher climate exposure—a potential impediment to their long-term competitiveness.

"The divide in strategies and outcomes between proactive and nonproactive firms is quite stark," noted researcher Yuehua Tang, Emerson-Merrill Lynch Associate Professor. "Companies being transparent about their climate vulnerabilities but also demonstrating tangible responses to mitigate those risks seem to be rewarded by markets."

The findings come amid increasing pressure from investors, regulators, and activists for companies to disclose climate risks publicly. In 2024, the SEC implemented new rules that require public corporations to report risks from climate change impacts and, in some cases, their greenhouse gas emissions.

While there are costs for businesses that adapt to both physical and transitional climate risks, the study by Li, Tang, China Europe International Business School's Hongyu Shan (Ph.D. '19), and Georgia State University's Vincent Yao suggests proactive efforts could actually boost valuations and preparedness as investors increasingly consider climate threats when making informed investment decisions.

The study is published in The Review of Financial Studies journal.

Journal information: Review of Financial Studies

Provided by University of Florida

Explore further

Feedback to editors

climate change research topics report

Automated bioacoustics: Researchers are listening in on insects to better gauge environmental health

climate change research topics report

New sunflower family tree reveals multiple origins of flower symmetry

8 hours ago

climate change research topics report

Researchers determine structure of new metal tellurate material with potential uses in solar energy and more

climate change research topics report

Evolution in action? New study finds possibility of nitrogen-fixing organelles

9 hours ago

climate change research topics report

How brown rats crawled off ships and conquered North American cities

climate change research topics report

Examining groundwater's role in ecosystem sustainability

climate change research topics report

Matador bugs use their own red flags to ward off predators

climate change research topics report

For mining in arid regions to be responsible, we must change how we think about water, say researchers

10 hours ago

climate change research topics report

Pollen is a promising sustainable tool in the bone regeneration process

climate change research topics report

Fuel cells: Oxidation processes of phosphorous acid revealed by tender X-rays

Relevant physicsforums posts, interesting anecdotes in the history of physics, what are your favorite disco "classics".

Apr 2, 2024

How did ‘concern’ semantically shift to mean ‘commercial enterprise' ?

Wars of the roses (lancaster, red rose - york, white rose), 1455-1487, cover songs versus the original track, which ones are better.

Apr 1, 2024

Metal, Rock, Instrumental Rock and Fusion

More from Art, Music, History, and Linguistics

Related Stories

climate change research topics report

Valuating companies based on climate risk response

Nov 15, 2023

climate change research topics report

Investors are 'flying blind' to risk of climate lawsuits, researchers say

Jan 12, 2024

climate change research topics report

Why the first US climate disclosure rules are much weaker than planned and what they mean for companies

Mar 7, 2024

climate change research topics report

New US rule requires publicly-listed firms to disclose emissions

Mar 21, 2022

climate change research topics report

California can't let big polluters win by undermining climate change disclosure laws

Mar 11, 2024

climate change research topics report

Big firms with $7 tn exit climate investment pressure group

Feb 16, 2024

Recommended for you

climate change research topics report

Study on the psychology of blame points to promising strategies for reducing animosity within political divide

15 hours ago

climate change research topics report

Characterizing social networks by the company they keep

climate change research topics report

Song lyrics have become simpler and more repetitive since 1980, study finds

Mar 28, 2024

climate change research topics report

Low resting heart rate in women is associated with criminal offending, unintentional injuries

Mar 27, 2024

climate change research topics report

Your emotional reaction to climate change may impact the policies you support, study finds

climate change research topics report

Value-added tax data could help countries prepare better for crises

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. The Best Visualizations on Climate Change Facts

    climate change research topics report

  2. Major Reports

    climate change research topics report

  3. Purdue University Purdue Climate Change Research Center

    climate change research topics report

  4. Global Climate Change Impacts in the United States: A State of

    climate change research topics report

  5. The Science of Climate Change Explained: Facts, Evidence and Proof

    climate change research topics report

  6. Major Reports

    climate change research topics report

COMMENTS

  1. Research Guides: Climate Change

    The rate of climate change surged alarmingly between 2011 and 2020, which was the warmest decade on record. This report documents how extreme events across the decade had devastating impacts, particularly on food security, displacement and migration, hindering national development and progress toward the Sustainable Development Goals (SDGs).

  2. Research articles

    Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Climate change has led to increased fire activity in parts of the globe due to observed increases in fire ...

  3. Climate change

    RSS Feed. Climate change refers to a statistically defined change in the average and/or variability of the climate system, this includes the atmosphere, the water cycle, the land surface, ice and ...

  4. Research articles

    Increasing exposure to climate hazards under climate change will disproportionately impact poor communities. This study shows that disruptions to infrastructure service threaten progress towards ...

  5. Frontiers in Climate

    Coastal Climate Monitoring and Downscaling for Adaptation Planning in the Adriatic Sea. Nadia Pinardi. Christian Ferrarin. Andrea Valentini. Gordana Beg Paklar. Ana Baricevic. 3,828 views. 6 articles. Explores scientific advances in climate research, focusing on mitigation, adaptation, emissions and modelling.

  6. Climate change: a threat to human wellbeing and health of the ...

    Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. The Working Group II report examines the impacts of climate change on nature and people around the globe. It explores future impacts at different levels of warming and the resulting risks and offers options to strengthen nature's ...

  7. Climate Change 2023: Synthesis Report

    The much-anticipated Climate Change 2023: Synthesis Report is based on years of work by hundreds of scientists during the Intergovernmental Panel on Climate Change's (IPCC) sixth assessment cycle which began in 2015. The report provides the main scientific input to COP28 and the Global Stocktake at the end of this year, when countries will review progress towards the Paris Agreement goals.

  8. Fifth National Climate Assessment

    The Fifth National Climate Assessment. The Fifth National Climate Assessment is the US Government's preeminent report on climate change impacts, risks, and responses. It is a congressionally mandated interagency effort that provides the scientific foundation to support informed decision-making across the United States.

  9. Original research: Health effects of climate change: an overview of

    Introduction. The environmental consequences of climate change such as sea-level rise, increasing temperatures, more extreme weather events, increased droughts, flooding and wildfires are impacting human health and lives. 1 2 Previous studies and reviews have documented the multiple health impacts of climate change, including an increase in infectious diseases, respiratory disorders, heat ...

  10. Climate Change Research

    Turn Down the Heat: Confronting the New Climate Normal. November 23, 2014 — The new "Turn Down the Heat" report finds that warming of close to 1.5°C is already locked into the Earth's atmospheric system, and that it will mean more severe droughts, global sea level rise, and higher costs of adaptation for millions of people.

  11. A review of the global climate change impacts, adaptation, and

    In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. ... For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration ...

  12. Climate Change Concerns Make Many Around the ...

    In Pew Research Center surveys conducted in 2019 and 2020, a median of 70% across 20 publics surveyed said climate change is affecting where they live a great deal or some amount. And majorities in most countries included as part of a 26-nation survey in 2018 thought global climate change was a major threat to their own country (the same was ...

  13. Climate Change Research

    Led by the U.S. Global Change Research Program and its 14 member agencies, including EPA, NCA5 is the most comprehensive analysis of the state of climate change in the United States. EPA's Climate Change Research seeks to improve our understanding of how climate change impacts human health and the environment.

  14. Evidence

    While Earth's climate has changed throughout its history, the current warming is happening at a rate not seen in the past 10,000 years.; According to the Intergovernmental Panel on Climate Change (), "Since systematic scientific assessments began in the 1970s, the influence of human activity on the warming of the climate system has evolved from theory to established fact."

  15. The Effects of Climate Change

    Global climate change is not a future problem. Changes to Earth's climate driven by increased human emissions of heat-trapping greenhouse gases are already having widespread effects on the environment: glaciers and ice sheets are shrinking, river and lake ice is breaking up earlier, plant and animal geographic ranges are shifting, and plants and trees are blooming sooner.

  16. The Causes of Climate Change

    In its Sixth Assessment Report, the Intergovernmental Panel on Climate Change, composed of scientific experts from countries all over the world, concluded that it is unequivocal that the increase of CO 2, methane, and nitrous oxide in the atmosphere over the industrial era is the result of human activities and that human influence is the principal driver of many changes observed across the ...

  17. Climate change, energy, environment and sustainability topics research

    It calls for a shift in academic researchers' traditional thinking by working across disciplines to solve complex societal and environmental problems, focusing on the real-world human impacts of climate change, and providing an overview of how science can be used to advocate for institutional change. Engaged Research for Community Resilience to ...

  18. Climate Change

    Current Topics: An Undergraduate Research Guide : Climate Change. Writing, Citing, & Research Help; ... global climate change, global warming, greenhouse gas mitigation, carbon dioxide mitigation, carbon sequestration, global temperature changes ... This report tracks total annual U.S. emissions and removals by source, economic sector, and ...

  19. Nature Climate Change

    ISSN 1758-6798 (online) ISSN 1758-678X (print) Nature Climate Change is dedicated to publishing the most significant research across the physical and social sciences on the impacts of global ...

  20. Climate, Energy & Environment

    Majorities of Americans Prioritize Renewable Energy, Back Steps to Address Climate Change. Large shares of Americans support the U.S. taking steps to address global climate change and prioritize renewable energy development in the country. Still, fewer than half are ready to phase out fossil fuels completely and 59% oppose ending the production ...

  21. PDF Climate Research Topics

    The research topics listed below will be used to inform future scoping of Fifth Assessment research processes, including research conducted through CNRA's Core Climate Research Program, and where relevant, the Tribal Research Program, Regional and Topical Synthesis Reports, and CEC EPIC Grants Program. The research topics below are listed in ...

  22. Simple equations clarify cloud climate conundrum

    June 26, 2023 — New research reduces uncertainty in future climate change linked to the stratosphere, with important implications for life on Earth. A significant source of uncertainty relates ...

  23. Human Health and Climate Change Research

    Human Health and Climate Change Research. Climate change is having direct and indirect impacts on the health and well-being of people. More frequent heat waves, wildfires, flooding and other extreme events driven by climate change are causing new or worsening health conditions and even death. People who live in areas prone to changes in climate ...

  24. Melting polar ice is slowing Earth's rotation and may affect time

    By Evan Bush. Global warming has slightly slowed the Earth's rotation — and it could affect how we measure time. A study published Wednesday found that the melting of polar ice — an ...

  25. A new estimate of U.S. soil organic carbon to improve Earth system

    The Journal of Geophysical Research -- Biogeosciences published the new soil organic carbon estimate, which improves the overall estimate for the United States and gives new insights into the ...

  26. Melting glaciers in a warmer climate provide new ground for invasive

    In 2022 and 2023, biologists from research institutes in the UK and the Falkland Islands led two expeditions to South Georgia to study the impacts of invasive species on this cold and rugged sub ...

  27. Methane From Landfills Is a Big Driver of Climate Change, Study Says

    Our F.A.Q. will tackle your climate questions, big and small. Decades of buried trash in landfills is releasing methane, a powerful greenhouse gas, at higher rates than previously estimated, a ...

  28. PDF RI TAS Climate Report

    As a long-term, global institutional investor, HMC recognizes that climate change presents a material risk to our investments. HMC considers material climate-related factors alongside other factors throughout the entire investment lifecycle. This is done on a top-down basis analyzing the sector(s) and geographies in which HMC's managers operate.

  29. How researchers can help fight climate change in 2022 and beyond

    Combined with last year's report on climate science, the governments of the world will have a solid review of the state-of-the-art of research on climate change. But the research community's ...

  30. Companies ignoring climate risks get punished by markets, new study reveals

    Credit: Unsplash/CC0 Public Domain. A pioneering study from the University of Florida has quantified corporations' exposure to climate change risks like hurricanes, wildfires, and climate-related ...