• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

181 Mathematics Research Topics From PhD Experts

math research topics

If you are reading this blog post, it means you are looking for some exceptional math research topics. You want them to be original, unique even. If you manage to find topics like this, you can be sure your professor will give you a top grade (if you write a decent paper, that is). The good news is that you have arrived at just the right place – at the right time. We have just finished updating our list of topics, so you will find plenty of original ideas right on this page. All our topics are 100 percent free to use as you see fit. You can reword them and you don’t need to give us any credit.

And remember: if you need assistance from a professional, don’t hesitate to reach out to us. We are not just the best place for math research topics for high school students; we are also the number one choice for students looking for top-notch research paper writing services.

Our Newest Research Topics in Math

We know you probably want the best and most recent research topics in math. You want your paper to stand out from all the rest. After all, this is the best way to get some bonus points from your professor. On top of this, finding some great topics for your next paper makes it easier for you to write the essay. As long as you know at least something about the topic, you’ll find that writing a great paper or buy phd thesis isn’t as difficult as you previously thought.

So, without further ado, here are the 181 brand new topics for your next math research paper:

Cool Math Topics to Research

Are you looking for some cool math topics to research? We have a list of original topics for your right here. Pick the one you like and start writing now:

  • Roll two dice and calculate a probability
  • Discuss ancient Greek mathematics
  • Is math really important in school?
  • Discuss the binomial theorem
  • The math behind encryption
  • Game theory and its real-life applications
  • Analyze the Bernoulli scheme
  • What are holomorphic functions and how do they work?
  • Describe big numbers
  • Solving the Tower of Hanoi problem

Undergraduate Math Research Topics

If you are an undergraduate looking for some research topics for your next math paper, you will surely appreciate our list of interesting undergraduate math research topics:

  • Methods to count discrete objects
  • The origins of Greek symbols in mathematics
  • Methods to solve simultaneous equations
  • Real-world applications of the theorem of Pythagoras
  • Discuss the limits of diffusion
  • Use math to analyze the abortion data in the UK over the last 100 years
  • Discuss the Knot theory
  • Analyze predictive models (take meteorology as an example)
  • In-depth analysis of the Monte Carlo methods for inverse problems
  • Squares vs. rectangles (compare and contrast)

Number Theory Topics to Research

Interested in writing about number theory? It is not an easy subject to discuss, we know. However, we are sure you will appreciate these number theory topics:

  • Discuss the greatest common divisor
  • Explain the extended Euclidean algorithm
  • What are RSA numbers?
  • Discuss Bézout’s lemma
  • In-depth analysis of the square-free polynomial
  • Discuss the Stern-Brocot tree
  • Analyze Fermat’s little theorem
  • What is a discrete logarithm?
  • Gauss’s lemma in number theory
  • Analyze the Pentagonal number theorem

Math Research Topics for High School

High school students shouldn’t be too worried about their math papers because we have some unique, and quite interesting, math research topics for high school right here:

  • Discuss Brun’s constant
  • An in-depth look at the Brahmagupta–Fibonacci identity
  • What is derivative algebra?
  • Describe the Symmetric Boolean function
  • Discuss orders of approximation in limits
  • Solving Regiomontanus’ angle maximization problem
  • What is a Quadratic integral?
  • Define and describe complementary angles
  • Analyze the incircle and excircles of a triangle
  • Analyze the Bolyai–Gerwien theorem in geometry
  • Math in our everyday life

Complex Math Topics

If you want to give some complex math topics a try, we have the best examples below. Remember, these topics should only be attempted by students who are proficient in mathematics:

  • Mathematics and its appliance in Artificial Intelligence
  • Try to solve an unsolved problem in math
  • Discuss Kolmogorov’s zero-one law
  • What is a discrete random variable?
  • Analyze the Hewitt–Savage zero-one law
  • What is a transferable belief model?
  • Discuss 3 major mathematical theorems
  • Describe and analyze the Dempster-Shafer theory
  • An in-depth analysis of a continuous stochastic process
  • Identify and analyze Gauss-Markov processes

Easy Math Research Paper Topics

Perhaps you don’t want to spend too much time working on your next research paper. Who can blame you? Check out these easy math research paper topics:

  • Define the hyperbola
  • Do we need to use a calculator during math class?
  • The binomial theorem and its real-world applications
  • What is a parabola in geometry?
  • How do you calculate the slope of a curve?
  • Define the Jacobian matrix
  • Solving matrix problems effectively
  • Why do we need differential equations?
  • Should math be mandatory in all schools?
  • What is a Hessian matrix?

Logic Topics to Research

We have some interesting logical topics for research papers. These are perfect for students interested in writing about math logic. Pick one right now:

  • Discuss the reductio ad absurdum approach
  • Discuss Boolean algebra
  • What is consistency proof?
  • Analyze Trakhtenbrot’s theorem (the finite model theory)
  • Discuss the Gödel completeness theorem
  • An in-depth analysis of Morley’s categoricity theorem
  • How does the Back-and-forth method work?
  • Discuss the Ehrenfeucht–Fraïssé game technique
  • Discuss Aleph numbers (Aleph-null and Aleph-one)
  • Solving the Suslin problem

Algebra Topics for a Research Paper

Would you like to write about an algebra topic? No problem, our seasoned writers have compiled a list of the best algebra topics for a research paper:

  • Discuss the differential equation
  • Analyze the Jacobson density theorem
  • The 4 properties of a binary operation in algebra
  • Analyze the unary operator in depth
  • Analyze the Abel–Ruffini theorem
  • Epimorphisms vs. monomorphisms: compare and contrast
  • Discuss the Morita duality in algebraic structures
  • Idempotent vs. nilpotent in Ring theory
  • Discuss the Artin-Wedderburn theorem
  • What is a commutative ring in algebra?
  • Analyze and describe the Noetherian ring

Math Education Research Topics

There is nothing wrong with writing about math education, especially if your professor did not give you writing prompts. Here are some very nice math education research topics:

  • What are the goals a mathematics professor should have?
  • What is math anxiety in the classroom?
  • Teaching math in UK schools: the difficulties
  • Computer programming or math in high school?
  • Is math education in Europe at a high enough level?
  • Common Core Standards and their effects on math education
  • Culture and math education in Africa
  • What is dyscalculia and how does it manifest itself?
  • When was algebra first thought in schools?
  • Math education in the United States versus the United Kingdom

Computability Theory Topics to Research

Writing about computability theory can be a very interesting adventure. Give it a try! Here are some of our most interesting computability theory topics to research:

  • What is a multiplication table?
  • Analyze the Scholz conjecture
  • Explain exponentiating by squaring
  • Analyze the Myhill-Nerode theorem
  • What is a tree automaton?
  • Compare and contrast the Pushdown automaton and the Büchi automaton
  • Discuss the Markov algorithm
  • What is a Turing machine?
  • Analyze the post correspondence problem
  • Discuss the linear speedup theorem
  • Discuss the Boolean satisfiability problem

Interesting Math Research Topics

We know you want topics that are interesting and relatively easy to write about. This is why we have a separate list of our most interesting math research topics:

  • What is two-element Boolean algebra?
  • The life of Gauss
  • The life of Isaac Newton
  • What is an orthodiagonal quadrilateral?
  • Tessellation in Euclidean plane geometry
  • Describe a hyperboloid in 3D geometry
  • What is a sphericon?
  • Discuss the peculiarities of Borel’s paradox
  • Analyze the De Finetti theorem in statistics
  • What are Martingales?
  • The basics of stochastic calculus

Applied Math Research Topics

Interested in writing about applied mathematics? Our team managed to create a list of awesome applied math research topics from scratch for you:

  • Discuss Newton’s laws of motion
  • Analyze the perpendicular axes rule
  • How is a Galilean transformation done?
  • The conservation of energy and its applications
  • Discuss Liouville’s theorem in Hamiltonian mechanics
  • Analyze the quantum field theory
  • Discuss the main components of the Lorentz symmetry
  • An in-depth look at the uncertainty principle

Geometry Topics for a Research Paper

Geometry can be a very captivating subject, especially when you know plenty about it. Check out our list of geometry topics for a research paper and pick the best one today:

  • Most useful trigonometry functions in math
  • The life of Archimedes and his achievements
  • Trigonometry in computer graphics
  • Using Vincenty’s formulae in geodesy
  • Define and describe the Heronian tetrahedron
  • The math behind the parabolic microphone
  • Discuss the Japanese theorem for concyclic polygons
  • Analyze Euler’s theorem in geometry

Math Research Topics for Middle School

Yes, even middle school children can write about mathematics. We have some original math research topics for middle school right here:

  • Finding critical points in a graph
  • The basics of calculus
  • What makes a graph ultrahomogeneous?
  • How do you calculate the area of different shapes?
  • What contributions did Euclid have to the field of mathematics?
  • What is Diophantine geometry?
  • What makes a graph regular?
  • Analyze a full binary tree

Math Research Topics for College Students

As you’ve probably already figured out, college students should pick topics that are a bit more complex. We have some of the best math research topics for college students right here:

  • What are extremal problems and how do you solve them?
  • Discuss an unsolvable math problem
  • How can supercomputers solve complex mathematical problems?
  • An in-depth analysis of fractals
  • Discuss the Boruvka’s algorithm (related to the minimum spanning tree)
  • Discuss the Lorentz–FitzGerald contraction hypothesis in relativity
  • An in-depth look at Einstein’s field equation
  • The math behind computer vision and object recognition

Calculus Topics for a Research Paper

Let’s face it: calculus is not a very difficult field. So, why don’t you pick one of our excellent calculus topics for a research paper and start writing your essay right away:

  • When do we need to apply the L’Hôpital rule?
  • Discuss the Leibniz integral rule
  • Calculus in ancient Egypt
  • Discuss and analyze linear approximations
  • The applications of calculus in real life
  • The many uses of Stokes’ theorem
  • Discuss the Borel regular measure
  • An in-depth analysis of Lebesgue’s monotone convergence theorem

Simple Math Research Paper Topics for High School

This is the place where you can find some pretty simple topics if you are a high school student. Check out our simple math research paper topics for high school:

  • The life and work of the famous Pierre de Fermat
  • What are limits and why are they useful in calculus?
  • Explain the concept of congruency
  • The life and work of the famous Jakob Bernoulli
  • Analyze the rhombicosidodecahedron and its applications
  • Calculus and the Egyptian pyramids
  • The life and work of the famous Jean d’Alembert
  • Discuss the hyperplane arrangement in combinatorial computational geometry
  • The smallest enclosing sphere method in combinatorics

Business Math Topics

If you want to surprise your professor, why don’t you write about business math? We have some exceptional topics that nobody has thought about right here:

  • Is paying a loan with another loan a good approach?
  • Discuss the major causes of a stock market crash
  • Best debt amortization methods in the US
  • How do bank loans work in the UK?
  • Calculating interest rates the easy way
  • Discuss the pros and cons of annuities
  • Basic business math skills everyone should possess
  • Business math in United States schools
  • Analyze the discount factor

Probability and Statistics Topics for Research

Probability and statistics are not easy fields. However, you can impress your professor with one of our unique probability and statistics topics for research:

  • What is the autoregressive conditional duration?
  • Applying the ANOVA method to ranks
  • Discuss the practical applications of the Bates distribution
  • Explain the principle of maximum entropy
  • Discuss Skorokhod’s representation theorem in random variables
  • What is the Factorial moment in the Theory of Probability?
  • Compare and contrast Cochran’s C test and his Q test
  • Analyze the De Moivre-Laplace theorem
  • What is a negative probability?

Need Help With Research Paper?

We offer the absolute best high school and college research paper writing service on the Internet. When you need any kind of research paper help, our experienced ENL writers and professional editors are here to help. With years of experience under their belts, our experts can get your research paper done in as little as 3 hours.

Getting cheap online help with research papers has never been easier. College students should just get in touch with us and tell us what they need. We will assign them our most affordable and experienced math writer in minutes, even during the night. We are the best-rated online writing company on the Internet because we always deliver high-quality academic content at the most competitive prices. Give us a try today!

Leave a Reply Cancel reply

260 Interesting Math Topics for Essays & Research Papers

Mathematics is the science of numbers and shapes. Writing about it can give you a fresh perspective and help to clarify difficult concepts. You can even use mathematical writing as a tool in problem-solving.

In this article, you will find plenty of interesting math topics. Besides, you will learn about branches of mathematics that you can choose from. And if the thought of letters and numbers makes your head swim, try our custom writing service . Our professionals will craft a paper for you in no time!

And now, let’s proceed to math essay topics and tips.

🔝 Top 10 Interesting Math Topics

✅ branches of mathematics, ✨ fun math topics.

  • 🏫 Math Topics for High School
  • 🎓 College Math Topics
  • 🤔 Advanced Math
  • 📚 Math Research
  • ✏️ Math Education
  • 💵 Business Math

🔍 References

  • Number theory in everyday life.
  • Logicist definitions of mathematics.
  • Multivariable vs. vector calculus.
  • 4 conditions of functional analysis.
  • Random variable in probability theory.
  • How is math used in cryptography?
  • The purpose of homological algebra.
  • Concave vs. convex in geometry.
  • The philosophical problem of foundations.
  • Is numerical analysis useful for machine learning?

What exactly is mathematics ? First and foremost, it is very old. Ancient Greeks and Persians were already utilizing mathematical tools. Nowadays, we consider it an interdisciplinary language.

Biologists, linguists, and sociologists alike use math in their work. And not only that, we all deal with it in our daily lives. For instance, it manifests in the measurement of time. We often need it to calculate how much our groceries cost and how much paint we need to buy to cover a wall.

Albert Einstein quote.

Simply put, mathematics is a universal instrument for problem-solving. We can divide pure math into three branches: geometry, arithmetic, and algebra. Let’s take a closer look:

  • Geometry By studying geometry, we try to comprehend our physical surroundings. Geometric shapes can be simple, like a triangle. Or, they can form complicated figures, like a rhombicosidodecahedron.
  • Arithmetic Arithmetic deals with numbers and simple operations: subtraction, addition, division, and multiplication.
  • Algebra Algebra is used when the exact numbers are unclear. Instead, they are replaced with letters. Businesses often need algebra to predict their sales.

It’s true that most high school students don’t like math. However, that doesn’t mean it can’t be a fun and compelling subject. In the following section, you will find plenty of enthralling mathematical topics for your paper.

If you’re struggling to start working on your essay, we have some fun and cool math topics to offer. They will definitely engage you and make the writing process enjoyable. Besides, fun math topics can show everyone that even math can be entertaining or even a bit silly.

  • The link between mathematics and art – analyzing the Golden Ratio in Renaissance-era paintings.
  • An evaluation of Georg Cantor’s set theory.
  • The best approaches to learning math facts and developing number sense.
  • Different approaches to probability as explored through analyzing card tricks. 
  • Chess and checkers – the use of mathematics in recreational activities.
  • The five types of math used in computer science.
  • Real-life applications of the Pythagorean Theorem. 
  • A study of the different theories of mathematical logic.
  • The use of game theory in social science.
  • Mathematical definitions of infinity and how to measure it.
  • What is the logic behind unsolvable math problems?
  • An explanation of mean, mode, and median using classroom math grades.
  • The properties and geometry of a Möbius strip.
  • Using truth tables to present the logical validity of a propositional expression.
  • The relationship between Pascal’s Triangle and The Binomial Theorem. 
  • The use of different number types: the history.
  • The application of differential geometry in modern architecture.
  • A mathematical approach to the solution of a Rubik’s Cube.
  • Comparison of predictive and prescriptive statistical analyses.
  • Explaining the iterations of the Koch snowflake.
  • The importance of limits in calculus.
  • Hexagons as the most balanced shape in the universe.
  • The emergence of patterns in chaos theory.
  • What were Euclid’s contributions to the field of mathematics?
  • The difference between universal algebra and abstract algebra.

🏫 Math Essay Topics for High School

When writing a math paper, you want to demonstrate that you understand a concept. It can be helpful if you need to prepare for an exam. Choose a topic from this section and decide what you want to discuss.

  • Explain what we need Pythagoras’ theorem for.
  • What is a hyperbola?
  • Describe the difference between algebra and arithmetic.
  • When is it unnecessary to use a calculator ?
  • Find a connection between math and the arts.
  • How do you solve a linear equation?
  • Discuss how to determine the probability of rolling two dice.
  • Is there a link between philosophy and math?
  • What types of math do you use in your everyday life?
  • What is the numerical data?
  • Explain how to use the binomial theorem.
  • What is the distributive property of multiplication?
  • Discuss the major concepts in ancient Egyptian mathematics. 
  • Why do so many students dislike math?
  • Should math be required in school?
  • How do you do an equivalent transformation?
  • Why do we need imaginary numbers?
  • How can you calculate the slope of a curve?
  • What is the difference between sine, cosine, and tangent?
  • How do you define the cross product of two vectors?
  • What do we use differential equations for?
  • Investigate how to calculate the mean value.
  • Define linear growth.
  • Give examples of different number types.
  • How can you solve a matrix?

🎓 College Math Topics for a Paper

Sometimes you need more than just formulas to explain a complex idea. That’s why knowing how to express yourself is crucial. It is especially true for college-level mathematics. Consider the following ideas for your next research project:

  • What do we need n-dimensional spaces for?
  • Explain how card counting works.
  • Discuss the difference between a discrete and a continuous probability distribution. 
  • How does encryption work? 
  • Describe extremal problems in discrete geometry.
  • What can make a math problem unsolvable?
  • Examine the topology of a Möbius strip.

Three main types of geometry.

  • What is K-theory? 
  • Discuss the core problems of computational geometry.
  • Explain the use of set theory .
  • What do we need Boolean functions for?
  • Describe the main topological concepts in modern mathematics.
  • Investigate the properties of a rotation matrix.
  • Analyze the practical applications of game theory.
  • How can you solve a Rubik’s cube mathematically?
  • Explain the math behind the Koch snowflake.
  • Describe the paradox of Gabriel’s Horn.
  • How do fractals form?
  • Find a way to solve Sudoku using math.
  • Why is the Riemann hypothesis still unsolved?
  • Discuss the Millennium Prize Problems.
  • How can you divide complex numbers?
  • Analyze the degrees in polynomial functions.
  • What are the most important concepts in number theory?
  • Compare the different types of statistical methods.

🤔 Advanced Topics in Math to Write a Paper on

Once you have passed the trials of basic math, you can move on to the advanced section. This area includes topology, combinatorics, logic, and computational mathematics. Check out the list below for enticing topics to write about:

  • What is an abelian group?
  • Explain the orbit-stabilizer theorem.
  • Discuss what makes the Burnside problem influential.
  • What fundamental properties do holomorphic functions have?
  • How does Cauchy’s integral theorem lead to Cauchy’s integral formula?
  • How do the two Picard theorems relate to each other?
  • When is a trigonometric series called a Fourier series?
  • Give an example of an algorithm used for machine learning.
  • Compare the different types of knapsack problems.
  • What is the minimum overlap problem?
  • Describe the Bernoulli scheme.
  • Give a formal definition of the Chinese restaurant process.
  • Discuss the logistic map in relation to chaos.
  • What do we need the Feigenbaum constants for?
  • Define a difference equation.
  • Explain the uses of the Fibonacci sequence.
  • What is an oblivious transfer?
  • Compare the Riemann and the Ruelle zeta functions.
  • How can you use elementary embeddings in model theory?
  • Analyze the problem with the wholeness axiom and Kunen’s inconsistency theorem.
  • How is Lie algebra used in physics ?
  • Define various cases of algebraic cycles.
  • Why do we need étale cohomology groups to calculate algebraic curves?
  • What does non-Euclidean geometry consist of?
  • How can two lines be ultraparallel?

📚 Math Research Topics for a Paper

Choosing the right topic is crucial for a successful research paper in math. It should be hard enough to be compelling, but not exceeding your level of competence. If possible, stick to your area of knowledge. This way your task will become more manageable. Here are some ideas:

  • Write about the history of calculus.
  • Why are unsolved math problems significant?
  • Find reasons for the gender gap in math students.
  • What are the toughest mathematical questions asked today?
  • Examine the notion of operator spaces.
  • How can we design a train schedule for a whole country?
  • What makes a number big?

Mathematical writing should be well-structured, precise, and easy readable

  • How can infinities have various sizes?
  • What is the best mathematical strategy to win a game of Go?
  • Analyze natural occurrences of random walks in biology.
  • Explain what kind of mathematics was used in ancient Persia.
  • Discuss how the Iwasawa theory relates to modular forms.
  • What role do prime numbers play in encryption?
  • How did the study of mathematics evolve?
  • Investigate the different Tower of Hanoi solutions.
  • Research Napier’s bones. How can you use them?
  • What is the best mathematical way to find someone who is lost in a maze?
  • Examine the Traveling Salesman Problem. Can you find a new strategy?
  • Describe how barcodes function.
  • Study some real-life examples of chaos theory. How do you define them mathematically?
  • Compare the impact of various ground-breaking mathematical equations .
  • Research the Seven Bridges of Königsberg. Relate the problem to the city of your choice.
  • Discuss Fisher’s fundamental theorem of natural selection.
  • How does quantum computing work?
  • Pick an unsolved math problem and say what makes it so difficult.

✏️ Math Education Research Topics

For many teachers, the hardest part is to keep the students interested. When it comes to math, it can be especially challenging. It’s crucial to make complicated concepts easy to understand. That’s why we need research on math education.

  • Compare traditional methods of teaching math with unconventional ones.
  • How can you improve mathematical education in the U.S.?
  • Describe ways of encouraging girls to pursue careers in STEM fields.
  • Should computer programming be taught in high school?
  • Define the goals of mathematics education .
  • Research how to make math more accessible to students with learning disabilities. 
  • At what age should children begin to practice simple equations?
  • Investigate the effectiveness of gamification in algebra classes. 
  • What do students gain from taking part in mathematics competitions?
  • What are the benefits of moving away from standardized testing ?
  • Describe the causes of “ math anxiety .” How can you overcome it?
  • Explain the social and political relevance of mathematics education.
  • Define the most significant issues in public school math teaching.
  • What is the best way to get children interested in geometry?
  • How can students hone their mathematical thinking outside the classroom?
  • Discuss the benefits of using technology in math class. 
  • In what way does culture influence your mathematical education?
  • Explore the history of teaching algebra.
  • Compare math education in various countries.

E. T. Bell quote.

  • How does dyscalculia affect a student’s daily life?
  • Into which school subjects can math be integrated?
  • Has a mathematics degree increased in value over the last few years?
  • What are the disadvantages of the Common Core Standards?
  • What are the advantages of following an integrated curriculum in math?
  • Discuss the benefits of Mathcamp.

🧮 Algebra Topics for a Paper

The elegance of algebra stems from its simplicity. It gives us the ability to express complex problems in short equations. The world was changed forever when Einstein wrote down the simple formula E=mc². Now, if your algebra seminar requires you to write a paper, look no further! Here are some brilliant prompts:

  • Give an example of an induction proof.
  • What are F-algebras used for?
  • What are number problems?
  • Show the importance of abstract algebraic thinking. 
  • Investigate the peculiarities of Fermat’s last theorem.
  • What are the essentials of Boolean algebra?
  • Explore the relationship between algebra and geometry.
  • Compare the differences between commutative and noncommutative algebra.
  • Why is Brun’s constant relevant?
  • How do you factor quadratics?
  • Explain Descartes’ Rule of Signs.
  • What is the quadratic formula?
  • Compare the four types of sequences and define them.
  • Explain how partial fractions work.
  • What are logarithms used for?
  • Describe the Gaussian elimination.
  • What does Cramer’s rule state?
  • Explore the difference between eigenvectors and eigenvalues.
  • Analyze the Gram-Schmidt process in two dimensions.
  • Explain what is meant by “range” and “domain” in algebra.
  • What can you do with determinants?
  • Learn about the origin of the distance formula.
  • Find the best way to solve math word problems.
  • Compare the relationships between different systems of equations.
  • Explore how the Rubik’s cube relates to group theory.

📏 Geometry Topics for a Research Paper

Shapes and space are the two staples of geometry. Since its appearance in ancient times, it has evolved into a major field of study. Geometry’s most recent addition, topology, explores what happens to an object if you stretch, shrink, and fold it. Things can get pretty crazy from here! The following list contains 25 interesting geometry topics:

  • What are the Archimedean solids?
  • Find real-life uses for a rhombicosidodecahedron.
  • What is studied in projective geometry?
  • Compare the most common types of transformations.
  • Explain how acute square triangulation works.
  • Discuss the Borromean ring configuration.
  • Investigate the solutions to Buffon’s needle problem.
  • What is unique about right triangles?

The role of study of non-Euclidean geometry

  • Describe the notion of Dirac manifolds.
  • Compare the various relationships between lines.
  • What is the Klein bottle?
  • How does geometry translate into other disciplines, such as chemistry and physics?
  • Explore Riemannian manifolds in Euclidean space.
  • How can you prove the angle bisector theorem?
  • Do a research on M.C. Escher’s use of geometry.
  • Find applications for the golden ratio .
  • Describe the importance of circles.
  • Investigate what the ancient Greeks knew about geometry.
  • What does congruency mean?
  • Study the uses of Euler’s formula.
  • How do CT scans relate to geometry?
  • Why do we need n-dimensional vectors?
  • How can you solve Heesch’s problem?
  • What are hypercubes?
  • Analyze the use of geometry in Picasso’s paintings.

➗ Calculus Topics to Write a Paper on

You can describe calculus as a more complicated algebra. It’s a study of change over time that provides useful insights into everyday problems. Applied calculus is required in a variety of fields such as sociology, engineering, or business. Consult this list of compelling topics on a calculus paper:

  • What are the differences between trigonometry, algebra, and calculus?
  • Explain the concept of limits.
  • Describe the standard formulas needed for derivatives.
  • How can you find critical points in a graph?
  • Evaluate the application of L’Hôpital’s rule.
  • How do you define the area between curves?
  • What is the foundation of calculus?

Calculus was developed by Isaac Newton and Gottfried Leibnitz.

  • How does multivariate calculus work?
  • Discuss the use of Stokes’ theorem.
  • What does Leibniz’s integral rule state?
  • What is the Itô stochastic integral?
  • Explore the influence of nonstandard analysis on probability theory.
  • Research the origins of calculus.
  • Who was Maria Gaetana Agnesi?
  • Define a continuous function.
  • What is the fundamental theorem of calculus?
  • How do you calculate the Taylor series of a function?
  • Discuss the ways to resolve Runge’s phenomenon.
  • Explain the extreme value theorem.
  • What do we need predicate calculus for?
  • What are linear approximations?
  • When does an integral become improper?
  • Describe the Ratio and Root Tests.
  • How does the method of rings work?
  • Where do we apply calculus in real-life situations?

💵 Business Math Topics to Write About

You don’t have to own a company to appreciate business math. Its topics range from credits and loans to insurance, taxes, and investment. Even if you’re not a mathematician, you can use it to handle your finances. Sounds interesting? Then have a look at the following list:

  • What are the essential skills needed for business math?
  • How do you calculate interest rates?
  • Compare business and consumer math.
  • What is a discount factor?
  • How do you know that an investment is reasonable?
  • When does it make sense to pay a loan with another loan?
  • Find useful financing techniques that everyone can use.
  • How does critical path analysis work?
  • Explain how loans work.
  • Which areas of work utilize operations research?
  • How do businesses use statistics?
  • What is the economic lot scheduling problem?
  • Compare the uses of different chart types.
  • What causes a stock market crash?
  • How can you calculate the net present value?
  • Explore the history of revenue management.
  • When do you use multi-period models?
  • Explain the consequences of depreciation.
  • Are annuities a good investment?
  • Would the U.S. financially benefit from discontinuing the penny?
  • What caused the United States housing crash in 2008?
  • How do you calculate sales tax?
  • Describe the notions of markups and markdowns. 
  • Investigate the math behind debt amortization.
  • What is the difference between a loan and a mortgage?

With all these ideas, you are perfectly equipped for your next math paper. Good luck!

  • What Is Calculus?: Southern State Community College
  • What Is Mathematics?: Tennessee Tech University
  • What Is Geometry?: University of Waterloo
  • What Is Algebra?: BBC
  • Ten Simple Rules for Mathematical Writing: Ohio State University
  • Practical Algebra Lessons: Purplemath
  • Topics in Geometry: Massachusetts Institute of Technology
  • The Geometry Junkyard: All Topics: Donald Bren School of Information and Computer Sciences
  • Calculus I: Lamar University
  • Business Math for Financial Management: The Balance Small Business
  • What Is Mathematics: Life Science
  • What Is Mathematics Education?: University of California, Berkeley
  • Share to Facebook
  • Share to Twitter
  • Share to LinkedIn
  • Share to email

220 Cause and Effect Essay Topics: Fun & Interesting

Cause and effect essays examine how an event happened and what consequences it had. Gaining weight after eating lots of fast food is an example of a cause-and-effect relationship. Possible topics cover a variety of subjects ranging from mental health to history and politics. This article gives you an outline...

160 Excellent Analysis Essay Topics & Questions

An analysis essay aims to break down the subject in order to understand it. You can choose to analyze a text, a process, or an idea. This article will help you write a great essay! Selecting an interesting topic makes writing a lot easier. We’ve prepared a list of excellent...

185 Health Topics to Write about

Everybody knows that being healthy requires effort. We should exercise regularly and maintain a balanced diet. However, the reward is worth it. A healthy lifestyle prevents chronic illnesses and leads to better body performance. Besides, if you improve your physical well-being, your mental health will strengthen as well! In this...

180 Environmental Research Topics & Questions to Write about

Environment affects us all, whether we want it or not. Political leaders and students alike discuss ways to tackle environmental topics & issues. Some might argue about the role humans play in all this. The fact remains that our environment is a delicate matter. That’s why we must educate ourselves...

180 Ethics Topics & Ethical Questions to Debate

Our code of ethics is derived from what we think is right or wrong. On top of that, we have to agree to the moral standards established by the society we live in. Conventional norms generally label theft, murder, or harassment as bad. However, there are many influences that impact...

457 Definition Essay Topics and Writing Tips

A definition explains the meaning of a term or a concept. In a dictionary, you’ll find a definition in a single sentence. A definition paper, however, encompasses several paragraphs. Such an essay, amongst other things, can include personal experience and examples. To write a successful definition paper, you need to...

270 Good Descriptive Essay Topics and Writing Tips

As simple as it is, the purpose of the descriptive essay is to explain or portray its subject. It can focus on any topic or issue you want to write about. Be sure that any middle school, high school, or college student can manage this type of creative writing assignment!...

160+ Best Rhetorical Analysis Topics

Rhetorical analysis essay focuses on assessing the method used for delivering a message. This assignment isn’t about giving an opinion on the topic. The purpose is to analyze how the author presents the argument and whether or not they succeeded. Keep reading to find out more strategies and prompts for...

164 Narrative Essay Topics for School & College Students

A narrative essay tells a story about a series of events. At the core of this kind of essay can be a personal experience or a fictional plot. Any story can be a basis for a narrative essay! Narratives can look similar to descriptions. Still, they are different. A descriptive...

242 Process Analysis Essay Topics for High School & College

Similar to the instructions in a recipe book, process essays convey information in a step-by-step format. In this type of paper, you follow a structured chronological process. You can also call it a how-to essay. A closely related type is a process analysis essay. Here you have to carefully consider...

150 Classification Essay Topics and Ideas

In a classification essay, you divide the subject into categories. To create these categories, you single out certain attributes of things. You can classify them according to their characteristics, themes, or traits. Sounds complicated? Be sure that any high school or college student can manage this type of essay!

275 Excellent Evaluation Essay Topics for College Students

Throughout your high school years, you are likely to write many evaluative papers. In an evaluation essay you aim is to justify your point of view through evidence.

I need a writer on algebra. I am a PhD student.Can i be helped by anybody/expert?

Please I want to do my MPhil research on algebra if you can help me

shall your university help me on research in mathematics ?

how I get the full pdf of those tittles

Print as pdf.

12 Math Project Ideas for Middle and High School Students

Photo of Janos Perczel

By János Perczel

Co-founder of Polygence, PhD from MIT

6 minute read

Mathematics serves as the foundation for most fields of science, such as physics, engineering, computer science, and economics. It equips you with critical problem-solving skills and the ability to break down complex problems into smaller, more manageable parts. It helps you avoid ambiguity and communicate in what is often called “the universal language,” so-called because its principles and concepts are the same worldwide. Beyond the fact that studying math can open up many career opportunities, some mathematicians also simply find beauty in the equations and proofs themselves.

In this post, we’ll give you ideas for different math research and passion projects and talk about how you can showcase your project.

How do I find my math passion project focus?

Because math is so foundational in the sciences, there are many different directions you can take with your math passion project. Decide which topics within mathematics most speak to you. Maybe you’re more interested in how math is used in sports statistics, how you can harness math to solve global problems, or perhaps you’re curious about how math manifests itself in the physical realm. Once you find a topic that interests you, then you can begin to dive deeper. 

Keep in mind that some passion projects may require more technical skills, such as computer programming, whereas others may just explore theoretical concepts. The route you take is totally up to you and what you feel comfortable with, but don’t be afraid to pursue a project if you don’t currently have the technical skills for it. You can view it as an opportunity to learn new skills while also exploring a topic you’re excited about.

Do your own research through Polygence!

Polygence pairs you with an expert mentor in your area of passion. Together, you work to create a high quality research project that is uniquely your own.

What are the best math project ideas?

1. the mathematical properties of elections.

In recent years, there has been a lot of discussion about which election mechanism is most effective at achieving various goals. Proposed mechanisms in United States elections include majority elections, the electoral college, approval voting, and ranked-choice voting. All of these mechanisms have benefits and drawbacks, and it turns out that no perfect election mechanism exists. Look at the work being done by mathematicians to understand when elections fail, and what can be done to improve them. Choose the strongest mechanism and use evidence to support your claim.

Idea by math research mentor Grayson

2. Knot theory

A knot is simply a closed loop of string. Explore how mathematicians represent knots on a page. Learn how knots can be combined, and how to find knots that can't be created by combining other knots. You can learn techniques for determining whether or not two knots are distinct, in the sense that neither can be deformed to match the other. You can also study related objects, such as links and braids, and research the application of knots in the physical sciences.

Idea by math research mentor Alex

3. Bayesian basketball win prediction system

The Bayes’ Rule is crucial to modern statistics (as well as data science and machine learning). Using a Bayesian model to predict the probability distribution of basketball performance statistics, you can attempt to predict a team’s win and loss rate versus another team by drawing samples from these distributions and computing correlation to win or loss. Your project could be as simple or as complicated as you want. Based on your interest and comfort level, you could use simple normal models, mixture models, Gibbs sampling , and hidden Markov models. You can also learn how to code a fairly simple simulation in R or Python. Then, you’ll need to learn how to interpret the significance of statistical results and adjust results over time based on the success/failure of your model over time.

Idea by math research mentor Ari

4. Finding value in Major League Baseball free agency

Here’s another sports-related project idea. Every offseason, there are hundreds of professional baseball players who become free agents and can be signed by any team. This project involves determining which players might be a good "value" by deciding which statistics are most important to helping a team win relative to how players are generally paid. After deciding which stats are the most important, a ranked list of "value" can be produced based on expected salaries.

Idea by math research mentor Dante

5. Impact of climate change on drought risk

Are you interested in environmental economics, risk analysis, or water resource economics?

You can use historical data on precipitation, temperature, soil moisture, drought indicators, and meteorological models that simulate atmospheric conditions to train a machine-learning model that can assess the likelihood and intensity of droughts in different regions under different climate scenarios. You can also explore your assessments' potential adaptation strategies and policy implications. This project would require some skills in data processing, machine learning, and meteorological modeling.

Idea by math research mentor Jameson

Go beyond crunching numbers

Interested in Math? We'll match you with an expert mentor who will help you explore your next project.

6. Making machines make art 

You can program a computer to create an infinite number of images, music, video game levels, 3D objects, or text using techniques like neural style transfer, genetic algorithms, rejection sampling, Perlin noise , or Voronoi tessellation . Your challenge then is to create a functioning content generator that you could then showcase on a website, research conference, or even in a gallery exhibition.

Idea by math research mentor Sam

7. Measuring income inequality and social mobility

If you’re interested in the intersection of mathematics and public policy, here’s an idea. Use data from the World Bank, the Organization for Economic Co-operation and Development (OECD), and other sources to calculate the Gini coefficient and the intergenerational elasticity of income for different countries and regions over time. Explore the factors that influence these measures and their implications for economic development and social justice. You will need to have some skills in data collection, analysis, and visualization.

8. Rocket (fuel) science

Rockets are mainly made out of fuel. When the fuel burns, it gets heated and expelled out, producing thrust. Fuel is heavy and, for long-range space missions, we need to carry around the fuel for the rest of the mission the whole way. It is important that the fuel gives us the most bang for our buck (i.e., the most acceleration per unit of fuel). Compare the amount of fuel (weight) required to get to various celestial objects and back using current electric and chemical propulsion technologies . Then do a cost analysis and compare how long it would take.

Idea by math research mentor Derek

9. COVID-19 and the global financial crisis

It is shocking how the economic effects of COVID-19 have far outweighed the ones from the Global Financial Crisis in 2007-08 . How much is the difference in terms of employment? Production? Let's go to the data!

Idea by math research mentor Alberto

10. Modeling polarization in social networks

We've all seen or heard about nasty political arguments and echo chambers on social media, but how and why do these happen? To try and find out, construct a mathematical and/or computational model of how people with different opinions interact in a social network. When do people come to a consensus, and when do they become more strongly divided? How can we design social networks with these ideas in mind?

Idea by math research mentor Emily

11. The world of mathematics

The history of mathematics dates all the way back to the very first civilizations and followed throughout history all over the globe. This development leads us to our way of living and thinking today. Rarely taught in math courses, the origins of math can provide clear insight into the necessities of learning math and the broad applications that math has in the world. Conduct research on a chosen time period, location, or figure in mathematics and describe the impacts this innovation or innovator had on the development of math as we know it today.

Idea by math research mentor Shae

12. Simulating the stock market

Here’s an idea for a beginner-to-intermediate statistics and programming project centered around Monte Carlo simulations. Monte Carlo simulations are random methods for modeling the outcome of a complicated process. These methods are used in finance all the time. How could you code a program that uses the Monte Carlo technique to "simulate" the stock market? You will need some familiarity with statistics, basic finance, and basic programming in any language to complete this project.

Idea by math research mentor Sahil

How can I showcase my math project?

After you’ve done the hard work of completing your mathematics passion project, it’s also equally important to showcase your accomplishments . You can see that in many of the project ideas above, there is a clear topic, but how you want to present the project is open-ended. You could try to publish a research paper , create a podcast or infographic, or even create a visual representation of your concept. You’ll find that although many project ideas can simply be summarized in a paper, projects can also be showcased in other creative ways.

Polygence Scholars Are Also Passionate About

What are some examples of math passion projects completed by polygence students.

There are several examples of math projects Polygence students have completed through enrolling in our programs; we’ll highlight two here.

Ahmet's mathematical passion project offers detailed breakdowns of the first introduced quantum algorithm Deutsch-Jozsa, and the first quantum algorithm proven to be faster than classical algorithms, Grover’s Algorithm. It also includes a side-by-side comparison of the quantum algorithms and their classical counterparts. He uploaded his paper on Github and plans to submit it to an official publication soon.

Anna’s finance project provides an overview of topics related to personal finance, covering tax and benefits, tax-deferred savings, interest rates, cost of living, investing, insurance, and housing to help young adults manage their savings. To further her understanding of how different areas of finance influence one's life consumption, she created a life consumption plan for a hypothetical person and produced a paper. 

How can I get guidance and support on my math project?

In this post, we covered how to find the right mathematics project for you, shared a dozen ideas for physics passion projects, and discussed how to showcase your project.

If you have a passion for math–or are generally curious about exploring mathematical concepts–and are interested in pursuing a passion project, Polygence’s programs are a great place to start. You’ll be paired with a mathematics research mentor with whom you’ll be able to meet one-on-one. Through these virtual mentorship sessions, your mentor can help you learn new concepts, troubleshoot issues you encounter along the way to bringing your math project to completion, and brainstorm with you on how to showcase your passion project .

Related Content

Math Competitions for High School Students

Why Research Mentorship is Critical for High School Students

Get an Edge in College Admissions Through Doing a Research Project

What Sets Polygence Apart from Other Research Programs for Middle and High School Students

More Than Just a Number: Showcasing Your Research on College Applications

How I Advocated for Students as an Admission Officer When They Wrote About Passion Projects

logo

210 Brilliant Math Research Topics and Ideas for Students

Table of Contents

Do you have to submit a math research paper? Are you looking for the best math research topics? Well, in this blog post, we have shared a list of 150+ interesting math research topics to consider for assignments and academic projects. If you are a student who is pursuing a degree in mathematics, then you can very well use the topic ideas suggested here. Also, you can check this blog post and get to know the important steps for writing a brilliant math research paper.

Math Research Topics

What is Mathematics?

Mathematics is a broad academic discipline that focuses on numbers, structures, spaces, and shapes. This subject contains many analysis and calculation methods. Especially in the real world, math is considered an effective problem-solving tool. By using math, you can find solutions for both simple and complex problems.

Basically, mathematics is an integrated language that is widely used in several fields such as engineering, physics, medicine, finance, computer, business, and biology. Apart from the complex scientific fields, even math plays a vital role in the basic cost and time calculation in our everyday life.

Different Branches of Mathematics

Listed below are some popular branches of mathematics.

Arithmetic: It is a basic branch of math that focuses on numbers and their associated operations such as addition, subtraction, multiplication, and division.

Algebra: When the numbers are unknown, algebra steps in. Generally, along with numbers, algebra uses the letters such as A, B, X, and Y to represent unknown quantities. Mainly, businesses depend on algebra concepts to predict their sales.

Geometry: It is a popular branch of mathematics that deals with shapes, sizes, and figures. The concept commonly revolves around lines, points, solids, angles, and surfaces.

Apart from all these common branches, mathematics also includes more advanced types such as calculus, trigonometry, statistics, topology, probability, etc.

How to Write a Math Research Paper?

In general, a math research paper is an academic paper that is prepared to explain a mathematical concept with proper results. For writing a math research paper, first, you must have a good research topic from any branch of mathematics. As math is a vast discipline, you can easily search and find plenty of research topics from it. But when you have many topics, then it will be more tedious to identify one perfect topic out of them all.

Right now, are you searching for a perfect math research topic? Well, then this is what you should do during the topic selection process to spot the right topic.

Topic Selection

Whenever you are asked to come up with a research paper topic on your own, initially, restrict yourself to the research area that you have strong knowledge of and are passionate about. Next, in that research area, explore and identify one great topic that has a broad scope to evaluate and express your ideas.

Remember, the topic you select should be comfortable for you to perform research and write about. Never pick a topic with less or no research scope. The topic should support the research method of your choice. Most importantly, give preference to the topic that has wide research information, references, and evidence. Also, before finalizing the topic, check whether your topic satisfies your instructor’s guidelines.

Research Paper Writing

After you have found a good math research topic, you can proceed to write the research paper. The research paper you write should follow a proper format and structure. So, in the math research paper, make sure to include the following essential sections.

Introduction

Implications.

In the introduction section, you should first give brief background information about your topic to familiarize your readers. Here, mainly you should explain the primary concepts along with the history of its terms. Also, you should state the basic research problem and discuss the symbols and principles that you are going to use in the essay.

The body of your research paper should elaborate on all your findings. Particularly, in the body paragraphs, you should talk about the formulas, theories, and mathematical analysis methods you have used to find solutions for the research problem.

The implication is the last or closing part of your research paper. Here, you should share your research insights with the readers. Also, you should include a brief summary of all the important points that you have discussed in the entire essay.

List of the Best Math Research Topics

Are you struggling to come up with a good math research paper topic for your assignment? No worries! Here we have shared a list of top-rated math research topic ideas on various branches of mathematics.

Math Research Topics

Explore them all and find a topic that suits you perfectly.

Simple and Easy Math Topics

  • Explain the working of Partial fractions.
  • Discuss the application of Mathematics in daily life.
  • What is the basis of Cramer’s rule?
  • How to solve Heesch’s problem?
  • Explain the history of calculus .
  • What is Euler’s formula?
  • Explain the working of Logarithms.
  • What are the different types of sequences?
  • Explain the different types of Transformations.
  • Define Brun’s constant.
  • What are the methods of factoring quadratics?
  • Examine Archimedean solids.
  • Explain Gaussian elimination.
  • Write about encryption and prime numbers.
  • How does Hypercube work?
  • Analyze Pygaoethores Theorem
  • Describe the logicist definitions of mathematics
  • Describe the purpose of homological algebra
  • Compare and contrast Concave and Convex in geometry
  • The study and contributions of Blaise Pascal to Probability
  • Explain the Fibonacci series briefly
  • How the Ancient Greek architecture influenced by mathematics?
  • Discuss the ancient Egyptian mathematical applications and accomplishments
  • Discuss the easiest ways to memorize algebraic expressions
  • Algebra is an exposition on the invariants of matrices – Explain

Basic Math Topics for Middle School Students

  • Define the Artin-Wedderburn theorem.
  • How to calculate net worth?
  • How to identify critical points in graphs?
  • What is the role of statistics in business?
  • Describe the principles of the Pythagoras theorem.
  • What are the applications of finance in math?
  • What do limits in math mean?
  • Explain the ratio and root test.
  • Define Jacobson’s density theorem.
  • What are the principles of calculus?

Interesting Math Topics for High School Students

  • What are the different number types? Explain with examples.
  • Explain the need for imaginary numbers.
  • How to calculate the interest rate?
  • How to solve a matrix?
  • How to prepare a chart of a company’s financial analysis?
  • When to use a calculator in class?
  • Explain the importance of the Binomial theorem.
  • Write about Egyptian mathematics.
  • Describe the applications of math in the workplace.
  • How to solve linear equations?
  • Describe the usage of hyperbola in math.
  • Why do so many students hate math?
  • What is the difference between algebra and arithmetic?
  • How to calculate the mean value?
  • What is the numerical data?

Math Research Paper Topics for Undergraduate Students

  • Explain the different theories of mathematical logic.
  • Discuss the origins of Greek symbols in mathematics.
  • Explain the significance of circles.
  • Analyze predictive models.
  • Explain the emergence of patterns in chaos theory.
  • Define abstract algebra.
  • What is a continuous stochastic process?
  • Write about the history of algebra.
  • Analyze Monte Carlo methods for inverse problems.
  • What are the goals of standardized testing?
  • Define the Pentagonal number theorem.
  • Discuss the Lorentz–FitzGerald contraction hypothesis in relativity.
  • How to solve simultaneous equations.
  • How do supercomputers solve complex mathematical problems?
  • What is a parabola in geometry?

Math Research Topics

Math Research Topics for College Students

  • Explain the Fibonacci sequence.
  • What are the core problems of computational geometry?
  • Discuss the practical applications of game theory.
  • What is the Traveling Salesman Problem?
  • Describe the Influence of math in biology.
  • Analyze the meaning of fractals.
  • Discuss the origin and evolution of mathematics.
  • What is quantum computing?
  • Explain Einstein’s field equation theory.
  • What is the influence of math on chemistry?
  • How to solve a Rubik’s cube mathematically?
  • How to do complex numbers division?
  • Explain the use of Boolean functions.
  • Analyze the degrees in polynomial functions.
  • How to solve Sudoku using mathematics?
  • Explain the use of set theory.
  • Explain the math behind the Koch snowflake.
  • Explore the varieties of the Tower of Hanoi solutions.
  • What is the difference between a discrete and a continuous probability distribution?
  • How does encryption work?

Applied Math Research Topics

  • What is the role of algorithms in probabilistic modeling?
  • Explain the significance of step-stress modeling.
  • Describe Newton’s laws of motion.
  • What dimensions are used to examine fingerprints?
  • Analyze statistical signal processing.
  • How to do Galilean transformation?
  • What is the role of mathematicians in crime data analysis and prevention?
  • Explain the uncertainty principle.
  • Discuss Liouville’s theorem in Hamiltonian mechanics.
  • Analyze the perpendicular axes rule.

Business Math Research Topics

  • What is the difference between a loan and a mortgage?
  • How to calculate sales tax?
  • Explore the math behind debt amortization.
  • How do businesses use statistics?
  • What is the economic lot scheduling problem?
  • Explain how loans work.
  • Discuss the significance of business math in real life.
  • Define discount factor.
  • What are the major causes of a stock market crash?
  • Compare the uses of different types of charts.
  • Describe the notions of markups and markdowns.
  • How does critical path analysis work?
  • What are the pros and cons of annuities?
  • When to use multi-period models?
  • Compare business and consumer math.

Advanced Math Research Paper Topics

  • What is an oblivious transfer?
  • Compare the Riemann and the Ruelle zeta functions.
  • What are the different types of knapsack problems?
  • Define an abelian group.
  • What are the algorithms used for machine learning?
  • Define various cases of algebraic cycles.
  • When a trigonometric series is called a Fourier series?
  • What is the minimum overlap problem?
  • What are the basic properties of holomorphic functions?
  • Describe the Bernoulli scheme.

Complex Math Research Topics

  • Write about Napier’s bones.
  • What makes a number big?
  • Examine the notion of operator spaces.
  • How do barcodes function?
  • Define Fisher’s fundamental theorem of natural selection.
  • What are the peculiarities of Borel’s paradox?
  • How to design a train schedule for a whole country?
  • Describe a hyperboloid in 3D geometry.
  • What is an orthodiagonal quadrilateral?
  • Explain how the Iwasawa theory relates to modular forms.

Math Research Ideas on Probability and Statistics

  • Roll two dice and calculate a probability.
  • Write about the Factorial moment in the Theory of Probability.
  • Explain the principle of maximum entropy.
  • Compare and contrast Cochran’s C test and his Q test.
  • Discuss Skorokhod’s representation theorem in random variables
  • How to apply the ANOVA method to rank.
  • Analyze the De Moivre-Laplace theorem.
  • What is the autoregressive conditional duration?
  • Explain a negative probability.
  • Discuss the practical applications of the Bates distribution.

Algebra Research Topics

  • Explain Descartes’ Rule of Signs.
  • How to factor quadratics?
  • What is the use of F-algebras?
  • Discuss the differential equation.
  • What is the difference between eigenvectors and eigenvalues?
  • What are the properties of a binary operation in algebra?
  • What is a commutative ring in algebra?
  • Discuss the origin of the distance formula.
  • Explain the quadratic formula.
  • Analyze the unary operator.
  • Define range and domain in algebra.
  • Describe the Noetherian ring.
  • Discuss the Morita duality in algebraic structures.
  • Define the Abel–Ruffini theorem.
  • What is the use of determinants?

Math Research Paper Topics on Geometry

  • Research the real-life uses of a rhombicosidodecahedron.
  • Find out the solutions to Buffon’s needle problem.
  • What is unique about right triangles?
  • What is the Klein bottle?
  • What are the Archimedean solids?
  • What does congruency mean?
  • Discuss the role of trigonometry in computer graphics.
  • What is the need for n-dimensional vectors?
  • Explain the Japanese theorem for concyclic polygons.
  • Prove the angle bisector theorem.
  • Identify the applications for the golden ratio.
  • Explain the Heronian tetrahedron.
  • Describe the notion of Dirac manifolds.
  • What is the use of geometry in Picasso’s paintings?
  • How do CT scans relate to geometry?

Calculus Research Topics

  • How to calculate the Taylor series of a function?
  • What is the role of calculus in real life?
  • Discuss the Leibniz integral rule
  • Discuss and analyze linear approximations.
  • What is the use of predicate calculus?
  • What is the foundation of calculus?
  • How to calculate the area between curves?
  • Describe the standard formulas needed for derivatives.
  • Explain the working of multivariate calculus.
  • Define the fundamental theorem of calculus.

Outstanding Math Research Topics

  • What is a sphericon?
  • What is the role of Mathematics in Artificial Intelligence?
  • Define De Finetti’s theorem in probability and statistics.
  • How to calculate the slope of a curve?
  • Discuss the Stern-Brocot tree.
  • Explain Pascal’s Triangle.
  • Analyze the Georg Cantor set theory.
  • How to measure infinity?
  • Explain the Scholz conjecture.
  • How is geometry used in contemporary architectural designs?
  • How to solve the Suslin problem?
  • What is a tree automaton?
  • Explain the working of the Back-and-forth method.
  • What is a Turing machine?
  • Discuss the linear speedup theorem.
  • Discuss the benefits of using truth tables to present the logical validity of a propositional expression
  • Critical analysis of the major concepts in ancient Egyptian mathematics
  • Discuss the similarities and differences between a continuous and a discrete probability distribution
  • Analysis of the problem with the wholeness axiom and Kunen’s inconsistency theorem
  • Develop a study focusing on the Seven Bridges of Königsberg and relate the problem to the city or state of your choice

Latest Math Research Topics

  • What does point zero reflect on a graph where the vertical and horizontal lines meet?
  • How to recognize adjacent angles easily without any trouble?
  • Compare the differential vs. analytic geometry by citing relevant examples.
  • Explain how to use a graphics system for solving various types of equations.
  • How to divide the feasible and non-feasible regions in linear programming?
  • What are confidence intervals and how it helps in statistical math?
  • How to differentiate the effect of a magnetic field on a given point of the circle by using appropriate differential formula?
  • What are the different types of identities that are used in trigonometric functions?
  • Why polynomials are difficult to solve as compared to monomials? Give examples.
  • Explain radical expressions and their significance with examples.

Final Words

We hope you have identified an ideal topic from the list of math research topics and ideas recommended above. If you haven’t found a unique research topic or need assistance to complete your math research paper, then contact us.

mini research topics in mathematics

Related Post

Spell for Students and Adults

110 Hard Words to Spell for Students and Adults

Avoid Passive Voice

Learn How to Avoid Passive Voice in 3 Simple Steps

Greek Mythology Essay Topic

117 Best Greek Mythology Essay Topics For Students

About author.

' src=

Jacob Smith

I am an Academic Writer and have affection to share my knowledge through posts’. I do not feel tiredness while research and analyzing the things. Sometime, I write down hundred of research topics as per the students requirements. I want to share solution oriented content to the students.

Comments are closed.

  • Featured Posts

140 Unique Geology Research Topics to Focus On

200+ outstanding world history topics and ideas 2023, 190 excellent ap research topics and ideas, 150+ trending group discussion topics and ideas, 170 funny speech topics to blow the minds of audience, who invented exams learn the history of examination, how to focus on reading 15 effective tips for better concentration, what is a rhetorical analysis essay and how to write it, primary school teacher in australia- eligibility, job role, career options, and salary, 4 steps to build a flawless business letter format, get help instantly.

Raise Your Grades with Assignment Help Pro

My Paper Done

  • Services Paper editing services Paper proofreading Business papers Philosophy papers Write my paper Term papers for sale Term paper help Academic term papers Buy research papers College writing services Paper writing help Student papers Original term papers Research paper help Nursing papers for sale Psychology papers Economics papers Medical papers Blog

mini research topics in mathematics

166 Extraordinary Math Research Topics For Your Papers

math research topics

Math research topics cover various genres from which students can choose. Many people think that a research project on a math topic is dull. However, mathematics can be a wonderful and vivid field. Since it’s a universal language, mathematics can describe anything and everything, from galaxies that orbit each other to music. However, the broad nature of this study field also makes selecting a research paper difficult. That’s because learners want to pick interesting topics that will impress educators to award them top scores. This article lists the best math research paper topics. It’s useful because it inspires students to select or customize topics for their academic essays without much struggle.

What Are The Different Types Of Math?

As hinted, math covers several genres. Here are the primary types of mathematics:

Geometry: It’s a math branch that deals with the shapes, size, and relative position of figures. Many people consider geometry a practical math branch because it examines figures, shapes, sizes, and features of various entities, including parts like solids, lines, surfaces, lines, and angles. Algebra: It assists in solving equations and manipulating symbols. This branch helps students represent unknown quantities with alphabets and use them alongside numbers. Calculus: This area is vital in determining rates of change, such as velocity and acceleration. Arithmetic: Arithmetic is the most common and oldest math branch, encompassing basis number operations. These operations include subtraction, addition, divisions, and multiplications, and some schools shorten it as BODMAS. Statistics and Probability: They help analyze numerical data to make predictions. Probability is about chances, while statistics entails handling different data using various techniques. Trigonometry: It assists in calculating angles and distances between points. It mainly deals with triangles’ relationships, sides, and curves.

Now that you understand the types of mathematics, it’s easier to select a suitable research topic. The following are some of the best topic ideas in math. 

 Undergraduate Math Research Topics

Maybe you’re pursuing your undergraduate studies. However, you have challenges comprehending math topics, yet the professor expects you to write a superior paper. In that case, here’s a list of engaging research topics in math to consider for your essays.

  • An in-depth comprehension of the meaning of discrete random variables in math and their identification
  • Math evolution- Comprehending the Gauss-Markov
  • Primary math theorems- Investigating how they work
  • Continuous stochastic process- Exploring its role in the math process
  • Analyzing the Dempster-Shafer theory
  • The application of the transferable belief model
  • Exploring the use of math in artificial intelligence
  • The application of mathematics in daily life
  • Algebra and its history
  • Math and culture- What’s the relationship?
  • How drawing and painting could help with mathematics
  • Ways to boost math interest among learners
  • The social and political significance of learning mathematics
  • Circles and their relevance in mathematics
  • Challenges to math learning in public schools
  • Prove the use of F-Algebras
  • Understanding the meaning of abstract algebra
  • Discuss geometry and algebra
  • How acute square triangulation works
  • Discuss the essence of right triangles
  • Why non-Euclidean geometry should be compulsory for math students
  • Investigating number problems
  • Discuss the meaning of Dirac manifolds
  • How geometry influences chemistry and physics
  • Riemannian manifolds’ application in the Euclidean space

These are exciting math topics for undergraduate students. Nevertheless, prepare adequate time and resources to investigate any of these titles to draft a winning essay. You might have to provide theoretical and practical assessments when writing your essay.

Math Research Topics for High School Learners

Maybe your high school teacher asked you to write a research paper. Choosing a familiar topic is an excellent way to get a high grade. Here are some of the best math research paper topics for high school.

  • How to draw a chart representing the financial analysis of a prominent company over the last five years
  • How to solve a matrix- The vital principles and formulas to embrace
  • Exploring various techniques for solving finance and mathematical gaps
  • Discount factor- Why it’s crucial for learners and ways to achieve it
  • Calculating the interest rate and its essence in the banking industry
  • Why imaginary numbers are important
  • Investigating the application of math in the workplace
  • Explain why learners hate mathematics teachers
  • What makes math a complex subject?
  • Is making math compulsory in high school a good thing?
  • How to solve a dice question from a probability perspective
  • Understanding the Binomial theorem and its essence
  • Investigating Egyptian mathematics
  • Hyperbola- Understanding it and its use in math
  • When should students use calculators in class?
  • How to solve linear equations
  • Is the Pythagoras theorem important in math?
  • The interdependence between math and art
  • Philosophy’s role in math
  • Numerical data overview

High school learners can pick any of these titles and develop them into an essay. Nevertheless, they should prepare to spend some time investigating their topics to write pieces that will impress their educators. Titles that address math history and its influence on education can also suit high school students. However, learners should select titles that fulfil the academic requirements set by the educators.

Applied Math Research Topics

As a branch, applied math deals with mathematical methods and their real-life applications. These methods are manifest in engineering, finance, medicine, biology, physics, and others. Here are some of the exciting topics in this field.

  • Dimensions for examining fingerprints
  • Computer tomography and its significance
  • Step-stress modelling- What is its importance?
  • Explain the essence of data mining- How does it benefit the banking sector?
  • A detailed examination of nonlinear models
  • How genes discovery helps determine unhealthy and healthy patients
  • Algorithms and their role in probabilistic modelling
  • Mathematicians and their importance in robots’ development
  • Mathematicians’ role in crime prevention and data analysis
  • The essence of Law of Motion by Isaac in real life
  • The importance of math in energy conservation
  • Math and its role in quantum theory
  • Analyzing the Lorentz symmetry features
  • Evaluating the processing of the statistical signal in detail
  • Explain the achievement of Galilean Transformation

These are exciting ideas to explore when writing a research paper in applied math. Nevertheless, take your time to carefully and extensively research your preferred title to write a high-quality essay. Students should also note that some topics in this category require specialized knowledge to write superior papers.

It’s a challenge to write a paper for a high grade. Sometimes every student need a professional help with college paper writing. Therefore, don’t be afraid to hire a writer to complete your assignment. Just write a message “Please, write custom research paper for me” and get time to relax. Contact us today and get a 100% original paper. 

Interesting Math Research Topics

Maybe you’re among the learners that prefer working with exciting ideas. In that case, this category has topics that will interest you.

  • The uses of numerical analysis in machine learning
  • Foundations and philosophical problems
  • Convex versus Concave in geometry
  • Homological algebra- What is its purpose?
  • Is math useful in cryptography
  • Probability theory and random variable
  • Functional analysis- What are its four conditions?
  • Vector calculus versus multivariable
  • Mathematics and logicist definitions
  • Ways to apply the number theory in daily life
  • Studying complex math equations
  • How to calculate mode, median, and mean
  • Understanding the meaning of the Scholz conjecture
  • The definition of the past correspondence problem
  • Computational maths- What are its classes?
  • Multiplication table and its importance
  • What the Boolean satisfiability problem means for a learner
  • Understanding the linear speedup theory in mathematics
  • The Turing machine description
  • Understanding the Markov algorithm
  • Investigating the similarities and differences between Buchi automation and Pushdown automation
  • What is the meaning of Tree automation?
  • Describing the enclosing sphere method and its use in combinations
  • Egyptian pyramids and calculus
  • Analyzing De Finetti theorem in statistics and probability
  • Examining the congruence meaning in math
  • Application and purpose of calculus in the banking industry
  • Jean d’Alembert’s most famous works
  • Boolean algebra- What are its essential elements
  • Isaac Newton- His contribution, life, and time in math
  • Understanding the meaning of Sphericon
  • What is the purpose of Martingales?
  • Gauss times, energy, and contributions to math
  • Jakob Bernoulli- Exploring his famous works
  • A brief history of math

Some learners think writing a math essay is complex and tedious. However, you can find a topic you will enjoy working with throughout the project. These are exciting ideas to explore in research papers. However, prepare to spend sufficient time investigating your chosen title to write a winning paper, although these are generally relaxing titles for math papers and essays.

Math Research Topics for Middle School

Some middle school students worry about the math topics for their research. However, they can choose unique titles that will impress their teachers. Here are some of these ideas.

  • The impacts of standard exam curriculum on math education
  • Why is learning math so tricky?
  • What is the meaning of the commutative ring in algebra?
  • The Artin-Wedderburn theorem and its meaning
  • How monopolists and epimorphisms differ
  • Understanding the Jacobson density theorem
  • How linear approximations work
  • Root and ratio test definition
  • Statistics role in business
  • Economic lot scheduling- What does it mean?
  • Causes of the stock market crash
  • How many traders contribute to the New York Stock Exchange
  • The history of revenue management
  • Financial signs of an excellent investment
  • Depreciation and its odds
  • How a poor currency can benefit a country
  • How math helps with debt amortization
  • Ways to calculate a person’s net worth
  • Distinctions in algebra, trigonometry, and calculus
  • Discussing the beginning of calculus
  • The essence of stochastic in math
  • The meaning of limits in math
  • Ways to identify a critical point in a graph
  • Nonstandard analysis- What does it mean in the probability theory?
  • Continuous function description and meaning
  • Calculus- What are its primary principles?
  • Pythagoras theorem- What are its central tenets?
  • Calculus applications in finance
  • Theorem value in math
  • The application of linear approximations

This list has some of the best titles for middle school learners. But they also require some research to write superior essays. However, finding information on such topics is relatively easy, making them suitable for middle school students.

Math Research Topics for College Students

Maybe you’re pursuing college studies and need a title for a math research paper. In that case, here are exciting titles to consider for your essay.

  • What is the purpose of n-dimensional spaces?
  • Card counting- How does it work?
  • How continuous probability and discrete distribution differ
  • Understanding encryption- How Does it work?
  • Extremal problems- Investigating them in discrete geometry
  • The Mobius strip- Examining the topology
  • Why can a math problem be unsolvable?
  • Comparing different statistical methods
  • Explain the vital number theory concepts
  • Analyzing the polynomial functions’ degrees
  • Ways to divide complex numbers
  • Describe the prize problems with the millennium
  • The reasons for the unsolved Riemann hypothesis
  • Methods of solving Sudoku with math
  • Explain the fractals formation
  • Describe the evolution of math
  • Explore different types of Tower of Hanoi solutions
  • Discuss the uses of Napier’s bones
  • With examples, explain the chaos theory
  • Why are mathematical equations important all the time?
  • Fisher’s fundamental theorem and natural selection- Why are they important?

College professors expect students to draft papers with relevant and valuable information. These are relevant titles for college students. However, they require extensive research to write winning papers.

Cool Math Topics to Research

Maybe you don’t need a complex topic for your research paper. In that case, consider any of these ideas for your essay. If you have a problem writing even with these topics and you’re thinking: “solve my math for me,” you can always reach out to our service.

  • How contemporary architectural designs use geometry
  • What makes some math equations complex?
  • Ways to solve the Rubik’s cube
  • Discuss the meaning of prescriptive statistical and predictive analysis
  • Understanding the purpose of the chaos theory
  • What limits calculus?- Provide relevant examples
  • A comparison of universal and abstract algebra- How do they differ?
  • The relationship between probability and card tricks
  • Pascal’s Triangle- What does it mean?
  • Mobius strip- What are its features in geometry?
  • Multiple probability ideas- A brief overview
  • Discuss the meaning of the Golden Ration in Renaissance period paintings
  • How checkers and chess matter in understanding mathematics
  • Ways to measure infinity
  • Evaluating the Georg Contor theory
  • Are hexagons the most balanced shapes in the world?
  • The Koch snowflake- Explain the iterations
  • The history of various number types and their use
  • Game theory use in social science
  • Five math types with significant benefits in computer science

These are some of the most excellent math education research topics. However, they also require extensive research to write high-quality papers.

Enlist the Best College Research Paper Writing Service

Perhaps, you have a topic for your paper but not the time to write a winning piece. Maybe you’re not confident in your research, analytical, and writing skills. Thus, you’re unsure that you can write an essay that will compel your educator to award you the highest grade in your class. Well, you’re not the only one. Many students seek cheap research papers due to varied reasons. Whether it’s limited time and resources or a lack of the necessary skills and experience in academic paper writing, our crew can help you. We offer affordable college paper writing services and help in various math branches. Our experts can assist you if you need help with math research topics for high school students, college, or undergraduates. We are a professional team with a reputation for providing the best-rated academic writing assistance. Whether in university, college, or high school, our crew will offer the service you need to excel academically. Contact us now for cheap and reliable help with your academic essays.

physics topics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Terms & Conditions Loyalty Program Privacy Policy Money-Back Policy

Copyright © 2013-2024 MyPaperDone.com

July 1, 2024

The Biggest Problem in Mathematics Is Finally a Step Closer to Being Solved

Number theorists have been trying to prove a conjecture about the distribution of prime numbers for more than 160 years

By Manon Bischoff

Abstract purple lines funnelling towards the right with white dotted light sources becoming smaller towards the right.

Weiquan Lin/Getty Images

The Riemann hypothesis is the most important open question in number theory—if not all of mathematics. It has occupied experts for more than 160 years. And the problem appeared both in mathematician David Hilbert’s groundbreaking speech from 1900 and among the “Millennium Problems” formulated a century later. The person who solves it will win a million-dollar prize.

But the Riemann hypothesis is a tough nut to crack. Despite decades of effort, the interest of many experts and the cash reward, there has been little progress. Now mathematicians Larry Guth of the Massachusetts Institute of Technology and James Maynard of the University of Oxford have posted a sensational new finding on the preprint server arXiv.org. In the paper, “the authors improve a result that seemed insurmountable for more than 50 years,” says number theorist Valentin Blomer of the University of Bonn in Germany.

Other experts agree. The work is “a remarkable breakthrough,” mathematician and Fields Medalist Terence Tao wrote on Mastodon , “though still very far from fully resolving this conjecture.”

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

The Riemann hypothesis concerns the basic building blocks of natural numbers: prime numbers, values only divisible by 1 and themselves. Examples include 2, 3, 5, 7, 11, 13, and so on.

Every other number, such as 15, can be clearly broken down into a product of prime numbers: 15 = 3 x 5. The problem is that the prime numbers do not seem to follow a simple pattern and instead appear randomly among the natural numbers. Nineteenth-century German mathematician Bernhard Riemann proposed a way to deal with this peculiarity that explains how prime numbers are distributed on the number line—at least from a statistical point of view.

A Periodic Table for Numbers

Proving this conjecture would provide mathematicians with nothing less than a kind of “periodic table of numbers.” Just as the basic building blocks of matter (such as quarks, electrons and photons) help us to understand the universe and our world, prime numbers also play an important role, not just in number theory but in almost all areas of mathematics.

There are now numerous theorems based on the Riemann conjecture. Proof of this conjecture would prove many other theorems as well—yet another incentive to tackle this stubborn problem.

Interest in prime numbers goes back thousands of years. Euclid proved as early as 300 B.C.E. that there are an infinite number of prime numbers. And although interest in prime numbers persisted, it was not until the 18th century that any further significant findings were made about these basic building blocks.

As a 15-year-old, physicist Carl Friedrich Gauss realized that the number of prime numbers decreases along the number line. His so-called prime number theorem (not proven until 100 years later) states that approximately n / ln( n ) prime numbers appear in the interval from 0 to n . In other words, the prime number theorem offers mathematicians a way of estimating the typical distribution of primes along a chunk of the number line.

The exact number of prime numbers may differ from the estimate given by the theorem, however. For example: According to the prime number theorem, there are approximately 100 / ln(100) ≈ 22 prime numbers in the interval between 1 and 100. But in reality there are 25. There is therefore a deviation of 3. This is where the Riemann hypothesis comes in. This hypothesis gives mathematicians a way to estimate the deviation. More specifically, it states that this deviation cannot become arbitrarily large but instead must scale at most with the square root of n , the length of the interval under consideration.

The Riemann hypothesis therefore does not predict exactly where prime numbers are located but posits that their appearance on the number line follows certain rules. According to the Riemann hypothesis, the density of primes decreases according to the prime number theorem, and the primes are evenly distributed according to this density. This means that there are no large areas in which there are no prime numbers at all, while others are full of them.

You can also imagine this idea by thinking about the distribution of molecules in the air of a room: the overall density on the floor is somewhat higher than on the ceiling, but the particles—following this density distribution—are nonetheless evenly scattered, and there is no vacuum anywhere.

A Strange Connection

Riemann formulated the conjecture named after him in 1859, in a slim, six-page publication (his only contribution to the field of number theory). At first glance, however, his work has little to do with prime numbers.

He dealt with a specific function, the so-called zeta function ζ( s ), an infinitely long sum that adds the reciprocal values of natural numbers that are raised to the power of s :

The zeta function

Even before Riemann’s work, experts knew that such zeta functions are related to prime numbers. Thus, the zeta function can also be expressed as a function of all prime numbers p as follows:

The zeta function as a function of all prime numbers

Riemann recognized the full significance of this connection with prime numbers when he used not only real values for s but also complex numbers. These numbers contain both a real part and roots from negative numbers, the so-called imaginary part.

You can imagine complex numbers as a two-dimensional construct. Rather than mark a point on the number line, they instead lie on the plane. The x coordinate corresponds to the real part and the y coordinate to the imaginary part:

The coordinates of z = x + iy illustrate a complex number

Никита Воробьев/Wikimedia

The complex zeta function that Riemann investigated can be visualized as a landscape above the plane. As it turns out, there are certain points amid the mountains and valleys that play an important role in relation to prime numbers. These are the points at which the zeta function becomes zero (so-called zeros), where the landscape sinks to sea level, so to speak.

A visual mapping of the zeta function looks like a mountainscape with peaks and troughs

The colors represent the values of the complex zeta function, with the white dots indicating its zeros.

Jan Homann/Wikimedia

Riemann quickly found that the zeta function has no zeros if the real part is greater than 1. This means that the area of the landscape to the right of the straight line x = 1 never sinks to sea level. The zeros of the zeta function are also known for negative values of the real part. They lie on the real axis at x = –2, –4, –6, and so on. But what really interested Riemann—and all mathematicians since—were the zeros of the zeta function in the “critical strip” between 0 ≤ x ≤ 1.

The dark blue area demarcates a stretch along the x axis where the Riemann zeta function contains nontrivial zeros

In the critical strip (dark blue), the Riemann zeta function can have “nontrivial” zeros. The Riemann conjecture states that these are located exclusively on the line x = 1/2 (dashed line).

LoStrangolatore/Wikimedia ( CC BY-SA 3.0 )

Riemann knew that the zeta function has an infinite number of zeros within the critical strip. But interestingly, all appear to lie on the straight line x = 1 / 2 . Thus Riemann hypothesized that all zeros of the zeta function within the critical strip have a real part of x = 1 / 2 . That statement is actually at the crux of understanding the distribution of prime numbers. If correct, then the placement of prime numbers along the number line never deviates too much from the prime number set.

On the Hunt for Zeros

To date, billions and billions of zeta function zeros have now been examined— more than 10 13 of them —and all lie on the straight line x = 1 / 2 .

But that alone is not a valid proof. You would only have to find a single zero that deviates from this scheme to disprove the Riemann hypothesis. Therefore we are looking for a proof that clearly demonstrates that there are no zeros outside x = 1 / 2 in the critical strip.

Thus far, such a proof has been out of reach, so researchers took a different approach. They tried to show that there is, at most, a certain number N of zeros outside this straight line x = 1 / 2 . The hope is to reduce N until N = 0 at some point, thereby proving the Riemann conjecture. Unfortunately, this path also turns out to be extremely difficult. In 1940 mathematician Albert Ingham was able to show that between 0.75 ≤ x ≤ 1 there are at most y 3/5+ c zeros with an imaginary part of at most y , where c is a constant between 0 and 9.

In the following 80 years, this estimation barely improved. The last notable progress came from mathematician Martin Huxley in 1972 . “This has limited us from doing many things in analytic number theory,” Tao wrote in his social media post . For example, if you wanted to apply the prime number theorem to short intervals of the type [ x , x + x θ ], you were limited by Ingham’s estimate to θ > 1 / 6 .

Yet if Riemann’s conjecture is true, then the prime number theorem applies to any interval (or θ = 0), no matter how small (because [ x , x + x θ ] = [ x , x + 1] applies to θ = 0).

Now Maynard, who was awarded the prestigious Fields Medal in 2022 , and Guth have succeeded in significantly improving Ingham’s estimate for the first time. According to their work, the zeta function in the range 0.75 ≤ x ≤ 1 has at most y (13/25)+ c zeros with an imaginary part of at most y . What does that mean exactly? Blomer explains: “The authors show in a quantitative sense that zeros of the Riemann zeta function become rarer the further away they are from the critical straight line. In other words, the worse the possible violations of the Riemann conjecture are, the more rarely they would occur.”

“This propagates to many corresponding improvements in analytic number theory,” Tao wrote . It makes it possible to reduce the size of the intervals for which the prime number theorem applies. The theorem is valid for [ x , x + x 2/15 ], so θ > 1 / 6 = 0.166... becomes θ > 2 ⁄ 15 = 0.133...

For this advance, Maynard and Guth initially used well-known methods from Fourier analysis for their result. These are similar techniques to what is used to break down a sound into its overtones. “The first few steps are standard, and many analytic number theorists, including myself, who have attempted to break the Ingham bound, will recognize them,” Tao explained . From there, however, Maynard and Guth “do a number of clever and unexpected maneuvers,” Tao wrote.

Blomer agrees. “The work provides a whole new set of ideas that—as the authors rightly say—can probably be applied to other problems. From a research point of view, that’s the most decisive contribution of the work,” he says.

So even if Maynard and Guth have not solved Riemann’s conjecture, they have at least provided new food for thought to tackle the 160-year-old puzzle. And who knows—perhaps their efforts hold the key to finally cracking the conjecture.

This article originally appeared in Spektrum der Wissenschaft and was reproduced with permission.

Mathematics Research Paper Topics

Academic Writing Service

See our list of mathematics research paper topics . Mathematics is the science that deals with the measurement, properties, and relationships of quantities, as expressed in either numbers or symbols. For example, a farmer might decide to fence in a field and plant oats there. He would have to use mathematics to measure the size of the field, to calculate the amount of fencing needed for the field, to determine how much seed he would have to buy, and to compute the cost of that seed. Mathematics is an essential part of every aspect of life—from determining the correct tip to leave for a waiter to calculating the speed of a space probe as it leaves Earth’s atmosphere.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

  • Boolean algebra
  • Chaos theory
  • Complex numbers
  • Correlation
  • Fraction, common
  • Game theory
  • Graphs and graphing
  • Imaginary number
  • Multiplication
  • Natural numbers
  • Number theory
  • Numeration systems
  • Probability theory
  • Proof (mathematics)
  • Pythagorean theorem
  • Trigonometry

Mathematics undoubtedly began as an entirely practical activity— measuring fields, determining the volume of liquids, counting out coins, and the like. During the golden era of Greek science, between about the sixth and third centuries B.C., however, mathematicians introduced a new concept to their study of numbers. They began to realize that numbers could be considered as abstract concepts. The number 2, for example, did not necessarily have to mean 2 cows, 2 coins, 2 women, or 2 ships. It could also represent the idea of “two-ness.” Modern mathematics, then, deals both with problems involving specific, concrete, and practical number concepts (25,000 trucks, for example) and with properties of numbers themselves, separate from any practical meaning they may have (the square root of 2 is 1.4142135, for example).

Fields of Mathematics

Mathematics can be subdivided into a number of special categories, each of which can be further subdivided. Probably the oldest branch of mathematics is arithmetic, the study of numbers themselves. Some of the most fascinating questions in modern mathematics involve number theory. For example, how many prime numbers are there? (A prime number is a number that can be divided only by 1 and itself.) That question has fascinated mathematicians for hundreds of years. It doesn’t have any particular practical significance, but it’s an intriguing brainteaser in number theory.

Geometry, a second branch of mathematics, deals with shapes and spatial relationships. It also was established very early in human history because of its obvious connection with practical problems. Anyone who wants to know the distance around a circle, square, or triangle, or the space contained within a cube or a sphere has to use the techniques of geometry.

Algebra was established as mathematicians recognized the fact that real numbers (such as 4 and 5.35) can be represented by letters. It became a way of generalizing specific numerical problems to more general situations.

Analytic geometry was founded in the early 1600s as mathematicians learned to combine algebra and geometry. Analytic geometry uses algebraic equations to represent geometric figures and is, therefore, a way of using one field of mathematics to analyze problems in a second field of mathematics.

Over time, the methods used in analytic geometry were generalized to other fields of mathematics. That general approach is now referred to as analysis, a large and growing subdivision of mathematics. One of the most powerful forms of analysis—calculus—was created almost simultaneously in the early 1700s by English physicist and mathematician Isaac Newton (1642–1727) and German mathematician Gottfried Wilhelm Leibniz (1646–1716). Calculus is a method for analyzing changing systems, such as the changes that take place as a planet, star, or space probe moves across the sky.

Statistics is a field of mathematics that grew in significance throughout the twentieth century. During that time, scientists gradually came to realize that most of the physical phenomena they study can be expressed not in terms of certainty (“A always causes B”), but in terms of probability (“A is likely to cause B with a probability of XX%”). In order to analyze these phenomena, then, they needed to use statistics, the field of mathematics that analyzes the probability with which certain events will occur.

Each field of mathematics can be further subdivided into more specific specialties. For example, topology is the study of figures that are twisted into all kinds of bizarre shapes. It examines the properties of those figures that are retained after they have been deformed.

Back to Science Research Paper Topics .

ORDER HIGH QUALITY CUSTOM PAPER

mini research topics in mathematics

  • Welcome from the Chair
  • Michalik Distinguished Lecture Series
  • Open Faculty Positions
  • Advising & Support
  • Calculus Curriculum
  • Degree Programs/Requirements
  • Extracurricular Activities
  • Math Placement Assessment
  • Math Assistance Center/Posvar Computing Lab
  • Research/Career Opportunities
  • Admissions & Financial Aid
  • Degree Programs
  • Graduate Employment
  • Graduate Handbook
  • Information for Incoming Graduate Students
  • Organizations
  • Research Opportunities
  • Teaching Opportunities

Research Areas

  • Graduate Research
  • Undergraduate Research
  • Mathematics Research Center
  • Technical Reports
  • Publications
  • Gallery of Research Images
  • Faculty Admin
  • Adjunct Faculty
  • Part-Time Faculty
  • Emeritus Faculty
  • Post-Doctoral Associates
  • Graduate Students
  • Stay in Touch
  • Newsletter Archive
  • Upcoming Events
  • Past Events
  • Prospective Students

mini research topics in mathematics

Department members engage in cutting-edge research on a wide variety of topics in mathematics and its applications. Topics continually evolve to reflect emerging interests and developments, but can roughly grouped into the following areas.

Algebra, Combinatorics, and Geometry

Algebra, combinatorics, and geometry are areas of very active research at the University of Pittsburgh.

Analysis and Partial Differential Equations

The research of the analysis group covers functional analysis, harmonic analysis, several complex variables, partial differential equations, and analysis on metric and Carnot-Caratheodory spaces.

Applied Analysis

The department is a leader in the analysis of systems of nonlinear differential equations and dynamical systems  that arise in modeling a variety of physical phenomena. They include problems in biology, chemistry, phase transitions, fluid flow, flame propagation, diffusion processes, and pattern formation in nonlinear stochastic partial differential equations.

Mathematical Biology

The biological world stands as the next great frontier for mathematical modeling and analysis. This group studies complex systems and dynamics arising in various biological phenomena.

Mathematical Finance

A rapidly growing area of mathematical finance is Quantitative Behavioral Finance. The high-tech boom and bust of the late 1990s followed by the housing and financial upheavals of 2008 have made a convincing case for the necessity of adopting broader assumptions in finance.

Numerical Analysis and Scientific Computing

The diversity of this group is reflected in its research interests: numerical analysis of partial differential equations , adaptive methods for scientific computing, computational methods of fluid dynamics and turbulence, numerical solution of nonlinear problems arising from porous media flow and transport, optimal control, and simulation of stochastic reaction diffusion systems.

Topology and Differential Geometry

Research in analytic topology continues in the broad area of generalized metric spaces. This group studies relativity theory and differential geometry, with emphasis on twistor methods, as well as geometric and topological aspects of quantum field theory, string theory, and M-theory.

  • Chair's Welcome
  • General Information
  • Strategic Plan
  • MathJobs Postings
  • Photo Album
  • Make a Gift
  • Department's History
  • People Search
  • Administration
  • Retired Professors
  • Postdocs/Res. Associates
  • Instructors
  • Graduate Students
  • Research Interests
  • Seminars & Colloquia
  • Porcelli Lecture Series
  • Federal Grants
  • Undergraduate Program
  • Placement and Credit
  • Degree Requirements
  • Contact an Advisor
  • Programs and Clubs
  • Scholarships and Awards
  • Careers in Math
  • Undergraduate Research
  • Welcome & News
  • Graduate Degrees
  • Courses and Research
  • 7000 Courses by Semester
  • Prospective Students
  • Teaching Assistantships
  • GEAUX Orientation Program
  • Advising and Registration
  • Exam & Graduation Instructions
  • Travel Funding
  • Activities and Organizations
  • Graduate Student Awards
  • PhD Graduates
  • High School Math Contest
  • Math Circle Competition Team
  • Math Circle Summer Camp
  • Dual Enrollment
  • Capstone Course
  • Actuarial Club
  • Assoc. for Women in Math
  • LSU Math Club
  • Student Colloquium
  • Computing & IT
  • Files To Geaux
  • Journals (MathSciNet)
  • Virtual Lab
  • Emergency Information

Undergraduate Mathematics Projects

Undergraduate menu.

This page describes projects in the LSU Department of Mathematics in which undergraduate students are involved. Some of them may be seeking undergraduate participants. Return to the main page for undergraduate research .

Active Projects

Van kampen's obstruction and graph planarity, bayesian machine learning, fourier analysis on finite fields, laplacian on periodic discrete graphs, modeling, analysis, and simulation of liquid crystals with applications in material science and biology.

  • Mottram, N. J. & Newton, C. J. P., “Introduction to Q-tensor theory,” arXiv e-prints, 2014.
  • Virga, E. G., “Variational Theories for Liquid Crystals,” Chapman and Hall, London, 1994, 8, 376.
  • Ball, J. M., “Mathematics and liquid crystals,” Molecular Crystals and Liquid Crystals, Taylor & Francis, 2017, 647, 1-27.
  • de Gennes, P. G. & Prost, J., “The Physics of Liquid Crystals,” Oxford Science Publication, 1995, 83.
  • Lagerwall, J. P. & Scalia, G., “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Current Applied Physics, 2012, 12, 1387-1412.

Flow Semigroups: Global Linearization of Nonlinear Problems

Nodal sets of eigenfunctions in balls, bethe equations for the gaudin model and wronskian relations, flat connections on riemann surfaces, control of dynamical systems with engineering applications.

Also see the Senior Design Project that Dr. Malisoff jointly advises.

Control of Marine Robots

Stochastic algorithms, a viral topology course, an online graphical user interface for electromagnetic waves in layered media, schrödinger operators on graphs, wave scattering by periodic structures: surface modes and resonance, math consultation clinic (mcc), past projects, stochastic marine robotic control systems.

Probability is useful for understanding the effect of randomness which is inherent in biology, economics, engineering, finance, and numerous other areas. Probabilistic methods are employed to mathematically model certain behaviors of these systems with the goal to quantify uncertainty and use it to our advantage. The mathematical models are often in terms of systems of differential or difference equations that contain user-manipulated parameters known as controls. The controls are used to model interventions that can guide dynamical systems to desirable modes of operation. These desired modes of operation may include convergence towards equilibria, or maintaining components of the states of the dynamics in certain prescribed ranges. For instance, in aerospace and marine applications, the controls can represent possible thrusts that can be applied to a vehicle, in order to track a desired path without colliding with obstacles. The randomness of the systems which are represented in the mathematical equations modeling them often requires the controls to be probabilistic as well, and the goal is typically to maximize the probability that the system being modeled achieves a desired mode of operation. This project uses basic probability and control systems theory to understand and quantify the effects of stochastic uncertainty on the performance of controls for mathematical models of marine robots whose objectives are station keep or tracking desired paths. These include vehicles that are used to study underwater ecosystems, and to inspect underwater cables or pipes. The REU students will assist with computer programming for the faculty advisors' joint project "Stochastic Delay-Compensating Data-Driven Event-Triggered Feedback Control for Marine Robotics" which is sponsored by the LSU Office of Research and Economic Development.

Skills required: Students should have good knowledge of multivariable calculus, and some knowledge of elementary differential equations (at the level of MATH 2065, 2070, or 2090 at LSU). A bit of knowledge of probability and statistics will also be helpful but could be learned by the student during the REU. They should also have experience in programming. The preferred programming language is MATLAB, Python, or R, but this can be picked up easily if the student has knowledge of any other programming language.

Explicit time-integration of a nonlinear string model

Visualizing trends in teacher production using title ii data, how to design an automobile insurance product for autonomous vehicles, informetric indicators for citation networks, a variation of the stable marriage problem, quantitative nevanlinna-pick interpolation, predicting outcomes in college football using machine learning, local langlands correspondence for sl 2.

  • Printable View

mini research topics in mathematics

  •   MINDS@UW Home
  • MINDS@UW Eau Claire
  • UWEC Office of Research and Sponsored Programs

Math 380: Research Methods in Mathematics

Thumbnail

Permanent Link

Description.

California State University, San Bernardino

Home > College of Natural Sciences > Mathematics > Mathematics Theses, Projects, and Dissertations

Mathematics Theses, Projects, and Dissertations

Theses/projects/dissertations from 2024 2024.

On Cheeger Constants of Knots , Robert Lattimer

Information Based Approach for Detecting Change Points in Inverse Gaussian Model with Applications , Alexis Anne Wallace

Theses/Projects/Dissertations from 2023 2023

DNA SELF-ASSEMBLY OF TRAPEZOHEDRAL GRAPHS , Hytham Abdelkarim

An Exposition of the Curvature of Warped Product Manifolds , Angelina Bisson

Jackknife Empirical Likelihood Tests for Equality of Generalized Lorenz Curves , Anton Butenko

MATHEMATICS BEHIND MACHINE LEARNING , Rim Hammoud

Statistical Analysis of Health Habits for Incoming College Students , Wendy Isamara Lizarraga Noriega

Reverse Mathematics of Ramsey's Theorem , Nikolay Maslov

Distance Correlation Based Feature Selection in Random Forest , Jose Munoz-Lopez

Constructing Hyperbolic Polygons in the Poincaré Disk , Akram Zakaria Samweil

KNOT EQUIVALENCE , Jacob Trubey

Theses/Projects/Dissertations from 2022 2022

SYMMETRIC GENERATIONS AND AN ALGORITHM TO PROVE RELATIONS , Diddier Andrade

The Examination of the Arithmetic Surface (3, 5) Over Q , Rachel J. Arguelles

Error Terms for the Trapezoid, Midpoint, and Simpson's Rules , Jessica E. Coen

de Rham Cohomology, Homotopy Invariance and the Mayer-Vietoris Sequence , Stacey Elizabeth Cox

Symmetric Generation , Ana Gonzalez

SYMMETRIC PRESENTATIONS OF FINITE GROUPS AND RELATED TOPICS , Samar Mikhail Kasouha

Simple Groups and Related Topics , Simrandeep Kaur

Homomorphic Images and Related Topics , Alejandro Martinez

LATTICE REDUCTION ALGORITHMS , Juan Ortega

THE DECOMPOSITION OF THE SPACE OF ALGEBRAIC CURVATURE TENSORS , Katelyn Sage Risinger

Verifying Sudoku Puzzles , Chelsea Schweer

AN EXPOSITION OF ELLIPTIC CURVE CRYPTOGRAPHY , Travis Severns

Theses/Projects/Dissertations from 2021 2021

Non-Abelian Finite Simple Groups as Homomorphic Images , Sandra Bahena

Matroids Determinable by Two Partial Representations , Aurora Calderon Dojaquez

SYMMETRIC REPRESENTATIONS OF FINITE GROUPS AND RELATED TOPICS , Connie Corona

Symmetric Presentation of Finite Groups, and Related Topics , Marina Michelle Duchesne

MEASURE AND INTEGRATION , JeongHwan Lee

A Study in Applications of Continued Fractions , Karen Lynn Parrish

Partial Representations for Ternary Matroids , Ebony Perez

Theses/Projects/Dissertations from 2020 2020

Sum of Cubes of the First n Integers , Obiamaka L. Agu

Permutation and Monomial Progenitors , Crystal Diaz

Tile Based Self-Assembly of the Rook's Graph , Ernesto Gonzalez

Research In Short Term Actuarial Modeling , Elijah Howells

Hyperbolic Triangle Groups , Sergey Katykhin

Exploring Matroid Minors , Jonathan Lara Tejeda

DNA COMPLEXES OF ONE BOND-EDGE TYPE , Andrew Tyler Lavengood-Ryan

Modeling the Spread of Measles , Alexandria Le Beau

Symmetric Presentations and Related Topics , Mayra McGrath

Minimal Surfaces and The Weierstrass-Enneper Representation , Evan Snyder

ASSESSING STUDENT UNDERSTANDING WHILE SOLVING LINEAR EQUATIONS USING FLOWCHARTS AND ALGEBRAIC METHODS , Edima Umanah

Excluded minors for nearly-paving matroids , Vanessa Natalie Vega

Theses/Projects/Dissertations from 2019 2019

Fuchsian Groups , Bob Anaya

Tribonacci Convolution Triangle , Rosa Davila

VANISHING LOCAL SCALAR INVARIANTS ON GENERALIZED PLANE WAVE MANIFOLDS , Brian Matthew Friday

Analogues Between Leibniz's Harmonic Triangle and Pascal's Arithmetic Triangle , Lacey Taylor James

Geodesics on Generalized Plane Wave Manifolds , Moises Pena

Algebraic Methods for Proving Geometric Theorems , Lynn Redman

Pascal's Triangle, Pascal's Pyramid, and the Trinomial Triangle , Antonio Saucedo Jr.

THE EFFECTIVENESS OF DYNAMIC MATHEMATICAL SOFTWARE IN THE INSTRUCTION OF THE UNIT CIRCLE , Edward Simons

CALCULUS REMEDIATION AS AN INDICATOR FOR SUCCESS ON THE CALCULUS AP EXAM , Ty Stockham

Theses/Projects/Dissertations from 2018 2018

PROGENITORS, SYMMETRIC PRESENTATIONS AND CONSTRUCTIONS , Diana Aguirre

Monomial Progenitors and Related Topics , Madai Obaid Alnominy

Progenitors Involving Simple Groups , Nicholas R. Andujo

Simple Groups, Progenitors, and Related Topics , Angelica Baccari

Exploring Flag Matroids and Duality , Zachary Garcia

Images of Permutation and Monomial Progenitors , Shirley Marina Juan

MODERN CRYPTOGRAPHY , Samuel Lopez

Progenitors, Symmetric Presentations, and Related Topics , Joana Viridiana Luna

Symmetric Presentations, Representations, and Related Topics , Adam Manriquez

Toroidal Embeddings and Desingularization , LEON NGUYEN

THE STRUGGLE WITH INVERSE FUNCTIONS DOING AND UNDOING PROCESS , Jesus Nolasco

Tutte-Equivalent Matroids , Maria Margarita Rocha

Symmetric Presentations and Double Coset Enumeration , Charles Seager

MANUAL SYMMETRIC GENERATION , Joel Webster

Theses/Projects/Dissertations from 2017 2017

Investigation of Finite Groups Through Progenitors , Charles Baccari

CONSTRUCTION OF HOMOMORPHIC IMAGES , Erica Fernandez

Making Models with Bayes , Pilar Olid

An Introduction to Lie Algebra , Amanda Renee Talley

SIMPLE AND SEMI-SIMPLE ARTINIAN RINGS , Ulyses Velasco

CONSTRUCTION OF FINITE GROUP , Michelle SoYeong Yeo

Theses/Projects/Dissertations from 2016 2016

Upset Paths and 2-Majority Tournaments , Rana Ali Alshaikh

Regular Round Matroids , Svetlana Borissova

GEODESICS IN LORENTZIAN MANIFOLDS , Amir A. Botros

REALIZING TOURNAMENTS AS MODELS FOR K-MAJORITY VOTING , Gina Marie Cheney

Solving Absolute Value Equations and Inequalities on a Number Line , Melinda A. Curtis

BIO-MATHEMATICS: INTRODUCTION TO THE MATHEMATICAL MODEL OF THE HEPATITIS C VIRUS , Lucille J. Durfee

ANALYSIS AND SYNTHESIS OF THE LITERATURE REGARDING ACTIVE AND DIRECT INSTRUCTION AND THEIR PROMOTION OF FLEXIBLE THINKING IN MATHEMATICS , Genelle Elizabeth Gonzalez

LIFE EXPECTANCY , Ali R. Hassanzadah

PLANAR GRAPHS, BIPLANAR GRAPHS AND GRAPH THICKNESS , Sean M. Hearon

A Dual Fano, and Dual Non-Fano Matroidal Network , Stephen Lee Johnson

Mathematical Reasoning and the Inductive Process: An Examination of The Law of Quadratic Reciprocity , Nitish Mittal

The Kauffman Bracket and Genus of Alternating Links , Bryan M. Nguyen

Probabilistic Methods In Information Theory , Erik W. Pachas

THINKING POKER THROUGH GAME THEORY , Damian Palafox

Indicators of Future Mathematics Proficiency: Literature Review & Synthesis , Claudia Preciado

Ádám's Conjecture and Arc Reversal Problems , Claudio D. Salas

AN INTRODUCTION TO BOOLEAN ALGEBRAS , Amy Schardijn

The Evolution of Cryptology , Gwendolyn Rae Souza

Theses/Projects/Dissertations from 2015 2015

SYMMETRIC PRESENTATIONS AND RELATED TOPICS , Mashael U. Alharbi

Homomorphic Images And Related Topics , Kevin J. Baccari

Geometric Constructions from an Algebraic Perspective , Betzabe Bojorquez

Discovering and Applying Geometric Transformations: Transformations to Show Congruence and Similarity , Tamara V. Bonn

Symmetric Presentations and Generation , Dustin J. Grindstaff

HILBERT SPACES AND FOURIER SERIES , Terri Joan Harris Mrs.

SYMMETRIC PRESENTATIONS OF NON-ABELIAN SIMPLE GROUPS , Leonard B. Lamp

Simple Groups and Related Topics , Manal Abdulkarim Marouf Ms.

Elliptic Curves , Trinity Mecklenburg

A Fundamental Unit of O_K , Susana L. Munoz

CONSTRUCTIONS AND ISOMORPHISM TYPES OF IMAGES , Jessica Luna Ramirez

Advanced Search

  • Notify me via email or RSS
  • Department, Program, or Office
  • Disciplines

Author Corner

  • Mathematics Department web site

A service of the John M. Pfau Library

Digital Commons Network

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright Acrobat Reader

Math Knowledge Network

Réseau de connaissances en mathématiques

research mini overview

RESEARCH MINIS – AN OVERVIEW ( get this info as a single-page PDF )

A research mini is a side-by-side comparison of two different pedagogical approaches for the same content topic.

For example, look at the two different approaches to the topic of Area Representations of Fractions at http://researchideas.ca/sidebyside/fractions.html

The goal is not to show that one approach is better than the other. Often, students benefit from seeing a topic through various approaches and perspectives.

The goal is to showcase a new approach that you have designed that you feel is worth sharing, and to compare it to an approach that educators have likely seen before.

The audience for a research mini are educators. They are busy people who are looking for cool ideas to try out in their classrooms.

Here are some suggestions for designing these side-by-side comparisons:

  • Show them as classroom dialogues, with speech bubbles.
  • Use stick figures to represent generic students / teachers.
  • Give educators enough information to be able to try each approach in their classroom.
  • Be as succinct as possible.

You will find more examples of research minis at http://researchideas.ca/sidebyside

  • Mobile Site
  • Staff Directory
  • Advertise with Ars

Filter by topic

  • Biz & IT
  • Gaming & Culture

Front page layout

power cut —

Researchers upend ai status quo by eliminating matrix multiplication in llms, running ai models without floating point matrix math could mean far less power consumption..

Benj Edwards - Jun 25, 2024 10:27 pm UTC

Illustration of a brain inside of a light bulb.

Researchers claim to have developed a new way to run AI language models more efficiently by eliminating matrix multiplication from the process. This fundamentally redesigns neural network operations that are currently accelerated by GPU chips. The findings, detailed in a recent preprint paper from researchers at the University of California Santa Cruz, UC Davis, LuxiTech, and Soochow University, could have deep implications for the environmental impact and operational costs of AI systems.

Further Reading

Matrix multiplication (often abbreviated to "MatMul") is at the center of most neural network computational tasks today, and GPUs are particularly good at executing the math quickly because they can perform large numbers of multiplication operations in parallel. That ability momentarily made Nvidia the most valuable company in the world last week; the company currently holds an estimated 98 percent market share for data center GPUs, which are commonly used to power AI systems like ChatGPT and Google Gemini .

In the new paper, titled "Scalable MatMul-free Language Modeling," the researchers describe creating a custom 2.7 billion parameter model without using MatMul that features similar performance to conventional large language models (LLMs). They also demonstrate running a 1.3 billion parameter model at 23.8 tokens per second on a GPU that was accelerated by a custom-programmed FPGA chip that uses about 13 watts of power (not counting the GPU's power draw). The implication is that a more efficient FPGA "paves the way for the development of more efficient and hardware-friendly architectures," they write.

The technique has not yet been peer-reviewed, but the researchers—Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng Zhou, and Jason Eshraghian—claim that their work challenges the prevailing paradigm that matrix multiplication operations are indispensable for building high-performing language models. They argue that their approach could make large language models more accessible, efficient, and sustainable, particularly for deployment on resource-constrained hardware like smartphones.

Doing away with matrix math

In the paper, the researchers mention BitNet (the so-called "1-bit" transformer technique that made the rounds as a preprint in October) as an important precursor to their work. According to the authors, BitNet demonstrated the viability of using binary and ternary weights in language models, successfully scaling up to 3 billion parameters while maintaining competitive performance.

However, they note that BitNet still relied on matrix multiplications in its self-attention mechanism. Limitations of BitNet served as a motivation for the current study, pushing them to develop a completely "MatMul-free" architecture that could maintain performance while eliminating matrix multiplications even in the attention mechanism.

reader comments

Channel ars technica.

Sample Math Research Projects

Below are links to some simple math research outlines.  Each outline begins with a simple  seed question that should be accessible to students in typical math classes.  What follows the  seed question are  extension questions that a student might explore and investigate in order to build a math research project.

mini research topics in mathematics

Exploring extensions of the basic midpoint formula in the plane.

Pythagorean Triples

Exploring Pythagorean Triples, quadruples, and beyond!

Sums of Integers

Fun with the sum 1 + 2 + 3 + … + 100.

Grid Walking

The classic conundrum in Cartesian City!

Follow Mr Honner

Get every new post delivered to your Inbox

Join other followers:

Pure Mathematics Research

Pure mathematics fields.

Pure Research

  • Algebra & Algebraic Geometry
  • Algebraic Topology
  • Analysis & PDEs
  • Geometry & Topology
  • Mathematical Logic & Foundations
  • Number Theory
  • Probability & Statistics
  • Representation Theory

Pure Math Committee

Megamenu Global

Megamenu featured, megamenu social, math/stats thesis and colloquium topics.

Updated: April 2024

Math/Stats Thesis and Colloquium Topics 2024- 2025

The degree with honors in Mathematics or Statistics is awarded to the student who has demonstrated outstanding intellectual achievement in a program of study which extends beyond the requirements of the major. The principal considerations for recommending a student for the degree with honors will be: Mastery of core material and skills, breadth and, particularly, depth of knowledge beyond the core material, ability to pursue independent study of mathematics or statistics, originality in methods of investigation, and, where appropriate, creativity in research.

An honors program normally consists of two semesters (MATH/STAT 493 and 494) and a winter study (WSP 031) of independent research, culminating in a thesis and a presentation. Under certain circumstances, the honors work can consist of coordinated study involving a one semester (MATH/STAT 493 or 494) and a winter study (WSP 030) of independent research, culminating in a “minithesis” and a presentation. At least one semester should be in addition to the major requirements, and thesis courses do not count as 400-level senior seminars.

An honors program in actuarial studies requires significant achievement on four appropriate examinations of the Society of Actuaries.

Highest honors will be reserved for the rare student who has displayed exceptional ability, achievement or originality. Such a student usually will have written a thesis, or pursued actuarial honors and written a mini-thesis. An outstanding student who writes a mini-thesis, or pursues actuarial honors and writes a paper, might also be considered. In all cases, the award of honors and highest honors is the decision of the Department.

Here is a list of possible colloquium topics that different faculty are willing and eager to advise. You can talk to several faculty about any colloquium topic, the sooner the better, at least a month or two before your talk. For various reasons faculty may or may not be willing or able to advise your colloquium, which is another reason to start early.

RESEARCH INTERESTS OF MATHEMATICS AND STATISTICS FACULTY

Here is a list of faculty interests and possible thesis topics.  You may use this list to select a thesis topic or you can use the list below to get a general idea of the mathematical interests of our faculty.

Colin Adams (On Leave 2024 – 2025)

Research interests:   Topology and tiling theory.  I work in low-dimensional topology.  Specifically, I work in the two fields of knot theory and hyperbolic 3-manifold theory and develop the connections between the two. Knot theory is the study of knotted circles in 3-space, and it has applications to chemistry, biology and physics.  I am also interested in tiling theory and have been working with students in this area as well.

Hyperbolic 3-manifold theory utilizes hyperbolic geometry to understand 3-manifolds, which can be thought of as possible models of the spatial universe.

Possible thesis topics:

  • Investigate various aspects of virtual knots, a generalization of knots.
  • Consider hyperbolicity of virtual knots, building on previous SMALL work. For which virtual knots can you prove hyperbolicity?
  • Investigate why certain virtual knots have the same hyperbolic volume.
  • Consider the minimal Turaev volume of virtual knots, building on previous SMALL work.
  • Investigate which knots have totally geodesic Seifert surfaces. In particular, figure out how to interpret this question for virtual knots.
  • Investigate n-crossing number of knots. An n-crossing is a crossing with n strands of the knot passing through it. Every knot can be drawn in a picture with only n-crossings in it. The least number of n-crossings is called the n-crossing number. Determine the n-crossing number for various n and various families of knots.
  • An übercrossing projection of a knot is a projection with just one n-crossing. The übercrossing number of a knot is the least n for which there is such an übercrossing projection. Determine the übercrossing number for various knots, and see how it relates to other traditional knot invariants.
  • A petal projection of a knot is a projection with just one n-crossing such that none of the loops coming out of the crossing are nested. In other words, the projection looks like a daisy. The petal number of a knot is the least n for such a projection. Determine petal number for various knots, and see how it relates to other traditional knot invariants.
  • In a recent paper, we extended petal number to virtual knots. Show that the virtual petal number of a classical knot is equal to the classical petal number of the knot (This is a GOOD question!)
  • Similarly, show that the virtual n-crossing number of a classical knot is equal to the classical n-crossing number. (This is known for n = 2.)
  • Find tilings of the branched sphere by regular polygons. This would extend work of previous research students. There are lots of interesting open problems about something as simple as tilings of the sphere.
  • Other related topics.

Possible colloquium topics : Particularly interested in topology, knot theory, graph theory, tiling theory and geometry but will consider other topics.

Christina Athanasouli

Research Interests:   Differential equations, dynamical systems (both smooth and non-smooth), mathematical modeling with applications in biological and mechanical systems

My research focuses on analyzing mathematical models that describe various phenomena in Mathematical Neuroscience and Engineering. In particular, I work on understanding 1) the underlying mechanisms of human sleep (e.g. how sleep patterns change with development or due to perturbations), and 2) potential design or physical factors that may influence the dynamics in vibro-impact mechanical systems for the purpose of harvesting energy. Mathematically, I use various techniques from dynamical systems and incorporate both numerical and analytical tools in my work. 

Possible colloquium topics:   Topics in applied mathematics, such as:

  • Mathematical modeling of sleep-wake regulation
  • Mathematical modeling vibro-impact systems
  • Bifurcations/dynamics of mathematical models in Mathematical Neuroscience and Engineering
  • Bifurcations in piecewise-smooth dynamical systems

Julie Blackwood

Research Interests:   Mathematical modeling, theoretical ecology, population biology, differential equations, dynamical systems.

My research uses mathematical models to uncover the complex mechanisms generating ecological dynamics, and when applicable emphasis is placed on evaluating intervention programs. My research is in various ecological areas including ( I ) invasive species management by using mathematical and economic models to evaluate the costs and benefits of control strategies, and ( II ) disease ecology by evaluating competing mathematical models of the transmission dynamics for both human and wildlife diseases.

  • Mathematical modeling of invasive species
  • Mathematical modeling of vector-borne or directly transmitted diseases
  • Developing mathematical models to manage vector-borne diseases through vector control
  • Other relevant topics of interest in mathematical biology

Each topic (1-3) can focus on a case study of a particular invasive species or disease, and/or can investigate the effects of ecological properties (spatial structure, resource availability, contact structure, etc.) of the system.

Possible colloquium topics:   Any topics in applied mathematics, such as:

Research Interest :  Statistical methodology and applications.  One of my research topics is variable selection for high-dimensional data.  I am interested in traditional and modern approaches for selecting variables from a large candidate set in different settings and studying the corresponding theoretical properties. The settings include linear model, partial linear model, survival analysis, dynamic networks, etc.  Another part of my research studies the mediation model, which examines the underlying mechanism of how variables relate to each other.  My research also involves applying existing methods and developing new procedures to model the correlated observations and capture the time-varying effect.  I am also interested in applications of data mining and statistical learning methods, e.g., their applications in analyzing the rhetorical styles in English text data.

  • Variable selection uses modern techniques such as penalization and screening methods for several different parametric and semi-parametric models.
  • Extension of the classic mediation models to settings with correlated, longitudinal, or high-dimensional mediators. We could also explore ways to reduce the dimensionality and simplify the structure of mediators to have a stable model that is also easier to interpret.
  • We shall analyze the English text dataset processed by the Docuscope environment with tools for corpus-based rhetorical analysis. The data have a hierarchical structure and contain rich information about the rhetorical styles used. We could apply statistical models and statistical learning algorithms to reduce dimensions and gain a more insightful understanding of the text.

Possible colloquium topics:  I am open to any problems in statistical methodology and applications, not limited to my research interests and the possible thesis topics above.

Richard De Veaux 

Research interests: Statistics.

My research interests are in both statistical methodology and in statistical applications.  For the first, I look at different methods and try to understand why some methods work well in particular settings, or more creatively, to try to come up with new methods.  For the second, I work in collaboration with an investigator (e.g. scientist, doctor, marketing analyst) on a particular statistical application.  I have been especially interested in problems dealing with large data sets and the associated modeling tools that work for these problems.

  • Human Performance and Aging.I have been working on models for assessing the effect of age on performance in running and swimming events. There is still much work to do. So far I’ve looked at masters’ freestyle swimming and running data and a handicapped race in California, but there are world records for each age group and other events in running and swimming that I’ve not incorporated. There are also many other types of events.
  • Variable Selection.  How do we choose variables when we have dozens, hundreds or even thousands of potential predictors? Various model selection strategies exist, but there is still a lot of work to be done to find out which ones work under what assumptions and conditions.
  • Problems at the interface.In this era of Big Data, not all methods of classical statistics can be applied in practice. What methods scale up well, and what advances in computer science give insights into the statistical methods that are best suited to large data sets?
  • Applying statistical methods to problems in science or social science.In collaboration with a scientist or social scientist, find a problem for which statistical analysis plays a key role.

Possible colloquium topics:

  • Almost any topic in statistics that extends things you’ve learned in courses —  specifically topics in Experimental design, regression techniques or machine learning
  • Model selection problems

Thomas Garrity (On Leave 2024 – 2025)

Research interest:   Number Theory and Dynamics.

My area of research is officially called “multi-dimensional continued fraction algorithms,” an area that touches many different branches of mathematics (which is one reason it is both interesting and rich).  In recent years, students writing theses with me have used serious tools from geometry, dynamics, ergodic theory, functional analysis, linear algebra, differentiability conditions, and combinatorics.  (No single person has used all of these tools.)  It is an area to see how mathematics is truly interrelated, forming one coherent whole.

While my original interest in this area stemmed from trying to find interesting methods for expressing real numbers as sequences of integers (the Hermite problem), over the years this has led to me interacting with many different mathematicians, and to me learning a whole lot of math.  My theses students have had much the same experiences, including the emotional rush of discovery and the occasional despair of frustration.  The whole experience of writing a thesis should be intense, and ultimately rewarding.   Also, since this area of math has so many facets and has so many entrance points, I have had thesis students from wildly different mathematical backgrounds do wonderful work; hence all welcome.

  • Generalizations of continued fractions.
  • Using algebraic geometry to study real submanifolds of complex spaces.

Possible colloquium topics:   Any interesting topic in mathematics.

Leo Goldmakher

Research interests:   Number theory and arithmetic combinatorics.

I’m interested in quantifying structure and randomness within naturally occurring sets or sequences, such as the prime numbers, or the sequence of coefficients of a continued fraction, or a subset of a vector space. Doing so typically involves using ideas from analysis, probability, algebra, and combinatorics.

Possible thesis topics:  

Anything in number theory or arithmetic combinatorics.

Possible colloquium topics:   I’m happy to advise a colloquium in any area of math.

Susan Loepp

Research interests: Commutative Algebra.  I study algebraic structures called commutative rings.  Specifically, I have been investigating the relationship between local rings and their completion.  One defines the completion of a ring by first defining a metric on the ring and then completing the ring with respect to that metric.  I am interested in what kinds of algebraic properties a ring and its completion share.  This relationship has proven to be intricate and quite surprising.  I am also interested in the theory of tight closure, and Homological Algebra.

Topics in Commutative Algebra including:

  • Using completions to construct Noetherian rings with unusual prime ideal structures.
  • What prime ideals of C[[ x 1 ,…, x n ]] can be maximal in the generic formal fiber of a ring? More generally, characterize what sets of prime ideals of a complete local ring can occur in the generic formal fiber.
  • Characterize what sets of prime ideals of a complete local ring can occur in formal fibers of ideals with height n where n ≥1.
  • Characterize which complete local rings are the completion of an excellent unique factorization domain.
  • Explore the relationship between the formal fibers of R and S where S is a flat extension of R .
  • Determine which complete local rings are the completion of a catenary integral domain.
  • Determine which complete local rings are the completion of a catenary unique factorization domain.

Possible colloquium topics:   Any topics in mathematics and especially commutative algebra/ring theory.

Steven Miller

For more information and references, see http://www.williams.edu/Mathematics/sjmiller/public_html/index.htm

Research interests :  Analytic number theory, random matrix theory, probability and statistics, graph theory.

My main research interest is in the distribution of zeros of L-functions.  The most studied of these is the Riemann zeta function, Sum_{n=1 to oo} 1/n^s.  The importance of this function becomes apparent when we notice that it can also be written as Prod_{p prime} 1 / (1 – 1/p^s); this function relates properties of the primes to those of the integers (and we know where the integers are!).  It turns out that the properties of zeros of L-functions are extremely useful in attacking questions in number theory.  Interestingly, a terrific model for these zeros is given by random matrix theory: choose a large matrix at random and study its eigenvalues.  This model also does a terrific job describing behavior ranging from heavy nuclei like Uranium to bus routes in Mexico!  I’m studying several problems in random matrix theory, which also have applications to graph theory (building efficient networks).  I am also working on several problems in probability and statistics, especially (but not limited to) sabermetrics (applying mathematical statistics to baseball) and Benford’s law of digit bias (which is often connected to fascinating questions about equidistribution).  Many data sets have a preponderance of first digits equal to 1 (look at the first million Fibonacci numbers, and you’ll see a leading digit of 1 about 30% of the time).  In addition to being of theoretical interest, applications range from the IRS (which uses it to detect tax fraud) to computer science (building more efficient computers).  I’m exploring the subject with several colleagues in fields ranging from accounting to engineering to the social sciences.

Possible thesis topics: 

  • Theoretical models for zeros of elliptic curve L-functions (in the number field and function field cases).
  • Studying lower order term behavior in zeros of L-functions.
  • Studying the distribution of eigenvalues of sets of random matrices.
  • Exploring Benford’s law of digit bias (both its theory and applications, such as image, voter and tax fraud).
  • Propagation of viruses in networks (a graph theory / dynamical systems problem). Sabermetrics.
  • Additive number theory (questions on sum and difference sets).

Possible colloquium topics: 

Plus anything you find interesting.  I’m also interested in applications, and have worked on subjects ranging from accounting to computer science to geology to marketing….

Ralph Morrison

Research interests:   I work in algebraic geometry, tropical geometry, graph theory (especially chip-firing games on graphs), and discrete geometry, as well as computer implementations that study these topics. Algebraic geometry is the study of solution sets to polynomial equations.  Such a solution set is called a variety.  Tropical geometry is a “skeletonized” version of algebraic geometry. We can take a classical variety and “tropicalize” it, giving us a tropical variety, which is a piecewise-linear subset of Euclidean space.  Tropical geometry combines combinatorics, discrete geometry, and graph theory with classical algebraic geometry, and allows for developing theory and computations that tell us about the classical varieties.  One flavor of this area of math is to study chip-firing games on graphs, which are motivated by (and applied to) questions about algebraic curves.

Possible thesis topics : Anything related to tropical geometry, algebraic geometry, chip-firing games (or other graph theory topics), and discrete geometry.  Here are a few specific topics/questions:

  • Study the geometry of tropical plane curves, perhaps motivated by results from algebraic geometry.  For instance:  given 5 (algebraic) conics, there are 3264 conics that are tangent to all 5 of them.  What if we look at tropical conics–is there still a fixed number of tropical conics tangent to all of them?  If so, what is that number?  How does this tropical count relate to the algebraic count?
  • What can tropical plane curves “look like”?  There are a few ways to make this question precise.  One common way is to look at the “skeleton” of a tropical curve, a graph that lives inside of the curve and contains most of the interesting data.  Which graphs can appear, and what can the lengths of its edges be?  I’ve done lots of work with students on these sorts of questions, but there are many open questions!
  • What can tropical surfaces in three-dimensional space look like?  What is the version of a skeleton here?  (For instance, a tropical surface of degree 4 contains a distinguished polyhedron with at most 63 facets. Which polyhedra are possible?)
  • Study the geometry of tropical curves obtained by intersecting two tropical surfaces.  For instance, if we intersect a tropical plane with a tropical surface of degree 4, we obtain a tropical curve whose skeleton has three loops.  How can those loops be arranged?  Or we could intersect degree 2 and degree 3 tropical surfaces, to get a tropical curve with 4 loops; which skeletons are possible there?
  • One way to study tropical geometry is to replace the usual rules of arithmetic (plus and times) with new rules (min and plus).  How do topics like linear algebra work in these fields?  (It turns out they’re related to optimization, scheduling, and job assignment problems.)
  • Chip-firing games on graphs model questions from algebraic geometry.  One of the most important comes in the “gonality” of a graph, which is the smallest number of chips on a graph that could eliminate (via a series of “chip-firing moves”) an added debt of -1 anywhere on the graph.  There are lots of open questions for studying the gonality of graphs; this include general questions, like “What are good lower bounds on gonality?” and specific ones, like “What’s the gonality of the n-dimensional hypercube graph?”
  • We can also study versions of gonality where we place -r chips instead of just -1; this gives us the r^th gonality of a graph.  Together, the first, second, third, etc. gonalities form the “gonality sequence” of a graph.  What sequences of integers can be the gonality sequence of some graph?  Is there a graph whose gonality sequence starts 3, 5, 8?
  • There are many computational and algorithmic questions to ask about chip-firing games.  It’s known that computing the gonality of a general graph is NP-hard; what if we restrict to planar graphs?  Or graphs that are 3-regular? And can we implement relatively efficient ways of computing these numbers, at least for small graphs?
  • What if we changed our rules for chip-firing games, for instance by working with chips modulo N?  How can we “win” a chip-firing game in that context, since there’s no more notion of debt?
  • Study a “graph throttling” version of gonality.  For instance, instead of minimizing the number of chips we place on the graph, maybe we can also try to decrease the number of chip-firing moves we need to eliminate debt.
  • Chip-firing games lead to interesting questions on other topics in graph theory.  For instance, there’s a conjectured upper bound of (|E|-|V|+4)/2 on the gonality of a graph; and any graph is known to have gonality at least its tree-width.  Can we prove the (weaker) result that (|E|-|V|+4)/2 is an upper bound on tree-width?  (Such a result would be of interest to graph theorists, even the idea behind it comes from algebraic geometry!)
  • Topics coming from discrete geometry.  For example:  suppose you want to make “string art”, where you have one shape inside of another with string weaving between the inside and the outside shapes.  For which pairs of shapes is this possible?

Possible Colloquium topics:   I’m happy to advise a talk in any area of math, but would be especially excited about talks related to algebra, geometry, graph theory, or discrete mathematics.

Shaoyang Ning (On Leave 2024 – 2025)

Research Interest :  Statistical methodologies and applications. My research focuses on the study and design of statistical methods for integrative data analysis, in particular, to address the challenges of increasing complexity and connectivity arising from “Big Data”. I’m interested in innovating statistical methods that efficiently integrate multi-source, multi-resolution information to solve real-life problems. Instances include tracking localized influenza with Google search data and predicting cancer-targeting drugs with high-throughput genetic profiling data. Other interests include Bayesian methods, copula modeling, and nonparametric methods.

  • Digital (disease) tracking: Using Internet search data to track and predict influenza activities at different resolutions (nation, region, state, city); Integrating other sources of digital data (e.g. Twitter, Facebook) and/or extending to track other epidemics and social/economic events, such as dengue, presidential approval rates, employment rates, and etc.
  • Predicting cancer drugs with multi-source profiling data: Developing new methods to aggregate genetic profiling data of different sources (e.g., mutations, expression levels, CRISPR knockouts, drug experiments) in cancer cell lines to identify potential cancer-targeting drugs, their modes of actions and genetic targets.
  • Social media text mining: Developing new methods to analyze and extract information from social media data (e.g. Reddit, Twitter). What are the challenges in analyzing the large-volume but short-length social media data? Can classic methods still apply? How should we innovate to address these difficulties?
  • Copula modeling: How do we model and estimate associations between different variables when they are beyond multivariate Normal? What if the data are heavily dependent in the tails of their distributions (commonly observed in stock prices)? What if dependence between data are non-symmetric and complex? When the size of data is limited but the dimension is large, can we still recover their correlation structures? Copula model enables to “link” the marginals of a multivariate random variable to its joint distribution with great flexibility and can just be the key to the questions above.
  • Other cross-disciplinary, data-driven projects: Applying/developing statistical methodology to answer an interesting scientific question in collaboration with a scientist or social scientist.

Possible colloquium topics:   Any topics in statistical methodology and application, including but not limited to: topics in applied statistics, Bayesian methods, computational biology, statistical learning, “Big Data” mining, and other cross-disciplinary projects.

Anna Neufeld

Research interests:  My research is motivated by the gap between classical statistical tools and practical data analysis. Classic statistical tools are designed for testing a single hypothesis about a single, pre-specified model. However, modern data analysis is an adaptive process that involves exploring the data, fitting several models, evaluating these models, and then testing a potentially large number of hypotheses about one or more selected models. With this in mind, I am interested in topics such as (1) methods for model validation and selection, (2) methods for testing data-driven hypotheses (post-selection inference), and (3) methods for testing a large number of hypotheses. I am also interested in any applied project where I can help a scientist rigorously answer an important question using data. 

  • Cross-validation for unsupervised learning. Cross-validation is one of the most widely-used tools for model validation, but, in its typical form, it cannot be used for unsupervised learning problems. Numerous ad-hoc proposals exist for validating unsupervised learning models, but there is a need to compare and contrast these proposals and work towards a unified approach.
  • Identifying the number of cell types in single-cell genomics datasets. This is an application of the topic above, since the cell types are typically estimated via unsupervised learning.
  • There is growing interest in “post-prediction inference”, which is the task of doing valid statistical inference when some inputs to your statistical model are the outputs of other statistical models (i.e. predictions). Frameworks have recently been proposed for post-prediction inference in the setting where you have access to a gold-standard dataset where the true inputs, rather than the predicted inputs, have been observed. A thesis could explore the possibility of post-prediction inference in the absence of this gold-standard dataset.
  • Any other topic of student interest related to selective inference, multiple testing, or post-prediction inference.
  • Any collaborative project in which we work with a scientist to identify an interesting question in need of non-standard statistics.
  • I am open to advising colloquia in almost any area of statistical methodology or applications, including but not limited to: multiple testing, post-selection inference, post-prediction inference, model selection, model validation, statistical machine learning, unsupervised learning, or genomics.

Allison Pacelli

Research interests:   Math Education, Math & Politics, and Algebraic Number Theory.

Math Education.  Math education is the study of the practice of teaching and learning mathematics, at all levels. For example, do high school calculus students learn best from lecture or inquiry-based learning? What mathematical content knowledge is critical for elementary school math teachers? Is a flipped classroom more effective than a traditional learning format? Many fascinating questions remain, at all levels of education. We can talk further to narrow down project ideas.

Math & Politics.  The mathematics of voting and the mathematics of fair division are two fascinating topics in the field of mathematics and politics. Research questions look at types of voting systems, and the properties that we would want a voting system to satisfy, as well as the idea of fairness when splitting up a single object, like cake, or a collection of objects, such as after a divorce or a death.

Algebraic Number Theory.  The Fundamental Theorem of Arithmetic states that the ring of integers is a unique factorization domain, that is, every integer can be uniquely factored into a product of primes. In other rings, there are analogues of prime numbers, but factorization into primes is not necessarily unique!

In order to determine whether factorization into primes is unique in the ring of integers of a number field or function field, it is useful to study the associated class group – the group of equivalence classes of ideals. The class group is trivial if and only if the ring is a unique factorization domain. Although the study of class groups dates back to Gauss and played a key role in the history of Fermat’s Last Theorem, many basic questions remain open.

  Possible thesis topics:

  • Topics in math education, including projects at the elementary school level all the way through college level.
  • Topics in voting and fair division.
  • Investigating the divisibility of class numbers or the structure of the class group of quadratic fields and higher degree extensions.
  • Exploring polynomial analogues of theorems from number theory concerning sums of powers, primes, divisibility, and arithmetic functions.

Possible colloquium topics:   Anything in number theory, algebra, or math & politics.

Anna Plantinga

Research interests:   I am interested in both applied and methodological statistics. My research primarily involves problems related to statistical analysis within genetics, genomics, and in particular the human microbiome (the set of bacteria that live in and on a person).  Current areas of interest include longitudinal data, distance-based analysis methods such as kernel machine regression, high-dimensional data, and structured data.

  • Impacts of microbiome volatility. Sometimes the variability of a microbial community is more indicative of an unhealthy community than the actual bacteria present. We have developed an approach to quantifying microbiome variability (“volatility”). This project will use extensive simulations to explore the impact of between-group differences in volatility on a variety of standard tests for association between the microbiome and a health outcome.
  • Accounting for excess zeros (sparse feature matrices). Often in a data matrix with many zeros, some of the zeros are “true” or “structural” zeros, whereas others are simply there because we have fewer observations for some subjects. How we account for these zeros affects analysis results. Which methods to account for excess zeros perform best for different analyses?
  • Longitudinal methods for compositional data. When we have longitudinal data, we assume the same variables are measured at every time point. For high-dimensional compositions, this may not be the case. We would generally assume that the missing component was absent at any time points for which it was not measured. This project will explore alternatives to making that assumption.
  • Applied statistics research. In collaboration with a scientist or social scientist, use appropriate statistical methodology (or variations on existing methods) to answer an interesting scientific question.

Any topics in statistical application, education, or methodology, including but not restricted to:

  • Topics in applied statistics.
  • Methods for microbiome data analysis.
  • Statistical genetics.
  • Electronic health records.
  • Variable selection and statistical learning.
  • Longitudinal methods.

Cesar Silva

Research interests :  Ergodic theory and measurable dynamics; in particular mixing properties and rank one examples, and infinite measure-preserving and nonsingular transformations and group actions.  Measurable dynamics of transformations defined on the p-adic field.  Measurable sensitivity.  Fractals.  Fractal Geometry.

Possible thesis topics:    Ergodic Theory.   Ergodic theory studies the probabilistic behavior of abstract dynamical systems.  Dynamical systems are systems that change with time, such as the motion of the planets or of a pendulum.  Abstract dynamical systems represent the state of a dynamical system by a point in a mathematical space (phase space).  In many cases this space is assumed to be the unit interval [0,1) with Lebesgue measure.  One usually assumes that time is measured at discrete intervals and so the law of motion of the system is represented by a single map (or transformation) of the phase space [0,1).  In this case one studies various dynamical behaviors of these maps, such as ergodicity, weak mixing, and mixing.  I am also interested in studying the measurable dynamics of systems defined on the p-adics numbers.  The prerequisite is a first course in real analysis.  Topological Dynamics.  Dynamics on compact or locally compact spaces.

Topics in mathematics and in particular:

  • Any topic in measure theory.  See for example any of the first few chapters in “Measure and Category” by J. Oxtoby. Possible topics include the Banach-Tarski paradox, the Banach-Mazur game, Liouville numbers and s-Hausdorff measure zero.
  • Topics in applied linear algebra and functional analysis.
  • Fractal sets, fractal generation, image compression, and fractal dimension.
  • Dynamics on the p-adic numbers.
  • Banach-Tarski paradox, space filling curves.

Mihai Stoiciu

Research interests: Mathematical Physics and Functional Analysis. I am interested in the study of the spectral properties of various operators arising from mathematical physics – especially the Schrodinger operator. In particular, I am investigating the distribution of the eigenvalues for special classes of self-adjoint and unitary random matrices.

Topics in mathematical physics, functional analysis and probability including:

  • Investigate the spectrum of the Schrodinger operator. Possible research topics: Find good estimates for the number of bound states; Analyze the asymptotic growth of the number of bound states of the discrete Schrodinger operator at large coupling constants.
  • Study particular classes of orthogonal polynomials on the unit circle.
  • Investigate numerically the statistical distribution of the eigenvalues for various classes of random CMV matrices.
  • Study the general theory of point processes and its applications to problems in mathematical physics.

Possible colloquium topics:  

Any topics in mathematics, mathematical physics, functional analysis, or probability, such as:

  • The Schrodinger operator.
  • Orthogonal polynomials on the unit circle.
  • Statistical distribution of the eigenvalues of random matrices.
  • The general theory of point processes and its applications to problems in mathematical physics.

Elizabeth Upton

Research Interests: My research interests center around network science, with a focus on regression methods for network-indexed data. Networks are used to capture the relationships between elements within a system. Examples include social networks, transportation networks, and biological networks. I also enjoy tackling problems with pragmatic applications and am therefore interested in applied interdisciplinary research.

  • Regression models for network data: how can we incorporate network structure (and dependence) in our regression framework when modeling a vertex-indexed response?
  • Identify effects shaping network structure. For example, in social networks, the phrase “birds of a feather flock together” is often used to describe homophily. That is, those who have similar interests are more likely to become friends. How can we capture or test this effect, and others, in a regression framework when modeling edge-indexed responses?
  • Extending models for multilayer networks. Current methodologies combine edges from multiple networks in some sort of weighted averaging scheme. Could a penalized multivariate approach yield a more informative model?
  • Developing algorithms to make inference on large networks more efficient.
  • Any topic in linear or generalized linear modeling (including mixed-effects regression models, zero-inflated regressions, etc.).
  • Applied statistics research. In collaboration with a scientist or social scientist, use appropriate statistical methodology to answer an interesting scientific question.
  • Any applied statistics research project/paper
  • Topics in linear or generalized linear modeling
  • Network visualizations and statistics
  • Cette page n'est pas disponible en Français

Students, Computers and Learning

  • Education and skills
  • Student performance (PISA)
  • Teachers and educators
  • Education equity
  • Reading literacy
  • Mathematics literacy
  • Science literacy
  • Digital divide in education
  • Learning in the digital world

mini research topics in mathematics

Cite this content as:

Are there computers in the classroom? Does it matter? Students, Computers and Learning: Making the Connection examines how students’ access to and use of information and communication technology (ICT) devices has evolved in recent years, and explores how education systems and schools are integrating ICT into students’ learning experiences. Based on results from PISA 2012, the report discusses differences in access to and use of ICT – what are collectively known as the “digital divide” – that are related to students’ socio-economic status, gender, geographic location, and the school a child attends. The report highlights the importance of bolstering students’ ability to navigate through digital texts. It also examines the relationship among computer access in schools, computer use in classrooms, and performance in the PISA assessment. As the report makes clear, all students first need to be equipped with basic literacy and numeracy skills so that they can participate fully in the hyper-connected, digitised societies of the 21st century.

In the same series

mini research topics in mathematics

Related publications

mini research topics in mathematics

IMAGES

  1. 210 Brilliant Math Research Topics and Ideas for Students

    mini research topics in mathematics

  2. 230 Fantastic Math Research Topics

    mini research topics in mathematics

  3. 210 Brilliant Math Research Topics and Ideas for Students

    mini research topics in mathematics

  4. 166 Math Research Topics for Academic Papers and Essays

    mini research topics in mathematics

  5. 210 Brilliant Math Research Topics and Ideas for Students

    mini research topics in mathematics

  6. Exploring Best Math Research Topics That Push the Boundaries

    mini research topics in mathematics

VIDEO

  1. FORMULATING MINI-RESEARCH ( Q4 Module 5)

  2. Mini Research Ikk

  3. Mini Research (Remedial E-commerce)

  4. Academic Speaking Group 1 || Mini Research

  5. A Mini Statistical Research in Mathematics 10 (PROJECT)

  6. Mini Blog In Mathematics in the Modern World

COMMENTS

  1. 251+ Math Research Topics [2024 Updated]

    251+ Math Research Topics: Beginners To Advanced. Prime Number Distribution in Arithmetic Progressions. Diophantine Equations and their Solutions. Applications of Modular Arithmetic in Cryptography. The Riemann Hypothesis and its Implications. Graph Theory: Exploring Connectivity and Coloring Problems.

  2. 181 Math Research Topics

    If you are an undergraduate looking for some research topics for your next math paper, you will surely appreciate our list of interesting undergraduate math research topics: Methods to count discrete objects. The origins of Greek symbols in mathematics. Methods to solve simultaneous equations. Real-world applications of the theorem of Pythagoras.

  3. 260 Interesting Math Topics for Essays & Research Papers

    Practical Algebra Lessons: Purplemath. Topics in Geometry: Massachusetts Institute of Technology. The Geometry Junkyard: All Topics: Donald Bren School of Information and Computer Sciences. Calculus I: Lamar University. Business Math for Financial Management: The Balance Small Business.

  4. 12 Math Project Ideas for Middle and High School Students

    Then, you'll need to learn how to interpret the significance of statistical results and adjust results over time based on the success/failure of your model over time. Idea by math research mentor Ari. 4. Finding value in Major League Baseball free agency. Here's another sports-related project idea.

  5. 210 Brilliant Math Research Topics and Ideas for Students

    Math Research Paper Topics for Undergraduate Students. Explain the different theories of mathematical logic. Discuss the origins of Greek symbols in mathematics. Explain the significance of circles. Analyze predictive models. Explain the emergence of patterns in chaos theory.

  6. 166 Math Research Topics for Academic Papers and Essays

    Here are some of the best math research paper topics for high school. How to draw a chart representing the financial analysis of a prominent company over the last five years. How to solve a matrix- The vital principles and formulas to embrace. Exploring various techniques for solving finance and mathematical gaps.

  7. Research in Mathematics

    Research in Mathematics is a broad open access journal publishing all aspects of mathematics including pure, applied, and interdisciplinary mathematics, and mathematical education and other fields. The journal primarily publishes research articles, but also welcomes review and survey articles, and case studies. Topics include, but are not limited to:

  8. Frontiers in Applied Mathematics and Statistics

    Explores how the application of mathematics and statistics can drive scientific developments across data science, engineering, finance, physics, biology, ecology, business, medicine, and beyond ... Research Topics. Submission open Mathematical Modelling and Numerical Simulation of Biofluid Flow and Heat Transfer in Living Biological Tissues.

  9. The Riemann Hypothesis, the Biggest Problem in Mathematics, Is a Step

    The Riemann hypothesis is the most important open question in number theory—if not all of mathematics. It has occupied experts for more than 160 years. And the problem appeared both in ...

  10. Mathematics Research Paper Topics

    Mathematics Research Paper Topics. Mathematics undoubtedly began as an entirely practical activity— measuring fields, determining the volume of liquids, counting out coins, and the like. During the golden era of Greek science, between about the sixth and third centuries B.C., however, mathematicians introduced a new concept to their study of ...

  11. Research Areas

    Department members engage in cutting-edge research on a wide variety of topics in mathematics and its applications. Topics continually evolve to reflect emerging interests and developments, but can roughly grouped into the following areas. Algebra, Combinatorics, and Geometry Algebra, combinatorics, and geometry are areas of very active research at the University of Pittsburgh.

  12. Undergraduate Mathematics Projects

    Background Required: MATH 4036 Complex Variables and MATH 4031 Advanced Calculus I. Learning Objectives: learn about topics in analysis and non-Euclidean geometry, learn about doing original research in pure mathematics Predicting outcomes in college football using machine learning. Faculty advisor: Prof. Andrew Zimmer

  13. Math 380: Research Methods in Mathematics

    Metadata. Math 380: Research Methods was developed for Fall semester of 2015 by Dr. Dandrielle Lewis, Dr. Carolyn Otto, and three undergraduate mentors. The main premise of this course is to instruct future mathematicians on the art and procedures of mathematics research. This course prepares students for student/faculty research collaboration ...

  14. Mathematics Theses, Projects, and Dissertations

    bio-mathematics: introduction to the mathematical model of the hepatitis c virus, lucille j. durfee. pdf. analysis and synthesis of the literature regarding active and direct instruction and their promotion of flexible thinking in mathematics, genelle elizabeth gonzalez. pdf. life expectancy, ali r. hassanzadah. pdf

  15. research mini overview

    A research mini is a side-by-side comparison of two different pedagogical approaches for the same content topic. ... hosted by the Centre for Mathematics Education at the Fields Institute for Research in Mathematical Sciences. The views expressed on this website belong to the authors and do not necessarily reflect the opinions of the Ministry ...

  16. COMPLETE GUIDE IN MINI-RESEARCH MAKING Grade 10 Week 5-6

    Learning Task 2Conduct a mini-research on students' performance in their third-quarter summative test in Mathematics. Apply the knowledge and skills you have...

  17. Researchers upend AI status quo by eliminating matrix multiplication in

    Doing away with matrix math In the paper, the researchers mention BitNet (the so-called "1-bit" transformer technique that made the rounds as a preprint in October) as an important precursor to ...

  18. Sample Math Research Projects

    Below are links to some simple math research outlines. Each outline begins with a simple seed question that should be accessible to students in typical math classes. What follows the seed question are extension questions that a student might explore and investigate in order to build a math research project. Midpoints and Beyond. Exploring extensions of the basic midpoint formula in the plane.

  19. Pure Mathematics Research

    Pure Mathematics Research Pure Mathematics Fields The E 8 Lie group. Algebra & Algebraic Geometry; Algebraic Topology; Analysis & PDEs; Geometry & Topology; ... Department of Mathematics Headquarters Office Simons Building (Building 2), Room 106 77 Massachusetts Avenue Cambridge, MA 02139-4307 Campus Map (617) 253-4381 ...

  20. Math/Stats Thesis and Colloquium Topics

    An outstanding student who writes a mini-thesis, or pursues actuarial honors and writes a paper, might also be considered. In all cases, the award of honors and highest honors is the decision of the Department. ... One of my research topics is variable selection for high-dimensional data. ... Any interesting topic in mathematics. Leo Goldmakher.

  21. Lists of mathematics topics

    Lists of mathematics topics cover a variety of topics related to mathematics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. This article brings together the same content organized in a manner better suited for browsing.

  22. Deep machine-learning speeds assessment of fruit fly ...

    Deep machine-learning speeds assessment of fruit fly heart aging and disease, a model for human disease Use of high-speed video microscopy and artificial intelligence provides calculated ...

  23. 17 Innovative Mathematics Projects that Inspire Students

    Leaf Tessellation. When a shape repeats to make a pattern without a gap, you get a tessellation. To make a tessellation, we apply 3 rules: translation, rotation, and reflection. So, that's why ...

  24. A Mini Statistical Research On The Performance of Grade10 ...

    This document summarizes a mini-statistical research on the performance of grade 10 students in mathematics for the third quarter. It analyzes students' grades and survey responses. The research found that 88% of students scored below 92.25% with an average grade of 85.73%. Most students reported difficulties understanding mathematical processes. Nearly half found the topic of conditional ...

  25. 251+ Math Research Topics [2024 Updated]

    By following these steps, you can effectively write a math research topic that is well-defined, relevant, and poised to make a meaningful contribution to the field of mathematics. ... 81+ Computer Graphics Mini Project Topics [Updated] Categories. 1WIN Casino Brasil (3) 1WIN Official In Russia (1) 1winRussia (1) Accounting (74) Book (26 ...

  26. A Mini Research For Math Grade 10

    A Mini Research for Math Grade 10(1) - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for free. The document summarizes a mini-research project conducted with 50 students at Don Enrique Bustamante National High School. The students were asked how many glasses of water they consume per day. The data gathered was organized into a frequency distribution ...

  27. Students, Computers and Learning

    Are there computers in the classroom? Does it matter? Students, Computers and Learning: Making the Connection examines how students' access to and use of information and communication technology (ICT) devices has evolved in recent years, and explores how education systems and schools are integrating ICT into students' learning experiences.