• Our Mission

5 Ways to Stop Thinking for Your Students

Too often math students lean on teachers to think for them, but there are some simple ways to guide them to think for themselves.

Photo of middle school student doing math on board

Who is doing the thinking in your classroom? If you asked me that question a few years ago, I would have replied, “My kids are doing the thinking, of course!” But I was wrong. As I reflect back to my teaching style before I read Building Thinking Classrooms by Peter Liljedahl (an era in my career I like to call “pre-thinking classroom”), I now see that I was encouraging my students to mimic rather than think .

My lessons followed a formula that I knew from my own school experience as a student and what I had learned in college as a pre-service teacher. It looked like this: Students faced me stationed at the board; I demonstrated a few problems while students copied what I wrote in their notes. I would throw out a few questions to the class to assess understanding. If a few kids answered correctly, I felt confident that the lesson had gone well. Some educators might call this “ I do, we do, you do .”

What’s wrong with this formula? When it was time for them to work independently, which usually meant a homework assignment because I used most of class time for direct instruction, the students would come back to class and say, “The homework was so hard. I don’t get it. Can you go over questions 1–20?” Exhausted and frustrated, I would wonder, “But I taught it—why didn’t they get it?”

Now in the “peri-thinking classroom” era of my career, my students are often working at the whiteboards in random groups as outlined in Liljedahl’s book. The pendulum has shifted from the teacher doing the thinking to the students doing the thinking. Do they still say, “I don’t get it!”? Yes, of course! But I use the following strategies to put the thinking back onto them.

5 Ways to Get Your Students to Think

1. Answer questions with a refocus on the students’ point of view. Liljedahl found in his research that students ask three types of questions: “(1) proximity questions—asked when the teacher is close; (2) stop thinking questions—most often of the form ‘is this right’ or ‘will this be on the test’; and (3) keep thinking questions—questions that students ask so they can get back to work.” He suggests that teachers acknowledge “proximity” and “stop thinking questions” but not answer them.

Try these responses to questions that students ask to keep working:

  • “What have you done so far?” 
  • “Where did you get that number?” 
  • “What information is given in the problem?” 
  • “Does that number seem reasonable in this situation?”  

2. Don’t carry a pencil or marker. This is a hard rule to follow; however, if you hold the writing utensil, you’ll be tempted to write for them . Use verbal nudges and hints, but avoid writing out an explanation. If you need to refer to a visual, find a group that has worked out the problem, and point out their steps. Hearing and viewing other students’ work is more powerful .

3. We instead of I . When I assign a handful of problems for groups to work on at the whiteboards, they are tempted to divvy up the task. “You do #30, and I’ll do #31.” This becomes an issue when they get stuck. I inevitably hear, “Can you help me with #30? I forgot how to start.”

I now require questions to use “we” instead of “I.” This works wonders. As soon as they start to ask a question with “I,” they pause and ask their group mates. Then they can legitimately say, “ We tried #30, and we are stumped.” But, in reality, once they loop in their group mates, the struggling student becomes unstuck, and everyone in the group has to engage with the problem.

4. Stall your answer. If I hear a basic computation question such as, “What is 3 divided by 5?” I act like I am busy helping another student: “Hold on, I need to help Marisela. I’ll be right back.” By the time I return to them, they are way past their question. They will ask a classmate, work it out, or look it up. If the teacher is not available to think for them, they learn to find alternative resources.

5. Set boundaries. As mentioned before, students ask “proximity” questions because I am close to them. I might reply with “Are you asking me a thinking question? I’m glad to give you a hint or nudge, but I cannot take away your opportunity to think.” This type of response acknowledges that you are there to help them but not to do their thinking for them.

When you set boundaries of what questions will be answered, the students begin to more carefully craft their questions. At this point of the year, I am starting to hear questions such as, “We have tried solving this system by substitution, but we are getting an unreasonable solution. Can you look at our steps?” Yes!

Shifting the focus to students doing the thinking not only enhances their learning but can also have the effect of less frustration and fatigue for the teacher. As the class becomes student-centered, the teacher role shifts to guide or facilitator and away from “sage on the stage.”

As another added benefit, when you serve as guide or facilitator, the students are getting differentiated instruction and assessment. Maybe only a few students need assistance with adding fractions, while a few students need assistance on an entirely different concept. At first, you might feel like your head is spinning trying to address so many different requests; however, as you carefully sift through the types of questions you hear, you will soon be comfortable only answering the “keep thinking” questions.

Accessibility Links

  • Skip to content
  • Skip to search IOPscience
  • Skip to Journals list
  • Accessibility help
  • Accessibility Help

Click here to close this panel.

Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.

Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.

We are proudly declaring that science is our only shareholder.

Spirit of Mathematics Critical Thinking Skills (CTS)

S Syafril 1 , N R Aini 1 , Netriwati 1 , A Pahrudin 1 , N E Yaumas 1 and Engkizar 2

Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series , Volume 1467 , Young Scholar Symposium on Science Education and Environment 2019 4-5 November 2019, Lampung, Indonesia Citation S Syafril et al 2020 J. Phys.: Conf. Ser. 1467 012069 DOI 10.1088/1742-6596/1467/1/012069

Article metrics

2051 Total downloads

Share this article

Author e-mails.

[email protected]

Author affiliations

1 Universitas Islam Negeri Raden Intan Lampung, Indonesia

2 Universitas Negeri Padang, Indonesia

Buy this article in print

The mathematical critical-thinking skill is a process of thinking systematically to develop logical and critical thinking on mathematical problems, which characterize and demand to learn in the 21st century. This conceptual paper aims to analyze the spirit of critical thinking skill, and various approaches that can be applied in mathematics learning. Based on the analysis of several theories and research findings from various countries in the world, it can be concluded that the mathematical critical-thinking skill is very important for students, too; (i) help rational thinking in making decisions to express an idea, (ii) dare to make conclusions with alternative logical thinking, and (iii) able to examine and disregard various complex problems in learning Mathematics. Indeed, mathematics learning does not occur, if the learning process has not demonstrated the spirit of developing mathematical critical thinking skills.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.

  • Order Tracking
  • Create an Account

mathematical critical thinking

200+ Award-Winning Educational Textbooks, Activity Books, & Printable eBooks!

  • Compare Products

Reading, Writing, Math, Science, Social Studies

  • Search by Book Series
  • Algebra I & II  Gr. 7-12+
  • Algebra Magic Tricks  Gr. 2-12+
  • Algebra Word Problems  Gr. 7-12+
  • Balance Benders  Gr. 2-12+
  • Balance Math & More!  Gr. 2-12+
  • Basics of Critical Thinking  Gr. 4-7
  • Brain Stretchers  Gr. 5-12+
  • Building Thinking Skills  Gr. Toddler-12+
  • Building Writing Skills  Gr. 3-7
  • Bundles - Critical Thinking  Gr. PreK-9
  • Bundles - Language Arts  Gr. K-8
  • Bundles - Mathematics  Gr. PreK-9
  • Bundles - Multi-Subject Curriculum  Gr. PreK-12+
  • Bundles - Test Prep  Gr. Toddler-12+
  • Can You Find Me?  Gr. PreK-1
  • Complete the Picture Math  Gr. 1-3
  • Cornell Critical Thinking Tests  Gr. 5-12+
  • Cranium Crackers  Gr. 3-12+
  • Creative Problem Solving  Gr. PreK-2
  • Critical Thinking Activities to Improve Writing  Gr. 4-12+
  • Critical Thinking Coloring  Gr. PreK-2
  • Critical Thinking Detective  Gr. 3-12+
  • Critical Thinking Tests  Gr. PreK-6
  • Critical Thinking for Reading Comprehension  Gr. 1-5
  • Critical Thinking in United States History  Gr. 6-12+
  • CrossNumber Math Puzzles  Gr. 4-10
  • Crypt-O-Words  Gr. 2-7
  • Crypto Mind Benders  Gr. 3-12+
  • Daily Mind Builders  Gr. 5-12+
  • Dare to Compare Math  Gr. 2-7
  • Developing Critical Thinking through Science  Gr. 1-8
  • Dr. DooRiddles  Gr. PreK-12+
  • Dr. Funster's  Gr. 2-12+
  • Editor in Chief  Gr. 2-12+
  • Fun-Time Phonics!  Gr. PreK-2
  • Half 'n Half Animals  Gr. K-4
  • Hands-On Thinking Skills  Gr. K-1
  • Inference Jones  Gr. 1-6
  • James Madison  Gr. 10-12+
  • Jumbles  Gr. 3-5
  • Language Mechanic  Gr. 4-7
  • Language Smarts  Gr. 1-4
  • Mastering Logic & Math Problem Solving  Gr. 6-9
  • Math Analogies  Gr. K-9
  • Math Detective  Gr. 3-8
  • Math Games  Gr. 3-8
  • Math Mind Benders  Gr. 5-12+
  • Math Ties  Gr. 4-8
  • Math Word Problems  Gr. 4-10
  • Mathematical Reasoning  Gr. Toddler-11
  • Middle School Science  Gr. 6-8
  • Mind Benders  Gr. PreK-12+
  • Mind Building Math  Gr. K-1
  • Mind Building Reading  Gr. K-1
  • Novel Thinking  Gr. 3-6
  • OLSAT® Test Prep  Gr. PreK-K
  • Organizing Thinking  Gr. 2-8
  • Pattern Explorer  Gr. 3-9
  • Practical Critical Thinking  Gr. 8-12+
  • Punctuation Puzzler  Gr. 3-8
  • Reading Detective  Gr. 3-12+
  • Red Herring Mysteries  Gr. 4-12+
  • Red Herrings Science Mysteries  Gr. 4-9
  • Science Detective  Gr. 3-6
  • Science Mind Benders  Gr. PreK-3
  • Science Vocabulary Crossword Puzzles  Gr. 4-6
  • Sciencewise  Gr. 4-12+
  • Scratch Your Brain  Gr. 2-12+
  • Sentence Diagramming  Gr. 3-12+
  • Smarty Pants Puzzles  Gr. 3-12+
  • Snailopolis  Gr. K-4
  • Something's Fishy at Lake Iwannafisha  Gr. 5-9
  • Teaching Technology  Gr. 3-12+
  • Tell Me a Story  Gr. PreK-1
  • Think Analogies  Gr. 3-12+
  • Think and Write  Gr. 3-8
  • Think-A-Grams  Gr. 4-12+
  • Thinking About Time  Gr. 3-6
  • Thinking Connections  Gr. 4-12+
  • Thinking Directionally  Gr. 2-6
  • Thinking Skills & Key Concepts  Gr. PreK-2
  • Thinking Skills for Tests  Gr. PreK-5
  • U.S. History Detective  Gr. 8-12+
  • Understanding Fractions  Gr. 2-6
  • Visual Perceptual Skill Building  Gr. PreK-3
  • Vocabulary Riddles  Gr. 4-8
  • Vocabulary Smarts  Gr. 2-5
  • Vocabulary Virtuoso  Gr. 2-12+
  • What Would You Do?  Gr. 2-12+
  • Who Is This Kid? Colleges Want to Know!  Gr. 9-12+
  • Word Explorer  Gr. 6-8
  • Word Roots  Gr. 3-12+
  • World History Detective  Gr. 6-12+
  • Writing Detective  Gr. 3-6
  • You Decide!  Gr. 6-12+

mathematical critical thinking

Mathematical Reasoning™

Bridging the gap between computation and math reasoning.

Grades: Toddler-11

Mathematics

Full curriculum

  •  Multiple Award Winner

Forget boring math lessons and dreaded drill sheets.  These fun, colorful books use engaging lessons with easy-to-follow explanations, examples, and charts to make mathematical concepts easy to understand.  They can be used as textbooks or comprehensive workbooks with your textbooks to teach the math skills and concepts that students are expected to know in each grade—and several concepts normally taught in the next grade. Every lesson is followed with a variety of fun, colorful activities to ensure concept mastery.  The lessons and activities spiral slowly, allowing students to become comfortable with concepts, but also challenging them to continue building their problem-solving skills.  These books teach more than mathematical concepts; they teach mathematical reasoning, so students learn to devise different strategies to solve a wide variety of math problems.  All books are written to the standards of the National Council of Teachers of Mathematics.

Beginning 1 , Beginning 2 , and Level A Contents

Mathematical Reasoning Content Chart

Understanding Pre-Algebra This book teaches and develops the math concepts and critical thinking skills necessary for success in Algebra I and future mathematics courses at the high school level.  It was written with the premise that students cannot problem solve or take leaps of reasoning without understanding the concepts and elements that lead to discovery.  The author—with 35 years of experience teaching mathematics—is a firm believer that understanding leads to confidence and confidence gives students the resolve to succeed in higher level mathematics rather than fear it.   It is standards-based, but what makes it different from other pre-algebra books is that it organizes concepts in a logical fashion, stressing practice and critical thinking. It avoids the mistakes—found in many other math books—of trying to teach new concepts before students receive the prerequisite skills and practice necessary for success. The concepts are presented clearly and in connection to other concepts. Math vocabulary is very important to success in higher mathematics, so this book includes easy-to-follow explanations and a user-friendly glossary.

Free Detailed Solutions are available!

Understanding Pre-Algebra Contents

Understanding Geometry The successful completion of this colorful 272-page book will prepare middle schoolers for high school geometry. It covers more than 50% of the concepts taught in high school geometry using a step-by-step approach and teaches the reasoning behind the properties taught in geometry–instead of merely asking them to memorize them. Students are also taught the basics of geometric proofs and coordinate geometry in a way middle school students can understand. Students who struggle with high school geometry usually have lower standardized test scores because it is a fundamental subject in high school standardized testing. A glossary of terms that every student should master is included. This book can be used as a classroom textbook in Grades 7, 8, or 9 (usually over a two-year period) or as a reference for high school students. This book covers more than the National Math Standards for middle school mathematics.

Understanding Geometry Contents

NOTE:  It is our recommendation that students complete Understanding Pre-Algebra (see description above) before attempting Understanding Geometry .

Understanding Algebra I This is a one-year Algebra I course for Grades 7-9. Students who have a solid algebra background will have no trouble with the algebra problems from SAT and even the GRE.  This 384-page book highlights vocabulary and notation, and has examples from the history of math. What makes this book unique and different from other algebra textbooks is that it is built from the experiences of an award-winning algebra teacher with more than 30 years of teaching experience. Many textbooks are written by a committee of authors, and many of those authors have little experience teaching beginning algebra students in middle school or high school. Understanding Algebra I presents the most essential concepts and skills needed to fully understand and gain confidence in algebra in a step-by-step fashion, teaching students that algebra is generalized arithmetic. It helps students see the connection between mathematics that they already know and algebra, so that learning algebra becomes easier and less abstract. This book provides students with real strategies to succeed in solving word problems by using charts and translating strategies that guarantee success.

Understanding Algebra I Contents

Essential Algebra for Advanced High School and SAT

Discover Essential Algebra for Advanced High School and SAT , a 241-page math book in the esteemed Mathematical Reasoning series written by award-winning author and teacher with 30 years of expertise in secondary mathematics. This powerful resource teaches the ‘essential’ connection of arithmetic and geometric concepts with algebraic concepts. Without this understanding, students tend to memorize Algebra I problem-solving steps—which is sufficient to pass Algebra I—but leaves them unprepared for math courses beyond Algebra I and the SATs. Algebra, the essential language of all advanced mathematics, lies at the core of this book's teachings. By delving into the generalized arithmetic that underpins algebra, students develop a solid foundation in the rules governing number and fraction operations, including factors and multiples. This vital knowledge empowers students to move beyond mere memorization of Algebra I problem-solving steps and confidently tackle the complexities of math courses beyond Algebra I. Without the knowledge and skills taught in this book, students often struggle or even fail in advanced mathematics courses and on the SATs. Imagine a good high school student who sees a problem like 3•x•y•4 and hesitates to write 12xy due to uncertainty about the rules governing multiplication. Or not understanding how to add 2x to 1/4y to combine it into a single fraction. Or why –6 2 is different than (–6) 2 . It is easy to see that not having a strong understanding of the foundational rules of algebra can stop even the smartest students from succeeding in advanced high school math courses. Essential Algebra for Advanced High School and SAT serves as a companion to an Algebra I course or aids in post-Algebra I readiness. To ensure students’ long-term success in advanced math beyond Algebra I, this book teaches the following 'essential' mathematics skills and concepts:

  • Understanding Terms and Order of Operations
  • Understanding the Family of Real Numbers
  • Rationals and Irrationals
  • Working with Terms and Polynomials
  • Polynomial Division, Factoring, and Rational Expressions
  • Solving Equations and Inequalities
  • Ratio, Proportion, and Percent
  • How Algebra is Used in Geometry
  • Understanding Functions
  • Working With Quadratic Equations and Functions

Mathematical Reasoning™ Supplements These supplemental books reinforce grade math concepts and skills by asking students to apply these skills and concepts to non-routine problems. Applying mathematical knowledge to new problems is the ultimate test of concept mastery and mathematical reasoning. These user-friendly, engaging books are made up of 50 theme-based collections of problems, conveniently grouped in self-contained, double-sided activity sheets that provide space for student work. Each collection contains relevant math facts at the end of the worksheet in case students need hints to solve the problems. Calculators are allowed on activity sets that have a calculator icon at the top of the front side of the set. Each activity set is accompanied by a single-sided answer sheet containing strategy tips and detailed solutions. Teachers and parents will appreciate the easy-to-understand, comprehensive solutions. These books are a wonderful enrichment tool, but also can be used to assess how well students have learned their grade level's math concepts.

Description and Features

All products in this series.

    • Our eBooks digital, electronic versions of the book pages that you may print to any paper printer.     • You can open the PDF eBook from any device or computer that has a PDF reader such as Adobe® Reader®.     • Licensee can legally keep a copy of this eBook on three different devices. View our eBook license agreement details here .     • You can immediately download your eBook from "My Account" under the "My Downloadable Product" section after you place your order.

  • Add to Cart Add to Cart Remove This Item
  • Special of the Month
  • Sign Up for our Best Offers
  • Bundles = Greatest Savings!
  • Sign Up for Free Puzzles
  • Sign Up for Free Activities
  • Toddler (Ages 0-3)
  • PreK (Ages 3-5)
  • Kindergarten (Ages 5-6)
  • 1st Grade (Ages 6-7)
  • 2nd Grade (Ages 7-8)
  • 3rd Grade (Ages 8-9)
  • 4th Grade (Ages 9-10)
  • 5th Grade (Ages 10-11)
  • 6th Grade (Ages 11-12)
  • 7th Grade (Ages 12-13)
  • 8th Grade (Ages 13-14)
  • 9th Grade (Ages 14-15)
  • 10th Grade (Ages 15-16)
  • 11th Grade (Ages 16-17)
  • 12th Grade (Ages 17-18)
  • 12th+ Grade (Ages 18+)
  • Test Prep Directory
  • Test Prep Bundles
  • Test Prep Guides
  • Preschool Academics
  • Store Locator
  • Submit Feedback/Request
  • Sales Alerts Sign-Up
  • Technical Support
  • Mission & History
  • Articles & Advice
  • Testimonials
  • Our Guarantee
  • New Products
  • Free Activities
  • Libros en Español

Critical thinking definition

mathematical critical thinking

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

Critical Thinking in Mathematics Education

  • Reference work entry
  • First Online: 01 January 2014
  • Cite this reference work entry

Book cover

  • Eva Jablonka 2  

813 Accesses

2 Citations

16 Altmetric

  • Logical thinking
  • Argumentation
  • Deductive reasoning
  • Mathematical problem solving
  • Mathematical literacy
  • Critical judgment
  • Goals of mathematics education

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Appelbaum P, Davila E (2009) Math education and social justice: gatekeepers, politics and teacher agency. In: Ernest P, Greer B, Sriraman B (eds) Critical issues in mathematics education. Information Age, Charlotte, pp 375–394

Google Scholar  

Applebaum M, Leikin R (2007) Looking back at the beginning: critical thinking in solving unrealistic problems. Mont Math Enthus 4(2):258–265

Bacon F (1605) Of the proficience and advancement of learning, divine and human. Second Book (transcribed from the 1893 Cassell & Company edition by David Price. Available at: http://www.gutenberg.org/dirs/etext04/adlr10h.htm

Common Core State Standards Initiative (2010) Mathematics standards. http://www.corestandards.org/Math . Accessed 20 July 2013

Ernest P (2010) The scope and limits of critical mathematics education. In: Alrø H, Ravn O, Valero P (eds) Critical mathematics education: past, present and future. Sense Publishers, Rotterdam, pp 65–87

Fawcett HP (1938) The nature of proof. Bureau of Publications, Columbia, New York City. University (Re-printed by the National Council of Teachers of Mathematics in 1995)

Fenner P (1994) Spiritual inquiry in Buddhism. ReVision 17(2):13–24

Fish M, Persaud A (2012) (Re)presenting critical mathematical thinking through sociopolitical narratives as mathematics texts. In: Hickman H, Porfilio BJ (eds) The new politics of the textbook. Sense Publishers, Rotterdam, pp 89–110

Chapter   Google Scholar  

Garfield JL (1990) Epoche and śūnyatā: skepticism east and west. Philos East West 40(3):285–307

Article   Google Scholar  

Jablonka E (1997) What makes a model effective and useful (or not)? In: Blum W, Huntley I, Houston SK, Neill N (eds) Teaching and learning mathematical modelling: innovation, investigation and applications. Albion Publishing, Chichester, pp 39–50

Keitel C, Kotzmann E, Skovsmose O (1993) Beyond the tunnel vision: analyzing the relationship between mathematics, society and technology. In: Keitel C, Ruthven K (eds) Learning from computers: mathematics education and technology. Springer, New York, pp 243–279

Legrand M (2001) Scientific debate in mathematics courses. In: Holton D (ed) The teaching and learning of mathematics at university level: an ICMI study. Kluwer, Dordrect, pp 127–137

National Council of Teachers of Mathematics (NCTM) (1989) Curriculum and evaluation standards for school mathematics. National Council of Teachers of Mathematics (NCTM), Reston

O’Daffer PG, Thomquist B (1993) Critical thinking, mathematical reasoning, and proof. In: Wilson PS (ed) Research ideas for the classroom: high school mathematics. MacMillan/National Council of Teachers of Mathematics, New York, pp 31–40

Paul R, Elder L (2001) The miniature guide to critical thinking concepts and tools. Foundation for Critical Thinking Press, Dillon Beach

Pimm D (1990) Mathematical versus political awareness: some political dangers inherent in the teaching of mathematics. In: Noss R, Brown A, Dowling P, Drake P, Harris M, Hoyles C et al (eds) Political dimensions of mathematics education: action and critique. Institute of Education, University of London, London

Skovsmose O (1989) Models and reflective knowledge. Zentralblatt für Didaktik der Mathematik 89(1):3–8

Stallman J (2003) John Dewey’s new humanism and liberal education for the 21st century. Educ Cult 20(2):18–22

Steiner H-G (1988) Theory of mathematics education and implications for scholarship. In: Steiner H-G, Vermandel A (eds) Foundations and methodology of the discipline mathematics education, didactics of mathematics. In: Proceedings of the second tme conference, Bielefeld-Antwerpen, pp 5–20

Walkerdine V (1988) The mastery of reason: cognitive development and the production of rationality. Routledge, London

Walshaw M (2003) Democratic education under scrutiny: connections between mathematics education and feminist political discourses. Philos Math Educ J 17. http://people.exeter.ac.uk/PErnest/pome17/contents.htm

Download references

Author information

Authors and affiliations.

Department of Education and Professional Studies, King’s College London, Waterloo Bridge Wing Franklin-Wilkins Building, SE1 9NH, London, UK

Eva Jablonka

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Eva Jablonka .

Editor information

Editors and affiliations.

Department of Education, Centre for Mathematics Education, London South Bank University, London, UK

Stephen Lerman

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry.

Jablonka, E. (2014). Critical Thinking in Mathematics Education. In: Lerman, S. (eds) Encyclopedia of Mathematics Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4978-8_35

Download citation

DOI : https://doi.org/10.1007/978-94-007-4978-8_35

Published : 31 July 2014

Publisher Name : Springer, Dordrecht

Print ISBN : 978-94-007-4977-1

Online ISBN : 978-94-007-4978-8

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Christopher Dwyer Ph.D.

Thinking About Kahneman’s Contribution to Critical Thinking

A nobel laureate on contributions on the importance of 'thinking slow.'.

Updated April 10, 2024 | Reviewed by Lybi Ma

  • Kahneman won a Nobel Memorial Prize in Economics for his work.
  • He found that people are often irrational about economics.

During my Ph.D. studies, I recall focusing on reconceptualising what we know of as critical thinking to include reflective judgment (not jumping to conclusions and taking your time in your decision-making to consider the nature limits, and certainty of knowing) on par with the commonly accepted skills and dispositions components. The importance of reflective judgment wasn’t a particularly novel idea – a good deal of research on reflective judgment and similar processes akin to critical thinking had already been conducted (see King and Kitchener, 1994; Kuhn, 1999; 2000; Stanovich, 1999). However, reflective judgment – as opposed to intuitive judgment – didn’t seem to have ‘the presence’ in the discussion of critical thinking that it does today.

The same month I submitted my Ph.D. back in 2011, a book was released that massively helped to accomplish what I had been working to help facilitate – changing the terrain of thought surrounding critical thinking: Thinking, Fast, and Slow . Its author, Daniel Kahneman, passed away a couple of weeks ago at age 90. Psychology students will likely recognise the name associated with Amos Tversky and their classic work together in the 1970s on the availability, representativeness, and anchoring and adjustment heuristics (for example, Tversky and Kahneman, 1974). Indeed, such heuristics, alongside the affect heuristic (Kahneman and Frederick, 2002; Slovic and colleagues, 2002) play a large role in how we think about thinking and barriers to critical thought. In 2002, Kahneman won a Nobel Memorial Prize in Economics for his work on prospect theory concerning loss aversion and people’s often irrational approach to economics. Indeed, Kahneman’s resume is full of awards and achievements.

However, the accomplishment I will remember him best for is the publication of Thinking, Fast, and Slow and its contribution to the field of critical thinking. Funny enough, I don’t recall the term, critical thinking being used very often in the book, if at all – and I read it two or three times. No, critical thinking was not the focus of his book; rather system 1 (fast) and 2 (slow) thinking (see also Stanovich, 1999) – intuitive and reflective judgment. Not only did this book put into the spotlight many of the mechanics of reflective judgment for fellow academics and researchers of cognitive psychology, it also did so l for non-academic audiences – becoming a New York Times bestseller. Moreover, it won the Los Angeles Times Book Award for Current Interest, and the National Academy of Sciences Communication Award for Best Book (both in 2011). Good thinking was cool again in popular culture.

In the critical thinking literature, reflective judgment – regardless of what you want to call it (for example, system 2 thinking, epistemological understanding, ‘taking your time’) – is becoming more accepted as a core component of critical thinking. The field of critical thinking research and psychology more broadly, owes Kahneman a debt of gratitude for his contributions in helping shine a light on the importance of ‘thinking slow’. Thank you .

Kahneman, D. (2011). Thinking, fast and slow . 2UK: Penguin.

Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. Heuristics and biases: The Psychology of Intuitive Judgment , 49 (49-81), 74.

King, P. M., & Kitchener, K. S. (1994). Developing Reflective Judgment: Understanding and Promoting Intellectual Growth and Critical Thinking in Adolescents and Adults. CA: Jossey-Bass.

King, P. M., & Kitchener, K. S. (2004). Reflective judgment: Theory and research on the development of epistemic assumptions through adulthood. Educational Psychologist, 39 (1), 5–15.

Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher , 28 (2), 16-46.

Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science , 9 (5), 178-181.

Slovic, P., Finucane, M., Peters, E., & MacGregor, D. G. (2002). Rational actors or rational fools: Implications of the affect heuristic for behavioral economics. The Journal of Socio-economics , 31 (4), 329-342.

Stanovich, K.E. (1999) Who is rational? Studies of individual differences in reasoning. Mahwah, Erlbaum.

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science , 185 (4157), 1124-1131.

Christopher Dwyer Ph.D.

Christopher Dwyer, Ph.D., is a lecturer at the Technological University of the Shannon in Athlone, Ireland.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. PSLE Mathematics Critical Thinking Practice In Challenging Problem Sums

    mathematical critical thinking

  2. Critical Thinking in Mathematics: KS2

    mathematical critical thinking

  3. 6 Examples of Critical Thinking Skills

    mathematical critical thinking

  4. Critical Thinking Skills in Mathematics / 978-3-8433-1612-5

    mathematical critical thinking

  5. Mohan Dhall's Critical Thinking Skills and Mathematical Reasoning

    mathematical critical thinking

  6. FREE Award-Winning Critical Thinking Puzzles! Sign Up Today! Delivered

    mathematical critical thinking

VIDEO

  1. Conceptual Curiosities : A Course Introduction to Poly Mathematical Thinking

  2. Brain Teasers Unleashed: Fascinating Math Challenges to Test Your Skills! 27 #maths #puzzle #riddles

  3. Level 19 : Math Mystery

  4. Igniting Critical Thinking Using Mathematical Modeling as a Catalyst for Change

  5. A23122041

  6. Critical Thinking: an introduction (1/8)

COMMENTS

  1. PDF Mathematical Teaching Strategies: Pathways to Critical Thinking and

    mathematical problems and also recognize the extent to which reasoning applies to mathematics and how their critical thinking pathway can facilitate decision making and strategic planning. Bloom's Taxonomy provides a framework for critical thinking. These taxonomies provide a method for preparing instructional units, assessing

  2. How To Encourage Critical Thinking in Math

    Critical thinking is more than just a buzzword… It's an essential skill that helps students develop problem-solving abilities and make logical connections between different concepts. By encouraging critical thinking in math, students learn to approach problems more thoughtfully, they learn to analyze and evaluate math concepts, identify patterns and relationships, and explore different ...

  3. Critical Thinking in Mathematics Education

    Definition. Mainstream educational psychologists view critical thinking (CT) as the strategic use of a set of reasoning skills for developing a form of reflective thinking that ultimately optimizes itself, including a commitment to using its outcomes as a basis for decision-making and problem solving.

  4. Introduction to Mathematical Thinking

    Professional mathematicians think a certain way to solve real problems, problems that can arise from the everyday world, or from science, or from within mathematics itself. The key to success in school math is to learn to think inside-the-box. In contrast, a key feature of mathematical thinking is thinking outside-the-box - a valuable ability ...

  5. Mathematical Literacy and Critical Thinking

    The development of mathematical literacy enables students to become skilled critical thinkers and problem-solvers who have a better understanding of the world they live in. However, very often students are unable to understand the mathematical principles and apply them to real-life situations. In many college mathematics classrooms, the lessons ...

  6. Full article: Promoting critical thinking through mathematics and

    1 Introduction and background. Critical thinking has been considered a key twenty-first century competence by different frameworks (Voogt and Roblin Citation 2012) and by STEM educators (Jang Citation 2016).An education contributing to the development of twenty-first century competences requires, among other things, a reconsideration of instructional processes and a shift from teaching to know ...

  7. PDF High-Leverage Critical Thinking Practices and Mathematics

    Critical Thinking and Mathematics While core critical thinking skills, such as logic and argumentation, have a home in every discipline, certain fields provide opportunities to focus on specific critical thinking topics. Mathematics provides many opportunities to learn about and perform deductive reasoning (when learning about geometric proofs ...

  8. Promoting Independent Critical Thinking in Math

    5 Ways to Get Your Students to Think. 1. Answer questions with a refocus on the students' point of view. Liljedahl found in his research that students ask three types of questions: " (1) proximity questions—asked when the teacher is close; (2) stop thinking questions—most often of the form 'is this right' or 'will this be on the ...

  9. Spirit of Mathematics Critical Thinking Skills (CTS)

    The mathematical critical-thinking skill is a process of thinking systematically to develop logical and critical thinking on mathematical problems, which characterize and demand to learn in the 21st century. This conceptual paper aims to analyze the spirit of critical thinking skill, and various approaches that can be applied in mathematics ...

  10. Scoping the meaning of 'critical' in mathematical thinking for Initial

    For preservice teachers, the identified components of critical mathematical thinking, and the opportunities for the kinds of learning that seem necessary to develop it, supports the programme-wide approach currently in use in the MARKITE research project (Cooper et al., 2017). It is difficult to see how preservice teachers could gain the ...

  11. Mathematical Critical Thinking and Creative Thinking Skills

    These values showed that the influence of mathematical critical thinking and creative thinking skills on the students' mathematical achievements was 52%, whereas 48% was influenced by other factors. Then, the coefficient value of creative thinking variable was β1 = 0.363 and the coefficient value of critical thinking variable was β2 = 0.477.

  12. (Pdf) Critical Thinking in Mathematics: What, Why, and How Can Be

    It is a challenge for people to always adapt with changes. Critical thinking can improve student's success in facing this challenge. The specific aims of teaching critical thinking are to improve ...

  13. Developing Students' Mathematical Critical Thinking Skills ...

    This study has two parts: phase I designed activities to support all students' learning preferences, and phase II used open-ended questions and activities based on these preferences to develop students' mathematical critical thinking skills in polynomials at all performance levels (i.e., high-achieving, fair-achieving, and low-achieving students). This research used an embedded ...

  14. (PDF) Students' Critical Thinking Skills in Solving Mathematical

    To develop mathematical critical thinking skills, students are expected to have a fighting attitude in solving mathematical problems. This can support learning that is oriented towards students ...

  15. Measuring Mathematical Critical Thinking

    Abstract. To accompany the identification of epistemological beliefs in the study at hand, an aspect of mathematical knowledge and competence was chosen to be assessed as well. Instead of measuring mathematical achievement in terms of students' knowledge of the content of university courses, we chose to address critical thinking (CT).

  16. (PDF) Mathematical critical thinking ability through Brain based

    The instruments in this study include, instrument tests consisting of 5 items of mathematical critical thinking and 30 items of Self-Regulated Learning questionnaire. The research method used is a ...

  17. Mathematical Reasoning™ Series

    Essential Algebra for Advanced High School and SAT. Discover Essential Algebra for Advanced High School and SAT, a 241-page math book in the esteemed Mathematical Reasoning series written by award-winning author and teacher with 30 years of expertise in secondary mathematics. This powerful resource teaches the 'essential' connection of ...

  18. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  19. Critical Thinking in Mathematics Education

    Educational psychologists frame critical thinking (CT) as a set of generic thinking and reasoning skills, including a disposition for using them, as well as a commitment to using the outcomes of CT as a basis for decision-making and problem solving. In such descriptions, CT is established as a general standard for making judgments and decisions.

  20. Thinking About Kahneman's Contribution to Critical Thinking

    No, critical thinking was not the focus of his book; rather system 1 (fast) and 2 (slow) thinking (see also Stanovich, 1999) - intuitive and reflective judgment.

  21. Seminar on Thinking About Complexity in the Context of Global Security

    Thinking About Complexity in the Context of Global Security How do complex systems and global security intersect? As humanity has become more connected via technological innovations, the world has indeed become more complex, presenting a significant epistemic challenge: how do we gain insight into these systems? Consider, for example, the widespread use of artificial intelligence, a set of ...