Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Mathematics

How to Solve Math Problems

Last Updated: April 15, 2024 Fact Checked

This article was co-authored by Daron Cam . Daron Cam is an Academic Tutor and the Founder of Bay Area Tutors, Inc., a San Francisco Bay Area-based tutoring service that provides tutoring in mathematics, science, and overall academic confidence building. Daron has over eight years of teaching math in classrooms and over nine years of one-on-one tutoring experience. He teaches all levels of math including calculus, pre-algebra, algebra I, geometry, and SAT/ACT math prep. Daron holds a BA from the University of California, Berkeley and a math teaching credential from St. Mary's College. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 590,640 times.

Although math problems may be solved in different ways, there is a general method of visualizing, approaching and solving math problems that may help you to solve even the most difficult problem. Using these strategies can also help you to improve your math skills overall. Keep reading to learn about some of these math problem solving strategies.

Understanding the Problem

Step 1 Identify the type of problem.

  • Draw a Venn diagram. A Venn diagram shows the relationships among the numbers in your problem. Venn diagrams can be especially helpful with word problems.
  • Draw a graph or chart.
  • Arrange the components of the problem on a line.
  • Draw simple shapes to represent more complex features of the problem.

Step 5 Look for patterns.

Developing a Plan

Step 1 Figure out what formulas you will need to solve the problem.

Solving the Problem

Step 1 Follow your plan.

Joseph Meyer

When doing practice problems, promptly check to see if your answers are correct. Use worksheets that provide answer keys for instant feedback. Discuss answers with a classmate or find explanations online. Immediate feedback will help you correct your mistakes, avoid bad habits, and advance your learning more quickly.

Expert Q&A

Daron Cam

  • Seek help from your teacher or a math tutor if you get stuck or if you have tried multiple strategies without success. Your teacher or a math tutor may be able to easily identify what is wrong and help you to understand how to correct it. Thanks Helpful 0 Not Helpful 0
  • Keep practicing sums and diagrams. Go through the concept your class notes regularly. Write down your understanding of the methods and utilize it. Thanks Helpful 0 Not Helpful 0

how to work out problem solving questions in maths

You Might Also Like

Do Math Proofs

  • ↑ Daron Cam. Math Tutor. Expert Interview. 29 May 2020.
  • ↑ http://www.interventioncentral.org/academic-interventions/math/math-problem-solving-combining-cognitive-metacognitive-strategies
  • ↑ http://tutorial.math.lamar.edu/Extras/StudyMath/ProblemSolving.aspx
  • ↑ https://math.berkeley.edu/~gmelvin/polya.pdf

About This Article

Daron Cam

To solve a math problem, try rewriting the problem in your own words so it's easier to solve. You can also make a drawing of the problem to help you figure out what it's asking you to do. If you're still completely stuck, try solving a different problem that's similar but easier and then use the same steps to solve the harder problem. Even if you can't figure out how to solve it, try to make an educated guess instead of leaving the question blank. To learn how to come up with a solid plan to use to help you solve a math problem, scroll down! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Thakgalo Mokalapa

Thakgalo Mokalapa

Feb 16, 2018

Did this article help you?

how to work out problem solving questions in maths

Offor Chukwuemeka

May 17, 2018

Anonymous

Jan 21, 2017

Isha Ahmed

May 3, 2018

Am I a Narcissist or an Empath Quiz

Featured Articles

How to Celebrate Cinco de Mayo in a Respectful Way

Trending Articles

What Do I Want in a Weight Loss Program Quiz

Watch Articles

Make Sugar Cookies

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Get all the best how-tos!

Sign up for wikiHow's weekly email newsletter

Math Solver

Geogebra math solver.

Get accurate solutions and step-by-step explanations for algebra and other math problems, while enhancing your problem-solving skills!

person with long dark hair sit at a table working at a laptop. 3x+2 and x² equations float in the air signifying that she is working on math problems

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

Cambridge University Faculty of Mathematics

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets
  • Cross-curricular contexts
  • Physical and digital manipulatives

For younger learners

  • Early Years Foundation Stage

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics

A Guide to Problem Solving

When confronted with a problem, in which the solution is not clear, you need to be a skilled problem-solver to know how to proceed. When you look at STEP problems for the first time, it may seem like this problem-solving skill is out of your reach, but like any skill, you can improve your problem-solving with practice. How do I become a better problem-solver? First and foremost, the best way to become better at problem-solving is to try solving lots of problems! If you are preparing for STEP, it makes sense that some of these problems should be STEP questions, but to start off with it's worth spending time looking at problems from other sources. This collection of NRICH problems  is designed for younger students, but it's very worthwhile having a go at a few to practise the problem-solving technique in a context where the mathematics should be straightforward to you. Then as you become a more confident problem-solver you can try more past STEP questions. One student who worked with NRICH said: "From personal experience, I was disastrous at STEP to start with. Yet as I persisted with it for a long time it eventually started to click - 'it' referring to being able to solve problems much more easily. This happens because your brain starts to recognise that problems fall into various categories and you subconsciously remember successes and pitfalls of previous 'similar' problems." A Problem-solving Heuristic for STEP Below you will find some questions you can ask yourself while you are solving a problem. The questions are divided into four phases, based loosely on those found in George Pólya's 1945 book "How to Solve It". Understanding the problem

  • What area of mathematics is this?
  • What exactly am I being asked to do?
  • What do I know?
  • What do I need to find out?
  • What am I uncertain about?
  • Can I put the problem into my own words?

Devising a plan

  • Work out the first few steps before leaping in!
  • Have I seen something like it before?
  • Is there a diagram I could draw to help?
  • Is there another way of representing?
  • Would it be useful to try some suitable numbers first?
  • Is there some notation that will help?

Carrying out the plan STUCK!

  • Try special cases or a simpler problem
  • Work backwards
  • Guess and check
  • Be systematic
  • Work towards subgoals
  • Imagine your way through the problem
  • Has the plan failed? Know when it's time to abandon the plan and move on.

Looking back

  • Have I answered the question?
  • Sanity check for sense and consistency
  • Check the problem has been fully solved
  • Read through the solution and check the flow of the logic.

Throughout the problem solving process it's important to keep an eye on how you're feeling and making sure you're in control:

  • Am I getting stressed?
  • Is my plan working?
  • Am I spending too long on this?
  • Could I move on to something else and come back to this later?
  • Am I focussing on the problem?
  • Is my work becoming chaotic, do I need to slow down, go back and tidy up?
  • Do I need to STOP, PEN DOWN, THINK?

Finally, don't forget that STEP questions are designed to take at least 30-45 minutes to solve, and to start with they will take you longer than that. As a last resort, read the solution, but not until you have spent a long time just thinking about the problem, making notes, trying things out and looking at resources that can help you. If you do end up reading the solution, then come back to the same problem a few days or weeks later to have another go at it.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills. Students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

how to work out problem solving questions in maths

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE : 8 Common Core math examples

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies of problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

Microsoft

Get step-by-step solutions to your math problems

qr code

Try Math Solver

Key Features

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Free Math Worksheets — Over 100k free practice problems on Khan Academy

Looking for free math worksheets.

You’ve found something even better!

That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional math worksheets – more instantaneous, more interactive, and more fun!

Just choose your grade level or topic to get access to 100% free practice questions:

Kindergarten, basic geometry, pre-algebra, algebra basics, high school geometry.

  • Trigonometry

Statistics and probability

High school statistics, ap®︎/college statistics, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra.

  • Addition and subtraction
  • Place value (tens and hundreds)
  • Addition and subtraction within 20
  • Addition and subtraction within 100
  • Addition and subtraction within 1000
  • Measurement and data
  • Counting and place value
  • Measurement and geometry
  • Place value
  • Measurement, data, and geometry
  • Add and subtract within 20
  • Add and subtract within 100
  • Add and subtract within 1,000
  • Money and time
  • Measurement
  • Intro to multiplication
  • 1-digit multiplication
  • Addition, subtraction, and estimation
  • Intro to division
  • Understand fractions
  • Equivalent fractions and comparing fractions
  • More with multiplication and division
  • Arithmetic patterns and problem solving
  • Quadrilaterals
  • Represent and interpret data
  • Multiply by 1-digit numbers
  • Multiply by 2-digit numbers
  • Factors, multiples and patterns
  • Add and subtract fractions
  • Multiply fractions
  • Understand decimals
  • Plane figures
  • Measuring angles
  • Area and perimeter
  • Units of measurement
  • Decimal place value
  • Add decimals
  • Subtract decimals
  • Multi-digit multiplication and division
  • Divide fractions
  • Multiply decimals
  • Divide decimals
  • Powers of ten
  • Coordinate plane
  • Algebraic thinking
  • Converting units of measure
  • Properties of shapes
  • Ratios, rates, & percentages
  • Arithmetic operations
  • Negative numbers
  • Properties of numbers
  • Variables & expressions
  • Equations & inequalities introduction
  • Data and statistics
  • Negative numbers: addition and subtraction
  • Negative numbers: multiplication and division
  • Fractions, decimals, & percentages
  • Rates & proportional relationships
  • Expressions, equations, & inequalities
  • Numbers and operations
  • Solving equations with one unknown
  • Linear equations and functions
  • Systems of equations
  • Geometric transformations
  • Data and modeling
  • Volume and surface area
  • Pythagorean theorem
  • Transformations, congruence, and similarity
  • Arithmetic properties
  • Factors and multiples
  • Reading and interpreting data
  • Negative numbers and coordinate plane
  • Ratios, rates, proportions
  • Equations, expressions, and inequalities
  • Exponents, radicals, and scientific notation
  • Foundations
  • Algebraic expressions
  • Linear equations and inequalities
  • Graphing lines and slope
  • Expressions with exponents
  • Quadratics and polynomials
  • Equations and geometry
  • Algebra foundations
  • Solving equations & inequalities
  • Working with units
  • Linear equations & graphs
  • Forms of linear equations
  • Inequalities (systems & graphs)
  • Absolute value & piecewise functions
  • Exponents & radicals
  • Exponential growth & decay
  • Quadratics: Multiplying & factoring
  • Quadratic functions & equations
  • Irrational numbers
  • Performing transformations
  • Transformation properties and proofs
  • Right triangles & trigonometry
  • Non-right triangles & trigonometry (Advanced)
  • Analytic geometry
  • Conic sections
  • Solid geometry
  • Polynomial arithmetic
  • Complex numbers
  • Polynomial factorization
  • Polynomial division
  • Polynomial graphs
  • Rational exponents and radicals
  • Exponential models
  • Transformations of functions
  • Rational functions
  • Trigonometric functions
  • Non-right triangles & trigonometry
  • Trigonometric equations and identities
  • Analyzing categorical data
  • Displaying and comparing quantitative data
  • Summarizing quantitative data
  • Modeling data distributions
  • Exploring bivariate numerical data
  • Study design
  • Probability
  • Counting, permutations, and combinations
  • Random variables
  • Sampling distributions
  • Confidence intervals
  • Significance tests (hypothesis testing)
  • Two-sample inference for the difference between groups
  • Inference for categorical data (chi-square tests)
  • Advanced regression (inference and transforming)
  • Analysis of variance (ANOVA)
  • Scatterplots
  • Data distributions
  • Two-way tables
  • Binomial probability
  • Normal distributions
  • Displaying and describing quantitative data
  • Inference comparing two groups or populations
  • Chi-square tests for categorical data
  • More on regression
  • Prepare for the 2020 AP®︎ Statistics Exam
  • AP®︎ Statistics Standards mappings
  • Polynomials
  • Composite functions
  • Probability and combinatorics
  • Limits and continuity
  • Derivatives: definition and basic rules
  • Derivatives: chain rule and other advanced topics
  • Applications of derivatives
  • Analyzing functions
  • Parametric equations, polar coordinates, and vector-valued functions
  • Applications of integrals
  • Differentiation: definition and basic derivative rules
  • Differentiation: composite, implicit, and inverse functions
  • Contextual applications of differentiation
  • Applying derivatives to analyze functions
  • Integration and accumulation of change
  • Applications of integration
  • AP Calculus AB solved free response questions from past exams
  • AP®︎ Calculus AB Standards mappings
  • Infinite sequences and series
  • AP Calculus BC solved exams
  • AP®︎ Calculus BC Standards mappings
  • Integrals review
  • Integration techniques
  • Thinking about multivariable functions
  • Derivatives of multivariable functions
  • Applications of multivariable derivatives
  • Integrating multivariable functions
  • Green’s, Stokes’, and the divergence theorems
  • First order differential equations
  • Second order linear equations
  • Laplace transform
  • Vectors and spaces
  • Matrix transformations
  • Alternate coordinate systems (bases)

Frequently Asked Questions about Khan Academy and Math Worksheets

Why is khan academy even better than traditional math worksheets.

Khan Academy’s 100,000+ free practice questions give instant feedback, don’t need to be graded, and don’t require a printer.

What do Khan Academy’s interactive math worksheets look like?

Here’s an example:

What are teachers saying about Khan Academy’s interactive math worksheets?

“My students love Khan Academy because they can immediately learn from their mistakes, unlike traditional worksheets.”

Is Khan Academy free?

Khan Academy’s practice questions are 100% free—with no ads or subscriptions.

What do Khan Academy’s interactive math worksheets cover?

Our 100,000+ practice questions cover every math topic from arithmetic to calculus, as well as ELA, Science, Social Studies, and more.

Is Khan Academy a company?

Khan Academy is a nonprofit with a mission to provide a free, world-class education to anyone, anywhere.

Want to get even more out of Khan Academy?

Then be sure to check out our teacher tools . They’ll help you assign the perfect practice for each student from our full math curriculum and track your students’ progress across the year. Plus, they’re also 100% free — with no subscriptions and no ads.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

how to work out problem solving questions in maths

Home

Reading & Math for K-5

  • Kindergarten
  • Learning numbers
  • Comparing numbers
  • Place Value
  • Roman numerals
  • Subtraction
  • Multiplication
  • Order of operations
  • Drills & practice
  • Measurement
  • Factoring & prime factors
  • Proportions
  • Shape & geometry
  • Data & graphing
  • Word problems
  • Children's stories
  • Leveled Stories
  • Context clues
  • Cause & effect
  • Compare & contrast
  • Fact vs. fiction
  • Fact vs. opinion
  • Main idea & details
  • Story elements
  • Conclusions & inferences
  • Sounds & phonics
  • Words & vocabulary
  • Reading comprehension
  • Early writing
  • Numbers & counting
  • Simple math
  • Social skills
  • Other activities
  • Dolch sight words
  • Fry sight words
  • Multiple meaning words
  • Prefixes & suffixes
  • Vocabulary cards
  • Other parts of speech
  • Punctuation
  • Capitalization
  • Narrative writing
  • Opinion writing
  • Informative writing
  • Cursive alphabet
  • Cursive letters
  • Cursive letter joins
  • Cursive words
  • Cursive sentences
  • Cursive passages
  • Grammar & Writing

Breadcrumbs

How to Ace Math Problem Solving

how to work out problem solving questions in maths

When your kids struggle with their math, it’s time to take a step back and take a deep breath. They need to slow down and take their time. Here’s a step by step guide that will help your kids get through those tough math problems.

We’ll use a grade 3 addition word problem as an example to clarify:

Pinky the Pig bought 36 apples while Danny the Duck bought 73 apples and 14 bananas. How many apples do they have altogether?

Read the problem

Carefully read through the problem to make sure you understand what is being asked.

Pinky the pig and Danny the duck bought apples and bananas. The question is how many apples they have together.

Re-read the problem

Read through the problem again and as you read through it, make notes.

Pinky the pig –36 apples. Danny the duck –73 apples and 14 bananas. How many apples together?

What is the problem asking

In your own words, say or write down exactly what the question is asking you to solve.

The question is asking how many apples the pig and the duck bought together.

Write it down in detail

Go through the problem and write out the information in an organized fashion. A diagram or table might help.

Turn it into math

Math problem solving

Figure out what math operation(s) or formula(s) you need to use in order to solve this problem.

The problem wants us to add the number of apples Pinky the Pig and Danny the Duck have together. That means we need to make use of addition to add the apples.

Find an example

Are you still struggling? Sometimes it’s hard to work out the solution, especially if the math problem involves several steps. It’s time to present the problem in an easier way. As teachers and parents we can often help our kids simplify the problem from our own math knowledge. If the problem is a bit harder, there are lots of resources online that you can look up for similar problems that have been worked out on paper or a video tutorial to watch.

In our example, let’s say the double-digit numbers are intimidating our student, so we’re going to simplify the equation for the sake of helping our student understand the operation needed.

Let’s say Pinky the Pig bought 3 apples and Danny the Duck 7 apples and 1 banana. Now, how many apples have they bought together? With 3 apples and 7 apples bought, the total number of apples is 10.

Work out the problem

Now that we have got to the bottom of what is being asked and know what operation to use, it’s time to work out the problem.

Pinky the Pig bought 36 apples. Danny the Duck bought 73 apples. (The 14 bananas do not matter) We need to add up the apples. 36 + 73 = 109

Check and review your answer

Check that your answer is correct. Always ask: does this answer make sense?  You can use estimation using mental math, for example.

Let’s round the numbers: 30 + 70 = 100. That is close to the exact number so it’s in the correct range.

The beauty of the basic operations is that addition and subtraction can be used to check answers too.

If we use the sum and take away one of the numbers, it should equal the other number.

109 – 73 = 36 109 – 36 = 73

If our student did not work out the sum correctly, we would not come to these sums.

(By the way, the same can be done with multiplication and division.)

Finally, go back and review the problem one last time. By going over the concepts, operations and formulas, it will help your kids to internalize the process and help them tackle harder math problems in the future.

Pinterest Logo

This content is available to members only.

Join K5 to save time, skip ads and access more content. Learn More

  • Forgot Password?

Solving Word Questions

With LOTS of examples!

In Algebra we often have word questions like:

Example: Sam and Alex play tennis.

On the weekend Sam played 4 more games than Alex did, and together they played 12 games.

How many games did Alex play?

How do we solve them?

The trick is to break the solution into two parts:

Turn the English into Algebra.

Then use Algebra to solve.

Turning English into Algebra

To turn the English into Algebra it helps to:

  • Read the whole thing first
  • Do a sketch if possible
  • Assign letters for the values
  • Find or work out formulas

You should also write down what is actually being asked for , so you know where you are going and when you have arrived!

Also look for key words:

Thinking Clearly

Some wording can be tricky, making it hard to think "the right way around", such as:

Example: Sam has 2 dollars less than Alex. How do we write this as an equation?

  • Let S = dollars Sam has
  • Let A = dollars Alex has

Now ... is that: S − 2 = A

or should it be: S = A − 2

or should it be: S = 2 − A

The correct answer is S = A − 2

( S − 2 = A is a common mistake, as the question is written "Sam ... 2 less ... Alex")

Example: on our street there are twice as many dogs as cats. How do we write this as an equation?

  • Let D = number of dogs
  • Let C = number of cats

Now ... is that: 2D = C

or should it be: D = 2C

Think carefully now!

The correct answer is D = 2C

( 2D = C is a common mistake, as the question is written "twice ... dogs ... cats")

Let's start with a really simple example so we see how it's done:

Example: A rectangular garden is 12m by 5m, what is its area ?

Turn the English into Algebra:

  • Use w for width of rectangle: w = 12m
  • Use h for height of rectangle: h = 5m

Formula for Area of a Rectangle : A = w × h

We are being asked for the Area.

A = w × h = 12 × 5 = 60 m 2

The area is 60 square meters .

Now let's try the example from the top of the page:

tennis

Example: Sam and Alex play Tennis. On the weekend Sam played 4 more games than Alex did, and together they played 12 games. How many games did Alex play?

  • Use S for how many games Sam played
  • Use A for how many games Alex played

We know that Sam played 4 more games than Alex, so: S = A + 4

And we know that together they played 12 games: S + A = 12

We are being asked for how many games Alex played: A

Which means that Alex played 4 games of tennis.

Check: Sam played 4 more games than Alex, so Sam played 8 games. Together they played 8 + 4 = 12 games. Yes!

A slightly harder example:

table

Example: Alex and Sam also build tables. Together they make 10 tables in 12 days. Alex working alone can make 10 in 30 days. How long would it take Sam working alone to make 10 tables?

  • Use a for Alex's work rate
  • Use s for Sam's work rate

12 days of Alex and Sam is 10 tables, so: 12a + 12s = 10

30 days of Alex alone is also 10 tables: 30a = 10

We are being asked how long it would take Sam to make 10 tables.

30a = 10 , so Alex's rate (tables per day) is: a = 10/30 = 1/3

Which means that Sam's rate is half a table a day (faster than Alex!)

So 10 tables would take Sam just 20 days.

Should Sam be paid more I wonder?

And another "substitution" example:

track

Example: Jenna is training hard to qualify for the National Games. She has a regular weekly routine, training for five hours a day on some days and 3 hours a day on the other days. She trains altogether 27 hours in a seven day week. On how many days does she train for five hours?

  • The number of "5 hour" days: d
  • The number of "3 hour" days: e

We know there are seven days in the week, so: d + e = 7

And she trains 27 hours in a week, with d 5 hour days and e 3 hour days: 5d + 3e = 27

We are being asked for how many days she trains for 5 hours: d

The number of "5 hour" days is 3

Check : She trains for 5 hours on 3 days a week, so she must train for 3 hours a day on the other 4 days of the week.

3 × 5 hours = 15 hours, plus 4 × 3 hours = 12 hours gives a total of 27 hours

Some examples from Geometry:

Example: A circle has an area of 12 mm 2 , what is its radius?

  • Use A for Area: A = 12 mm 2
  • Use r for radius

And the formula for Area is: A = π r 2

We are being asked for the radius.

We need to rearrange the formula to find the area

Example: A cube has a volume of 125 mm 3 , what is its surface area?

Make a quick sketch:

  • Use V for Volume
  • Use A for Area
  • Use s for side length of cube
  • Volume of a cube: V = s 3
  • Surface area of a cube: A = 6s 2

We are being asked for the surface area.

First work out s using the volume formula:

Now we can calculate surface area:

An example about Money:

pizza

Example: Joel works at the local pizza parlor. When he works overtime he earns 1¼ times the normal rate. One week Joel worked for 40 hours at the normal rate of pay and also worked 12 hours overtime. If Joel earned $660 altogether in that week, what is his normal rate of pay?

  • Joel's normal rate of pay: $N per hour
  • Joel works for 40 hours at $N per hour = $40N
  • When Joel does overtime he earns 1¼ times the normal rate = $1.25N per hour
  • Joel works for 12 hours at $1.25N per hour = $(12 × 1¼N) = $15N
  • And together he earned $660, so:

$40N + $(12 × 1¼N) = $660

We are being asked for Joel's normal rate of pay $N.

So Joel’s normal rate of pay is $12 per hour

Joel’s normal rate of pay is $12 per hour, so his overtime rate is 1¼ × $12 per hour = $15 per hour. So his normal pay of 40 × $12 = $480, plus his overtime pay of 12 × $15 = $180 gives us a total of $660

More about Money, with these two examples involving Compound Interest

Example: Alex puts $2000 in the bank at an annual compound interest of 11%. How much will it be worth in 3 years?

This is the compound interest formula:

So we will use these letters:

  • Present Value PV = $2,000
  • Interest Rate (as a decimal): r = 0.11
  • Number of Periods: n = 3
  • Future Value (the value we want): FV

We are being asked for the Future Value: FV

Example: Roger deposited $1,000 into a savings account. The money earned interest compounded annually at the same rate. After nine years Roger's deposit has grown to $1,551.33 What was the annual rate of interest for the savings account?

The compound interest formula:

  • Present Value PV = $1,000
  • Interest Rate (the value we want): r
  • Number of Periods: n = 9
  • Future Value: FV = $1,551.33

We are being asked for the Interest Rate: r

So the annual rate of interest is 5%

Check : $1,000 × (1.05) 9 = $1,000 × 1.55133 = $1,551.33

And an example of a Ratio question:

Example: At the start of the year the ratio of boys to girls in a class is 2 : 1 But now, half a year later, four boys have left the class and there are two new girls. The ratio of boys to girls is now 4 : 3 How many students are there altogether now?

  • Number of boys now: b
  • Number of girls now: g

The current ratio is 4 : 3

Which can be rearranged to 3b = 4g

At the start of the year there was (b + 4) boys and (g − 2) girls, and the ratio was 2 : 1

b + 4 g − 2 = 2 1

Which can be rearranged to b + 4 = 2(g − 2)

We are being asked for how many students there are altogether now: b + g

There are 12 girls !

And 3b = 4g , so b = 4g/3 = 4 × 12 / 3 = 16 , so there are 16 boys

So there are now 12 girls and 16 boys in the class, making 28 students altogether .

There are now 16 boys and 12 girls, so the ratio of boys to girls is 16 : 12 = 4 : 3 At the start of the year there were 20 boys and 10 girls, so the ratio was 20 : 10 = 2 : 1

And now for some Quadratic Equations :

Example: The product of two consecutive even integers is 168. What are the integers?

Consecutive means one after the other. And they are even , so they could be 2 and 4, or 4 and 6, etc.

We will call the smaller integer n , and so the larger integer must be n+2

And we are told the product (what we get after multiplying) is 168, so we know:

n(n + 2) = 168

We are being asked for the integers

That is a Quadratic Equation , and there are many ways to solve it. Using the Quadratic Equation Solver we get −14 and 12.

Check −14: −14(−14 + 2) = (−14)×(−12) = 168 YES

Check 12: 12(12 + 2) = 12×14 = 168 YES

So there are two solutions: −14 and −12 is one, 12 and 14 is the other.

Note: we could have also tried "guess and check":

  • We could try, say, n=10: 10(12) = 120 NO (too small)
  • Next we could try n=12: 12(14) = 168 YES

But unless we remember that multiplying two negatives make a positive we might overlook the other solution of (−14)×(−12).

Example: You are an Architect. Your client wants a room twice as long as it is wide. They also want a 3m wide veranda along the long side. Your client has 56 square meters of beautiful marble tiles to cover the whole area. What should the length of the room be?

Let's first make a sketch so we get things right!:

  • the length of the room: L
  • the width of the room: W
  • the total Area including veranda: A
  • the width of the room is half its length: W = ½L
  • the total area is the (room width + 3) times the length: A = (W+3) × L = 56

We are being asked for the length of the room: L

This is a quadratic equation , there are many ways to solve it, this time let's use factoring :

And so L = 8 or −14

There are two solutions to the quadratic equation, but only one of them is possible since the length of the room cannot be negative!

So the length of the room is 8 m

L = 8, so W = ½L = 4

So the area of the rectangle = (W+3) × L = 7 × 8 = 56

There we are ...

... I hope these examples will help you get the idea of how to handle word questions. Now how about some practice?

  • Prodigy Math
  • Prodigy English
  • Is a Premium Membership Worth It?
  • Promote a Growth Mindset
  • Help Your Child Who's Struggling with Math
  • Parent's Guide to Prodigy
  • Assessments
  • Math Curriculum Coverage
  • English Curriculum Coverage
  • Game Portal

How to Solve Math Problems Faster: 15 Techniques to Show Students

no image

Written by Marcus Guido

  • Teaching Strategies

“Test time. No calculators.”

You’ll intimidate many students by saying this, but teaching techniques to solve math problems with ease and speed can make it less daunting.

This can also  make math more rewarding . Instead of relying on calculators, students learn strategies that can improve their concentration and estimation skills while building number sense. And, while there are educators who  oppose math “tricks”  for valid reasons, proponents point to benefits such as increased confidence to handle difficult problems.

Here are 15 techniques to show students,  helping them solve math problems faster:

Addition and Subtraction

1. two-step addition.

no image

Many students struggle when learning to add integers of three digits or higher together, but changing the process’s steps can make it easier.

The first step is to  add what’s easy.  The second step is to  add the rest.

Let’s say students must find the sum of 393 and 89. They should quickly see that adding 7 onto 393 will equal 400 — an easier number to work with. To balance the equation, they can then subtract 7 from 89.

Broken down, the process is:

  • (393 + 7) + (89 – 7)

With this fast technique, big numbers won’t look as scary now.

2. Two-Step Subtraction

There’s a similar method for subtraction.

Remove what’s easy. Then remove what’s left.

Suppose students must find the difference of 567 and 153. Most will feel that 500 is a simpler number than 567. So, they just have to take away 67 from the minuend — 567 — and the subtrahend — 153 — before solving the equation.

Here’s the process:

  • (567 – 67) – (153 – 67)

Instead of two complex numbers, students will only have to tackle one.

no image

3. Subtracting from 1,000

You can  give students confidence  to handle four-digit integers with this fast technique.

To subtract a number from 1,000, subtract that number’s first two digits from 9. Then, subtract the final digit from 10.

Let’s say students must solve 1,000 – 438.  Here are the steps:

This also applies to 10,000, 100,000 and other integers that follow this pattern.

Multiplication and Division

4. doubling and halving.

no image

When students have to multiply two integers, they can speed up the process when one is an even number. They just need to  halve the even number and double the other number.

Students can stop the process when they can no longer halve the even integer, or when the equation becomes manageable.

Using 33 x 48 as an example,  here’s the process:

The only prerequisite is understanding the 2 times table.

5. Multiplying by Powers of 2

This tactic is a speedy variation of doubling and halving.

It simplifies multiplication if a number in the equation is a power of 2, meaning it works for 2, 4, 8, 16 and so on.

Here’s what to do:  For each power of 2 that makes up that number, double the other number.

For example, 9 x 16 is the same thing as 9 x (2 x 2 x 2 x 2) or 9 x 24. Students can therefore double 9 four times to reach the answer:

Unlike doubling and halving, this technique demands an understanding of exponents along with a strong command of the 2 times table.

no image

6. Multiplying by 9

For most students, multiplying by 9 — or 99, 999 and any number that follows this pattern — is difficult compared with multiplying by a power of 10.

But there’s an easy tactic to solve this issue, and  it has two parts.

First, students round up the 9  to 10. Second, after solving the new equation, they subtract the number they just multiplied by 10 from the answer.

For example, 67 x 9 will lead to the same answer as 67 x 10 – 67. Following the order of operations will give a result of 603. Similarly, 67 x 99 is the same as 67 x 100 – 67.

Despite more steps, altering the equation this way is usually faster.

7. Multiplying by 11

no image

There’s an easier way for multiplying two-digit integers by 11.

Let’s say students must find the product of 11 x 34.

The idea is to put a space between the digits, making it 3_4. Then, add the two digits together and put the sum in the space.

The answer is 374.

What happens if the sum is two digits? Students would put the second digit in the space and add 1 to the digit to the left of the space.  For example:

It’s multiplication without having to multiply.

8. Multiplying Even Numbers by 5

This technique only requires basic division skills.

There are two steps,  and 5 x 6 serves as an example. First, divide the number being multiplied by 5 — which is 6 — in half. Second, add 0 to the right of number.

The result is 30, which is the correct answer.

It’s an ideal, easy technique for students mastering the 5 times table.

9. Multiplying Odd Numbers by 5

This is another time-saving tactic that works well when teaching students the 5 times table.

This one has three steps,  which 5 x 7 exemplifies.

First, subtract 1 from the number being multiplied by 5, making it an even number. Second, cut that number in half — from 6 to 3 in this instance. Third, add 5 to the right of the number.

The answer is 35.

Who needs a calculator?

10. Squaring a Two-Digit Number that Ends with 1

no image

Squaring a high two-digit number can be tedious, but there’s a shortcut if 1 is the second digit.

There are four steps to this shortcut,  which 812 exemplifies:

  • Subtract 1 from the integer: 81 – 1 = 80
  • Square the integer, which is now an easier number: 80 x 80 = 6,400
  • Add the integer with the resulting square twice: 6,400 + 80 + 80 = 6,560
  • Add 1: 6,560 + 1 = 6,561

This work-around eliminates the difficulty surrounding the second digit, allowing students to work with multiples of 10.

11. Squaring a Two-Digit Numbers that Ends with 5

Squaring numbers ending in 5 is easier, as there are  only two parts of the process.

First, students will always make 25 the product’s last digits.

Second, to determine the product’s first digits, students must multiply the number’s first digit — 9, for example — by the integer that’s one higher — 10, in this case.

So, students would solve 952 by designating 25 as the last two digits. They would then multiply 9 x 10 to receive 90. Putting these numbers together, the  result is 9,025.

Just like that, a hard problem becomes easy multiplication for many students.

12. Calculating Percentages

Cross-multiplication is an  important skill  to develop, but there’s an easier way to calculate percentages.

For example, if students want to know what 65% of 175 is, they can multiply the numbers together and move the decimal place two digits to the left.

The result is 113.75, which is indeed the correct answer.

This shortcut is a useful timesaver on tests and quizzes.

13. Balancing Averages

no image

To determine the average among a set of numbers, students can balance them instead of using a complex formula.

Suppose a student wants to volunteer for an average of 10 hours a week over a period of four weeks. In the first three weeks, the student worked for 10, 12 and 14 hours.

To determine the number of hours required in the fourth week, the student must  add how much he or she surpassed or missed the target average  in the other weeks:

  • 14 hours – 10 hours = 4 hours
  • 12 – 10 = 2
  • 10 – 10 = 0
  • 4 hours + 2 hours + 0 hours = 6 hours

To learn the number of hours for the final week, the student must  subtract the sum from the target average:

  • 10 hours – 6 hours = 4 hours

With practice, this method may not even require pencil and paper. That’s how easy it is. 

no image

Word Problems

14. identifying buzzwords.

Students who struggle to translate  word problems  into equations will benefit from learning how to spot buzzwords — phrases that indicate specific actions.

This isn’t a trick. It’s a tactic.

Teach students to look for these buzzwords,  and what skill they align with in most contexts:

Be sure to include buzzwords that typically appear in their textbooks (or other classroom  math books ), as well as ones you use on tests and assignments.

As a result, they should have an  easier time processing word problems .

15. Creating Sub-Questions

no image

For complex word problems, show students how to dissect the question by answering three specific sub-questions.

Each student should ask him or herself:

  • What am I looking for?  — Students should read the question over and over, looking for buzzwords and identifying important details.
  • What information do I need?  — Students should determine which facts, figures and variables they need to solve the question. For example, if they determine the question is rooted in subtraction, they need the minuend and subtrahend.
  • What information do I have?  — Students should be able to create the core equation using the information in the word problem, after determining which details are important.

These sub-questions help students avoid overload.

Instead of writing and analyzing each detail of the question, they’ll be able to identify key information. If you identify students who are struggling with these, you can use  peer learning  as needed.  

For more fresh approaches to teaching math in your classroom, consider treating your students to a range of  fun math activities .

Final Thoughts About these Ways to Solve Math Problems Faster

Showing these 15 techniques to students can give them the  confidence to tackle tough questions .

They’re also  mental math  exercises, helping them build skills related to focus, logic and critical thinking.

A rewarding class equals an  engaging class . That’s an easy equation to remember.

> Create or log into your teacher account on Prodigy  — a free, adaptive math game that adjusts content to accommodate player trouble spots and learning speeds. Aligned to US and Canadian curricula, it’s loved by more than 500,000 teachers and 15 million students.

Microsoft

Game Central

Math Work Problems - Two Persons

In these lessons, we will learn how to solve work problems that involve two persons who may work at different rates.

Related Pages Work Problems Solving Work Word Problems Using Algebra More Algebra Lessons

Work Problems are word problems that involve different people doing work together but at different rates . If the people were working at the same rate then we can use the Inversely Proportional Method instead.

How To Solve Work Problems: Two Persons, Unknown Time

We will learn how to solve math work problems that involve two persons. We will also learn how to solve work problems with unknown time.

The following diagram shows the formula for Work Problems that involve two persons. Scroll down the page for more examples and solutions on solving algebra work problems.

Work Problems

This formula can be extended for more than two persons .

"Work" Problems: Two Persons

Example: Peter can mow the lawn in 40 minutes and John can mow the lawn in 60 minutes. How long will it take for them to mow the lawn together?

Solution: Step 1: Assign variables : Let x = time to mow lawn together.

Step 3: Solve the equation The LCM of 40 and 60 is 120 Multiply both sides with 120

Answer: The time taken for both of them to mow the lawn together is 24 minutes.

Work Problems With One Unknown Time

  • Catherine can paint a house in 15 hours. Dan can paint a house in 30 hours. How long will it take them working together.
  • Evan can clean a room in 3 hours. If his sister, Faith helps, it takes them two and two-fifths hours. How long will it take Faith working alone?

Variations Of GMAT Combined Work Problems

  • Working at a constant rate, Joe can paint a fence in 4 hours. Working at a constant rate, his brother can paint the same fence in 2 hours. How long will it take them to paint the fence if they both work together at their respective constant rates?
  • Working alone at a constant rate, machine A takes 2 hours to build a care. Working alone at a constant rate, machine B takes 3 hours to build the same car. If they work together for 1 hour at their respective constant rates and then machine B breaks down, how much additional time will it take machine A to finish the car by itself?
  • Working alone at a constant rate, Carla can wash a load of dishes in 42 minutes. If Carla works together with Dan and they both work at constant rates, it takes them 28 minutes to wash the same load of dishes. Working at a constant rate, how long would it take Dan to wash the load of dishes by himself?

How To Solve “Working Together” Problems?

Example: It takes Andy 40 minutes to do a particular job alone. It takes Brenda 50 minutes to do the same job alone. How long would it take them if they worked together?

Word Problem: Work, Rates, Time To Complete A Task

We are given that a person can complete a task alone in 32 hours and with another person they can finish the task in 19 hours. We want to know how long it would take the second person working alone.

Example: Latisha and Ricky work for a computer software company. Together they can write a particular computer program in 19 hours. Latisha van write the program by herself in 32 hours. How long will it take Ricky to write the program alone?

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

Corbettmaths

Solving Equations Practice Questions

Click here for questions, click here for answers.

equation, solve

GCSE Revision Cards

how to work out problem solving questions in maths

5-a-day Workbooks

how to work out problem solving questions in maths

Primary Study Cards

how to work out problem solving questions in maths

Privacy Policy

Terms and Conditions

Corbettmaths © 2012 – 2024

IMAGES

  1. How to Solve a Wordy Math Problem (with Pictures)

    how to work out problem solving questions in maths

  2. Problem solving using subtraction, Mathematics skills online

    how to work out problem solving questions in maths

  3. problem solving worksheets grade 4

    how to work out problem solving questions in maths

  4. Problem Solving: Guess And Check

    how to work out problem solving questions in maths

  5. Solve problems and investigate

    how to work out problem solving questions in maths

  6. Math Problem Solving Activities For First Grade / First Grade Math

    how to work out problem solving questions in maths

VIDEO

  1. Wastewater Collection Math Problem #11 SewerGeek

  2. Wastewater Collection Math Problem #9 SewerGeek

  3. GCSE Math Network

  4. How To Differentiate A Maths Mastery Lesson Through Questioning

  5. 3 Easy Algebra Problems (you need to be able to solve….)

  6. Can You Solve This Easy Math Problem in Your Mind?

COMMENTS

  1. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and ...

  2. Step-by-Step Calculator

    To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.

  3. Microsoft Math Solver

    Get math help in your language. Works in Spanish, Hindi, German, and more. Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  4. 3 Easy Ways to Solve Math Problems (with Pictures)

    3. Work on an easier problem. If there is an easier problem available that is similar to the one you are trying to solve, work on the easier problem first. Solving an easier problem that requires some of the same steps and formulas will help you to tackle the more difficult problem. [8] [9] 4.

  5. GeoGebra Math Solver

    Get accurate solutions and step-by-step explanations for algebra and other math problems with the free GeoGebra Math Solver. Enhance your problem-solving skills while learning how to solve equations on your own. Try it now!

  6. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations. Mathway. Visit Mathway on the web. Start 7-day free trial on the app. Start 7-day free trial on the app. Download free on Amazon. Download free in Windows Store. get Go. Algebra.

  7. A Guide to Problem Solving

    A Guide to Problem Solving. When confronted with a problem, in which the solution is not clear, you need to be a skilled problem-solver to know how to proceed. When you look at STEP problems for the first time, it may seem like this problem-solving skill is out of your reach, but like any skill, you can improve your problem-solving with practice.

  8. Solve

    Integration. ∫ 01 xe−x2dx. Limits. x→−3lim x2 + 2x − 3x2 − 9. Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  9. Solving equations & inequalities

    Unit test. Level up on all the skills in this unit and collect up to 1,100 Mastery points! There are lots of strategies we can use to solve equations. Let's explore some different ways to solve equations and inequalities. We'll also see what it takes for an equation to have no solution, or infinite solutions.

  10. Algebra 1

    The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a function; Exponential models; and Quadratic equations, functions, and graphs. Khan Academy's Algebra 1 course is built to deliver a comprehensive, illuminating, engaging, and Common Core aligned experience!

  11. Symbolab Math Calculator

    Popular Calculators. Fractions Radical Equation Factoring Inverse Quadratic Simplify Slope Domain Antiderivatives Polynomial Equation Log Equation Cross Product Partial Derivative Implicit Derivative Tangent Complex Numbers. Symbolab: equation search and math solver - solves algebra, trigonometry and calculus problems step by step.

  12. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  13. Solving Equations

    In fact, solving an equation is just like solving a puzzle. And like puzzles, there are things we can (and cannot) do. Here are some things we can do: Add or Subtract the same value from both sides; Clear out any fractions by Multiplying every term by the bottom parts; Divide every term by the same nonzero value; Combine Like Terms; Factoring

  14. Microsoft Math Solver

    Get math help in your language. Works in Spanish, Hindi, German, and more. Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  15. Free Math Worksheets

    Khan Academy's 100,000+ free practice questions give instant feedback, don't need to be graded, and don't require a printer. Math Worksheets. Khan Academy. Math worksheets take forever to hunt down across the internet. Khan Academy is your one-stop-shop for practice from arithmetic to calculus. Math worksheets can vary in quality from ...

  16. Cymath

    Cymath | Math Problem Solver with Steps | Math Solving App ... \\"Solve

  17. How to Ace Math Problem Solving

    If we use the sum and take away one of the numbers, it should equal the other number. 109 - 73 = 36. 109 - 36 = 73. If our student did not work out the sum correctly, we would not come to these sums. (By the way, the same can be done with multiplication and division.) Finally, go back and review the problem one last time.

  18. Solving Word Questions

    Math explained in easy language, plus puzzles, games, quizzes, worksheets and a forum. ... Solving Word Questions. With LOTS of examples! In Algebra we often have word questions like: Example: Sam and Alex play tennis. On the weekend Sam played 4 more games than Alex did, and together they played 12 games. ... Solve: First work out s using the ...

  19. How to Solve Math Problems Faster: 15 Techniques to Show Students

    Here are 15 techniques to show students, helping them solve math problems faster: Addition and Subtraction. 1. Two-Step Addition ... They should quickly see that adding 7 onto 393 will equal 400 — an easier number to work with. To balance the equation, they can then subtract 7 from 89. ... figures and variables they need to solve the question ...

  20. Problem solving

    Problem solving. The ability to problem solve and make decisions for ourselves is a key thinking skill that is hugely important throughout life. The greater your skill in this area, the better you ...

  21. Practice

    Online math solver with free step by step solutions to algebra, calculus, and other math problems. ... Solve for a Variable. Factor. Expand. Evaluate Fractions. Linear Equations. ... Type a math problem. New quiz. Least Common Multiple. 5 problems similar to: lcm(12,16) Exponents. 5 problems similar to: ...

  22. Math Work Problems (video lessons, examples and solutions)

    Solution: Step 1: Assign variables: Let x = time to mow lawn together. Step 2: Use the formula: Step 3: Solve the equation. The LCM of 40 and 60 is 120. Multiply both sides with 120. Answer: The time taken for both of them to mow the lawn together is 24 minutes.

  23. Solving Equations Practice Questions

    Click here for Answers. equation, solve. Practice Questions. Previous: Ray Method Practice Questions. Next: Equations involving Fractions Practice Questions. The Corbettmaths Practice Questions on Solving Equations.