Logo for Milne Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 3: Hypothesis Testing

The previous two chapters introduced methods for organizing and summarizing sample data, and using sample statistics to estimate population parameters. This chapter introduces the next major topic of inferential statistics: hypothesis testing.

A hypothesis is a statement or claim about a property of a population.

The Fundamentals of Hypothesis Testing

When conducting scientific research, typically there is some known information, perhaps from some past work or from a long accepted idea. We want to test whether this claim is believable. This is the basic idea behind a hypothesis test:

  • State what we think is true.
  • Quantify how confident we are about our claim.
  • Use sample statistics to make inferences about population parameters.

For example, past research tells us that the average life span for a hummingbird is about four years. You have been studying the hummingbirds in the southeastern United States and find a sample mean lifespan of 4.8 years. Should you reject the known or accepted information in favor of your results? How confident are you in your estimate? At what point would you say that there is enough evidence to reject the known information and support your alternative claim? How far from the known mean of four years can the sample mean be before we reject the idea that the average lifespan of a hummingbird is four years?

Hypothesis testing is a procedure, based on sample evidence and probability, used to test claims regarding a characteristic of a population.

A hypothesis is a claim or statement about a characteristic of a population of interest to us. A hypothesis test is a way for us to use our sample statistics to test a specific claim.

The population mean weight is known to be 157 lb. We want to test the claim that the mean weight has increased.

Two years ago, the proportion of infected plants was 37%. We believe that a treatment has helped, and we want to test the claim that there has been a reduction in the proportion of infected plants.

Components of a Formal Hypothesis Test

The null hypothesis is a statement about the value of a population parameter, such as the population mean (µ) or the population proportion ( p ). It contains the condition of equality and is denoted as H 0 (H-naught).

H 0 : µ = 157 or H 0 : p = 0.37

The alternative hypothesis is the claim to be tested, the opposite of the null hypothesis. It contains the value of the parameter that we consider plausible and is denoted as H 1 .

H 1 : µ > 157 or H 1 : p ≠ 0.37

The test statistic is a value computed from the sample data that is used in making a decision about the rejection of the null hypothesis. The test statistic converts the sample mean ( x̄ ) or sample proportion ( p̂ ) to a Z- or t-score under the assumption that the null hypothesis is true . It is used to decide whether the difference between the sample statistic and the hypothesized claim is significant.

The p-value is the area under the curve to the left or right of the test statistic. It is compared to the level of significance ( α ).

The critical value is the value that defines the rejection zone (the test statistic values that would lead to rejection of the null hypothesis). It is defined by the level of significance.

The level of significance ( α ) is the probability that the test statistic will fall into the critical region when the null hypothesis is true. This level is set by the researcher.

The conclusion is the final decision of the hypothesis test. The conclusion must always be clearly stated, communicating the decision based on the components of the test. It is important to realize that we never prove or accept the null hypothesis. We are merely saying that the sample evidence is not strong enough to warrant the rejection of the null hypothesis. The conclusion is made up of two parts:

1) Reject or fail to reject the null hypothesis, and 2) there is or is not enough evidence to support the alternative claim.

Option 1) Reject the null hypothesis (H 0 ). This means that you have enough statistical evidence to support the alternative claim (H 1 ).

Option 2) Fail to reject the null hypothesis (H 0 ). This means that you do NOT have enough evidence to support the alternative claim (H 1 ).

Another way to think about hypothesis testing is to compare it to the US justice system. A defendant is innocent until proven guilty (Null hypothesis—innocent). The prosecuting attorney tries to prove that the defendant is guilty (Alternative hypothesis—guilty). There are two possible conclusions that the jury can reach. First, the defendant is guilty (Reject the null hypothesis). Second, the defendant is not guilty (Fail to reject the null hypothesis). This is NOT the same thing as saying the defendant is innocent! In the first case, the prosecutor had enough evidence to reject the null hypothesis (innocent) and support the alternative claim (guilty). In the second case, the prosecutor did NOT have enough evidence to reject the null hypothesis (innocent) and support the alternative claim of guilty.

The Null and Alternative Hypotheses

There are three different pairs of null and alternative hypotheses:

4333.png

where c is some known value.

A Two-sided Test

This tests whether the population parameter is equal to, versus not equal to, some specific value.

H o : μ = 12 vs. H 1 : μ ≠ 12

The critical region is divided equally into the two tails and the critical values are ± values that define the rejection zones.

Image36341.PNG

A forester studying diameter growth of red pine believes that the mean diameter growth will be different if a fertilization treatment is applied to the stand.

  • H o : μ = 1.2 in./ year
  • H 1 : μ ≠ 1.2 in./ year

This is a two-sided question, as the forester doesn’t state whether population mean diameter growth will increase or decrease.

A Right-sided Test

This tests whether the population parameter is equal to, versus greater than, some specific value.

H o : μ = 12 vs. H 1 : μ > 12

The critical region is in the right tail and the critical value is a positive value that defines the rejection zone.

Image36349.PNG

A biologist believes that there has been an increase in the mean number of lakes infected with milfoil, an invasive species, since the last study five years ago.

  • H o : μ = 15 lakes
  • H 1 : μ >15 lakes

This is a right-sided question, as the biologist believes that there has been an increase in population mean number of infected lakes.

A Left-sided Test

This tests whether the population parameter is equal to, versus less than, some specific value.

H o : μ = 12 vs. H 1 : μ < 12

The critical region is in the left tail and the critical value is a negative value that defines the rejection zone.

Image36357.PNG

A scientist’s research indicates that there has been a change in the proportion of people who support certain environmental policies. He wants to test the claim that there has been a reduction in the proportion of people who support these policies.

  • H o : p = 0.57
  • H 1 : p < 0.57

This is a left-sided question, as the scientist believes that there has been a reduction in the true population proportion.

Statistically Significant

When the observed results (the sample statistics) are unlikely (a low probability) under the assumption that the null hypothesis is true, we say that the result is statistically significant, and we reject the null hypothesis. This result depends on the level of significance, the sample statistic, sample size, and whether it is a one- or two-sided alternative hypothesis.

Types of Errors

When testing, we arrive at a conclusion of rejecting the null hypothesis or failing to reject the null hypothesis. Such conclusions are sometimes correct and sometimes incorrect (even when we have followed all the correct procedures). We use incomplete sample data to reach a conclusion and there is always the possibility of reaching the wrong conclusion. There are four possible conclusions to reach from hypothesis testing. Of the four possible outcomes, two are correct and two are NOT correct.

4298.png

A Type I error is when we reject the null hypothesis when it is true. The symbol α (alpha) is used to represent Type I errors. This is the same alpha we use as the level of significance. By setting alpha as low as reasonably possible, we try to control the Type I error through the level of significance.

A Type II error is when we fail to reject the null hypothesis when it is false. The symbol β (beta) is used to represent Type II errors.

In general, Type I errors are considered more serious. One step in the hypothesis test procedure involves selecting the significance level ( α ), which is the probability of rejecting the null hypothesis when it is correct. So the researcher can select the level of significance that minimizes Type I errors. However, there is a mathematical relationship between α, β , and n (sample size).

  • As α increases, β decreases
  • As α decreases, β increases
  • As sample size increases (n), both α and β decrease

The natural inclination is to select the smallest possible value for α, thinking to minimize the possibility of causing a Type I error. Unfortunately, this forces an increase in Type II errors. By making the rejection zone too small, you may fail to reject the null hypothesis, when, in fact, it is false. Typically, we select the best sample size and level of significance, automatically setting β .

Image36377.PNG

Power of the Test

A Type II error ( β ) is the probability of failing to reject a false null hypothesis. It follows that 1- β is the probability of rejecting a false null hypothesis. This probability is identified as the power of the test, and is often used to gauge the test’s effectiveness in recognizing that a null hypothesis is false.

The probability that at a fixed level α significance test will reject H 0 , when a particular alternative value of the parameter is true is called the power of the test.

Power is also directly linked to sample size. For example, suppose the null hypothesis is that the mean fish weight is 8.7 lb. Given sample data, a level of significance of 5%, and an alternative weight of 9.2 lb., we can compute the power of the test to reject μ = 8.7 lb. If we have a small sample size, the power will be low. However, increasing the sample size will increase the power of the test. Increasing the level of significance will also increase power. A 5% test of significance will have a greater chance of rejecting the null hypothesis than a 1% test because the strength of evidence required for the rejection is less. Decreasing the standard deviation has the same effect as increasing the sample size: there is more information about μ .

Hypothesis Test about the Population Mean ( μ ) when the Population Standard Deviation ( σ ) is Known

We are going to examine two equivalent ways to perform a hypothesis test: the classical approach and the p-value approach. The classical approach is based on standard deviations. This method compares the test statistic (Z-score) to a critical value (Z-score) from the standard normal table. If the test statistic falls in the rejection zone, you reject the null hypothesis. The p-value approach is based on area under the normal curve. This method compares the area associated with the test statistic to alpha ( α ), the level of significance (which is also area under the normal curve). If the p-value is less than alpha, you would reject the null hypothesis.

As a past student poetically said: If the p-value is a wee value, Reject Ho

Both methods must have:

  • Data from a random sample.
  • Verification of the assumption of normality.
  • A null and alternative hypothesis.
  • A criterion that determines if we reject or fail to reject the null hypothesis.
  • A conclusion that answers the question.

There are four steps required for a hypothesis test:

  • State the null and alternative hypotheses.
  • State the level of significance and the critical value.
  • Compute the test statistic.
  • State a conclusion.

The Classical Method for Testing a Claim about the Population Mean ( μ ) when the Population Standard Deviation ( σ ) is Known

A forester studying diameter growth of red pine believes that the mean diameter growth will be different from the known mean growth of 1.35 inches/year if a fertilization treatment is applied to the stand. He conducts his experiment, collects data from a sample of 32 plots, and gets a sample mean diameter growth of 1.6 in./year. The population standard deviation for this stand is known to be 0.46 in./year. Does he have enough evidence to support his claim?

Step 1) State the null and alternative hypotheses.

  • H o : μ = 1.35 in./year
  • H 1 : μ ≠ 1.35 in./year

Step 2) State the level of significance and the critical value.

  • We will choose a level of significance of 5% ( α = 0.05).
  • For a two-sided question, we need a two-sided critical value – Z α /2 and + Z α /2 .
  • The level of significance is divided by 2 (since we are only testing “not equal”). We must have two rejection zones that can deal with either a greater than or less than outcome (to the right (+) or to the left (-)).
  • We need to find the Z-score associated with the area of 0.025. The red areas are equal to α /2 = 0.05/2 = 0.025 or 2.5% of the area under the normal curve.
  • Go into the body of values and find the negative Z-score associated with the area 0.025.

Image36387.PNG

  • The negative critical value is -1.96. Since the curve is symmetric, we know that the positive critical value is 1.96.
  • ±1.96 are the critical values. These values set up the rejection zone. If the test statistic falls within these red rejection zones, we reject the null hypothesis.

Step 3) Compute the test statistic.

  • The test statistic is the number of standard deviations the sample mean is from the known mean. It is also a Z-score, just like the critical value.

4266.png

  • For this problem, the test statistic is

4258.png

Step 4) State a conclusion.

  • Compare the test statistic to the critical value. If the test statistic falls into the rejection zones, reject the null hypothesis. In other words, if the test statistic is greater than +1.96 or less than -1.96, reject the null hypothesis.

Image36395.PNG

In this problem, the test statistic falls in the red rejection zone. The test statistic of 3.07 is greater than the critical value of 1.96.We will reject the null hypothesis. We have enough evidence to support the claim that the mean diameter growth is different from (not equal to) 1.35 in./year.

A researcher believes that there has been an increase in the average farm size in his state since the last study five years ago. The previous study reported a mean size of 450 acres with a population standard deviation ( σ ) of 167 acres. He samples 45 farms and gets a sample mean of 485.8 acres. Is there enough information to support his claim?

  • H o : μ = 450 acres
  • H 1 : μ >450 acres
  • For a one-sided question, we need a one-sided positive critical value Z α .
  • The level of significance is all in the right side (the rejection zone is just on the right side).
  • We need to find the Z-score associated with the 5% area in the right tail.

Image36403.PNG

  • Go into the body of values in the standard normal table and find the Z-score that separates the lower 95% from the upper 5%.
  • The critical value is 1.645. This value sets up the rejection zone.

4232.png

  • Compare the test statistic to the critical value.

Image36415.PNG

  • The test statistic does not fall in the rejection zone. It is less than the critical value.

We fail to reject the null hypothesis. We do not have enough evidence to support the claim that the mean farm size has increased from 450 acres.

A researcher believes that there has been a reduction in the mean number of hours that college students spend preparing for final exams. A national study stated that students at a 4-year college spend an average of 23 hours preparing for 5 final exams each semester with a population standard deviation of 7.3 hours. The researcher sampled 227 students and found a sample mean study time of 19.6 hours. Does this indicate that the average study time for final exams has decreased? Use a 1% level of significance to test this claim.

  • H o : μ = 23 hours
  • H 1 : μ < 23 hours
  • This is a left-sided test so alpha (0.01) is all in the left tail.

Image36427.PNG

  • Go into the body of values in the standard normal table and find the Z-score that defines the lower 1% of the area.
  • The critical value is -2.33. This value sets up the rejection zone.

4198.png

  • The test statistic falls in the rejection zone. The test statistic of -7.02 is less than the critical value of -2.33.

We reject the null hypothesis. We have sufficient evidence to support the claim that the mean final exam study time has decreased below 23 hours.

Testing a Hypothesis using P-values

The p-value is the probability of observing our sample mean given that the null hypothesis is true. It is the area under the curve to the left or right of the test statistic. If the probability of observing such a sample mean is very small (less than the level of significance), we would reject the null hypothesis. Computations for the p-value depend on whether it is a one- or two-sided test.

Steps for a hypothesis test using p-values:

  • State the level of significance.
  • Compute the test statistic and find the area associated with it (this is the p-value).
  • Compare the p-value to alpha ( α ) and state a conclusion.

Instead of comparing Z-score test statistic to Z-score critical value, as in the classical method, we compare area of the test statistic to area of the level of significance.

The Decision Rule: If the p-value is less than alpha, we reject the null hypothesis

Computing P-values

If it is a two-sided test (the alternative claim is ≠), the p-value is equal to two times the probability of the absolute value of the test statistic. If the test is a left-sided test (the alternative claim is “<”), then the p-value is equal to the area to the left of the test statistic. If the test is a right-sided test (the alternative claim is “>”), then the p-value is equal to the area to the right of the test statistic.

Let’s look at Example 6 again.

A forester studying diameter growth of red pine believes that the mean diameter growth will be different from the known mean growth of 1.35 in./year if a fertilization treatment is applied to the stand. He conducts his experiment, collects data from a sample of 32 plots, and gets a sample mean diameter growth of 1.6 in./year. The population standard deviation for this stand is known to be 0.46 in./year. Does he have enough evidence to support his claim?

Step 2) State the level of significance.

  • For this problem, the test statistic is:

4169.png

The p-value is two times the area of the absolute value of the test statistic (because the alternative claim is “not equal”).

Image36447.PNG

  • Look up the area for the Z-score 3.07 in the standard normal table. The area (probability) is equal to 1 – 0.9989 = 0.0011.
  • Multiply this by 2 to get the p-value = 2 * 0.0011 = 0.0022.

Step 4) Compare the p-value to alpha and state a conclusion.

  • Use the Decision Rule (if the p-value is less than α , reject H 0 ).
  • In this problem, the p-value (0.0022) is less than alpha (0.05).
  • We reject the H 0 . We have enough evidence to support the claim that the mean diameter growth is different from 1.35 inches/year.

Let’s look at Example 7 again.

4154.png

The p-value is the area to the right of the Z-score 1.44 (the hatched area).

  • This is equal to 1 – 0.9251 = 0.0749.
  • The p-value is 0.0749.

Image36455.PNG

  • Use the Decision Rule.
  • In this problem, the p-value (0.0749) is greater than alpha (0.05), so we Fail to Reject the H 0 .
  • The area of the test statistic is greater than the area of alpha ( α ).

We fail to reject the null hypothesis. We do not have enough evidence to support the claim that the mean farm size has increased.

Let’s look at Example 8 again.

  • H 0 : μ = 23 hours

4138.png

The p-value is the area to the left of the test statistic (the little black area to the left of -7.02). The Z-score of -7.02 is not on the standard normal table. The smallest probability on the table is 0.0002. We know that the area for the Z-score -7.02 is smaller than this area (probability). Therefore, the p-value is <0.0002.

Image36463.PNG

  • In this problem, the p-value (p<0.0002) is less than alpha (0.01), so we Reject the H 0 .
  • The area of the test statistic is much less than the area of alpha ( α ).

We reject the null hypothesis. We have enough evidence to support the claim that the mean final exam study time has decreased below 23 hours.

Both the classical method and p-value method for testing a hypothesis will arrive at the same conclusion. In the classical method, the critical Z-score is the number on the z-axis that defines the level of significance ( α ). The test statistic converts the sample mean to units of standard deviation (a Z-score). If the test statistic falls in the rejection zone defined by the critical value, we will reject the null hypothesis. In this approach, two Z-scores, which are numbers on the z-axis, are compared. In the p-value approach, the p-value is the area associated with the test statistic. In this method, we compare α (which is also area under the curve) to the p-value. If the p-value is less than α , we reject the null hypothesis. The p-value is the probability of observing such a sample mean when the null hypothesis is true. If the probability is too small (less than the level of significance), then we believe we have enough statistical evidence to reject the null hypothesis and support the alternative claim.

Software Solutions

(referring to Ex. 8)

052_1.tif

One-Sample Z

Excel does not offer 1-sample hypothesis testing.

Hypothesis Test about the Population Mean ( μ ) when the Population Standard Deviation ( σ ) is Unknown

Frequently, the population standard deviation (σ) is not known. We can estimate the population standard deviation (σ) with the sample standard deviation (s). However, the test statistic will no longer follow the standard normal distribution. We must rely on the student’s t-distribution with n-1 degrees of freedom. Because we use the sample standard deviation (s), the test statistic will change from a Z-score to a t-score.

4093.png

Steps for a hypothesis test are the same that we covered in Section 2.

Just as with the hypothesis test from the previous section, the data for this test must be from a random sample and requires either that the population from which the sample was drawn be normal or that the sample size is sufficiently large (n≥30). A t-test is robust, so small departures from normality will not adversely affect the results of the test. That being said, if the sample size is smaller than 30, it is always good to verify the assumption of normality through a normal probability plot.

We will still have the same three pairs of null and alternative hypotheses and we can still use either the classical approach or the p-value approach.

4071.png

Selecting the correct critical value from the student’s t-distribution table depends on three factors: the type of test (one-sided or two-sided alternative hypothesis), the sample size, and the level of significance.

For a two-sided test (“not equal” alternative hypothesis), the critical value (t α /2 ), is determined by alpha ( α ), the level of significance, divided by two, to deal with the possibility that the result could be less than OR greater than the known value.

  • If your level of significance was 0.05, you would use the 0.025 column to find the correct critical value (0.05/2 = 0.025).
  • If your level of significance was 0.01, you would use the 0.005 column to find the correct critical value (0.01/2 = 0.005).

For a one-sided test (“a less than” or “greater than” alternative hypothesis), the critical value (t α ) , is determined by alpha ( α ), the level of significance, being all in the one side.

  • If your level of significance was 0.05, you would use the 0.05 column to find the correct critical value for either a left or right-side question. If you are asking a “less than” (left-sided question, your critical value will be negative. If you are asking a “greater than” (right-sided question), your critical value will be positive.

Find the critical value you would use to test the claim that μ ≠ 112 with a sample size of 18 and a 5% level of significance.

In this case, the critical value (t α /2 ) would be 2.110. This is a two-sided question (≠) so you would divide alpha by 2 (0.05/2 = 0.025) and go down the 0.025 column to 17 degrees of freedom.

What would the critical value be if you wanted to test that μ < 112 for the same data?

In this case, the critical value would be 1.740. This is a one-sided question (<) so alpha would be divided by 1 (0.05/1 = 0.05). You would go down the 0.05 column with 17 degrees of freedom to get the correct critical value.

In 2005, the mean pH level of rain in a county in northern New York was 5.41. A biologist believes that the rain acidity has changed. He takes a random sample of 11 rain dates in 2010 and obtains the following data. Use a 1% level of significance to test his claim.

4.70, 5.63, 5.02, 5.78, 4.99, 5.91, 5.76, 5.54, 5.25, 5.18, 5.01

The sample size is small and we don’t know anything about the distribution of the population, so we examine a normal probability plot. The distribution looks normal so we will continue with our test.

4060.png

The sample mean is 5.343 with a sample standard deviation of 0.397.

  • H o : μ = 5.41
  • H 1 : μ ≠ 5.41
  • This is a two-sided question so alpha is divided by two.

Image36502.PNG

  • t α /2 is found by going down the 0.005 column with 14 degrees of freedom.
  • t α /2 = ±3.169.
  • The test statistic is a t-score.

4043.png

  • The test statistic does not fall in the rejection zone.

We will fail to reject the null hypothesis. We do not have enough evidence to support the claim that the mean rain pH has changed.

A One-sided Test

Cadmium, a heavy metal, is toxic to animals. Mushrooms, however, are able to absorb and accumulate cadmium at high concentrations. The government has set safety limits for cadmium in dry vegetables at 0.5 ppm. Biologists believe that the mean level of cadmium in mushrooms growing near strip mines is greater than the recommended limit of 0.5 ppm, negatively impacting the animals that live in this ecosystem. A random sample of 51 mushrooms gave a sample mean of 0.59 ppm with a sample standard deviation of 0.29 ppm. Use a 5% level of significance to test the claim that the mean cadmium level is greater than the acceptable limit of 0.5 ppm.

The sample size is greater than 30 so we are assured of a normal distribution of the means.

  • H o : μ = 0.5 ppm
  • H 1 : μ > 0.5 ppm
  • This is a right-sided question so alpha is all in the right tail.

Image36622.PNG

  • t α is found by going down the 0.05 column with 50 degrees of freedom.
  • t α = 1.676

4009.png

Step 4) State a Conclusion.

Image36634.PNG

The test statistic falls in the rejection zone. We will reject the null hypothesis. We have enough evidence to support the claim that the mean cadmium level is greater than the acceptable safe limit.

BUT, what happens if the significance level changes to 1%?

The critical value is now found by going down the 0.01 column with 50 degrees of freedom. The critical value is 2.403. The test statistic is now LESS THAN the critical value. The test statistic does not fall in the rejection zone. The conclusion will change. We do NOT have enough evidence to support the claim that the mean cadmium level is greater than the acceptable safe limit of 0.5 ppm.

The level of significance is the probability that you, as the researcher, set to decide if there is enough statistical evidence to support the alternative claim. It should be set before the experiment begins.

P-value Approach

We can also use the p-value approach for a hypothesis test about the mean when the population standard deviation ( σ ) is unknown. However, when using a student’s t-table, we can only estimate the range of the p-value, not a specific value as when using the standard normal table. The student’s t-table has area (probability) across the top row in the table, with t-scores in the body of the table.

  • To find the p-value (the area associated with the test statistic), you would go to the row with the number of degrees of freedom.
  • Go across that row until you find the two values that your test statistic is between, then go up those columns to find the estimated range for the p-value.

Estimating P-value from a Student’s T-table

3985.png

If your test statistic is 3.789 with 3 degrees of freedom, you would go across the 3 df row. The value 3.789 falls between the values 3.482 and 4.541 in that row. Therefore, the p-value is between 0.02 and 0.01. The p-value will be greater than 0.01 but less than 0.02 (0.01<p<0.02).

If your level of significance is 5%, you would reject the null hypothesis as the p-value (0.01-0.02) is less than alpha ( α ) of 0.05.

If your level of significance is 1%, you would fail to reject the null hypothesis as the p-value (0.01-0.02) is greater than alpha ( α ) of 0.01.

Software packages typically output p-values. It is easy to use the Decision Rule to answer your research question by the p-value method.

(referring to Ex. 12)

060_1.tif

One-Sample T

Test of mu = 0.5 vs. > 0.5

Additional example: www.youtube.com/watch?v=WwdSjO4VUsg .

Hypothesis Test for a Population Proportion ( p )

Frequently, the parameter we are testing is the population proportion.

  • We are studying the proportion of trees with cavities for wildlife habitat.
  • We need to know if the proportion of people who support green building materials has changed.
  • Has the proportion of wolves that died last year in Yellowstone increased from the year before?

Recall that the best point estimate of p , the population proportion, is given by

5055.png

when np (1 – p )≥10. We can use both the classical approach and the p-value approach for testing.

The steps for a hypothesis test are the same that we covered in Section 2.

The test statistic follows the standard normal distribution. Notice that the standard error (the denominator) uses p instead of p̂ , which was used when constructing a confidence interval about the population proportion. In a hypothesis test, the null hypothesis is assumed to be true, so the known proportion is used.

5019.png

  • The critical value comes from the standard normal table, just as in Section 2. We will still use the same three pairs of null and alternative hypotheses as we used in the previous sections, but the parameter is now p instead of μ :

5013.png

  • For a two-sided test, alpha will be divided by 2 giving a ± Z α /2 critical value.
  • For a left-sided test, alpha will be all in the left tail giving a – Z α critical value.
  • For a right-sided test, alpha will be all in the right tail giving a Z α critical value.

A botanist has produced a new variety of hybrid soy plant that is better able to withstand drought than other varieties. The botanist knows the seed germination for the parent plants is 75%, but does not know the seed germination for the new hybrid. He tests the claim that it is different from the parent plants. To test this claim, 450 seeds from the hybrid plant are tested and 321 have germinated. Use a 5% level of significance to test this claim that the germination rate is different from 75%.

  • H o : p = 0.75
  • H 1 : p ≠ 0.75

This is a two-sided question so alpha is divided by 2.

  • Alpha is 0.05 so the critical values are ± Z α /2 = ± Z .025 .
  • Look on the negative side of the standard normal table, in the body of values for 0.025.
  • The critical values are ± 1.96.

5007.png

The test statistic does not fall in the rejection zone. We fail to reject the null hypothesis. We do not have enough evidence to support the claim that the germination rate of the hybrid plant is different from the parent plants.

Let’s answer this question using the p-value approach. Remember, for a two-sided alternative hypothesis (“not equal”), the p-value is two times the area of the test statistic. The test statistic is -1.81 and we want to find the area to the left of -1.81 from the standard normal table.

  • On the negative page, find the Z-score -1.81. Find the area associated with this Z-score.
  • The area = 0.0351.
  • This is a two-sided test so multiply the area times 2 to get the p-value = 0.0351 x 2 = 0.0702.

Now compare the p-value to alpha. The Decision Rule states that if the p-value is less than alpha, reject the H 0 . In this case, the p-value (0.0702) is greater than alpha (0.05) so we will fail to reject H 0 . We do not have enough evidence to support the claim that the germination rate of the hybrid plant is different from the parent plants.

You are a biologist studying the wildlife habitat in the Monongahela National Forest. Cavities in older trees provide excellent habitat for a variety of birds and small mammals. A study five years ago stated that 32% of the trees in this forest had suitable cavities for this type of wildlife. You believe that the proportion of cavity trees has increased. You sample 196 trees and find that 79 trees have cavities. Does this evidence support your claim that there has been an increase in the proportion of cavity trees?

Use a 10% level of significance to test this claim.

  • H o : p = 0.32
  • H 1 : p > 0.32

This is a one-sided question so alpha is divided by 1.

  • Alpha is 0.10 so the critical value is Z α = Z .10
  • Look on the positive side of the standard normal table, in the body of values for 0.90.
  • The critical value is 1.28.

Image36682.PNG

  • The test statistic is the number of standard deviations the sample proportion is from the known proportion. It is also a Z-score, just like the critical value.

4979.png

The test statistic is larger than the critical value (it falls in the rejection zone). We will reject the null hypothesis. We have enough evidence to support the claim that there has been an increase in the proportion of cavity trees.

Now use the p-value approach to answer the question. This is a right-sided question (“greater than”), so the p-value is equal to the area to the right of the test statistic. Go to the positive side of the standard normal table and find the area associated with the Z-score of 2.49. The area is 0.9936. Remember that this table is cumulative from the left. To find the area to the right of 2.49, we subtract from one.

p-value = (1 – 0.9936) = 0.0064

The p-value is less than the level of significance (0.10), so we reject the null hypothesis. We have enough evidence to support the claim that the proportion of cavity trees has increased.

(referring to Ex. 15)

Test and CI for One Proportion

Test of p = 0.32 vs. p > 0.32

Hypothesis Test about a Variance

When people think of statistical inference, they usually think of inferences involving population means or proportions. However, the particular population parameter needed to answer an experimenter’s practical questions varies from one situation to another, and sometimes a population’s variability is more important than its mean. Thus, product quality is often defined in terms of low variability.

Sample variance S 2 can be used for inferences concerning a population variance σ 2 . For a random sample of n measurements drawn from a normal population with mean μ and variance σ 2 , the value S 2 provides a point estimate for σ 2 . In addition, the quantity ( n – 1) S 2 / σ 2 follows a Chi-square ( χ 2 ) distribution, with df = n – 1.

The properties of Chi-square ( χ 2 ) distribution are:

  • Unlike Z and t distributions, the values in a chi-square distribution are all positive.
  • The chi-square distribution is asymmetric, unlike the Z and t distributions.
  • There are many chi-square distributions. We obtain a particular one by specifying the degrees of freedom (df = n – 1) associated with the sample variances S 2 .

Image36711.PNG

One-sample χ 2 test for testing the hypotheses:

4933.png

Alternative hypothesis:

4929.png

where the χ 2 critical value in the rejection region is based on degrees of freedom df = n – 1 and a specified significance level of α .

4886.png

As with previous sections, if the test statistic falls in the rejection zone set by the critical value, you will reject the null hypothesis.

A forester wants to control a dense understory of striped maple that is interfering with desirable hardwood regeneration using a mist blower to apply an herbicide treatment. She wants to make sure that treatment has a consistent application rate, in other words, low variability not exceeding 0.25 gal./acre (0.06 gal. 2 ). She collects sample data (n = 11) on this type of mist blower and gets a sample variance of 0.064 gal. 2 Using a 5% level of significance, test the claim that the variance is significantly greater than 0.06 gal. 2

H 0 : σ 2 = 0.06

H 1 : σ 2 >0.06

The critical value is 18.307. Any test statistic greater than this value will cause you to reject the null hypothesis.

The test statistic is

4876.png

We fail to reject the null hypothesis. The forester does NOT have enough evidence to support the claim that the variance is greater than 0.06 gal. 2 You can also estimate the p-value using the same method as for the student t-table. Go across the row for degrees of freedom until you find the two values that your test statistic falls between. In this case going across the row 10, the two table values are 4.865 and 15.987. Now go up those two columns to the top row to estimate the p-value (0.1-0.9). The p-value is greater than 0.1 and less than 0.9. Both are greater than the level of significance (0.05) causing us to fail to reject the null hypothesis.

(referring to Ex. 16)

067_1.tif

Test and CI for One Variance

The chi-square method is only for the normal distribution.

Excel does not offer 1-sample χ 2 testing.

Putting it all Together Using the Classical Method

To test a claim about μ when σ is known.

  • Write the null and alternative hypotheses.
  • State the level of significance and get the critical value from the standard normal table.

4840.png

  • Compare the test statistic to the critical value (Z-score) and write the conclusion.

To Test a Claim about μ When σ is Unknown

  • State the level of significance and get the critical value from the student’s t-table with n-1 degrees of freedom.

4833.png

  • Compare the test statistic to the critical value (t-score) and write the conclusion.

To Test a Claim about p

  • State the level of significance and get the critical value from the standard normal distribution.

4826.png

To Test a Claim about Variance

  • State the level of significance and get the critical value from the chi-square table using n-1 degrees of freedom.

4813.png

  • Compare the test statistic to the critical value and write the conclusion.

Natural Resources Biometrics Copyright © 2014 by Diane Kiernan is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 , the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 H a : More than 30 percent of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-1-null-and-alternative-hypotheses

© Jan 23, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Publications
  • Conferences & Events
  • Professional Learning
  • Science Standards
  • Awards & Competitions
  • Instructional Materials
  • Free Resources
  • American Rescue Plan
  • For Preservice Teachers
  • NCCSTS Case Collection
  • Partner Jobs in Education
  • Interactive eBooks+
  • Digital Catalog
  • Regional Product Representatives
  • e-Newsletters
  • Bestselling Books
  • Latest Books
  • Popular Book Series
  • Prospective Authors
  • Web Seminars
  • Exhibits & Sponsorship
  • Conference Reviewers
  • National Conference • Denver 24
  • Leaders Institute 2024
  • National Conference • New Orleans 24
  • Submit a Proposal
  • Latest Resources
  • Professional Learning Units & Courses
  • For Districts
  • Online Course Providers
  • Schools & Districts
  • College Professors & Students
  • The Standards
  • Teachers and Admin
  • eCYBERMISSION
  • Toshiba/NSTA ExploraVision
  • Junior Science & Humanities Symposium
  • Teaching Awards
  • Climate Change
  • Earth & Space Science
  • New Science Teachers
  • Early Childhood
  • Middle School
  • High School
  • Postsecondary
  • Informal Education
  • Journal Articles
  • Lesson Plans
  • e-newsletters
  • Science & Children
  • Science Scope
  • The Science Teacher
  • Journal of College Sci. Teaching
  • Connected Science Learning
  • NSTA Reports
  • Next-Gen Navigator
  • Science Update
  • Teacher Tip Tuesday
  • Trans. Sci. Learning

MyNSTA Community

  • My Collections

Formative Assessment Probe

What Is a Hypothesis?

By Page Keeley

Uncovering Student Ideas in Science, Volume 3: Another 25 Formative Assessment Probes

Share Discuss

This is the new updated edition of the first book in the bestselling  Uncovering Student Ideas in Science  series. Like the first edition of volume 1, this book helps pinpoint what your students know (or think they know) so you can monitor their learning and adjust your teaching accordingly. Loaded with classroom-friendly features you can use immediately, the book includes 25 “probes”—brief, easily administered formative assessments designed to understand your students’ thinking about 60 core science concepts.

What Is a Hypothesis?

Access this probe as a Google form:  English

Download this probe as an editable PDF: English

The purpose of this assessment probe is to elicit students’ ideas about hypotheses. The probe is designed to find out if students understand what a hypothesis is, when it is used, and how it is developed.

Type of Probe

Justified List

Related Concepts

hypothesis, nature of science, scientific inquiry, scientific method

Explanation

The best choices are A, B, G, K, L, and M. However, other possible answers open up discussions to contrast with the provided definition. A hypothesis is a tentative explanation that can be tested and is based on observation and/or scientific knowledge such as that that has been gained from doing background research. Hypotheses are used to investigate a scientific question. Hypotheses can be tested through experimentation or further observation, but contrary to how some students are taught to use the “scientific method,” hypotheses are not proved true or correct. Students will often state their conclusions as “My hypothesis is correct because my data prove…,” thereby equating positive results with proof (McLaughlin 2006, p. 61). In essence, experimentation as well as other means of scientific investigation never prove a hypothesis—the hypothesis gains credibility from the evidence obtained from data that support it. Data either support or negate a hypothesis but never prove something to be 100% true or correct.

Hypotheses are often confused with questions. A hypothesis is not framed as a question but rather provides a tentative explanation in response to the scientific question that leads the investigation. Sometimes the word hypothesis is oversimplified by being defined as “an educated guess.” This terminology fails to convey the explanatory or predictive nature of scientific hypotheses and omits what is most important about hypotheses: their purpose. Hypotheses are developed to explain observations, such as notable patterns in nature; predict the outcome of an experiment based on observations or prior scientific knowledge; and guide the investigator in seeking and paying attention to the right data. Calling a hypothesis a “guess” undermines the explanation that underscores a hypothesis.

Predictions and hypotheses are not the same. A hypothesis, which is a tentative explanation, can lead to a prediction. Predictions forecast the outcome of an experiment but do not include an explanation. Predictions often use if-then statements, just as hypotheses do, but this does not make a prediction a hypothesis. For example, a prediction might take the form of, “If I do [X], then [Y] will happen.” The prediction describes the outcome but it does not provide an explanation of why that outcome might result or describe any relationship between variables.

Sometimes the words hypothesis , theory , and law are inaccurately portrayed in science textbooks as a hierarchy of scientific knowledge, with the hypothesis being the first step on the way to becoming a theory and then a law. These concepts do not form a sequence for the development of scientific knowledge because each represents a different type of knowledge.

Not every investigation requires a hypothesis. Some types of investigations do not lend themselves to hypothesis testing through experimentation. A good deal of science is observational and descriptive—the study of biodiversity, for example, usually involves looking at a wide variety of specimens and maybe sketching and recording their unique characteristics. A biologist studying biodiversity might wonder, “What types of birds are found on island X?” The biologist would observe sightings of birds and perhaps sketch them and record their bird calls but would not be guided by a specific hypothesis. Many of the great discoveries in science did not begin with a hypothesis in mind. For example, Charles Darwin did not begin his observations of species in the Galapagos with a hypothesis in mind.

Contrary to the way hypotheses are often stated by students as an unimaginative response to a question posed at the beginning of an experiment, particularly those of the “cookbook” type, the generation of hypotheses by scientists is actually a creative and imaginative process, combined with the logic of scientific thought. “The process of formulating and testing hypotheses is one of the core activities of scientists. To be useful, a hypothesis should suggest what evidence would support it and what evidence would refute it. A hypothesis that cannot in principle be put to the test of evidence may be interesting, but it is not likely to be scientifically useful” (AAAS 1988, p. 5).

Curricular and Instructional Considerations

Elementary Students

In the elementary school grades, students typically engage in inquiry to begin to construct an understanding of the natural world. Their inquiries are initiated by a question. If students have a great deal of knowledge or have made prior observations, they might propose a hypothesis; in most cases, however, their knowledge and observations are too incomplete for them to hypothesize. If elementary school students are required to develop a hypothesis, it is often just a guess, which does little to contribute to an understanding of the purpose of a hypothesis. At this grade level, it is usually sufficient for students to focus on their questions, instead of hypotheses (Pine 1999).

Middle School Students

At the middle school level, students develop an understanding of what a hypothesis is and when one is used. The notion of a testable hypothesis through experimentation that involves variables is introduced and practiced at this grade level. However, there is a danger that students will think every investigation must include a hypothesis. Hypothesizing as a skill is important to develop at this grade level but it is also important to develop the understandings of what a hypothesis is and why and how it is developed.

High School Students

At this level, students have acquired more scientific knowledge and experiences and so are able to propose tentative explanations. They can formulate a testable hypothesis and demonstrate the logical connections between the scientific concepts guiding a hypothesis and the design of an experiment (NRC 1996).

Administering the Probe

This probe is best used as is at the middle school and high school levels, particularly if students have been previously exposed to the word hypothesis or its use. Remove any answer choices students might not be familiar with. For example, if they have not encountered if-then reasoning, eliminate this distracter. The probe can also be modified as a simpler version for students in grades 3–5 by leaving out some of the choices and simplifying the descriptions.

K–4 Understandings About Scientific Inquiry

  • Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
  • Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge).

5–8 Understandings About Scientific Inquiry

  • Different kinds of questions suggest different kinds of investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
  • Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

5–8 Science as a Human Endeavor

  • Science is very much a human endeavor, and the work of science relies on basic human qualities such as reasoning, insight, energy, skill, and creativity.

9–12 Abilities Necessary to Do Scientific Inquiry

  • Identify questions and concepts that guide scientific investigations.*

9–12 Understandings About Scientific Inquiry

  • Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

*Indicates a strong match between the ideas elicited by the probe and a national standard’s learning goal.

K–2 Scientific Inquiry

  • People can often learn about things around them by just observing those things carefully, but sometimes they can learn more by doing something to the things and noting what happens.

3–5 Scientific Inquiry

  • Scientists’ explanations about what happens in the world come partly from what they observe and partly from what they think. Sometimes scientists have different explanations for the same set of observations. That usually leads to their making more observations to resolve the differences.

6–8 Scientific Inquiry

  • Scientists differ greatly in what phenomena they study and how they go about their work. Although there is no fixed set of steps that all scientists follow, scientific investigations usually involve the collection of relevant evidence, the use of logical reasoning, and the application of imagination in devising hypotheses and explanations to make sense of the collected evidence.*

6–8 Values and Attitudes

  • Even if they turn out not to be true, hypotheses are valuable if they lead to fruitful investigations.*

9–12 Scientific Inquiry

  • Hypotheses are widely used in science for choosing what data to pay attention to and what additional data to seek and for guiding the interpretation of the data (both new and previously available).*

Related Research

  • Students generally have difficulty with explaining how science is conducted because they have had little contact with real scientists. Their familiarity with doing science, even at older ages, is “school science,” which is often not how science is generally conducted in the scientific community (Driver et al. 1996).
  • Despite over 10 years of reform efforts in science education, research still shows that students typically have inadequate conceptions of what science is and what scientists do (Schwartz 2007).
  • Upper elementary school and middle school students may not understand experimentation as a method of testing ideas, but rather as a method of trying things out or producing a desired outcome (AAAS 1993).
  • Middle school students tend to invoke personal experiences as evidence to justify their hypothesis. They seem to think of evidence as selected from what is already known or from personal experience or secondhand sources, not as information produced through experiment (AAAS 1993).

Related NSTA Resources

American Association for the Advancement of Science (AAAS). 1993. Benchmarks for science literacy. New York: Oxford University Press.

Keeley, P. 2005. Science curriculum topic study: Bridging the gap between standards and practice. Thousand Oaks, CA: Corwin Press.

McLaughlin, J. 2006. A gentle reminder that a hypothesis is never proven correct, nor is a theory ever proven true. Journal of College Science Teaching 36 (1): 60–62.

National Research Council (NRC). 1996. National science education standards. Washington, DC: National Academy Press.

Schwartz, R. 2007. What’s in a word? How word choice can develop (mis)conceptions about the nature of science. Science Scope 31 (2): 42–47.

VanDorn, K., M. Mavita, L. Montes, B. Ackerson, and M. Rockley. 2004. Hypothesis-based learning. Science Scope 27: 24–25.

Suggestions for Instruction and Assessment

  • The “scientific method” is often the first topic students encounter when using textbooks and this can erroneously imply that there is a rigid set of steps that all scientists follow, including the development of a hypothesis. Often the scientific method described in textbooks applies to experimentation, which is only one of many ways scientists conduct their work. Embedding explicit instruction of the various ways to do science in the actual investigations students do throughout the year as well as in their studies of investigations done by scientists is a better approach to understanding how science is done than starting off the year with the scientific method in a way that is devoid of a context through which students can learn the content and process of science.
  • Students often participate in science fairs that may follow a textbook scientific method of posing a question, developing a hypothesis, and so on, that incorrectly results in students “proving” their hypothesis. Make sure students understand that a hypothesis can be disproven, but it is never proven, which implies 100% certainty.
  • Help students understand that science begins with a question. The structure of some school lab reports may lead students to believe that all investigations begin with a hypothesis. While some investigations do begin with a hypothesis, in most cases, they begin with a question. Sometimes it is just a general question.
  • A technique to help students maintain a consistent image of science as inquiry throughout the year by paying more careful attention to the words they use is to create a “caution words” poster or bulletin board (Schwartz 2007). Important words that have specific meanings in science but are often used inappropriately in the science classroom and through everyday language can be posted in the room as a reminder to pay careful attention to how students are using these words. For example, words like hypothesis and scientific method can be posted here. Words that are banned when referring to hypotheses include prove, correct, and true.
  • Use caution when asking students to write lab reports that use the same format regardless of the type of investigation conducted. The format used in writing about an investigation may imply a rigid, fixed process or erroneously misrepresent aspects of science, such as that hypotheses are developed for every scientific investigation.
  • Avoid using hypotheses with younger children when they result in guesses. It is better to start with a question and have students make a prediction about what they think will happen and why. As they acquire more conceptual understanding and experience a variety of observations, they will be better prepared to develop hypotheses that reflect the way science is done.
  • Avoid using “educated guess” as a description for hypothesis. The common meaning of the word guess implies no prior knowledge, experience, or observations.
  • Scaffold hypothesis writing for students by initially having them use words like may in their statements and then formalizing them with if-then statements. For example, students may start with the statement, “The growth of algae may be affected by temperature.” The next step would be to extend this statement to include a testable relationship, such as, “If the temperature of the water increases, then the algae population will increase.” Encourage students to propose a tentative explanation and then consider how they would go about testing the statement.

American Association for the Advancement of Science (AAAS). 1988. Science for all Americans. New York: Oxford University Press.

Driver, R., J. Leach, R. Millar, and P. Scott. 1996. Young people’s images of science. Buckingham, UK: Open University Press.

Pine, J. 1999. To hypothesize or not to hypothesize. In Foundations: A monograph for professionals in science, mathematics, and technology education. Vol. 2. Inquiry: Thoughts, views, and strategies for the K–5 classroom. Arlington, VA: National Science Foundation.

You may also like

Reports Article

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

5.2 - writing hypotheses.

The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\(H_0\)) and an alternative hypothesis (\(H_a\)).

When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

  • At this point we can write hypotheses for a single mean (\(\mu\)), paired means(\(\mu_d\)), a single proportion (\(p\)), the difference between two independent means (\(\mu_1-\mu_2\)), the difference between two proportions (\(p_1-p_2\)), a simple linear regression slope (\(\beta\)), and a correlation (\(\rho\)). 
  • The research question will give us the information necessary to determine if the test is two-tailed (e.g., "different from," "not equal to"), right-tailed (e.g., "greater than," "more than"), or left-tailed (e.g., "less than," "fewer than").
  • The research question will also give us the hypothesized parameter value. This is the number that goes in the hypothesis statements (i.e., \(\mu_0\) and \(p_0\)). For the difference between two groups, regression, and correlation, this value is typically 0.

Hypotheses are always written in terms of population parameters (e.g., \(p\) and \(\mu\)).  The tables below display all of the possible hypotheses for the parameters that we have learned thus far. Note that the null hypothesis always includes the equality (i.e., =).

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

8.1.1: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 10971

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

\(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

\(H_a\): The alternative hypothesis: It is a claim about the population that is contradictory to \(H_0\) and what we conclude when we reject \(H_0\). This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_0\)" if the sample information favors the alternative hypothesis or "do not reject \(H_0\)" or "decline to reject \(H_0\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 66\)
  • \(H_{a}: \mu \_ 66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 5\)
  • \(H_{a}: \mu < 5\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 45\)
  • \(H_{a}: \mu \_ 45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p \_ 0.40\)
  • \(H_{a}: p \_ 0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

The Research Question and the Hypothesis

  • First Online: 17 May 2017

Cite this chapter

lesson 3 support of hypothesis part 1

  • Peter R. Nelson 3  

1380 Accesses

Clinical trial design starts with the development of a focused, concise, answerable primary research question. The time spent defining this question up front is as valuable as the time that will be spent conducting the trial itself. Start simple with real ideas that are meaningful to your clinical practice and specialty. Refine your ideas into a more defined research question. This research question needs to be relevant, needs to translate to the primary hypothesis to be tested, needs to set the steps in motion to define the research methodology and analytic plan for the trial, needs to be answerable, and ultimately needs to offer promise that this answer will provide critical new knowledge that will change clinical practice for the better and improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Fisher B, Bauer M, Margolese R, et al. Five-year results of a randomized clinical trial comparing total mastectomy and segmental mastectomy with or without radiation in the treatment of breast cancer. N Engl J Med. 1985;31:665–73.

Article   Google Scholar  

Moseley JB, O’Malley K, Peterson N, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002;347:81–8.

Article   PubMed   Google Scholar  

Neumayer L, Gobbie-Hurder A, Jonasson O, et al. Open mesh versus laparoscopic mesh repair of inguinal hernia. N Engl J Med. 2004;350:1819–27.

Article   CAS   PubMed   Google Scholar  

Grant AM, Wileman SM, Ramsay CR, et al. Minimal access surgery compared with medical management for chronic gastrooesophageal reflux disease: UK collaborative randomized trial. Br Med J. 2008;337:a2664.

Nelson PR, Kracjer Z, Kansal N, Rao V, Bianchi C, Hashemi H, Jones P, Bacharach JM. Multicenter, randomized, controlled trial outcomes of totally percutaneous aortic aneurysm repair (The PEVAR Trial). J Vasc Surg. 2014;59:1181–94.

Download references

Author information

Authors and affiliations.

Surgical Service, James A. Haley VA Medical Center, 13000 Bruce B. Downs Boulevard, Tampa, FL, 33612, USA

Peter R. Nelson

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Peter R. Nelson .

Editor information

Editors and affiliations.

Department of Surgery, Boston VA Healthcare System Department of Surgery, West Roxbury, Massachusetts, USA

Kamal M.F. Itani

Depatment of Veteran Affairs, Cooperative Studies Program Coordinating Center, Hines VA Hospital, Hines, Illinois, USA

Domenic J. Reda

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Nelson, P.R. (2017). The Research Question and the Hypothesis. In: Itani, K., Reda, D. (eds) Clinical Trials Design in Operative and Non Operative Invasive Procedures. Springer, Cham. https://doi.org/10.1007/978-3-319-53877-8_1

Download citation

DOI : https://doi.org/10.1007/978-3-319-53877-8_1

Published : 17 May 2017

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-53876-1

Online ISBN : 978-3-319-53877-8

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

COMMENTS

  1. Unit 3 Lesson 1: Basics of Hypothesis Testing Flashcards

    Find the value of the test statistic z using, The majority of college students have credit cards. Identify the null hypothesis and alternative hypothesis in symbolic form., With H1: P>0.75, a test statistic is z=0.55. Use a 0.05 significance level to find the P-value, and state the conclusion about the null hypothesis and more.

  2. 8.1.1: Introduction to Hypothesis Testing Part 1

    Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\).The null is not rejected unless the hypothesis test shows otherwise.

  3. 5: Hypothesis Testing, Part 1

    This lesson corresponds to Sections 4.1, 4.2, and 4.3 in the Lock 5 textbook. Hypothesis tests use data from a sample to make an inference about the value of a population parameter. In this lesson we will be conducting hypothesis tests with the following parameters: Population Parameter. Sample Statistic.

  4. 5.1

    A test is considered to be statistically significant when the p-value is less than or equal to the level of significance, also known as the alpha ( α) level. For this class, unless otherwise specified, α = 0.05; this is the most frequently used alpha level in many fields. Sample statistics vary from the population parameter randomly.

  5. The scientific method (article)

    At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis. Test the prediction.

  6. Unit 3 Lesson 1: Basics of Hypothesis Testing

    Given that a test statistic in a left-tailed test is z= - 1.25, use a 0.05 significance level to find the P-value and state the conclusion about the null hypothesis Choose matching definition D. 0.2912; fail to reject the null hypothesis

  7. Unit 3: The Basics of Hypothesis Testing Flashcards

    Study with Quizlet and memorize flashcards containing terms like What allows us to calculate a probability of getting a specific result from a sample under a working hypothesis of what is expected from the population?, The working hypothesis given to us is called the:, Researchers typically questioning the possibility of the null hypothesis have an: and more.

  8. Chapter 3: Hypothesis Testing

    In other words, if the test statistic is greater than +1.96 or less than -1.96, reject the null hypothesis. Figure 6. The critical values for a two-sided test when α = 0.05. In this problem, the test statistic falls in the red rejection zone. The test statistic of 3.07 is greater than the critical value of 1.96.We will reject the null hypothesis.

  9. 8.6: Introduction to Hypothesis Testing

    Hypothesis testing is part of inference. Given a claim about a population, we will learn to determine the null and alternative hypotheses. We will recognize the logic behind a hypothesis test and how it relates to the P-value as well as recognizing type I and type II errors. ... We also acknowledge previous National Science Foundation support ...

  10. Lesson 3

    Recall that the probability of "snake eyes" {X = 1 + 1} is 1/36 and the expected value is 7, E(X) = 7 as can be seen in the discrete probability distribution below: The Law of Large Numbers implies that the probability of outlier or extreme values of decreases as a function of n. That is, approaches 𝐀 as n approaches infinity.

  11. 9.1 Null and Alternative Hypotheses

    They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints. H0, the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  12. Hypothesis

    Again, the answer is yes. You can easily test many combinations of two objects and if any two objects do not reach the ground at the same time, then the hypothesis is false. If a hypothesis really is false, it should be relatively easy to disprove it. Both the elephant and the boy are falling to the ground because of gravity.

  13. 11.1: Introduction to Hypothesis Testing

    To assess the plausibility of the hypothesis that the difference in mean times is due to chance, we compute the probability of getting a difference as large or larger than the observed difference ( 31.4 − 24.7 = 6.7 31.4 − 24.7 = 6.7 minutes) if the difference were, in fact, due solely to chance.

  14. What Is a Hypothesis?

    A hypothesis, which is a tentative explanation, can lead to a prediction. Predictions forecast the outcome of an experiment but do not include an explanation. Predictions often use if-then statements, just as hypotheses do, but this does not make a prediction a hypothesis. For example, a prediction might take the form of, "If I do [X], then ...

  15. 5.2

    5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis ( H 0) and an alternative hypothesis ( H a ). When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the ...

  16. Lesson 3 Chapter 1 Part 1

    Lesson-3-Chapter-1-Part-1 - Free download as Powerpoint Presentation (.ppt / .pptx), PDF File (.pdf), Text File (.txt) or view presentation slides online. This document outlines various sections of a research study including the background of the study, statement of the problem, research hypothesis, and significance of the study. It provides definitions and guidelines for writing each section ...

  17. 5th Science Unit 1 Lesson 3 Quiz Review Flashcards

    Science Test Chapter 1 Multiple Choice. 12 terms. Elizabeth2479. Preview. What is Science (5th Grade Houghton Mifflin Harcourt) Teacher 34 terms. Renee_Ereckson7. Preview. Science chapter 3.

  18. 8.1.1: Null and Alternative Hypotheses

    Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\).The null is not rejected unless the hypothesis test shows otherwise.

  19. Lesson Plans || Canopy in the Clouds

    Science and Hypothesis Testing. Grade Level: 6-8 Introduction: After reading background information on the cloud forest, perusing the panoramas, and watching video clips, students will compose a testable question that pertains to any aspect of the cloud forest.Students will then propose a hypothesis and design an experiment that would help answer the question.

  20. PDF Chapter 1 The Research Question and the Hypothesis

    structural components of your trial design. It indicates the type of trial planned whether single- or multi-arm, single- or multicenter, randomized or non-randomized, or explanatory or pragmatic in design, etc. It also begins to dene. like, and what the initial inclusion/exclusion criteria might look like.

  21. PDF Module: Science

    In this lesson, students will become familiar with the steps for writing a scientific hypothesis. Process Begin the lesson by asking students to define the word hypothesis. Have students share their definitions. ... hypothesis are: 1. Salt in soil may affect plant growth. 2. Temperature may cause leaves to change color. 3. Sunlight causes fruit ...

  22. Chapter 1 Lesson 3 Flashcards

    Study with Quizlet and memorize flashcards containing terms like Develop a hypothesis, What is a hypothesis?, What must an experiment include? and more. ... Chapter 1 Lesson 3. Flashcards; Learn; Test; Match; Q-Chat; Get a hint. Develop a hypothesis. Click the card to flip 👆 ...

  23. PDF STEM Part 1 Lessons 1 & 3 Review Guide

    (Part 1 Lesson 3) 5. Correctly identify the variables on a graph and determine if there is a trend or no trend present in the graph. If there is a trend, you can correctly determine what the trend is. (Part 1 Lesson 3) 6. Verbally explain the results of an experiment using a graph, diagram, or reading passage. (Part 1 Lesson 3)