Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null and Alternative Hypotheses | Definitions & Examples

Published on 5 October 2022 by Shaun Turney . Revised on 6 December 2022.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis (H 0 ): There’s no effect in the population .
  • Alternative hypothesis (H A ): There’s an effect in the population.

The effect is usually the effect of the independent variable on the dependent variable .

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, differences between null and alternative hypotheses, how to write null and alternative hypotheses, frequently asked questions about null and alternative hypotheses.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”, the null hypothesis (H 0 ) answers “No, there’s no effect in the population.” On the other hand, the alternative hypothesis (H A ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample.

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept. Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect”, “no difference”, or “no relationship”. When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis (H A ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect”, “a difference”, or “a relationship”. When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes > or <). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question
  • They both make claims about the population
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis (H 0 ): Independent variable does not affect dependent variable .
  • Alternative hypothesis (H A ): Independent variable affects dependent variable .

Test-specific

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Turney, S. (2022, December 06). Null and Alternative Hypotheses | Definitions & Examples. Scribbr. Retrieved 14 May 2024, from https://www.scribbr.co.uk/stats/null-and-alternative-hypothesis/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, levels of measurement: nominal, ordinal, interval, ratio, the standard normal distribution | calculator, examples & uses, types of variables in research | definitions & examples.

Module 9: Hypothesis Testing With One Sample

Null and alternative hypotheses, learning outcomes.

  • Describe hypothesis testing in general and in practice

The actual test begins by considering two  hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

H a : The alternative hypothesis : It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make adecision. There are two options for a  decision . They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in  H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

H 0 : The drug reduces cholesterol by 25%. p = 0.25

H a : The drug does not reduce cholesterol by 25%. p ≠ 0.25

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

H 0 : μ = 2.0

H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 66 H a : μ __ 66

  • H 0 : μ = 66
  • H a : μ ≠ 66

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

H 0 : μ ≥ 5

H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 45 H a : μ __ 45

  • H 0 : μ ≥ 45
  • H a : μ < 45

In an issue of U.S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

H 0 : p ≤ 0.066

H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : p __ 0.40 H a : p __ 0.40

  • H 0 : p = 0.40
  • H a : p > 0.40

Concept Review

In a  hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis , typically denoted with H 0 . The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality (=, ≤ or ≥) Always write the alternative hypothesis , typically denoted with H a or H 1 , using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

H 0 and H a are contradictory.

  • OpenStax, Statistics, Null and Alternative Hypotheses. Provided by : OpenStax. Located at : http://cnx.org/contents/[email protected]:58/Introductory_Statistics . License : CC BY: Attribution
  • Introductory Statistics . Authored by : Barbara Illowski, Susan Dean. Provided by : Open Stax. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Simple hypothesis testing | Probability and Statistics | Khan Academy. Authored by : Khan Academy. Located at : https://youtu.be/5D1gV37bKXY . License : All Rights Reserved . License Terms : Standard YouTube License

Statology

Statistics Made Easy

What is an Alternative Hypothesis in Statistics?

Often in statistics we want to test whether or not some assumption is true about a population parameter .

For example, we might assume that the mean weight of a certain population of turtle is 300 pounds.

To determine if this assumption is true, we’ll go out and collect a sample of turtles and weigh each of them. Using this sample data, we’ll conduct a hypothesis test .

The first step in a hypothesis test is to define the  null and  alternative hypotheses .

These two hypotheses need to be mutually exclusive, so if one is true then the other must be false.

These two hypotheses are defined as follows:

Null hypothesis (H 0 ): The sample data is consistent with the prevailing belief about the population parameter.

Alternative hypothesis (H A ): The sample data suggests that the assumption made in the null hypothesis is not true. In other words, there is some non-random cause influencing the data.

Types of Alternative Hypotheses

There are two types of alternative hypotheses:

A  one-tailed hypothesis involves making a “greater than” or “less than ” statement. For example, suppose we assume the mean height of a male in the U.S. is greater than or equal to 70 inches.

The null and alternative hypotheses in this case would be:

  • Null hypothesis: µ ≥ 70 inches
  • Alternative hypothesis: µ < 70 inches

A  two-tailed hypothesis involves making an “equal to” or “not equal to” statement. For example, suppose we assume the mean height of a male in the U.S. is equal to 70 inches.

  • Null hypothesis: µ = 70 inches
  • Alternative hypothesis: µ ≠ 70 inches

Note: The “equal” sign is always included in the null hypothesis, whether it is =, ≥, or ≤.

Examples of Alternative Hypotheses

The following examples illustrate how to define the null and alternative hypotheses for different research problems.

Example 1: A biologist wants to test if the mean weight of a certain population of turtle is different from the widely-accepted mean weight of 300 pounds.

The null and alternative hypothesis for this research study would be:

  • Null hypothesis: µ = 300 pounds
  • Alternative hypothesis: µ ≠ 300 pounds

If we reject the null hypothesis, this means we have sufficient evidence from the sample data to say that the true mean weight of this population of turtles is different from 300 pounds.

Example 2: An engineer wants to test whether a new battery can produce higher mean watts than the current industry standard of 50 watts.

  • Null hypothesis: µ ≤ 50 watts
  • Alternative hypothesis: µ > 50 watts

If we reject the null hypothesis, this means we have sufficient evidence from the sample data to say that the true mean watts produced by the new battery is greater than the current industry standard of 50 watts.

Example 3: A botanist wants to know if a new gardening method produces less waste than the standard gardening method that produces 20 pounds of waste.

  • Null hypothesis: µ ≥ 20 pounds
  • Alternative hypothesis: µ < 20 pounds

If we reject the null hypothesis, this means we have sufficient evidence from the sample data to say that the true mean weight produced by this new gardening method is less than 20 pounds.

When to Reject the Null Hypothesis

Whenever we conduct a hypothesis test, we use sample data to calculate a test-statistic and a corresponding p-value.

If the p-value is less than some significance level (common choices are 0.10, 0.05, and 0.01), then we reject the null hypothesis.

This means we have sufficient evidence from the sample data to say that the assumption made by the null hypothesis is not true.

If the p-value is  not less than some significance level, then we fail to reject the null hypothesis.

This means our sample data did not provide us with evidence that the assumption made by the null hypothesis was not true.

Additional Resource:   An Explanation of P-Values and Statistical Significance

Featured Posts

5 Regularization Techniques You Should Know

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

AP®︎/College Statistics

Course: ap®︎/college statistics   >   unit 10.

  • Idea behind hypothesis testing

Examples of null and alternative hypotheses

  • Writing null and alternative hypotheses
  • P-values and significance tests
  • Comparing P-values to different significance levels
  • Estimating a P-value from a simulation
  • Estimating P-values from simulations
  • Using P-values to make conclusions

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Good Answer

Video transcript

Logo for UH Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Hypothesis Testing with One Sample

Null and Alternative Hypotheses

OpenStaxCollege

[latexpage]

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

H a : The alternative hypothesis: It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

H 0 : The drug reduces cholesterol by 25%. p = 0.25

H a : The drug does not reduce cholesterol by 25%. p ≠ 0.25

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

H 0 : μ = 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ = 66
  • H a : μ ≠ 66

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

H 0 : μ ≥ 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ ≥ 45
  • H a : μ < 45

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

H 0 : p ≤ 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p = 0.40
  • H a : p > 0.40

<!– ??? –>

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

Chapter Review

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

Formula Review

H 0 and H a are contradictory.

If α ≤ p -value, then do not reject H 0 .

If α > p -value, then reject H 0 .

α is preconceived. Its value is set before the hypothesis test starts. The p -value is calculated from the data.

You are testing that the mean speed of your cable Internet connection is more than three Megabits per second. What is the random variable? Describe in words.

The random variable is the mean Internet speed in Megabits per second.

You are testing that the mean speed of your cable Internet connection is more than three Megabits per second. State the null and alternative hypotheses.

The American family has an average of two children. What is the random variable? Describe in words.

The random variable is the mean number of children an American family has.

The mean entry level salary of an employee at a company is 💲58,000. You believe it is higher for IT professionals in the company. State the null and alternative hypotheses.

A sociologist claims the probability that a person picked at random in Times Square in New York City is visiting the area is 0.83. You want to test to see if the proportion is actually less. What is the random variable? Describe in words.

The random variable is the proportion of people picked at random in Times Square visiting the city.

A sociologist claims the probability that a person picked at random in Times Square in New York City is visiting the area is 0.83. You want to test to see if the claim is correct. State the null and alternative hypotheses.

In a population of fish, approximately 42% are female. A test is conducted to see if, in fact, the proportion is less. State the null and alternative hypotheses.

Suppose that a recent article stated that the mean time spent in jail by a first–time convicted burglar is 2.5 years. A study was then done to see if the mean time has increased in the new century. A random sample of 26 first-time convicted burglars in a recent year was picked. The mean length of time in jail from the survey was 3 years with a standard deviation of 1.8 years. Suppose that it is somehow known that the population standard deviation is 1.5. If you were conducting a hypothesis test to determine if the mean length of jail time has increased, what would the null and alternative hypotheses be? The distribution of the population is normal.

A random survey of 75 death row inmates revealed that the mean length of time on death row is 17.4 years with a standard deviation of 6.3 years. If you were conducting a hypothesis test to determine if the population mean time on death row could likely be 15 years, what would the null and alternative hypotheses be?

  • H 0 : __________
  • H a : __________
  • H 0 : μ = 15
  • H a : μ ≠ 15

The National Institute of Mental Health published an article stating that in any one-year period, approximately 9.5 percent of American adults suffer from depression or a depressive illness. Suppose that in a survey of 100 people in a certain town, seven of them suffered from depression or a depressive illness. If you were conducting a hypothesis test to determine if the true proportion of people in that town suffering from depression or a depressive illness is lower than the percent in the general adult American population, what would the null and alternative hypotheses be?

Some of the following statements refer to the null hypothesis, some to the alternate hypothesis.

State the null hypothesis, H 0 , and the alternative hypothesis. H a , in terms of the appropriate parameter ( μ or p ).

  • The mean number of years Americans work before retiring is 34.
  • At most 60% of Americans vote in presidential elections.
  • The mean starting salary for San Jose State University graduates is at least 💲100,000 per year.
  • Twenty-nine percent of high school seniors get drunk each month.
  • Fewer than 5% of adults ride the bus to work in Los Angeles.
  • The mean number of cars a person owns in her lifetime is not more than ten.
  • About half of Americans prefer to live away from cities, given the choice.
  • Europeans have a mean paid vacation each year of six weeks.
  • The chance of developing breast cancer is under 11% for women.
  • Private universities’ mean tuition cost is more than 💲20,000 per year.
  • H 0 : μ = 34; H a : μ ≠ 34
  • H 0 : p ≤ 0.60; H a : p > 0.60
  • H 0 : μ ≥ 100,000; H a : μ < 100,000
  • H 0 : p = 0.29; H a : p ≠ 0.29
  • H 0 : p = 0.05; H a : p < 0.05
  • H 0 : μ ≤ 10; H a : μ > 10
  • H 0 : p = 0.50; H a : p ≠ 0.50
  • H 0 : μ = 6; H a : μ ≠ 6
  • H 0 : p ≥ 0.11; H a : p < 0.11
  • H 0 : μ ≤ 20,000; H a : μ > 20,000

Over the past few decades, public health officials have examined the link between weight concerns and teen girls’ smoking. Researchers surveyed a group of 273 randomly selected teen girls living in Massachusetts (between 12 and 15 years old). After four years the girls were surveyed again. Sixty-three said they smoked to stay thin. Is there good evidence that more than thirty percent of the teen girls smoke to stay thin? The alternative hypothesis is:

  • p < 0.30
  • p > 0.30

A statistics instructor believes that fewer than 20% of Evergreen Valley College (EVC) students attended the opening night midnight showing of the latest Harry Potter movie. She surveys 84 of her students and finds that 11 attended the midnight showing. An appropriate alternative hypothesis is:

  • p > 0.20
  • p < 0.20

Previously, an organization reported that teenagers spent 4.5 hours per week, on average, on the phone. The organization thinks that, currently, the mean is higher. Fifteen randomly chosen teenagers were asked how many hours per week they spend on the phone. The sample mean was 4.75 hours with a sample standard deviation of 2.0. Conduct a hypothesis test. The null and alternative hypotheses are:

  • H o : \(\overline{x}\) = 4.5, H a : \(\overline{x}\) > 4.5
  • H o : μ ≥ 4.5, H a : μ < 4.5
  • H o : μ = 4.75, H a : μ > 4.75
  • H o : μ = 4.5, H a : μ > 4.5

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm.

Null and Alternative Hypotheses Copyright © 2013 by OpenStaxCollege is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.2 Null and Alternative Hypotheses

Learning objectives.

  • Describe hypothesis testing in general and in practice.

A hypothesis test begins by considering two hypotheses .  They are called the null hypothesis and the alternative hypothesis .  These hypotheses contain opposing viewpoints and only one of these hypotheses is true.  The hypothesis test determines which hypothesis is most likely true.

  • The null hypothesis is a claim that a population parameter equals some value.  For example, [latex]H_0: \mu=5[/latex].
  • The alternative hypothesis is a claim that a population parameter is greater than, less than, or not equal to some value.  For example, [latex]H_a: \mu>5[/latex], [latex]H_a: \mu<5[/latex], or [latex]H_a: \mu \neq 5[/latex].  The form of the alternative hypothesis depends on the wording of the hypothesis test.
  • An alternative notation for [latex]H_a[/latex] is [latex]H_1[/latex].

Because the null and alternative hypotheses are contradictory, we must examine evidence to decide if we have enough evidence to reject the null hypothesis or not reject the null hypothesis.  The evidence is in the form of sample data.  After we have determined which hypothesis the sample data supports, we make a decision.  There are two options for a decision . They are “ reject [latex]H_0[/latex] ” if the sample information favors the alternative hypothesis or “ do not reject [latex]H_0[/latex] ” if the sample information is insufficient to reject the null hypothesis.

Watch this video: Simple hypothesis testing | Probability and Statistics | Khan Academy by Khan Academy [6:24]

A candidate in a local election claims that 30% of registered voters voted in a recent election.  Information provided by the returning office suggests that the percentage is higher than the 30% claimed.

The parameter under study is the proportion of registered voters, so we use [latex]p[/latex] in the statements of the hypotheses.  The hypotheses are

[latex]\begin{eqnarray*} \\ H_0: & & p=30\% \\ \\ H_a: & & p \gt 30\% \\ \\ \end{eqnarray*}[/latex]

  • The null hypothesis [latex]H_0[/latex] is the claim that the proportion of registered voters that voted equals 30%.
  • The alternative hypothesis [latex]H_a[/latex] is the claim that the proportion of registered voters that voted is greater than (i.e. higher) than 30%.

A medical researcher believes that a new medicine reduces cholesterol by 25%.  A medical trial suggests that the percent reduction is different than claimed.  State the null and alternative hypotheses.

[latex]\begin{eqnarray*} H_0: & & p=25\% \\ \\ H_a: & & p \neq 25\% \end{eqnarray*}[/latex]

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0).  State the null and alternative hypotheses.

[latex]\begin{eqnarray*} H_0: & & \mu=2  \mbox{ points} \\ \\ H_a: & & \mu \neq 2 \mbox{ points}  \end{eqnarray*}[/latex]

We want to test whether or not the mean height of eighth graders is 66 inches.  State the null and alternative hypotheses.

[latex]\begin{eqnarray*}  H_0: & & \mu=66 \mbox{ inches} \\ \\ H_a: & & \mu \neq 66 \mbox{ inches}  \end{eqnarray*}[/latex]

We want to test if college students take less than five years to graduate from college, on the average.  The null and alternative hypotheses are:

[latex]\begin{eqnarray*} H_0: & & \mu=5 \mbox{ years} \\ \\ H_a: & & \mu \lt 5 \mbox{ years}   \end{eqnarray*}[/latex]

We want to test if it takes fewer than 45 minutes to teach a lesson plan.  State the null and alternative hypotheses.

[latex]\begin{eqnarray*}  H_0: & & \mu=45 \mbox{ minutes} \\ \\ H_a: & & \mu \lt 45 \mbox{ minutes}  \end{eqnarray*}[/latex]

In an issue of U.S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass.  The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass.  Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%.  State the null and alternative hypotheses.

[latex]\begin{eqnarray*}  H_0: & & p=6.6\% \\ \\ H_a: & & p \gt 6.6\%  \end{eqnarray*}[/latex]

On a state driver’s test, about 40% pass the test on the first try.  We want to test if more than 40% pass on the first try.   State the null and alternative hypotheses.

[latex]\begin{eqnarray*}  H_0: & & p=40\% \\ \\ H_a: & & p \gt 40\%  \end{eqnarray*}[/latex]

Concept Review

In a  hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim.  If certain conditions about the sample are satisfied, then the claim can be evaluated for a population.  In a hypothesis test, we evaluate the null hypothesis , typically denoted with [latex]H_0[/latex]. The null hypothesis is not rejected unless the hypothesis test shows otherwise.  The null hypothesis always contain an equal sign ([latex]=[/latex]).  Always write the alternative hypothesis , typically denoted with [latex]H_a[/latex] or [latex]H_1[/latex], using less than, greater than, or not equals symbols ([latex]\lt[/latex], [latex]\gt[/latex], [latex]\neq[/latex]).  If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.  But we can never state that a claim is proven true or false.  All we can conclude from the hypothesis test is which of the hypothesis is most likely true.  Because the underlying facts about hypothesis testing is based on probability laws, we can talk only in terms of non-absolute certainties.

Attribution

“ 9.1   Null and Alternative Hypotheses “ in Introductory Statistics by OpenStax  is licensed under a  Creative Commons Attribution 4.0 International License.

Introduction to Statistics Copyright © 2022 by Valerie Watts is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Null Hypothesis and Alternative Hypothesis

  • Inferential Statistics
  • Statistics Tutorials
  • Probability & Games
  • Descriptive Statistics
  • Applications Of Statistics
  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade
  • Ph.D., Mathematics, Purdue University
  • M.S., Mathematics, Purdue University
  • B.A., Mathematics, Physics, and Chemistry, Anderson University

Hypothesis testing involves the careful construction of two statements: the null hypothesis and the alternative hypothesis. These hypotheses can look very similar but are actually different.

How do we know which hypothesis is the null and which one is the alternative? We will see that there are a few ways to tell the difference.

The Null Hypothesis

The null hypothesis reflects that there will be no observed effect in our experiment. In a mathematical formulation of the null hypothesis, there will typically be an equal sign. This hypothesis is denoted by H 0 .

The null hypothesis is what we attempt to find evidence against in our hypothesis test. We hope to obtain a small enough p-value that it is lower than our level of significance alpha and we are justified in rejecting the null hypothesis. If our p-value is greater than alpha, then we fail to reject the null hypothesis.

If the null hypothesis is not rejected, then we must be careful to say what this means. The thinking on this is similar to a legal verdict. Just because a person has been declared "not guilty", it does not mean that he is innocent. In the same way, just because we failed to reject a null hypothesis it does not mean that the statement is true.

For example, we may want to investigate the claim that despite what convention has told us, the mean adult body temperature is not the accepted value of 98.6 degrees Fahrenheit . The null hypothesis for an experiment to investigate this is “The mean adult body temperature for healthy individuals is 98.6 degrees Fahrenheit.” If we fail to reject the null hypothesis, then our working hypothesis remains that the average adult who is healthy has a temperature of 98.6 degrees. We do not prove that this is true.

If we are studying a new treatment, the null hypothesis is that our treatment will not change our subjects in any meaningful way. In other words, the treatment will not produce any effect in our subjects.

The Alternative Hypothesis

The alternative or experimental hypothesis reflects that there will be an observed effect for our experiment. In a mathematical formulation of the alternative hypothesis, there will typically be an inequality, or not equal to symbol. This hypothesis is denoted by either H a or by H 1 .

The alternative hypothesis is what we are attempting to demonstrate in an indirect way by the use of our hypothesis test. If the null hypothesis is rejected, then we accept the alternative hypothesis. If the null hypothesis is not rejected, then we do not accept the alternative hypothesis. Going back to the above example of mean human body temperature, the alternative hypothesis is “The average adult human body temperature is not 98.6 degrees Fahrenheit.”

If we are studying a new treatment, then the alternative hypothesis is that our treatment does, in fact, change our subjects in a meaningful and measurable way.

The following set of negations may help when you are forming your null and alternative hypotheses. Most technical papers rely on just the first formulation, even though you may see some of the others in a statistics textbook.

  • Null hypothesis: “ x is equal to y .” Alternative hypothesis “ x is not equal to y .”
  • Null hypothesis: “ x is at least y .” Alternative hypothesis “ x is less than y .”
  • Null hypothesis: “ x is at most y .” Alternative hypothesis “ x is greater than y .”
  • An Example of a Hypothesis Test
  • Hypothesis Test for the Difference of Two Population Proportions
  • What Is a P-Value?
  • How to Conduct a Hypothesis Test
  • Hypothesis Test Example
  • Chi-Square Goodness of Fit Test
  • What Level of Alpha Determines Statistical Significance?
  • How to Do Hypothesis Tests With the Z.TEST Function in Excel
  • The Difference Between Type I and Type II Errors in Hypothesis Testing
  • Type I and Type II Errors in Statistics
  • The Runs Test for Random Sequences
  • What 'Fail to Reject' Means in a Hypothesis Test
  • What Is the Difference Between Alpha and P-Values?
  • An Example of Chi-Square Test for a Multinomial Experiment
  • Example of a Chi-Square Goodness of Fit Test
  • Null Hypothesis Definition and Examples
  • Math Article

Alternative Hypothesis

Alternative hypothesis defines there is a statistically important relationship between two variables. Whereas null hypothesis states there is no statistical relationship between the two variables. In statistics, we usually come across various kinds of hypotheses. A statistical hypothesis is supposed to be a working statement which is assumed to be logical with given data. It should be noticed that a hypothesis is neither considered true nor false.

The alternative hypothesis is a statement used in statistical inference experiment. It is contradictory to the null hypothesis and denoted by H a or H 1 . We can also say that it is simply an alternative to the null. In hypothesis testing, an alternative theory is a statement which a researcher is testing. This statement is true from the researcher’s point of view and ultimately proves to reject the null to replace it with an alternative assumption. In this hypothesis, the difference between two or more variables is predicted by the researchers, such that the pattern of data observed in the test is not due to chance.

To check the water quality of a river for one year, the researchers are doing the observation. As per the null hypothesis, there is no change in water quality in the first half of the year as compared to the second half. But in the alternative hypothesis, the quality of water is poor in the second half when observed.

Difference Between Null and Alternative Hypothesis

Basically, there are three types of the alternative hypothesis, they are;

Left-Tailed : Here, it is expected that the sample proportion (π) is less than a specified value which is denoted by π 0 , such that;

H 1 : π < π 0

Right-Tailed: It represents that the sample proportion (π) is greater than some value, denoted by π 0 .

H 1 : π > π 0

Two-Tailed: According to this hypothesis, the sample proportion (denoted by π) is not equal to a specific value which is represented by π 0 .

H 1 : π ≠ π 0

Note: The null hypothesis for all the three alternative hypotheses, would be H 1 : π = π 0 .

alternative hypothesis is for

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

8.4: The Alternative Hypothesis

  • Last updated
  • Save as PDF
  • Page ID 14493

  • Foster et al.
  • University of Missouri-St. Louis, Rice University, & University of Houston, Downtown Campus via University of Missouri’s Affordable and Open Access Educational Resources Initiative

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

If the null hypothesis is rejected, then we will need some other explanation, which we call the alternative hypothesis, \(H_A\) or \(H_1\). The alternative hypothesis is simply the reverse of the null hypothesis, and there are three options, depending on where we expect the difference to lie. Thus, our alternative hypothesis is the mathematical way of stating our research question. If we expect our obtained sample mean to be above or below the null hypothesis value, which we call a directional hypothesis, then our alternative hypothesis takes the form:

\[\mathrm{H}_{\mathrm{A}}: \mu>7.47 \quad \text { or } \quad \mathrm{H}_{\mathrm{A}}: \mu<7.47 \nonumber \]

based on the research question itself. We should only use a directional hypothesis if we have good reason, based on prior observations or research, to suspect a particular direction. When we do not know the direction, such as when we are entering a new area of research, we use a non-directional alternative:

\[\mathrm{H}_{\mathrm{A}}: \mu \neq 7.47 \nonumber \]

We will set different criteria for rejecting the null hypothesis based on the directionality (greater than, less than, or not equal to) of the alternative. To understand why, we need to see where our criteria come from and how they relate to \(z\)-scores and distributions.

Writing hypotheses in words

As we alluded to in the null hypothesis section, we can write our hypotheses in word statements (in addition to the statements with symbols). These statements should be specific enough to the particular experiment or situation being referred to. That is, don't make them generic enough so that they would apply to any hypothesis test that you would conduct. 

Examples for how to write null and alternate hypotheses in words for directional and non-directional situations are given throughout the chapters. 

Contributors and Attributions

Foster et al.  (University of Missouri-St. Louis, Rice University, & University of Houston, Downtown Campus)

Academic Success Center

Statistics Resources

  • Excel - Tutorials
  • Basic Probability Rules
  • Single Event Probability
  • Complement Rule
  • Intersections & Unions
  • Compound Events
  • Levels of Measurement
  • Independent and Dependent Variables
  • Entering Data
  • Central Tendency
  • Data and Tests
  • Displaying Data
  • Discussing Statistics In-text
  • SEM and Confidence Intervals
  • Two-Way Frequency Tables
  • Empirical Rule
  • Finding Probability
  • Accessing SPSS
  • Chart and Graphs
  • Frequency Table and Distribution
  • Descriptive Statistics
  • Converting Raw Scores to Z-Scores
  • Converting Z-scores to t-scores
  • Split File/Split Output
  • Partial Eta Squared
  • Downloading and Installing G*Power: Windows/PC
  • Correlation
  • Testing Parametric Assumptions
  • One-Way ANOVA
  • Two-Way ANOVA
  • Repeated Measures ANOVA
  • Goodness-of-Fit
  • Test of Association
  • Pearson's r
  • Point Biserial
  • Mediation and Moderation
  • Simple Linear Regression
  • Multiple Linear Regression
  • Binomial Logistic Regression
  • Multinomial Logistic Regression
  • Independent Samples T-test
  • Dependent Samples T-test
  • Testing Assumptions
  • T-tests using SPSS
  • T-Test Practice
  • Predictive Analytics This link opens in a new window
  • Quantitative Research Questions
  • Null & Alternative Hypotheses
  • One-Tail vs. Two-Tail
  • Alpha & Beta
  • Associated Probability
  • Decision Rule
  • Statement of Conclusion
  • Statistics Group Sessions

ASC Chat Hours

ASC Chat is usually available at the following times ( Pacific Time):

If there is not a coach on duty, submit your question via one of the below methods:

  928-440-1325

  Ask a Coach

  [email protected]

Search our FAQs on the Academic Success Center's  Ask a Coach   page.

Once you have developed a clear and focused research question or set of research questions, you’ll be ready to conduct further research, a literature review, on the topic to help you make an educated guess about the answer to your question(s). This educated guess is called a hypothesis.

In research, there are two types of hypotheses: null and alternative. They work as a complementary pair, each stating that the other is wrong.

  • Null Hypothesis (H 0 ) – This can be thought of as the implied hypothesis. “Null” meaning “nothing.”  This hypothesis states that there is no difference between groups or no relationship between variables. The null hypothesis is a presumption of status quo or no change.
  • Alternative Hypothesis (H a ) – This is also known as the claim. This hypothesis should state what you expect the data to show, based on your research on the topic. This is your answer to your research question.

Null Hypothesis:   H 0 : There is no difference in the salary of factory workers based on gender. Alternative Hypothesis :  H a : Male factory workers have a higher salary than female factory workers.

Null Hypothesis :  H 0 : There is no relationship between height and shoe size. Alternative Hypothesis :  H a : There is a positive relationship between height and shoe size.

Null Hypothesis :  H 0 : Experience on the job has no impact on the quality of a brick mason’s work. Alternative Hypothesis :  H a : The quality of a brick mason’s work is influenced by on-the-job experience.

Was this resource helpful?

  • << Previous: Hypothesis Testing
  • Next: One-Tail vs. Two-Tail >>
  • Last Updated: Apr 19, 2024 3:09 PM
  • URL: https://resources.nu.edu/statsresources

NCU Library Home

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

H a : The alternative hypothesis: It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 . This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject H 0 " if the sample information favors the alternative hypothesis or "do not reject H 0 " or "decline to reject H 0 " if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ .30 H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Introductory Statistics 2e
  • Publication date: Dec 13, 2023
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/introductory-statistics-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/introductory-statistics-2e/pages/9-1-null-and-alternative-hypotheses

© Dec 6, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Null and alternative hypotheses.

Converting research questions to hypothesis is a simple task. Take the questions and make it a positive statement that says a relationship exists (correlation studies) or a difference exists between the groups (experiment study) and you have the alternative hypothesis. Write the statement such that a relationship does not exist or a difference does not exist and you have the null hypothesis. You can reverse the process if you have a hypothesis and wish to write a research question.

When you are comparing two groups, the groups are the independent variable. When you are testing whether something affects something else, the cause is the independent variable. The independent variable is the one you manipulate.

Teachers given higher pay will have more positive attitudes toward children than teachers given lower pay. The first step is to ask yourself “Are there two or more groups being compared?” The answer is “Yes.” What are the groups? Teachers who are given higher pay and teachers who are given lower pay. The independent variable is teacher pay. The dependent variable (the outcome) is attitude towards school.

You could also approach is another way. “Is something causing something else?” The answer is “Yes.”  What is causing what? Teacher pay is causing attitude towards school. Therefore, teacher pay is the independent variable (cause) and attitude towards school is the dependent variable (outcome).

By tradition, we try to disprove (reject) the null hypothesis. We can never prove a null hypothesis, because it is impossible to prove something does not exist. We can disprove something does not exist by finding an example of it. Therefore, in research we try to disprove the null hypothesis. When we do find that a relationship (or difference) exists then we reject the null and accept the alternative. If we do not find that a relationship (or difference) exists, we fail to reject the null hypothesis (and go with it). We never say we accept the null hypothesis because it is never possible to prove something does not exist. That is why we say that we failed to reject the null hypothesis, rather than we accepted it.

Del Siegle, Ph.D. Neag School of Education – University of Connecticut [email protected] www.delsiegle.com

  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes
  • Alternative Dispute Resolution (ADR): Meaning, Types and FAQs
  • Level of Significance-Definition, Steps and Examples
  • Difference Between Hypothesis And Theory
  • What is Dihybrid Cross? Examples and an Overview
  • Real-life Applications of Hypothesis Testing
  • T-Test in Statistics: Formula, Types and Steps
  • Hypothesis Testing Formula
  • Independent Sample t Test in R
  • Alternate Interior Angles
  • How do you define and measure your product hypothesis?
  • Difference between Alternate and Alternative
  • Introduction to Power Analysis in Python
  • Difference between Null and Alternate Hypothesis
  • Inductive Reasoning | Definition, Types, & Examples
  • Python unittest - assertIn() function
  • Python unittest - assertNotIsInstance() function
  • Python unittest - assertIsNone() function
  • Python unittest - assertIsInstance() function

Alternative Hypothesis: Definition, Types and Examples

In statistical hypothesis testing, the alternative hypothesis is an important proposition in the hypothesis test. The goal of the hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of the alternative hypothesis instead of the default assumption made by the null hypothesis.

Null-Hypothesis-and-Alternative-Hypothesis

Alternative Hypotheses

Both hypotheses include statements with the same purpose of providing the researcher with a basic guideline. The researcher uses the statement from each hypothesis to guide their research. In statistics, alternative hypothesis is often denoted as H a or H 1 .

Table of Content

What is a Hypothesis?

Alternative hypothesis, types of alternative hypothesis, difference between null and alternative hypothesis, formulating an alternative hypothesis, example of alternative hypothesis, application of alternative hypothesis.

“A hypothesis is a statement of a relationship between two or more variables.” It is a working statement or theory that is based on insufficient evidence.

While experimenting, researchers often make a claim, that they can test. These claims are often based on the relationship between two or more variables. “What causes what?” and “Up to what extent?” are a few of the questions that a hypothesis focuses on answering. The hypothesis can be true or false, based on complete evidence.

While there are different hypotheses, we discuss only null and alternate hypotheses. The null hypothesis, denoted H o , is the default position where variables do not have a relation with each other. That means the null hypothesis is assumed true until evidence indicates otherwise. The alternative hypothesis, denoted H 1 , on the other hand, opposes the null hypothesis. It assumes a relation between the variables and serves as evidence to reject the null hypothesis.

Example of Hypothesis:

Mean age of all college students is 20.4 years. (simple hypothesis).

An Alternative Hypothesis is a claim or a complement to the null hypothesis. If the null hypothesis predicts a statement to be true, the Alternative Hypothesis predicts it to be false. Let’s say the null hypothesis states there is no difference between height and shoe size then the alternative hypothesis will oppose the claim by stating that there is a relation.

We see that the null hypothesis assumes no relationship between the variables whereas an alternative hypothesis proposes a significant relation between variables. An alternative theory is the one tested by the researcher and if the researcher gathers enough data to support it, then the alternative hypothesis replaces the null hypothesis.

Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

There are a few types of alternative hypothesis that we will see:

1. One-tailed test H 1 : A one-tailed alternative hypothesis focuses on only one region of rejection of the sampling distribution. The region of rejection can be upper or lower.

  • Upper-tailed test H 1 : Population characteristic > Hypothesized value
  • Lower-tailed test H 1 : Population characteristic < Hypothesized value

2. Two-tailed test H 1 : A two-tailed alternative hypothesis is concerned with both regions of rejection of the sampling distribution.

3. Non-directional test H 1 : A non-directional alternative hypothesis is not concerned with either region of rejection; rather, it is only concerned that null hypothesis is not true.

4. Point test H 1 : Point alternative hypotheses occur when the hypothesis test is framed so that the population distribution under the alternative hypothesis is a fully defined distribution, with no unknown parameters; such hypotheses are usually of no practical interest but are fundamental to theoretical considerations of statistical inference and are the basis of the Neyman–Pearson lemma.

the differences between Null Hypothesis and Alternative Hypothesis is explained in the table below:

Formulating an alternative hypothesis means identifying the relationships, effects or condition being studied. Based on the data we conclude that there is a different inference from the null-hypothesis being considered.

  • Understand the null hypothesis.
  • Consider the alternate hypothesis
  • Choose the type of alternate hypothesis (one-tailed or two-tailed)

Alternative hypothesis must be true when the null hypothesis is false. When trying to identify the information need for alternate hypothesis statement, look for the following phrases:

  • “Is it reasonable to conclude…”
  • “Is there enough evidence to substantiate…”
  • “Does the evidence suggest…”
  • “Has there been a significant…”

When alternative hypotheses in mathematical terms, they always include an inequality ( usually ≠, but sometimes < or >) . When writing the alternate hypothesis, make sure it never includes an “=” symbol.

To help you write your hypotheses, you can use the template sentences below.

Does independent variable affect dependent variable?

  • Null Hypothesis (H 0 ): Independent variable does not affect dependent variable.
  • Alternative Hypothesis (H a ): Independent variable affects dependent variable.

Various examples of Alternative Hypothesis includes:

Two-Tailed Example

  • Research Question : Do home games affect a team’s performance?
  • Null-Hypothesis: Home games do not affect a team’s performance.
  • Alternative Hypothesis: Home games have an effect on team’s performance.
  • Research Question: Does sleeping less lead to depression?
  • Null-Hypothesis: Sleeping less does not have an effect on depression.
  • Alternative Hypothesis : Sleeping less has an effect on depression.

One-Tailed Example

  • Research Question: Are candidates with experience likely to get a job?
  • Null-Hypothesis: Experience does not matter in getting a job.
  • Alternative Hypothesis: Candidates with work experience are more likely to receive an interview.
  • Alternative Hypothesis : Teams with home advantage are more likely to win a match.

Some applications of Alternative Hypothesis includes:

  • Rejecting Null-Hypothesis : A researcher performs additional research to find flaws in the null hypothesis. Following the research, which uses the alternative hypothesis as a guide, they may decide whether they have enough evidence to reject the null hypothesis.
  • Guideline for Research : An alternative and null hypothesis include statements with the same purpose of providing the researcher with a basic guideline. The researcher uses the statement from each hypothesis to guide their research.
  • New Theories : Alternative hypotheses can provide the opportunity to discover new theories that a researcher can use to disprove an existing theory that may not have been backed up by evidence.

We defined the relationship that exist between null-hypothesis and alternative hypothesis. While the null hypothesis is always a default assumption about our test data, the alternative hypothesis puts in all the effort to make sure the null hypothesis is disproved.

Null-hypothesis always explores new relationships between the independent variables to find potential outcomes from our test data. We should note that for every null hypothesis, one or more alternate hypotheses can be developed.

Also Check:

Mathematics Maths Formulas Branches of Mathematics

FAQs on Alternative Hypothesis

What is hypothesis.

A hypothesis is a statement of a relationship between two or more variables.” It is a working statement or theory that is based on insufficient evidence.

What is an Alternative Hypothesis?

Alternative hypothesis, denoted by H 1 , opposes the null-hypothesis. It assumes a relation between the variables and serves as an evidence to reject the null-hypothesis.

What is the Difference between Null-Hypothesis and Alternative Hypothesis?

Null hypothesis is the default claim that assumes no relationship between variables while alternative hypothesis is the opposite claim which considers statistical significance between the variables.

What is Alternative and Experimental Hypothesis?

Null hypothesis (H 0 ) states there is no effect or difference, while the alternative hypothesis (H 1 or H a ) asserts the presence of an effect, difference, or relationship between variables. In hypothesis testing, we seek evidence to either reject the null hypothesis in favor of the alternative hypothesis or fail to do so.

Please Login to comment...

Similar reads.

  • Math-Statistics
  • School Learning

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

9.1: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 113347

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

\(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

\(H_a\): The alternative hypothesis: It is a claim about the population that is contradictory to \(H_0\) and what we conclude when we reject \(H_0\). This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_0\)" if the sample information favors the alternative hypothesis or "do not reject \(H_0\)" or "decline to reject \(H_0\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 66\)
  • \(H_{a}: \mu \_ 66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 5\)
  • \(H_{a}: \mu < 5\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 45\)
  • \(H_{a}: \mu \_ 45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p \_ 0.40\)
  • \(H_{a}: p \_ 0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

Minitab quick guide.

Minitab 18

Minitab ®

Access Minitab Web , using Google Chrome  .

Click on the section to view the Minitab procedures.

After saving the Minitab File to your computer or cloud location, you must first open Minitab .

  • To open a Minitab project (.mpx file): File > Open > Project
  • To open a data file (.mtw, .csv or .xlsx): File > Open > Worksheet

Descriptive, graphical

  • Bar Chart : Graph > Bar Chart > Counts of unique values > One Variable
  • Pie Chart : Graph > Pie Chart > Counts of unique values > Select Options > Under Label Slices With choose Percent

Descriptive, numerical

  • Frequency Tables : Stat > Tables > Tally Individual Variables

Inference (one proportion)

Hypothesis Test

  • With raw data : Stat > Basic Statistics > 1 Proportion > Select variable > Check Perform hypothesis test and enter null value > Select Options tab > Choose correct alternative > Under method , choose Normal approximation
  • With summarized data : Stat > Basic Statistics > 1 Proportion > Choose Summarized data from the dropdown menu > Enter data > Check Perform hypothesis test and enter null value > Select Options tab > Choose correct alternative > Under method, choose Normal approximation

Confidence Interval

  • With raw data : Stat > Basic Statistics > 1 Proportion > Select variable > Select Options tab > Enter correct confidence level, make sure the alternative is set as not-equal, and choose Normal approximation method
  • Histogram : Graph > Histogram > Simple
  • Dotplot : Graph > Dotplot > One Y, Simple
  • Boxplot : Graph > Boxplot > One Y, Simple
  • Mean, Std. Dev., 5-number Summary, etc .: Stat > Basic Statistics > Display Descriptive Statistics > Select Statistics tab to choose exactly what you want to display

Inference (one mean)

  • With raw data : Stat > Basic Statistics > 1-Sample t > Select variable > Check Perform hypothesis test and enter null value > Select Options tab > Choose the correct alternative
  • With summarized data : Stat > Basic Statistics > 1-Sample t > Select Summarized data from the dropdown menu > Enter data (n, x-bar, s) > Check Perform hypothesis test and enter null value > Select Options tab > Choose correct alternative
  • With raw data : Stat > Basic Statistics > 1-Sample t > Select variable > Select Options tab > Enter correct confidence level and make sure the alternative is set as not-equal
  • With summarized data : Stat > Basic Statistics > 1-Sample t > Select Summarized data from the dropdown menu > Enter data (n, x-bar, s) > Select Options tab > Enter correct confidence level and make sure the alternative is set as not-equal
  • Side-by-side Histograms : Graph > Histogram > Under One Y Variable , select Groups Displayed Separately > Enter the categorical variable under Group Variables > Choose In separate panels of one graph under Display Groups
  • Side-by-side Dotplots : Graph > Dotplot > One Y Variable , Groups Displayed on the Scale
  • Side-by-side Boxplots : Graph > Boxplot > One Y, With Categorical Variables
  • Mean, Std. Dev., 5-number Summary, etc .: Stat > Basic Statistics > Display Descriptive Statistics > Select variables (enter the categorical variable under By variables ) > Select Statistics tab to choose exactly what you want to display

Inference (independent samples)

  • With raw data : Stat > Basic Statistics > 2-Sample t > Select variables (response/quantitative as Samples and explanatory/categorical as Sample IDs ) > Select Options tab > Choose correct alternative
  • With summarized data : Stat > Basic Statistics > 2-Sample t > Select Summarized data from the dropdown menu > Enter data > Select Options tab > Choose correct alternative
  • Same as above, choose confidence level and make sure the alternative is set as not-equal

Inference (paired difference)

  • Stat > Basic Statistics > Paired t > Enter correct columns in Sample 1 and Sample 2 boxes > Select Options tab > Choose correct alternative
  • Scatterplot : Graph > Scatterplot > Simple > Enter the response variable under Y variables and the explanatory variable under X variables
  • Fitted Line Plot : Stat > Regression > Fitted Line Plot > Enter the response variable under Response (y) and the explanatory variable under Predictor (x)
  • Correlation : Stat > Basic Statistics > Correlation > Select Graphs tab > Click Statistics to display on plot and select Correlations
  • Correlation : Stat > Basic Statistics > Correlation > Select Graphs tab > Click Statistics to display on plot and select Correlations and p-values
  • Regression Line : Stat > Regression > Regression > Fit Regression Model > Enter the response variable under Responses and the explanatory variable under Continuous predictors > Select Results tab > Click Display of results and select Basic tables ( Note : if you want the confidence interval for the population slope, change “display of results” to “expanded table.” With the expanded table, you will get a lot of information on the output that you will not understand.)
  • Side-by-side Bar Charts with raw data : Graph > Bar Chart > Counts of unique values > Multiple Variables
  • Side-by-side Bar Charts with a two-way table : Graph > Bar Chart > Summarized Data in a Table > Under Two-Way Table choose Clustered or Stacked > Enter the columns that contain the data under Y-variables and enter the column that contains your row labels under Row labels
  • Two-way Table : Stat > Tables > Cross Tabulation and Chi-square

Inference (difference in proportions)

  • Using a dataset : Stat > Basic Statistics > 2 Proportions > Select variables (enter response variable as Samples and explanatory variable as Sample IDs ) > Select Options tab > Choose correct alternative
  • Using a summary table : Stat > Basic Statistics > 2 Proportions > Select Summarized data from the dropdown menu > Enter data > Select Options tab > Choose correct alternative
  • Same as above, choose confidence level and make sure the alternative is set as not equal

Inference (Chi-squared test of association)

  • Stat > Tables > Chi-Square Test for Association > Choose correct data option (raw or summarized) > Select variables > Select Statistics tab to choose the statistics you want to display
  • Fit multiple regression model : Stat > Regression > Regression > Fit Regression Model > Enter the response variable under Responses , the quantitative explanatory variables under Continuous predictors , and any categorical explanatory variables under Categorical predictors > Select Results tab > Click Display of results and select Basic tables ( Note : if you want the confidence intervals for the coefficients, change display of results to expanded table . You will get a lot of information on the output that you will not understand.)
  • Make a prediction or prediction interval using a fitted model : Stat > Regression > Regression > Predict > Enter values for each explanatory variable

A new portfolio model for biotech

Until recently, biotech companies tended to be founded with a focus on a single technology or biological pathway. An early exemplar of this was Genentech, founded in 1976 on the promise of recombinant DNA to generate proteins relevant for human health. 1 Sally Smith Hughes, Genentech: The Beginnings of Biotech , Chicago, IL: University of Chicago Press, 2011. Proof of concept came with the production of the hormone somatostatin in 1977, and the company made its synthetic insulin breakthrough in 1978, alleviating the need to harvest the protein from animal pancreases.

Over the past five years, however, an innovative business model has emerged for biotech. In it, a portfolio manager controls a set of companies spanning multiple technologies and disease areas. Instead of focusing on a single technology or in the traditional way, the portfolio manager uses a distinctive form of expertise—such as in fundraising, investment, venture creation, R&D, manufacturing, commercial management, leadership, and broad credibility—to start a suite of subsidiaries, each dedicated to an individual drug program.

That portfolio model is being pioneered by companies such as BridgeBio and Roivant Sciences. Each has a central management team with a distinctive skill set and a diversified portfolio of programs covering different therapeutic areas, indications, and technologies. The portfolio managers not only make investment decisions but also play critical roles in managing the portfolio companies, with varying levels of direct control over decision making in them. Similar portfolio models have been adopted by other companies, including Biohaven Pharmaceuticals, ElevateBio, Gossamer Bio, Nimbus Therapeutics, and PureTech. As of August 2020, such companies had raised approximately $6 billion in capital and had an estimated public- and private-market valuation of approximately $20 billion (Exhibit 1).

A number of venture-capital investors, such as Atlas Venture and Flagship Pioneering, share some similarities with the portfolio model for biotech because they engage in venture creation and early-stage-company management and may sometimes have some direct control. While there are both advantages and disadvantages to employing a portfolio model, the approach is gaining in use and reshaping the R&D landscape for biotech.

What are the advantages of the portfolio model?

In the traditional biotech-investment model, investors bet on a company’s technology or understanding of a disease. That can be a risky bet, with roughly one in 20 preclinical-stage biotech assets making it to launch. 2 Joseph A. DiMasi, Henry G. Grabowski, and Ronald W. Hansen, “Innovation in the pharmaceutical industry: New estimates of R&D costs,” Journal of Health Economics , May 2016, Volume 47, pp. 20–33, sciencedirect.com. In the portfolio model, investors put capital behind a central management team that offers a distinctive edge and harnesses its expertise to pursue many different bets. Investors can leave their capital invested in a management team over the long term. Individual entities within a portfolio may reach an IPO or be sold off, but the portfolio-management team continues.

The new model can also allow a portfolio manager to raise capital from a broader group of investors, such as those that seek exposure to early-stage biotech, lack the technical-due-diligence capabilities or risk appetite for individual bets, and wish to diversify their risk. Investors that believe in the success of an individual subsidiary can sometimes follow up with direct investments at a later stage. Investors without biotech or life-science expertise can also rely on the portfolio manager’s expertise, saving themselves the time of performing due diligence on each new play executed by the portfolio manager.

Companies within a portfolio each focus on a narrow program, often a single drug. Whereas large companies have multiple assets in development at any one time, each company in a portfolio can be dedicated to a single asset or small family of assets. With a team focused exclusively on one program that determines the success or failure of the whole business, governance and resource allocation are simplified. Asset valuation may be more accurate, too, since investors valuing early-stage companies tend to focus on the lead asset, with the rest of the pipeline sometimes being unfairly discounted.

The single-asset focus of individual portfolio companies also gives the portfolio managers flexibility in capital financing. Portfolio managers can raise funds centrally through private markets or IPOs. The same options are available for individual companies. Portfolio managers with Wall Street or venture-capital expertise have been particularly creative in their financing strategies.

The portfolio model is also highly attractive to employees. Portfolio companies have successfully recruited top biomedical personnel who sometimes have little previous experience into their executive roles because the resources and expertise of the portfolio managers’ central teams can complement the new executives’ deep biomedical expertise. Portfolio managers have also attracted a growing number of skilled professionals from Wall Street, consulting firms, and even the biopharma industry. The roles available to people with those backgrounds are attractive in responsibility, learning opportunities, and compensation.

A single-asset company structure creates clear financial incentives for employees because performance-related pay is directly tied to one program. Such a structure seems to appeal to senior talent seeking greater financial benefits with less bureaucratic complexity than they might see at a large pharma company. It also appeals to junior talent looking for start-up experience with some financial upside but less risk than in an independent venture. If a company should fail, its employees may be able to pursue other options in the portfolio.

Portfolios also offer flexibility in resourcing when general and administrative functions are managed centrally and a portfolio-management team can tap into relevant expertise. For example, a central team could bring in biopharma veterans from an operations or commercialization team to support subsidiaries in making critical decisions at inflection points. More broadly, the portfolio model allows early-stage R&D platforms to access scaled-up capabilities and resources such as procurement functions, lab software subscriptions, and leasing.

Finally, there is some emerging evidence that the portfolio model is an effective R&D machine. In 2020, BridgeBio reported more than 20 disclosed programs in its pipeline, more than ten investigational-new-drug applications submitted since 2015, 16 ongoing clinical trials, and two product launches expected in 2021. 3 R&D Day , BridgeBio, September 29, 2020, investor.bridgebio.com.

What are the disadvantages of the portfolio model?

Any portfolio could accumulate risk and give rise to systemic failure. Diversifying based on a central team’s strength is a challenge. A portfolio manager in cell-therapy manufacturing, say, would need to place bets across a range of manufacturing methods, cell types, indications, and locations. Even then, the potential for a portfolio-wide failure would remain. That is true of any specialism—especially, perhaps, those focused on a biology or disease hypothesis. For instance, a portfolio based on the amyloid hypothesis for Alzheimer’s disease would have failed.

Portfolios may also create inefficiencies by sustaining programs that should fail. Portfolio managers have more cash on hand than an individual biotech would, though not necessarily on a per-asset basis. That allows managers to fund programs for longer than may be prudent. Diligence and discipline in resource allocation are needed to prevent such waste. Similarly, too many maturing clinical programs can rapidly expand the capital needs of a portfolio, creating an urgent need for private or public fundraising.

Another potential downside is that, with a central portfolio-management team and distributed asset-leadership teams, decision-making clarity can suffer. Portfolio managers need to be clear as to where their CEOs’ autonomy begins and ends, who controls the allocation of centrally held resources, and how disputes should be resolved.

Finally, centralizing critical functions has both advantages and disadvantages. Centralized functions can bring economies of scope and scale and foster an environment centered on customer needs. That enables capability developers to focus on creating value and opens up a rich testing ground for refining and improving offerings, as seen in projects such as Roivant Science’s Datavant and VantAI. On the downside, a company has to compete for time and resources with other companies in the portfolio and may not get the service it needs from central functions. Moreover, some internal high-need use cases may be given lower priority than larger use cases for external customers. As portfolio managers work to create efficient core functions, they may also shortchange functions, such as pharmacovigilance and quality, that tend to mature in later-stage biotech companies.

What is driving the growth of portfolio-model use in biotech?

A traditional biopharma-innovation model is based on a specific technology, a biological insight, or both (for example, using exon-skipping technology to treat Duchenne muscular dystrophy). By contrast, the portfolio model in biotech is based on more abstract propositions, such as neglected monogenic diseases, abandoned drug arbitrage, expertise in developing and manufacturing cell therapies, and excellence in business development. Raising capital to pursue options like those requires a portfolio structure.

Venture creation is maturing as managers and investors build portfolios and the supply of talent grows. The new generation of flexible junior operators and investors makes for ideal employees for a portfolio manager. Such workers have the right training to dedicate time to a subsidiary, float it within a portfolio, and support an investing team.

Many early-stage biotech companies are keen to retain control and keep as much value for themselves as possible, rather than ceding ground to pharma companies. They represent growing shares of innovation and originators launching their own drugs (Exhibit 2).

A portfolio manager with access to pooled capital offers asset developers an alternative to the pharma-company route. When a portfolio manager acquires or seeds a new company, that company will likely have access to a larger pool of capital, which provides the originator with financing options outside pharma-company acquisition and IPO. Even so, pharma companies are likely to offer high premiums for strategic acquisitions, as well as compelling liquidity options, for biotech shareholders. Competition for assets looks likely to increase as portfolio managers enter the field. At the end of the day, portfolio managers will be also looking for liquidity, but with their ability to hold assets longer, they may give originators the option of holding their stakes deeper into development.

In spite of the downturn associated with the COVID-19 crisis, pharma companies still have significant capital at their disposal: the top ten companies have a near-record $116 billion in cash on hand (Exhibit 3). Meanwhile, venture-capital investors continue to invest at scale, spending $16.6 billion in 2019 across 866 pharma and biotech deals. 4 Venture Monitor: Q4 2019 , joint report by National Venture Capital Association and PitchBook Data, January 27, 2020, pitchbook.com. Private-equity investors have entered life sciences too. 5 Henny Sender, “How private equity overcame its fear of dabbling in drugs,” Financial Times , July 7, 2019, ft.com. All in all, plenty of investment dollars are available for biotech companies at various stages of development.

Innovative asset classes are in high demand, as seen in a number of large gene-therapy acquisitions in the past few years. AveXis was bought by Novartis for $8.7 billion, Spark Therapeutics by F. Hoffmann-La Roche for $4.8 billion, Audentes Therapeutics by Astellas Pharma for $3.0 billion, and Nightstar Therapeutics by Biogen for $0.8 billion. 6 “Astellas completes acquisition of Audentes Therapeutics,” Astellas Pharma, January 16, 2020, astellas.com; “Biogen completes acquisition of Nightstar Therapeutics for approximately $800 million,” Biogen, June 7, 2019, investors.biogen.com; “Spark Therapeutics enters into definitive merger agreement with Roche,” Spark Therapeutics, February 25, 2019, sparktx.com. Those deals were not only large, they also commanded high premiums. Both Audentes Therapeutics and Spark Therapeutics were acquired at a more than 100 percent premium over the previous day’s close. 7 Angus Liu, “The top 10 largest biopharma M&A deals in 2019,” FiercePharma, January 6, 2020, fiercepharma.com.

How could the portfolio model disrupt R&D in biotech?

The impact of using the portfolio model will differ for biotech companies, pharma companies, pharma-service providers, and investors.

For biotech companies, the portfolio model represents an alternative to an acquisition or IPO. Companies have traditionally funded maturing pipelines through a combination of public investment and industry partnerships. Portfolio models—with their access to leading talent from discovery to launch, shared services, and subsidiary-level focus on individual assets—may be able to shepherd a program all the way to commercialization without a pharma-company partner. Partnerships can still be pursued but primarily to reduce a portfolio manager’s risk exposure to an asset, rather than to satisfy a need for expertise or capital.

For pharma companies, the portfolio model represents a two-pronged threat. It could increase competition not only for innovative assets, as mentioned previously, but also for talent. As a preemptive move, pharma companies could emulate portfolio managers by introducing equity-based incentive structures for their own internal-asset teams to reward winners for the success of their programs. This would be similar to an internal version of the earnout or licensing models that pharma companies use for external partnerships. We see some early evidence of that change emerging—for example, when Bayer acquired BlueRock Therapeutics, Bayer left the cell therapy company operating as an independent company. 8 “Bayer acquires BlueRock Therapeutics to build leading position in cell therapy,” Bayer, August 8, 2019, media.bayer.com.

Competition among pharma-service providers could increase as central functions are externalized. Companies such as Datavant and VantAI, as well as those with a central manufacturing capability, such as ElevateBio, are emerging as important forces in the pharma-services landscape. In this way, a new wave of vendors could emerge to compete with existing contract research organizations, contract development-and-manufacturing organizations, and data and analytics specialists.

For investors, the portfolio model offers three benefits. First, the stability provided by portfolio-management teams may appeal to investors with long horizons, such as pension funds and sovereign wealth funds, that are seeking attractive ways to invest in a traditionally risky asset class. Second, the portfolio model expands the options for biotech investment beyond those offered by an asset- or platform-based approach, allowing investors to support otherwise unattainable areas, such as abandoned asset arbitrage. And third, those two benefits may attract new classes of investors that see exciting opportunities in an industry they have not previously considered investing in.

The portfolio model has emerged as an innovative solution to biotech financing and operations—and a way for a strong central team to maximize its impact. While portfolio managers have experienced some clinical-trial setbacks over the past few years, the world will learn more about the long-term success of the model in the next few years, with pipelines developing and regulatory and commercial success being tested. As companies mature and clinical-trial data flow in, the industry will be able to judge how well the portfolio model performs compared with others. If the signs are positive, changes in the dynamics of biotech investments and operations are likely to accelerate.

Joachim Bleys is a partner in McKinsey’s New York office, where Jonathan Coravos is a consultant and David Quigley is a senior partner; Edd Fleming is a senior partner in the Silicon Valley office.

The authors wish to thank Asli Aksu, Minyoung Kim, Angela McDonald, Joey Merrill, and Sheeba Soin for their contributions to this article.

Explore a career with us

Related articles.

Piloting a biotech leader to greater growth

Piloting a biotech leader to greater growth

Biotech in Europe: A strong foundation for growth and innovation

Biotech in Europe: A strong foundation for growth and innovation

IMAGES

  1. Null and Alternative Hypothesis: Symbolic Notation

    alternative hypothesis is for

  2. 13 Different Types of Hypothesis (2024)

    alternative hypothesis is for

  3. Alternative hypothesis

    alternative hypothesis is for

  4. Null Hypothesis and Alternative Hypothesis Explained in 2020

    alternative hypothesis is for

  5. Difference between Null and Alternative Hypothesis

    alternative hypothesis is for

  6. Research Hypothesis Generator

    alternative hypothesis is for

VIDEO

  1. Research Methods

  2. What Is A Hypothesis?

  3. Research understanding

  4. Difference between null and alternative hypothesis |research methodology in tamil #sscomputerstudies

  5. Testing of Hypothesis,Null, alternative hypothesis, type-I & -II Error etc @VATAMBEDUSRAVANKUMAR

  6. Difference Between Null Hypothesis and Alternative Hypothesis

COMMENTS

  1. Null & Alternative Hypotheses

    The null and alternative hypotheses offer competing answers to your research question. When the research question asks "Does the independent variable affect the dependent variable?": The null hypothesis ( H0) answers "No, there's no effect in the population.". The alternative hypothesis ( Ha) answers "Yes, there is an effect in the ...

  2. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0, the —null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  3. Alternative hypothesis

    Basic definition. The alternative hypothesis and null hypothesis are types of conjectures used in statistical tests, which are formal methods of reaching conclusions or making judgments on the basis of data. In statistical hypothesis testing, the null hypothesis and alternative hypothesis are two mutually exclusive statements.

  4. Null and Alternative Hypotheses

    The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test: Null hypothesis (H0): There's no effect in the population. Alternative hypothesis (HA): There's an effect in the population. The effect is usually the effect of the independent variable on the dependent ...

  5. 9.1: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. \(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  6. Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0: The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

  7. What is an Alternative Hypothesis in Statistics?

    Null hypothesis: µ ≥ 70 inches. Alternative hypothesis: µ < 70 inches. A two-tailed hypothesis involves making an "equal to" or "not equal to" statement. For example, suppose we assume the mean height of a male in the U.S. is equal to 70 inches. The null and alternative hypotheses in this case would be: Null hypothesis: µ = 70 inches.

  8. Examples of null and alternative hypotheses

    It is the opposite of your research hypothesis. The alternative hypothesis--that is, the research hypothesis--is the idea, phenomenon, observation that you want to prove. If you suspect that girls take longer to get ready for school than boys, then: Alternative: girls time > boys time. Null: girls time <= boys time.

  9. 7.4: The Alternative Hypothesis

    Thus, our alternative hypothesis is the mathematical way of stating our research question. If we expect our obtained sample mean to be above or below the null hypothesis value, which we call a directional hypothesis, then our alternative hypothesis takes the form: HA: μ > 7.47 or HA: μ < 7.47 H A: μ > 7.47 or H A: μ < 7.47.

  10. Null and Alternative Hypotheses

    Always write the alternative hypothesis, typically denoted with Ha or H1, using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false.

  11. 8.2 Null and Alternative Hypotheses

    The alternative hypothesis is a claim that a population parameter is greater than, less than, or not equal to some value. For example, H a: μ > 5 H a: μ > 5, H a: μ < 5 H a: μ < 5, or H a: μ ≠ 5 H a: μ ≠ 5 . The form of the alternative hypothesis depends on the wording of the hypothesis test. An alternative notation for H a H a is H 1 ...

  12. 10.2: Null and Alternative Hypotheses

    The alternative hypothesis ( Ha H a) is a claim about the population that is contradictory to H0 H 0 and what we conclude when we reject H0 H 0. Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample ...

  13. 5.2

    5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis ( H 0) and an alternative hypothesis ( H a ). When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the ...

  14. Null Hypothesis and Alternative Hypothesis

    The alternative hypothesis is what we are attempting to demonstrate in an indirect way by the use of our hypothesis test. If the null hypothesis is rejected, then we accept the alternative hypothesis. If the null hypothesis is not rejected, then we do not accept the alternative hypothesis. Going back to the above example of mean human body ...

  15. Alternative Hypothesis-Definition, Types and Examples

    The alternative hypothesis is a statement used in statistical inference experiment. It is contradictory to the null hypothesis and denoted by H a or H 1. We can also say that it is simply an alternative to the null. In hypothesis testing, an alternative theory is a statement which a researcher is testing. This statement is true from the ...

  16. 8.4: The Alternative Hypothesis

    The alternative hypothesis is simply the reverse of the null hypothesis, and there are three options, depending on where we expect the difference to lie. Thus, our alternative hypothesis is the mathematical way of stating our research question. If we expect our obtained sample mean to be above or below the null hypothesis value, which we call a ...

  17. T-test and Hypothesis Testing (Explained Simply)

    Alternative hypothesis (H₁) — the hypothesis that we want to test. In other words, the alternative hypothesis will be accepted only if we gather enough evidence to claim that the effect exists. The null hypothesis and alternative hypothesis are always mathematically opposite. The possible outcomes of hypothesis testing:

  18. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0: The null hypothesis: It is a statement of no difference between the variables-they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  19. Alternative Hypothesis in Statistics

    An alternative hypothesis states that there is statistical significance between two variables. In the earlier example, the two variables are Mentos and Diet Coke. The alternative hypothesis is the ...

  20. Null & Alternative Hypotheses

    Null Hypothesis (H0) - This can be thought of as the implied hypothesis. "Null" meaning "nothing.". This hypothesis states that there is no difference between groups or no relationship between variables. The null hypothesis is a presumption of status quo or no change. Alternative Hypothesis (Ha) - This is also known as the claim.

  21. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0: The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  22. Null and Alternative Hypotheses

    Converting research questions to hypothesis is a simple task. Take the questions and make it a positive statement that says a relationship exists (correlation studies) or a difference exists between the groups (experiment study) and you have the alternative hypothesis.

  23. Alternative Hypothesis: Definition, Types and Examples

    1. One-tailed test H1: A one-tailed alternative hypothesis focuses on only one region of rejection of the sampling distribution. The region of rejection can be upper or lower. 2. Two-tailed test H1: A two-tailed alternative hypothesis is concerned with both regions of rejection of the sampling distribution. 3.

  24. 9.1: Null and Alternative Hypotheses

    Hypothesis. a statement about the value of a population parameter, in case of two hypotheses, the statement assumed to be true is called the null hypothesis (notation \ (H_ {0}\)) and the contradictory statement is called the alternative hypothesis (notation \ (H_ {a}\)).

  25. Minitab Quick Guide

    Hypothesis Test. With raw data: Stat > Basic Statistics > 1-Sample t > Select variable > Check Perform hypothesis test and enter null value > Select Options tab > Choose the correct alternative; With summarized data: Stat > Basic Statistics > 1-Sample t > Select Summarized data from the dropdown menu > Enter data (n, x-bar, s) > Check Perform hypothesis test and enter null value > Select ...

  26. A new portfolio model for biotech

    The impact of using the portfolio model will differ for biotech companies, pharma companies, pharma-service providers, and investors. For biotech companies, the portfolio model represents an alternative to an acquisition or IPO. Companies have traditionally funded maturing pipelines through a combination of public investment and industry ...