• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is data analysis in research study

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

customer communication tool

Customer Communication Tool: Types, Methods, Uses, & Tools

Apr 23, 2024

sentiment analysis tools

Top 12 Sentiment Analysis Tools for Understanding Emotions

QuestionPro BI: From Research Data to Actionable Dashboards

QuestionPro BI: From research data to actionable dashboards within minutes

Apr 22, 2024

customer experience management software

21 Best Customer Experience Management Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Data Analysis

  • Introduction to Data Analysis
  • Quantitative Analysis Tools
  • Qualitative Analysis Tools
  • Mixed Methods Analysis
  • Geospatial Analysis
  • Further Reading

Profile Photo

What is Data Analysis?

According to the federal government, data analysis is "the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data" ( Responsible Conduct in Data Management ). Important components of data analysis include searching for patterns, remaining unbiased in drawing inference from data, practicing responsible  data management , and maintaining "honest and accurate analysis" ( Responsible Conduct in Data Management ). 

In order to understand data analysis further, it can be helpful to take a step back and understand the question "What is data?". Many of us associate data with spreadsheets of numbers and values, however, data can encompass much more than that. According to the federal government, data is "The recorded factual material commonly accepted in the scientific community as necessary to validate research findings" ( OMB Circular 110 ). This broad definition can include information in many formats. 

Some examples of types of data are as follows:

  • Photographs 
  • Hand-written notes from field observation
  • Machine learning training data sets
  • Ethnographic interview transcripts
  • Sheet music
  • Scripts for plays and musicals 
  • Observations from laboratory experiments ( CMU Data 101 )

Thus, data analysis includes the processing and manipulation of these data sources in order to gain additional insight from data, answer a research question, or confirm a research hypothesis. 

Data analysis falls within the larger research data lifecycle, as seen below. 

( University of Virginia )

Why Analyze Data?

Through data analysis, a researcher can gain additional insight from data and draw conclusions to address the research question or hypothesis. Use of data analysis tools helps researchers understand and interpret data. 

What are the Types of Data Analysis?

Data analysis can be quantitative, qualitative, or mixed methods. 

Quantitative research typically involves numbers and "close-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures ( Creswell & Creswell, 2018 , p. 4). Quantitative analysis usually uses deductive reasoning. 

Qualitative  research typically involves words and "open-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). According to Creswell & Creswell, "qualitative research is an approach for exploring and understanding the meaning individuals or groups ascribe to a social or human problem" ( 2018 , p. 4). Thus, qualitative analysis usually invokes inductive reasoning. 

Mixed methods  research uses methods from both quantitative and qualitative research approaches. Mixed methods research works under the "core assumption... that the integration of qualitative and quantitative data yields additional insight beyond the information provided by either the quantitative or qualitative data alone" ( Creswell & Creswell, 2018 , p. 4). 

  • Next: Planning >>
  • Last Updated: Apr 2, 2024 3:53 PM
  • URL: https://guides.library.georgetown.edu/data-analysis

Creative Commons

Medcomms Academy

What Is Data Analysis in Research? Why It Matters & What Data Analysts Do

what is data analysis in research

Data analysis in research is the process of uncovering insights from data sets. Data analysts can use their knowledge of statistical techniques, research theories and methods, and research practices to analyze data. They take data and uncover what it’s trying to tell us, whether that’s through charts, graphs, or other visual representations. To analyze data effectively you need a strong background in mathematics and statistics, excellent communication skills, and the ability to identify relevant information.

Read on for more information about data analysis roles in research and what it takes to become one.

In this article – What is data analysis in research?

what is data analysis in research

What is data analysis in research?

Why data analysis matters, what is data science, data analysis for quantitative research, data analysis for qualitative research, what are data analysis techniques in research, what do data analysts do, in related articles.

  • How to Prepare for Job Interviews: Steps to Nail it!
  • Finding Topics for Literature Review: The Pragmatic Guide
  • How to Write a Conference Abstract: 4 Key Steps to Set Your Submission Apart

The Ultimate Guide to White Papers: What, Why and How

  • What is an Investigator’s Brochure in Pharma?

Data analysis is looking at existing data and attempting to draw conclusions from it. It is the process of asking “what does this data show us?” There are many different types of data analysis and a range of methods and tools for analyzing data. You may hear some of these terms as you explore data analysis roles in research – data exploration, data visualization, and data modelling. Data exploration involves exploring and reviewing the data, asking questions like “Does the data exist?” and “Is it valid?”.

Data visualization is the process of creating charts, graphs, and other visual representations of data. The goal of visualization is to help us see and understand data more quickly and easily. Visualizations are powerful and can help us uncover insights from the data that we may have missed without the visual aid. Data modelling involves taking the data and creating a model out of it. Data modelling organises and visualises data to help us understand it better and make sense of it. This will often include creating an equation for the data or creating a statistical model.

Data analysis is important for all research areas, from quantitative surveys to qualitative projects. While researchers often conduct a data analysis at the end of the project, they should be analyzing data alongside their data collection. This allows researchers to monitor their progress and adjust their approach when needed.

The analysis is also important for verifying the quality of the data. What you discover through your analysis can also help you decide whether or not to continue with your project. If you find that your data isn’t consistent with your research questions, you might decide to end your research before collecting enough data to generalize your results.

Data science is the intersection between computer science and statistics. It’s been defined as the “conceptual basis for systematic operations on data”. This means that data scientists use their knowledge of statistics and research methods to find insights in data. They use data to find solutions to complex problems, from medical research to business intelligence. Data science involves collecting and exploring data, creating models and algorithms from that data, and using those models to make predictions and find other insights.

Data scientists might focus on the visual representation of data, exploring the data, or creating models and algorithms from the data. Many people in data science roles also work with artificial intelligence and machine learning. They feed the algorithms with data and the algorithms find patterns and make predictions. Data scientists often work with data engineers. These engineers build the systems that the data scientists use to collect and analyze data.

Data analysis techniques can be divided into two categories:

  • Quantitative approach
  • Qualitative approach

Note that, when discussing this subject, the term “data analysis” often refers to statistical techniques.

Qualitative research uses unquantifiable data like unstructured interviews, observations, and case studies. Quantitative research usually relies on generalizable data and statistical modelling, while qualitative research is more focused on finding the “why” behind the data. This means that qualitative data analysis is useful in exploring and making sense of the unstructured data that researchers collect.

Data analysts will take their data and explore it, asking questions like “what’s going on here?” and “what patterns can we see?” They will use data visualization to help readers understand the data and identify patterns. They might create maps, timelines, or other representations of the data. They will use their understanding of the data to create conclusions that help readers understand the data better.

Quantitative research relies on data that can be measured, like survey responses or test results. Quantitative data analysis is useful in drawing conclusions from this data. To do this, data analysts will explore the data, looking at the validity of the data and making sure that it’s reliable. They will then visualize the data, making charts and graphs to make the data more accessible to readers. Finally, they will create an equation or use statistical modelling to understand the data.

A common type of research where you’ll see these three steps is market research. Market researchers will collect data from surveys, focus groups, and other methods. They will then analyze that data and make conclusions from it, like how much consumers are willing to spend on a product or what factors make one product more desirable than another.

Quantitative methods

These are useful in quantitatively analyzing data. These methods use a quantitative approach to analyzing data and their application includes in science and engineering, as well as in traditional business. This method is also useful for qualitative research.

Statistical methods are used to analyze data in a statistical manner. Data analysis is not limited only to statistics or probability. Still, it can also be applied in other areas, such as engineering, business, economics, marketing, and all parts of any field that seeks knowledge about something or someone.

If you are an entrepreneur or an investor who wants to develop your business or your company’s value proposition into a reality, you will need data analysis techniques. But if you want to understand how your company works, what you have done right so far, and what might happen next in terms of growth or profitability—you don’t need those kinds of experiences. Data analysis is most applicable when it comes to understanding information from external sources like research papers that aren’t necessarily objective.

A brief intro to statistics

Statistics is a field of study that analyzes data to determine the number of people, firms, and companies in a population and their relative positions on a particular economic level. The application of statistics can be to any group or entity that has any kind of data or information (even if it’s only numbers), so you can use statistics to make an educated guess about your company, your customers, your competitors, your competitors’ customers, your peers, and so on. You can also use statistics to help you develop a business strategy.

Data analysis methods can help you understand how different groups are performing in a given area—and how they might perform differently from one another in the future—but they can also be used as an indicator for areas where there is better or worse performance than expected.

In addition to being able to see what trends are occurring within an industry or population within that industry or population—and why some companies may be doing better than others—you will also be able to see what changes have been made over time within that industry or population by comparing it with others and analyzing those differences over time.

Data mining

Data mining is the use of mathematical techniques to analyze data with the goal of finding patterns and trends. A great example of this would be analyzing the sales patterns for a certain product line. In this case, a data mining technique would involve using statistical techniques to find patterns in the data and then analyzing them using mathematical techniques to identify relationships between variables and factors.

Note that these are different from each other and much more advanced than traditional statistics or probability.

As a data analyst, you’ll be responsible for analyzing data from different sources. You’ll work with multiple stakeholders and your job will vary depending on what projects you’re working on. You’ll likely work closely with data scientists and researchers on a daily basis, as you’re all analyzing the same data.

Communication is key, so being able to work with others is important. You’ll also likely work with researchers or principal investigators (PIs) to collect and organize data. Your data will be from various sources, from structured to unstructured data like interviews and observations. You’ll take that data and make sense of it, organizing it and visualizing it so readers can understand it better. You’ll use this data to create models and algorithms that make predictions and find other insights. This can include creating equations or mathematical models from the data or taking data and creating a statistical model.

Data analysis is an important part of all types of research. Quantitative researchers analyze the data they collect through surveys and experiments, while qualitative researchers collect unstructured data like interviews and observations. Data analysts take all of this data and turn it into something that other researchers and readers can understand and make use of.

With proper data analysis, researchers can make better decisions, understand their data better, and get a better picture of what’s going on in the world around them. Data analysis is a valuable skill, and many companies hire data analysts and data scientists to help them understand their customers and make better decisions.

Similar Posts

Health Technology Assessment: A Step-by-Step Guide

Health Technology Assessment: A Step-by-Step Guide

Health technology assessment (HTA) is a process that evaluates new health technologies from a societal perspective. These assessments help decision-makers and the public determine whether a new health technology offers benefits that outweigh its risks, costs, and other implications for society. Health technology assessments are a popular type of research. They are useful in informing…

Publishing Medical Documents: A Step-by-Step Guide

Publishing Medical Documents: A Step-by-Step Guide

Writing and publishing medical documents, especially your first medical publication, can make you anxious and cautious, but it is natural to feel this way. After all, you are venturing into uncharted territory, which is challenging but rewarding.  Working as a medical writer and researcher, I am often asked by my colleagues how and where to…

Literature Review Section: What is it, what are the components, and how to write one

Literature Review Section: What is it, what are the components, and how to write one

A literature review is a crucial part of your academic work. It is a written argumentative essay that analyzes and evaluates the existing research on a particular topic, identifies gaps in the research, and connects this existing body of knowledge in a new way. A literature review section of an academic paper or any other…

The Ultimate Guide to White Papers: What, Why and How

White papers are an excellent way for businesses to share their knowledge, explain complicated ideas and encourage people to take action. They are also a great way for businesses to establish themselves as experts in their field and build trust with potential customers. With this in mind, you may wonder how to use white papers…

Mastering the Art of Referencing in Microsoft Word

Mastering the Art of Referencing in Microsoft Word

Referencing is a crucial aspect of professional medical writing. It allows authors to acknowledge the sources they have used in their work and gives credit to the original authors. In this article, we will guide you through mastering the art of referencing in Microsoft Word. We will begin by discussing the different citation styles and…

Mastering PowerPoint Master Slide – A Comprehensive Guide

Mastering PowerPoint Master Slide – A Comprehensive Guide

PowerPoint is a powerful tool for creating presentations. However, designing and formatting each slide individually can also be time-consuming. That’s where the PowerPoint Master Slide comes in. The Master Slide is a powerful feature that allows you to create a consistent look and feel across all slides in your presentation, saving you time and effort….

Privacy Overview

what is data analysis in research study

  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Is Data Analysis? (With Examples)

Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions.

[Featured image] A female data analyst takes notes on her laptop at a standing desk in a modern office space

"It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims in Sir Arthur Conan Doyle's A Scandal in Bohemia.

This idea lies at the root of data analysis. When we can extract meaning from data, it empowers us to make better decisions. And we’re living in a time when we have more data than ever at our fingertips.

Companies are wisening up to the benefits of leveraging data. Data analysis can help a bank to personalize customer interactions, a health care system to predict future health needs, or an entertainment company to create the next big streaming hit.

The World Economic Forum Future of Jobs Report 2023 listed data analysts and scientists as one of the most in-demand jobs, alongside AI and machine learning specialists and big data specialists [ 1 ]. In this article, you'll learn more about the data analysis process, different types of data analysis, and recommended courses to help you get started in this exciting field.

Read more: How to Become a Data Analyst (with or Without a Degree)

Beginner-friendly data analysis courses

Interested in building your knowledge of data analysis today? Consider enrolling in one of these popular courses on Coursera:

In Google's Foundations: Data, Data, Everywhere course, you'll explore key data analysis concepts, tools, and jobs.

In Duke University's Data Analysis and Visualization course, you'll learn how to identify key components for data analytics projects, explore data visualization, and find out how to create a compelling data story.

Data analysis process

As the data available to companies continues to grow both in amount and complexity, so too does the need for an effective and efficient process by which to harness the value of that data. The data analysis process typically moves through several iterative phases. Let’s take a closer look at each.

Identify the business question you’d like to answer. What problem is the company trying to solve? What do you need to measure, and how will you measure it? 

Collect the raw data sets you’ll need to help you answer the identified question. Data collection might come from internal sources, like a company’s client relationship management (CRM) software, or from secondary sources, like government records or social media application programming interfaces (APIs). 

Clean the data to prepare it for analysis. This often involves purging duplicate and anomalous data, reconciling inconsistencies, standardizing data structure and format, and dealing with white spaces and other syntax errors.

Analyze the data. By manipulating the data using various data analysis techniques and tools, you can begin to find trends, correlations, outliers, and variations that tell a story. During this stage, you might use data mining to discover patterns within databases or data visualization software to help transform data into an easy-to-understand graphical format.

Interpret the results of your analysis to see how well the data answered your original question. What recommendations can you make based on the data? What are the limitations to your conclusions? 

You can complete hands-on projects for your portfolio while practicing statistical analysis, data management, and programming with Meta's beginner-friendly Data Analyst Professional Certificate . Designed to prepare you for an entry-level role, this self-paced program can be completed in just 5 months.

Or, L earn more about data analysis in this lecture by Kevin, Director of Data Analytics at Google, from Google's Data Analytics Professional Certificate :

Read more: What Does a Data Analyst Do? A Career Guide

Types of data analysis (with examples)

Data can be used to answer questions and support decisions in many different ways. To identify the best way to analyze your date, it can help to familiarize yourself with the four types of data analysis commonly used in the field.

In this section, we’ll take a look at each of these data analysis methods, along with an example of how each might be applied in the real world.

Descriptive analysis

Descriptive analysis tells us what happened. This type of analysis helps describe or summarize quantitative data by presenting statistics. For example, descriptive statistical analysis could show the distribution of sales across a group of employees and the average sales figure per employee. 

Descriptive analysis answers the question, “what happened?”

Diagnostic analysis

If the descriptive analysis determines the “what,” diagnostic analysis determines the “why.” Let’s say a descriptive analysis shows an unusual influx of patients in a hospital. Drilling into the data further might reveal that many of these patients shared symptoms of a particular virus. This diagnostic analysis can help you determine that an infectious agent—the “why”—led to the influx of patients.

Diagnostic analysis answers the question, “why did it happen?”

Predictive analysis

So far, we’ve looked at types of analysis that examine and draw conclusions about the past. Predictive analytics uses data to form projections about the future. Using predictive analysis, you might notice that a given product has had its best sales during the months of September and October each year, leading you to predict a similar high point during the upcoming year.

Predictive analysis answers the question, “what might happen in the future?”

Prescriptive analysis

Prescriptive analysis takes all the insights gathered from the first three types of analysis and uses them to form recommendations for how a company should act. Using our previous example, this type of analysis might suggest a market plan to build on the success of the high sales months and harness new growth opportunities in the slower months. 

Prescriptive analysis answers the question, “what should we do about it?”

This last type is where the concept of data-driven decision-making comes into play.

Read more : Advanced Analytics: Definition, Benefits, and Use Cases

What is data-driven decision-making (DDDM)?

Data-driven decision-making, sometimes abbreviated to DDDM), can be defined as the process of making strategic business decisions based on facts, data, and metrics instead of intuition, emotion, or observation.

This might sound obvious, but in practice, not all organizations are as data-driven as they could be. According to global management consulting firm McKinsey Global Institute, data-driven companies are better at acquiring new customers, maintaining customer loyalty, and achieving above-average profitability [ 2 ].

Get started with Coursera

If you’re interested in a career in the high-growth field of data analytics, consider these top-rated courses on Coursera:

Begin building job-ready skills with the Google Data Analytics Professional Certificate . Prepare for an entry-level job as you learn from Google employees—no experience or degree required.

Practice working with data with Macquarie University's Excel Skills for Business Specialization . Learn how to use Microsoft Excel to analyze data and make data-informed business decisions.

Deepen your skill set with Google's Advanced Data Analytics Professional Certificate . In this advanced program, you'll continue exploring the concepts introduced in the beginner-level courses, plus learn Python, statistics, and Machine Learning concepts.

Frequently asked questions (FAQ)

Where is data analytics used ‎.

Just about any business or organization can use data analytics to help inform their decisions and boost their performance. Some of the most successful companies across a range of industries — from Amazon and Netflix to Starbucks and General Electric — integrate data into their business plans to improve their overall business performance. ‎

What are the top skills for a data analyst? ‎

Data analysis makes use of a range of analysis tools and technologies. Some of the top skills for data analysts include SQL, data visualization, statistical programming languages (like R and Python),  machine learning, and spreadsheets.

Read : 7 In-Demand Data Analyst Skills to Get Hired in 2022 ‎

What is a data analyst job salary? ‎

Data from Glassdoor indicates that the average base salary for a data analyst in the United States is $75,349 as of March 2024 [ 3 ]. How much you make will depend on factors like your qualifications, experience, and location. ‎

Do data analysts need to be good at math? ‎

Data analytics tends to be less math-intensive than data science. While you probably won’t need to master any advanced mathematics, a foundation in basic math and statistical analysis can help set you up for success.

Learn more: Data Analyst vs. Data Scientist: What’s the Difference? ‎

Article sources

World Economic Forum. " The Future of Jobs Report 2023 , https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf." Accessed March 19, 2024.

McKinsey & Company. " Five facts: How customer analytics boosts corporate performance , https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/five-facts-how-customer-analytics-boosts-corporate-performance." Accessed March 19, 2024.

Glassdoor. " Data Analyst Salaries , https://www.glassdoor.com/Salaries/data-analyst-salary-SRCH_KO0,12.htm" Accessed March 19, 2024.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Grad Coach

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

what is data analysis in research study

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations.

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

what is data analysis in research study

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Narrative analysis explainer

74 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Your Modern Business Guide To Data Analysis Methods And Techniques

Data analysis methods and techniques blog post by datapine

Table of Contents

1) What Is Data Analysis?

2) Why Is Data Analysis Important?

3) What Is The Data Analysis Process?

4) Types Of Data Analysis Methods

5) Top Data Analysis Techniques To Apply

6) Quality Criteria For Data Analysis

7) Data Analysis Limitations & Barriers

8) Data Analysis Skills

9) Data Analysis In The Big Data Environment

In our data-rich age, understanding how to analyze and extract true meaning from our business’s digital insights is one of the primary drivers of success.

Despite the colossal volume of data we create every day, a mere 0.5% is actually analyzed and used for data discovery , improvement, and intelligence. While that may not seem like much, considering the amount of digital information we have at our fingertips, half a percent still accounts for a vast amount of data.

With so much data and so little time, knowing how to collect, curate, organize, and make sense of all of this potentially business-boosting information can be a minefield – but online data analysis is the solution.

In science, data analysis uses a more complex approach with advanced techniques to explore and experiment with data. On the other hand, in a business context, data is used to make data-driven decisions that will enable the company to improve its overall performance. In this post, we will cover the analysis of data from an organizational point of view while still going through the scientific and statistical foundations that are fundamental to understanding the basics of data analysis. 

To put all of that into perspective, we will answer a host of important analytical questions, explore analytical methods and techniques, while demonstrating how to perform analysis in the real world with a 17-step blueprint for success.

What Is Data Analysis?

Data analysis is the process of collecting, modeling, and analyzing data using various statistical and logical methods and techniques. Businesses rely on analytics processes and tools to extract insights that support strategic and operational decision-making.

All these various methods are largely based on two core areas: quantitative and qualitative research.

To explain the key differences between qualitative and quantitative research, here’s a video for your viewing pleasure:

Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it’s worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

Apart from qualitative and quantitative categories, there are also other types of data that you should be aware of before dividing into complex data analysis processes. These categories include: 

  • Big data: Refers to massive data sets that need to be analyzed using advanced software to reveal patterns and trends. It is considered to be one of the best analytical assets as it provides larger volumes of data at a faster rate. 
  • Metadata: Putting it simply, metadata is data that provides insights about other data. It summarizes key information about specific data that makes it easier to find and reuse for later purposes. 
  • Real time data: As its name suggests, real time data is presented as soon as it is acquired. From an organizational perspective, this is the most valuable data as it can help you make important decisions based on the latest developments. Our guide on real time analytics will tell you more about the topic. 
  • Machine data: This is more complex data that is generated solely by a machine such as phones, computers, or even websites and embedded systems, without previous human interaction.

Why Is Data Analysis Important?

Before we go into detail about the categories of analysis along with its methods and techniques, you must understand the potential that analyzing data can bring to your organization.

  • Informed decision-making : From a management perspective, you can benefit from analyzing your data as it helps you make decisions based on facts and not simple intuition. For instance, you can understand where to invest your capital, detect growth opportunities, predict your income, or tackle uncommon situations before they become problems. Through this, you can extract relevant insights from all areas in your organization, and with the help of dashboard software , present the data in a professional and interactive way to different stakeholders.
  • Reduce costs : Another great benefit is to reduce costs. With the help of advanced technologies such as predictive analytics, businesses can spot improvement opportunities, trends, and patterns in their data and plan their strategies accordingly. In time, this will help you save money and resources on implementing the wrong strategies. And not just that, by predicting different scenarios such as sales and demand you can also anticipate production and supply. 
  • Target customers better : Customers are arguably the most crucial element in any business. By using analytics to get a 360° vision of all aspects related to your customers, you can understand which channels they use to communicate with you, their demographics, interests, habits, purchasing behaviors, and more. In the long run, it will drive success to your marketing strategies, allow you to identify new potential customers, and avoid wasting resources on targeting the wrong people or sending the wrong message. You can also track customer satisfaction by analyzing your client’s reviews or your customer service department’s performance.

What Is The Data Analysis Process?

Data analysis process graphic

When we talk about analyzing data there is an order to follow in order to extract the needed conclusions. The analysis process consists of 5 key stages. We will cover each of them more in detail later in the post, but to start providing the needed context to understand what is coming next, here is a rundown of the 5 essential steps of data analysis. 

  • Identify: Before you get your hands dirty with data, you first need to identify why you need it in the first place. The identification is the stage in which you establish the questions you will need to answer. For example, what is the customer's perception of our brand? Or what type of packaging is more engaging to our potential customers? Once the questions are outlined you are ready for the next step. 
  • Collect: As its name suggests, this is the stage where you start collecting the needed data. Here, you define which sources of data you will use and how you will use them. The collection of data can come in different forms such as internal or external sources, surveys, interviews, questionnaires, and focus groups, among others.  An important note here is that the way you collect the data will be different in a quantitative and qualitative scenario. 
  • Clean: Once you have the necessary data it is time to clean it and leave it ready for analysis. Not all the data you collect will be useful, when collecting big amounts of data in different formats it is very likely that you will find yourself with duplicate or badly formatted data. To avoid this, before you start working with your data you need to make sure to erase any white spaces, duplicate records, or formatting errors. This way you avoid hurting your analysis with bad-quality data. 
  • Analyze : With the help of various techniques such as statistical analysis, regressions, neural networks, text analysis, and more, you can start analyzing and manipulating your data to extract relevant conclusions. At this stage, you find trends, correlations, variations, and patterns that can help you answer the questions you first thought of in the identify stage. Various technologies in the market assist researchers and average users with the management of their data. Some of them include business intelligence and visualization software, predictive analytics, and data mining, among others. 
  • Interpret: Last but not least you have one of the most important steps: it is time to interpret your results. This stage is where the researcher comes up with courses of action based on the findings. For example, here you would understand if your clients prefer packaging that is red or green, plastic or paper, etc. Additionally, at this stage, you can also find some limitations and work on them. 

Now that you have a basic understanding of the key data analysis steps, let’s look at the top 17 essential methods.

17 Essential Types Of Data Analysis Methods

Before diving into the 17 essential types of methods, it is important that we go over really fast through the main analysis categories. Starting with the category of descriptive up to prescriptive analysis, the complexity and effort of data evaluation increases, but also the added value for the company.

a) Descriptive analysis - What happened.

The descriptive analysis method is the starting point for any analytic reflection, and it aims to answer the question of what happened? It does this by ordering, manipulating, and interpreting raw data from various sources to turn it into valuable insights for your organization.

Performing descriptive analysis is essential, as it enables us to present our insights in a meaningful way. Although it is relevant to mention that this analysis on its own will not allow you to predict future outcomes or tell you the answer to questions like why something happened, it will leave your data organized and ready to conduct further investigations.

b) Exploratory analysis - How to explore data relationships.

As its name suggests, the main aim of the exploratory analysis is to explore. Prior to it, there is still no notion of the relationship between the data and the variables. Once the data is investigated, exploratory analysis helps you to find connections and generate hypotheses and solutions for specific problems. A typical area of ​​application for it is data mining.

c) Diagnostic analysis - Why it happened.

Diagnostic data analytics empowers analysts and executives by helping them gain a firm contextual understanding of why something happened. If you know why something happened as well as how it happened, you will be able to pinpoint the exact ways of tackling the issue or challenge.

Designed to provide direct and actionable answers to specific questions, this is one of the world’s most important methods in research, among its other key organizational functions such as retail analytics , e.g.

c) Predictive analysis - What will happen.

The predictive method allows you to look into the future to answer the question: what will happen? In order to do this, it uses the results of the previously mentioned descriptive, exploratory, and diagnostic analysis, in addition to machine learning (ML) and artificial intelligence (AI). Through this, you can uncover future trends, potential problems or inefficiencies, connections, and casualties in your data.

With predictive analysis, you can unfold and develop initiatives that will not only enhance your various operational processes but also help you gain an all-important edge over the competition. If you understand why a trend, pattern, or event happened through data, you will be able to develop an informed projection of how things may unfold in particular areas of the business.

e) Prescriptive analysis - How will it happen.

Another of the most effective types of analysis methods in research. Prescriptive data techniques cross over from predictive analysis in the way that it revolves around using patterns or trends to develop responsive, practical business strategies.

By drilling down into prescriptive analysis, you will play an active role in the data consumption process by taking well-arranged sets of visual data and using it as a powerful fix to emerging issues in a number of key areas, including marketing, sales, customer experience, HR, fulfillment, finance, logistics analytics , and others.

Top 17 data analysis methods

As mentioned at the beginning of the post, data analysis methods can be divided into two big categories: quantitative and qualitative. Each of these categories holds a powerful analytical value that changes depending on the scenario and type of data you are working with. Below, we will discuss 17 methods that are divided into qualitative and quantitative approaches. 

Without further ado, here are the 17 essential types of data analysis methods with some use cases in the business world: 

A. Quantitative Methods 

To put it simply, quantitative analysis refers to all methods that use numerical data or data that can be turned into numbers (e.g. category variables like gender, age, etc.) to extract valuable insights. It is used to extract valuable conclusions about relationships, differences, and test hypotheses. Below we discuss some of the key quantitative methods. 

1. Cluster analysis

The action of grouping a set of data elements in a way that said elements are more similar (in a particular sense) to each other than to those in other groups – hence the term ‘cluster.’ Since there is no target variable when clustering, the method is often used to find hidden patterns in the data. The approach is also used to provide additional context to a trend or dataset.

Let's look at it from an organizational perspective. In a perfect world, marketers would be able to analyze each customer separately and give them the best-personalized service, but let's face it, with a large customer base, it is timely impossible to do that. That's where clustering comes in. By grouping customers into clusters based on demographics, purchasing behaviors, monetary value, or any other factor that might be relevant for your company, you will be able to immediately optimize your efforts and give your customers the best experience based on their needs.

2. Cohort analysis

This type of data analysis approach uses historical data to examine and compare a determined segment of users' behavior, which can then be grouped with others with similar characteristics. By using this methodology, it's possible to gain a wealth of insight into consumer needs or a firm understanding of a broader target group.

Cohort analysis can be really useful for performing analysis in marketing as it will allow you to understand the impact of your campaigns on specific groups of customers. To exemplify, imagine you send an email campaign encouraging customers to sign up for your site. For this, you create two versions of the campaign with different designs, CTAs, and ad content. Later on, you can use cohort analysis to track the performance of the campaign for a longer period of time and understand which type of content is driving your customers to sign up, repurchase, or engage in other ways.  

A useful tool to start performing cohort analysis method is Google Analytics. You can learn more about the benefits and limitations of using cohorts in GA in this useful guide . In the bottom image, you see an example of how you visualize a cohort in this tool. The segments (devices traffic) are divided into date cohorts (usage of devices) and then analyzed week by week to extract insights into performance.

Cohort analysis chart example from google analytics

3. Regression analysis

Regression uses historical data to understand how a dependent variable's value is affected when one (linear regression) or more independent variables (multiple regression) change or stay the same. By understanding each variable's relationship and how it developed in the past, you can anticipate possible outcomes and make better decisions in the future.

Let's bring it down with an example. Imagine you did a regression analysis of your sales in 2019 and discovered that variables like product quality, store design, customer service, marketing campaigns, and sales channels affected the overall result. Now you want to use regression to analyze which of these variables changed or if any new ones appeared during 2020. For example, you couldn’t sell as much in your physical store due to COVID lockdowns. Therefore, your sales could’ve either dropped in general or increased in your online channels. Through this, you can understand which independent variables affected the overall performance of your dependent variable, annual sales.

If you want to go deeper into this type of analysis, check out this article and learn more about how you can benefit from regression.

4. Neural networks

The neural network forms the basis for the intelligent algorithms of machine learning. It is a form of analytics that attempts, with minimal intervention, to understand how the human brain would generate insights and predict values. Neural networks learn from each and every data transaction, meaning that they evolve and advance over time.

A typical area of application for neural networks is predictive analytics. There are BI reporting tools that have this feature implemented within them, such as the Predictive Analytics Tool from datapine. This tool enables users to quickly and easily generate all kinds of predictions. All you have to do is select the data to be processed based on your KPIs, and the software automatically calculates forecasts based on historical and current data. Thanks to its user-friendly interface, anyone in your organization can manage it; there’s no need to be an advanced scientist. 

Here is an example of how you can use the predictive analysis tool from datapine:

Example on how to use predictive analytics tool from datapine

**click to enlarge**

5. Factor analysis

The factor analysis also called “dimension reduction” is a type of data analysis used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. The aim here is to uncover independent latent variables, an ideal method for streamlining specific segments.

A good way to understand this data analysis method is a customer evaluation of a product. The initial assessment is based on different variables like color, shape, wearability, current trends, materials, comfort, the place where they bought the product, and frequency of usage. Like this, the list can be endless, depending on what you want to track. In this case, factor analysis comes into the picture by summarizing all of these variables into homogenous groups, for example, by grouping the variables color, materials, quality, and trends into a brother latent variable of design.

If you want to start analyzing data using factor analysis we recommend you take a look at this practical guide from UCLA.

6. Data mining

A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.  When considering how to analyze data, adopting a data mining mindset is essential to success - as such, it’s an area that is worth exploring in greater detail.

An excellent use case of data mining is datapine intelligent data alerts . With the help of artificial intelligence and machine learning, they provide automated signals based on particular commands or occurrences within a dataset. For example, if you’re monitoring supply chain KPIs , you could set an intelligent alarm to trigger when invalid or low-quality data appears. By doing so, you will be able to drill down deep into the issue and fix it swiftly and effectively.

In the following picture, you can see how the intelligent alarms from datapine work. By setting up ranges on daily orders, sessions, and revenues, the alarms will notify you if the goal was not completed or if it exceeded expectations.

Example on how to use intelligent alerts from datapine

7. Time series analysis

As its name suggests, time series analysis is used to analyze a set of data points collected over a specified period of time. Although analysts use this method to monitor the data points in a specific interval of time rather than just monitoring them intermittently, the time series analysis is not uniquely used for the purpose of collecting data over time. Instead, it allows researchers to understand if variables changed during the duration of the study, how the different variables are dependent, and how did it reach the end result. 

In a business context, this method is used to understand the causes of different trends and patterns to extract valuable insights. Another way of using this method is with the help of time series forecasting. Powered by predictive technologies, businesses can analyze various data sets over a period of time and forecast different future events. 

A great use case to put time series analysis into perspective is seasonality effects on sales. By using time series forecasting to analyze sales data of a specific product over time, you can understand if sales rise over a specific period of time (e.g. swimwear during summertime, or candy during Halloween). These insights allow you to predict demand and prepare production accordingly.  

8. Decision Trees 

The decision tree analysis aims to act as a support tool to make smart and strategic decisions. By visually displaying potential outcomes, consequences, and costs in a tree-like model, researchers and company users can easily evaluate all factors involved and choose the best course of action. Decision trees are helpful to analyze quantitative data and they allow for an improved decision-making process by helping you spot improvement opportunities, reduce costs, and enhance operational efficiency and production.

But how does a decision tree actually works? This method works like a flowchart that starts with the main decision that you need to make and branches out based on the different outcomes and consequences of each decision. Each outcome will outline its own consequences, costs, and gains and, at the end of the analysis, you can compare each of them and make the smartest decision. 

Businesses can use them to understand which project is more cost-effective and will bring more earnings in the long run. For example, imagine you need to decide if you want to update your software app or build a new app entirely.  Here you would compare the total costs, the time needed to be invested, potential revenue, and any other factor that might affect your decision.  In the end, you would be able to see which of these two options is more realistic and attainable for your company or research.

9. Conjoint analysis 

Last but not least, we have the conjoint analysis. This approach is usually used in surveys to understand how individuals value different attributes of a product or service and it is one of the most effective methods to extract consumer preferences. When it comes to purchasing, some clients might be more price-focused, others more features-focused, and others might have a sustainable focus. Whatever your customer's preferences are, you can find them with conjoint analysis. Through this, companies can define pricing strategies, packaging options, subscription packages, and more. 

A great example of conjoint analysis is in marketing and sales. For instance, a cupcake brand might use conjoint analysis and find that its clients prefer gluten-free options and cupcakes with healthier toppings over super sugary ones. Thus, the cupcake brand can turn these insights into advertisements and promotions to increase sales of this particular type of product. And not just that, conjoint analysis can also help businesses segment their customers based on their interests. This allows them to send different messaging that will bring value to each of the segments. 

10. Correspondence Analysis

Also known as reciprocal averaging, correspondence analysis is a method used to analyze the relationship between categorical variables presented within a contingency table. A contingency table is a table that displays two (simple correspondence analysis) or more (multiple correspondence analysis) categorical variables across rows and columns that show the distribution of the data, which is usually answers to a survey or questionnaire on a specific topic. 

This method starts by calculating an “expected value” which is done by multiplying row and column averages and dividing it by the overall original value of the specific table cell. The “expected value” is then subtracted from the original value resulting in a “residual number” which is what allows you to extract conclusions about relationships and distribution. The results of this analysis are later displayed using a map that represents the relationship between the different values. The closest two values are in the map, the bigger the relationship. Let’s put it into perspective with an example. 

Imagine you are carrying out a market research analysis about outdoor clothing brands and how they are perceived by the public. For this analysis, you ask a group of people to match each brand with a certain attribute which can be durability, innovation, quality materials, etc. When calculating the residual numbers, you can see that brand A has a positive residual for innovation but a negative one for durability. This means that brand A is not positioned as a durable brand in the market, something that competitors could take advantage of. 

11. Multidimensional Scaling (MDS)

MDS is a method used to observe the similarities or disparities between objects which can be colors, brands, people, geographical coordinates, and more. The objects are plotted using an “MDS map” that positions similar objects together and disparate ones far apart. The (dis) similarities between objects are represented using one or more dimensions that can be observed using a numerical scale. For example, if you want to know how people feel about the COVID-19 vaccine, you can use 1 for “don’t believe in the vaccine at all”  and 10 for “firmly believe in the vaccine” and a scale of 2 to 9 for in between responses.  When analyzing an MDS map the only thing that matters is the distance between the objects, the orientation of the dimensions is arbitrary and has no meaning at all. 

Multidimensional scaling is a valuable technique for market research, especially when it comes to evaluating product or brand positioning. For instance, if a cupcake brand wants to know how they are positioned compared to competitors, it can define 2-3 dimensions such as taste, ingredients, shopping experience, or more, and do a multidimensional scaling analysis to find improvement opportunities as well as areas in which competitors are currently leading. 

Another business example is in procurement when deciding on different suppliers. Decision makers can generate an MDS map to see how the different prices, delivery times, technical services, and more of the different suppliers differ and pick the one that suits their needs the best. 

A final example proposed by a research paper on "An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment Word of Movie Review Data". Researchers picked a two-dimensional MDS map to display the distances and relationships between different sentiments in movie reviews. They used 36 sentiment words and distributed them based on their emotional distance as we can see in the image below where the words "outraged" and "sweet" are on opposite sides of the map, marking the distance between the two emotions very clearly.

Example of multidimensional scaling analysis

Aside from being a valuable technique to analyze dissimilarities, MDS also serves as a dimension-reduction technique for large dimensional data. 

B. Qualitative Methods

Qualitative data analysis methods are defined as the observation of non-numerical data that is gathered and produced using methods of observation such as interviews, focus groups, questionnaires, and more. As opposed to quantitative methods, qualitative data is more subjective and highly valuable in analyzing customer retention and product development.

12. Text analysis

Text analysis, also known in the industry as text mining, works by taking large sets of textual data and arranging them in a way that makes it easier to manage. By working through this cleansing process in stringent detail, you will be able to extract the data that is truly relevant to your organization and use it to develop actionable insights that will propel you forward.

Modern software accelerate the application of text analytics. Thanks to the combination of machine learning and intelligent algorithms, you can perform advanced analytical processes such as sentiment analysis. This technique allows you to understand the intentions and emotions of a text, for example, if it's positive, negative, or neutral, and then give it a score depending on certain factors and categories that are relevant to your brand. Sentiment analysis is often used to monitor brand and product reputation and to understand how successful your customer experience is. To learn more about the topic check out this insightful article .

By analyzing data from various word-based sources, including product reviews, articles, social media communications, and survey responses, you will gain invaluable insights into your audience, as well as their needs, preferences, and pain points. This will allow you to create campaigns, services, and communications that meet your prospects’ needs on a personal level, growing your audience while boosting customer retention. There are various other “sub-methods” that are an extension of text analysis. Each of them serves a more specific purpose and we will look at them in detail next. 

13. Content Analysis

This is a straightforward and very popular method that examines the presence and frequency of certain words, concepts, and subjects in different content formats such as text, image, audio, or video. For example, the number of times the name of a celebrity is mentioned on social media or online tabloids. It does this by coding text data that is later categorized and tabulated in a way that can provide valuable insights, making it the perfect mix of quantitative and qualitative analysis.

There are two types of content analysis. The first one is the conceptual analysis which focuses on explicit data, for instance, the number of times a concept or word is mentioned in a piece of content. The second one is relational analysis, which focuses on the relationship between different concepts or words and how they are connected within a specific context. 

Content analysis is often used by marketers to measure brand reputation and customer behavior. For example, by analyzing customer reviews. It can also be used to analyze customer interviews and find directions for new product development. It is also important to note, that in order to extract the maximum potential out of this analysis method, it is necessary to have a clearly defined research question. 

14. Thematic Analysis

Very similar to content analysis, thematic analysis also helps in identifying and interpreting patterns in qualitative data with the main difference being that the first one can also be applied to quantitative analysis. The thematic method analyzes large pieces of text data such as focus group transcripts or interviews and groups them into themes or categories that come up frequently within the text. It is a great method when trying to figure out peoples view’s and opinions about a certain topic. For example, if you are a brand that cares about sustainability, you can do a survey of your customers to analyze their views and opinions about sustainability and how they apply it to their lives. You can also analyze customer service calls transcripts to find common issues and improve your service. 

Thematic analysis is a very subjective technique that relies on the researcher’s judgment. Therefore,  to avoid biases, it has 6 steps that include familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. It is also important to note that, because it is a flexible approach, the data can be interpreted in multiple ways and it can be hard to select what data is more important to emphasize. 

15. Narrative Analysis 

A bit more complex in nature than the two previous ones, narrative analysis is used to explore the meaning behind the stories that people tell and most importantly, how they tell them. By looking into the words that people use to describe a situation you can extract valuable conclusions about their perspective on a specific topic. Common sources for narrative data include autobiographies, family stories, opinion pieces, and testimonials, among others. 

From a business perspective, narrative analysis can be useful to analyze customer behaviors and feelings towards a specific product, service, feature, or others. It provides unique and deep insights that can be extremely valuable. However, it has some drawbacks.  

The biggest weakness of this method is that the sample sizes are usually very small due to the complexity and time-consuming nature of the collection of narrative data. Plus, the way a subject tells a story will be significantly influenced by his or her specific experiences, making it very hard to replicate in a subsequent study. 

16. Discourse Analysis

Discourse analysis is used to understand the meaning behind any type of written, verbal, or symbolic discourse based on its political, social, or cultural context. It mixes the analysis of languages and situations together. This means that the way the content is constructed and the meaning behind it is significantly influenced by the culture and society it takes place in. For example, if you are analyzing political speeches you need to consider different context elements such as the politician's background, the current political context of the country, the audience to which the speech is directed, and so on. 

From a business point of view, discourse analysis is a great market research tool. It allows marketers to understand how the norms and ideas of the specific market work and how their customers relate to those ideas. It can be very useful to build a brand mission or develop a unique tone of voice. 

17. Grounded Theory Analysis

Traditionally, researchers decide on a method and hypothesis and start to collect the data to prove that hypothesis. The grounded theory is the only method that doesn’t require an initial research question or hypothesis as its value lies in the generation of new theories. With the grounded theory method, you can go into the analysis process with an open mind and explore the data to generate new theories through tests and revisions. In fact, it is not necessary to collect the data and then start to analyze it. Researchers usually start to find valuable insights as they are gathering the data. 

All of these elements make grounded theory a very valuable method as theories are fully backed by data instead of initial assumptions. It is a great technique to analyze poorly researched topics or find the causes behind specific company outcomes. For example, product managers and marketers might use the grounded theory to find the causes of high levels of customer churn and look into customer surveys and reviews to develop new theories about the causes. 

How To Analyze Data? Top 17 Data Analysis Techniques To Apply

17 top data analysis techniques by datapine

Now that we’ve answered the questions “what is data analysis’”, why is it important, and covered the different data analysis types, it’s time to dig deeper into how to perform your analysis by working through these 17 essential techniques.

1. Collaborate your needs

Before you begin analyzing or drilling down into any techniques, it’s crucial to sit down collaboratively with all key stakeholders within your organization, decide on your primary campaign or strategic goals, and gain a fundamental understanding of the types of insights that will best benefit your progress or provide you with the level of vision you need to evolve your organization.

2. Establish your questions

Once you’ve outlined your core objectives, you should consider which questions will need answering to help you achieve your mission. This is one of the most important techniques as it will shape the very foundations of your success.

To help you ask the right things and ensure your data works for you, you have to ask the right data analysis questions .

3. Data democratization

After giving your data analytics methodology some real direction, and knowing which questions need answering to extract optimum value from the information available to your organization, you should continue with democratization.

Data democratization is an action that aims to connect data from various sources efficiently and quickly so that anyone in your organization can access it at any given moment. You can extract data in text, images, videos, numbers, or any other format. And then perform cross-database analysis to achieve more advanced insights to share with the rest of the company interactively.  

Once you have decided on your most valuable sources, you need to take all of this into a structured format to start collecting your insights. For this purpose, datapine offers an easy all-in-one data connectors feature to integrate all your internal and external sources and manage them at your will. Additionally, datapine’s end-to-end solution automatically updates your data, allowing you to save time and focus on performing the right analysis to grow your company.

data connectors from datapine

4. Think of governance 

When collecting data in a business or research context you always need to think about security and privacy. With data breaches becoming a topic of concern for businesses, the need to protect your client's or subject’s sensitive information becomes critical. 

To ensure that all this is taken care of, you need to think of a data governance strategy. According to Gartner , this concept refers to “ the specification of decision rights and an accountability framework to ensure the appropriate behavior in the valuation, creation, consumption, and control of data and analytics .” In simpler words, data governance is a collection of processes, roles, and policies, that ensure the efficient use of data while still achieving the main company goals. It ensures that clear roles are in place for who can access the information and how they can access it. In time, this not only ensures that sensitive information is protected but also allows for an efficient analysis as a whole. 

5. Clean your data

After harvesting from so many sources you will be left with a vast amount of information that can be overwhelming to deal with. At the same time, you can be faced with incorrect data that can be misleading to your analysis. The smartest thing you can do to avoid dealing with this in the future is to clean the data. This is fundamental before visualizing it, as it will ensure that the insights you extract from it are correct.

There are many things that you need to look for in the cleaning process. The most important one is to eliminate any duplicate observations; this usually appears when using multiple internal and external sources of information. You can also add any missing codes, fix empty fields, and eliminate incorrectly formatted data.

Another usual form of cleaning is done with text data. As we mentioned earlier, most companies today analyze customer reviews, social media comments, questionnaires, and several other text inputs. In order for algorithms to detect patterns, text data needs to be revised to avoid invalid characters or any syntax or spelling errors. 

Most importantly, the aim of cleaning is to prevent you from arriving at false conclusions that can damage your company in the long run. By using clean data, you will also help BI solutions to interact better with your information and create better reports for your organization.

6. Set your KPIs

Once you’ve set your sources, cleaned your data, and established clear-cut questions you want your insights to answer, you need to set a host of key performance indicators (KPIs) that will help you track, measure, and shape your progress in a number of key areas.

KPIs are critical to both qualitative and quantitative analysis research. This is one of the primary methods of data analysis you certainly shouldn’t overlook.

To help you set the best possible KPIs for your initiatives and activities, here is an example of a relevant logistics KPI : transportation-related costs. If you want to see more go explore our collection of key performance indicator examples .

Transportation costs logistics KPIs

7. Omit useless data

Having bestowed your data analysis tools and techniques with true purpose and defined your mission, you should explore the raw data you’ve collected from all sources and use your KPIs as a reference for chopping out any information you deem to be useless.

Trimming the informational fat is one of the most crucial methods of analysis as it will allow you to focus your analytical efforts and squeeze every drop of value from the remaining ‘lean’ information.

Any stats, facts, figures, or metrics that don’t align with your business goals or fit with your KPI management strategies should be eliminated from the equation.

8. Build a data management roadmap

While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on a more sustainable basis. These roadmaps, if developed properly, are also built so they can be tweaked and scaled over time.

Invest ample time in developing a roadmap that will help you store, manage, and handle your data internally, and you will make your analysis techniques all the more fluid and functional – one of the most powerful types of data analysis methods available today.

9. Integrate technology

There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.

Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will also present them in a digestible, visual, interactive format from one central, live dashboard . A data methodology you can count on.

By integrating the right technology within your data analysis methodology, you’ll avoid fragmenting your insights, saving you time and effort while allowing you to enjoy the maximum value from your business’s most valuable insights.

For a look at the power of software for the purpose of analysis and to enhance your methods of analyzing, glance over our selection of dashboard examples .

10. Answer your questions

By considering each of the above efforts, working with the right technology, and fostering a cohesive internal culture where everyone buys into the different ways to analyze data as well as the power of digital intelligence, you will swiftly start to answer your most burning business questions. Arguably, the best way to make your data concepts accessible across the organization is through data visualization.

11. Visualize your data

Online data visualization is a powerful tool as it lets you tell a story with your metrics, allowing users across the organization to extract meaningful insights that aid business evolution – and it covers all the different ways to analyze data.

The purpose of analyzing is to make your entire organization more informed and intelligent, and with the right platform or dashboard, this is simpler than you think, as demonstrated by our marketing dashboard .

An executive dashboard example showcasing high-level marketing KPIs such as cost per lead, MQL, SQL, and cost per customer.

This visual, dynamic, and interactive online dashboard is a data analysis example designed to give Chief Marketing Officers (CMO) an overview of relevant metrics to help them understand if they achieved their monthly goals.

In detail, this example generated with a modern dashboard creator displays interactive charts for monthly revenues, costs, net income, and net income per customer; all of them are compared with the previous month so that you can understand how the data fluctuated. In addition, it shows a detailed summary of the number of users, customers, SQLs, and MQLs per month to visualize the whole picture and extract relevant insights or trends for your marketing reports .

The CMO dashboard is perfect for c-level management as it can help them monitor the strategic outcome of their marketing efforts and make data-driven decisions that can benefit the company exponentially.

12. Be careful with the interpretation

We already dedicated an entire post to data interpretation as it is a fundamental part of the process of data analysis. It gives meaning to the analytical information and aims to drive a concise conclusion from the analysis results. Since most of the time companies are dealing with data from many different sources, the interpretation stage needs to be done carefully and properly in order to avoid misinterpretations. 

To help you through the process, here we list three common practices that you need to avoid at all costs when looking at your data:

  • Correlation vs. causation: The human brain is formatted to find patterns. This behavior leads to one of the most common mistakes when performing interpretation: confusing correlation with causation. Although these two aspects can exist simultaneously, it is not correct to assume that because two things happened together, one provoked the other. A piece of advice to avoid falling into this mistake is never to trust just intuition, trust the data. If there is no objective evidence of causation, then always stick to correlation. 
  • Confirmation bias: This phenomenon describes the tendency to select and interpret only the data necessary to prove one hypothesis, often ignoring the elements that might disprove it. Even if it's not done on purpose, confirmation bias can represent a real problem, as excluding relevant information can lead to false conclusions and, therefore, bad business decisions. To avoid it, always try to disprove your hypothesis instead of proving it, share your analysis with other team members, and avoid drawing any conclusions before the entire analytical project is finalized.
  • Statistical significance: To put it in short words, statistical significance helps analysts understand if a result is actually accurate or if it happened because of a sampling error or pure chance. The level of statistical significance needed might depend on the sample size and the industry being analyzed. In any case, ignoring the significance of a result when it might influence decision-making can be a huge mistake.

13. Build a narrative

Now, we’re going to look at how you can bring all of these elements together in a way that will benefit your business - starting with a little something called data storytelling.

The human brain responds incredibly well to strong stories or narratives. Once you’ve cleansed, shaped, and visualized your most invaluable data using various BI dashboard tools , you should strive to tell a story - one with a clear-cut beginning, middle, and end.

By doing so, you will make your analytical efforts more accessible, digestible, and universal, empowering more people within your organization to use your discoveries to their actionable advantage.

14. Consider autonomous technology

Autonomous technologies, such as artificial intelligence (AI) and machine learning (ML), play a significant role in the advancement of understanding how to analyze data more effectively.

Gartner predicts that by the end of this year, 80% of emerging technologies will be developed with AI foundations. This is a testament to the ever-growing power and value of autonomous technologies.

At the moment, these technologies are revolutionizing the analysis industry. Some examples that we mentioned earlier are neural networks, intelligent alarms, and sentiment analysis.

15. Share the load

If you work with the right tools and dashboards, you will be able to present your metrics in a digestible, value-driven format, allowing almost everyone in the organization to connect with and use relevant data to their advantage.

Modern dashboards consolidate data from various sources, providing access to a wealth of insights in one centralized location, no matter if you need to monitor recruitment metrics or generate reports that need to be sent across numerous departments. Moreover, these cutting-edge tools offer access to dashboards from a multitude of devices, meaning that everyone within the business can connect with practical insights remotely - and share the load.

Once everyone is able to work with a data-driven mindset, you will catalyze the success of your business in ways you never thought possible. And when it comes to knowing how to analyze data, this kind of collaborative approach is essential.

16. Data analysis tools

In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. Here we leave you a small summary of four fundamental categories of data analysis tools for your organization.

  • Business Intelligence: BI tools allow you to process significant amounts of data from several sources in any format. Through this, you can not only analyze and monitor your data to extract relevant insights but also create interactive reports and dashboards to visualize your KPIs and use them for your company's good. datapine is an amazing online BI software that is focused on delivering powerful online analysis features that are accessible to beginner and advanced users. Like this, it offers a full-service solution that includes cutting-edge analysis of data, KPIs visualization, live dashboards, reporting, and artificial intelligence technologies to predict trends and minimize risk.
  • Statistical analysis: These tools are usually designed for scientists, statisticians, market researchers, and mathematicians, as they allow them to perform complex statistical analyses with methods like regression analysis, predictive analysis, and statistical modeling. A good tool to perform this type of analysis is R-Studio as it offers a powerful data modeling and hypothesis testing feature that can cover both academic and general data analysis. This tool is one of the favorite ones in the industry, due to its capability for data cleaning, data reduction, and performing advanced analysis with several statistical methods. Another relevant tool to mention is SPSS from IBM. The software offers advanced statistical analysis for users of all skill levels. Thanks to a vast library of machine learning algorithms, text analysis, and a hypothesis testing approach it can help your company find relevant insights to drive better decisions. SPSS also works as a cloud service that enables you to run it anywhere.
  • SQL Consoles: SQL is a programming language often used to handle structured data in relational databases. Tools like these are popular among data scientists as they are extremely effective in unlocking these databases' value. Undoubtedly, one of the most used SQL software in the market is MySQL Workbench . This tool offers several features such as a visual tool for database modeling and monitoring, complete SQL optimization, administration tools, and visual performance dashboards to keep track of KPIs.
  • Data Visualization: These tools are used to represent your data through charts, graphs, and maps that allow you to find patterns and trends in the data. datapine's already mentioned BI platform also offers a wealth of powerful online data visualization tools with several benefits. Some of them include: delivering compelling data-driven presentations to share with your entire company, the ability to see your data online with any device wherever you are, an interactive dashboard design feature that enables you to showcase your results in an interactive and understandable way, and to perform online self-service reports that can be used simultaneously with several other people to enhance team productivity.

17. Refine your process constantly 

Last is a step that might seem obvious to some people, but it can be easily ignored if you think you are done. Once you have extracted the needed results, you should always take a retrospective look at your project and think about what you can improve. As you saw throughout this long list of techniques, data analysis is a complex process that requires constant refinement. For this reason, you should always go one step further and keep improving. 

Quality Criteria For Data Analysis

So far we’ve covered a list of methods and techniques that should help you perform efficient data analysis. But how do you measure the quality and validity of your results? This is done with the help of some science quality criteria. Here we will go into a more theoretical area that is critical to understanding the fundamentals of statistical analysis in science. However, you should also be aware of these steps in a business context, as they will allow you to assess the quality of your results in the correct way. Let’s dig in. 

  • Internal validity: The results of a survey are internally valid if they measure what they are supposed to measure and thus provide credible results. In other words , internal validity measures the trustworthiness of the results and how they can be affected by factors such as the research design, operational definitions, how the variables are measured, and more. For instance, imagine you are doing an interview to ask people if they brush their teeth two times a day. While most of them will answer yes, you can still notice that their answers correspond to what is socially acceptable, which is to brush your teeth at least twice a day. In this case, you can’t be 100% sure if respondents actually brush their teeth twice a day or if they just say that they do, therefore, the internal validity of this interview is very low. 
  • External validity: Essentially, external validity refers to the extent to which the results of your research can be applied to a broader context. It basically aims to prove that the findings of a study can be applied in the real world. If the research can be applied to other settings, individuals, and times, then the external validity is high. 
  • Reliability : If your research is reliable, it means that it can be reproduced. If your measurement were repeated under the same conditions, it would produce similar results. This means that your measuring instrument consistently produces reliable results. For example, imagine a doctor building a symptoms questionnaire to detect a specific disease in a patient. Then, various other doctors use this questionnaire but end up diagnosing the same patient with a different condition. This means the questionnaire is not reliable in detecting the initial disease. Another important note here is that in order for your research to be reliable, it also needs to be objective. If the results of a study are the same, independent of who assesses them or interprets them, the study can be considered reliable. Let’s see the objectivity criteria in more detail now. 
  • Objectivity: In data science, objectivity means that the researcher needs to stay fully objective when it comes to its analysis. The results of a study need to be affected by objective criteria and not by the beliefs, personality, or values of the researcher. Objectivity needs to be ensured when you are gathering the data, for example, when interviewing individuals, the questions need to be asked in a way that doesn't influence the results. Paired with this, objectivity also needs to be thought of when interpreting the data. If different researchers reach the same conclusions, then the study is objective. For this last point, you can set predefined criteria to interpret the results to ensure all researchers follow the same steps. 

The discussed quality criteria cover mostly potential influences in a quantitative context. Analysis in qualitative research has by default additional subjective influences that must be controlled in a different way. Therefore, there are other quality criteria for this kind of research such as credibility, transferability, dependability, and confirmability. You can see each of them more in detail on this resource . 

Data Analysis Limitations & Barriers

Analyzing data is not an easy task. As you’ve seen throughout this post, there are many steps and techniques that you need to apply in order to extract useful information from your research. While a well-performed analysis can bring various benefits to your organization it doesn't come without limitations. In this section, we will discuss some of the main barriers you might encounter when conducting an analysis. Let’s see them more in detail. 

  • Lack of clear goals: No matter how good your data or analysis might be if you don’t have clear goals or a hypothesis the process might be worthless. While we mentioned some methods that don’t require a predefined hypothesis, it is always better to enter the analytical process with some clear guidelines of what you are expecting to get out of it, especially in a business context in which data is utilized to support important strategic decisions. 
  • Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves, intentionally or unintentionally, directing the results toward an outcome that they want. To avoid this, always question your assumptions and avoid confusing facts with opinions. You can also show your findings to a research partner or external person to confirm that your results are objective. 
  • Data representation: A fundamental part of the analytical procedure is the way you represent your data. You can use various graphs and charts to represent your findings, but not all of them will work for all purposes. Choosing the wrong visual can not only damage your analysis but can mislead your audience, therefore, it is important to understand when to use each type of data depending on your analytical goals. Our complete guide on the types of graphs and charts lists 20 different visuals with examples of when to use them. 
  • Flawed correlation : Misleading statistics can significantly damage your research. We’ve already pointed out a few interpretation issues previously in the post, but it is an important barrier that we can't avoid addressing here as well. Flawed correlations occur when two variables appear related to each other but they are not. Confusing correlations with causation can lead to a wrong interpretation of results which can lead to building wrong strategies and loss of resources, therefore, it is very important to identify the different interpretation mistakes and avoid them. 
  • Sample size: A very common barrier to a reliable and efficient analysis process is the sample size. In order for the results to be trustworthy, the sample size should be representative of what you are analyzing. For example, imagine you have a company of 1000 employees and you ask the question “do you like working here?” to 50 employees of which 49 say yes, which means 95%. Now, imagine you ask the same question to the 1000 employees and 950 say yes, which also means 95%. Saying that 95% of employees like working in the company when the sample size was only 50 is not a representative or trustworthy conclusion. The significance of the results is way more accurate when surveying a bigger sample size.   
  • Privacy concerns: In some cases, data collection can be subjected to privacy regulations. Businesses gather all kinds of information from their customers from purchasing behaviors to addresses and phone numbers. If this falls into the wrong hands due to a breach, it can affect the security and confidentiality of your clients. To avoid this issue, you need to collect only the data that is needed for your research and, if you are using sensitive facts, make it anonymous so customers are protected. The misuse of customer data can severely damage a business's reputation, so it is important to keep an eye on privacy. 
  • Lack of communication between teams : When it comes to performing data analysis on a business level, it is very likely that each department and team will have different goals and strategies. However, they are all working for the same common goal of helping the business run smoothly and keep growing. When teams are not connected and communicating with each other, it can directly affect the way general strategies are built. To avoid these issues, tools such as data dashboards enable teams to stay connected through data in a visually appealing way. 
  • Innumeracy : Businesses are working with data more and more every day. While there are many BI tools available to perform effective analysis, data literacy is still a constant barrier. Not all employees know how to apply analysis techniques or extract insights from them. To prevent this from happening, you can implement different training opportunities that will prepare every relevant user to deal with data. 

Key Data Analysis Skills

As you've learned throughout this lengthy guide, analyzing data is a complex task that requires a lot of knowledge and skills. That said, thanks to the rise of self-service tools the process is way more accessible and agile than it once was. Regardless, there are still some key skills that are valuable to have when working with data, we list the most important ones below.

  • Critical and statistical thinking: To successfully analyze data you need to be creative and think out of the box. Yes, that might sound like a weird statement considering that data is often tight to facts. However, a great level of critical thinking is required to uncover connections, come up with a valuable hypothesis, and extract conclusions that go a step further from the surface. This, of course, needs to be complemented by statistical thinking and an understanding of numbers. 
  • Data cleaning: Anyone who has ever worked with data before will tell you that the cleaning and preparation process accounts for 80% of a data analyst's work, therefore, the skill is fundamental. But not just that, not cleaning the data adequately can also significantly damage the analysis which can lead to poor decision-making in a business scenario. While there are multiple tools that automate the cleaning process and eliminate the possibility of human error, it is still a valuable skill to dominate. 
  • Data visualization: Visuals make the information easier to understand and analyze, not only for professional users but especially for non-technical ones. Having the necessary skills to not only choose the right chart type but know when to apply it correctly is key. This also means being able to design visually compelling charts that make the data exploration process more efficient. 
  • SQL: The Structured Query Language or SQL is a programming language used to communicate with databases. It is fundamental knowledge as it enables you to update, manipulate, and organize data from relational databases which are the most common databases used by companies. It is fairly easy to learn and one of the most valuable skills when it comes to data analysis. 
  • Communication skills: This is a skill that is especially valuable in a business environment. Being able to clearly communicate analytical outcomes to colleagues is incredibly important, especially when the information you are trying to convey is complex for non-technical people. This applies to in-person communication as well as written format, for example, when generating a dashboard or report. While this might be considered a “soft” skill compared to the other ones we mentioned, it should not be ignored as you most likely will need to share analytical findings with others no matter the context. 

Data Analysis In The Big Data Environment

Big data is invaluable to today’s businesses, and by using different methods for data analysis, it’s possible to view your data in a way that can help you turn insight into positive action.

To inspire your efforts and put the importance of big data into context, here are some insights that you should know:

  • By 2026 the industry of big data is expected to be worth approximately $273.4 billion.
  • 94% of enterprises say that analyzing data is important for their growth and digital transformation. 
  • Companies that exploit the full potential of their data can increase their operating margins by 60% .
  • We already told you the benefits of Artificial Intelligence through this article. This industry's financial impact is expected to grow up to $40 billion by 2025.

Data analysis concepts may come in many forms, but fundamentally, any solid methodology will help to make your business more streamlined, cohesive, insightful, and successful than ever before.

Key Takeaways From Data Analysis 

As we reach the end of our data analysis journey, we leave a small summary of the main methods and techniques to perform excellent analysis and grow your business.

17 Essential Types of Data Analysis Methods:

  • Cluster analysis
  • Cohort analysis
  • Regression analysis
  • Factor analysis
  • Neural Networks
  • Data Mining
  • Text analysis
  • Time series analysis
  • Decision trees
  • Conjoint analysis 
  • Correspondence Analysis
  • Multidimensional Scaling 
  • Content analysis 
  • Thematic analysis
  • Narrative analysis 
  • Grounded theory analysis
  • Discourse analysis 

Top 17 Data Analysis Techniques:

  • Collaborate your needs
  • Establish your questions
  • Data democratization
  • Think of data governance 
  • Clean your data
  • Set your KPIs
  • Omit useless data
  • Build a data management roadmap
  • Integrate technology
  • Answer your questions
  • Visualize your data
  • Interpretation of data
  • Consider autonomous technology
  • Build a narrative
  • Share the load
  • Data Analysis tools
  • Refine your process constantly 

We’ve pondered the data analysis definition and drilled down into the practical applications of data-centric analytics, and one thing is clear: by taking measures to arrange your data and making your metrics work for you, it’s possible to transform raw information into action - the kind of that will push your business to the next level.

Yes, good data analytics techniques result in enhanced business intelligence (BI). To help you understand this notion in more detail, read our exploration of business intelligence reporting .

And, if you’re ready to perform your own analysis, drill down into your facts and figures while interacting with your data on astonishing visuals, you can try our software for a free, 14-day trial .

what is data analysis in research study

Data Analytics Case Study Guide 2024

by Sam McKay, CFA | Data Analytics

what is data analysis in research study

Data analytics case studies reveal how businesses harness data for informed decisions and growth.

For aspiring data professionals, mastering the case study process will enhance your skills and increase your career prospects.

Sales Now On Advertisement

So, how do you approach a case study?

Use these steps to process a data analytics case study:

Understand the Problem: Grasp the core problem or question addressed in the case study.

Collect Relevant Data: Gather data from diverse sources, ensuring accuracy and completeness.

Apply Analytical Techniques: Use appropriate methods aligned with the problem statement.

Visualize Insights: Utilize visual aids to showcase patterns and key findings.

Derive Actionable Insights: Focus on deriving meaningful actions from the analysis.

This article will give you detailed steps to navigate a case study effectively and understand how it works in real-world situations.

By the end of the article, you will be better equipped to approach a data analytics case study, strengthening your analytical prowess and practical application skills.

Let’s dive in!

Data Analytics Case Study Guide

Table of Contents

What is a Data Analytics Case Study?

A data analytics case study is a real or hypothetical scenario where analytics techniques are applied to solve a specific problem or explore a particular question.

It’s a practical approach that uses data analytics methods, assisting in deciphering data for meaningful insights. This structured method helps individuals or organizations make sense of data effectively.

Additionally, it’s a way to learn by doing, where there’s no single right or wrong answer in how you analyze the data.

So, what are the components of a case study?

Key Components of a Data Analytics Case Study

Key Components of a Data Analytics Case Study

A data analytics case study comprises essential elements that structure the analytical journey:

Problem Context: A case study begins with a defined problem or question. It provides the context for the data analysis , setting the stage for exploration and investigation.

Data Collection and Sources: It involves gathering relevant data from various sources , ensuring data accuracy, completeness, and relevance to the problem at hand.

Analysis Techniques: Case studies employ different analytical methods, such as statistical analysis, machine learning algorithms, or visualization tools, to derive meaningful conclusions from the collected data.

Insights and Recommendations: The ultimate goal is to extract actionable insights from the analyzed data, offering recommendations or solutions that address the initial problem or question.

Now that you have a better understanding of what a data analytics case study is, let’s talk about why we need and use them.

Why Case Studies are Integral to Data Analytics

Why Case Studies are Integral to Data Analytics

Case studies serve as invaluable tools in the realm of data analytics, offering multifaceted benefits that bolster an analyst’s proficiency and impact:

Real-Life Insights and Skill Enhancement: Examining case studies provides practical, real-life examples that expand knowledge and refine skills. These examples offer insights into diverse scenarios, aiding in a data analyst’s growth and expertise development.

Validation and Refinement of Analyses: Case studies demonstrate the effectiveness of data-driven decisions across industries, providing validation for analytical approaches. They showcase how organizations benefit from data analytics. Also, this helps in refining one’s own methodologies

Showcasing Data Impact on Business Outcomes: These studies show how data analytics directly affects business results, like increasing revenue, reducing costs, or delivering other measurable advantages. Understanding these impacts helps articulate the value of data analytics to stakeholders and decision-makers.

Learning from Successes and Failures: By exploring a case study, analysts glean insights from others’ successes and failures, acquiring new strategies and best practices. This learning experience facilitates professional growth and the adoption of innovative approaches within their own data analytics work.

Including case studies in a data analyst’s toolkit helps gain more knowledge, improve skills, and understand how data analytics affects different industries.

Using these real-life examples boosts confidence and success, guiding analysts to make better and more impactful decisions in their organizations.

But not all case studies are the same.

Let’s talk about the different types.

Types of Data Analytics Case Studies

 Types of Data Analytics Case Studies

Data analytics encompasses various approaches tailored to different analytical goals:

Exploratory Case Study: These involve delving into new datasets to uncover hidden patterns and relationships, often without a predefined hypothesis. They aim to gain insights and generate hypotheses for further investigation.

Predictive Case Study: These utilize historical data to forecast future trends, behaviors, or outcomes. By applying predictive models, they help anticipate potential scenarios or developments.

Diagnostic Case Study: This type focuses on understanding the root causes or reasons behind specific events or trends observed in the data. It digs deep into the data to provide explanations for occurrences.

Prescriptive Case Study: This case study goes beyond analytics; it provides actionable recommendations or strategies derived from the analyzed data. They guide decision-making processes by suggesting optimal courses of action based on insights gained.

Each type has a specific role in using data to find important insights, helping in decision-making, and solving problems in various situations.

Regardless of the type of case study you encounter, here are some steps to help you process them.

Roadmap to Handling a Data Analysis Case Study

Roadmap to Handling a Data Analysis Case Study

Embarking on a data analytics case study requires a systematic approach, step-by-step, to derive valuable insights effectively.

Here are the steps to help you through the process:

Step 1: Understanding the Case Study Context: Immerse yourself in the intricacies of the case study. Delve into the industry context, understanding its nuances, challenges, and opportunities.

Data Mentor Advertisement

Identify the central problem or question the study aims to address. Clarify the objectives and expected outcomes, ensuring a clear understanding before diving into data analytics.

Step 2: Data Collection and Validation: Gather data from diverse sources relevant to the case study. Prioritize accuracy, completeness, and reliability during data collection. Conduct thorough validation processes to rectify inconsistencies, ensuring high-quality and trustworthy data for subsequent analysis.

Data Collection and Validation in case study

Step 3: Problem Definition and Scope: Define the problem statement precisely. Articulate the objectives and limitations that shape the scope of your analysis. Identify influential variables and constraints, providing a focused framework to guide your exploration.

Step 4: Exploratory Data Analysis (EDA): Leverage exploratory techniques to gain initial insights. Visualize data distributions, patterns, and correlations, fostering a deeper understanding of the dataset. These explorations serve as a foundation for more nuanced analysis.

Step 5: Data Preprocessing and Transformation: Cleanse and preprocess the data to eliminate noise, handle missing values, and ensure consistency. Transform data formats or scales as required, preparing the dataset for further analysis.

Data Preprocessing and Transformation in case study

Step 6: Data Modeling and Method Selection: Select analytical models aligning with the case study’s problem, employing statistical techniques, machine learning algorithms, or tailored predictive models.

In this phase, it’s important to develop data modeling skills. This helps create visuals of complex systems using organized data, which helps solve business problems more effectively.

Understand key data modeling concepts, utilize essential tools like SQL for database interaction, and practice building models from real-world scenarios.

Furthermore, strengthen data cleaning skills for accurate datasets, and stay updated with industry trends to ensure relevance.

Data Modeling and Method Selection in case study

Step 7: Model Evaluation and Refinement: Evaluate the performance of applied models rigorously. Iterate and refine models to enhance accuracy and reliability, ensuring alignment with the objectives and expected outcomes.

Step 8: Deriving Insights and Recommendations: Extract actionable insights from the analyzed data. Develop well-structured recommendations or solutions based on the insights uncovered, addressing the core problem or question effectively.

Step 9: Communicating Results Effectively: Present findings, insights, and recommendations clearly and concisely. Utilize visualizations and storytelling techniques to convey complex information compellingly, ensuring comprehension by stakeholders.

Communicating Results Effectively

Step 10: Reflection and Iteration: Reflect on the entire analysis process and outcomes. Identify potential improvements and lessons learned. Embrace an iterative approach, refining methodologies for continuous enhancement and future analyses.

This step-by-step roadmap provides a structured framework for thorough and effective handling of a data analytics case study.

Now, after handling data analytics comes a crucial step; presenting the case study.

Presenting Your Data Analytics Case Study

Presenting Your Data Analytics Case Study

Presenting a data analytics case study is a vital part of the process. When presenting your case study, clarity and organization are paramount.

To achieve this, follow these key steps:

Structuring Your Case Study: Start by outlining relevant and accurate main points. Ensure these points align with the problem addressed and the methodologies used in your analysis.

Crafting a Narrative with Data: Start with a brief overview of the issue, then explain your method and steps, covering data collection, cleaning, stats, and advanced modeling.

Visual Representation for Clarity: Utilize various visual aids—tables, graphs, and charts—to illustrate patterns, trends, and insights. Ensure these visuals are easy to comprehend and seamlessly support your narrative.

Visual Representation for Clarity

Highlighting Key Information: Use bullet points to emphasize essential information, maintaining clarity and allowing the audience to grasp key takeaways effortlessly. Bold key terms or phrases to draw attention and reinforce important points.

Addressing Audience Queries: Anticipate and be ready to answer audience questions regarding methods, assumptions, and results. Demonstrating a profound understanding of your analysis instills confidence in your work.

Integrity and Confidence in Delivery: Maintain a neutral tone and avoid exaggerated claims about findings. Present your case study with integrity, clarity, and confidence to ensure the audience appreciates and comprehends the significance of your work.

Integrity and Confidence in Delivery

By organizing your presentation well, telling a clear story through your analysis, and using visuals wisely, you can effectively share your data analytics case study.

This method helps people understand better, stay engaged, and draw valuable conclusions from your work.

We hope by now, you are feeling very confident processing a case study. But with any process, there are challenges you may encounter.

EDNA AI Advertisement

Key Challenges in Data Analytics Case Studies

Key Challenges in Data Analytics Case Studies

A data analytics case study can present various hurdles that necessitate strategic approaches for successful navigation:

Challenge 1: Data Quality and Consistency

Challenge: Inconsistent or poor-quality data can impede analysis, leading to erroneous insights and flawed conclusions.

Solution: Implement rigorous data validation processes, ensuring accuracy, completeness, and reliability. Employ data cleansing techniques to rectify inconsistencies and enhance overall data quality.

Challenge 2: Complexity and Scale of Data

Challenge: Managing vast volumes of data with diverse formats and complexities poses analytical challenges.

Solution: Utilize scalable data processing frameworks and tools capable of handling diverse data types. Implement efficient data storage and retrieval systems to manage large-scale datasets effectively.

Challenge 3: Interpretation and Contextual Understanding

Challenge: Interpreting data without contextual understanding or domain expertise can lead to misinterpretations.

Solution: Collaborate with domain experts to contextualize data and derive relevant insights. Invest in understanding the nuances of the industry or domain under analysis to ensure accurate interpretations.

Interpretation and Contextual Understanding

Challenge 4: Privacy and Ethical Concerns

Challenge: Balancing data access for analysis while respecting privacy and ethical boundaries poses a challenge.

Solution: Implement robust data governance frameworks that prioritize data privacy and ethical considerations. Ensure compliance with regulatory standards and ethical guidelines throughout the analysis process.

Challenge 5: Resource Limitations and Time Constraints

Challenge: Limited resources and time constraints hinder comprehensive analysis and exhaustive data exploration.

Solution: Prioritize key objectives and allocate resources efficiently. Employ agile methodologies to iteratively analyze and derive insights, focusing on the most impactful aspects within the given timeframe.

Recognizing these challenges is key; it helps data analysts adopt proactive strategies to mitigate obstacles. This enhances the effectiveness and reliability of insights derived from a data analytics case study.

Now, let’s talk about the best software tools you should use when working with case studies.

Top 5 Software Tools for Case Studies

Top Software Tools for Case Studies

In the realm of case studies within data analytics, leveraging the right software tools is essential.

Here are some top-notch options:

Tableau : Renowned for its data visualization prowess, Tableau transforms raw data into interactive, visually compelling representations, ideal for presenting insights within a case study.

Python and R Libraries: These flexible programming languages provide many tools for handling data, doing statistics, and working with machine learning, meeting various needs in case studies.

Microsoft Excel : A staple tool for data analytics, Excel provides a user-friendly interface for basic analytics, making it useful for initial data exploration in a case study.

SQL Databases : Structured Query Language (SQL) databases assist in managing and querying large datasets, essential for organizing case study data effectively.

Statistical Software (e.g., SPSS , SAS ): Specialized statistical software enables in-depth statistical analysis, aiding in deriving precise insights from case study data.

Choosing the best mix of these tools, tailored to each case study’s needs, greatly boosts analytical abilities and results in data analytics.

Final Thoughts

Case studies in data analytics are helpful guides. They give real-world insights, improve skills, and show how data-driven decisions work.

Using case studies helps analysts learn, be creative, and make essential decisions confidently in their data work.

Check out our latest clip below to further your learning!

Frequently Asked Questions

What are the key steps to analyzing a data analytics case study.

When analyzing a case study, you should follow these steps:

Clarify the problem : Ensure you thoroughly understand the problem statement and the scope of the analysis.

Make assumptions : Define your assumptions to establish a feasible framework for analyzing the case.

Gather context : Acquire relevant information and context to support your analysis.

Analyze the data : Perform calculations, create visualizations, and conduct statistical analysis on the data.

Provide insights : Draw conclusions and develop actionable insights based on your analysis.

How can you effectively interpret results during a data scientist case study job interview?

During your next data science interview, interpret case study results succinctly and clearly. Utilize visual aids and numerical data to bolster your explanations, ensuring comprehension.

Frame the results in an audience-friendly manner, emphasizing relevance. Concentrate on deriving insights and actionable steps from the outcomes.

How do you showcase your data analyst skills in a project?

To demonstrate your skills effectively, consider these essential steps. Begin by selecting a problem that allows you to exhibit your capacity to handle real-world challenges through analysis.

Methodically document each phase, encompassing data cleaning, visualization, statistical analysis, and the interpretation of findings.

Utilize descriptive analysis techniques and effectively communicate your insights using clear visual aids and straightforward language. Ensure your project code is well-structured, with detailed comments and documentation, showcasing your proficiency in handling data in an organized manner.

Lastly, emphasize your expertise in SQL queries, programming languages, and various analytics tools throughout the project. These steps collectively highlight your competence and proficiency as a skilled data analyst, demonstrating your capabilities within the project.

Can you provide an example of a successful data analytics project using key metrics?

A prime illustration is utilizing analytics in healthcare to forecast hospital readmissions. Analysts leverage electronic health records, patient demographics, and clinical data to identify high-risk individuals.

Implementing preventive measures based on these key metrics helps curtail readmission rates, enhancing patient outcomes and cutting healthcare expenses.

This demonstrates how data analytics, driven by metrics, effectively tackles real-world challenges, yielding impactful solutions.

Why would a company invest in data analytics?

Companies invest in data analytics to gain valuable insights, enabling informed decision-making and strategic planning. This investment helps optimize operations, understand customer behavior, and stay competitive in their industry.

Ultimately, leveraging data analytics empowers companies to make smarter, data-driven choices, leading to enhanced efficiency, innovation, and growth.

author avatar

Related Posts

4 Types of Data Analytics: Explained

4 Types of Data Analytics: Explained

Data Analytics

In a world full of data, data analytics is the heart and soul of an operation. It's what transforms raw...

Data Analytics Outsourcing: Pros and Cons Explained

Data Analytics Outsourcing: Pros and Cons Explained

In today's data-driven world, businesses are constantly swimming in a sea of information, seeking the...

What Does a Data Analyst Do on a Daily Basis?

What Does a Data Analyst Do on a Daily Basis?

In the digital age, data plays a significant role in helping organizations make informed decisions and...

what is data analysis in research study

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Violent crime is a key midterm voting issue, but what does the data say?

Political candidates around the United States have released thousands of ads focusing on violent crime this year, and most registered voters see the issue as very important in the Nov. 8 midterm elections. But official statistics from the federal government paint a complicated picture when it comes to recent changes in the U.S. violent crime rate.

With Election Day approaching, here’s a closer look at voter attitudes about violent crime, as well as an analysis of the nation’s violent crime rate itself. All findings are drawn from Center surveys and the federal government’s two primary measures of crime : a large annual survey from the Bureau of Justice Statistics (BJS) and an annual study of local police data from the Federal Bureau of Investigation (FBI).

This Pew Research Center analysis examines the importance of violent crime as a voting issue in this year’s congressional elections and provides the latest available government data on the nation’s violent crime rate in recent years.

The public opinion data in this analysis is based on a Center survey of 5,098 U.S. adults, including 3,993 registered voters, conducted Oct. 10-16, 2022. Everyone who took part is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way, nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology . Here are the questions used in the survey , along with responses, and its methodology .

The government crime statistics cited here come from the National Crime Victimization Survey , published by the Bureau of Justice Statistics, and the National Incident-Based Reporting System , published by the Federal Bureau of Investigation. For both studies, 2021 is the most recent year with available data.

Around six-in-ten registered voters (61%) say violent crime is very important when making their decision about who to vote for in this year’s congressional elections. Violent crime ranks alongside energy policy and health care in perceived importance as a midterm issue, but far below the economy , according to the Center’s October survey.

Republican voters are much more likely than Democratic voters to see violent crime as a key voting issue this year. Roughly three-quarters of Republican and GOP-leaning registered voters (73%) say violent crime is very important to their vote, compared with around half of Democratic or Democratic-leaning registered voters (49%).

Conservative Republican voters are especially focused on the issue: About eight-in-ten (77%) see violent crime as very important to their vote, compared with 63% of moderate or liberal Republican voters, 65% of moderate or conservative Democratic voters and only about a third of liberal Democratic voters (34%).

Older voters are far more likely than younger ones to see violent crime as a key election issue. Three-quarters of registered voters ages 65 and older say violent crime is a very important voting issue for them this year, compared with fewer than half of voters under 30 (44%).

A chart showing that about eight-in-ten Black U.S. voters say violent crime is very important to their 2022 midterm vote.

There are other demographic differences, too. When it comes to education, for example, voters without a college degree are substantially more likely than voters who have graduated from college to say violent crime is very important to their midterm vote.

Black voters are particularly likely to say violent crime is a very important midterm issue. Black Americans have consistently been more likely than other racial and ethnic groups to express concern about violent crime, and that remains the case this year.

Some 81% of Black registered voters say violent crime is very important to their midterm vote, compared with 65% of Hispanic and 56% of White voters. (There were not enough Asian American voters in the Center’s survey to analyze independently.)

Differences by race are especially pronounced among Democratic registered voters. While 82% of Black Democratic voters say violent crime is very important to their vote this year, only a third of White Democratic voters say the same.

Annual government surveys from the Bureau of Justice Statistics show no recent increase in the U.S. violent crime rate. In 2021, the most recent year with available data , there were 16.5 violent crimes for every 1,000 Americans ages 12 and older. That was statistically unchanged from the year before, below pre-pandemic levels and far below the rates recorded in the 1990s, according to the National Crime Victimization Survey .

A chart showing that federal surveys show no increase in the U.S. violent crime rate since the start of the pandemic.

For each of the four violent crime types tracked in the survey – simple assault, aggravated assault, robbery and rape/sexual assault – there was no statistically significant increase either in 2020 or 2021.

The National Crime Victimization Survey is fielded each year among approximately 240,000 Americans ages 12 and older and asks them to describe any recent experiences they have had with crime. The survey counts threatened, attempted and completed crimes, whether or not they were reported to police. Notably, it does not track the most serious form of violent crime, murder, because it is based on interviews with surviving crime victims.

The FBI also estimates that there was no increase in the violent crime rate in 2021. The other major government study of crime in the U.S., the National Incident-Based Reporting System from the Federal Bureau of Investigation, uses a different methodology from the BJS survey and only tracks crimes that are reported to police.

The most recent version of the FBI study shows no rise in the national violent crime rate between 2020 and 2021. That said, there is considerable uncertainty around the FBI’s figures for 2021 because of a transition to a new data collection system . The FBI reported an increase in the violent crime rate between 2019 and 2020, when the previous data collection system was still in place.

The FBI estimates the violent crime rate by tracking four offenses that only partly overlap with those tracked by the National Crime Victimization Survey: murder and non-negligent manslaughter, rape, aggravated assault and robbery. It relies on data voluntarily submitted by thousands of local police departments, but many law enforcement agencies do not participate.

In the latest FBI study, around four-in-ten police departments – including large ones such as the New York Police Department – did not submit data, so the FBI estimated data for those areas. The high nonparticipation rate is at least partly due to the new reporting system, which asks local police departments to submit far more information about each crime than in the past. The new reporting system also makes it difficult to compare recent data with data from past years.

A chart showing that U.S. murder rate rose sharply in 2020, but remains below previous highs.

While the total U.S. violent crime rate does not appear to have increased recently, the most serious form of violent crime – murder – has risen significantly during the pandemic. Both the FBI and the Centers for Disease Control and Prevention (CDC) reported a roughly 30% increase in the U.S. murder rate between 2019 and 2020, marking one of the largest year-over-year increases ever recorded. The FBI’s latest data , as well as provisional data from the CDC , suggest that murders continued to rise in 2021.

Despite the increase in the nation’s murder rate in 2020, the rate remained well below past highs, and murder remains the least common type of violent crime overall.

There are many reasons why voters might be concerned about violent crime, even if official statistics do not show an increase in the nation’s total violent crime rate. One important consideration is that official statistics for 2022 are not yet available. Voters might be reacting to an increase in violent crime that has yet to surface in annual government reports. Some estimates from nongovernmental organizations do point to an increase in certain kinds of violent crime in 2022: For example, the Major Cities Chiefs Association, an organization of police executives representing large cities, estimates that robberies and aggravated assaults increased in the first six months of this year compared with the same period the year before.

Voters also might be thinking of specific kinds of violent crime – such as murder, which has risen substantially – rather than the total violent crime rate, which is an aggregate measure that includes several different crime types, such as assault and robbery.

Some voters could be reacting to conditions in their own communities rather than at the national level. Violent crime is a heavily localized phenomenon , and the national violent crime rate may not reflect conditions in Americans’ own neighborhoods.

Media coverage could affect voters’ perceptions about violent crime , too, as could public statements from political candidates and elected officials. Republican candidates, in particular, have emphasized crime on the campaign trail this year.

More broadly, the public often tends to believe that crime is up, even when the data shows it is down. In 22 of 26 Gallup surveys conducted since 1993, at least six-in-ten U.S. adults said there was more crime nationally than there was the year before, despite the general downward trend in the national violent crime rate during most of that period.

  • Criminal Justice
  • Election 2022

John Gramlich's photo

John Gramlich is an associate director at Pew Research Center

What the data says about crime in the U.S.

8 facts about black lives matter, #blacklivesmatter turns 10, support for the black lives matter movement has dropped considerably from its peak in 2020, fewer than 1% of federal criminal defendants were acquitted in 2022, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

  • Open access
  • Published: 22 April 2024

Training nurses in an international emergency medical team using a serious role-playing game: a retrospective comparative analysis

  • Hai Hu 1 , 2 , 3   na1 ,
  • Xiaoqin Lai 2 , 4 , 5   na1 &
  • Longping Yan 6 , 7 , 8  

BMC Medical Education volume  24 , Article number:  432 ( 2024 ) Cite this article

64 Accesses

Metrics details

Although game-based applications have been used in disaster medicine education, no serious computer games have been designed specifically for training these nurses in an IEMT setting. To address this need, we developed a serious computer game called the IEMTtraining game. In this game, players assume the roles of IEMT nurses, assess patient injuries in a virtual environment, and provide suitable treatment options.

The design of this study is a retrospective comparative analysis. The research was conducted with 209 nurses in a hospital. The data collection process of this study was conducted at the 2019-2020 academic year. A retrospective comparative analysis was conducted on the pre-, post-, and final test scores of nurses in the IEMT. Additionally, a survey questionnaire was distributed to trainees to gather insights into teaching methods that were subsequently analyzed.

There was a significant difference in the overall test scores between the two groups, with the game group demonstrating superior performance compared to the control group (odds ratio = 1.363, p value = 0.010). The survey results indicated that the game group exhibited higher learning motivation scores and lower cognitive load compared with the lecture group.

Conclusions

The IEMT training game developed by the instructor team is a promising and effective method for training nurses in disaster rescue within IEMTs. The game equips the trainees with the necessary skills and knowledge to respond effectively to emergencies. It is easily comprehended, enhances knowledge retention and motivation to learn, and reduces cognitive load.

Peer Review reports

Since the beginning of the twenty-first century, the deployment of international emergency medical teams in disaster-stricken regions has increased world wide [ 1 ]. To enhance the efficiency of these teams, the World Health Organization (WHO) has introduced the International Emergency Medical Team (IEMT) initiative to guarantee their competence. Adequate education and training play a vital role in achieving this objective [ 2 ].

Nurses play a vital role as IEMTs by providing essential medical care and support to populations affected by disasters and emergencies. Training newly joined nurses is an integral part of IEMT training.

Typical training methods include lectures, field-simulation exercises, and tabletop exercises [ 3 , 4 , 5 ]. However, lectures, despite requiring fewer teaching resources, are often perceived as boring and abstract. This may not be the most ideal method for training newly joined nurses in the complexities of international medical responses. However, simulation field exercises can be effective in mastering the knowledge and skills of disaster medicine responsiveness. However, they come with significant costs and requirements, such as extended instructional periods, additional teachers or instructors, and thorough preparation. These high costs make it challenging to organize simulation exercises repeatedly, making them less ideal for training newly joined nurses [ 6 ].

Moreover, classic tabletop exercises that use simple props, such as cards in a classroom setting, have limitations. The rules of these exercises are typically simple, which makes it challenging to simulate complex disaster scenarios. In addition, these exercises cannot replicate real-life situations, making them too abstract for newly joined nurses to fully grasp [ 7 , 8 ].

Recently, game-based learning has gained increasing attention as an interactive teaching method [ 9 , 10 ]. Previous studies have validated the efficacy of game-based mobile applications [ 11 , 12 ]. Serious games that align with curricular objectives have shown potential to facilitate more effective learner-centered educational experiences for trainees [ 13 , 14 ]. Although game-based applications have been used in disaster medicine education, no serious computer games have been designed specifically for training newly joined nurses in an international IEMT setting.

Our team is an internationally certified IEMT organization verified by the WHO, underscoring the importance of providing training for newly joined nurses in international medical responses. To address this need, we organized training courses for them. As part of the training, we incorporated a serious computer game called the IEMTtraining game. In this game, players assume the roles of IEMT nurses, assess patient injuries in a virtual environment, and provide suitable treatment options. This study aims to investigate the effectiveness of the IEMTtraining game. To the best of our knowledge, this is the first serious game specifically designed to train newly joined nurses in an IEMT setting.

The IEMTtraining game was subsequently applied to the training course for newly joined nurses, and this study aimed to investigate its effectiveness. To the best of our knowledge, this is the first serious game specifically designedto train newly joined nurses in an IEMT setting.

Study design

This study was conducted using data from the training records database of participants who had completed the training. The database includes comprehensive demographic information, exam scores, and detailed information from post-training questionnaires for all trainees. We reviewed the training scores and questionnaires of participants who took part in the training from Autumn 2019 to Spring 2020.

The local Institutional Review Committee approved the study and waived the requirement for informed consent due to the study design. The study complied with the international ethical guidelines for human research, such as the Declaration of Helsinki. The accessed data were anonymized.

Participants

A total of 209 newly joined nurses needed to participate in the training. Due to limitations in the size of the training venue, the trainees had to be divided into two groups for the training. All trainees were required to choose a group and register online. The training team provided the schedule and training topic for the two training sessions to all trainees before the training commenced. Each trainee had the opportunity to sign up based on their individual circumstances. Furthermore, the training team set a maximum limit of 110 trainees for each group, considering the dimensions of the training venue. Trainees were assigned on a first-come-first-served basis. In the event that a group reached its capacity, any unregistered trainees would be automatically assigned to another group.

In the fall of 2019, 103 newly joined nurses opted for the lecture training course (lecture group). In this group, instructors solely used the traditional teaching methods of lectures and demonstrations. The remaining 106 newly joined nurses underwent game-based training (game group). In addition to the traditional lectures and demonstrations, the instructor incorporated an IEMTtraining game to enhance the training experience in the game group.

The IEMTTraining game

The IEMTtraining game, a role-playing game, was implemented using the RPG Maker MV Version1.6.1 (Kadokawa Corporation, Tokyo, Tokyo Metropolis, Japan). Players assumed the roles of rescuers in a fictional setting of an earthquake (Part1 of Supplemental Digital Content ).

The storyline revolves around an earthquake scenario, with the main character being an IEMT nurse. Within the game simulation, there were 1000 patients in the scenario. The objective for each player was to treat as many patients as possible to earn higher experience points compared to other players. In addition, within the game scene, multiple nonplayer characters played the role of injured patients. The players navigate the movements of the main character using a computer mouse. Upon encountering injured persons, the player can view their injury information by clicking on them and selecting the triage tags. The player can then select the necessary medical supplies from the kit to provide treatment. Additionally, the player is required to act according to the minimum standards for IEMTs, such as registration in the IEMT coordination cell and reporting of injury information following the minimum data set (MDS) designed by the WHO [ 15 , 16 ]. This portion of the training content imposes uniform requirements for all IEMT members, hence it is necessary for IEMT nurses to learn it. All correct choices result in the accumulation of experience points. Game duration can be set by the instructor and the player with the highest experience points at the end of the game.

Measurement

We have collected the test scores of the trainees in our training database to explore their knowledge mastery. Additionally, we have collected post-training questionnaire data from the trainees to investigate their learning motivation, cognitive load, and technology acceptance.

Pre-test, post-test, and final test

All trainees were tested on three separate occasions: (1) a “pre-test”before the educational intervention, (2) a “post-test”following the intervention, and (3) a “final test”at the end of the term (sixweeks after the intervention). Each test comprised 20 multiple-choice questions (0.5 points per item) assessing the trainees’ mastery of crucial points in their knowledge and decision-making. The higher the score, the better the grade will be.

Questionnaires

The questionnaires used in this study can be found in Part 2 of the Supplemental Digital Content .

The learning motivation questionnaire used in this study was based on the measure developed by Hwang and Chang [ 17 ]. It comprises seven items rated on a six-point scale. The reliability of the questionnaire, as indicated by Cronbach’s alpha, was 0.79.

The cognitive load questionnaire was adapted from the questionnaire developed by Hwang et al [ 18 ]. It consisted of five items for assessing “mental load” and three items for evaluating “mental effort.” The items were rated using a six-point Likert scale. The Cronbach’s alpha values for the two parts of the questionnaire were 0.86 and 0.85, respectively.

The technology acceptance questionnaire, which was only administered to the game group, as it specifically focused on novel teaching techniques and lacked relevance tothe lecture group, was derived from the measurement instrument developed by Chu et al [ 19 ]. It comprised seven items for measuring “perceived ease of use” and six items for assessing “perceived usefulness.” The items were rated on a six-point Likert scale. The Cronbach’s alpha values for the two parts of the questionnaire were 0.94 and 0.95, respectively.

The lecture group received 4 hours of traditional lectures. Additionally, 1 week before the lecture, the trainees were provided with a series of references related to the topic and were required to preview the content before the class. A pre-test was conducted before the lecture to assess the trainees’ prior knowledge, followed by a post-test immediately after the lecture, and a final test 6 weeks after training.

In the game group, the delivery and requirements for references were the same as those in the lecture group. However, the training format differed. The game group received a half-hour lecture introducinggeneral principles, followed by 3 hours of gameplay. The last halfhour was dedicated to summarizing the course and addressing questions or concerns. Similar to the lecture group, the trainees in this group also completed pre-, post-, and final tests. Additionally, a brief survey ofthe teaching methods was conducted at the end of the final test (see Fig.  1 ).

figure 1

General overview of the teaching procedure. Figure Legend: The diagram shows the teaching and testing processes for the two groups of trainees. Q&A: questions and answers

Data analysis

All data were analyzed using IBM SPSS Statistics (version 20.0;IBM Inc., Armonk, NY, USA). Only the trainees who participated in all three tests were included in the analysis. In total, there were 209 trainees, but 11 individuals (6 from the lecture group and 5 from the game group) were excluded due to incomplete data. Therefore, the data of 198 trainees were ultimately included in the analysis.

In addition, measurement data with a normal distribution were described as mean (standard deviation, SD). In contrast, measurement data with non-normal distributions were expressed as median [first quartile, third quartile]. Furthermore, enumeration data were constructed using composition ratios.

Moreover, a generalized estimating equation (GEE) was employed to compare the groups’ pre-, post-, and final test scores. The Mann–Whitney U test was used to compare the questionnaire scores between the two groups. The statistical significance was set at a level of 0.05.

Among the data included in the analysis, 97 (48.99%) participants were in the lecture group, and 101 (51.01%)were in the game group.

The number of male trainees in the lecture and game groups was 30 (30.93%) and 33 (32.67%), respectively. The mean age of participants in the lecture group was 27.44 ± 4.31 years, whereas that of the game group was 28.05 ± 4.29 years. There were no significant differences in sex or age (Table  1 ). Regarding the test scores, no significant differences were found between the two groups in the pre- and post-tests. However, a significant difference was observed in the final test scores conducted 6 weeks later (Table 1 ).

According to the GEE analysis, the overall scores for the post-test and final test were higher compared to the pre-test scores. Additionally, there was a significant difference in the overall test scores between the two groups, with the game group demonstrating superior performance compared to the control group (odds ratio = 1.363, p value = 0.010). Further details of the GEE results can be found in Part 3 of the supplementary materials .

Table  2 presents the results of the questionnaire ratings for the two groups. The median [first quartile, third quartile] of the learning motivation questionnaire ratings were 4 [3, 4] for the lecture group and 5 [4, 5] for the game group. There were significant differences between the questionnaire ratings of the two groups ( p  < 0.001), indicating that the game group had higher learning motivation for the learning activity.

The median [first quartile, third quartile] of the overall cognitive load ratings were 3 [3, 4] and 4 [4, 5] for the game and lecture groups, respectively. There was a significant difference between the cognitive load ratings of the two groups ( p  < 0.001).

This study further compared two aspects of cognitive load: mental load and mental effort. The median [first quartile, third quartile] for the mental effort dimension were 3 [2, 3] and 4 [4, 5] for the game and lecture groups, respectively (p < 0.001). For mental load, the median [first quartile, third quartile] were 4 [3, 4] and 4 [3, 4] for the game and lecture groups, respectively. There was no significant difference in the mental load ratings between the two groups ( p  = 0.539).

To better understand the trainees’ perceptions of the use of the serious game, this study collected the feedback of the trainees in the game group regarding “perceived usefulness” and “perceived ease of use,” as shown in Table 2 . Most trainees provided positive feedback on the two dimensions of the serious game.

To the best of our knowledge, this IEMT training game is the first serious game intended for newly joined nurses of IEMTs. Therefore, this study presents an initial investigation into the applicability of serious games.

Both lectures and serious games improved post-class test scores to the same level, consistent with previous studies. Krishnan et al. found that an educational game on hepatitis significantly improved knowledge scores [ 20 ]. Additionally, our study showed higher knowledge retention in the game group after 6 weeks, in line with previous studies on serious games. In a study on sexually transmitted diseases, game-based instruction was found to improve knowledge retention for resident physicians compared to traditional teaching methods [ 21 ]. The IEMTtraining game, designed as a role-playing game, is more likely to enhance knowledge retention in newly joined nurses in the long term. Therefore, serious games should be included in the teaching of IEMT training.

This study demonstrated improved learning motivation in the game group, consistent with previous research indicating that game-based learning enhances motivation due to the enjoyable and challenging nature of the games [ 22 , 23 ]. A systematic review by Allan et al. further supports the positive impact of game-based learning tools on the motivation, attitudes, and engagement of healthcare trainees [ 24 ].

As serious games are a novel learning experience for trainees, it is worth investigating the cognitive load they experience. Our study found that serious games effectively reduce trainees’ overall cognitive load, particularly in terms of lower mental effort. Mental effort refers to the cognitive capacity used to handle task demands, reflecting the cognitive load associated with organizing and presenting learning content, as well as guiding student learning strategies [ 25 , 26 ]. This reduction in cognitive load is a significant advantage of serious gaming, as it helps learners better understand and organize their knowledge. However, our study did not find a significant difference in mental load between the two groups. Mental load considers the interaction between task and subject characteristics, based on students’ understanding of tasks and subject characteristics [ 18 ]. This finding is intriguing as it aligns with similar observations in game-based education for elementary and secondary school students [ 27 ], but is the first mention of game-based education in academic papers related to nursing training.

In our survey of the game group participants, we found that their feedback regarding the perceived ease of use and usefulness of the game was overwhelmingly positive. This indicates that the designed game was helpful to learners during the learning process. Moreover, the game’s mechanics were easily understood by the trainees without requiring them to investsignificant time and effort to understand the game rules and controls.

This study had some limitations. First, this retrospective observational study may have been susceptible to sampling bias due to the non-random grouping of trainees. It only reviewed existing data from the training database, and future research should be conducted to validate our findings through prospective studies. Therefore, randomized controlled trials are required. Second, the serious game is currently available only in China. We are currently developing an English version to better align with the training requirements of international IEMT nurses. Third, the development of such serious gamescan be time-consuming. To address this problem, we propose a meta-model to help researchers and instructors select appropriate game development models to implement effective serious games.

An IEMT training game for newly joined nurses is a highly promising training method. Its potential lies in its ability to offer engaging and interactive learning experiences, thereby effectively enhancing the training process. Furthermore, the game improved knowledge retention, increased motivation to learn, and reduced cognitive load. In addition, the game’s mechanics are easily understood by trainees, which further enhances its effectiveness as a training instrument.

Availability of data and materials

Availability of data and materials can be ensured through direct contact with the author. If you require access to specific data or materials mentioned in a study or research article, reaching out to the author is the best way to obtain them. By contacting the author directly, you can inquire about the availability of the desired data and materials, as well as any necessary procedures or restrictions for accessing them.

Authors are willing to provide data and materials to interested parties. They understand the importance of transparency and the positive impact of data sharing on scientific progress. Whether it is raw data, experimental protocols, or unique materials used in the study, authors can provide valuable insights and resources to support further investigations or replications.

To contact the author, one can refer to the email address provided in the article.

Abbreviations

World Health Organization

International Emergency Medical Team

Minimum Data Set

Generalized estimating eq.

Standard deviation

World Health Organization.Classification and minimum standards for emergency medical teams. https://apps.who.int/iris/rest/bitstreams/1351888/retrieve . Published 2021. Accessed May 6, 2023.

World Health Organization. Classification and Minimum Standards for Foreign Medical Teams in Sudden Onset Disasters. https://cdn.who.int/media/docs/default-source/documents/publications/classification-and-minimum-standards-for-foreign-medical-teams-in-suddent-onset-disasters65829584-c349-4f98-b828-f2ffff4fe089.pdf?sfvrsn=43a8b2f1_1&download=true . Published 2013. Accessed May 6, 2023.

Brunero S, Dunn S, Lamont S. Development and effectiveness of tabletop exercises in preparing health practitioners in violence prevention management: a sequential explanatory mixed methods study. Nurse Educ Today. 2021;103:104976. https://doi.org/10.1016/j.nedt.2021.104976 .

Article   Google Scholar  

Sena A, Forde F, Yu C, Sule H, Masters MM. Disaster preparedness training for emergency medicine residents using a tabletop exercise. Med Ed PORTAL. 2021;17:11119. https://doi.org/10.15766/mep_2374-8265.11119 .

Moss R, Gaarder C. Exercising for mass casualty preparedness. Br J Anaesth. 2022;128(2):e67–70. https://doi.org/10.1016/j.bja.2021.10.016 .

Hu H, Liu Z, Li H. Teaching disaster medicine with a novel game-based computer application: a case study at Sichuan University. Disaster Med Public Health Prep. 2022;16(2):548–54. https://doi.org/10.1017/dmp.2020.309 .

Chi CH, Chao WH, Chuang CC, Tsai MC, Tsai LM. Emergency medical technicians' disaster training by tabletop exercise. Am J Emerg Med. 2001;19(5):433–6. https://doi.org/10.1053/ajem.2001.24467 .

Hu H, Lai X, Li H, et al. Teaching disaster evacuation management education to nursing students using virtual reality Mobile game-based learning. Comput Inform Nurs. 2022;40(10):705–10. https://doi.org/10.1097/CIN.0000000000000856 .

van Gaalen AEJ, Brouwer J, Schönrock-Adema J, et al. Gamification of health professions education: a systematic review. Adv Health Sci Educ Theory Pract. 2021;26(2):683–711. https://doi.org/10.1007/s10459-020-10000-3 .

Adjedj J, Ducrocq G, Bouleti C, et al. Medical student evaluation with a serious game compared to multiple choice questions assessment. JMIR Serious Games. 2017;5(2):e11. https://doi.org/10.2196/games.7033 .

Hu H, Xiao Y, Li H. The effectiveness of a serious game versus online lectures for improving medical Students' coronavirus disease 2019 knowledge. Games Health J. 2021;10(2):139–44. https://doi.org/10.1089/g4h.2020.0140.E .

Pimentel J, Arias A, Ramírez D, et al. Game-based learning interventions to Foster cross-cultural care training: a scoping review. Games Health J. 2020;9(3):164–81. https://doi.org/10.1089/g4h.2019.0078 .

Hu H, Lai X, Yan L. Improving nursing Students' COVID-19 knowledge using a serious game. Comput Inform Nurs. 2021;40(4):285–9. https://doi.org/10.1097/CIN.0000000000000857 .

Menin A, Torchelsen R, Nedel L. An analysis of VR technology used in immersive simulations with a serious game perspective. IEEE Comput Graph Appl. 2018;38(2):57–73. https://doi.org/10.1109/MCG.2018.021951633 .

Kubo T, Chimed-Ochir O, Cossa M, et al. First activation of the WHO emergency medical team minimum data set in the 2019 response to tropical cyclone Idai in Mozambique. Prehosp Disaster Med. 2022;37(6):727–34.

Jafar AJN, Sergeant JC, Lecky F. What is the inter-rater agreement of injury classification using the WHO minimum data set for emergency medical teams? Emerg Med J. 2020;37(2):58–64. https://doi.org/10.1136/emermed-2019-209012 .

Hwang GJ, Chang HF. A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Comput Educ. 2011;56(4):1023–31. https://doi.org/10.1016/j.compedu.2010.12.002 .

Hwang G-J, Yang L-H. Sheng-yuan Wang.Concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Comput Educ. 2013;69:121–30.

Chu HC, Hwang GJ, Tsai CC, et al. A two-tier test approach to developing location-aware mobile learning system for natural science course. Comput Educ. 2010;55(4):1618–27. https://doi.org/10.1016/j.compedu.2010.07.004 .

Krishnan S, Blebil AQ, Dujaili JA, Chuang S, Lim A. Implementation of a hepatitis-themed virtual escape room in pharmacy education: A pilot study. Educ Inf Technol (Dordr). 2023;5:1–13. https://doi.org/10.1007/s10639-023-11745-1 . Epub ahead of print. PMID: 37361790; PMCID: PMC10073791

Butler SK, Runge MA, Milad MP. A game show-based curriculum for teaching principles of reproductive infectious disease (GBS PRIDE trial). South Med J. 2020;113(11):531–7. https://doi.org/10.14423/SMJ.0000000000001165 . PMID: 33140104

Haruna H, Hu X, Chu SKW, et al. Improving sexual health education programs for adolescent students through game-based learning and gamification. Int J Environ Res Public Health. 2018;15(9):2027. https://doi.org/10.3390/ijerph15092027 .

Rewolinski JA, Kelemen A, Liang Y. Type I diabetes self-management with game-based interventions for pediatric and adolescent patients. Comput Inform Nurs. 2020;39(2):78–88. https://doi.org/10.1097/CIN.0000000000000646 .

Allan R, McCann L, Johnson L, Dyson M, Ford J. A systematic review of 'equity-focused' game-based learning in the teaching of health staff. Public Health Pract (Oxf). 2023;27(7):100462. https://doi.org/10.1016/j.puhip.2023.100462 . PMID: 38283754; PMCID: PMC10820634

Zumbach J, Rammerstorfer L, Deibl I. Cognitive and metacognitive support in learning with a serious game about demographic change. Comput Hum Behav. 2020;103:120–9. https://doi.org/10.1016/j.chb.2019.09.026 .

Chang C-C, Liang C, Chou P-N, et al. Is game-based learning better in flow experience and various types of cognitive load than non-game-based learning? Perspective from multimedia and media richness. Comput Hum Behav. 2017;71:218–27. https://doi.org/10.1016/j.chb.2017.01.031 .

Kalmpourtzis G, Romero M. Constructive alignment of learning mechanics and game mechanics in serious game design in higher education. Int J Serious Games. 2020;7(4):75–88. https://doi.org/10.17083/ijsg.v7i4.361 .

Download references

Acknowledgements

We would like to thank all the staffs who contribute to the database. We would like to thank Editage ( www.editage.cn ) for English language editing. We also would like to thank Dr. Yong Yang for statistics help. We would like to thank The 10th Sichuan University Higher Education Teaching Reform Research Project (No. SCU10170) and West China School of Medicine (2023-2024) Teaching Reform Research Project (No. HXBK-B2023016) for the support.

Author information

Both Hai Hu and Xiaoqin Lai contributed equally to this work and should be regarded as co-first authors.

Authors and Affiliations

Emergency Management Office of West China Hospital, Sichuan University, The street address: No. 37. Guoxue Road, Chengdu City, Sichuan Province, China

China International Emergency Medical Team (Sichuan), Chengdu City, Sichuan Province, China

Hai Hu & Xiaoqin Lai

Emergency Medical Rescue Base, Sichuan University, Chengdu City, Sichuan Province, China

Day Surgery Center, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China

Xiaoqin Lai

Department of Thoracic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu City, Sichuan Province, China

West China School of Nursing, Sichuan University, Chengdu City, Sichuan Province, China

Longping Yan

West China School of Public Health, Sichuan University, Chengdu, Sichuan, China

West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China

You can also search for this author in PubMed   Google Scholar

Contributions

HH conceived the study, designed the trial, and obtained research funding. XL supervised the conduct of the data collection from the database, and managed the data, including quality control. HH and LY provided statistical advice on study design and analyzed the data. All the authors drafted the manuscript, and contributed substantially to its revision. HH takes responsibility for the paper as a whole.

Corresponding author

Correspondence to Hai Hu .

Ethics declarations

Ethics approval and consent to participate.

The local institutional review committee approved the study and waived the need for informed consent from the participants owing to the study design.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Hu, H., Lai, X. & Yan, L. Training nurses in an international emergency medical team using a serious role-playing game: a retrospective comparative analysis. BMC Med Educ 24 , 432 (2024). https://doi.org/10.1186/s12909-024-05442-x

Download citation

Received : 05 November 2023

Accepted : 17 April 2024

Published : 22 April 2024

DOI : https://doi.org/10.1186/s12909-024-05442-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Rescue work
  • Gamification
  • Simulation training

BMC Medical Education

ISSN: 1472-6920

what is data analysis in research study

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Korean J Anesthesiol
  • v.71(2); 2018 Apr

Introduction to systematic review and meta-analysis

1 Department of Anesthesiology and Pain Medicine, Inje University Seoul Paik Hospital, Seoul, Korea

2 Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea

Systematic reviews and meta-analyses present results by combining and analyzing data from different studies conducted on similar research topics. In recent years, systematic reviews and meta-analyses have been actively performed in various fields including anesthesiology. These research methods are powerful tools that can overcome the difficulties in performing large-scale randomized controlled trials. However, the inclusion of studies with any biases or improperly assessed quality of evidence in systematic reviews and meta-analyses could yield misleading results. Therefore, various guidelines have been suggested for conducting systematic reviews and meta-analyses to help standardize them and improve their quality. Nonetheless, accepting the conclusions of many studies without understanding the meta-analysis can be dangerous. Therefore, this article provides an easy introduction to clinicians on performing and understanding meta-analyses.

Introduction

A systematic review collects all possible studies related to a given topic and design, and reviews and analyzes their results [ 1 ]. During the systematic review process, the quality of studies is evaluated, and a statistical meta-analysis of the study results is conducted on the basis of their quality. A meta-analysis is a valid, objective, and scientific method of analyzing and combining different results. Usually, in order to obtain more reliable results, a meta-analysis is mainly conducted on randomized controlled trials (RCTs), which have a high level of evidence [ 2 ] ( Fig. 1 ). Since 1999, various papers have presented guidelines for reporting meta-analyses of RCTs. Following the Quality of Reporting of Meta-analyses (QUORUM) statement [ 3 ], and the appearance of registers such as Cochrane Library’s Methodology Register, a large number of systematic literature reviews have been registered. In 2009, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [ 4 ] was published, and it greatly helped standardize and improve the quality of systematic reviews and meta-analyses [ 5 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f1.jpg

Levels of evidence.

In anesthesiology, the importance of systematic reviews and meta-analyses has been highlighted, and they provide diagnostic and therapeutic value to various areas, including not only perioperative management but also intensive care and outpatient anesthesia [6–13]. Systematic reviews and meta-analyses include various topics, such as comparing various treatments of postoperative nausea and vomiting [ 14 , 15 ], comparing general anesthesia and regional anesthesia [ 16 – 18 ], comparing airway maintenance devices [ 8 , 19 ], comparing various methods of postoperative pain control (e.g., patient-controlled analgesia pumps, nerve block, or analgesics) [ 20 – 23 ], comparing the precision of various monitoring instruments [ 7 ], and meta-analysis of dose-response in various drugs [ 12 ].

Thus, literature reviews and meta-analyses are being conducted in diverse medical fields, and the aim of highlighting their importance is to help better extract accurate, good quality data from the flood of data being produced. However, a lack of understanding about systematic reviews and meta-analyses can lead to incorrect outcomes being derived from the review and analysis processes. If readers indiscriminately accept the results of the many meta-analyses that are published, incorrect data may be obtained. Therefore, in this review, we aim to describe the contents and methods used in systematic reviews and meta-analyses in a way that is easy to understand for future authors and readers of systematic review and meta-analysis.

Study Planning

It is easy to confuse systematic reviews and meta-analyses. A systematic review is an objective, reproducible method to find answers to a certain research question, by collecting all available studies related to that question and reviewing and analyzing their results. A meta-analysis differs from a systematic review in that it uses statistical methods on estimates from two or more different studies to form a pooled estimate [ 1 ]. Following a systematic review, if it is not possible to form a pooled estimate, it can be published as is without progressing to a meta-analysis; however, if it is possible to form a pooled estimate from the extracted data, a meta-analysis can be attempted. Systematic reviews and meta-analyses usually proceed according to the flowchart presented in Fig. 2 . We explain each of the stages below.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f2.jpg

Flowchart illustrating a systematic review.

Formulating research questions

A systematic review attempts to gather all available empirical research by using clearly defined, systematic methods to obtain answers to a specific question. A meta-analysis is the statistical process of analyzing and combining results from several similar studies. Here, the definition of the word “similar” is not made clear, but when selecting a topic for the meta-analysis, it is essential to ensure that the different studies present data that can be combined. If the studies contain data on the same topic that can be combined, a meta-analysis can even be performed using data from only two studies. However, study selection via a systematic review is a precondition for performing a meta-analysis, and it is important to clearly define the Population, Intervention, Comparison, Outcomes (PICO) parameters that are central to evidence-based research. In addition, selection of the research topic is based on logical evidence, and it is important to select a topic that is familiar to readers without clearly confirmed the evidence [ 24 ].

Protocols and registration

In systematic reviews, prior registration of a detailed research plan is very important. In order to make the research process transparent, primary/secondary outcomes and methods are set in advance, and in the event of changes to the method, other researchers and readers are informed when, how, and why. Many studies are registered with an organization like PROSPERO ( http://www.crd.york.ac.uk/PROSPERO/ ), and the registration number is recorded when reporting the study, in order to share the protocol at the time of planning.

Defining inclusion and exclusion criteria

Information is included on the study design, patient characteristics, publication status (published or unpublished), language used, and research period. If there is a discrepancy between the number of patients included in the study and the number of patients included in the analysis, this needs to be clearly explained while describing the patient characteristics, to avoid confusing the reader.

Literature search and study selection

In order to secure proper basis for evidence-based research, it is essential to perform a broad search that includes as many studies as possible that meet the inclusion and exclusion criteria. Typically, the three bibliographic databases Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) are used. In domestic studies, the Korean databases KoreaMed, KMBASE, and RISS4U may be included. Effort is required to identify not only published studies but also abstracts, ongoing studies, and studies awaiting publication. Among the studies retrieved in the search, the researchers remove duplicate studies, select studies that meet the inclusion/exclusion criteria based on the abstracts, and then make the final selection of studies based on their full text. In order to maintain transparency and objectivity throughout this process, study selection is conducted independently by at least two investigators. When there is a inconsistency in opinions, intervention is required via debate or by a third reviewer. The methods for this process also need to be planned in advance. It is essential to ensure the reproducibility of the literature selection process [ 25 ].

Quality of evidence

However, well planned the systematic review or meta-analysis is, if the quality of evidence in the studies is low, the quality of the meta-analysis decreases and incorrect results can be obtained [ 26 ]. Even when using randomized studies with a high quality of evidence, evaluating the quality of evidence precisely helps determine the strength of recommendations in the meta-analysis. One method of evaluating the quality of evidence in non-randomized studies is the Newcastle-Ottawa Scale, provided by the Ottawa Hospital Research Institute 1) . However, we are mostly focusing on meta-analyses that use randomized studies.

If the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) system ( http://www.gradeworkinggroup.org/ ) is used, the quality of evidence is evaluated on the basis of the study limitations, inaccuracies, incompleteness of outcome data, indirectness of evidence, and risk of publication bias, and this is used to determine the strength of recommendations [ 27 ]. As shown in Table 1 , the study limitations are evaluated using the “risk of bias” method proposed by Cochrane 2) . This method classifies bias in randomized studies as “low,” “high,” or “unclear” on the basis of the presence or absence of six processes (random sequence generation, allocation concealment, blinding participants or investigators, incomplete outcome data, selective reporting, and other biases) [ 28 ].

The Cochrane Collaboration’s Tool for Assessing the Risk of Bias [ 28 ]

Data extraction

Two different investigators extract data based on the objectives and form of the study; thereafter, the extracted data are reviewed. Since the size and format of each variable are different, the size and format of the outcomes are also different, and slight changes may be required when combining the data [ 29 ]. If there are differences in the size and format of the outcome variables that cause difficulties combining the data, such as the use of different evaluation instruments or different evaluation timepoints, the analysis may be limited to a systematic review. The investigators resolve differences of opinion by debate, and if they fail to reach a consensus, a third-reviewer is consulted.

Data Analysis

The aim of a meta-analysis is to derive a conclusion with increased power and accuracy than what could not be able to achieve in individual studies. Therefore, before analysis, it is crucial to evaluate the direction of effect, size of effect, homogeneity of effects among studies, and strength of evidence [ 30 ]. Thereafter, the data are reviewed qualitatively and quantitatively. If it is determined that the different research outcomes cannot be combined, all the results and characteristics of the individual studies are displayed in a table or in a descriptive form; this is referred to as a qualitative review. A meta-analysis is a quantitative review, in which the clinical effectiveness is evaluated by calculating the weighted pooled estimate for the interventions in at least two separate studies.

The pooled estimate is the outcome of the meta-analysis, and is typically explained using a forest plot ( Figs. 3 and ​ and4). 4 ). The black squares in the forest plot are the odds ratios (ORs) and 95% confidence intervals in each study. The area of the squares represents the weight reflected in the meta-analysis. The black diamond represents the OR and 95% confidence interval calculated across all the included studies. The bold vertical line represents a lack of therapeutic effect (OR = 1); if the confidence interval includes OR = 1, it means no significant difference was found between the treatment and control groups.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f3.jpg

Forest plot analyzed by two different models using the same data. (A) Fixed-effect model. (B) Random-effect model. The figure depicts individual trials as filled squares with the relative sample size and the solid line as the 95% confidence interval of the difference. The diamond shape indicates the pooled estimate and uncertainty for the combined effect. The vertical line indicates the treatment group shows no effect (OR = 1). Moreover, if the confidence interval includes 1, then the result shows no evidence of difference between the treatment and control groups.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f4.jpg

Forest plot representing homogeneous data.

Dichotomous variables and continuous variables

In data analysis, outcome variables can be considered broadly in terms of dichotomous variables and continuous variables. When combining data from continuous variables, the mean difference (MD) and standardized mean difference (SMD) are used ( Table 2 ).

Summary of Meta-analysis Methods Available in RevMan [ 28 ]

The MD is the absolute difference in mean values between the groups, and the SMD is the mean difference between groups divided by the standard deviation. When results are presented in the same units, the MD can be used, but when results are presented in different units, the SMD should be used. When the MD is used, the combined units must be shown. A value of “0” for the MD or SMD indicates that the effects of the new treatment method and the existing treatment method are the same. A value lower than “0” means the new treatment method is less effective than the existing method, and a value greater than “0” means the new treatment is more effective than the existing method.

When combining data for dichotomous variables, the OR, risk ratio (RR), or risk difference (RD) can be used. The RR and RD can be used for RCTs, quasi-experimental studies, or cohort studies, and the OR can be used for other case-control studies or cross-sectional studies. However, because the OR is difficult to interpret, using the RR and RD, if possible, is recommended. If the outcome variable is a dichotomous variable, it can be presented as the number needed to treat (NNT), which is the minimum number of patients who need to be treated in the intervention group, compared to the control group, for a given event to occur in at least one patient. Based on Table 3 , in an RCT, if x is the probability of the event occurring in the control group and y is the probability of the event occurring in the intervention group, then x = c/(c + d), y = a/(a + b), and the absolute risk reduction (ARR) = x − y. NNT can be obtained as the reciprocal, 1/ARR.

Calculation of the Number Needed to Treat in the Dichotomous table

Fixed-effect models and random-effect models

In order to analyze effect size, two types of models can be used: a fixed-effect model or a random-effect model. A fixed-effect model assumes that the effect of treatment is the same, and that variation between results in different studies is due to random error. Thus, a fixed-effect model can be used when the studies are considered to have the same design and methodology, or when the variability in results within a study is small, and the variance is thought to be due to random error. Three common methods are used for weighted estimation in a fixed-effect model: 1) inverse variance-weighted estimation 3) , 2) Mantel-Haenszel estimation 4) , and 3) Peto estimation 5) .

A random-effect model assumes heterogeneity between the studies being combined, and these models are used when the studies are assumed different, even if a heterogeneity test does not show a significant result. Unlike a fixed-effect model, a random-effect model assumes that the size of the effect of treatment differs among studies. Thus, differences in variation among studies are thought to be due to not only random error but also between-study variability in results. Therefore, weight does not decrease greatly for studies with a small number of patients. Among methods for weighted estimation in a random-effect model, the DerSimonian and Laird method 6) is mostly used for dichotomous variables, as the simplest method, while inverse variance-weighted estimation is used for continuous variables, as with fixed-effect models. These four methods are all used in Review Manager software (The Cochrane Collaboration, UK), and are described in a study by Deeks et al. [ 31 ] ( Table 2 ). However, when the number of studies included in the analysis is less than 10, the Hartung-Knapp-Sidik-Jonkman method 7) can better reduce the risk of type 1 error than does the DerSimonian and Laird method [ 32 ].

Fig. 3 shows the results of analyzing outcome data using a fixed-effect model (A) and a random-effect model (B). As shown in Fig. 3 , while the results from large studies are weighted more heavily in the fixed-effect model, studies are given relatively similar weights irrespective of study size in the random-effect model. Although identical data were being analyzed, as shown in Fig. 3 , the significant result in the fixed-effect model was no longer significant in the random-effect model. One representative example of the small study effect in a random-effect model is the meta-analysis by Li et al. [ 33 ]. In a large-scale study, intravenous injection of magnesium was unrelated to acute myocardial infarction, but in the random-effect model, which included numerous small studies, the small study effect resulted in an association being found between intravenous injection of magnesium and myocardial infarction. This small study effect can be controlled for by using a sensitivity analysis, which is performed to examine the contribution of each of the included studies to the final meta-analysis result. In particular, when heterogeneity is suspected in the study methods or results, by changing certain data or analytical methods, this method makes it possible to verify whether the changes affect the robustness of the results, and to examine the causes of such effects [ 34 ].

Heterogeneity

Homogeneity test is a method whether the degree of heterogeneity is greater than would be expected to occur naturally when the effect size calculated from several studies is higher than the sampling error. This makes it possible to test whether the effect size calculated from several studies is the same. Three types of homogeneity tests can be used: 1) forest plot, 2) Cochrane’s Q test (chi-squared), and 3) Higgins I 2 statistics. In the forest plot, as shown in Fig. 4 , greater overlap between the confidence intervals indicates greater homogeneity. For the Q statistic, when the P value of the chi-squared test, calculated from the forest plot in Fig. 4 , is less than 0.1, it is considered to show statistical heterogeneity and a random-effect can be used. Finally, I 2 can be used [ 35 ].

I 2 , calculated as shown above, returns a value between 0 and 100%. A value less than 25% is considered to show strong homogeneity, a value of 50% is average, and a value greater than 75% indicates strong heterogeneity.

Even when the data cannot be shown to be homogeneous, a fixed-effect model can be used, ignoring the heterogeneity, and all the study results can be presented individually, without combining them. However, in many cases, a random-effect model is applied, as described above, and a subgroup analysis or meta-regression analysis is performed to explain the heterogeneity. In a subgroup analysis, the data are divided into subgroups that are expected to be homogeneous, and these subgroups are analyzed. This needs to be planned in the predetermined protocol before starting the meta-analysis. A meta-regression analysis is similar to a normal regression analysis, except that the heterogeneity between studies is modeled. This process involves performing a regression analysis of the pooled estimate for covariance at the study level, and so it is usually not considered when the number of studies is less than 10. Here, univariate and multivariate regression analyses can both be considered.

Publication bias

Publication bias is the most common type of reporting bias in meta-analyses. This refers to the distortion of meta-analysis outcomes due to the higher likelihood of publication of statistically significant studies rather than non-significant studies. In order to test the presence or absence of publication bias, first, a funnel plot can be used ( Fig. 5 ). Studies are plotted on a scatter plot with effect size on the x-axis and precision or total sample size on the y-axis. If the points form an upside-down funnel shape, with a broad base that narrows towards the top of the plot, this indicates the absence of a publication bias ( Fig. 5A ) [ 29 , 36 ]. On the other hand, if the plot shows an asymmetric shape, with no points on one side of the graph, then publication bias can be suspected ( Fig. 5B ). Second, to test publication bias statistically, Begg and Mazumdar’s rank correlation test 8) [ 37 ] or Egger’s test 9) [ 29 ] can be used. If publication bias is detected, the trim-and-fill method 10) can be used to correct the bias [ 38 ]. Fig. 6 displays results that show publication bias in Egger’s test, which has then been corrected using the trim-and-fill method using Comprehensive Meta-Analysis software (Biostat, USA).

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f5.jpg

Funnel plot showing the effect size on the x-axis and sample size on the y-axis as a scatter plot. (A) Funnel plot without publication bias. The individual plots are broader at the bottom and narrower at the top. (B) Funnel plot with publication bias. The individual plots are located asymmetrically.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f6.jpg

Funnel plot adjusted using the trim-and-fill method. White circles: comparisons included. Black circles: inputted comparisons using the trim-and-fill method. White diamond: pooled observed log risk ratio. Black diamond: pooled inputted log risk ratio.

Result Presentation

When reporting the results of a systematic review or meta-analysis, the analytical content and methods should be described in detail. First, a flowchart is displayed with the literature search and selection process according to the inclusion/exclusion criteria. Second, a table is shown with the characteristics of the included studies. A table should also be included with information related to the quality of evidence, such as GRADE ( Table 4 ). Third, the results of data analysis are shown in a forest plot and funnel plot. Fourth, if the results use dichotomous data, the NNT values can be reported, as described above.

The GRADE Evidence Quality for Each Outcome

N: number of studies, ROB: risk of bias, PON: postoperative nausea, POV: postoperative vomiting, PONV: postoperative nausea and vomiting, CI: confidence interval, RR: risk ratio, AR: absolute risk.

When Review Manager software (The Cochrane Collaboration, UK) is used for the analysis, two types of P values are given. The first is the P value from the z-test, which tests the null hypothesis that the intervention has no effect. The second P value is from the chi-squared test, which tests the null hypothesis for a lack of heterogeneity. The statistical result for the intervention effect, which is generally considered the most important result in meta-analyses, is the z-test P value.

A common mistake when reporting results is, given a z-test P value greater than 0.05, to say there was “no statistical significance” or “no difference.” When evaluating statistical significance in a meta-analysis, a P value lower than 0.05 can be explained as “a significant difference in the effects of the two treatment methods.” However, the P value may appear non-significant whether or not there is a difference between the two treatment methods. In such a situation, it is better to announce “there was no strong evidence for an effect,” and to present the P value and confidence intervals. Another common mistake is to think that a smaller P value is indicative of a more significant effect. In meta-analyses of large-scale studies, the P value is more greatly affected by the number of studies and patients included, rather than by the significance of the results; therefore, care should be taken when interpreting the results of a meta-analysis.

When performing a systematic literature review or meta-analysis, if the quality of studies is not properly evaluated or if proper methodology is not strictly applied, the results can be biased and the outcomes can be incorrect. However, when systematic reviews and meta-analyses are properly implemented, they can yield powerful results that could usually only be achieved using large-scale RCTs, which are difficult to perform in individual studies. As our understanding of evidence-based medicine increases and its importance is better appreciated, the number of systematic reviews and meta-analyses will keep increasing. However, indiscriminate acceptance of the results of all these meta-analyses can be dangerous, and hence, we recommend that their results be received critically on the basis of a more accurate understanding.

1) http://www.ohri.ca .

2) http://methods.cochrane.org/bias/assessing-risk-bias-included-studies .

3) The inverse variance-weighted estimation method is useful if the number of studies is small with large sample sizes.

4) The Mantel-Haenszel estimation method is useful if the number of studies is large with small sample sizes.

5) The Peto estimation method is useful if the event rate is low or one of the two groups shows zero incidence.

6) The most popular and simplest statistical method used in Review Manager and Comprehensive Meta-analysis software.

7) Alternative random-effect model meta-analysis that has more adequate error rates than does the common DerSimonian and Laird method, especially when the number of studies is small. However, even with the Hartung-Knapp-Sidik-Jonkman method, when there are less than five studies with very unequal sizes, extra caution is needed.

8) The Begg and Mazumdar rank correlation test uses the correlation between the ranks of effect sizes and the ranks of their variances [ 37 ].

9) The degree of funnel plot asymmetry as measured by the intercept from the regression of standard normal deviates against precision [ 29 ].

10) If there are more small studies on one side, we expect the suppression of studies on the other side. Trimming yields the adjusted effect size and reduces the variance of the effects by adding the original studies back into the analysis as a mirror image of each study.

The independent source for health policy research, polling, and news.

A New Use for Wegovy Opens the Door to Medicare Coverage for Millions of People with Obesity

Juliette Cubanski , Tricia Neuman , Nolan Sroczynski , and Anthony Damico Published: Apr 24, 2024

The FDA recently approved a new use for Wegovy (semaglutide), the blockbuster anti-obesity drug, to reduce the risk of heart attacks and stroke in people with cardiovascular disease who are overweight or obese. Wegovy belongs to a class of medications called GLP-1 (glucagon-like peptide-1) agonists that were initially approved to treat type 2 diabetes but are also highly effective anti-obesity drugs. The new FDA-approved indication for Wegovy paves the way for Medicare coverage of this drug and broader coverage by other insurers. Medicare is currently prohibited by law from covering Wegovy and other medications when used specifically for obesity. However, semaglutide is covered by Medicare as a treatment for diabetes, branded as Ozempic.

What does the FDA’s decision mean for Medicare coverage of Wegovy?

The FDA’s decision opens the door to Medicare coverage of Wegovy, which was first approved by the FDA as an anti-obesity medication. Soon after the FDA’s approval of the new use for Wegovy, the Centers for Medicare & Medicaid Services (CMS) issued a memo indicating that Medicare Part D plans can add Wegovy to their formularies now that it has a medically-accepted indication that is not specifically excluded from Medicare coverage . Because Wegovy is a self-administered injectable drug, coverage will be provided under Part D , Medicare’s outpatient drug benefit offered by private stand-alone drug plans and Medicare Advantage plans, not Part B, which covers physician-administered drugs.

How many Medicare beneficiaries could be eligible for coverage of Wegovy for its new use?

Figure 1: An Estimated 1 in 4 Medicare Beneficiaries With Obesity or Overweight Could Be Eligible for Medicare Part D Coverage of Wegovy to Reduce the Risk of Serious Heart Problems

Of these 3.6 million beneficiaries, 1.9 million also had diabetes (other than Type 1) and may already have been eligible for Medicare coverage of GLP-1s as diabetes treatments prior to the FDA’s approval of the new use of Wegovy.

Not all people who are eligible based on the new indication are likely to take Wegovy, however. Some might be dissuaded by the potential side effects and adverse reactions . Out-of-pocket costs could also be a barrier. Based on the list price of $1,300 per month (not including rebates or other discounts negotiated by pharmacy benefit managers), Wegovy could be covered as a specialty tier drug, where Part D plans are allowed to charge coinsurance of 25% to 33%. Because coinsurance amounts are pegged to the list price, Medicare beneficiaries required to pay coinsurance could face monthly costs of $325 to $430 before they reach the new cap on annual out-of-pocket drug spending established by the Inflation Reduction Act – around $3,300 in 2024, based on brand drugs only, and $2,000 in 2025. But even paying $2,000 out of pocket would still be beyond the reach of many people with Medicare who live on modest incomes . Ultimately, how much beneficiaries pay out of pocket will depend on Part D plan coverage and formulary tier placement of Wegovy.

Further, some people may have difficulty accessing Wegovy if Part D plans apply prior authorization and step therapy tools to manage costs and ensure appropriate use. These factors could have a dampening effect on use by Medicare beneficiaries, even among the target population.

When will Medicare Part D plans begin covering Wegovy?

Some Part D plans have already announced that they will begin covering Wegovy this year, although it is not yet clear how widespread coverage will be in 2024. While Medicare drug plans can add new drugs to their formularies during the year to reflect new approvals and expanded indications, plans are not required to cover every new drug that comes to market. Part D plans are required to cover at least two drugs in each category or class and all or substantially all drugs in six protected classes . However, facing a relatively high price and potentially large patient population for Wegovy, many Part D plans might be reluctant to expand coverage now, since they can’t adjust their premiums mid-year to account for higher costs associated with use of this drug. So, broader coverage in 2025 could be more likely.

How might expanded coverage of Wegovy affect Medicare spending?

The impact on Medicare spending associated with expanded coverage of Wegovy will depend in part on how many Part D plans add coverage for it and the extent to which plans apply restrictions on use like prior authorization; how many people who qualify to take the drug use it; and negotiated prices paid by plans. For example, if plans receive a 50% rebate on the list price of $1,300 per month (or $15,600 per year), that could mean annual net costs per person around $7,800. If 10% of the target population (an estimated 360,000 people) uses Wegovy for a full year, that would amount to additional net Medicare Part D spending of $2.8 billion for one year for this one drug alone.

It’s possible that Medicare could select semaglutide for drug price negotiation as early as 2025, based on the earliest FDA approval of Ozempic in late 2017 . For small-molecule drugs like semaglutide, at least seven years must have passed from its FDA approval date to be eligible for selection, and for drugs with multiple FDA approvals, CMS will use the earliest approval date to make this determination. If semaglutide is selected for negotiation next year, a negotiated price would be available beginning in 2027. This could help to lower Medicare and out-of-pocket spending on semaglutide products, including Wegovy as well as Ozempic and Rybelsus, the oral formulation approved for type 2 diabetes. As of 2022, gross Medicare spending on Ozempic alone placed it sixth among the 10 top-selling drugs in Medicare Part D, with annual gross spending of $4.6 billion, based on KFF analysis . This estimate does not include rebates, which Medicare’s actuaries estimated to be  31.5% overall in 2022  but could be as high as  69%  for Ozempic, according to one estimate.

What does this mean for Medicare coverage of anti-obesity drugs?

For now, use of GLP-1s specifically for obesity continues to be excluded from Medicare coverage by law. But the FDA’s decision signals a turning point for broader Medicare coverage of GLP-1s since Wegovy can now be used to reduce the risk of heart attack and stroke by people with cardiovascular disease and obesity or overweight, and not only as an anti-obesity drug. And more pathways to Medicare coverage could open up if these drugs gain FDA approval for other uses . For example, Eli Lilly has just reported clinical trial results showing the benefits of its GLP-1, Zepbound (tirzepatide), in reducing the occurrence of sleep apnea events among people with obesity or overweight. Lilly reportedly plans to seek FDA approval for this use and if approved, the drug would be the first pharmaceutical treatment on the market for sleep apnea.

If more Medicare beneficiaries with obesity or overweight gain access to GLP-1s based on other approved uses for these medications, that could reduce the cost of proposed legislation to lift the statutory prohibition on Medicare coverage of anti-obesity drugs. This is because the Congressional Budget Office (CBO), Congress’s official scorekeeper for proposed legislation, would incorporate the cost of coverage for these other uses into its baseline estimates for Medicare spending, which means that the incremental cost of changing the law to allow Medicare coverage for anti-obesity drugs would be lower than it would be without FDA’s approval of these drugs for other uses. Ultimately how widely Medicare Part D coverage of GLP-1s expands could have far-reaching effects on people with obesity and on Medicare spending.

  • Medicare Part D
  • Chronic Diseases
  • Heart Disease
  • Medicare Advantage

news release

  • An Estimated 1 in 4 Medicare Beneficiaries With Obesity or Overweight Could Be Eligible for Medicare Coverage of Wegovy, an Anti-Obesity Drug, to Reduce Heart Risk

Also of Interest

  • An Overview of the Medicare Part D Prescription Drug Benefit
  • FAQs about the Inflation Reduction Act’s Medicare Drug Price Negotiation Program
  • What Could New Anti-Obesity Drugs Mean for Medicare?
  • Medicare Spending on Ozempic and Other GLP-1s Is Skyrocketing

NASA Study: More Greenland Ice Lost Than Previously Estimated

A new, comprehensive analysis of satellite data finds that majority of glaciers on the landmass have retreated significantly.

Jakobshavn Isbrae, a glacier on Greenland’s western coast shown in these satellite images, retreated significantly between 1985 (left) and 2022 (right), losing about 97 billion tons (88 billion metric tons) of ice. A recent study found that glacial retreat caused the Greenland Ice Sheet to lose one-fifth more mass than previously estimated. Credit: NASA/USGS

The Greenland Ice Sheet has shed about one-fifth more ice mass in the past four decades than previously estimated, researchers at NASA’s Jet Propulsion Laboratory in Southern California reported in a new paper. The majority of glaciers on the landmass have retreated significantly, and icebergs are falling into the ocean at an accelerating rate. This additional ice loss has had only an indirect impact on sea levels, but could hold implications for ocean circulation in the future.

Published in Nature on Jan. 17, the analysis offers a comprehensive look at retreat around the edges of the entire ice sheet from 1985 to 2022, drawing from nearly a quarter million pieces of satellite data on glacier positions. Of the 207 glaciers in the study, 179 retreated significantly since 1985, 27 held steady, and one advanced slightly.

Zachariae Isstrom, a glacier in northeast Greenland, retreated significantly between 1999 (left) and 2022 (right) as icebergs broke off at an accelerating rate. A recent study found that it lost 176 billion tons (160 billion metric tons) of ice from 1985 to 2022. Credit: NASA/USGS

Most of the ice loss came from below sea level, in fjords on Greenland’s periphery. Once occupied by ancient glacial ice, many of these deep coastal valleys have filled with seawater – meaning the ice that broke off made little net contribution to sea level. But the loss likely accelerated the movement of ice flowing down from higher elevations, which in turn added to sea level rise.

“When the ice at the end of a glacier calves and retreats, it’s like pulling the plug out of the fjord, which lets ice drain into the ocean faster,” said Chad Greene, a glacier scientist at JPL and the study’s lead author.

Get the Latest JPL News

Accounting for Glacial Retreat

For decades researchers have studied the Greenland Ice Sheet’s direct contributions to global sea level rise through ice flow and melting. Scientists participating in the international Ice sheet Mass Balance Inter-comparison Exercise ( IMBIE ) estimated that the ice sheet had lost 5,390 billion tons (4,890 billion metric tons) between 1992 and 2020, adding about 0.531 inches (13.5 millimeters) to global mean sea level, according to the Intergovernmental Panel on Climate Change .

But the IMBIE measurements do not account for ice lost due to the retreat of terminal glaciers along the edges of Greenland. (These glacier edges were already in the water, whether submerged or floating.) The new study quantifies this amount: For the 1985 to 2022 period in the new paper, the ice sheet was estimated to have lost about 1,140 billion tons (1,034 billion metric tons) – 21% more mass lost than in the IMBIE assessment.

Although it doesn’t add to sea levels, the additional ice represents a significant influx of fresh water to the ocean. Recent studies have suggested that changes in the salinity of the North Atlantic Ocean from melting icebergs could weaken the Atlantic Meridional Overturning Circulation, part of the global “ conveyor belt ” of currents that transport heat and salt around the ocean. This could influence weather patterns worldwide, as well as affect ecosystems, the authors said.

A Comprehensive View of Glacial Retreat

Icebergs have tumbled from Greenland’s glaciers for thousands of years as part of a natural cycle that typically balanced glacier growth in the winter with melting and retreat in the summer. The new study finds that ice retreat has far outpaced growth throughout the 21st century.

The researchers also found that Greenland’s ice extent remained relatively steady from 1985 to 2000, then started a marked recession that continues to this day.

The data showed a glacier in northeast Greenland called Zachariae Isstrom lost the most ice, dropping 176 billion tons (160 billion metric tons) of mass due to retreat. It was followed by Jakobshavn Isbrae on the western coast, which lost an estimated 97 billion tons (88 billion metric tons), and Humboldt Gletscher in the northwest, which lost 96 billion tons (87 billion metric tons).

Only one glacier, Qajuuttap Sermia in southern Greenland, experienced any growth over the study period, but its gains were too small to offset the losses from other glaciers.

The researchers also found that glaciers with the largest seasonal fluctuations in the position of their ice front experienced the greatest overall retreat. The correlation suggests the glaciers that are most sensitive to warming each summer will be most impacted by climate change in the coming decades.

The discovery of a large-scale pattern of glacier retreat and its link to glacier sensitivity on seasonal time scales was the result of a big-data synthesis that looks at all parts of the ice sheet over time, said JPL cryosphere scientist Alex Gardner, a co-author of the paper. Scientists drew from five publicly available datasets that cumulatively tracked the month-to-month positions of 236,328 glacier edges as detected, either manually or by computer algorithms, in images collected by optical and radar satellites.

“Previously, we had bits and pieces – lots of local studies,” Gardner said. “But what this study offers is a systematic and comprehensive view that has led to some pretty significant insights that we didn’t have about the ice sheet before.”

News Media Contact

Andrew Wang / Jane J. Lee

Jet Propulsion Laboratory, Pasadena, Calif.

626-379-6874 / 818-354-0307

[email protected] / [email protected]

IMAGES

  1. What is Data Analysis ?

    what is data analysis in research study

  2. 5 Steps of the Data Analysis Process

    what is data analysis in research study

  3. What is Data Analysis in Research

    what is data analysis in research study

  4. Data Analysis: What it is + Free Guide with Examples

    what is data analysis in research study

  5. 7 Types of Statistical Analysis: Definition and Explanation

    what is data analysis in research study

  6. Standard statistical tools in research and data analysis

    what is data analysis in research study

VIDEO

  1. How to Assess the Quantitative Data Collected from Questionnaire

  2. How to interpret Reliability analysis results

  3. Why collect the data through Questionnaires || The Power of Questionnaires in Data Collection

  4. DATA ANALYSIS

  5. interpretation of data , analysis and thesis writing (Nta UGC net sociology)

  6. book your #dissertation #assignments today to score distinction #assignmenthelp #ukuniversities #uk

COMMENTS

  1. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  2. Data analysis

    data analysis, the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data, generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making.Data analysis techniques are used to gain useful insights from datasets, which ...

  3. Guides: Data Analysis: Introduction to Data Analysis

    Data analysis can be quantitative, qualitative, or mixed methods. Quantitative research typically involves numbers and "close-ended questions and responses" (Creswell & Creswell, 2018, p. 3).Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures (Creswell & Creswell, 2018, p. 4).

  4. What is Data Analysis? An Expert Guide With Examples

    Data analysis is a comprehensive method of inspecting, cleansing, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It is a multifaceted process involving various techniques and methodologies to interpret data from various sources in different formats, both structured and unstructured.

  5. What Is Data Analysis in Research? Why It Matters & What Data Analysts

    Data analysis in research is the process of uncovering insights from data sets. Data analysts can use their knowledge of statistical techniques, research theories and methods, and research practices to analyze data. They take data and uncover what it's trying to tell us, whether that's through charts, graphs, or other visual representations.

  6. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  7. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims ...

  8. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  9. Data Analysis in Research

    Data analysis in research is the systematic process of investigating, through varied techniques, facts and figures to make conclusions about a specific question or topic. Data is available in many ...

  10. Quantitative Data Analysis Methods & Techniques 101

    Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...

  11. Data Analysis

    Data analysis is the method in which data is collected and organized so that the researcher will be able to look at the data and determine relationships. Data in statistics is often an ...

  12. A Practical Guide to Writing Quantitative and Qualitative Research

    A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. ... Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The ...

  13. What is data analysis? Methods, techniques, types & how-to

    A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.

  14. The Beginner's Guide to Statistical Analysis

    This article is a practical introduction to statistical analysis for students and researchers. We'll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables. Example: Causal research question.

  15. Research Methods

    To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations). Meta-analysis. Quantitative. To statistically analyze the results of a large collection of studies. Can only be applied to studies that collected data in a statistically valid manner.

  16. Creating a Data Analysis Plan: What to Consider When Choosing

    The first step in a data analysis plan is to describe the data collected in the study. This can be done using figures to give a visual presentation of the data and statistics to generate numeric descriptions of the data. Selection of an appropriate figure to represent a particular set of data depends on the measurement level of the variable.

  17. Basic statistical tools in research and data analysis

    Abstract. Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise ...

  18. Data Collection

    Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem. While methods and aims may differ between fields, the overall process of ...

  19. Data Analytics Case Study Guide 2024

    A data analytics case study comprises essential elements that structure the analytical journey: Problem Context: A case study begins with a defined problem or question. It provides the context for the data analysis, setting the stage for exploration and investigation.. Data Collection and Sources: It involves gathering relevant data from various sources, ensuring data accuracy, completeness ...

  20. How to use and assess qualitative research methods

    Abstract. This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions ...

  21. What the public thinks

    This Pew Research Center analysis examines the importance of violent crime as a voting issue in this year's congressional elections and provides the latest available government data on the nation's violent crime rate in recent years. The public opinion data in this analysis is based on a Center survey of 5,098 U.S. adults, including 3,993 ...

  22. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  23. Training nurses in an international emergency medical team using a

    The design of this study is a retrospective comparative analysis. The research was conducted with 209 nurses in a hospital. The data collection process of this study was conducted at the 2019-2020 academic year. A retrospective comparative analysis was conducted on the pre-, post-, and final test scores of nurses in the IEMT.

  24. Food additive emulsifiers and the risk of type 2 diabetes: analysis of

    BS and MT contributed equally and are joint last authors. All authors read and approved the final manuscript. CS, BS, and MT had full access to all the data in the study. MT takes responsibility for the integrity of the data and the accuracy of the data analysis, and is the guarantor.

  25. Introduction to systematic review and meta-analysis

    If the studies contain data on the same topic that can be combined, a meta-analysis can even be performed using data from only two studies. However, study selection via a systematic review is a precondition for performing a meta-analysis, and it is important to clearly define the Population, Intervention, Comparison, Outcomes (PICO) parameters ...

  26. A New Use for Wegovy Opens the Door to Medicare Coverage for ...

    This number may well be higher based on more current data than were available for this analysis. These 3.6 million beneficiaries represent just over a quarter (26%) of the 13.7 million Medicare ...

  27. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  28. NASA Study: More Greenland Ice Lost Than Previously Estimated

    Published in Nature on Jan. 17, the analysis offers a comprehensive look at retreat around the edges of the entire ice sheet from 1985 to 2022, drawing from nearly a quarter million pieces of satellite data on glacier positions. Of the 207 glaciers in the study, 179 retreated significantly since 1985, 27 held steady, and one advanced slightly.

  29. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...