How to Write a Research Paper: the LEAP approach (+cheat sheet)
In this article I will show you how to write a research paper using the four LEAP writing steps. The LEAP academic writing approach is a step-by-step method for turning research results into a published paper .
The LEAP writing approach has been the cornerstone of the 70 + research papers that I have authored and the 3700+ citations these paper have accumulated within 9 years since the completion of my PhD. I hope the LEAP approach will help you just as much as it has helped me to make an real, tangible impact with my research.
What is the LEAP research paper writing approach?
I designed the LEAP writing approach not only for merely writing the papers. My goal with the writing system was to show young scientists how to first think about research results and then how to efficiently write each section of the research paper.
In other words, you will see how to write a research paper by first analyzing the results and then building a logical, persuasive arguments. In this way, instead of being afraid of writing research paper, you will be able to rely on the paper writing process to help you with what is the most demanding task in getting published – thinking.
The four research paper writing steps according to the LEAP approach:
I will show each of these steps in detail. And you will be able to download the LEAP cheat sheet for using with every paper you write.
But before I tell you how to efficiently write a research paper, I want to show you what is the problem with the way scientists typically write a research paper and why the LEAP approach is more efficient.
How scientists typically write a research paper (and why it isn’t efficient)
Writing a research paper can be tough, especially for a young scientist. Your reasoning needs to be persuasive and thorough enough to convince readers of your arguments. The description has to be derived from research evidence, from prior art, and from your own judgment. This is a tough feat to accomplish.
The figure below shows the sequence of the different parts of a typical research paper. Depending on the scientific journal, some sections might be merged or nonexistent, but the general outline of a research paper will remain very similar.
Here is the problem: Most people make the mistake of writing in this same sequence.
While the structure of scientific articles is designed to help the reader follow the research, it does little to help the scientist write the paper. This is because the layout of research articles starts with the broad (introduction) and narrows down to the specifics (results). See in the figure below how the research paper is structured in terms of the breath of information that each section entails.
How to write a research paper according to the LEAP approach
For a scientist, it is much easier to start writing a research paper with laying out the facts in the narrow sections (i.e. results), step back to describe them (i.e. write the discussion), and step back again to explain the broader picture in the introduction.
For example, it might feel intimidating to start writing a research paper by explaining your research’s global significance in the introduction, while it is easy to plot the figures in the results. When plotting the results, there is not much room for wiggle: the results are what they are.
Starting to write a research papers from the results is also more fun because you finally get to see and understand the complete picture of the research that you have worked on.
Most importantly, following the LEAP approach will help you first make sense of the results yourself and then clearly communicate them to the readers. That is because the sequence of writing allows you to slowly understand the meaning of the results and then develop arguments for presenting to your readers.
I have personally been able to write and submit a research article in three short days using this method.
Step 1: Lay Out the Facts
You have worked long hours on a research project that has produced results and are no doubt curious to determine what they exactly mean. There is no better way to do this than by preparing figures, graphics and tables. This is what the first LEAP step is focused on – diving into the results.
How to p repare charts and tables for a research paper
Your first task is to try out different ways of visually demonstrating the research results. In many fields, the central items of a journal paper will be charts that are based on the data generated during research. In other fields, these might be conceptual diagrams, microscopy images, schematics and a number of other types of scientific graphics which should visually communicate the research study and its results to the readers. If you have reasonably small number of data points, data tables might be useful as well.
Tips for preparing charts and tables
- Try multiple chart types but in the finished paper only use the one that best conveys the message you want to present to the readers
- Follow the eight chart design progressions for selecting and refining a data chart for your paper: https://peerrecognized.com/chart-progressions
- Prepare scientific graphics and visualizations for your paper using the scientific graphic design cheat sheet: https://peerrecognized.com/tools-for-creating-scientific-illustrations/
How to describe the results of your research
Now that you have your data charts, graphics and tables laid out in front of you – describe what you see in them. Seek to answer the question: What have I found? Your statements should progress in a logical sequence and be backed by the visual information. Since, at this point, you are simply explaining what everyone should be able to see for themselves, you can use a declarative tone: The figure X demonstrates that…
Tips for describing the research results :
- Answer the question: “ What have I found? “
- Use declarative tone since you are simply describing observations
Step 2: Explain the results
The core aspect of your research paper is not actually the results; it is the explanation of their meaning. In the second LEAP step, you will do some heavy lifting by guiding the readers through the results using logic backed by previous scientific research.
How to define the Message of a research paper
To define the central message of your research paper, imagine how you would explain your research to a colleague in 20 seconds . If you succeed in effectively communicating your paper’s message, a reader should be able to recount your findings in a similarly concise way even a year after reading it. This clarity will increase the chances that someone uses the knowledge you generated, which in turn raises the likelihood of citations to your research paper.
Tips for defining the paper’s central message :
- Write the paper’s core message in a single sentence or two bullet points
- Write the core message in the header of the research paper manuscript
How to write the Discussion section of a research paper
In the discussion section you have to demonstrate why your research paper is worthy of publishing. In other words, you must now answer the all-important So what? question . How well you do so will ultimately define the success of your research paper.
Here are three steps to get started with writing the discussion section:
- Write bullet points of the things that convey the central message of the research article (these may evolve into subheadings later on).
- Make a list with the arguments or observations that support each idea.
- Finally, expand on each point to make full sentences and paragraphs.
Tips for writing the discussion section:
- What is the meaning of the results?
- Was the hypothesis confirmed?
- Write bullet points that support the core message
- List logical arguments for each bullet point, group them into sections
- Instead of repeating research timeline, use a presentation sequence that best supports your logic
- Convert arguments to full paragraphs; be confident but do not overhype
- Refer to both supportive and contradicting research papers for maximum credibility
How to write the Conclusions of a research paper
Since some readers might just skim through your research paper and turn directly to the conclusions, it is a good idea to make conclusion a standalone piece. In the first few sentences of the conclusions, briefly summarize the methodology and try to avoid using abbreviations (if you do, explain what they mean).
After this introduction, summarize the findings from the discussion section. Either paragraph style or bullet-point style conclusions can be used. I prefer the bullet-point style because it clearly separates the different conclusions and provides an easy-to-digest overview for the casual browser. It also forces me to be more succinct.
Tips for writing the conclusion section :
- Summarize the key findings, starting with the most important one
- Make conclusions standalone (short summary, avoid abbreviations)
- Add an optional take-home message and suggest future research in the last paragraph
How to refine the Objective of a research paper
The objective is a short, clear statement defining the paper’s research goals. It can be included either in the final paragraph of the introduction, or as a separate subsection after the introduction. Avoid writing long paragraphs with in-depth reasoning, references, and explanation of methodology since these belong in other sections. The paper’s objective can often be written in a single crisp sentence.
Tips for writing the objective section :
- The objective should ask the question that is answered by the central message of the research paper
- The research objective should be clear long before writing a paper. At this point, you are simply refining it to make sure it is addressed in the body of the paper.
How to write the Methodology section of your research paper
When writing the methodology section, aim for a depth of explanation that will allow readers to reproduce the study . This means that if you are using a novel method, you will have to describe it thoroughly. If, on the other hand, you applied a standardized method, or used an approach from another paper, it will be enough to briefly describe it with reference to the detailed original source.
Remember to also detail the research population, mention how you ensured representative sampling, and elaborate on what statistical methods you used to analyze the results.
Tips for writing the methodology section :
- Include enough detail to allow reproducing the research
- Provide references if the methods are known
- Create a methodology flow chart to add clarity
- Describe the research population, sampling methodology, statistical methods for result analysis
- Describe what methodology, test methods, materials, and sample groups were used in the research.
Step 3: Advertize the research
Step 3 of the LEAP writing approach is designed to entice the casual browser into reading your research paper. This advertising can be done with an informative title, an intriguing abstract, as well as a thorough explanation of the underlying need for doing the research within the introduction.
How to write the Introduction of a research paper
The introduction section should leave no doubt in the mind of the reader that what you are doing is important and that this work could push scientific knowledge forward. To do this convincingly, you will need to have a good knowledge of what is state-of-the-art in your field. You also need be able to see the bigger picture in order to demonstrate the potential impacts of your research work.
Think of the introduction as a funnel, going from wide to narrow, as shown in the figure below:
- Start with a brief context to explain what do we already know,
- Follow with the motivation for the research study and explain why should we care about it,
- Explain the research gap you are going to bridge within this research paper,
- Describe the approach you will take to solve the problem.
Tips for writing the introduction section :
- Follow the Context – Motivation – Research gap – Approach funnel for writing the introduction
- Explain how others tried and how you plan to solve the research problem
- Do a thorough literature review before writing the introduction
- Start writing the introduction by using your own words, then add references from the literature
How to prepare the Abstract of a research paper
The abstract acts as your paper’s elevator pitch and is therefore best written only after the main text is finished. In this one short paragraph you must convince someone to take on the time-consuming task of reading your whole research article. So, make the paper easy to read, intriguing, and self-explanatory; avoid jargon and abbreviations.
How to structure the abstract of a research paper:
- The abstract is a single paragraph that follows this structure:
- Problem: why did we research this
- Methodology: typically starts with the words “Here we…” that signal the start of own contribution.
- Results: what we found from the research.
- Conclusions: show why are the findings important
How to compose a research paper Title
The title is the ultimate summary of a research paper. It must therefore entice someone looking for information to click on a link to it and continue reading the article. A title is also used for indexing purposes in scientific databases, so a representative and optimized title will play large role in determining if your research paper appears in search results at all.
Tips for coming up with a research paper title:
- Capture curiosity of potential readers using a clear and descriptive title
- Include broad terms that are often searched
- Add details that uniquely identify the researched subject of your research paper
- Avoid jargon and abbreviations
- Use keywords as title extension (instead of duplicating the words) to increase the chance of appearing in search results
How to prepare Highlights and Graphical Abstract
Highlights are three to five short bullet-point style statements that convey the core findings of the research paper. Notice that the focus is on the findings, not on the process of getting there.
A graphical abstract placed next to the textual abstract visually summarizes the entire research paper in a single, easy-to-follow figure. I show how to create a graphical abstract in my book Research Data Visualization and Scientific Graphics.
Tips for preparing highlights and graphical abstract:
- In highlights show core findings of the research paper (instead of what you did in the study).
- In graphical abstract show take-home message or methodology of the research paper. Learn more about creating a graphical abstract in this article.
Step 4: Prepare for submission
Sometimes it seems that nuclear fusion will stop on the star closest to us (read: the sun will stop to shine) before a submitted manuscript is published in a scientific journal. The publication process routinely takes a long time, and after submitting the manuscript you have very little control over what happens. To increase the chances of a quick publication, you must do your homework before submitting the manuscript. In the fourth LEAP step, you make sure that your research paper is published in the most appropriate journal as quickly and painlessly as possible.
How to select a scientific Journal for your research paper
The best way to find a journal for your research paper is it to review which journals you used while preparing your manuscript. This source listing should provide some assurance that your own research paper, once published, will be among similar articles and, thus, among your field’s trusted sources.
After this initial selection of hand-full of scientific journals, consider the following six parameters for selecting the most appropriate journal for your research paper (read this article to review each step in detail):
- Scope and publishing history
- Ranking and Recognition
- Publishing time
- Acceptance rate
- Content requirements
- Access and Fees
How to select a journal for your research paper:
- Use the six parameters to select the most appropriate scientific journal for your research paper
- Use the following tools for journal selection: https://peerrecognized.com/journals
- Follow the journal’s “Authors guide” formatting requirements
How to Edit you manuscript
No one can write a finished research paper on their first attempt. Before submitting, make sure to take a break from your work for a couple of days, or even weeks. Try not to think about the manuscript during this time. Once it has faded from your memory, it is time to return and edit. The pause will allow you to read the manuscript from a fresh perspective and make edits as necessary.
I have summarized the most useful research paper editing tools in this article.
Tips for editing a research paper:
- Take time away from the research paper to forget about it; then returning to edit,
- Start by editing the content: structure, headings, paragraphs, logic, figures
- Continue by editing the grammar and language; perform a thorough language check using academic writing tools
- Read the entire paper out loud and correct what sounds weird
How to write a compelling Cover Letter for your paper
Begin the cover letter by stating the paper’s title and the type of paper you are submitting (review paper, research paper, short communication). Next, concisely explain why your study was performed, what was done, and what the key findings are. State why the results are important and what impact they might have in the field. Make sure you mention how your approach and findings relate to the scope of the journal in order to show why the article would be of interest to the journal’s readers.
I wrote a separate article that explains what to include in a cover letter here. You can also download a cover letter template from the article.
Tips for writing a cover letter:
- Explain how the findings of your research relate to journal’s scope
- Tell what impact the research results will have
- Show why the research paper will interest the journal’s audience
- Add any legal statements as required in journal’s guide for authors
How to Answer the Reviewers
Reviewers will often ask for new experiments, extended discussion, additional details on the experimental setup, and so forth. In principle, your primary winning tactic will be to agree with the reviewers and follow their suggestions whenever possible. After all, you must earn their blessing in order to get your paper published.
Be sure to answer each review query and stick to the point. In the response to the reviewers document write exactly where in the paper you have made any changes. In the paper itself, highlight the changes using a different color. This way the reviewers are less likely to re-read the entire article and suggest new edits.
In cases when you don’t agree with the reviewers, it makes sense to answer more thoroughly. Reviewers are scientifically minded people and so, with enough logical and supported argument, they will eventually be willing to see things your way.
Tips for answering the reviewers:
- Agree with most review comments, but if you don’t, thoroughly explain why
- Highlight changes in the manuscript
- Do not take the comments personally and cool down before answering
The LEAP research paper writing cheat sheet
Imagine that you are back in grad school and preparing to take an exam on the topic: “How to write a research paper”. As an exemplary student, you would, most naturally, create a cheat sheet summarizing the subject… Well, I did it for you.
This one-page summary of the LEAP research paper writing technique will remind you of the key research paper writing steps. Print it out and stick it to a wall in your office so that you can review it whenever you are writing a new research paper.
Now that we have gone through the four LEAP research paper writing steps, I hope you have a good idea of how to write a research paper. It can be an enjoyable process and once you get the hang of it, the four LEAP writing steps should even help you think about and interpret the research results. This process should enable you to write a well-structured, concise, and compelling research paper.
Have fund with writing your next research paper. I hope it will turn out great!
Learn writing papers that get cited
The LEAP writing approach is a blueprint for writing research papers. But to be efficient and write papers that get cited, you need more than that.
My name is Martins Zaumanis and in my interactive course Research Paper Writing Masterclass I will show you how to visualize your research results, frame a message that convinces your readers, and write each section of the paper. Step-by-step.
And of course – you will learn to respond the infamous Reviewer No.2.
Hey! My name is Martins Zaumanis and I am a materials scientist in Switzerland ( Google Scholar ). As the first person in my family with a PhD, I have first-hand experience of the challenges starting scientists face in academia. With this blog, I want to help young researchers succeed in academia. I call the blog “Peer Recognized”, because peer recognition is what lifts academic careers and pushes science forward.
Besides this blog, I have written the Peer Recognized book series and created the Peer Recognized Academy offering interactive online courses.
Related articles:
One comment
- Pingback: Research Paper Outline with Key Sentence Skeleton (+Paper Template)
Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
I want to join the Peer Recognized newsletter!
This site uses Akismet to reduce spam. Learn how your comment data is processed .
Privacy Overview
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Copyright © 2024 Martins Zaumanis
Contacts: [email protected]
Privacy Policy
How to Write a Scientific Paper
- First Online: 01 October 2023
Cite this chapter
- Michael J. Curtis 4
1145 Accesses
A scientific paper is a report of research, prepared from the investigator’s experimental findings, and intended to contribute to knowledge. The publication process is predicated by the content (the data) and the requirements of the publication (which is normally a journal that exists in paper form and/or online) whom you wish to publish your work. The requirement of the investigator is to map their data to the structure required by the journal. It is essential, therefore, to read and understand the journal’s Instructions to Authors. This means the subject matter must map to the journal’s scope, and the manuscript structure must map to the journal’s needs. If the investigator can do this, the manuscript may then be sent by the journal for peer review. This means there is no single formula for creating a publishable item; publishability depends on the content, presentation and the requirements of the publication . As a journal editor, I frequently reject items without peer review because they are not in scope (‘off topic’) or do not follow key construction requirements (e.g., Results and Discussion presented as a single section rather than as separate sections). The author must decide whether their research is appropriate for their chosen journal. In many cases there may not be sufficient data, or data of an appropriate type to justify a publication in all but the least discerning of journals. The investigator may learn lessons from this. Here I provide guidance on navigating the process of writing a scientific paper.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save.
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
- Available as PDF
- Read on any device
- Instant download
- Own it forever
- Available as EPUB and PDF
- Durable hardcover edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide - see info
Tax calculation will be finalised at checkout
Purchases are for personal use only
Institutional subscriptions
Similar content being viewed by others
Writing and publishing a scientific paper
How to Write and Publish a Research Paper for a Peer-Reviewed Journal
Preparing the Manuscript
Curtis MJ, Hancox JC, Farkas A, Wainwright CL, Stables CL, Saint DA, Clements-Jewery H, Lambiase PD, Billman GE, Janse MJ, Pugsley MK, Ng GN, Roden DM, Camm AJ, Walker MJA (2013) The Lambeth Conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 139:213–248
Article CAS PubMed Google Scholar
Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SPA, Giembycz MA, Gilchrist A, Hoyer D, Insel P, Izzo AA, Lawrence AJ, MacEwan DJ, Moon LDF, Wonnacott S, Weston AH, McGrath JC (2015) Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 172:2671–2674
Article PubMed Central Google Scholar
Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, Hoyer D, Insel PA, Izzo AA, Ji Y, MacEwan DA, Sobey CG, Stanford SC, Teixeira MM, Wonnacott S, Ahluwalia A (2018) Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol 175:987–993
Article CAS PubMed PubMed Central Google Scholar
Wilder CDE, Pavlaki N, Dursun T, Gyimah P, Caldwell-Dunn E, Ranieri A, Lewis HR, Curtis MJ (2018) Facilitation of ischaemia-induced ventricular fibrillation by catecholamines is mediated by β1 and β2 agonism in the rat heart in vitro. Br J Pharmacol 175:1669–1690
Curtis MJ, Walker MJA (1988) Quantification of arrhythmias using scoring systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res 22:656–665
Williams M, Mullane K, Curtis MJ (2018) Addressing reproducibility: peer review, impact factors, checklists, guidelines, and reproducibility initiatives. In: Williams M, Mullane K, Curtis MJ (eds) Research in the biomedical sciences. Elsevier, New York, pp 197–306
Chapter Google Scholar
Rees SA, Curtis MJ (1995) A pharmacological analysis in rat of the role of the ATP-sensitive potassium channel as a target for antifibrillatory intervention in acute myocardial ischaemia. J Cardiovasc Pharmacol 26:319–327
Article Google Scholar
Download references
Acknowledgements
Conflict of interest statement, author information, authors and affiliations.
Cardiovascular Division, Faculty of Life Sciences and Medicine, School of Cardiovascular Medicine & Sciences, King’s College London, Rayne Institute, St Thomas’ Hospital, London, UK
Michael J. Curtis
You can also search for this author in PubMed Google Scholar
Corresponding author
Correspondence to Michael J. Curtis .
Editor information
Editors and affiliations.
Retired Senior Expert Pharmacologist at the Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
Gowraganahalli Jagadeesh
Professor & Director, Research Training and Publications, The Office of Research and Development, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Tamil Nadu, India
Pitchai Balakumar
Division Cardiology & Nephrology, Office of Cardiology, Hematology, Endocrinology and Nephrology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
Fortunato Senatore
Rights and permissions
Reprints and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Curtis, M.J. (2023). How to Write a Scientific Paper. In: Jagadeesh, G., Balakumar, P., Senatore, F. (eds) The Quintessence of Basic and Clinical Research and Scientific Publishing. Springer, Singapore. https://doi.org/10.1007/978-981-99-1284-1_41
Download citation
DOI : https://doi.org/10.1007/978-981-99-1284-1_41
Published : 01 October 2023
Publisher Name : Springer, Singapore
Print ISBN : 978-981-99-1283-4
Online ISBN : 978-981-99-1284-1
eBook Packages : Biomedical and Life Sciences Biomedical and Life Sciences (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Publish with us
Policies and ethics
- Find a journal
- Track your research
- Research Guides
BSCI 1510L Literature and Stats Guide: 1 What is a scientific paper?
1 what is a scientific paper.
- 2 Referencing and accessing papers
- 2.1 Literature Cited
- 2.2 Accessing Scientific Papers
- 2.3 Traversing the web of citations
- 2.4 Keyword Searches
- 3 Style of scientific writing
- 3.1 Specific details regarding scientific writing
- 3.2 Components of a scientific paper
- 4 Summary of the Writing Guide and Further Information
- Appendix A: Calculation Final Concentrations
- 1 Formulas in Excel
- 2 Basic operations in Excel
- 3 Measurement and Variation
- 3.1 Describing Quantities and Their Variation
- 3.2 Samples Versus Populations
- 3.3 Calculating Descriptive Statistics using Excel
- 4 Variation and differences
- 5 Differences in Experimental Science
- 5.1 Aside: Commuting to Nashville
- 5.2 P and Detecting Differences in Variable Quantities
- 5.3 Statistical significance
- 5.4 A test for differences of sample means: 95% Confidence Intervals
- 5.5 Error bars in figures
- 5.6 Discussing statistics in your scientific writing
- 6 Scatter plot, trendline, and linear regression
- 7 The t-test of Means
- 8 Paired t-test
- 9 Two-Tailed and One-Tailed Tests
- 10 Variation on t-tests: ANOVA
- 11 Reporting the Results of a Statistical Test
- 12 Summary of statistical tests
- 1 Objectives
- 2 Project timeline
- 3 Background
- 4 Previous work in the BSCI 111 class
- 5 General notes about the project
- 6 About the paper
- 7 References
Scientific papers (also known as a "journal articles") are a special type of written work that have particular characteristics:
- They are usually published in a periodical called a journal whose purpose is to publish this kind of work. Generally, journals differ greatly from general interest writing on scientific topics such as magazine articles and science news (e.g. those in National Geographic, Scientific American, Discover, etc.) although some journals also have a section devoted to general interest writing. Occasionally scientific papers are compiled in book form but this is not the norm.
- They are peer reviewed . That means that the paper has been subjected to the scrutiny of several experts in the field who verify the quality of the writing and the accuracy of the analysis and conclusions drawn by the authors.
- They are citable . This means that: the content is stable, the journal is readily available in libraries and (usually) through the Web, and there are standardized methods of identifying a particular article. Thus an author can refer to a paper with confidence that a reader can easily look up that reference at any point in the future.
- They include citations . This means that the paper frequently makes reference to previous publications that are relevant to the work being discussed. All cited works are listed in a reference section at the end of the paper. Footnotes at the bottom of each pager are not used to make citations.
- Introduction
- References/Literature cited
- They follow a standardized style of writing and data presentation.
- Over the next four weeks of lab, you will be examining some published work on a topic. We will analyze parts of these papers each week, such as examining the results between the papers. After that, you will be given a sample paper to critique/revise. By Mid-semester, you will have seen enough of "how to write" in science and will write your own formal journal-style paper. There are quite a few details to learn but they are NOT challenging and are no different in complexity than when you learned the rules to reading and writing. Thus, you should really pay attention to these details early on and not have to worry about cramming them in all at once later on.
- << Previous: Scientific Literature Guide
- Next: 2 Referencing and accessing papers >>
- Last Updated: Jul 30, 2024 9:53 AM
- URL: https://researchguides.library.vanderbilt.edu/bsci1510L
- UConn Library
- Scientific Research and Communication
- Types of Scientific Papers
Scientific Research and Communication — Types of Scientific Papers
- Essential Resources
- The Scientific Method
- Organization of a Scientific Paper
- Peer Review & Academic Journals
- Primary and Secondary Sources
- Scientific Information Literacy
- Critical Reading Methods
- Scientific Writing Guidebooks
- Science Literature Reviews
- Searching Strategies for Science Databases
- Engineering Career Exploration
- Qualitative Research: What is it?
- Quantitative Research: What Is It?
- AI Tools for Research
- Avoiding Plagiarism
What types of articles are published in scientific journals?
Journal articles in the sciences are almost always a write-up of grant-funded laboratory or field research. Each article provides a brief overview of the research study, a description of methods used, results, and a conclusion. A small portion of science articles are 'review' articles; these are articles that summarize research studies. Journal articles are peer-reviewed. A growing number of so-called "pre-prints" are beginning to be published in science fields.
Source of slide above: Research4Life.org
Link to Slideshow, "How to Read A Scientific Research Paper" from Reseach4Life
- Anatomy of an Article
- How to Seriously Read a Scientific Paper A useful article from Science magazine on how to read a scientific journal article.
- How to Read a Scientific Paper Powerpoint from Research 4 Life about reading scientific journal articles
- Purdue University Library Guide to Reading Sci Papers Useful tutorial from Purdue University Libraries
- << Previous: The Scientific Method
- Next: Organization of a Scientific Paper >>
- Last Updated: Aug 27, 2024 9:58 AM
- URL: https://guides.lib.uconn.edu/sciencecommunication
Scientific and Scholarly Writing
- PubMed and other NLM Literature Databases
- Tracking and Citing References
Parts of a Scientific & Scholarly Paper
Introduction.
- Writing Effectively
- Where to Publish?
- Avoid Plagiarism
Different sections are needed in different types of scientific papers (lab reports, literature reviews, systematic reviews, methods papers, research papers, etc.). Projects that overlap with the social sciences or humanities may have different requirements. Generally, however, you'll need to include:
INTRODUCTION (Background)
METHODS SECTION (Materials and Methods)
What is a title?
Titles have two functions: to identify the main topic or the message of the paper and to attract readers.
The title will be read by many people. Only a few will read the entire paper, therefore all words in the title should be chosen with care. Too short a title is not helpful to the potential reader. Too long a title can sometimes be even less meaningful. Remember a title is not an abstract. Neither is a title a sentence.
What makes a good title?
A good title is accurate, complete, and specific. Imagine searching for your paper in PubMed. What words would you use?
- Use the fewest possible words that describe the contents of the paper.
- Avoid waste words like "Studies on", or "Investigations on".
- Use specific terms rather than general.
- Use the same key terms in the title as the paper.
- Watch your word order and syntax.
- Avoid abbreviations, jargon, and special characters.
The abstract is a miniature version of your paper. It should present the main story and a few essential details of the paper for readers who only look at the abstract and should serve as a clear preview for readers who read your whole paper. They are usually short (250 words or less).
The goal is to communicate:
- What was done?
- Why was it done?
- How was it done?
- What was found?
A good abstract is specific and selective. Try summarizing each of the sections of your paper in a sentence two. Do the abstract last, so you know exactly what you want to write.
- Use 1 or more well developed paragraphs.
- Use introduction/body/conclusion structure.
- Present purpose, results, conclusions and recommendations in that order.
- Make it understandable to a wide audience.
What is an introduction?
The introduction tells the reader why you are writing your paper (ie, identifies a gap in the literature) and supplies sufficient background information that the reader can understand and evaluate your project without referring to previous publications on the topic.
The nature and scope of the problem investigated.
The pertinent literature already written on the subject.
The method of the investigation.
The hypothesized results of the project.
What makes a good introduction?
A good introduction is not the same as an abstract. Where the abstract summarizes your paper, the introduction justifies your project and lets readers know what to expect.
• Keep it brief. You conducted an extensive literature review, so that you can give readers just the relevant information. • Cite your sources using in-text citations. • Use the present tense. Keep using the present tense for the whole paper. • Use the same information that you use in the rest of your paper.
What is a methods section?
Generally a methods section tells the reader how you conducted your project.
It is also called "Materials and Methods".
The goal is to make your project reproducible.
What makes a good methods section?
A good methods section gives enough detail that another scientist could reproduce or replicate your results.
• Use very specific language, similar to a recipe in a cookbook. • If something is not standard (equipment, method, chemical compound, statistical analysis), then describe it. • Use the past tense. • Subheadings should follow guidelines of a style (APA, Vancouver, etc.) or journal (journals will specify these in their "for authors" section). For medical education writing, refer to the AMA Manual of Style .
What is a results section?
The results objectively present the data or information that you gathered through your project. The narrative that you write here will point readers to your figures and tables that present your relevant data.
Keep in mind that you may be able to include more of your data in an online journal supplement or research data repository.
What makes a good results section?
A good results section is not the same as the discussion. Present the facts in the results, saving the interpretation for the discussion section. The results section should be written in past tense.
• Make figures and tables clearly labelled and easy to read. If you include a figure or table, explain it in the results section. • Present representative data rather than endlessly repetitive data . • Discuss variables only if they had an effect (positive or negative) • Use meaningful statistics . • Describe statistical analyses you ran on the data.
What is a discussion section?
The discussion section is the answer to the question(s) you posed in the introduction section. It is where you interpret your results. You have a lot of flexibility in this section. In addition to your main findings or conclusions, consider:
• Limitations and strengths of your project. • Directions for future research.
What makes a good discussion section?
A good discussion section should read very differently than the results section. The discussion is where you interpret the project as a whole.
• Present principles, relationships and generalizations shown by the results. • Discuss the significance or importance of the results. • Discuss the theoretical implications of your work as well as practical applications • Show how your results agree or disagree with previously published works.
- << Previous: Tracking and Citing References
- Next: Writing Effectively >>
- Last Updated: Aug 5, 2024 2:28 PM
- URL: https://libraryguides.umassmed.edu/scientific-writing
Stack Exchange Network
Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.
Q&A for work
Connect and share knowledge within a single location that is structured and easy to search.
Difference between research paper and scientific paper
What is the difference between a research paper and a scientific paper? Does the research paper also mean a term paper at the end of your Masters?
I need to present a research paper. So does it mean I need to present a solution to an existing problem or does it mean a summary of various solutions already existing?
- terminology
2 Answers 2
A research paper is a paper containing original research. That is, if you do some work to add (or try to add) new knowledge to a field of study, and then present the details of your approach and findings in a paper, that paper can be called a research paper.
Not all academic papers contain original research; other kinds of academic papers that are not research papers are
- review papers, (see What is the difference between a review paper and a research paper? )
- position papers (which present an opinion without original research to support it)
- tutorial papers (which contain a tutorial introduction a topic or area, without contributing new results).
A scientific paper is any paper on a scientific subject.
Does the research paper also mean a term paper at the end of your Masters? I need to present a research paper. So does it mean I need to present a solution to an existing problem or does it mean a summary of various solutions already existing?
If the term paper at the end of your masters contains original research, then it's a research paper.
Depending on the policies of your department, you may or may not be required to attempt original research during your masters. In some departments, a review of existing literature may be fine. If you're not sure exactly what's required from you, you need to ask the relevant faculty or staff members in your department.
- Related: What is a "white paper"? . – E.P. Commented Jan 20, 2015 at 18:15
- It also bears mention that "a summary of various solutions already existing" does not usually qualify as a research paper. – E.P. Commented Jan 20, 2015 at 18:16
Research means that you add something new. Something you didn't know before, and ideally something no-one knew before (although at BSc. and MSc. levels the novelty requirement is generally relaxed). This can be a new investigation, or simply an analysis of a number existing papers. It must however not be a summary of existing solutions. It should go beyond that.
An important thing to remember is that in terms of assignment you are expected to demonstrate insight and understanding. To demonstrate this you need to engage with the topics, not merely summarise (which requires less understanding).
You must log in to answer this question.
Not the answer you're looking for browse other questions tagged terminology ..
- Featured on Meta
- Bringing clarity to status tag usage on meta sites
- We've made changes to our Terms of Service & Privacy Policy - July 2024
- Announcing a change to the data-dump process
Hot Network Questions
- Parody of Fables About Authenticity
- Why was this lighting fixture smoking? What do I do about it?
- Who was the "Dutch author", "Bumstone Bumstone"?
- Input Impedance of a converter and output impedance of battery
- If inflation/cost of living is such a complex difficult problem, then why has the price of drugs been absoultly perfectly stable my whole life?
- Does Vexing Bauble counter taxed 0 mana spells?
- The answer is not wrong
- How does \vdotswithin work?
- Parse Minecraft's VarInt
- Deploying contracts from safe wallet
- Stuck on Sokoban
- Using conditionals within \tl_put_right from latex3 explsyntax
- Integral concerning the floor function
- How can these humans cross the ocean(s) at the first possible chance?
- Why does Russia strike electric power in Ukraine?
- Meaning of "blunk"
- Help identify part with marking code |ACG and VE
- Why is "on " the optimal preposition in this case?
- The meaning of "by" in "swear by God"
- What to do when 2 light switches are too far apart for the light switch cover plate?
- Is there a phrase for someone who's really bad at cooking?
- Using a Schengen Visa for a Different Country and Future Visa Applications
- Raspberry Screen Application
- Are carbon fiber parts riveted, screwed or bolted?
An official website of the United States government
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
- Publications
- Account settings
Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .
- Advanced Search
- Journal List
- ScientificWorldJournal
- v.2024; 2024
- PMC10807936
Writing a Scientific Review Article: Comprehensive Insights for Beginners
Ayodeji amobonye.
1 Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, KwaZulu-Natal, Durban 4000, South Africa
2 Writing Centre, Durban University of Technology, P.O. Box 1334 KwaZulu-Natal, Durban 4000, South Africa
Japareng Lalung
3 School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
Santhosh Pillai
Associated data.
The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.
Review articles present comprehensive overview of relevant literature on specific themes and synthesise the studies related to these themes, with the aim of strengthening the foundation of knowledge and facilitating theory development. The significance of review articles in science is immeasurable as both students and researchers rely on these articles as the starting point for their research. Interestingly, many postgraduate students are expected to write review articles for journal publications as a way of demonstrating their ability to contribute to new knowledge in their respective fields. However, there is no comprehensive instructional framework to guide them on how to analyse and synthesise the literature in their niches into publishable review articles. The dearth of ample guidance or explicit training results in students having to learn all by themselves, usually by trial and error, which often leads to high rejection rates from publishing houses. Therefore, this article seeks to identify these challenges from a beginner's perspective and strives to plug the identified gaps and discrepancies. Thus, the purpose of this paper is to serve as a systematic guide for emerging scientists and to summarise the most important information on how to write and structure a publishable review article.
1. Introduction
Early scientists, spanning from the Ancient Egyptian civilization to the Scientific Revolution of the 16 th /17 th century, based their research on intuitions, personal observations, and personal insights. Thus, less time was spent on background reading as there was not much literature to refer to. This is well illustrated in the case of Sir Isaac Newton's apple tree and the theory of gravity, as well as Gregor Mendel's pea plants and the theory of inheritance. However, with the astronomical expansion in scientific knowledge and the emergence of the information age in the last century, new ideas are now being built on previously published works, thus the periodic need to appraise the huge amount of already published literature [ 1 ]. According to Birkle et al. [ 2 ], the Web of Science—an authoritative database of research publications and citations—covered more than 80 million scholarly materials. Hence, a critical review of prior and relevant literature is indispensable for any research endeavour as it provides the necessary framework needed for synthesising new knowledge and for highlighting new insights and perspectives [ 3 ].
Review papers are generally considered secondary research publications that sum up already existing works on a particular research topic or question and relate them to the current status of the topic. This makes review articles distinctly different from scientific research papers. While the primary aim of the latter is to develop new arguments by reporting original research, the former is focused on summarising and synthesising previous ideas, studies, and arguments, without adding new experimental contributions. Review articles basically describe the content and quality of knowledge that are currently available, with a special focus on the significance of the previous works. To this end, a review article cannot simply reiterate a subject matter, but it must contribute to the field of knowledge by synthesising available materials and offering a scholarly critique of theory [ 4 ]. Typically, these articles critically analyse both quantitative and qualitative studies by scrutinising experimental results, the discussion of the experimental data, and in some instances, previous review articles to propose new working theories. Thus, a review article is more than a mere exhaustive compilation of all that has been published on a topic; it must be a balanced, informative, perspective, and unbiased compendium of previous studies which may also include contrasting findings, inconsistencies, and conventional and current views on the subject [ 5 ].
Hence, the essence of a review article is measured by what is achieved, what is discovered, and how information is communicated to the reader [ 6 ]. According to Steward [ 7 ], a good literature review should be analytical, critical, comprehensive, selective, relevant, synthetic, and fully referenced. On the other hand, a review article is considered to be inadequate if it is lacking in focus or outcome, overgeneralised, opinionated, unbalanced, and uncritical [ 7 ]. Most review papers fail to meet these standards and thus can be viewed as mere summaries of previous works in a particular field of study. In one of the few studies that assessed the quality of review articles, none of the 50 papers that were analysed met the predefined criteria for a good review [ 8 ]. However, beginners must also realise that there is no bad writing in the true sense; there is only writing in evolution and under refinement. Literally, every piece of writing can be improved upon, right from the first draft until the final published manuscript. Hence, a paper can only be referred to as bad and unfixable when the author is not open to corrections or when the writer gives up on it.
According to Peat et al. [ 9 ], “everything is easy when you know how,” a maxim which applies to scientific writing in general and review writing in particular. In this regard, the authors emphasized that the writer should be open to learning and should also follow established rules instead of following a blind trial-and-error approach. In contrast to the popular belief that review articles should only be written by experienced scientists and researchers, recent trends have shown that many early-career scientists, especially postgraduate students, are currently expected to write review articles during the course of their studies. However, these scholars have little or no access to formal training on how to analyse and synthesise the research literature in their respective fields [ 10 ]. Consequently, students seeking guidance on how to write or improve their literature reviews are less likely to find published works on the subject, particularly in the science fields. Although various publications have dealt with the challenges of searching for literature, or writing literature reviews for dissertation/thesis purposes, there is little or no information on how to write a comprehensive review article for publication. In addition to the paucity of published information to guide the potential author, the lack of understanding of what constitutes a review paper compounds their challenges. Thus, the purpose of this paper is to serve as a guide for writing review papers for journal publishing. This work draws on the experience of the authors to assist early-career scientists/researchers in the “hard skill” of authoring review articles. Even though there is no single path to writing scientifically, or to writing reviews in particular, this paper attempts to simplify the process by looking at this subject from a beginner's perspective. Hence, this paper highlights the differences between the types of review articles in the sciences while also explaining the needs and purpose of writing review articles. Furthermore, it presents details on how to search for the literature as well as how to structure the manuscript to produce logical and coherent outputs. It is hoped that this work will ease prospective scientific writers into the challenging but rewarding art of writing review articles.
2. Benefits of Review Articles to the Author
Analysing literature gives an overview of the “WHs”: WHat has been reported in a particular field or topic, WHo the key writers are, WHat are the prevailing theories and hypotheses, WHat questions are being asked (and answered), and WHat methods and methodologies are appropriate and useful [ 11 ]. For new or aspiring researchers in a particular field, it can be quite challenging to get a comprehensive overview of their respective fields, especially the historical trends and what has been studied previously. As such, the importance of review articles to knowledge appraisal and contribution cannot be overemphasised, which is reflected in the constant demand for such articles in the research community. However, it is also important for the author, especially the first-time author, to recognise the importance of his/her investing time and effort into writing a quality review article.
Generally, literature reviews are undertaken for many reasons, mainly for publication and for dissertation purposes. The major purpose of literature reviews is to provide direction and information for the improvement of scientific knowledge. They also form a significant component in the research process and in academic assessment [ 12 ]. There may be, however, a thin line between a dissertation literature review and a published review article, given that with some modifications, a literature review can be transformed into a legitimate and publishable scholarly document. According to Gülpınar and Güçlü [ 6 ], the basic motivation for writing a review article is to make a comprehensive synthesis of the most appropriate literature on a specific research inquiry or topic. Thus, conducting a literature review assists in demonstrating the author's knowledge about a particular field of study, which may include but not be limited to its history, theories, key variables, vocabulary, phenomena, and methodologies [ 10 ]. Furthermore, publishing reviews is beneficial as it permits the researchers to examine different questions and, as a result, enhances the depth and diversity of their scientific reasoning [ 1 ]. In addition, writing review articles allows researchers to share insights with the scientific community while identifying knowledge gaps to be addressed in future research. The review writing process can also be a useful tool in training early-career scientists in leadership, coordination, project management, and other important soft skills necessary for success in the research world [ 13 ]. Another important reason for authoring reviews is that such publications have been observed to be remarkably influential, extending the reach of an author in multiple folds of what can be achieved by primary research papers [ 1 ]. The trend in science is for authors to receive more citations from their review articles than from their original research articles. According to Miranda and Garcia-Carpintero [ 14 ], review articles are, on average, three times more frequently cited than original research articles; they also asserted that a 20% increase in review authorship could result in a 40–80% increase in citations of the author. As a result, writing reviews can significantly impact a researcher's citation output and serve as a valuable channel to reach a wider scientific audience. In addition, the references cited in a review article also provide the reader with an opportunity to dig deeper into the topic of interest. Thus, review articles can serve as a valuable repository for consultation, increasing the visibility of the authors and resulting in more citations.
3. Types of Review Articles
The first step in writing a good literature review is to decide on the particular type of review to be written; hence, it is important to distinguish and understand the various types of review articles. Although scientific review articles have been classified according to various schemes, however, they are broadly categorised into narrative reviews, systematic reviews, and meta-analyses [ 15 ]. It was observed that more authors—as well as publishers—were leaning towards systematic reviews and meta-analysis while downplaying narrative reviews; however, the three serve different aims and should all be considered equally important in science [ 1 ]. Bibliometric reviews and patent reviews, which are closely related to meta-analysis, have also gained significant attention recently. However, from another angle, a review could also be of two types. In the first class, authors could deal with a widely studied topic where there is already an accumulated body of knowledge that requires analysis and synthesis [ 3 ]. At the other end of the spectrum, the authors may have to address an emerging issue that would benefit from exposure to potential theoretical foundations; hence, their contribution would arise from the fresh theoretical foundations proposed in developing a conceptual model [ 3 ].
3.1. Narrative Reviews
Narrative reviewers are mainly focused on providing clarification and critical analysis on a particular topic or body of literature through interpretative synthesis, creativity, and expert judgement. According to Green et al. [ 16 ], a narrative review can be in the form of editorials, commentaries, and narrative overviews. However, editorials and commentaries are usually expert opinions; hence, a beginner is more likely to write a narrative overview, which is more general and is also referred to as an unsystematic narrative review. Similarly, the literature review section of most dissertations and empirical papers is typically narrative in nature. Typically, narrative reviews combine results from studies that may have different methodologies to address different questions or to formulate a broad theoretical formulation [ 1 ]. They are largely integrative as strong focus is placed on the assimilation and synthesis of various aspects in the review, which may involve comparing and contrasting research findings or deriving structured implications [ 17 ]. In addition, they are also qualitative studies because they do not follow strict selection processes; hence, choosing publications is relatively more subjective and unsystematic [ 18 ]. However, despite their popularity, there are concerns about their inherent subjectivity. In many instances, when the supporting data for narrative reviews are examined more closely, the evaluations provided by the author(s) become quite questionable [ 19 ]. Nevertheless, if the goal of the author is to formulate a new theory that connects diverse strands of research, a narrative method is most appropriate.
3.2. Systematic Reviews
In contrast to narrative reviews, which are generally descriptive, systematic reviews employ a systematic approach to summarise evidence on research questions. Hence, systematic reviews make use of precise and rigorous criteria to identify, evaluate, and subsequently synthesise all relevant literature on a particular topic [ 12 , 20 ]. As a result, systematic reviews are more likely to inspire research ideas by identifying knowledge gaps or inconsistencies, thus helping the researcher to clearly define the research hypotheses or questions [ 21 ]. Furthermore, systematic reviews may serve as independent research projects in their own right, as they follow a defined methodology to search and combine reliable results to synthesise a new database that can be used for a variety of purposes [ 22 ]. Typically, the peculiarities of the individual reviewer, different search engines, and information databases used all ensure that no two searches will yield the same systematic results even if the searches are conducted simultaneously and under identical criteria [ 11 ]. Hence, attempts are made at standardising the exercise via specific methods that would limit bias and chance effects, prevent duplications, and provide more accurate results upon which conclusions and decisions can be made.
The most established of these methods is the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines which objectively defined statements, guidelines, reporting checklists, and flowcharts for undertaking systematic reviews as well as meta-analysis [ 23 ]. Though mainly designed for research in medical sciences, the PRISMA approach has gained wide acceptance in other fields of science and is based on eight fundamental propositions. These include the explicit definition of the review question, an unambiguous outline of the study protocol, an objective and exhaustive systematic review of reputable literature, and an unambiguous identification of included literature based on defined selection criteria [ 24 ]. Other considerations include an unbiased appraisal of the quality of the selected studies (literature), organic synthesis of the evidence of the study, preparation of the manuscript based on the reporting guidelines, and periodic update of the review as new data emerge [ 24 ]. Other methods such as PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols), MOOSE (Meta-analysis Of Observational Studies in Epidemiology), and ROSES (Reporting Standards for Systematic Evidence Syntheses) have since been developed for systematic reviews (and meta-analysis), with most of them being derived from PRISMA.
Consequently, systematic reviews—unlike narrative reviews—must contain a methodology section which in addition to all that was highlighted above must fully describe the precise criteria used in formulating the research question and setting the inclusion or exclusion criteria used in selecting/accessing the literature. Similarly, the criteria for evaluating the quality of the literature included in the review as well as for analysing, synthesising, and disseminating the findings must be fully described in the methodology section.
3.3. Meta-Analysis
Meta-analyses are considered as more specialised forms of systematic reviews. Generally, they combine the results of many studies that use similar or closely related methods to address the same question or share a common quantitative evaluation method [ 25 ]. However, meta-analyses are also a step higher than other systematic reviews as they are focused on numerical data and involve the use of statistics in evaluating different studies and synthesising new knowledge. The major advantage of this type of review is the increased statistical power leading to more reliable results for inferring modest associations and a more comprehensive understanding of the true impact of a research study [ 26 ]. Unlike in traditional systematic reviews, research topics covered in meta-analyses must be mature enough to allow the inclusion of sufficient homogeneous empirical research in terms of subjects, interventions, and outcomes [ 27 , 28 ].
Being an advanced form of systematic review, meta-analyses must also have a distinct methodology section; hence, the standard procedures involved in the traditional systematic review (especially PRISMA) also apply in meta-analyses [ 23 ]. In addition to the common steps in formulating systematic reviews, meta-analyses are required to describe how nested and missing data are handled, the effect observed in each study, the confidence interval associated with each synthesised effect, and any potential for bias presented within the sample(s) [ 17 ]. According to Paul and Barari [ 28 ], a meta-analysis must also detail the final sample, the meta-analytic model, and the overall analysis, moderator analysis, and software employed. While the overall analysis involves the statistical characterization of the relationships between variables in the meta-analytic framework and their significance, the moderator analysis defines the different variables that may affect variations in the original studies [ 28 , 29 ]. It must also be noted that the accuracy and reliability of meta-analyses have both been significantly enhanced by the incorporation of statistical approaches such as Bayesian analysis [ 30 ], network analysis [ 31 ], and more recently, machine learning [ 32 ].
3.4. Bibliometric Review
A bibliometric review, commonly referred to as bibliometric analysis, is a systematic evaluation of published works within a specific field or discipline [ 33 ]. This bibliometric methodology involves the use of quantitative methods to analyse bibliometric data such as the characteristics and numbers of publications, units of citations, authorship, co-authorship, and journal impact factors [ 34 ]. Academics use bibliometric analysis with different objectives in mind, which includes uncovering emerging trends in article and journal performance, elaborating collaboration patterns and research constituents, evaluating the impact and influence of particular authors, publications, or research groups, and highlighting the intellectual framework of a certain field [ 35 ]. It is also used to inform policy and decision-making. Similarly to meta-analysis, bibliometric reviews rely upon quantitative techniques, thus avoiding the interpretation bias that could arise from the qualitative techniques of other types of reviews [ 36 ]. However, while bibliometric analysis synthesises the bibliometric and intellectual structure of a field by examining the social and structural linkages between various research parts, meta-analysis focuses on summarising empirical evidence by probing the direction and strength of effects and relationships among variables, especially in open research questions [ 37 , 38 ]. However, similarly to systematic review and meta-analysis, a bibliometric review also requires a well-detailed methodology section. The amount of data to be analysed in bibliometric analysis is quite massive, running to hundreds and tens of thousands in some cases. Although the data are objective in nature (e.g., number of citations and publications and occurrences of keywords and topics), the interpretation is usually carried out through both objective (e.g., performance analysis) and subjective (e.g., thematic analysis) evaluations [ 35 ]. However, the invention and availability of bibliometric software such as BibExcel, Gephi, Leximancer, and VOSviewer and scientific databases such as Dimensions, Web of Science, and Scopus have made this type of analysis more feasible.
3.5. Patent Review
Patent reviews provide a comprehensive analysis and critique of a specific patent or a group of related patents, thus presenting a concise understanding of the technology or innovation that is covered by the patent [ 39 ]. This type of article is useful for researchers as it also enhances their understanding of the legal, technical, and commercial aspects of an intellectual property/innovation; in addition, it is also important for stakeholders outside the research community including IP (intellectual property) specialists, legal professionals, and technology-transfer officers [ 40 ]. Typically, patent reviews encompass the scope, background, claims, legal implications, technical specifications, and potential commercial applications of the patent(s). The article may also include a discussion of the patent's strengths and weaknesses, as well as its potential impact on the industry or field in which it operates. Most times, reviews are time specified, they may be regionalised, and the data are usually retrieved via patent searches on databases such as that of the European Patent Office ( https://www.epo.org/searching.html ), United States Patent and Trademark Office ( https://patft.uspto.gov/ ), the World Intellectual Property Organization's PATENTSCOPE ( https://patentscope.wipo.int/search/en/structuredSearch.jsf ), Google Patent ( https://www.google.com/?tbm=pts ), and China National Intellectual Property Administration ( https://pss-system.cponline.cnipa.gov.cn/conventionalSearch ). According to Cerimi et al. [ 41 ], the retrieved data and analysed may include the patent number, patent status, filing date, application date, grant dates, inventor, assignee, and pending applications. While data analysis is usually carried out by general data software such as Microsoft Excel, an intelligence software solely dedicated to patent research and analysis, Orbit Intelligence has been found to be more efficient [ 39 ]. It is also mandatory to include a methodology section in a patent review, and this should be explicit, thorough, and precise to allow a clear understanding of how the analysis was carried out and how the conclusions were arrived at.
4. Searching Literature
One of the most challenging tasks in writing a review article on a subject is the search for relevant literature to populate the manuscript as the author is required to garner information from an endless number of sources. This is even more challenging as research outputs have been increasing astronomically, especially in the last decade, with thousands of new articles published annually in various fields. It is therefore imperative that the author must not only be aware of the overall trajectory in a field of investigation but must also be cognizant of recent studies so as not to publish outdated research or review articles. Basically, the search for the literature involves a coherent conceptual structuring of the topic itself and a thorough collation of evidence under the common themes which might reflect the histories, conflicts, standoffs, revolutions, and/or evolutions in the field [ 7 ]. To start the search process, the author must carefully identify and select broad keywords relevant to the subject; subsequently, the keywords should be developed to refine the search into specific subheadings that would facilitate the structure of the review.
Two main tactics have been identified for searching the literature, namely, systematic and snowballing [ 42 ]. The systematic approach involves searching literature with specific keywords (for example, cancer, antioxidant, and nanoparticles), which leads to an almost unmanageable and overwhelming list of possible sources [ 43 ]. The snowballing approach, however, involves the identification of a particular publication, followed by the compilation of a bibliography of articles based on the reference list of the identified publication [ 44 ]. Many times, it might be necessary to combine both approaches, but irrespective, the author must keep an accurate track and record of papers cited in the search. A simple and efficient strategy for populating the bibliography of review articles is to go through the abstract (and sometimes the conclusion) of a paper; if the abstract is related to the topic of discourse, the author might go ahead and read the entire article; otherwise, he/she is advised to move on [ 45 ]. Winchester and Salji [ 5 ] noted that to learn the background of the subject/topic to be reviewed, starting literature searches with academic textbooks or published review articles is imperative, especially for beginners. Furthermore, it would also assist in compiling the list of keywords, identifying areas of further exploration, and providing a glimpse of the current state of the research. However, past reviews ideally are not to serve as the foundation of a new review as they are written from someone else's viewpoint, which might have been tainted with some bias. Fortunately, the accessibility and search for the literature have been made relatively easier than they were a few decades ago as the current information age has placed an enormous volume of knowledge right at our fingertips [ 46 ]. Nevertheless, when gathering the literature from the Internet, authors should exercise utmost caution as much of the information may not be verified or peer-reviewed and thus may be unregulated and unreliable. For instance, Wikipedia, despite being a large repository of information with more than 6.7 million articles in the English language alone, is considered unreliable for scientific literature reviews, due to its openness to public editing [ 47 ]. However, in addition to peer-reviewed journal publications—which are most ideal—reviews can also be drawn from a wide range of other sources such as technical documents, in-house reports, conference abstracts, and conference proceedings. Similarly, “Google Scholar”—as against “Google” and other general search engines—is more appropriate as its searches are restricted to only academic articles produced by scholarly societies or/and publishers [ 48 ]. Furthermore, the various electronic databases, such as ScienceDirect, Web of Science, PubMed, and MEDLINE, many of which focus on specific fields of research, are also ideal options [ 49 ]. Advancement in computer indexing has remarkably expanded the ease and ability to search large databases for every potentially relevant article. In addition to searching by topic, literature search can be modified by time; however, there must be a balance between old papers and recent ones. The general consensus in science is that publications less than five years old are considered recent.
It is important, especially in systematic reviews and meta-analyses, that the specific method of running the computer searches be properly documented as there is the need to include this in the method (methodology) section of such papers. Typically, the method details the keywords, databases explored, search terms used, and the inclusion/exclusion criteria applied in the selection of data and any other specific decision/criteria. All of these will ensure the reproducibility and thoroughness of the search and the selection procedure. However, Randolph [ 10 ] noted that Internet searches might not give the exhaustive list of articles needed for a review article; hence, it is advised that authors search through the reference lists of articles that were obtained initially from the Internet search. After determining the relevant articles from the list, the author should read through the references of these articles and repeat the cycle until saturation is reached [ 10 ]. After populating the articles needed for the literature review, the next step is to analyse them individually and in their whole entirety. A systematic approach to this is to identify the key information within the papers, examine them in depth, and synthesise original perspectives by integrating the information and making inferences based on the findings. In this regard, it is imperative to link one source to the other in a logical manner, for instance, taking note of studies with similar methodologies, papers that agree, or results that are contradictory [ 42 ].
5. Structuring the Review Article
The title and abstract are the main selling points of a review article, as most readers will only peruse these two elements and usually go on to read the full paper if they are drawn in by either or both of the two. Tullu [ 50 ] recommends that the title of a scientific paper “should be descriptive, direct, accurate, appropriate, interesting, concise, precise, unique, and not be misleading.” In addition to providing “just enough details” to entice the reader, words in the titles are also used by electronic databases, journal websites, and search engines to index and retrieve a particular paper during a search [ 51 ]. Titles are of different types and must be chosen according to the topic under review. They are generally classified as descriptive, declarative, or interrogative and can also be grouped into compound, nominal, or full-sentence titles [ 50 ]. The subject of these categorisations has been extensively discussed in many articles; however, the reader must also be aware of the compound titles, which usually contain a main title and a subtitle. Typically, subtitles provide additional context—to the main title—and they may specify the geographic scope of the research, research methodology, or sample size [ 52 ].
Just like primary research articles, there are many debates about the optimum length of a review article's title. However, the general consensus is to keep the title as brief as possible while not being too general. A title length between 10 and 15 words is recommended, since longer titles can be more challenging to comprehend. Paiva et al. [ 53 ] observed that articles which contain 95 characters or less get more views and citations. However, emphasis must be placed on conciseness as the audience will be more satisfied if they can understand what exactly the review has contributed to the field, rather than just a hint about the general topic area. Authors should also endeavour to stick to the journal's specific requirements, especially regarding the length of the title and what they should or should not contain [ 9 ]. Thus, avoidance of filler words such as “a review on/of,” “an observation of,” or “a study of” is a very simple way to limit title length. In addition, abbreviations or acronyms should be avoided in the title, except the standard or commonly interpreted ones such as AIDS, DNA, HIV, and RNA. In summary, to write an effective title, the authors should consider the following points. What is the paper about? What was the methodology used? What were the highlights and major conclusions? Subsequently, the author should list all the keywords from these answers, construct a sentence from these keywords, and finally delete all redundant words from the sentence title. It is also possible to gain some ideas by scanning indices and article titles in major journals in the field. It is important to emphasise that a title is not chosen and set in stone, and the title is most likely to be continually revised and adjusted until the end of the writing process.
5.2. Abstract
The abstract, also referred to as the synopsis, is a summary of the full research paper; it is typically independent and can stand alone. For most readers, a publication does not exist beyond the abstract, partly because abstracts are often the only section of a paper that is made available to the readers at no cost, whereas the full paper may attract a payment or subscription [ 54 ]. Thus, the abstract is supposed to set the tone for the few readers who wish to read the rest of the paper. It has also been noted that the abstract gives the first impression of a research work to journal editors, conference scientific committees, or referees, who might outright reject the paper if the abstract is poorly written or inadequate [ 50 ]. Hence, it is imperative that the abstract succinctly represents the entire paper and projects it positively. Just like the title, abstracts have to be balanced, comprehensive, concise, functional, independent, precise, scholarly, and unbiased and not be misleading [ 55 ]. Basically, the abstract should be formulated using keywords from all the sections of the main manuscript. Thus, it is pertinent that the abstract conveys the focus, key message, rationale, and novelty of the paper without any compromise or exaggeration. Furthermore, the abstract must be consistent with the rest of the paper; as basic as this instruction might sound, it is not to be taken for granted. For example, a study by Vrijhoef and Steuten [ 56 ] revealed that 18–68% of 264 abstracts from some scientific journals contained information that was inconsistent with the main body of the publications.
Abstracts can either be structured or unstructured; in addition, they can further be classified as either descriptive or informative. Unstructured abstracts, which are used by many scientific journals, are free flowing with no predefined subheadings, while structured abstracts have specific subheadings/subsections under which the abstract needs to be composed. Structured abstracts have been noted to be more informative and are usually divided into subsections which include the study background/introduction, objectives, methodology design, results, and conclusions [ 57 ]. No matter the style chosen, the author must carefully conform to the instructions provided by the potential journal of submission, which may include but are not limited to the format, font size/style, word limit, and subheadings [ 58 ]. The word limit for abstracts in most scientific journals is typically between 150 and 300 words. It is also a general rule that abstracts do not contain any references whatsoever.
Typically, an abstract should be written in the active voice, and there is no such thing as a perfect abstract as it could always be improved on. It is advised that the author first makes an initial draft which would contain all the essential parts of the paper, which could then be polished subsequently. The draft should begin with a brief background which would lead to the research questions. It might also include a general overview of the methodology used (if applicable) and importantly, the major results/observations/highlights of the review paper. The abstract should end with one or few sentences about any implications, perspectives, or future research that may be developed from the review exercise. Finally, the authors should eliminate redundant words and edit the abstract to the correct word count permitted by the journal [ 59 ]. It is always beneficial to read previous abstracts published in the intended journal, related topics/subjects from other journals, and other reputable sources. Furthermore, the author should endeavour to get feedback on the abstract especially from peers and co-authors. As the abstract is the face of the whole paper, it is best that it is the last section to be finalised, as by this time, the author would have developed a clearer understanding of the findings and conclusions of the entire paper.
5.3. Graphical Abstracts
Since the mid-2000s, an increasing number of journals now require authors to provide a graphical abstract (GA) in addition to the traditional written abstract, to increase the accessibility of scientific publications to readers [ 60 ]. A study showed that publications with GA performed better than those without it, when the abstract views, total citations, and downloads were compared [ 61 ]. However, the GA should provide “a single, concise pictorial, and visual summary of the main findings of an article” [ 62 ]. Although they are meant to be a stand-alone summary of the whole paper, it has been noted that they are not so easily comprehensible without having read through the traditionally written abstract [ 63 ]. It is important to note that, like traditional abstracts, many reputable journals require GAs to adhere to certain specifications such as colour, dimension, quality, file size, and file format (usually JPEG/JPG, PDF, PNG, or TIFF). In addition, it is imperative to use engaging and accurate figures, all of which must be synthesised in order to accurately reflect the key message of the paper. Currently, there are various online or downloadable graphical tools that can be used for creating GAs, such as Microsoft Paint or PowerPoint, Mindthegraph, ChemDraw, CorelDraw, and BioRender.
5.4. Keywords
As a standard practice, journals require authors to select 4–8 keywords (or phrases), which are typically listed below the abstract. A good set of keywords will enable indexers and search engines to find relevant papers more easily and can be considered as a very concise abstract [ 64 ]. According to Dewan and Gupta [ 51 ], the selection of appropriate keywords will significantly enhance the retrieval, accession, and consequently, the citation of the review paper. Ideally, keywords can be variants of the terms/phrases used in the title, the abstract, and the main text, but they should ideally not be the exact words in the main title. Choosing the most appropriate keywords for a review article involves listing down the key terms and phrases in the article, including abbreviations. Subsequently, a quick review of the glossary/vocabulary/term list or indexing standard in the specific discipline will assist in selecting the best and most precise keywords that match those used in the databases from the list drawn. In addition, the keywords should not be broad or general terms (e.g., DNA, biology, and enzymes) but must be specific to the field or subfield of study as well as to the particular paper [ 65 ].
5.5. Introduction
The introduction of an article is the first major section of the manuscript, and it presents basic information to the reader without compelling them to study past publications. In addition, the introduction directs the reader to the main arguments and points developed in the main body of the article while clarifying the current state of knowledge in that particular area of research [ 12 ]. The introduction part of a review article is usually sectionalised into background information, a description of the main topic and finally a statement of the main purpose of the review [ 66 ]. Authors may begin the introduction with brief general statements—which provide background knowledge on the subject matter—that lead to more specific ones [ 67 ]. It is at this point that the reader's attention must be caught as the background knowledge must highlight the importance and justification for the subject being discussed, while also identifying the major problem to be addressed [ 68 ]. In addition, the background should be broad enough to attract even nonspecialists in the field to maximise the impact and widen the reach of the article. All of these should be done in the light of current literature; however, old references may also be used for historical purposes. A very important aspect of the introduction is clearly stating and establishing the research problem(s) and how a review of the particular topic contributes to those problem(s). Thus, the research gap which the paper intends to fill, the limitations of previous works and past reviews, if available, and the new knowledge to be contributed must all be highlighted. Inadequate information and the inability to clarify the problem will keep readers (who have the desire to obtain new information) from reading beyond the introduction [ 69 ]. It is also pertinent that the author establishes the purpose of reviewing the literature and defines the scope as well as the major synthesised point of view. Furthermore, a brief insight into the criteria used to select, evaluate, and analyse the literature, as well as the outline or sequence of the review, should be provided in the introduction. Subsequently, the specific objectives of the review article must be presented. The last part of the “introduction” section should focus on the solution, the way forward, the recommendations, and the further areas of research as deduced from the whole review process. According to DeMaria [ 70 ], clearly expressed or recommended solutions to an explicitly revealed problem are very important for the wholesomeness of the “introduction” section. It is believed that following these steps will give readers the opportunity to track the problems and the corresponding solution from their own perspective in the light of current literature. As against some suggestions that the introduction should be written only in present tenses, it is also believed that it could be done with other tenses in addition to the present tense. In this regard, general facts should be written in the present tense, specific research/work should be in the past tense, while the concluding statement should be in the past perfect or simple past. Furthermore, many of the abbreviations to be used in the rest of the manuscript and their explanations should be defined in this section.
5.6. Methodology
Writing a review article is equivalent to conducting a research study, with the information gathered by the author (reviewer) representing the data. Like all major studies, it involves conceptualisation, planning, implementation, and dissemination [ 71 ], all of which may be detailed in a methodology section, if necessary. Hence, the methodological section of a review paper (which can also be referred to as the review protocol) details how the relevant literature was selected and how it was analysed as well as summarised. The selection details may include, but are not limited to, the database consulted and the specific search terms used together with the inclusion/exclusion criteria. As earlier highlighted in Section 3 , a description of the methodology is required for all types of reviews except for narrative reviews. This is partly because unlike narrative reviews, all other review articles follow systematic approaches which must ensure significant reproducibility [ 72 ]. Therefore, where necessary, the methods of data extraction from the literature and data synthesis must also be highlighted as well. In some cases, it is important to show how data were combined by highlighting the statistical methods used, measures of effect, and tests performed, as well as demonstrating heterogeneity and publication bias [ 73 ].
The methodology should also detail the major databases consulted during the literature search, e.g., Dimensions, ScienceDirect, Web of Science, MEDLINE, and PubMed. For meta-analysis, it is imperative to highlight the software and/or package used, which could include Comprehensive Meta-Analysis, OpenMEE, Review Manager (RevMan), Stata, SAS, and R Studio. It is also necessary to state the mathematical methods used for the analysis; examples of these include the Bayesian analysis, the Mantel–Haenszel method, and the inverse variance method. The methodology should also state the number of authors that carried out the initial review stage of the study, as it has been recommended that at least two reviews should be done blindly and in parallel, especially when it comes to the acquisition and synthesis of data [ 74 ]. Finally, the quality and validity assessment of the publication used in the review must be stated and well clarified [ 73 ].
5.7. Main Body of the Review
Ideally, the main body of a publishable review should answer these questions: What is new (contribution)? Why so (logic)? So what (impact)? How well it is done (thoroughness)? The flow of the main body of a review article must be well organised to adequately maintain the attention of the readers as well as guide them through the section. It is recommended that the author should consider drawing a conceptual scheme of the main body first, using methods such as mind-mapping. This will help create a logical flow of thought and presentation, while also linking the various sections of the manuscript together. According to Moreira [ 75 ], “reports do not simply yield their findings, rather reviewers make them yield,” and thus, it is the author's responsibility to transform “resistant” texts into “docile” texts. Hence, after the search for the literature, the essential themes and key concepts of the review paper must be identified and synthesised together. This synthesis primarily involves creating hypotheses about the relationships between the concepts with the aim of increasing the understanding of the topic being reviewed. The important information from the various sources should not only be summarised, but the significance of studies must be related back to the initial question(s) posed by the review article. Furthermore, MacLure [ 76 ] stated that data are not just to be plainly “extracted intact” and “used exactly as extracted,” but must be modified, reconfigured, transformed, transposed, converted, tabulated, graphed, or manipulated to enable synthesis, combination, and comparison. Therefore, different pieces of information must be extracted from the reports in which they were previously deposited and then refined into the body of the new article [ 75 ]. To this end, adequate comparison and combination might require that “qualitative data be quantified” or/and “quantitative data may be qualitized” [ 77 ]. In order to accomplish all of these goals, the author may have to transform, paraphrase, generalize, specify, and reorder the text [ 78 ]. For comprehensiveness, the body paragraphs should be arranged in a similar order as it was initially stated in the abstract or/and introduction. Thus, the main body could be divided into thematic areas, each of which could be independently comprehensive and treated as a mini review. Similarly, the sections can also be arranged chronologically depending on the focus of the review. Furthermore, the abstractions should proceed from a wider general view of the literature being reviewed and then be narrowed down to the specifics. In the process, deep insights should also be provided between the topic of the review and the wider subject area, e.g., fungal enzymes and enzymes in general. The abstractions must also be discussed in more detail by presenting more specific information from the identified sources (with proper citations of course!). For example, it is important to identify and highlight contrary findings and rival interpretations as well as to point out areas of agreement or debate among different bodies of literature. Often, there are previous reviews on the same topic/concept; however, this does not prevent a new author from writing one on the same topic, especially if the previous reviews were written many years ago. However, it is important that the body of the new manuscript be written from a new angle that was not adequately covered in the past reviews and should also incorporate new studies that have accumulated since the last review(s). In addition, the new review might also highlight the approaches, limitations, and conclusions of the past studies. But the authors must not be excessively critical of the past reviews as this is regarded by many authors as a sign of poor professionalism [ 3 , 79 ]. Daft [ 79 ] emphasized that it is more important for a reviewer to state how their research builds on previous work instead of outright claiming that previous works are incompetent and inadequate. However, if a series of related papers on one topic have a common error or research flaw that needs rectification, the reviewer must point this out with the aim of moving the field forward [ 3 ]. Like every other scientific paper, the main body of a review article also needs to be consistent in style, for example, in the choice of passive vs. active voice and present vs. past tense. It is also important to note that tables and figures can serve as a powerful tool for highlighting key points in the body of the review, and they are now considered core elements of reviews. For more guidance and insights into what should make up the contents of a good review article, readers are also advised to get familiarised with the Boote and Beile [ 80 ] literature review scoring rubric as well as the review article checklist of Short [ 81 ].
5.8. Tables and Figures
An ideal review article should be logically structured and efficiently utilise illustrations, in the form of tables and figures, to convey the key findings and relationships in the study. According to Tay [ 13 ], illustrations often take a secondary role in review papers when compared to primary research papers which are focused on illustrations. However, illustrations are very important in review articles as they can serve as succinct means of communicating major findings and insights. Franzblau and Chung [ 82 ] pointed out that illustrations serve three major purposes in a scientific article: they simplify complex data and relationships for better understanding, they minimise reading time by summarising and bringing to focus on the key findings (or trends), and last, they help to reduce the overall word count. Hence, inserting and constructing illustrations in a review article is as meticulous as it is important. However, important decisions should be made on whether the charts, figures, or tables to be potentially inserted in the manuscript are indeed needed and how best to design them [ 83 ]. Illustrations should enhance the text while providing necessary information; thus, the information described in illustrations should not contradict that in the main text and should also not be a repetition of texts [ 84 ]. Furthermore, illustrations must be autonomous, meaning they ought to be intelligible without having to read the text portion of the manuscript; thus, the reader does not have to flip back and forth between the illustration and the main text in order to understand it [ 85 ]. It should be noted that tables or figures that directly reiterate the main text or contain extraneous information will only make a mess of the manuscript and discourage readers [ 86 ].
Kotz and Cals [ 87 ] recommend that the layout of tables and figures should be carefully designed in a clear manner with suitable layouts, which will allow them to be referred to logically and chronologically in the text. In addition, illustrations should only contain simple text, as lengthy details would contradict their initial objective, which was to provide simple examples or an overview. Furthermore, the use of abbreviations in illustrations, especially tables, should be avoided if possible. If not, the abbreviations should be defined explicitly in the footnotes or legends of the illustration [ 88 ]. Similarly, numerical values in tables and graphs should also be correctly approximated [ 84 ]. It is recommended that the number of tables and figures in the manuscript should not exceed the target journal's specification. According to Saver [ 89 ], they ideally should not account for more than one-third of the manuscript. Finally, the author(s) must seek permission and give credits for using an already published illustration when necessary. However, none of these are needed if the graphic is originally created by the author, but if it is a reproduced or an adapted illustration, the author must obtain permission from the copyright owner and include the necessary credit. One of the very important tools for designing illustrations is Creative Commons, a platform that provides a wide range of creative works which are available to the public for use and modification.
5.9. Conclusion/Future Perspectives
It has been observed that many reviews end abruptly with a short conclusion; however, a lot more can be included in this section in addition to what has been said in the major sections of the paper. Basically, the conclusion section of a review article should provide a summary of key findings from the main body of the manuscript. In this section, the author needs to revisit the critical points of the paper as well as highlight the accuracy, validity, and relevance of the inferences drawn in the article review. A good conclusion should highlight the relationship between the major points and the author's hypothesis as well as the relationship between the hypothesis and the broader discussion to demonstrate the significance of the review article in a larger context. In addition to giving a concise summary of the important findings that describe current knowledge, the conclusion must also offer a rationale for conducting future research [ 12 ]. Knowledge gaps should be identified, and themes should be logically developed in order to construct conceptual frameworks as well as present a way forward for future research in the field of study [ 11 ].
Furthermore, the author may have to justify the propositions made earlier in the manuscript, demonstrate how the paper extends past research works, and also suggest ways that the expounded theories can be empirically examined [ 3 ]. Unlike experimental studies which can only draw either a positive conclusion or ambiguous failure to reject the null hypothesis, four possible conclusions can be drawn from review articles [ 1 ]. First, the theory/hypothesis propounded may be correct after being proven from current evidence; second, the hypothesis may not be explicitly proven but is most probably the best guess. The third conclusion is that the currently available evidence does not permit a confident conclusion or a best guess, while the last conclusion is that the theory or hypothesis is false [ 1 ]. It is important not to present new information in the conclusion section which has link whatsoever with the rest of the manuscript. According to Harris et al. [ 90 ], the conclusions should, in essence, answer the question: if a reader were to remember one thing about the review, what would it be?
5.10. References
As it has been noted in different parts of this paper, authors must give the required credit to any work or source(s) of information that was included in the review article. This must include the in-text citations in the main body of the paper and the corresponding entries in the reference list. Ideally, this full bibliographical list is the last part of the review article, and it should contain all the books, book chapters, journal articles, reports, and other media, which were utilised in the manuscript. It has been noted that most journals and publishers have their own specific referencing styles which are all derived from the more popular styles such as the American Psychological Association (APA), Chicago, Harvard, Modern Language Association (MLA), and Vancouver styles. However, all these styles may be categorised into either the parenthetical or numerical referencing style. Although a few journals do not have strict referencing rules, it is the responsibility of the author to reference according to the style and instructions of the journal. Omissions and errors must be avoided at all costs, and this can be easily achieved by going over the references many times for due diligence [ 11 ]. According to Cronin et al. [ 12 ], a separate file for references can be created, and any work used in the manuscript can be added to this list immediately after being cited in the text [ 12 ]. In recent times, the emergence of various referencing management software applications such as Endnote, RefWorks, Mendeley, and Zotero has even made referencing easier. The majority of these software applications require little technical expertise, and many of them are free to use, while others may require a subscription. It is imperative, however, that even after using these software packages, the author must manually curate the references during the final draft, in order to avoid any errors, since these programs are not impervious to errors, particularly formatting errors.
6. Concluding Remarks
Writing a review article is a skill that needs to be learned; it is a rigorous but rewarding endeavour as it can provide a useful platform to project the emerging researcher or postgraduate student into the gratifying world of publishing. Thus, the reviewer must develop the ability to think critically, spot patterns in a large volume of information, and must be invested in writing without tiring. The prospective author must also be inspired and dedicated to the successful completion of the article while also ensuring that the review article is not just a mere list or summary of previous research. It is also important that the review process must be focused on the literature and not on the authors; thus, overt criticism of existing research and personal aspersions must be avoided at all costs. All ideas, sentences, words, and illustrations should be constructed in a way to avoid plagiarism; basically, this can be achieved by paraphrasing, summarising, and giving the necessary acknowledgments. Currently, there are many tools to track and detect plagiarism in manuscripts, ensuring that they fall within a reasonable similarity index (which is typically 15% or lower for most journals). Although the more popular of these tools, such as Turnitin and iThenticate, are subscription-based, there are many freely available web-based options as well. An ideal review article is supposed to motivate the research topic and describe its key concepts while delineating the boundaries of research. In this regard, experience-based information on how to methodologically develop acceptable and impactful review articles has been detailed in this paper. Furthermore, for a beginner, this guide has detailed “the why” and “the how” of authoring a good scientific review article. However, the information in this paper may as a whole or in parts be also applicable to other fields of research and to other writing endeavours such as writing literature review in theses, dissertations, and primary research articles. Finally, the intending authors must put all the basic rules of scientific writing and writing in general into cognizance. A comprehensive study of the articles cited within this paper and other related articles focused on scientific writing will further enhance the ability of the motivated beginner to deliver a good review article.
Acknowledgments
This work was supported by the National Research Foundation of South Africa under grant number UID 138097. The authors would like to thank the Durban University of Technology for funding the postdoctoral fellowship of the first author, Dr. Ayodeji Amobonye.
Data Availability
Conflicts of interest.
The authors declare that they have no conflicts of interest.
- Advanced search
- Peer review
Discover relevant research today
Advance your research field in the open
Reach new audiences and maximize your readership
ScienceOpen puts your research in the context of
Publications
For Publishers
ScienceOpen offers content hosting, context building and marketing services for publishers. See our tailored offerings
- For academic publishers to promote journals and interdisciplinary collections
- For open access journals to host journal content in an interactive environment
- For university library publishing to develop new open access paradigms for their scholars
- For scholarly societies to promote content with interactive features
For Institutions
ScienceOpen offers state-of-the-art technology and a range of solutions and services
- For faculties and research groups to promote and share your work
- For research institutes to build up your own branding for OA publications
- For funders to develop new open access publishing paradigms
- For university libraries to create an independent OA publishing environment
For Researchers
Make an impact and build your research profile in the open with ScienceOpen
- Search and discover relevant research in over 95 million Open Access articles and article records
- Share your expertise and get credit by publicly reviewing any article
- Publish your poster or preprint and track usage and impact with article- and author-level metrics
- Create a topical Collection to advance your research field
Create a Journal powered by ScienceOpen
Launching a new open access journal or an open access press? ScienceOpen now provides full end-to-end open access publishing solutions – embedded within our smart interactive discovery environment. A modular approach allows open access publishers to pick and choose among a range of services and design the platform that fits their goals and budget.
Continue reading “Create a Journal powered by ScienceOpen”
What can a Researcher do on ScienceOpen?
ScienceOpen provides researchers with a wide range of tools to support their research – all for free. Here is a short checklist to make sure you are getting the most of the technological infrastructure and content that we have to offer. What can a researcher do on ScienceOpen? Continue reading “What can a Researcher do on ScienceOpen?”
ScienceOpen on the Road
Upcoming events.
- 15 June – Scheduled Server Maintenance, 13:00 – 01:00 CEST
Past Events
- 20 – 22 February – ResearcherToReader Conference
- 09 November – Webinar for the Discoverability of African Research
- 26 – 27 October – Attending the Workshop on Open Citations and Open Scholarly Metadata
- 18 – 22 October – ScienceOpen at Frankfurt Book Fair.
- 27 – 29 September – Attending OA Tage, Berlin .
- 25 – 27 September – ScienceOpen at Open Science Fair
- 19 – 21 September – OASPA 2023 Annual Conference .
- 22 – 24 May – ScienceOpen sponsoring Pint of Science, Berlin.
- 16-17 May – ScienceOpen at 3rd AEUP Conference.
- 20 – 21 April – ScienceOpen attending Scaling Small: Community-Owned Futures for Open Access Books .
What is ScienceOpen?
- Smart search and discovery within an interactive interface
- Researcher promotion and ORCID integration
- Open evaluation with article reviews and Collections
- Business model based on providing services to publishers
Live Twitter stream
Some of our partners:.
Online Students
For All Online Programs
International Students
On Campus, need or have Visa
Campus Students
For All Campus Programs
Academic Referencing: How to Cite a Research Paper
Learning how to conduct accurate, discipline-specific academic research can feel daunting at first. But, with a solid understanding of the reasoning behind why we use academic citations coupled with knowledge of the basics, you’ll learn how to cite sources with accuracy and confidence.
When it comes to academic research, citing sources correctly is arguably as important as the research itself. "Your instructors are expecting your work to adhere to these professional standards," said Amanda Girard , research support manager of Shapiro Library at Southern New Hampshire University (SNHU).
With Shapiro Library for the past three years, Girard manages the library’s research support services, which includes SNHU’s 24/7 library chat and email support. She holds an undergraduate degree in professional writing and a graduate degree in library and information science. She said that accurate citations show that you have done your research on a topic and are knowledgeable about current ideas from those actively working in the field.
In other words, when you cite sources according to the academic style of your discipline, you’re giving credit where credit is due.
Why Cite Sources?
Citing sources properly ensures you’re following high academic and professional standards for integrity and ethics.
“When you cite a source, you can ethically use others’ research. If you are not adequately citing the information you claim in your work, it would be considered plagiarism ,” said Shannon Geary '16 , peer tutor at SNHU.
Geary has an undergraduate degree in communication from SNHU and has served on the academic support team for close to 2 years. Her job includes helping students learn how to conduct research and write academically.
“In academic writing, it is crucial to state where you are receiving your information from,” she said. “Citing your sources ensures that you are following academic integrity standards.”
According to Geary and Girard, several key reasons for citing sources are:
- Access. Citing sources points readers to original sources. If anyone wants to read more on your topic, they can use your citations as a roadmap to access the original sources.
- Attribution. Crediting the original authors, researchers and experts shows that you’re knowledgeable about current ideas from those actively working in the field and adhering to high ethical standards, said Girard.
- Clarity. “By citing your sources correctly, your reader can follow along with your research,” Girard said.
- Consistency. Adhering to a citation style provides a framework for presenting ideas within similar academic fields. “Consistent formatting makes accessing, understanding and evaluating an author's findings easier for others in related fields of study,” Geary said.
- Credibility. Proper citation not only builds a writer's authority but also ensures the reliability of the work, according to Geary.
Ultimately, citing sources is a formalized way for you to share ideas as part of a bigger conversation among others in your field. It’s a way to build off of and reference one another’s ideas, Girard said.
How Do You Cite an Academic Research Paper?
Any time you use an original quote or paraphrase someone else’s ideas, you need to cite that material, according to Geary.
“The only time we do not need to cite is when presenting an original thought or general knowledge,” she said.
While the specific format for citing sources can vary based on the style used, several key elements are always included, according to Girard. Those are:
- Title of source
- Type of source, such as a journal, book, website or periodical
By giving credit to the authors, researchers and experts you cite, you’re building credibility. You’re showing that your argument is built on solid research.
“Proper citation not only builds a writer's authority but also ensures the reliability of the work,” Geary said. “Properly formatted citations are a roadmap for instructors and other readers to verify the information we present in our work.”
Common Citation Styles in Academic Research
Certain disciplines adhere to specific citation standards because different disciplines prioritize certain information and research styles . The most common citation styles used in academic research, according to Geary, are:
- American Psychological Association, known as APA . This style is standard in the social sciences such as psychology, education and communication. “In these fields, research happens rapidly, which makes it exceptionally important to use current research,” Geary said.
- Modern Language Association, known as MLA . This style is typically used in literature and humanities because of the emphasis on literature analysis. “When citing in MLA, there is an emphasis on the author and page number, allowing the audience to locate the original text that is being analyzed easily,” Geary said.
- Chicago Manual of Style, known as Chicago . This style is typically used in history, business and sometimes humanities. “(Chicago) offers flexibility because of the use of footnotes, which can be seen as less distracting than an in-text citation,” Geary said.
The benefit of using the same format as other researchers within a discipline is that the framework of presenting ideas allows you to “speak the same language,” according to Girard.
APA Citation for College: A Brief Overview
Are you writing a paper that needs to use APA citation, but don’t know what that means? No worries. You’ve come to the right place.
How to Use MLA Formatting: A Brief Overview
Are you writing a paper for which you need to know how to use MLA formatting, but don’t know what that means? No worries. You’ve come to the right place.
How to Ensure Proper Citations
Keeping track of your research as you go is one of the best ways to ensure you’re citing appropriately and correctly based on the style that your academic discipline uses.
“Through careful citation, authors ensure their audience can distinguish between borrowed material and original thoughts, safeguarding their academic reputation and following academic honesty policies,” Geary said.
Some tips that she and Girard shared to ensure you’re citing sources correctly include:
- Keep track of sources as you work. Writers should keep track of their sources every time an idea is not theirs, according to Geary. “You don’t want to find the perfect research study and misplace its source information, meaning you’d have to omit it from your paper,” she said.
- Practice. Even experienced writers need to check their citations before submitting their work. “Citing requires us to pay close attention to detail, so always start your citation process early and go slow to ensure you don’t make mistakes,” said Geary. In time, citing sources properly becomes faster and easier.
- Use an Online Tool . Geary recommends the Shapiro Library citation guide . You can find sample papers, examples of how to cite in the different academic styles and up-to-date citation requirements, along with information and examples for APA, MLA and Chicago style citations.
- Work with a Tutor. A tutor can offer support along with tips to help you learn the process of academic research. Students at SNHU can connect with free peer tutoring through the Academic Support tab in their online courses, though many colleges and universities offer peer tutoring.
Find Your Program
How to cite a reference in academic writing.
A citation consists of two pieces: an in-text citation that is typically short and a longer list of references or works cited (depending on the style used) at the end of the paper.
“In-text citations immediately acknowledge the use of external source information and its exact location,” Geary said. While each style uses a slightly different format for in-text citations that reference the research, you may expect to need the page number, author’s name and possibly date of publication in parentheses at the end of a sentence or passage, according to Geary.
A longer entry listing the complete details of the resource you referenced should also be included on the references or works cited page at the end of the paper. The full citation is provided with complete details of the source, such as author, title, publication date and more, Geary said.
The two-part aspect of citations is because of readability. “You can imagine how putting the full citation would break up the flow of a paper,” Girard said. “So, a shortened version is used (in the text).”
“For example, if an in-text citation reads (Jones, 2024), the reader immediately knows that the ideas presented are coming from Jones’s work, and they can explore the comprehensive citation on the final page,” she said.
The in-text citation and full citation together provide a transparent trail of the author's process of engaging with research.
“Their combined use also facilitates further research by following a standardized style (APA, MLA, Chicago), guaranteeing that other scholars can easily connect and build upon their work in the future,” Geary said.
Developing and demonstrating your research skills, enhancing your work’s credibility and engaging ethically with the intellectual contributions of others are at the core of the citation process no matter which style you use.
A degree can change your life. Choose your program from 200+ SNHU degrees that can take you where you want to go.
A former higher education administrator, Dr. Marie Morganelli is a career educator and writer. She has taught and tutored composition, literature, and writing at all levels from middle school through graduate school. With two graduate degrees in English language and literature, her focus — whether teaching or writing — is in helping to raise the voices of others through the power of storytelling. Connect with her on LinkedIn .
Explore more content like this article
What is Considered Plagiarism And How to Avoid It
Degrees vs. Certificate Programs: What's the Difference?
How Many Credits Do You Need to Graduate College?
About southern new hampshire university.
SNHU is a nonprofit, accredited university with a mission to make high-quality education more accessible and affordable for everyone.
Founded in 1932, and online since 1995, we’ve helped countless students reach their goals with flexible, career-focused programs . Our 300-acre campus in Manchester, NH is home to over 3,000 students, and we serve over 135,000 students online. Visit our about SNHU page to learn more about our mission, accreditations, leadership team, national recognitions and awards.
A new ‘AI scientist’ can write science papers without any human input. Here’s why that’s a problem
Dean, School of Computing Technologies, RMIT University, RMIT University
Disclosure statement
Karin Verspoor receives funding from the Australian Research Council, the Medical Research Future Fund, the National Health and Medical Research Council, and Elsevier BV. She is affiliated with BioGrid Australia and is a co-founder of the Australian Alliance for Artificial Intelligence in Healthcare.
RMIT University provides funding as a strategic partner of The Conversation AU.
View all partners
Scientific discovery is one of the most sophisticated human activities. First, scientists must understand the existing knowledge and identify a significant gap. Next, they must formulate a research question and design and conduct an experiment in pursuit of an answer. Then, they must analyse and interpret the results of the experiment, which may raise yet another research question.
Can a process this complex be automated? Last week, Sakana AI Labs announced the creation of an “AI scientist” – an artificial intelligence system they claim can make scientific discoveries in the area of machine learning in a fully automated way.
Using generative large language models (LLMs) like those behind ChatGPT and other AI chatbots, the system can brainstorm, select a promising idea, code new algorithms, plot results, and write a paper summarising the experiment and its findings, complete with references. Sakana claims the AI tool can undertake the complete lifecycle of a scientific experiment at a cost of just US$15 per paper – less than the cost of a scientist’s lunch.
These are some big claims. Do they stack up? And even if they do, would an army of AI scientists churning out research papers with inhuman speed really be good news for science?
How a computer can ‘do science’
A lot of science is done in the open, and almost all scientific knowledge has been written down somewhere (or we wouldn’t have a way to “know” it). Millions of scientific papers are freely available online in repositories such as arXiv and PubMed .
LLMs trained with this data capture the language of science and its patterns. It is therefore perhaps not at all surprising that a generative LLM can produce something that looks like a good scientific paper – it has ingested many examples that it can copy.
What is less clear is whether an AI system can produce an interesting scientific paper. Crucially, good science requires novelty.
But is it interesting?
Scientists don’t want to be told about things that are already known. Rather, they want to learn new things, especially new things that are significantly different from what is already known. This requires judgement about the scope and value of a contribution.
The Sakana system tries to address interestingness in two ways. First, it “scores” new paper ideas for similarity to existing research (indexed in the Semantic Scholar repository). Anything too similar is discarded.
Second, Sakana’s system introduces a “peer review” step – using another LLM to judge the quality and novelty of the generated paper. Here again, there are plenty of examples of peer review online on sites such as openreview.net that can guide how to critique a paper. LLMs have ingested these, too.
AI may be a poor judge of AI output
Feedback is mixed on Sakana AI’s output. Some have described it as producing “ endless scientific slop ”.
Even the system’s own review of its outputs judges the papers weak at best. This is likely to improve as the technology evolves, but the question of whether automated scientific papers are valuable remains.
The ability of LLMs to judge the quality of research is also an open question. My own work (soon to be published in Research Synthesis Methods ) shows LLMs are not great at judging the risk of bias in medical research studies, though this too may improve over time.
Sakana’s system automates discoveries in computational research, which is much easier than in other types of science that require physical experiments. Sakana’s experiments are done with code, which is also structured text that LLMs can be trained to generate.
AI tools to support scientists, not replace them
AI researchers have been developing systems to support science for decades. Given the huge volumes of published research, even finding publications relevant to a specific scientific question can be challenging.
Specialised search tools make use of AI to help scientists find and synthesise existing work. These include the above-mentioned Semantic Scholar, but also newer systems such as Elicit , Research Rabbit , scite and Consensus .
Text mining tools such as PubTator dig deeper into papers to identify key points of focus, such as specific genetic mutations and diseases, and their established relationships. This is especially useful for curating and organising scientific information.
Machine learning has also been used to support the synthesis and analysis of medical evidence, in tools such as Robot Reviewer . Summaries that compare and contrast claims in papers from Scholarcy help to perform literature reviews.
All these tools aim to help scientists do their jobs more effectively, not to replace them.
AI research may exacerbate existing problems
While Sakana AI states it doesn’t see the role of human scientists diminishing, the company’s vision of “a fully AI-driven scientific ecosystem” would have major implications for science.
One concern is that, if AI-generated papers flood the scientific literature, future AI systems may be trained on AI output and undergo model collapse . This means they may become increasingly ineffectual at innovating.
However, the implications for science go well beyond impacts on AI science systems themselves.
There are already bad actors in science, including “paper mills” churning out fake papers . This problem will only get worse when a scientific paper can be produced with US$15 and a vague initial prompt.
The need to check for errors in a mountain of automatically generated research could rapidly overwhelm the capacity of actual scientists. The peer review system is arguably already broken , and dumping more research of questionable quality into the system won’t fix it.
Science is fundamentally based on trust. Scientists emphasise the integrity of the scientific process so we can be confident our understanding of the world (and now, the world’s machines) is valid and improving.
A scientific ecosystem where AI systems are key players raises fundamental questions about the meaning and value of this process, and what level of trust we should have in AI scientists. Is this the kind of scientific ecosystem we want?
- Artificial intelligence (AI)
- Computer science
- Research integrity
- Paper mills
Director of STEM
Community member - Training Delivery and Development Committee (Volunteer part-time)
Chief Executive Officer
Finance Business Partner
Head of Evidence to Action
Suggestions or feedback?
MIT News | Massachusetts Institute of Technology
- Machine learning
- Sustainability
- Black holes
- Classes and programs
Departments
- Aeronautics and Astronautics
- Brain and Cognitive Sciences
- Architecture
- Political Science
- Mechanical Engineering
Centers, Labs, & Programs
- Abdul Latif Jameel Poverty Action Lab (J-PAL)
- Picower Institute for Learning and Memory
- Lincoln Laboratory
- School of Architecture + Planning
- School of Engineering
- School of Humanities, Arts, and Social Sciences
- Sloan School of Management
- School of Science
- MIT Schwarzman College of Computing
Study reveals the benefits and downside of fasting
Press contact :, media download.
*Terms of Use:
Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."
Previous image Next image
Low-calorie diets and intermittent fasting have been shown to have numerous health benefits: They can delay the onset of some age-related diseases and lengthen lifespan, not only in humans but many other organisms.
Many complex mechanisms underlie this phenomenon. Previous work from MIT has shown that one way fasting exerts its beneficial effects is by boosting the regenerative abilities of intestinal stem cells, which helps the intestine recover from injuries or inflammation.
In a study of mice, MIT researchers have now identified the pathway that enables this enhanced regeneration, which is activated once the mice begin “refeeding” after the fast. They also found a downside to this regeneration: When cancerous mutations occurred during the regenerative period, the mice were more likely to develop early-stage intestinal tumors.
“Having more stem cell activity is good for regeneration, but too much of a good thing over time can have less favorable consequences,” says Omer Yilmaz, an MIT associate professor of biology, a member of MIT’s Koch Institute for Integrative Cancer Research, and the senior author of the new study.
Yilmaz adds that further studies are needed before forming any conclusion as to whether fasting has a similar effect in humans.
“We still have a lot to learn, but it is interesting that being in either the state of fasting or refeeding when exposure to mutagen occurs can have a profound impact on the likelihood of developing a cancer in these well-defined mouse models,” he says.
MIT postdocs Shinya Imada and Saleh Khawaled are the lead authors of the paper, which appears today in Nature .
Driving regeneration
For several years, Yilmaz’s lab has been investigating how fasting and low-calorie diets affect intestinal health. In a 2018 study , his team reported that during a fast, intestinal stem cells begin to use lipids as an energy source, instead of carbohydrates. They also showed that fasting led to a significant boost in stem cells’ regenerative ability.
However, unanswered questions remained: How does fasting trigger this boost in regenerative ability, and when does the regeneration begin?
“Since that paper, we’ve really been focused on understanding what is it about fasting that drives regeneration,” Yilmaz says. “Is it fasting itself that’s driving regeneration, or eating after the fast?”
In their new study, the researchers found that stem cell regeneration is suppressed during fasting but then surges during the refeeding period. The researchers followed three groups of mice — one that fasted for 24 hours, another one that fasted for 24 hours and then was allowed to eat whatever they wanted during a 24-hour refeeding period, and a control group that ate whatever they wanted throughout the experiment.
The researchers analyzed intestinal stem cells’ ability to proliferate at different time points and found that the stem cells showed the highest levels of proliferation at the end of the 24-hour refeeding period. These cells were also more proliferative than intestinal stem cells from mice that had not fasted at all.
“We think that fasting and refeeding represent two distinct states,” Imada says. “In the fasted state, the ability of cells to use lipids and fatty acids as an energy source enables them to survive when nutrients are low. And then it’s the postfast refeeding state that really drives the regeneration. When nutrients become available, these stem cells and progenitor cells activate programs that enable them to build cellular mass and repopulate the intestinal lining.”
Further studies revealed that these cells activate a cellular signaling pathway known as mTOR, which is involved in cell growth and metabolism. One of mTOR’s roles is to regulate the translation of messenger RNA into protein, so when it’s activated, cells produce more protein. This protein synthesis is essential for stem cells to proliferate.
The researchers showed that mTOR activation in these stem cells also led to production of large quantities of polyamines — small molecules that help cells to grow and divide.
“In the refed state, you’ve got more proliferation, and you need to build cellular mass. That requires more protein, to build new cells, and those stem cells go on to build more differentiated cells or specialized intestinal cell types that line the intestine,” Khawaled says.
Too much of a good thing
The researchers also found that when stem cells are in this highly regenerative state, they are more prone to become cancerous. Intestinal stem cells are among the most actively dividing cells in the body, as they help the lining of the intestine completely turn over every five to 10 days. Because they divide so frequently, these stem cells are the most common source of precancerous cells in the intestine.
In this study, the researchers discovered that if they turned on a cancer-causing gene in the mice during the refeeding stage, they were much more likely to develop precancerous polyps than if the gene was turned on during the fasting state. Cancer-linked mutations that occurred during the refeeding state were also much more likely to produce polyps than mutations that occurred in mice that did not undergo the cycle of fasting and refeeding.
“I want to emphasize that this was all done in mice, using very well-defined cancer mutations. In humans it’s going to be a much more complex state,” Yilmaz says. “But it does lead us to the following notion: Fasting is very healthy, but if you’re unlucky and you’re refeeding after a fasting, and you get exposed to a mutagen, like a charred steak or something, you might actually be increasing your chances of developing a lesion that can go on to give rise to cancer.”
Yilmaz also noted that the regenerative benefits of fasting could be significant for people who undergo radiation treatment, which can damage the intestinal lining, or other types of intestinal injury. His lab is now studying whether polyamine supplements could help to stimulate this kind of regeneration, without the need to fast.
“This fascinating study provides insights into the complex interplay between food consumption, stem cell biology, and cancer risk,” says Ophir Klein, a professor of medicine at the University of California at San Francisco and Cedars-Sinai Medical Center, who was not involved in the study. “Their work lays a foundation for testing polyamines as compounds that may augment intestinal repair after injuries, and it suggests that careful consideration is needed when planning diet-based strategies for regeneration to avoid increasing cancer risk.”
The research was funded, in part, by Pew-Stewart Scholars Program for Cancer Research award, the MIT Stem Cell Initiative, the Koch Institute Frontier Research Program via the Kathy and Curt Marble Cancer Research Fund, and the Bridge Project, a partnership between the Koch Institute for Integrative Cancer Research at MIT and the Dana-Farber/Harvard Cancer Center.
Share this news article on:
Press mentions, medical news today.
A new study led by researchers at MIT suggests that fasting and then refeeding stimulates cell regeneration in the intestines, reports Katharine Lang for Medical News Today . However, notes Lang, researchers also found that fasting “carries the risk of stimulating the formation of intestinal tumors.”
MIT researchers have discovered how fasting impacts the regenerative abilities of intestinal stem cells, reports Ed Cara for Gizmodo . “The major finding of our current study is that refeeding after fasting is a distinct state from fasting itself,” explain Prof. Ömer Yilmaz and postdocs Shinya Imada and Saleh Khawaled. “Post-fasting refeeding augments the ability of intestinal stem cells to, for example, repair the intestine after injury.”
Prof. Ömer Yilmaz and his colleagues have discovered the potential health benefits and consequences of fasting, reports Max Kozlov for Nature . “There is so much emphasis on fasting and how long to be fasting that we’ve kind of overlooked this whole other side of the equation: what is going on in the refed state,” says Yilmaz.
Previous item Next item
Related Links
- Omer Yilmaz
- Koch Institute
- Department of Biology
Related Topics
Related articles.
How early-stage cancer cells hide from the immune system
Study links certain metabolites to stem cell function in the intestine
Fasting boosts stem cells’ regenerative capacity
How diet influences colon cancer
More mit news.
Students learn theater design through the power of play
Read full story →
A framework for solving parabolic partial differential equations
Designing better delivery for medical therapies
Making a measurable economic impact
Faces of MIT: Jessica Tam
First AI + Education Summit is an international push for “AI fluency”
- More news on MIT News homepage →
Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA
- Map (opens in new window)
- Events (opens in new window)
- People (opens in new window)
- Careers (opens in new window)
- Accessibility
- Social Media Hub
- MIT on Facebook
- MIT on YouTube
- MIT on Instagram
Loading metrics
Open Access
Ten simple rules for reading a scientific paper
* E-mail: [email protected]
Affiliation Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Maureen A. Carey,
- Kevin L. Steiner,
- William A. Petri Jr
Published: July 30, 2020
- https://doi.org/10.1371/journal.pcbi.1008032
- Reader Comments
Citation: Carey MA, Steiner KL, Petri WA Jr (2020) Ten simple rules for reading a scientific paper. PLoS Comput Biol 16(7): e1008032. https://doi.org/10.1371/journal.pcbi.1008032
Editor: Scott Markel, Dassault Systemes BIOVIA, UNITED STATES
Copyright: © 2020 Carey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: MAC was supported by the PhRMA Foundation's Postdoctoral Fellowship in Translational Medicine and Therapeutics and the University of Virginia's Engineering-in-Medicine seed grant, and KLS was supported by the NIH T32 Global Biothreats Training Program at the University of Virginia (AI055432). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing interests: The authors have declared that no competing interests exist.
Introduction
“There is no problem that a library card can't solve” according to author Eleanor Brown [ 1 ]. This advice is sound, probably for both life and science, but even the best tool (like the library) is most effective when accompanied by instructions and a basic understanding of how and when to use it.
For many budding scientists, the first day in a new lab setting often involves a stack of papers, an email full of links to pertinent articles, or some promise of a richer understanding so long as one reads enough of the scientific literature. However, the purpose and approach to reading a scientific article is unlike that of reading a news story, novel, or even a textbook and can initially seem unapproachable. Having good habits for reading scientific literature is key to setting oneself up for success, identifying new research questions, and filling in the gaps in one’s current understanding; developing these good habits is the first crucial step.
Advice typically centers around two main tips: read actively and read often. However, active reading, or reading with an intent to understand, is both a learned skill and a level of effort. Although there is no one best way to do this, we present 10 simple rules, relevant to novices and seasoned scientists alike, to teach our strategy for active reading based on our experience as readers and as mentors of undergraduate and graduate researchers, medical students, fellows, and early career faculty. Rules 1–5 are big picture recommendations. Rules 6–8 relate to philosophy of reading. Rules 9–10 guide the “now what?” questions one should ask after reading and how to integrate what was learned into one’s own science.
Rule 1: Pick your reading goal
What you want to get out of an article should influence your approach to reading it. Table 1 includes a handful of example intentions and how you might prioritize different parts of the same article differently based on your goals as a reader.
- PPT PowerPoint slide
- PNG larger image
- TIFF original image
https://doi.org/10.1371/journal.pcbi.1008032.t001
Rule 2: Understand the author’s goal
In written communication, the reader and the writer are equally important. Both influence the final outcome: in this case, your scientific understanding! After identifying your goal, think about the author’s goal for sharing this project. This will help you interpret the data and understand the author’s interpretation of the data. However, this requires some understanding of who the author(s) are (e.g., what are their scientific interests?), the scientific field in which they work (e.g., what techniques are available in this field?), and how this paper fits into the author’s research (e.g., is this work building on an author’s longstanding project or controversial idea?). This information may be hard to glean without experience and a history of reading. But don’t let this be a discouragement to starting the process; it is by the act of reading that this experience is gained!
A good step toward understanding the goal of the author(s) is to ask yourself: What kind of article is this? Journals publish different types of articles, including methods, review, commentary, resources, and research articles as well as other types that are specific to a particular journal or groups of journals. These article types have different formatting requirements and expectations for content. Knowing the article type will help guide your evaluation of the information presented. Is the article a methods paper, presenting a new technique? Is the article a review article, intended to summarize a field or problem? Is it a commentary, intended to take a stand on a controversy or give a big picture perspective on a problem? Is it a resource article, presenting a new tool or data set for others to use? Is it a research article, written to present new data and the authors’ interpretation of those data? The type of paper, and its intended purpose, will get you on your way to understanding the author’s goal.
Rule 3: Ask six questions
When reading, ask yourself: (1) What do the author(s) want to know (motivation)? (2) What did they do (approach/methods)? (3) Why was it done that way (context within the field)? (4) What do the results show (figures and data tables)? (5) How did the author(s) interpret the results (interpretation/discussion)? (6) What should be done next? (Regarding this last question, the author(s) may provide some suggestions in the discussion, but the key is to ask yourself what you think should come next.)
Each of these questions can and should be asked about the complete work as well as each table, figure, or experiment within the paper. Early on, it can take a long time to read one article front to back, and this can be intimidating. Break down your understanding of each section of the work with these questions to make the effort more manageable.
Rule 4: Unpack each figure and table
Scientists write original research papers primarily to present new data that may change or reinforce the collective knowledge of a field. Therefore, the most important parts of this type of scientific paper are the data. Some people like to scrutinize the figures and tables (including legends) before reading any of the “main text”: because all of the important information should be obtained through the data. Others prefer to read through the results section while sequentially examining the figures and tables as they are addressed in the text. There is no correct or incorrect approach: Try both to see what works best for you. The key is making sure that one understands the presented data and how it was obtained.
For each figure, work to understand each x- and y-axes, color scheme, statistical approach (if one was used), and why the particular plotting approach was used. For each table, identify what experimental groups and variables are presented. Identify what is shown and how the data were collected. This is typically summarized in the legend or caption but often requires digging deeper into the methods: Do not be afraid to refer back to the methods section frequently to ensure a full understanding of how the presented data were obtained. Again, ask the questions in Rule 3 for each figure or panel and conclude with articulating the “take home” message.
Rule 5: Understand the formatting intentions
Just like the overall intent of the article (discussed in Rule 2), the intent of each section within a research article can guide your interpretation. Some sections are intended to be written as objective descriptions of the data (i.e., the Results section), whereas other sections are intended to present the author’s interpretation of the data. Remember though that even “objective” sections are written by and, therefore, influenced by the authors interpretations. Check out Table 2 to understand the intent of each section of a research article. When reading a specific paper, you can also refer to the journal’s website to understand the formatting intentions. The “For Authors” section of a website will have some nitty gritty information that is less relevant for the reader (like word counts) but will also summarize what the journal editors expect in each section. This will help to familiarize you with the goal of each article section.
https://doi.org/10.1371/journal.pcbi.1008032.t002
Rule 6: Be critical
Published papers are not truths etched in stone. Published papers in high impact journals are not truths etched in stone. Published papers by bigwigs in the field are not truths etched in stone. Published papers that seem to agree with your own hypothesis or data are not etched in stone. Published papers that seem to refute your hypothesis or data are not etched in stone.
Science is a never-ending work in progress, and it is essential that the reader pushes back against the author’s interpretation to test the strength of their conclusions. Everyone has their own perspective and may interpret the same data in different ways. Mistakes are sometimes published, but more often these apparent errors are due to other factors such as limitations of a methodology and other limits to generalizability (selection bias, unaddressed, or unappreciated confounders). When reading a paper, it is important to consider if these factors are pertinent.
Critical thinking is a tough skill to learn but ultimately boils down to evaluating data while minimizing biases. Ask yourself: Are there other, equally likely, explanations for what is observed? In addition to paying close attention to potential biases of the study or author(s), a reader should also be alert to one’s own preceding perspective (and biases). Take time to ask oneself: Do I find this paper compelling because it affirms something I already think (or wish) is true? Or am I discounting their findings because it differs from what I expect or from my own work?
The phenomenon of a self-fulfilling prophecy, or expectancy, is well studied in the psychology literature [ 2 ] and is why many studies are conducted in a “blinded” manner [ 3 ]. It refers to the idea that a person may assume something to be true and their resultant behavior aligns to make it true. In other words, as humans and scientists, we often find exactly what we are looking for. A scientist may only test their hypotheses and fail to evaluate alternative hypotheses; perhaps, a scientist may not be aware of alternative, less biased ways to test her or his hypothesis that are typically used in different fields. Individuals with different life, academic, and work experiences may think of several alternative hypotheses, all equally supported by the data.
Rule 7: Be kind
The author(s) are human too. So, whenever possible, give them the benefit of the doubt. An author may write a phrase differently than you would, forcing you to reread the sentence to understand it. Someone in your field may neglect to cite your paper because of a reference count limit. A figure panel may be misreferenced as Supplemental Fig 3E when it is obviously Supplemental Fig 4E. While these things may be frustrating, none are an indication that the quality of work is poor. Try to avoid letting these minor things influence your evaluation and interpretation of the work.
Similarly, if you intend to share your critique with others, be extra kind. An author (especially the lead author) may invest years of their time into a single paper. Hearing a kindly phrased critique can be difficult but constructive. Hearing a rude, brusque, or mean-spirited critique can be heartbreaking, especially for young scientists or those seeking to establish their place within a field and who may worry that they do not belong.
Rule 8: Be ready to go the extra mile
To truly understand a scientific work, you often will need to look up a term, dig into the supplemental materials, or read one or more of the cited references. This process takes time. Some advisors recommend reading an article three times: The first time, simply read without the pressure of understanding or critiquing the work. For the second time, aim to understand the paper. For the third read through, take notes.
Some people engage with a paper by printing it out and writing all over it. The reader might write question marks in the margins to mark parts (s)he wants to return to, circle unfamiliar terms (and then actually look them up!), highlight or underline important statements, and draw arrows linking figures and the corresponding interpretation in the discussion. Not everyone needs a paper copy to engage in the reading process but, whatever your version of “printing it out” is, do it.
Rule 9: Talk about it
Talking about an article in a journal club or more informal environment forces active reading and participation with the material. Studies show that teaching is one of the best ways to learn and that teachers learn the material even better as the teaching task becomes more complex [ 4 – 5 ]; anecdotally, such observations inspired the phrase “to teach is to learn twice.”
Beyond formal settings such as journal clubs, lab meetings, and academic classes, discuss papers with your peers, mentors, and colleagues in person or electronically. Twitter and other social media platforms have become excellent resources for discussing papers with other scientists, the public or your nonscientist friends, or even the paper’s author(s). Describing a paper can be done at multiple levels and your description can contain all of the scientific details, only the big picture summary, or perhaps the implications for the average person in your community. All of these descriptions will solidify your understanding, while highlighting gaps in your knowledge and informing those around you.
Rule 10: Build on it
One approach we like to use for communicating how we build on the scientific literature is by starting research presentations with an image depicting a wall of Lego bricks. Each brick is labeled with the reference for a paper, and the wall highlights the body of literature on which the work is built. We describe the work and conclusions of each paper represented by a labeled brick and discuss each brick and the wall as a whole. The top brick on the wall is left blank: We aspire to build on this work and label this brick with our own work. We then delve into our own research, discoveries, and the conclusions it inspires. We finish our presentations with the image of the Legos and summarize our presentation on that empty brick.
Whether you are reading an article to understand a new topic area or to move a research project forward, effective learning requires that you integrate knowledge from multiple sources (“click” those Lego bricks together) and build upwards. Leveraging published work will enable you to build a stronger and taller structure. The first row of bricks is more stable once a second row is assembled on top of it and so on and so forth. Moreover, the Lego construction will become taller and larger if you build upon the work of others, rather than using only your own bricks.
Build on the article you read by thinking about how it connects to ideas described in other papers and within own work, implementing a technique in your own research, or attempting to challenge or support the hypothesis of the author(s) with a more extensive literature review. Integrate the techniques and scientific conclusions learned from an article into your own research or perspective in the classroom or research lab. You may find that this process strengthens your understanding, leads you toward new and unexpected interests or research questions, or returns you back to the original article with new questions and critiques of the work. All of these experiences are part of the “active reading”: process and are signs of a successful reading experience.
In summary, practice these rules to learn how to read a scientific article, keeping in mind that this process will get easier (and faster) with experience. We are firm believers that an hour in the library will save a week at the bench; this diligent practice will ultimately make you both a more knowledgeable and productive scientist. As you develop the skills to read an article, try to also foster good reading and learning habits for yourself (recommendations here: [ 6 ] and [ 7 ], respectively) and in others. Good luck and happy reading!
Acknowledgments
Thank you to the mentors, teachers, and students who have shaped our thoughts on reading, learning, and what science is all about.
- 1. Brown E. The Weird Sisters. G. P. Putnam’s Sons; 2011.
- View Article
- Google Scholar
- PubMed/NCBI
- Article Information
Data Sharing Statement
- As Ozempic’s Popularity Soars, Here’s What to Know About Semaglutide and Weight Loss JAMA Medical News & Perspectives May 16, 2023 This Medical News article discusses chronic weight management with semaglutide, sold under the brand names Ozempic and Wegovy. Melissa Suran, PhD, MSJ
- Patents and Regulatory Exclusivities on GLP-1 Receptor Agonists JAMA Special Communication August 15, 2023 This Special Communication used data from the US Food and Drug Administration to analyze how manufacturers of brand-name glucagon-like peptide 1 (GLP-1) receptor agonists have used patent and regulatory systems to extend periods of market exclusivity. Rasha Alhiary, PharmD; Aaron S. Kesselheim, MD, JD, MPH; Sarah Gabriele, LLM, MBE; Reed F. Beall, PhD; S. Sean Tu, JD, PhD; William B. Feldman, MD, DPhil, MPH
- What to Know About Wegovy’s Rare but Serious Adverse Effects JAMA Medical News & Perspectives December 12, 2023 This Medical News article discusses Wegovy, Ozempic, and other GLP-1 receptor agonists used for weight management and type 2 diabetes. Kate Ruder, MSJ
- GLP-1 Receptor Agonists and Gastrointestinal Adverse Events—Reply JAMA Comment & Response March 12, 2024 Ramin Rezaeianzadeh, BSc; Mohit Sodhi, MSc; Mahyar Etminan, PharmD, MSc
- GLP-1 Receptor Agonists and Gastrointestinal Adverse Events JAMA Comment & Response March 12, 2024 Karine Suissa, PhD; Sara J. Cromer, MD; Elisabetta Patorno, MD, DrPH
- GLP-1 Receptor Agonist Use and Risk of Postoperative Complications JAMA Research Letter May 21, 2024 This cohort study evaluates the risk of postoperative respiratory complications among patients with diabetes undergoing surgery who had vs those who had not a prescription fill for glucagon-like peptide 1 receptor agonists. Anjali A. Dixit, MD, MPH; Brian T. Bateman, MD, MS; Mary T. Hawn, MD, MPH; Michelle C. Odden, PhD; Eric C. Sun, MD, PhD
- Glucagon-Like Peptide-1 Receptor Agonist Use and Risk of Gallbladder and Biliary Diseases JAMA Internal Medicine Original Investigation May 1, 2022 This systematic review and meta-analysis of 76 randomized clinical trials examines the effects of glucagon-like peptide-1 receptor agonist use on the risk of gallbladder and biliary diseases. Liyun He, MM; Jialu Wang, MM; Fan Ping, MD; Na Yang, MM; Jingyue Huang, MM; Yuxiu Li, MD; Lingling Xu, MD; Wei Li, MD; Huabing Zhang, MD
- Cholecystitis Associated With the Use of Glucagon-Like Peptide-1 Receptor Agonists JAMA Internal Medicine Research Letter October 1, 2022 This case series identifies cases reported in the US Food and Drug Administration Adverse Event Reporting System of acute cholecystitis associated with use of glucagon-like peptide-1 receptor agonists that did not have gallbladder disease warnings in their labeling. Daniel Woronow, MD; Christine Chamberlain, PharmD; Ali Niak, MD; Mark Avigan, MDCM; Monika Houstoun, PharmD, MPH; Cindy Kortepeter, PharmD
See More About
Select your interests.
Customize your JAMA Network experience by selecting one or more topics from the list below.
- Academic Medicine
- Acid Base, Electrolytes, Fluids
- Allergy and Clinical Immunology
- American Indian or Alaska Natives
- Anesthesiology
- Anticoagulation
- Art and Images in Psychiatry
- Artificial Intelligence
- Assisted Reproduction
- Bleeding and Transfusion
- Caring for the Critically Ill Patient
- Challenges in Clinical Electrocardiography
- Climate and Health
- Climate Change
- Clinical Challenge
- Clinical Decision Support
- Clinical Implications of Basic Neuroscience
- Clinical Pharmacy and Pharmacology
- Complementary and Alternative Medicine
- Consensus Statements
- Coronavirus (COVID-19)
- Critical Care Medicine
- Cultural Competency
- Dental Medicine
- Dermatology
- Diabetes and Endocrinology
- Diagnostic Test Interpretation
- Drug Development
- Electronic Health Records
- Emergency Medicine
- End of Life, Hospice, Palliative Care
- Environmental Health
- Equity, Diversity, and Inclusion
- Facial Plastic Surgery
- Gastroenterology and Hepatology
- Genetics and Genomics
- Genomics and Precision Health
- Global Health
- Guide to Statistics and Methods
- Hair Disorders
- Health Care Delivery Models
- Health Care Economics, Insurance, Payment
- Health Care Quality
- Health Care Reform
- Health Care Safety
- Health Care Workforce
- Health Disparities
- Health Inequities
- Health Policy
- Health Systems Science
- History of Medicine
- Hypertension
- Images in Neurology
- Implementation Science
- Infectious Diseases
- Innovations in Health Care Delivery
- JAMA Infographic
- Law and Medicine
- Leading Change
- Less is More
- LGBTQIA Medicine
- Lifestyle Behaviors
- Medical Coding
- Medical Devices and Equipment
- Medical Education
- Medical Education and Training
- Medical Journals and Publishing
- Mobile Health and Telemedicine
- Narrative Medicine
- Neuroscience and Psychiatry
- Notable Notes
- Nutrition, Obesity, Exercise
- Obstetrics and Gynecology
- Occupational Health
- Ophthalmology
- Orthopedics
- Otolaryngology
- Pain Medicine
- Palliative Care
- Pathology and Laboratory Medicine
- Patient Care
- Patient Information
- Performance Improvement
- Performance Measures
- Perioperative Care and Consultation
- Pharmacoeconomics
- Pharmacoepidemiology
- Pharmacogenetics
- Pharmacy and Clinical Pharmacology
- Physical Medicine and Rehabilitation
- Physical Therapy
- Physician Leadership
- Population Health
- Primary Care
- Professional Well-being
- Professionalism
- Psychiatry and Behavioral Health
- Public Health
- Pulmonary Medicine
- Regulatory Agencies
- Reproductive Health
- Research, Methods, Statistics
- Resuscitation
- Rheumatology
- Risk Management
- Scientific Discovery and the Future of Medicine
- Shared Decision Making and Communication
- Sleep Medicine
- Sports Medicine
- Stem Cell Transplantation
- Substance Use and Addiction Medicine
- Surgical Innovation
- Surgical Pearls
- Teachable Moment
- Technology and Finance
- The Art of JAMA
- The Arts and Medicine
- The Rational Clinical Examination
- Tobacco and e-Cigarettes
- Translational Medicine
- Trauma and Injury
- Treatment Adherence
- Ultrasonography
- Users' Guide to the Medical Literature
- Vaccination
- Venous Thromboembolism
- Veterans Health
- Women's Health
- Workflow and Process
- Wound Care, Infection, Healing
Others Also Liked
- Download PDF
- X Facebook More LinkedIn
Sodhi M , Rezaeianzadeh R , Kezouh A , Etminan M. Risk of Gastrointestinal Adverse Events Associated With Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. JAMA. 2023;330(18):1795–1797. doi:10.1001/jama.2023.19574
Manage citations:
© 2024
- Permissions
Risk of Gastrointestinal Adverse Events Associated With Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss
- 1 Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- 2 StatExpert Ltd, Laval, Quebec, Canada
- 3 Department of Ophthalmology and Visual Sciences and Medicine, University of British Columbia, Vancouver, Canada
- Medical News & Perspectives As Ozempic’s Popularity Soars, Here’s What to Know About Semaglutide and Weight Loss Melissa Suran, PhD, MSJ JAMA
- Special Communication Patents and Regulatory Exclusivities on GLP-1 Receptor Agonists Rasha Alhiary, PharmD; Aaron S. Kesselheim, MD, JD, MPH; Sarah Gabriele, LLM, MBE; Reed F. Beall, PhD; S. Sean Tu, JD, PhD; William B. Feldman, MD, DPhil, MPH JAMA
- Medical News & Perspectives What to Know About Wegovy’s Rare but Serious Adverse Effects Kate Ruder, MSJ JAMA
- Comment & Response GLP-1 Receptor Agonists and Gastrointestinal Adverse Events—Reply Ramin Rezaeianzadeh, BSc; Mohit Sodhi, MSc; Mahyar Etminan, PharmD, MSc JAMA
- Comment & Response GLP-1 Receptor Agonists and Gastrointestinal Adverse Events Karine Suissa, PhD; Sara J. Cromer, MD; Elisabetta Patorno, MD, DrPH JAMA
- Research Letter GLP-1 Receptor Agonist Use and Risk of Postoperative Complications Anjali A. Dixit, MD, MPH; Brian T. Bateman, MD, MS; Mary T. Hawn, MD, MPH; Michelle C. Odden, PhD; Eric C. Sun, MD, PhD JAMA
- Original Investigation Glucagon-Like Peptide-1 Receptor Agonist Use and Risk of Gallbladder and Biliary Diseases Liyun He, MM; Jialu Wang, MM; Fan Ping, MD; Na Yang, MM; Jingyue Huang, MM; Yuxiu Li, MD; Lingling Xu, MD; Wei Li, MD; Huabing Zhang, MD JAMA Internal Medicine
- Research Letter Cholecystitis Associated With the Use of Glucagon-Like Peptide-1 Receptor Agonists Daniel Woronow, MD; Christine Chamberlain, PharmD; Ali Niak, MD; Mark Avigan, MDCM; Monika Houstoun, PharmD, MPH; Cindy Kortepeter, PharmD JAMA Internal Medicine
Glucagon-like peptide 1 (GLP-1) agonists are medications approved for treatment of diabetes that recently have also been used off label for weight loss. 1 Studies have found increased risks of gastrointestinal adverse events (biliary disease, 2 pancreatitis, 3 bowel obstruction, 4 and gastroparesis 5 ) in patients with diabetes. 2 - 5 Because such patients have higher baseline risk for gastrointestinal adverse events, risk in patients taking these drugs for other indications may differ. Randomized trials examining efficacy of GLP-1 agonists for weight loss were not designed to capture these events 2 due to small sample sizes and short follow-up. We examined gastrointestinal adverse events associated with GLP-1 agonists used for weight loss in a clinical setting.
We used a random sample of 16 million patients (2006-2020) from the PharMetrics Plus for Academics database (IQVIA), a large health claims database that captures 93% of all outpatient prescriptions and physician diagnoses in the US through the International Classification of Diseases, Ninth Revision (ICD-9) or ICD-10. In our cohort study, we included new users of semaglutide or liraglutide, 2 main GLP-1 agonists, and the active comparator bupropion-naltrexone, a weight loss agent unrelated to GLP-1 agonists. Because semaglutide was marketed for weight loss after the study period (2021), we ensured all GLP-1 agonist and bupropion-naltrexone users had an obesity code in the 90 days prior or up to 30 days after cohort entry, excluding those with a diabetes or antidiabetic drug code.
Patients were observed from first prescription of a study drug to first mutually exclusive incidence (defined as first ICD-9 or ICD-10 code) of biliary disease (including cholecystitis, cholelithiasis, and choledocholithiasis), pancreatitis (including gallstone pancreatitis), bowel obstruction, or gastroparesis (defined as use of a code or a promotility agent). They were followed up to the end of the study period (June 2020) or censored during a switch. Hazard ratios (HRs) from a Cox model were adjusted for age, sex, alcohol use, smoking, hyperlipidemia, abdominal surgery in the previous 30 days, and geographic location, which were identified as common cause variables or risk factors. 6 Two sensitivity analyses were undertaken, one excluding hyperlipidemia (because more semaglutide users had hyperlipidemia) and another including patients without diabetes regardless of having an obesity code. Due to absence of data on body mass index (BMI), the E-value was used to examine how strong unmeasured confounding would need to be to negate observed results, with E-value HRs of at least 2 indicating BMI is unlikely to change study results. Statistical significance was defined as 2-sided 95% CI that did not cross 1. Analyses were performed using SAS version 9.4. Ethics approval was obtained by the University of British Columbia’s clinical research ethics board with a waiver of informed consent.
Our cohort included 4144 liraglutide, 613 semaglutide, and 654 bupropion-naltrexone users. Incidence rates for the 4 outcomes were elevated among GLP-1 agonists compared with bupropion-naltrexone users ( Table 1 ). For example, incidence of biliary disease (per 1000 person-years) was 11.7 for semaglutide, 18.6 for liraglutide, and 12.6 for bupropion-naltrexone and 4.6, 7.9, and 1.0, respectively, for pancreatitis.
Use of GLP-1 agonists compared with bupropion-naltrexone was associated with increased risk of pancreatitis (adjusted HR, 9.09 [95% CI, 1.25-66.00]), bowel obstruction (HR, 4.22 [95% CI, 1.02-17.40]), and gastroparesis (HR, 3.67 [95% CI, 1.15-11.90) but not biliary disease (HR, 1.50 [95% CI, 0.89-2.53]). Exclusion of hyperlipidemia from the analysis did not change the results ( Table 2 ). Inclusion of GLP-1 agonists regardless of history of obesity reduced HRs and narrowed CIs but did not change the significance of the results ( Table 2 ). E-value HRs did not suggest potential confounding by BMI.
This study found that use of GLP-1 agonists for weight loss compared with use of bupropion-naltrexone was associated with increased risk of pancreatitis, gastroparesis, and bowel obstruction but not biliary disease.
Given the wide use of these drugs, these adverse events, although rare, must be considered by patients who are contemplating using the drugs for weight loss because the risk-benefit calculus for this group might differ from that of those who use them for diabetes. Limitations include that although all GLP-1 agonist users had a record for obesity without diabetes, whether GLP-1 agonists were all used for weight loss is uncertain.
Accepted for Publication: September 11, 2023.
Published Online: October 5, 2023. doi:10.1001/jama.2023.19574
Correction: This article was corrected on December 21, 2023, to update the full name of the database used.
Corresponding Author: Mahyar Etminan, PharmD, MSc, Faculty of Medicine, Departments of Ophthalmology and Visual Sciences and Medicine, The Eye Care Center, University of British Columbia, 2550 Willow St, Room 323, Vancouver, BC V5Z 3N9, Canada ( [email protected] ).
Author Contributions: Dr Etminan had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Sodhi, Rezaeianzadeh, Etminan.
Acquisition, analysis, or interpretation of data: All authors.
Drafting of the manuscript: Sodhi, Rezaeianzadeh, Etminan.
Critical review of the manuscript for important intellectual content: All authors.
Statistical analysis: Kezouh.
Obtained funding: Etminan.
Administrative, technical, or material support: Sodhi.
Supervision: Etminan.
Conflict of Interest Disclosures: None reported.
Funding/Support: This study was funded by internal research funds from the Department of Ophthalmology and Visual Sciences, University of British Columbia.
Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
Data Sharing Statement: See Supplement .
- Register for email alerts with links to free full-text articles
- Access PDFs of free articles
- Manage your interests
- Save searches and receive search alerts
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
- View all journals
- Explore content
- About the journal
- Publish with us
- Sign up for alerts
Research articles
Microwaves induced epitaxial growth of urchin like MIL-53(Al) crystals on ceramic supports
- Limor Ben Neon
- Martin Drobek
‘The mirror of the soul?’ Inferring sadness in the eyes
- Jonas Moosavi
- Annika Resch
- Marina A. Pavlova
The association between mobile phone usage duration, neck muscle endurance, and neck pain among university students
- Seval Cevik
- Ilknur Erak
Association between change in heart rate over years and life span in the Paris Prospective 1, the Whitehall 1, and Framingham studies
- Eugenie Valentin
- Xavier Jouven
Developing an image-based grading scale for peripheral drusen to investigate associations of peripheral drusen type with age-related macular degeneration
- Paripoorna Sharma
- Fritz Gerald P. Kalaw
- Shyamanga Borooah
Prevalence, clinical features, and survival outcome trends of 627 patients with primary cutaneous lymphoma over 29 years: a retrospective review from single tertiary center in Korea
- Ik Jun Moon
- Chong Hyun Won
- Woo Jin Lee
Physics-Informed Masked Autoencoder for active sparse imaging
- Luke McEvoy
- Daniel Tafone
- Yuping Huang
The synergistic effect of triglyceride-glucose index and HbA1c on blood pressure control in patients with hypertension: a retrospective cohort study
- Jinghan Hai
- Xiaofeng Li
The effect of exogenous gibberellin and its synthesis inhibitor treatments for morphological and physiological characteristics of Tartary buckwheat
- Jingang Tang
- Kaifeng Huang
First insight into the whole genome sequence variations in clarithromycin resistant Helicobacter pylori clinical isolates in Russia
- Daria Starkova
- Nikita Gladyshev
- Alena Svarval
A meta-analysis of performance advantages on athletes in multiple object tracking tasks
- Hui Juan Liu
Understanding period product use among young women in rural and urban India from a geospatial perspective
- Sourav Biswas
- Asraful Alam
- Lakshminarayan Satpati
Knowledge, attitudes, and practice of physicians and pharmacists regarding the prevention and treatment of cardiovascular toxicity associated with cancer treatment
Prediction model of weight control experience in men with obesity in their 30 s and 40 s using decision tree analysis
- Myeunghee Han
Ssc-miR-101-3p inhibits hypoxia-induced apoptosis and inflammatory response in alveolar type-II epithelial cells of Tibetan pigs via targeting FOXO3
- Haonan Yuan
- Yangnan Yang
Various distance between generalized Diophantine fuzzy sets using multiple criteria decision making and their real life applications
- Murugan Palanikumar
- Nasreen Kausar
- Fikadu Tesgera Tolasa
Preparation and performance control of ultra-low near-infrared reflectivity coatings with super-hydrophobic and outstanding mechanical properties
- Weigang Zhang
- Yueting Zhuang
- Qianfeng Zhang
Adaptive condition-aware high-dimensional decoupling remote sensing image object detection algorithm
- Chenshuai Bai
- Xiaofeng Bai
Functional prediction of response to therapy prior to therapeutic intervention is associated with improved survival in patients with high-grade glioma
- Aubrey Ledford
- Analiz Rodriguez
- Teresa M. DesRochers
The epidemiology of lung cancer in Hungary based on the characteristics of patients diagnosed in 2018
- István Kenessey
- Petra Parrag
- Csaba Polgár
Quick links
- Explore articles by subject
- Guide to authors
- Editorial policies
- You are here:
- American Chemical Society
- Discover Chemistry
- News Releases
How a retracted paper affected the course of Alzheimer’s research (video)
FOR IMMEDIATE RELEASE
WASHINGTON, Aug. 26, 2024 — In June 2024, a landmark Alzheimer's research paper was retracted due to fraud allegations. Did we waste billions of dollars and thousands of hours of scientists’ time? Maybe not. There are now two potentially helpful drugs on the market targeting the subject of the paper: amyloid beta. This video breaks down the amyloid-beta hypothesis , the fraud itself and where we go from here.
Youtube ID: blQY0RQ2vC8
Reactions is a video series produced by the American Chemical Society and PBS Digital Studios. Subscribe to Reactions and follow us on X, formerly Twitter @ACSReactions .
The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News . ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org .
Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.
Media Contact
ACS Newsroom newsroom@acs.org
Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy .
1155 Sixteenth Street, NW, Washington, DC 20036, USA | service@acs.org | 1-800-333-9511 (US and Canada) | 614-447-3776 (outside North America)
- Terms of Use
- Accessibility
Copyright © 2024 American Chemical Society
IMAGES
VIDEO
COMMENTS
Google Scholar provides a simple way to broadly search for scholarly literature. Search across a wide variety of disciplines and sources: articles, theses, books, abstracts and court opinions.
Step 2: Explain the results. The core aspect of your research paper is not actually the results; it is the explanation of their meaning. In the second LEAP step, you will do some heavy lifting by guiding the readers through the results using logic backed by previous scientific research.
Module 1 • 3 hours to complete. In this section of the MOOC, you will learn what is necessary before writing a paper: the context in which the scientist is publishing. You will learn how to know your own community, through different exemples, and then we will present you how scientific journal and publication works.
Scientists write original research papers primarily to present new data that may change or reinforce the collective knowledge of a field. Therefore, the most important parts of this type of scientific paper are the data. Some people like to scrutinize the figures and tables (including legends) before reading any of the "main text": because ...
3.3 million articles on ScienceDirect are open access. Articles published open access are peer-reviewed and made freely available for everyone to read, download and reuse in line with the user license displayed on the article. ScienceDirect is the world's leading source for scientific, technical, and medical research.
Find the research you need | With 160+ million publication pages, 1+ million questions, and 25+ million researchers, this is where everyone can access science
List the main results, with means, odds ratios, p -values, etc for each group. List the result of the primary endpoint first, followed by secondary outcomes Ensure that you have given a result for every method you mentioned in the methods section There should be enough detail to back up your conclusion. Conclusion.
A scientific paper is the formal lasting record of a research process. It is meant to document research protocols, methods, results and conclusions derived from an initial working hypothesis. The first medical accounts date back to antiquity.
Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common ...
For the whole paper, the introduction sets the context, the results present the content and the discussion brings home the conclusion. It's crucial to focus your paper on a single key message ...
Then, writing the paper and getting it ready for submission may take me 3 to 6 months. I like separating the writing into three phases. The results and the methods go first, as this is where I write what was done and how, and what the outcomes were. In a second phase, I tackle the introduction and refine the results section with input from my ...
A scientific paper is a report of research, prepared from the investigator's experimental findings, and intended to contribute to knowledge. The publication process is predicated by the content (the data) and the requirements of the publication (which is normally a journal that exists in paper form and/or online) whom you wish to publish your ...
A clear format will ensure that your research paper is understood by your readers. Follow: 1. Context — your introduction. 2. Content — your results. 3. Conclusion — your discussion. Plan ...
Scientific Papers. Scientific papers are for sharing your own original research work with other scientists or for reviewing the research conducted by others. As such, they are critical to the ...
Scientific papers (also known as a "journal articles") are a special type of written work that have particular characteristics:. They are usually published in a periodical called a journal whose purpose is to publish this kind of work. Generally, journals differ greatly from general interest writing on scientific topics such as magazine articles and science news (e.g. those in National ...
Journal articles are peer-reviewed. A growing number of so-called "pre-prints" are beginning to be published in science fields. Source of slide above: Research4Life.org . Link to Slideshow, "How to Read A Scientific Research Paper" from Reseach4Life
Different sections are needed in different types of scientific papers (lab reports, literature reviews, systematic reviews, methods papers, research papers, etc.). Projects that overlap with the social sciences or humanities may have different requirements. Generally, however, you'll need to include: TITLE. ABSTRACT. INTRODUCTION (Background)
Download the training. This page is your source for scientific writing & publishing essentials. Learn how to write a successful scientific research article with our free, practical guides and hands-on resources for authors looking to improve their scientific publishing skillset.
6. A research paper is a paper containing original research. That is, if you do some work to add (or try to add) new knowledge to a field of study, and then present the details of your approach and findings in a paper, that paper can be called a research paper. Not all academic papers contain original research; other kinds of academic papers ...
This makes review articles distinctly different from scientific research papers. While the primary aim of the latter is to develop new arguments by reporting original research, the former is focused on summarising and synthesising previous ideas, studies, and arguments, without adding new experimental contributions.
Make an impact and build your research profile in the open with ScienceOpen. Search and discover relevant research in over 95 million Open Access articles and article records; Share your expertise and get credit by publicly reviewing any article; Publish your poster or preprint and track usage and impact with article- and author-level metrics; Create a topical Collection to advance your ...
The most common citation styles used in academic research, according to Geary, are: American Psychological Association, known as APA. This style is standard in the social sciences such as psychology, education and communication. "In these fields, research happens rapidly, which makes it exceptionally important to use current research ...
There are already bad actors in science, including "paper mills" churning out fake papers. This problem will only get worse when a scientific paper can be produced with US$15 and a vague ...
MIT researchers have discovered how fasting impacts the regenerative abilities of intestinal stem cells, reports Ed Cara for Gizmodo.. "The major finding of our current study is that refeeding after fasting is a distinct state from fasting itself," explain Prof. Ömer Yilmaz and postdocs Shinya Imada and Saleh Khawaled.
Scientists write original research papers primarily to present new data that may change or reinforce the collective knowledge of a field. Therefore, the most important parts of this type of scientific paper are the data. Some people like to scrutinize the figures and tables (including legends) before reading any of the "main text": because ...
We used a random sample of 16 million patients (2006-2020) from the PharMetrics Plus for Academics database (IQVIA), a large health claims database that captures 93% of all outpatient prescriptions and physician diagnoses in the US through the International Classification of Diseases, Ninth Revision (ICD-9) or ICD-10. In our cohort study, we included new users of semaglutide or liraglutide, 2 ...
Read the latest Research articles from Scientific Reports. ... Calls for Papers Editor's Choice Journal highlights Open Access Fees and Funding ...
Here, we examine a great Neolithic engineering feat: the Menga dolmen, Iberia's largest megalithic monument. As listed by UNESCO, the Antequera megalithic site includes two natural formations, La Peña de los Enamorados and El Torcal karstic massif, and four major megalithic monuments: Menga, Viera, El Romeral, and the one recently discovered at Piedras Blancas, at the foot of La Peña de ...
Researcher Vincent Lyne claims that his new research helps locate a "perfect hiding spot" in which Malaysia Flight 370 could have landed Vincent Lyne/Google Earth "That location needs to be ...
The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted ...