Logo for OPEN OKSTATE

Unit 1: What Is Philosophy?

LOGOS: Critical Thinking, Arguments, and Fallacies

Heather Wilburn, Ph.D

Critical Thinking:

With respect to critical thinking, it seems that everyone uses this phrase. Yet, there is a fear that this is becoming a buzz-word (i.e. a word or phrase you use because it’s popular or enticing in some way). Ultimately, this means that we may be using the phrase without a clear sense of what we even mean by it. So, here we are going to think about what this phrase might mean and look at some examples. As a former colleague of mine, Henry Imler, explains:

By critical thinking, we refer to thinking that is recursive in nature. Any time we encounter new information or new ideas, we double back and rethink our prior conclusions on the subject to see if any other conclusions are better suited. Critical thinking can be contrasted with Authoritarian thinking. This type of thinking seeks to preserve the original conclusion. Here, thinking and conclusions are policed, as to question the system is to threaten the system. And threats to the system demand a defensive response. Critical thinking is short-circuited in authoritarian systems so that the conclusions are conserved instead of being open for revision. [1]

A condition for being recursive is to be open and not arrogant. If we come to a point where we think we have a handle on what is True, we are no longer open to consider, discuss, or accept information that might challenge our Truth. One becomes closed off and rejects everything that is different or strange–out of sync with one’s own Truth. To be open and recursive entails a sense of thinking about your beliefs in a critical and reflective way, so that you have a chance to either strengthen your belief system or revise it if needed. I have been teaching philosophy and humanities classes for nearly 20 years; critical thinking is the single most important skill you can develop. In close but second place is communication, In my view, communication skills follow as a natural result of critical thinking because you are attempting to think through and articulate stronger and rationally justified views. At the risk of sounding cliche, education isn’t about instilling content; it is about learning how to think.

In your philosophy classes your own ideas and beliefs will very likely be challenged. This does not mean that you will be asked to abandon your beliefs, but it does mean that you might be asked to defend them. Additionally, your mind will probably be twisted and turned about, which can be an uncomfortable experience. Yet, if at all possible, you should cherish these experiences and allow them to help you grow as a thinker. To be challenged and perplexed is difficult; however, it is worthwhile because it compels deeper thinking and more significant levels of understanding. In turn, thinking itself can transform us not only in thought, but in our beliefs, and our actions. Hannah Arendt, a social and political philosopher that came to the United States in exile during WWII, relates the transformative elements of philosophical thinking to Socrates. She writes:

Socrates…who is commonly said to have believed in the teachability of virtue, seems to have held that talking and thinking about piety, justice, courage, and the rest were liable to make men more pious, more just, more courageous, even though they were not given definitions or “values” to direct their further conduct. [2]

Thinking and communication are transformative insofar as these activities have the potential to alter our perspectives and, thus, change our behavior. In fact, Arendt connects the ability to think critically and reflectively to morality. As she notes above, morality does not have to give a predetermined set of rules to affect our behavior. Instead, morality can also be related to the open and sometimes perplexing conversations we have with others (and ourselves) about moral issues and moral character traits. Theodor W. Adorno, another philosopher that came to the United States in exile during WWII, argues that autonomous thinking (i.e. thinking for oneself) is crucial if we want to prevent the occurrence of another event like Auschwitz, a concentration camp where over 1 million individuals died during the Holocaust. [3] To think autonomously entails reflective and critical thinking—a type of thinking rooted in philosophical activity and a type of thinking that questions and challenges social norms and the status quo. In this sense thinking is critical of what is, allowing us to think beyond what is and to think about what ought to be, or what ought not be. This is one of the transformative elements of philosophical activity and one that is useful in promoting justice and ethical living.

With respect to the meaning of education, the German philosopher Hegel uses the term bildung, which means education or upbringing, to indicate the differences between the traditional type of education that focuses on facts and memorization, and education as transformative. Allen Wood explains how Hegel uses the term bildung: it is “a process of self-transformation and an acquisition of the power to grasp and articulate the reasons for what one believes or knows.” [4] If we think back through all of our years of schooling, particularly those subject matters that involve the teacher passing on information that is to be memorized and repeated, most of us would be hard pressed to recall anything substantial. However, if the focus of education is on how to think and the development of skills include analyzing, synthesizing, and communicating ideas and problems, most of us will use those skills whether we are in the field of philosophy, politics, business, nursing, computer programming, or education. In this sense, philosophy can help you develop a strong foundational skill set that will be marketable for your individual paths. While philosophy is not the only subject that will foster these skills, its method is one that heavily focuses on the types of activities that will help you develop such skills.

Let’s turn to discuss arguments. Arguments consist of a set of statements, which are claims that something is or is not the case, or is either true or false. The conclusion of your argument is a statement that is being argued for, or the point of view being argued for. The other statements serve as evidence or support for your conclusion; we refer to these statements as premises. It’s important to keep in mind that a statement is either true or false, so questions, commands, or exclamations are not statements. If we are thinking critically we will not accept a statement as true or false without good reason(s), so our premises are important here. Keep in mind the idea that supporting statements are called premises and the statement that is being supported is called the conclusion. Here are a couple of examples:

Example 1: Capital punishment is morally justifiable since it restores some sense of

balance to victims or victims’ families.

Let’s break it down so it’s easier to see in what we might call a typical argument form:

Premise: Capital punishment restores some sense of balance to victims or victims’ families.

Conclusion: Capital punishment is morally justifiable.

Example 2 : Because innocent people are sometimes found guilty and potentially

executed, capital punishment is not morally justifiable.

Premise: Innocent people are sometimes found guilty and potentially executed.

Conclusion: Capital punishment is not morally justifiable.

It is worth noting the use of the terms “since” and “because” in these arguments. Terms or phrases like these often serve as signifiers that we are looking at evidence, or a premise.

Check out another example:

Example 3 : All human beings are mortal. Heather is a human being. Therefore,

Heather is mortal.

Premise 1: All human beings are mortal.

Premise 2: Heather is a human being.

Conclusion: Heather is mortal.

In this example, there are a couple of things worth noting: First, there can be more than one premise. In fact, you could have a rather complex argument with several premises. If you’ve written an argumentative paper you may have encountered arguments that are rather complex. Second, just as the arguments prior had signifiers to show that we are looking at evidence, this argument has a signifier (i.e. therefore) to demonstrate the argument’s conclusion.

So many arguments!!! Are they all equally good?

No, arguments are not equally good; there are many ways to make a faulty argument. In fact, there are a lot of different types of arguments and, to some extent, the type of argument can help us figure out if the argument is a good one. For a full elaboration of arguments, take a logic class! Here’s a brief version:

Deductive Arguments: in a deductive argument the conclusion necessarily follows the premises. Take argument Example 3 above. It is absolutely necessary that Heather is a mortal, if she is a human being and if mortality is a specific condition for being human. We know that all humans die, so that’s tight evidence. This argument would be a very good argument; it is valid (i.e the conclusion necessarily follows the premises) and it is sound (i.e. all the premises are true).

Inductive Arguments : in an inductive argument the conclusion likely (at best) follows the premises. Let’s have an example:

Example 4 : 98.9% of all TCC students like pizza. You are a TCC student. Thus, you like pizza.

Premise 1: 98.9% of all TCC students like pizza

Premise 2: You are a TCC student.

Conclusion: You like pizza. (*Thus is a conclusion indicator)

In this example, the conclusion doesn’t necessarily follow; it likely follows. But you might be part of that 1.1% for whatever reason. Inductive arguments are good arguments if they are strong. So, instead of saying an inductive argument is valid, we say it is strong. You can also use the term sound to describe the truth of the premises, if they are true. Let’s suppose they are true and you absolutely love Hideaway pizza. Let’s also assume you are a TCC student. So, the argument is really strong and it is sound.

There are many types of inductive argument, including: causal arguments, arguments based on probabilities or statistics, arguments that are supported by analogies, and arguments that are based on some type of authority figure. So, when you encounter an argument based on one of these types, think about how strong the argument is. If you want to see examples of the different types, a web search (or a logic class!) will get you where you need to go.

Some arguments are faulty, not necessarily because of the truth or falsity of the premises, but because they rely on psychological and emotional ploys. These are bad arguments because people shouldn’t accept your conclusion if you are using scare tactics or distracting and manipulating reasoning. Arguments that have this issue are called fallacies. There are a lot of fallacies, so, again, if you want to know more a web search will be useful. We are going to look at several that seem to be the most relevant for our day-to-day experiences.

  • Inappropriate Appeal to Authority : We are definitely going to use authority figures in our lives (e.g. doctors, lawyers, mechanics, financial advisors, etc.), but we need to make sure that the authority figure is a reliable one.

Things to look for here might include: reputation in the field, not holding widely controversial views, experience, education, and the like. So, if we take an authority figure’s word and they’re not legit, we’ve committed the fallacy of appeal to authority.

Example 5 : I think I am going to take my investments to Voya. After all, Steven Adams advocates for Voya in an advertisement I recently saw.

If we look at the criteria for evaluating arguments that appeal to authority figures, it is pretty easy to see that Adams is not an expert in the finance field. Thus, this is an inappropropriate appeal to authority.

  • Slippery Slope Arguments : Slippery slope arguments are found everywhere it seems. The essential characteristic of a slippery slope argument is that it uses problematic premises to argue that doing ‘x’ will ultimately lead to other actions that are extreme, unlikely, and disastrous. You can think of this type of argument as a faulty chain of events or domino effect type of argument.

Example 6 : If you don’t study for your philosophy exam you will not do well on the exam. This will lead to you failing the class. The next thing you know you will have lost your scholarship, dropped out of school, and will be living on the streets without any chance of getting a job.

While you should certainly study for your philosophy exam, if you don’t it is unlikely that this will lead to your full economic demise.

One challenge to evaluating slippery slope arguments is that they are predictions, so we cannot be certain about what will or will not actually happen. But this chain of events type of argument should be assessed in terms of whether the outcome will likely follow if action ‘x” is pursued.

  • Faulty Analogy : We often make arguments based on analogy and these can be good arguments. But we often use faulty reasoning with analogies and this is what we want to learn how to avoid.

When evaluating an argument that is based on an analogy here are a few things to keep in mind: you want to look at the relevant similarities and the relevant differences between the things that are being compared. As a general rule, if there are more differences than similarities the argument is likely weak.

Example 7 : Alcohol is legal. Therefore, we should legalize marijuana too.

So, the first step here is to identify the two things being compared, which are alcohol and marijuana. Next, note relevant similarities and differences. These might include effects on health, community safety, economic factors, criminal justice factors, and the like.

This is probably not the best argument in support for marijuana legalization. It would seem that one could just as easily conclude that since marijuana is illegal, alcohol should be too. In fact, one might find that alcohol is an often abused and highly problematic drug for many people, so it is too risky to legalize marijuana if it is similar to alcohol.

  • Appeal to Emotion : Arguments should be based on reason and evidence, not emotional tactics. When we use an emotional tactic, we are essentially trying to manipulate someone into accepting our position by evoking pity or fear, when our positions should actually be backed by reasonable and justifiable evidence.

Example 8 : Officer please don’t give me a speeding ticket. My girlfriend broke up with me last night, my alarm didn’t go off this morning, and I’m late for class.

While this is a really horrible start to one’s day, being broken up with and an alarm malfunctioning is not a justifiable reason for speeding.

Example 9 : Professor, I’d like you to remember that my mother is a dean here at TCC. I’m sure that she will be very disappointed if I don’t receive an A in your class.

This is a scare tactic and is not a good way to make an argument. Scare tactics can come in the form of psychological or physical threats; both forms are to be avoided.

  • Appeal to Ignorance : This fallacy occurs when our argument relies on lack of evidence when evidence is actually needed to support a position.

Example 10 : No one has proven that sasquatch doesn’t exist; therefore it does exist.

Example 11 : No one has proven God exists; therefore God doesn’t exist.

The key here is that lack of evidence against something cannot be an argument for something. Lack of evidence can only show that we are ignorant of the facts.

  • Straw Man : A straw man argument is a specific type of argument that is intended to weaken an opponent’s position so that it is easier to refute. So, we create a weaker version of the original argument (i.e. a straw man argument), so when we present it everyone will agree with us and denounce the original position.

Example 12 : Women are crazy arguing for equal treatment. No one wants women hanging around men’s locker rooms or saunas.

This is a misrepresentation of arguments for equal treatment. Women (and others arguing for equal treatment) are not trying to obtain equal access to men’s locker rooms or saunas.

The best way to avoid this fallacy is to make sure that you are not oversimplifying or misrepresenting others’ positions. Even if we don’t agree with a position, we want to make the strongest case against it and this can only be accomplished if we can refute the actual argument, not a weakened version of it. So, let’s all bring the strongest arguments we have to the table!

  • Red Herring : A red herring is a distraction or a change in subject matter. Sometimes this is subtle, but if you find yourself feeling lost in the argument, take a close look and make sure there is not an attempt to distract you.

Example 13 : Can you believe that so many people are concerned with global warming? The real threat to our country is terrorism.

It could be the case that both global warming and terrorism are concerns for us. But the red herring fallacy is committed when someone tries to distract you from the argument at hand by bringing up another issue or side-stepping a question. Politicians are masters at this, by the way.

  • Appeal to the Person : This fallacy is also referred to as the ad hominem fallacy. We commit this fallacy when we dismiss someone’s argument or position by attacking them instead of refuting the premises or support for their argument.

Example 14 : I am not going to listen to what Professor ‘X’ has to say about the history of religion. He told one of his previous classes he wasn’t religious.

The problem here is that the student is dismissing course material based on the professor’s religious views and not evaluating the course content on its own ground.

To avoid this fallacy, make sure that you target the argument or their claims and not the person making the argument in your rebuttal.

  • Hasty Generalization : We make and use generalizations on a regular basis and in all types of decisions. We rely on generalizations when trying to decide which schools to apply to, which phone is the best for us, which neighborhood we want to live in, what type of job we want, and so on. Generalizations can be strong and reliable, but they can also be fallacious. There are three main ways in which a generalization can commit a fallacy: your sample size is too small, your sample size is not representative of the group you are making a generalization about, or your data could be outdated.

Example 15 : I had horrible customer service at the last Starbucks I was at. It is clear that Starbucks employees do not care about their customers. I will never visit another Starbucks again.

The problem with this generalization is that the claim made about all Starbucks is based on one experience. While it is tempting to not spend your money where people are rude to their customers, this is only one employee and presumably doesn’t reflect all employees or the company as a whole. So, to make this a stronger generalization we would want to have a larger sample size (multiple horrible experiences) to support the claim. Let’s look at a second hasty generalization:

Example 16 : I had horrible customer service at the Starbucks on 81st street. It is clear that Starbucks employees do not care about their customers. I will never visit another Starbucks again.

The problem with this generalization mirrors the previous problem in that the claim is based on only one experience. But there’s an additional issue here as well, which is that the claim is based off of an experience at one location. To make a claim about the whole company, our sample group needs to be larger than one and it needs to come from a variety of locations.

  • Begging the Question : An argument begs the question when the argument’s premises assume the conclusion, instead of providing support for the conclusion. One common form of begging the question is referred to as circular reasoning.

Example 17 : Of course, everyone wants to see the new Marvel movie is because it is the most popular movie right now!

The conclusion here is that everyone wants to see the new Marvel movie, but the premise simply assumes that is the case by claiming it is the most popular movie. Remember the premise should give reasons for the conclusion, not merely assume it to be true.

  • Equivocation : In the English language there are many words that have different meanings (e.g. bank, good, right, steal, etc.). When we use the same word but shift the meaning without explaining this move to your audience, we equivocate the word and this is a fallacy. So, if you must use the same word more than once and with more than one meaning you need to explain that you’re shifting the meaning you intend. Although, most of the time it is just easier to use a different word.

Example 18 : Yes, philosophy helps people argue better, but should we really encourage people to argue? There is enough hostility in the world.

Here, argue is used in two different senses. The meaning of the first refers to the philosophical meaning of argument (i.e. premises and a conclusion), whereas the second sense is in line with the common use of argument (i.e. yelling between two or more people, etc.).

  • Henry Imler, ed., Phronesis An Ethics Primer with Readings, (2018). 7-8. ↵
  • Arendt, Hannah, “Thinking and Moral Considerations,” Social Research, 38:3 (1971: Autumn): 431. ↵
  • Theodor W. Adorno, “Education After Auschwitz,” in Can One Live After Auschwitz, ed. by Rolf Tiedemann, trans. by Rodney Livingstone (Stanford: Stanford University Press, 2003): 23. ↵
  • Allen W. Wood, “Hegel on Education,” in Philosophers on Education: New Historical Perspectives, ed. Amelie O. Rorty (London: Routledge 1998): 302. ↵

LOGOS: Critical Thinking, Arguments, and Fallacies Copyright © 2020 by Heather Wilburn, Ph.D is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

1000-Word Philosophy: An Introductory Anthology

1000-Word Philosophy: An Introductory Anthology

Philosophy, One Thousand Words at a Time

Critical Thinking: What is it to be a Critical Thinker?

Author: Carolina Flores Categories: Logic and Reasoning , Philosophy of Education , Epistemology, or Theory of Knowledge Word count: 997

Listen here

We often urge others to think critically. What does that really mean? How can we think critically?

This essay presents a general account of what it is to be a critical thinker and outlines both traditional and more recent approaches to critical thinking.

Know the Facts: A WPA (Works Progress Administration, part of the New Deal) poster, imploring the public to develop critical thinking skills. Circa late 1930-early 1940s.

1. What is Critical Thinking?

Speaking generally, critical thinking consists of reasoning and inquiring in careful ways, so as to form and update one’s beliefs based on good reasons . [1] A critical thinker is someone who typically reasons and inquires in these ways, having mastered relevant skills and developed the disposition to apply them. [2]

2. Traditional Components: Logic and Fallacies

Traditional views of critical thinking focus on deductive arguments. Arguments are sets of reasons given for a conclusion. Deductive arguments are arguments where the reasons given are supposed to be logically conclusive, that is, to guarantee the conclusion. E.g., the following is a deductive argument:

  • Socrates is a man.
  • All men are mortal.
  • Therefore, Socrates is mortal.

Arriving at new beliefs through deductive arguments is a way of forming beliefs based on good reasons. Accordingly, critical thinking traditionally focusses on these skills: [3]

  • distinguishing arguments (instances where you are offered reasons for a conclusion) from mere assertions, rhetorical questions, and attempts at manipulation through irrelevant considerations;
  • identifying conclusions of arguments (what the person offering the argument wants to persuade you to believe), and the reasons or premises for that conclusion;
  • reconstructing streamlined, complete statements of arguments in standard form (as a numbered list of premises with the conclusion at the end), or using diagrams; [4]
  • assessing the logical structure of deductive arguments: answering ‘Is there any way for the premises to be true while the conclusion is false?’
  • understanding arguments’ claims: e.g., defining unclear terms;
  • determining whether premises are true or likely;
  • imagining, proposing, and charitably responding to objections, i.e, reasons given to doubt or deny arguments’ logic, premise(s), or conclusion. [5]

To develop these skills, traditional critical thinking courses typically include propositional logic and the study of common good argument forms. [6]

They also often teach how to identify fallacies —faulty patterns of reasoning that deceptively appear to be good arguments. [7] These include:

  • affirming the consequent (“If Kat had won the prize, she would have had an A; Kat had an A; therefore, Kat won the prize”);
  • the ad hominem fallacy—where people attack the person making an argument instead of considering their argument;
  • begging the question —offering reasons for a conclusion that assume the conclusion, and many others. [8]

3. Additional Formal Tools: Evidence and Statistics

We often form beliefs based on observations that, unlike deductive arguments, do not provide conclusive reasons for a belief: e.g., you might conclude that your sibling is angry at you from their facial expressions or come to believe you have a cold because you have a runny nose. Here, these observations or evidence might support the belief formed but do not guarantee the truth of your belief.

Critical thinkers know how to adjust their beliefs appropriately in light of their evidence. [9] So critical thinking requires developing abilities to:

  • assess evidence without being unduly swayed by what one already believes;
  • recognize when a claim counts as evidence for (or against) a conclusion;
  • identify when evidence is strong (or weak);
  • determine the extent to which people’s views should change, given their evidence.

To develop these abilities, drawing on knowledge of probability can be helpful: e.g., basic probability offers a recipe for determining when an observation counts as evidence for a belief: when that observation is more likely if the belief is true than if it is not . It also teaches us that updating your beliefs when you get new evidence requires taking into account both (a) how confident you were on that belief beforehand and (b) how strongly the evidence supports that (new) belief. [10]

For these reasons, recent approaches to critical thinking often include instruction in probability. [11] And, because we often get evidence in the form of statistics, often presented through diagrams and graphs, such approaches tend to highlight the importance of basic statistical concepts, [12] and the ability to interpret diagrams and graphs. [13]

4. Applied Skills as Part of Being a Critical Thinker

Being a critical thinker requires more than having technical tools (such as the tools of logic or probability) stored away. It requires consistently applying them in the real world .

In recent discussions of what it is to be a critical thinker, there has been increased emphasis on navigating our informational environments in savvy ways. This requires avoiding false, misleading, manipulative, or distracting claims online, as well as making sure that one gathers information from a wide variety of reliable sources. [14] It also requires calibrating one’s trust well: one should remain open to hearing those who disagree and not let prejudice and implicit bias affect whom one trusts. [15] , [16]

Applying the tools of critical thinking throughout one’s life requires overcoming cognitive biases: [17] e.g.:

  • not always accepting answers that come to mind first;
  • resisting confirmation bias (the tendency to gather and interpret evidence in ways that confirm our beliefs), [18] and;
  • avoiding motivated reasoning (the tendency to reason in ways that help us believe what we wish were true, and not what is true). [19]

More generally, becoming a critical thinker requires shifting from a defensive mindset to a truth-seeking one and developing intellectual virtues such as intellectual humility and open-minded curiosity. [20] , [21] Without those, the tools of critical thinking may end up being deployed to entrench false or unreasonable beliefs.

5. Conclusion

Critical thinking is about reasoning and inquiring so as to form and update one’s beliefs based on good reasons. Because critical thinking skills are valuable in a world that emphasizes the ability to navigate information, becoming a critical thinker is practically useful to us as individuals.

It is also of crucial social and political value: e.g., a well-functioning democracy requires citizens who think critically about the world. [22] And critical thinking has liberatory potential: it provides us with tools to criticize oppressive social structures and envisage a more just, fair society. [23]

Acknowledgments

Thanks to the Teaching Philosophy Facebook Group for literature recommendations. Thanks to Chelsea Haramia, Sabrina Huwang, Izilda Jorge, Thomas Metcalf, Nathan Nobis, Elise Woodard, and anonymous referees for feedback.

[1] This definition is similar to Ennis’s (1991) definition: critical thinking, in his view, is “reasonable reflective thinking that is focused on deciding what to believe or do” (Ennis 1991, p. 6). See Hitchcock 2010 for an overview of definitions of critical thinking. 

[2] While I define critical thinking in a general way here, there is disagreement about whether there are any general tools for critical thinking, as opposed to merely topic-specific ones.

There are also closely related debates about the extent to which specific critical thinking skills transfer to new domains and tasks, and about whether we should teach critical thinking on its own or, instead, in the context of specific disciplines, with discipline-internal standards made clear and an emphasis on content acquisition. See Willingham 2019 for discussion, including references to relevant empirical research.

People who have mastered critical thinking skills in a domain or subject area tend to be experts in those areas. See Expertise: What is an Expert? by Jamie Carlin Watson

[3] See this Khan Academy/Wi Phi Philosophy course for an overview.

[4] An example of an argument in standard form is: 1. Socrates is a man; 2. All men are mortal; 3. Therefore, Socrates is mortal. For other examples of arguments in standard form, see Anderson’s “Putting an Argument in Standard Form.” For examples of argument diagrams, as well as a useful program to construct such diagrams, see Cullen’s “Philosophy Mapped” website .

[5] Charitably responding involves responding to the strongest version of the objection.

[6] Propositional logic is the simplest branch of logic, i.e. the formal study of arguments and reasoning. See Tom Metcalf’s Formal Logic: Symbolizing Arguments in Sentential Logic by for an introduction.

[7] Wikipedia has extensive lists of good argument forms and of common fallacies . See Boardman et al. 2017, Howard-Snyder 2020, Lau 2011 , Vaughn 2018 for examples of critical thinking textbooks that take the traditional approach.

[8] To see why these are fallacies, note that, for all that is said, Kat could have had an A without winning the prize; perhaps she simply had high exam scores. And note that morally bad people can give good arguments.

[9] Philosophers also use the term ‘evidence’ in more technical senses than ‘relevant observations’. See Kelly 2016 for discussion of these different senses.

[10] Indeed, we can capture this insight into a domain-general formula for how to update beliefs: Bayes’ theorem. Bayes’ theorem tells us how to weigh our previous confidence and the strength of evidence. For a short explanation of Bayes’ Theorem, see Better Explained, “A Short and Intuitive Explanation of Bayes’ Theorem” . For more detailed discussion of Bayesianism, see Joyce 2019.

[11] Manley 2019.

[12] See Gigerenzer et al. 2007 for discussion of the practical importance of these concepts. An especially important statistical concept is that of base rate . The base rate of a feature in a population is what fraction of the population have that feature. Neglecting the base rate leads to the base rate fallacy , where one ends up adjusting one’s beliefs incorrectly in response to evidence (for example, taking a fallible positive test for a rare disease to indicate that one is extremely likely to have that disease, where, given the rarity of the disease, that remains unlikely).

[13] Battersby 2016.

[14] See Bergstorm and West’s “Calling Bullshit” syllabus for a range of helpful tools for avoiding such claims, and The News Literacy Project for resources on developing a healthy news diet.

[15] See Nguyen’s “Escape the Echo Chamber.” for helpful discussion of common issues with trust calibration and with information gathering.

[16] Implicit bias involves believing and acting “on basis of prejudice and stereotypes without intending to do so”: see Brownstein 2019.

When one discredits members of marginalized groups due to (conscious or unconscious) prejudice, one commits an epistemic injustice: see Fricker 2007. For an introduction to epistemic injustice, see Huzeyfe Demitras’s Epistemic Injustice .

[17] Cognitive biases are systematic deviations from how we should reason. See Kahneman 2011 for an accessible overview of research on cognitive biases.

[18] Nickerson 1998 .

[19] Kunda 1990.

[20] An intellectual virtue is a personality trait or disposition that is helpful in reasoning well and acquiring knowledge. Some examples are intellectual humility, open-mindedness, curiosity, and perseverance. See Zagzebski 1996.

[21] See Galef’s TED talk “Why you think you’re right – even if you’re wrong” for discussion of the importance of these traits.

[22] Dewey 1923.

[23] Freire 1968/2018, hooks 2010.

Anderson, Jeremy. “Putting an Argument in Standard Form.”

Battersby, Mark. 2016. Is That a Fact?: A Field Guide to Statistical and Scientific Information . Broadview Press.

Bergstrom, Carl T. and West, Jevin. 2019. “Calling Bullshit: Data Reasoning in a Digital World.” (website)

Better Explained. 2020. “A Short and Intuitive Explanation of Bayes’ Theorem.” (website)

Boardman, Frank, Cavender, Nancy M, and Kahane, Howard . 2017. Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life. Cengage Learning.

Brownstein, Michael, “Implicit Bias”, The Stanford Encyclopedia of Philosophy (Fall 2019 Edition), Edward N. Zalta (ed.).

Cullen, Simon. “Philosophy Mapped: Open Resources for Philosophy Visualization.” 

Demirtas, Huzeyfe. 2020. “Epistemic Injustice.” 1000-Word Philosophy: An Introductory Anthology .

Dewey, John. 1923. Democracy and Education: An Introduction to the Philosophy of Education. Macmillan.

Ennis, Robert. 1991. “Critical Thinking: A Streamlined Conception.” Teaching Philosophy , 14(1):5-24.

Frankfurt, Harry G. 1986. On Bullshit . Princeton University Press.

Freire, Paulo. 2018 [1968]. Pedagogy of the Oppressed . Bloomsbury Publishing USA.

Fricker, Miranda. 2007. Epistemic Injustice: Power and the Ethics of Knowing . Oxford University Press.

Galef, Julia. 2016. “Why You Think You’re Right – Even If You’re Wrong.” TED Talk.

Gigerenzer, Gerd, Gaissmaier, Wolfgang, Kurz-Milcke, Elke, Schwartz, Lisa M and Woloshin, Steven. 2007. “Helping Doctors and Patients Make Sense of Health Statistics.” Psychological Science in the Public Interest , 8(2):53-96.

bell hooks. 2010. Teaching Critical Thinking: Practical Wisdom . New York and London: Routledge.

Hitchcock, David. 2020. “ Critical Thinking ” , The Stanford Encyclopedia of Philosophy (Fall 2020 Edition), Edward N. Zalta (ed.).

Howard-Snyder, Frances, Howard-Snyder, Daniel, and Wasserman, Ryan. 2020. The Power of Logic . McGraw-Hill.

Joyce, James, “ Bayes’ Theorem ” , The Stanford Encyclopedia of Philosophy (Spring 2019 Edition), Edward N. Zalta (ed.).

Kahneman, Daniel. 2011. Thinking, Fast and Slow . Macmillan.

Kelly, Thomas. 2016. “ Evidence ” , The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.).

Kunda, Ziva. 1990. “The Case for Motivated Reasoning.” Psychological Bulletin , 108(3):  480-498.

Lai, Emily R. 2011. “Critical Thinking: A Literature Review.” Pearson’s Research Reports , 6: 40-41.

Lau, Joe YF. 2011. An Introduction to Critical Thinking and Creativity: Think More, Think Better . John Wiley & Sons.

Manley, David. 2019. Reason Better: An Interdisciplinary Guide to Critical Thinking . Toronto, ON, Canada: Tophat Monocle.

Metcalf, Thomas. 2020. “Formal Logic: Symbolizing Arguments in Sentential Logic.” 1,000-Word Philosophy: An Introductory Anthology .

The News Literacy Project.

Nguyen, Thi. 2018. “Escape the Echo Chamber.” Aeon.

Nickerson, Raymond S. 1998. “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises.” Review of General Psychology , 2(2):175-220.

Pynn, Geoff. 2020. “Critical Thinking: Fundamentals.” Wireless Philosophy/Khan Academy .

Vaughn, Lewis. 2018. The Power of Critical Thinking: Effective Reasoning About Ordinary and Extraordinary Claims . Oxford University Press.

Willingham, Daniel T. 2019. “How to Teach Critical Thinking.” Education: Future Frontiers , 1:1-17.

Zagzebski, Linda Trinkaus. 1996. Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge . Cambridge University Press.

Related Essays

Arguments: Why Do You Believe What You Believe? by Thomas Metcalf

Classical Syllogisms  by Timothy Eshing

Contemporary Syllogisms  by Timothy Eshing

Philosophy as a Way of Life  by Christine Darr

Expertise by Jamie Carlin Watson

Epistemic Justification: What is Rational Belief? by Todd R. Long

Is it Wrong to Believe Without Sufficient Evidence? W.K. Clifford’s “The Ethics of Belief”  by Spencer Case

Indoctrination: What is it to Indoctrinate Someone? by Chris Ranalli

Epistemic Injust ice by Huzeyfe Demitras

Formal Logic: Symbolizing Arguments in Sentential Logic by Thomas Metcalf

Epistemology, or Theory of Knowledge by Thomas Metcalf

Bayesianism by Thomas Metcalf

Conspiracy Theories  by Jared Millson

Philosophical Inquiry in Childhood  by Jana Mohr Lone

Translation

Pdf download.

Download this essay in PDF . 

About the Author

Carolina Flores is a post-doctoral fellow at UC Irvine and will be an assistant professor at UC Santa Cruz starting in 2023. She earned her Ph.D. at Rutgers University, New Jersey. She specializes in philosophy of mind and social epistemology. She is especially interested in why it is so hard to change people’s minds, and in what that tells us about the mind and about human relationships and political persuasion. CarolinaFlores.org

Follow 1000-Word Philosophy on Facebook , Twitter and subscribe to receive email notifications of new essays at 1000WordPhilosophy.com.

Share this:

12 thoughts on “ critical thinking: what is it to be a critical thinker ”.

  • Pingback: 비판적 사고: 비판적으로 사고한다는 것은 무엇일까? – Carolina Flores - Doing Philosophy
  • Pingback: Philosophy as a Way of Life – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Epistemic Justification: What is Rational Belief? – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Arguments: Why Do You Believe What You Believe? – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Contemporary Syllogisms – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Classical Syllogisms – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Formal Logic: Symbolizing Arguments in Quantificational or Predicate Logic – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Bayesianism – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Is it Wrong to Believe Without Sufficient Evidence? W.K. Clifford’s “The Ethics of Belief” – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Indoctrination: What is it to Indoctrinate Someone?  – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: Cultural Relativism: Do Cultural Norms Make Actions Right and Wrong? – 1000-Word Philosophy: An Introductory Anthology
  • Pingback: What is Philosophy? – 1000-Word Philosophy: An Introductory Anthology

Comments are closed.

PHIL102: Introduction to Critical Thinking and Logic

Course introduction.

  • Time: 40 hours
  • College Credit Recommended ($25 Proctor Fee) -->
  • Free Certificate

The course touches upon a wide range of reasoning skills, from verbal argument analysis to formal logic, visual and statistical reasoning, scientific methodology, and creative thinking. Mastering these skills will help you become a more perceptive reader and listener, a more persuasive writer and presenter, and a more effective researcher and scientist.

The first unit introduces the terrain of critical thinking and covers the basics of meaning analysis, while the second unit provides a primer for analyzing arguments. All of the material in these first units will be built upon in subsequent units, which cover informal and formal logic, Venn diagrams, scientific reasoning, and strategic and creative thinking.

Course Syllabus

First, read the course syllabus. Then, enroll in the course by clicking "Enroll me". Click Unit 1 to read its introduction and learning outcomes. You will then see the learning materials and instructions on how to use them.

critical thinking philosophy example

Unit 1: Introduction and Meaning Analysis

Critical thinking is a broad classification for a diverse array of reasoning techniques. In general, critical thinking works by breaking arguments and claims down to their basic underlying structure so we can see them clearly and determine whether they are rational. The idea is to help us do a better job of understanding and evaluating what we read, what we hear, and what we write and say.

In this unit, we will define the broad contours of critical thinking and learn why it is a valuable and useful object of study. We will also introduce the fundamentals of meaning analysis: the difference between literal meaning and implication, the principles of definition, how to identify when a disagreement is merely verbal, the distinction between necessary and sufficient conditions, and problems with the imprecision of ordinary language.

Completing this unit should take you approximately 5 hours.

Unit 2: Argument Analysis

Arguments are the fundamental components of all rational discourse: nearly everything we read and write, like scientific reports, newspaper columns, and personal letters, as well as most of our verbal conversations, contain arguments. Picking the arguments out from the rest of our often convoluted discourse can be difficult. Once we have identified an argument, we still need to determine whether or not it is sound. Luckily, arguments obey a set of formal rules that we can use to determine whether they are good or bad.

In this unit, you will learn how to identify arguments, what makes an argument sound as opposed to unsound or merely valid, the difference between deductive and inductive reasoning, and how to map arguments to reveal their structure.

Completing this unit should take you approximately 7 hours.

Unit 3: Basic Sentential Logic

This unit introduces a topic that many students find intimidating: formal logic. Although it sounds difficult and complicated, formal (or symbolic) logic is actually a fairly straightforward way of revealing the structure of reasoning. By translating arguments into symbols, you can more readily see what is right and wrong with them and learn how to formulate better arguments. Advanced courses in formal logic focus on using rules of inference to construct elaborate proofs. Using these techniques, you can solve many complicated problems simply by manipulating symbols on the page. In this course, however, you will only be looking at the most basic properties of a system of logic. In this unit, you will learn how to turn phrases in ordinary language into well-formed formulas, draw truth tables for formulas, and evaluate arguments using those truth tables.

Completing this unit should take you approximately 13 hours.

Unit 4: Venn Diagrams

In addition to using predicate logic, the limitations of sentential logic can also be overcome by using Venn diagrams to illustrate statements and arguments. Statements that include general words like "some" or "few" as well as absolute words like "every" and "all" – so-called categorical statements – lend themselves to being represented on paper as circles that may or may not overlap.

Venn diagrams are especially helpful when dealing with logical arguments called syllogisms. Syllogisms are a special type of three-step argument with two premises and a conclusion, which involve quantifying terms. In this unit, you will learn the basic principles of Venn diagrams, how to use them to represent statements, and how to use them to evaluate arguments.

Completing this unit should take you approximately 6 hours.

Unit 5: Fallacies

Now that you have studied the necessary structure of a good argument and can represent its structure visually, you might think it would be simple to pick out bad arguments. However, identifying bad arguments can be very tricky in practice. Very often, what at first appears to be ironclad reasoning turns out to contain one or more subtle errors.

Fortunately, there are many easily identifiable fallacies (mistakes of reasoning) that you can learn to recognize by their structure or content. In this unit, you will learn about the nature of fallacies, look at a couple of different ways of classifying them, and spend some time dealing with the most common fallacies in detail.

Completing this unit should take you approximately 3 hours.

Unit 6: Scientific Reasoning

Unlike the syllogistic arguments you explored in the last unit, which are a form of deductive argument, scientific reasoning is empirical. This means that it depends on observation and evidence, not logical principles. Although some principles of deductive reasoning do apply in science, such as the principle of contradiction, scientific arguments are often inductive. For this reason, science often deals with confirmation and disconfirmation.

Nonetheless, there are general guidelines about what constitutes good scientific reasoning, and scientists are trained to be critical of their inferences and those of others in the scientific community. In this unit, you will investigate some standard methods of scientific reasoning, some principles of confirmation and disconfirmation, and some techniques for identifying and reasoning about causation.

Completing this unit should take you approximately 4 hours.

Unit 7: Strategic Reasoning and Creativity

While most of this course has focused on the types of reasoning necessary to critique and evaluate existing knowledge or to extend our knowledge following correct procedures and rules, an enormous branch of our reasoning practice runs in the opposite direction. Strategic reasoning, problem-solving, and creative thinking all rely on an ineffable component of novelty supplied by the thinker.

Despite their seemingly mystical nature, problem-solving and creative thinking are best approached by following tried and tested procedures that prompt our cognitive faculties to produce new ideas and solutions by extending our existing knowledge. In this unit, you will investigate problem-solving techniques, representing complex problems visually, making decisions in risky and uncertain scenarios, and creative thinking in general.

Completing this unit should take you approximately 2 hours.

Study Guide

This study guide will help you get ready for the final exam. It discusses the key topics in each unit, walks through the learning outcomes, and lists important vocabulary terms. It is not meant to replace the course materials!

critical thinking philosophy example

Course Feedback Survey

Please take a few minutes to give us feedback about this course. We appreciate your feedback, whether you completed the whole course or even just a few resources. Your feedback will help us make our courses better, and we use your feedback each time we make updates to our courses.

If you come across any urgent problems, email [email protected].

critical thinking philosophy example

Certificate Final Exam

Take this exam if you want to earn a free Course Completion Certificate.

To receive a free Course Completion Certificate, you will need to earn a grade of 70% or higher on this final exam. Your grade for the exam will be calculated as soon as you complete it. If you do not pass the exam on your first try, you can take it again as many times as you want, with a 7-day waiting period between each attempt.

Once you pass this final exam, you will be awarded a free Course Completion Certificate .

critical thinking philosophy example

Saylor Direct Credit

Take this exam if you want to earn college credit for this course . This course is eligible for college credit through Saylor Academy's Saylor Direct Credit Program .

The Saylor Direct Credit Final Exam requires a proctoring fee of $5 . To pass this course and earn a Credly Badge and official transcript , you will need to earn a grade of 70% or higher on the Saylor Direct Credit Final Exam. Your grade for this exam will be calculated as soon as you complete it. If you do not pass the exam on your first try, you can take it again a maximum of 3 times , with a 14-day waiting period between each attempt.

We are partnering with SmarterProctoring to help make the proctoring fee more affordable. We will be recording you, your screen, and the audio in your room during the exam. This is an automated proctoring service, but no decisions are automated; recordings are only viewed by our staff with the purpose of making sure it is you taking the exam and verifying any questions about exam integrity. We understand that there are challenges with learning at home - we won't invalidate your exam just because your child ran into the room!

Requirements:

  • Desktop Computer
  • Chrome (v74+)
  • Webcam + Microphone
  • 1mbps+ Internet Connection

Once you pass this final exam, you will be awarded a Credly Badge  and can request an official transcript .

Saylor Direct Credit Exam

This exam is part of the Saylor Direct College Credit program. Before attempting this exam, review the Saylor Direct Credit page for complete requirements.

Essential exam information:

  • You must take this exam with our automated proctor. If you cannot, please contact us to request an override.
  • The automated proctoring session will cost $5 .
  • This is a closed-book, closed-notes exam (see allowed resources below).
  • You will have two (2) hours to complete this exam.
  • You have up to 3 attempts, but you must wait 14 days between consecutive attempts of this exam.
  • The passing grade is 70% or higher.
  • This exam consists of 50 multiple-choice questions.

Some details about taking your exam:

  • Exam questions are distributed across multiple pages.
  • Exam questions will have several plausible options; be sure to pick the answer that best satisfies each part of the question.
  • Your answers are saved each time you move to another page within the exam.
  • You can answer the questions in any order.
  • You can go directly to any question by clicking its number in the navigation panel.
  • You can flag a question to remind yourself to return to it later.
  • You will receive your grade as soon as you submit your answers.

Allowed resources:

Gather these resources before you start your exam.

  • Blank paper

What should I do before my exam?

  • Gather these before you start your exam:
  •   A photo I.D. to show before your exam.
  •   A credit card to pay the automated proctoring fee.
  •   (optional) Blank paper and pencil.
  •   (optional) A glass of water.
  • Make sure your work area is well-lit and your face is visible.
  • We will be recording your screen, so close any extra tabs!
  • Disconnect any extra monitors attached to your computer.
  • You will have up to two (2) hours to complete your exam. Try to make sure you won't be interrupted during that time!
  • You will require at least 1mbps of internet bandwidth. Ask others sharing your connection not to stream during your exam.
  • Take a deep breath; you got this!

Critical Thinking

I. definition.

Critical thinking is the ability to reflect on (and so improve ) your thoughts, beliefs, and expectations. It’s a combination of several skills and habits such as:

Curiosity : the desire for knowledge and understanding

Curious people are never content with their current understanding of the world, but are driven to raise questions and pursue the answers. Curiosity is endless — the better you understand a given topic, the more you realize how much more there is to learn!

Humility : or the recognition that your own understanding is limited

This is closely connected to curiosity — if you’re arrogant and think you know everything already, then you have no reason to be curious. But a humble person always recognizes the limitations and gaps in their knowledge . This makes them more receptive to information, better listeners and learners.

Skepticism : a suspicious attitude toward what other people say

Skepticism means you always demand evidence and don’t simply accept what others tell you. At the same time, skepticism has to be inwardly focused as well! You have to be equally skeptical of your own beliefs and instincts as you are of others’.

Rationality or logic: The formal skills of logic are indispensable for critical thinkers

Skepticism keeps you on the lookout for bad arguments, and rationality helps you figure out exactly why they’re bad. But rationality also allows you to identify good arguments when you see them, and then to move beyond them and understand their further implications.

Creativity: or the ability to come up with new combinations of ideas

It’s not enough to just be skeptical and knock the holes in every argument that you hear. Sooner or later you have to come up with your own ideas, your own solutions, and your own visions. That requires a creative and independent mind, but one that is also capable of listening and learning.

Empathy : the ability to see things from another person’s perspective

Too often, people talk about critical thinkers as though they’re solitary explorers, forging their own path through the jungle of ideas without help from others. But this isn’t true at all. Real critical thinking means you constantly engage with other people, listen to what they have to say, and try to imagine how they see the world. By seeing things from someone else’s perspective, you can generate far more new ideas than you could by relying on your own knowledge alone.

II. Examples

Although video games are sometimes simply a passive way to enjoy yourself, they sometimes rely on critical thinking skills. This is particularly true of puzzle games and role playing games (RPGs) that present your character with puzzles at critical moments. For example, at one stage in the classic RPG Neverwinter Nights , your character has the option to serve as a juror on another character’s trial. In order to save the innocent man, you have to talk to people throughout the town and, using a combination of empathy and skepticism, figure out what really happened.

In one episode of South Park , Cartman becomes obsessed with conspiracy theories and sings a song about needing to think for himself and find out the truth. The show is poking fun at conspiracy theorists, who often think that they are exercising critical thinking when in fact they are simply exercising too much skepticism towards common sense and popular beliefs, and not enough skepticism towards new, unnecessarily complicated explanations.

III. Critical Thinking vs. Traditional Thinking

Critical thinking, in the history of modern Western thought, is strongly associated with the Enlightenment, the period when European and American philosophers decided to approach the world with a rational eye, rejecting blind faith and questioning traditional authority. It was this moment in history that gave us modern medicine, democracy , and the early forms of industrial technology.

At the same time, the Enlightenment also came with many downsides, particularly the fact that it was so hostile to tradition. This hostility is understandable given the state of Europe at the time — ripped apart by bloody conflict between different religions, and oppressed by traditional monarchs who rooted their power in that of the Church. Enlightenment thinkers understandably rejected traditional thinking, holding it responsible for all this violence and injustice. But still, the Enlightenment sometimes went too far in the opposite direction. After all, rejecting tradition just for the sake of rejecting it is not really any better than accepting tradition just for the sake of accepting it! Traditions provide valuable resources for critical thinking, and without them it would be impossible. Think about this: the English language is a tradition, and without it you wouldn’t be sitting there reading these (hopefully useful) words about critical thinking!

So critical thinking absolutely depends on traditions. There’s no question that critical thinking means something more than just accepting traditions; but it doesn’t mean you necessarily reject them, either. It just means that you’re not blindly following tradition for its own sake ; rather, your relationship to your tradition is based on humility, creativity, skepticism, and all the other attributes of critical thinking.

IV. Quotes about Critical Thinking

“If I have seen further than others, it is because I have stood on the shoulders of giants.” (Isaac Newton)

Until Einstein, no physicist was ever more influential than Isaac Newton. Through curiosity and probable skepticism, he not only worked out the basic rules for matter and energy in the universe — he also realized that the force causing objects to fall was the same as the force causing celestial objects to orbit around each other (thus discovering the modern theory of gravity). He was also known for having a big ego and being a little arrogant with those he considered beneath his intellect — but even Newton had enough humility to recognize that he wasn’t doing it alone. He was deeply indebted to the whole tradition of scientists that had come before him — Europeans, Greeks, Arabs, Indians, and all the rest.

“It seems to me what is called for is an exquisite balance between two conflicting needs: the most skeptical scrutiny of all hypotheses… and at the same time a great openness to new ideas. Obviously those two modes of thought are in some tension. But if you are able to exercise only one of these modes, whichever one it is, you’re in deep trouble.” (Carl Sagan, The Burden of Skepticism )

In this quote, Carl Sagan offers a sensitive analysis of a tension within the idea of critical thinking. He points out that skepticism is extremely important to critical thinking, but at the same time it can go too far and become an obstacle. Notice, too, that you could replace the word “new” with “old” in this quote and it would still make sense. Critical thinkers need to be both open to new ideas and skeptical of them; similarly, they need to have a balanced attitude toward old and traditional ideas as well.

V. The History and Importance of Critical Thinking

Critical thinking has emerged as a cultural value in various times and places, from the Islamic scholars of medieval Central Asia to the secular philosophers of 18th-century America or the scientists and engineers of 21st-century Japan. In each case, critical thinking has taken a slightly different form, sometimes emphasizing skepticism above the other dimensions (as occurred in the European Enlightenment), sometimes emphasizing other dimensions such as creativity or rationality.

Today, many leaders in science, education, and business worry that we are seeing a decline in critical thinking. Education around the world has turned increasingly toward standardized testing and the mechanical memorization of facts, an approach that doesn’t leave time for critical thinking or creative arts. Some politicians view critical and creative education as a waste of time, believing that education should only focus on job skills and nothing else — an attitude which clearly overlooks the fact that critical thinking is an important job skill for everyone from auto mechanics to cognitive scientists.

a. Creativity

b. Skepticism

d. These are all dimensions of critical thinking

a. They are opposites

b. They are synonyms

c. They are in tension, but not incompatible

d. None of the above

a. The Enlightenment

b. The Renaissance

c. The current era

d. All of the above

a. Being constantly skeptical

b. Not being skeptical

c. Having a balance between too much skepticism and too little

d. No relation to skepticism

Library Home

Introduction to Logic and Critical Thinking

(10 reviews)

critical thinking philosophy example

Matthew Van Cleave, Lansing Community College

Copyright Year: 2016

Publisher: Matthew J. Van Cleave

Language: English

Formats Available

Conditions of use.

Attribution

Learn more about reviews.

Reviewed by "yusef" Alexander Hayes, Professor, North Shore Community College on 6/9/21

Formal and informal reasoning, argument structure, and fallacies are covered comprehensively, meeting the author's goal of both depth and succinctness. read more

Comprehensiveness rating: 5 see less

Formal and informal reasoning, argument structure, and fallacies are covered comprehensively, meeting the author's goal of both depth and succinctness.

Content Accuracy rating: 5

The book is accurate.

Relevance/Longevity rating: 5

While many modern examples are used, and they are helpful, they are not necessarily needed. The usefulness of logical principles and skills have proved themselves, and this text presents them clearly with many examples.

Clarity rating: 5

It is obvious that the author cares about their subject, audience, and students. The text is comprehensible and interesting.

Consistency rating: 5

The format is easy to understand and is consistent in framing.

Modularity rating: 5

This text would be easy to adapt.

Organization/Structure/Flow rating: 5

The organization is excellent, my one suggestion would be a concluding chapter.

Interface rating: 5

I accessed the PDF version and it would be easy to work with.

Grammatical Errors rating: 5

The writing is excellent.

Cultural Relevance rating: 5

This is not an offensive text.

Reviewed by Susan Rottmann, Part-time Lecturer, University of Southern Maine on 3/2/21

I reviewed this book for a course titled "Creative and Critical Inquiry into Modern Life." It won't meet all my needs for that course, but I haven't yet found a book that would. I wanted to review this one because it states in the preface that it... read more

Comprehensiveness rating: 4 see less

I reviewed this book for a course titled "Creative and Critical Inquiry into Modern Life." It won't meet all my needs for that course, but I haven't yet found a book that would. I wanted to review this one because it states in the preface that it fits better for a general critical thinking course than for a true logic course. I'm not sure that I'd agree. I have been using Browne and Keeley's "Asking the Right Questions: A Guide to Critical Thinking," and I think that book is a better introduction to critical thinking for non-philosophy majors. However, the latter is not open source so I will figure out how to get by without it in the future. Overall, the book seems comprehensive if the subject is logic. The index is on the short-side, but fine. However, one issue for me is that there are no page numbers on the table of contents, which is pretty annoying if you want to locate particular sections.

Content Accuracy rating: 4

I didn't find any errors. In general the book uses great examples. However, they are very much based in the American context, not for an international student audience. Some effort to broaden the chosen examples would make the book more widely applicable.

Relevance/Longevity rating: 4

I think the book will remain relevant because of the nature of the material that it addresses, however there will be a need to modify the examples in future editions and as the social and political context changes.

Clarity rating: 3

The text is lucid, but I think it would be difficult for introductory-level students who are not philosophy majors. For example, in Browne and Keeley's "Asking the Right Questions: A Guide to Critical Thinking," the sub-headings are very accessible, such as "Experts cannot rescue us, despite what they say" or "wishful thinking: perhaps the biggest single speed bump on the road to critical thinking." By contrast, Van Cleave's "Introduction to Logic and Critical Thinking" has more subheadings like this: "Using your own paraphrases of premises and conclusions to reconstruct arguments in standard form" or "Propositional logic and the four basic truth functional connectives." If students are prepared very well for the subject, it would work fine, but for students who are newly being introduced to critical thinking, it is rather technical.

It seems to be very consistent in terms of its terminology and framework.

Modularity rating: 4

The book is divided into 4 chapters, each having many sub-chapters. In that sense, it is readily divisible and modular. However, as noted above, there are no page numbers on the table of contents, which would make assigning certain parts rather frustrating. Also, I'm not sure why the book is only four chapter and has so many subheadings (for instance 17 in Chapter 2) and a length of 242 pages. Wouldn't it make more sense to break up the book into shorter chapters? I think this would make it easier to read and to assign in specific blocks to students.

Organization/Structure/Flow rating: 4

The organization of the book is fine overall, although I think adding page numbers to the table of contents and breaking it up into more separate chapters would help it to be more easily navigable.

Interface rating: 4

The book is very simply presented. In my opinion it is actually too simple. There are few boxes or diagrams that highlight and explain important points.

The text seems fine grammatically. I didn't notice any errors.

The book is written with an American audience in mind, but I did not notice culturally insensitive or offensive parts.

Overall, this book is not for my course, but I think it could work well in a philosophy course.

critical thinking philosophy example

Reviewed by Daniel Lee, Assistant Professor of Economics and Leadership, Sweet Briar College on 11/11/19

This textbook is not particularly comprehensive (4 chapters long), but I view that as a benefit. In fact, I recommend it for use outside of traditional logic classes, but rather interdisciplinary classes that evaluate argument read more

Comprehensiveness rating: 3 see less

This textbook is not particularly comprehensive (4 chapters long), but I view that as a benefit. In fact, I recommend it for use outside of traditional logic classes, but rather interdisciplinary classes that evaluate argument

To the best of my ability, I regard this content as accurate, error-free, and unbiased

The book is broadly relevant and up-to-date, with a few stray temporal references (sydney olympics, particular presidencies). I don't view these time-dated examples as problematic as the logical underpinnings are still there and easily assessed

Clarity rating: 4

My only pushback on clarity is I didn't find the distinction between argument and explanation particularly helpful/useful/easy to follow. However, this experience may have been unique to my class.

To the best of my ability, I regard this content as internally consistent

I found this text quite modular, and was easily able to integrate other texts into my lessons and disregard certain chapters or sub-sections

The book had a logical and consistent structure, but to the extent that there are only 4 chapters, there isn't much scope for alternative approaches here

No problems with the book's interface

The text is grammatically sound

Cultural Relevance rating: 4

Perhaps the text could have been more universal in its approach. While I didn't find the book insensitive per-se, logic can be tricky here because the point is to evaluate meaningful (non-trivial) arguments, but any argument with that sense of gravity can also be traumatic to students (abortion, death penalty, etc)

No additional comments

Reviewed by Lisa N. Thomas-Smith, Graduate Part-time Instructor, CU Boulder on 7/1/19

The text covers all the relevant technical aspects of introductory logic and critical thinking, and covers them well. A separate glossary would be quite helpful to students. However, the terms are clearly and thoroughly explained within the text,... read more

The text covers all the relevant technical aspects of introductory logic and critical thinking, and covers them well. A separate glossary would be quite helpful to students. However, the terms are clearly and thoroughly explained within the text, and the index is very thorough.

The content is excellent. The text is thorough and accurate with no errors that I could discern. The terminology and exercises cover the material nicely and without bias.

The text should easily stand the test of time. The exercises are excellent and would be very helpful for students to internalize correct critical thinking practices. Because of the logical arrangement of the text and the many sub-sections, additional material should be very easy to add.

The text is extremely clearly and simply written. I anticipate that a diligent student could learn all of the material in the text with little additional instruction. The examples are relevant and easy to follow.

The text did not confuse terms or use inconsistent terminology, which is very important in a logic text. The discipline often uses multiple terms for the same concept, but this text avoids that trap nicely.

The text is fairly easily divisible. Since there are only four chapters, those chapters include large blocks of information. However, the chapters themselves are very well delineated and could be easily broken up so that parts could be left out or covered in a different order from the text.

The flow of the text is excellent. All of the information is handled solidly in an order that allows the student to build on the information previously covered.

The PDF Table of Contents does not include links or page numbers which would be very helpful for navigation. Other than that, the text was very easy to navigate. All the images, charts, and graphs were very clear

I found no grammatical errors in the text.

Cultural Relevance rating: 3

The text including examples and exercises did not seem to be offensive or insensitive in any specific way. However, the examples included references to black and white people, but few others. Also, the text is very American specific with many examples from and for an American audience. More diversity, especially in the examples, would be appropriate and appreciated.

Reviewed by Leslie Aarons, Associate Professor of Philosophy, CUNY LaGuardia Community College on 5/16/19

This is an excellent introductory (first-year) Logic and Critical Thinking textbook. The book covers the important elementary information, clearly discussing such things as the purpose and basic structure of an argument; the difference between an... read more

This is an excellent introductory (first-year) Logic and Critical Thinking textbook. The book covers the important elementary information, clearly discussing such things as the purpose and basic structure of an argument; the difference between an argument and an explanation; validity; soundness; and the distinctions between an inductive and a deductive argument in accessible terms in the first chapter. It also does a good job introducing and discussing informal fallacies (Chapter 4). The incorporation of opportunities to evaluate real-world arguments is also very effective. Chapter 2 also covers a number of formal methods of evaluating arguments, such as Venn Diagrams and Propositional logic and the four basic truth functional connectives, but to my mind, it is much more thorough in its treatment of Informal Logic and Critical Thinking skills, than it is of formal logic. I also appreciated that Van Cleave’s book includes exercises with answers and an index, but there is no glossary; which I personally do not find detracts from the book's comprehensiveness.

Overall, Van Cleave's book is error-free and unbiased. The language used is accessible and engaging. There were no glaring inaccuracies that I was able to detect.

Van Cleave's Textbook uses relevant, contemporary content that will stand the test of time, at least for the next few years. Although some examples use certain subjects like former President Obama, it does so in a useful manner that inspires the use of critical thinking skills. There are an abundance of examples that inspire students to look at issues from many different political viewpoints, challenging students to practice evaluating arguments, and identifying fallacies. Many of these exercises encourage students to critique issues, and recognize their own inherent reader-biases and challenge their own beliefs--hallmarks of critical thinking.

As mentioned previously, the author has an accessible style that makes the content relatively easy to read and engaging. He also does a suitable job explaining jargon/technical language that is introduced in the textbook.

Van Cleave uses terminology consistently and the chapters flow well. The textbook orients the reader by offering effective introductions to new material, step-by-step explanations of the material, as well as offering clear summaries of each lesson.

This textbook's modularity is really quite good. Its language and structure are not overly convoluted or too-lengthy, making it convenient for individual instructors to adapt the materials to suit their methodological preferences.

The topics in the textbook are presented in a logical and clear fashion. The structure of the chapters are such that it is not necessary to have to follow the chapters in their sequential order, and coverage of material can be adapted to individual instructor's preferences.

The textbook is free of any problematic interface issues. Topics, sections and specific content are accessible and easy to navigate. Overall it is user-friendly.

I did not find any significant grammatical issues with the textbook.

The textbook is not culturally insensitive, making use of a diversity of inclusive examples. Materials are especially effective for first-year critical thinking/logic students.

I intend to adopt Van Cleave's textbook for a Critical Thinking class I am teaching at the Community College level. I believe that it will help me facilitate student-learning, and will be a good resource to build additional classroom activities from the materials it provides.

Reviewed by Jennie Harrop, Chair, Department of Professional Studies, George Fox University on 3/27/18

While the book is admirably comprehensive, its extensive details within a few short chapters may feel overwhelming to students. The author tackles an impressive breadth of concepts in Chapter 1, 2, 3, and 4, which leads to 50-plus-page chapters... read more

While the book is admirably comprehensive, its extensive details within a few short chapters may feel overwhelming to students. The author tackles an impressive breadth of concepts in Chapter 1, 2, 3, and 4, which leads to 50-plus-page chapters that are dense with statistical analyses and critical vocabulary. These topics are likely better broached in manageable snippets rather than hefty single chapters.

The ideas addressed in Introduction to Logic and Critical Thinking are accurate but at times notably political. While politics are effectively used to exemplify key concepts, some students may be distracted by distinct political leanings.

The terms and definitions included are relevant, but the examples are specific to the current political, cultural, and social climates, which could make the materials seem dated in a few years without intentional and consistent updates.

While the reasoning is accurate, the author tends to complicate rather than simplify -- perhaps in an effort to cover a spectrum of related concepts. Beginning readers are likely to be overwhelmed and under-encouraged by his approach.

Consistency rating: 3

The four chapters are somewhat consistent in their play of definition, explanation, and example, but the structure of each chapter varies according to the concepts covered. In the third chapter, for example, key ideas are divided into sub-topics numbering from 3.1 to 3.10. In the fourth chapter, the sub-divisions are further divided into sub-sections numbered 4.1.1-4.1.5, 4.2.1-4.2.2, and 4.3.1 to 4.3.6. Readers who are working quickly to master new concepts may find themselves mired in similarly numbered subheadings, longing for a grounded concepts on which to hinge other key principles.

Modularity rating: 3

The book's four chapters make it mostly self-referential. The author would do well to beak this text down into additional subsections, easing readers' accessibility.

The content of the book flows logically and well, but the information needs to be better sub-divided within each larger chapter, easing the student experience.

The book's interface is effective, allowing readers to move from one section to the next with a single click. Additional sub-sections would ease this interplay even further.

Grammatical Errors rating: 4

Some minor errors throughout.

For the most part, the book is culturally neutral, avoiding direct cultural references in an effort to remain relevant.

Reviewed by Yoichi Ishida, Assistant Professor of Philosophy, Ohio University on 2/1/18

This textbook covers enough topics for a first-year course on logic and critical thinking. Chapter 1 covers the basics as in any standard textbook in this area. Chapter 2 covers propositional logic and categorical logic. In propositional logic,... read more

This textbook covers enough topics for a first-year course on logic and critical thinking. Chapter 1 covers the basics as in any standard textbook in this area. Chapter 2 covers propositional logic and categorical logic. In propositional logic, this textbook does not cover suppositional arguments, such as conditional proof and reductio ad absurdum. But other standard argument forms are covered. Chapter 3 covers inductive logic, and here this textbook introduces probability and its relationship with cognitive biases, which are rarely discussed in other textbooks. Chapter 4 introduces common informal fallacies. The answers to all the exercises are given at the end. However, the last set of exercises is in Chapter 3, Section 5. There are no exercises in the rest of the chapter. Chapter 4 has no exercises either. There is index, but no glossary.

The textbook is accurate.

The content of this textbook will not become obsolete soon.

The textbook is written clearly.

The textbook is internally consistent.

The textbook is fairly modular. For example, Chapter 3, together with a few sections from Chapter 1, can be used as a short introduction to inductive logic.

The textbook is well-organized.

There are no interface issues.

I did not find any grammatical errors.

This textbook is relevant to a first semester logic or critical thinking course.

Reviewed by Payal Doctor, Associate Professro, LaGuardia Community College on 2/1/18

This text is a beginner textbook for arguments and propositional logic. It covers the basics of identifying arguments, building arguments, and using basic logic to construct propositions and arguments. It is quite comprehensive for a beginner... read more

This text is a beginner textbook for arguments and propositional logic. It covers the basics of identifying arguments, building arguments, and using basic logic to construct propositions and arguments. It is quite comprehensive for a beginner book, but seems to be a good text for a course that needs a foundation for arguments. There are exercises on creating truth tables and proofs, so it could work as a logic primer in short sessions or with the addition of other course content.

The books is accurate in the information it presents. It does not contain errors and is unbiased. It covers the essential vocabulary clearly and givens ample examples and exercises to ensure the student understands the concepts

The content of the book is up to date and can be easily updated. Some examples are very current for analyzing the argument structure in a speech, but for this sort of text understandable examples are important and the author uses good examples.

The book is clear and easy to read. In particular, this is a good text for community college students who often have difficulty with reading comprehension. The language is straightforward and concepts are well explained.

The book is consistent in terminology, formatting, and examples. It flows well from one topic to the next, but it is also possible to jump around the text without loosing the voice of the text.

The books is broken down into sub units that make it easy to assign short blocks of content at a time. Later in the text, it does refer to a few concepts that appear early in that text, but these are all basic concepts that must be used to create a clear and understandable text. No sections are too long and each section stays on topic and relates the topic to those that have come before when necessary.

The flow of the text is logical and clear. It begins with the basic building blocks of arguments, and practice identifying more and more complex arguments is offered. Each chapter builds up from the previous chapter in introducing propositional logic, truth tables, and logical arguments. A select number of fallacies are presented at the end of the text, but these are related to topics that were presented before, so it makes sense to have these last.

The text is free if interface issues. I used the PDF and it worked fine on various devices without loosing formatting.

1. The book contains no grammatical errors.

The text is culturally sensitive, but examples used are a bit odd and may be objectionable to some students. For instance, President Obama's speech on Syria is used to evaluate an extended argument. This is an excellent example and it is explained well, but some who disagree with Obama's policies may have trouble moving beyond their own politics. However, other examples look at issues from all political viewpoints and ask students to evaluate the argument, fallacy, etc. and work towards looking past their own beliefs. Overall this book does use a variety of examples that most students can understand and evaluate.

My favorite part of this book is that it seems to be written for community college students. My students have trouble understanding readings in the New York Times, so it is nice to see a logic and critical thinking text use real language that students can understand and follow without the constant need of a dictionary.

Reviewed by Rebecca Owen, Adjunct Professor, Writing, Chemeketa Community College on 6/20/17

This textbook is quite thorough--there are conversational explanations of argument structure and logic. I think students will be happy with the conversational style this author employs. Also, there are many examples and exercises using current... read more

This textbook is quite thorough--there are conversational explanations of argument structure and logic. I think students will be happy with the conversational style this author employs. Also, there are many examples and exercises using current events, funny scenarios, or other interesting ways to evaluate argument structure and validity. The third section, which deals with logical fallacies, is very clear and comprehensive. My only critique of the material included in the book is that the middle section may be a bit dense and math-oriented for learners who appreciate the more informal, informative style of the first and third section. Also, the book ends rather abruptly--it moves from a description of a logical fallacy to the answers for the exercises earlier in the text.

The content is very reader-friendly, and the author writes with authority and clarity throughout the text. There are a few surface-level typos (Starbuck's instead of Starbucks, etc.). None of these small errors detract from the quality of the content, though.

One thing I really liked about this text was the author's wide variety of examples. To demonstrate different facets of logic, he used examples from current media, movies, literature, and many other concepts that students would recognize from their daily lives. The exercises in this text also included these types of pop-culture references, and I think students will enjoy the familiarity--as well as being able to see the logical structures behind these types of references. I don't think the text will need to be updated to reflect new instances and occurrences; the author did a fine job at picking examples that are relatively timeless. As far as the subject matter itself, I don't think it will become obsolete any time soon.

The author writes in a very conversational, easy-to-read manner. The examples used are quite helpful. The third section on logical fallacies is quite easy to read, follow, and understand. A student in an argument writing class could benefit from this section of the book. The middle section is less clear, though. A student learning about the basics of logic might have a hard time digesting all of the information contained in chapter two. This material might be better in two separate chapters. I think the author loses the balance of a conversational, helpful tone and focuses too heavily on equations.

Consistency rating: 4

Terminology in this book is quite consistent--the key words are highlighted in bold. Chapters 1 and 3 follow a similar organizational pattern, but chapter 2 is where the material becomes more dense and equation-heavy. I also would have liked a closing passage--something to indicate to the reader that we've reached the end of the chapter as well as the book.

I liked the overall structure of this book. If I'm teaching an argumentative writing class, I could easily point the students to the chapters where they can identify and practice identifying fallacies, for instance. The opening chapter is clear in defining the necessary terms, and it gives the students an understanding of the toolbox available to them in assessing and evaluating arguments. Even though I found the middle section to be dense, smaller portions could be assigned.

The author does a fine job connecting each defined term to the next. He provides examples of how each defined term works in a sentence or in an argument, and then he provides practice activities for students to try. The answers for each question are listed in the final pages of the book. The middle section feels like the heaviest part of the whole book--it would take the longest time for a student to digest if assigned the whole chapter. Even though this middle section is a bit heavy, it does fit the overall structure and flow of the book. New material builds on previous chapters and sub-chapters. It ends abruptly--I didn't realize that it had ended, and all of a sudden I found myself in the answer section for those earlier exercises.

The simple layout is quite helpful! There is nothing distracting, image-wise, in this text. The table of contents is clearly arranged, and each topic is easy to find.

Tiny edits could be made (Starbuck's/Starbucks, for one). Otherwise, it is free of distracting grammatical errors.

This text is quite culturally relevant. For instance, there is one example that mentions the rumors of Barack Obama's birthplace as somewhere other than the United States. This example is used to explain how to analyze an argument for validity. The more "sensational" examples (like the Obama one above) are helpful in showing argument structure, and they can also help students see how rumors like this might gain traction--as well as help to show students how to debunk them with their newfound understanding of argument and logic.

The writing style is excellent for the subject matter, especially in the third section explaining logical fallacies. Thank you for the opportunity to read and review this text!

Reviewed by Laurel Panser, Instructor, Riverland Community College on 6/20/17

This is a review of Introduction to Logic and Critical Thinking, an open source book version 1.4 by Matthew Van Cleave. The comparison book used was Patrick J. Hurley’s A Concise Introduction to Logic 12th Edition published by Cengage as well as... read more

This is a review of Introduction to Logic and Critical Thinking, an open source book version 1.4 by Matthew Van Cleave. The comparison book used was Patrick J. Hurley’s A Concise Introduction to Logic 12th Edition published by Cengage as well as the 13th edition with the same title. Lori Watson is the second author on the 13th edition.

Competing with Hurley is difficult with respect to comprehensiveness. For example, Van Cleave’s book is comprehensive to the extent that it probably covers at least two-thirds or more of what is dealt with in most introductory, one-semester logic courses. Van Cleave’s chapter 1 provides an overview of argumentation including discerning non-arguments from arguments, premises versus conclusions, deductive from inductive arguments, validity, soundness and more. Much of Van Cleave’s chapter 1 parallel’s Hurley’s chapter 1. Hurley’s chapter 3 regarding informal fallacies is comprehensive while Van Cleave’s chapter 4 on this topic is less extensive. Categorical propositions are a topic in Van Cleave’s chapter 2; Hurley’s chapters 4 and 5 provide more instruction on this, however. Propositional logic is another topic in Van Cleave’s chapter 2; Hurley’s chapters 6 and 7 provide more information on this, though. Van Cleave did discuss messy issues of language meaning briefly in his chapter 1; that is the topic of Hurley’s chapter 2.

Van Cleave’s book includes exercises with answers and an index. A glossary was not included.

Reviews of open source textbooks typically include criteria besides comprehensiveness. These include comments on accuracy of the information, whether the book will become obsolete soon, jargon-free clarity to the extent that is possible, organization, navigation ease, freedom from grammar errors and cultural relevance; Van Cleave’s book is fine in all of these areas. Further criteria for open source books includes modularity and consistency of terminology. Modularity is defined as including blocks of learning material that are easy to assign to students. Hurley’s book has a greater degree of modularity than Van Cleave’s textbook. The prose Van Cleave used is consistent.

Van Cleave’s book will not become obsolete soon.

Van Cleave’s book has accessible prose.

Van Cleave used terminology consistently.

Van Cleave’s book has a reasonable degree of modularity.

Van Cleave’s book is organized. The structure and flow of his book is fine.

Problems with navigation are not present.

Grammar problems were not present.

Van Cleave’s book is culturally relevant.

Van Cleave’s book is appropriate for some first semester logic courses.

Table of Contents

Chapter 1: Reconstructing and analyzing arguments

  • 1.1 What is an argument?
  • 1.2 Identifying arguments
  • 1.3 Arguments vs. explanations
  • 1.4 More complex argument structures
  • 1.5 Using your own paraphrases of premises and conclusions to reconstruct arguments in standard form
  • 1.6 Validity
  • 1.7 Soundness
  • 1.8 Deductive vs. inductive arguments
  • 1.9 Arguments with missing premises
  • 1.10 Assuring, guarding, and discounting
  • 1.11 Evaluative language
  • 1.12 Evaluating a real-life argument

Chapter 2: Formal methods of evaluating arguments

  • 2.1 What is a formal method of evaluation and why do we need them?
  • 2.2 Propositional logic and the four basic truth functional connectives
  • 2.3 Negation and disjunction
  • 2.4 Using parentheses to translate complex sentences
  • 2.5 “Not both” and “neither nor”
  • 2.6 The truth table test of validity
  • 2.7 Conditionals
  • 2.8 “Unless”
  • 2.9 Material equivalence
  • 2.10 Tautologies, contradictions, and contingent statements
  • 2.11 Proofs and the 8 valid forms of inference
  • 2.12 How to construct proofs
  • 2.13 Short review of propositional logic
  • 2.14 Categorical logic
  • 2.15 The Venn test of validity for immediate categorical inferences
  • 2.16 Universal statements and existential commitment
  • 2.17 Venn validity for categorical syllogisms

Chapter 3: Evaluating inductive arguments and probabilistic and statistical fallacies

  • 3.1 Inductive arguments and statistical generalizations
  • 3.2 Inference to the best explanation and the seven explanatory virtues
  • 3.3 Analogical arguments
  • 3.4 Causal arguments
  • 3.5 Probability
  • 3.6 The conjunction fallacy
  • 3.7 The base rate fallacy
  • 3.8 The small numbers fallacy
  • 3.9 Regression to the mean fallacy
  • 3.10 Gambler's fallacy

Chapter 4: Informal fallacies

  • 4.1 Formal vs. informal fallacies
  • 4.1.1 Composition fallacy
  • 4.1.2 Division fallacy
  • 4.1.3 Begging the question fallacy
  • 4.1.4 False dichotomy
  • 4.1.5 Equivocation
  • 4.2 Slippery slope fallacies
  • 4.2.1 Conceptual slippery slope
  • 4.2.2 Causal slippery slope
  • 4.3 Fallacies of relevance
  • 4.3.1 Ad hominem
  • 4.3.2 Straw man
  • 4.3.3 Tu quoque
  • 4.3.4 Genetic
  • 4.3.5 Appeal to consequences
  • 4.3.6 Appeal to authority

Answers to exercises Glossary/Index

Ancillary Material

About the book.

This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a “critical thinking textbook.”

About the Contributors

Matthew Van Cleave ,   PhD, Philosophy, University of Cincinnati, 2007.  VAP at Concordia College (Moorhead), 2008-2012.  Assistant Professor at Lansing Community College, 2012-2016. Professor at Lansing Community College, 2016-

Contribute to this Page

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Wireless Philosophy

Course: wireless philosophy   >   unit 1, fundamentals: introduction to critical thinking.

  • Introduction to Critical Thinking, Part 1
  • Introduction to Critical Thinking, Part 2
  • Fundamentals: Deductive Arguments
  • Deductive Arguments
  • Fundamentals: Abductive Arguments
  • Necessary and Sufficient Conditions
  • Instrumental vs. Intrinsic Value
  • Implicit Premise
  • Justification and Explanation
  • Normative and Descriptive Claims
  • Fundamentals: Validity
  • Fundamentals: Truth and Validity
  • Fundamentals: Soundness
  • Fundamentals: Bayes' Theorem
  • Fundamentals: Correlation and Causation

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

Video transcript

Critical Thinking Definition, Skills, and Examples

  • Homework Help
  • Private School
  • College Admissions
  • College Life
  • Graduate School
  • Business School
  • Distance Learning

critical thinking philosophy example

  • Indiana University, Bloomington
  • State University of New York at Oneonta

Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings.

Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions. Employers prioritize the ability to think critically—find out why, plus see how you can demonstrate that you have this ability throughout the job application process. 

Why Do Employers Value Critical Thinking Skills?

Employers want job candidates who can evaluate a situation using logical thought and offer the best solution.

 Someone with critical thinking skills can be trusted to make decisions independently, and will not need constant handholding.

Hiring a critical thinker means that micromanaging won't be required. Critical thinking abilities are among the most sought-after skills in almost every industry and workplace. You can demonstrate critical thinking by using related keywords in your resume and cover letter, and during your interview.

Examples of Critical Thinking

The circumstances that demand critical thinking vary from industry to industry. Some examples include:

  • A triage nurse analyzes the cases at hand and decides the order by which the patients should be treated.
  • A plumber evaluates the materials that would best suit a particular job.
  • An attorney reviews evidence and devises a strategy to win a case or to decide whether to settle out of court.
  • A manager analyzes customer feedback forms and uses this information to develop a customer service training session for employees.

Promote Your Skills in Your Job Search

If critical thinking is a key phrase in the job listings you are applying for, be sure to emphasize your critical thinking skills throughout your job search.

Add Keywords to Your Resume

You can use critical thinking keywords (analytical, problem solving, creativity, etc.) in your resume. When describing your  work history , include top critical thinking skills that accurately describe you. You can also include them in your  resume summary , if you have one.

For example, your summary might read, “Marketing Associate with five years of experience in project management. Skilled in conducting thorough market research and competitor analysis to assess market trends and client needs, and to develop appropriate acquisition tactics.”

Mention Skills in Your Cover Letter

Include these critical thinking skills in your cover letter. In the body of your letter, mention one or two of these skills, and give specific examples of times when you have demonstrated them at work. Think about times when you had to analyze or evaluate materials to solve a problem.

Show the Interviewer Your Skills

You can use these skill words in an interview. Discuss a time when you were faced with a particular problem or challenge at work and explain how you applied critical thinking to solve it.

Some interviewers will give you a hypothetical scenario or problem, and ask you to use critical thinking skills to solve it. In this case, explain your thought process thoroughly to the interviewer. He or she is typically more focused on how you arrive at your solution rather than the solution itself. The interviewer wants to see you analyze and evaluate (key parts of critical thinking) the given scenario or problem.

Of course, each job will require different skills and experiences, so make sure you read the job description carefully and focus on the skills listed by the employer.

Top Critical Thinking Skills

Keep these in-demand critical thinking skills in mind as you update your resume and write your cover letter. As you've seen, you can also emphasize them at other points throughout the application process, such as your interview. 

Part of critical thinking is the ability to carefully examine something, whether it is a problem, a set of data, or a text. People with  analytical skills  can examine information, understand what it means, and properly explain to others the implications of that information.

  • Asking Thoughtful Questions
  • Data Analysis
  • Interpretation
  • Questioning Evidence
  • Recognizing Patterns

Communication

Often, you will need to share your conclusions with your employers or with a group of colleagues. You need to be able to  communicate with others  to share your ideas effectively. You might also need to engage in critical thinking in a group. In this case, you will need to work with others and communicate effectively to figure out solutions to complex problems.

  • Active Listening
  • Collaboration
  • Explanation
  • Interpersonal
  • Presentation
  • Verbal Communication
  • Written Communication

Critical thinking often involves creativity and innovation. You might need to spot patterns in the information you are looking at or come up with a solution that no one else has thought of before. All of this involves a creative eye that can take a different approach from all other approaches.

  • Flexibility
  • Conceptualization
  • Imagination
  • Drawing Connections
  • Synthesizing

Open-Mindedness

To think critically, you need to be able to put aside any assumptions or judgments and merely analyze the information you receive. You need to be objective, evaluating ideas without bias.

  • Objectivity
  • Observation

Problem Solving

Problem-solving is another critical thinking skill that involves analyzing a problem, generating and implementing a solution, and assessing the success of the plan. Employers don’t simply want employees who can think about information critically. They also need to be able to come up with practical solutions.

  • Attention to Detail
  • Clarification
  • Decision Making
  • Groundedness
  • Identifying Patterns

More Critical Thinking Skills

  • Inductive Reasoning
  • Deductive Reasoning
  • Noticing Outliers
  • Adaptability
  • Emotional Intelligence
  • Brainstorming
  • Optimization
  • Restructuring
  • Integration
  • Strategic Planning
  • Project Management
  • Ongoing Improvement
  • Causal Relationships
  • Case Analysis
  • Diagnostics
  • SWOT Analysis
  • Business Intelligence
  • Quantitative Data Management
  • Qualitative Data Management
  • Risk Management
  • Scientific Method
  • Consumer Behavior

Key Takeaways

  • Demonstrate that you have critical thinking skills by adding relevant keywords to your resume.
  • Mention pertinent critical thinking skills in your cover letter, too, and include an example of a time when you demonstrated them at work.
  • Finally, highlight critical thinking skills during your interview. For instance, you might discuss a time when you were faced with a challenge at work and explain how you applied critical thinking skills to solve it.

University of Louisville. " What is Critical Thinking ."

American Management Association. " AMA Critical Skills Survey: Workers Need Higher Level Skills to Succeed in the 21st Century ."

  • Questions for Each Level of Bloom's Taxonomy
  • Critical Thinking in Reading and Composition
  • Bloom's Taxonomy in the Classroom
  • Introduction to Critical Thinking
  • How To Become an Effective Problem Solver
  • Creativity & Creative Thinking
  • Higher-Order Thinking Skills (HOTS) in Education
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • 6 Skills Students Need to Succeed in Social Studies Classes
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Types of Medical School Interviews and What to Expect
  • The Horse Problem: A Math Challenge
  • What to Do When the Technology Fails in Class
  • What Are Your Strengths and Weaknesses? Interview Tips for Teachers
  • A Guide to Business Letters Types
  • How to Practice Critical Thinking in 4 Steps

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Defining Critical Thinking

  • Tools and Resources
  • Customer Services
  • Original Language Spotlight
  • Alternative and Non-formal Education 
  • Cognition, Emotion, and Learning
  • Curriculum and Pedagogy
  • Education and Society
  • Education, Change, and Development
  • Education, Cultures, and Ethnicities
  • Education, Gender, and Sexualities
  • Education, Health, and Social Services
  • Educational Administration and Leadership
  • Educational History
  • Educational Politics and Policy
  • Educational Purposes and Ideals
  • Educational Systems
  • Educational Theories and Philosophies
  • Globalization, Economics, and Education
  • Languages and Literacies
  • Professional Learning and Development
  • Research and Assessment Methods
  • Technology and Education
  • Share This Facebook LinkedIn Twitter

Article contents

Philosophical issues in critical thinking.

  • Juho Ritola Juho Ritola University of Turku
  • https://doi.org/10.1093/acrefore/9780190264093.013.1480
  • Published online: 26 May 2021

Critical thinking is active, good-quality thinking. This kind of thinking is initiated by an agent’s desire to decide what to believe, it satisfies relevant norms, and the decision on the matter at hand is reached through the use of available reasons under the control of the thinking agent. In the educational context, critical thinking refers to an educational aim that includes certain skills and abilities to think according to relevant standards and corresponding attitudes, habits, and dispositions to apply those skills to problems the agent wants to solve. The basis of this ideal is the conviction that we ought to be rational. This rationality is manifested through the proper use of reasons that a cognizing agent is able to appreciate. From the philosophical perspective, this fascinating ability to appreciate reasons leads into interesting philosophical problems in epistemology, moral philosophy, and political philosophy.

Critical thinking in itself and the educational ideal are closely connected to the idea that we ought to be rational. But why exactly? This profound question seems to contain the elements needed for its solution. To ask why is to ask either for an explanation or for reasons for accepting a claim. Concentrating on the latter, we notice that such a question presupposes that the acceptability of a claim depends on the quality of the reasons that can be given for it: asking this question grants us the claim that we ought to be rational, that is, to make our beliefs fit what we have reason to believe. In the center of this fit are the concepts of knowledge and justified belief. A critical thinker wants to know and strives to achieve the state of knowledge by mentally examining reasons and the relation those reasons bear to candidate beliefs. Both these aspects include fascinating philosophical problems. How does this mental examination bring about knowledge? What is the relation my belief must have to a putative reason for my belief to qualify as knowledge?

The appreciation of reason has been a key theme in the writings of the key figures of philosophy of education, but the ideal of individual justifying reasoning is not the sole value that guides educational theory and practice. It is therefore important to discuss tensions this ideal has with other important concepts and values, such as autonomy, liberty, and political justification. For example, given that we take critical thinking to be essential for the liberty and autonomy of an individual, how far can we try to inculcate a student with this ideal when the student rejects it? These issues underline important practical choices an educator has to make.

  • critical thinking
  • rationality
  • epistemic justification
  • internalism
  • public reason

You do not currently have access to this article

Please login to access the full content.

Access to the full content requires a subscription

Printed from Oxford Research Encyclopedias, Education. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 16 May 2024

  • Cookie Policy
  • Privacy Policy
  • Legal Notice
  • Accessibility
  • [66.249.64.20|81.177.180.204]
  • 81.177.180.204

Character limit 500 /500

FF-white-menu-305x30

  • Philosophy of Teaching

A Teaching Philosophy Built on Knowledge, Critical Thinking and Curiosity

  • September 18, 2009
  • Susan Judd Casciani

I believe that success – whether personal or professional – is generated from three critical building blocks: knowledge, critical thinking, and curiosity. These building blocks have an enduring, cyclical relationship; knowledge helps us to understand the world around us as well as ourselves, critical thinking gives us the ability to incorporate knowledge and apply it endlessly, and curiosity, which is the result of realizing the limitations of current knowledge, drives us to acquire additional knowledge.

I see my role as a teacher as one of transferring a fundamental knowledge of course content to students while cultivating their critical thinking skills through the application of theory and concepts to current health-, economic-, and industry-related issues. Through this application, areas that are void of knowledge will ultimately emerge. As a teacher, I will strive to instill a sense of curiosity in my students that will challenge them to fill this void, whether for themselves or for all of us. I will do this by serving as a role model in the sense that I too am searching for knowledge – for me, for them and for the future. I will demonstrate my own critical thinking skills and share my curiosity for the unexplained or unexamined. I will value the individual backgrounds and experiences of my students, and encourage them to teach me as I teach them.

I expect that my students will have a variety of levels of desire for learning. I will strive to nurture an environment that will encourage them to seek areas that excite them, for I believe that true learning occurs best when it is most meaningful. I will expect my students to understand and utilize their rights for a quality education, and to fulfill their responsibilities to themselves, to me and to each other in our collective efforts to learn and discover.

My ultimate goal in teaching is to provide requisite knowledge, encourage and develop critical thinking skills, and stimulate natural curiosity that will guide students in their efforts of pursuing success. By accomplishing this, I will satisfy the need within myself to somehow make a difference.

Susan Judd Casciani is a clinical assistant professor and program director of the Health Care Management Program at Towson University.

This article is part of the Faculty Focus special report titled Philosophy of Teaching Statements: Examples and Tips on How to Write a Teaching Philosophy Statement. Click here to download the report for free.

Stay Updated with Faculty Focus!

Get exclusive access to programs, reports, podcast episodes, articles, and more!

critical thinking philosophy example

  • Opens in a new tab

Teaching Professor Subscription

Welcome Back

Username or Email

Remember Me

critical thinking philosophy example

Already a subscriber? log in here.

critical thinking philosophy example

Philosophical Issues in Critical Thinking

Critical thinking is active, good-quality thinking. This kind of thinking is initiated by an agent’s desire to decide what to believe, it satisfies relevant norms, and the decision on the matter at hand is reached through the use of available reasons under the control of the thinking agent. In the educational context, critical thinking refers to an educational aim that includes certain skills and abilities to think according to relevant standards and corresponding attitudes, habits, and dispositions to apply those skills to problems the agent wants to solve. The basis of this ideal is the conviction that we ought to be rational. This rationality is manifested through the proper use of reasons that a cognizing agent is able to appreciate. From the philosophical perspective, this fascinating ability to appreciate reasons leads into interesting philosophical problems in epistemology, moral philosophy, and political philosophy. Critical thinking in itself and the educational ideal are closely connected to the idea that we ought to be rational. But why exactly? This profound question seems to contain the elements needed for its solution. To ask why is to ask either for an explanation or for reasons for accepting a claim. Concentrating on the latter, we notice that such a question presupposes that the acceptability of a claim depends on the quality of the reasons that can be given for it: asking this question grants us the claim that we ought to be rational, that is, to make our beliefs fit what we have reason to believe. In the center of this fit are the concepts of knowledge and justified belief. A critical thinker wants to know and strives to achieve the state of knowledge by mentally examining reasons and the relation those reasons bear to candidate beliefs. Both these aspects include fascinating philosophical problems. How does this mental examination bring about knowledge? What is the relation my belief must have to a putative reason for my belief to qualify as knowledge? The appreciation of reason has been a key theme in the writings of the key figures of philosophy of education, but the ideal of individual justifying reasoning is not the sole value that guides educational theory and practice. It is therefore important to discuss tensions this ideal has with other important concepts and values, such as autonomy, liberty, and political justification. For example, given that we take critical thinking to be essential for the liberty and autonomy of an individual, how far can we try to inculcate a student with this ideal when the student rejects it? These issues underline important practical choices an educator has to make.

  • Related Documents

Open-Mindedness, Critical Thinking, and Indoctrination

William Hare has made fundamental contributions to philosophy of education. His work on various matters of educational theory and practice is of the first importance and will influence the field for decades to come. Among the most important of these contributions is his hugely important work on open-mindedness, an ideal that Hare has clarified and defended powerfully and tellingly. In this paper I explore the several relationships that exist between Hare’s favored educational ideal (open-mindedness) and my own (critical thinking). Both are important educational aims, but I argue here that while both are of central importance, it is the latter that is the more fundamental of the two.

Education's Epistemology

This collection extends and further defends the “reasons conception” of critical thinking that Harvey Siegel has articulated and defended over the last three-plus decades. This conception analyzes and emphasizes both the epistemic quality of candidate beliefs, and the dispositions and character traits that constitute the “critical spirit”, that are central to a proper account of critical thinking; argues that epistemic quality must be understood ultimately in terms of epistemic rationality; defends a conception of rationality that involves both rules and judgment; and argues that critical thinking has normative value over and above its instrumental tie to truth. Siegel also argues, contrary to currently popular multiculturalist thought, for both transcultural and universal philosophical ideals, including those of multiculturalism and critical thinking themselves. Over seventeen chapters, Siegel makes the case for regarding critical thinking, or the cultivation of rationality, as a preeminent educational ideal, and the fostering of it as a fundamental educational aim. A wide range of alternative views are critically examined. Important related topics, including indoctrination, moral education, open-mindedness, testimony, epistemological diversity, and cultural difference are treated. The result is a systematic account and defense of critical thinking, an educational ideal widely proclaimed but seldom submitted to critical scrutiny itself.

SOME BASIC AND BEGINNING ISSUES FOR KHMER ETHNIC COMMUNITY, NOW

With the majority of the population working in agriculture, the economy of Khmer people is mainly agricultural. At present, the Khmer ethnic group has a workingstructure in the ideal age, but the number of young and healthy workers who have not been trained is still high and laborers lack knowledge and skills to do business. Labor productivity is still very low ... Problems in education quality, human resources; the transformation of traditional religion; effects of climate change; Cross-border relations of the people have always been and are of great interest and challenges to the development of the Khmer ethnic community. Identifying fundamental and urgent issues, forecasting the socio-economic trends in areas with large numbers of Khmer people living in the future will be the basis for the theory and practice for us to have. Solutions in the development and implementation of policies for Khmer compatriots suitable and effective.

EL PENSAMIENTO CRÍTICO EN LA EDUCACIÓN DE POSGRADO: PROPUESTA DE UN MODELO PARA SU INTEGRACIÓN AL PROCESO EDUCATIVO

La presente investigación, analiza los conceptos más importantes del pensamiento Crítico, así como su importancia y utilidad en los procesos de formación profesional a nivel de Posgrado. Se hace un análisis detallado de los conceptos más ampliamente aceptado y de los factores inmersos en el desarrollo y aplicación de este tipo de pensamiento. Finalmente se propone un modelo que engloba los conceptos y factores analizados y como se interrelacionan entre ellos; el objetivo final es brindar a los docentes y directivos de Instituciones de Educación Superior, una herramienta que posibilite la inclusión de este tipo de pensamiento en sus procesos enseñanza-aprendizaje con el fin último de mejorar la calidad de los procesos de formación. Palabras Clave: Pensamiento Crítico, Educación Superior, Educación ABSTRACT This research analyzes the most important concepts of critical thinking as well as their importance and usefulness for the educational processes at graduate level. A detailed analysis of the most widely accepted concepts and factors involved in the development and application of this kind of thinking has been made. Finally, a model that includes the concepts and analyzed factors and their interrelations is proposed; the ultimate goal is to provide teachers and directors of Institutions in Higher Education, a tool that enables the inclusion of this type of thinking in their teaching and learning processes with the ultimate intention of improving the quality of the training processes. Keywords: Critical thinking, Higher Education, Education Recibido: mayo de 2016Aprobado: septiembre de 2016

Modifikasi Model Pembelajaran Problem Based Learning (PBL) dengan Strategi Pembelajaran Tugas dan Paksa

This writing aims to help teachers to increase motivation, activity, creativity, and critical thinking of students in solving problems in class. The way to increase student motivation in learning in class is to choose the right learning model with ongoing learning material. One learning model that increases students' creativity and critical thinking in problem solving is a Problem Based Learning (PBL) learning model. To improve students' insights in order to easily solve problems there is a need to do tasks, if students do not do the task then they must accept the agreed upon consequences when making learning contracts, thus modifying the Problem Based Learning (PBL) learning model with task strategies and forced. The results of the modification of learning with the Problem Based Learning (PBL) learning model through forced and forced strategies are expected to improve the learning process so that students become more disciplined and do not waste time doing assignments. The advantages of modifying the Problem Based Learning (PBL) learning model with task and forced learning strategies are increasing student learning motivation, improving the quality of learning, training students' understanding by giving assignments continuously, teaching discipline to students in order to be accountable for tasks assigned, and reducing laziness in students.

La Formación Continua y el Desarrollo de Competencias en los Docentes en Ejercicio del Nivel Secundario

Este artículo está encaminado a caracterizar el proceso de formación continua del docente del nivel medio en ejercicio asociado a la formación y desarrollo de sus competencias docentes, para lo que fueron utilizados métodos como   el análisis y síntesis, inducción y deducción, abstracción y concreción, la entrevista, la encuesta y  el cuestionario, donde a partir de sus resultados se  llega a la consideración de que la formación continua es la vía idónea para la formación y desarrollo de competencias docentes en los profesores en ejercicio, donde se debe asumir un modelo que propicie la reflexión sobre la propia práctica del docente, un clima de colaboración   y el profesor como sujeto activo de ese proceso.   Palabras claves: calidad educativa,   competencias docentes,   educador, estudio, preparación continua,  ABSTRACT   This article aims to characterize the process of education for teachers of middle level associated with exercise training and development of their teaching skills, for which methods were used as analysis and synthesis, induction and deduction, abstraction and concreteness, interview and questionnaire survey, where from their results leads to the consideration that the training is the ideal way for the formation and development of teaching skills in practicing teachers, where they must assume a model that encourages reflection on own teaching practice, a climate of collaboration and the teacher as an active subject of that process Keywords: quality of education, teaching skills, teacher, study, continuous preparation

Neither Humean nor (Fully) Kantian Be

This chapter offers a reply to Stefaan Cuypers’ explication and critique of the views of rationality and critical thinking laid out in the previous chapters and in earlier work (see his “Critical Thinking, Autonomy and Practical Reason,” 2004). While Cuypers’ discussion is praiseworthy in several respects, it (1) mistakenly attributes to those views a Humean conception of (practical) reason, and (2) unsuccessfully argues that the positions articulated and defended in those earlier chapters lack the resources required to defend the basic claim that critical thinking is a fundamental educational ideal. Cuypers’ analysis also raises deep issues about the motivational character of reasons; I briefly address this matter as well.

Cultivating Reason

The Western philosophical tradition has historically valorized the cultivation of reason as a fundamental intellectual ideal. This ideal continues to be defended by many as educationally basic. However, recent philosophical work has challenged it on several fronts, including worries stemming from relativistic tendencies in the philosophy of science, the apparent ubiquity of epistemic dependence in social epistemology, and broad critiques of objectionable hegemony launched from feminist and postmodernist perspectives. This chapter briefly reviews the historical record, connects the cultivation of reason to the educational ideal of critical thinking, spells out the latter ideal, and evaluates these challenges. It ends by sketching a general, “transcendental” reply to all such critiques of reason.

Rhetoric, Commonplacing, and Poetics

Chapter 4 examines a variety of treatises and debates about rhetoric and its value, and whether the art of persuasion could be a dangerous tool in the hands of the unscrupulous or even whether it was a skill that risked corrupting the user, dangers that were identified by Quintilian, whose Institutio Oratoria (The Orator’s Education) shaped so much rhetorical theory and practice in the Renaissance. The chapter explores the practice of commonplacing, noting down particular maxims which could then serve as the basis of explorations of issues, a practice that, like rhetoric, generated anxiety about truth, falsehood, and lying. Particular attention is paid to Erasmus’s Colloquies and Lingua; William Baldwin’s A Treatise of Moral Philosophy, the most popular work of philosophy in sixteenth-century England; the use of commonplaces in Montaigne’s Essays; George Puttenham’s use of proverbs and figures in his Arte of English Poesie (1589); and Sir Philip Sidney’s understanding of poetry as lying in The Defence of Poetry.

Oxford Studies in Agency and Responsibility Volume 6

This is the sixth volume of Oxford Studies in Agency and Responsibility. The papers were drawn from the fourth biennial New Orleans Workshop in Agency and Responsibility (NOWAR), held November 2–4, 2017. The essays cover a wide range of topics relevant to agency and responsibility: the threat of neuroscience to free will; the relevance of resentment and guilt to responsibility; how control and self-control pertain to moral agency, oppression, and poverty; responsibility for joint agency; the role and conditions of shame in theories of attributability; how one might take responsibility without blameworthy quality of will; what it means to have standing to blame others; the relevance of moral testimony to moral responsibility; how to build a theory of attributabiity that captures all the relevant cases; and how thinking about blame better enables us to dissolve a dispute in moral philosophy between actualists and possibilists.

Export Citation Format

Share document.

helpful professor logo

25 Critical Thinking Examples

Critical thinking is the ability to analyze information and make reasoned decisions. It involves suspended judgment, open-mindedness, and clarity of thought.

It involves considering different viewpoints and weighing evidence carefully. It is essential for solving complex problems and making good decisions.

People who think critically are able to see the world in a more nuanced way and understand the interconnectedness of things. They are also better able to adapt to change and handle uncertainty.

In today’s fast-paced world, the ability to think critically is more important than ever and necessary for students and employees alike.

critical thinking examples and definition, explained below

Critical Thinking Examples

1. identifying strengths and weaknesses.

Critical thinkers don’t just take things at face value. They stand back and contemplate the potential strengths and weaknesses of something and then make a decision after contemplation.

This helps you to avoid excessive bias and identify possible problems ahead of time.

For example, a boxer about to get in the ring will likely need to evaluate the strengths and weaknesses of his opponent. He might learn that his opponent’s left hook is very strong, but his opponent also gets tired after the third round. With this knowledge, he can go into the bout with strong defenses in the first three rounds before going on the offense.

Here, the boxer’s critical thinking skills will help him win his match.

2. Creating a Hypothesis based on Limited Data

When scientists set out to test a new theory, they first need to develop a hypothesis. This is an educated guess about how things work, based on what is already known.

Once a hypothesis has been developed, experiments can be designed to test it.

However, sometimes scientists may find themselves working with limited data. In such cases, they may need to make some assumptions in order to form a hypothesis.

For example, if they are studying a phenomenon that occurs infrequently, they may need to extrapolate from the data they do have in order to form a hypothesis.

Here, the scientist is engaged in critical thinking: they use the limited data to come up with a tentative judgment.

3. Moderating a Debate

A debate moderator needs to have strong critical thinking skills. They need to use objective evaluations, analysis, and critique to keep the discussion on track and ensure that all sides are heard fairly.

This means being able to identify when a point has been made sufficiently, or when someone is beginning to veer off topic and being able to direct the conversation accordingly.

Similarly, they need to be able to assess each argument objectively and consider its merits, rather than getting caught up in the emotion of the debate. If someone is using an unfair point or one that is not factual, the moderator needs to be switched on and identify this.

By remaining calm and impartial, the moderator can help to ensure that a debate is productive and respectful.

4. Judging and Adjudicating

A judge or adjudicator needs to weigh the evidence and make a determination based on the facts.

This requires the adjudicator to be able to try to see both sides of an argument. They need the ability to see past personal biases and to critically evaluate the credibility of all sides.

In addition, judges and adjudicators must be able to think quickly and make sound decisions in the face of complex issues.

For example, if you were to be adjudicating the above debate, you need to hear both sides of the argument and then decide who won. It’s your job to evaluate, see strengths and weaknesses in arguments, and come to a conclusion.

5. Grading an Essay

Teachers need critical thinking skills when grading essays so that they can effectively assess the quality of the writing. By critically analyzing the essay, teachers can identify any errors or weaknesses in the argument.

Furthermore, they can also determine whether the essay meets the required standards for the assignment. Even a very well-written essay may deserve a lower grade if the essay doesn’t directly answer the essay question.

A teacher needs to be able to read an essay and understand not only what the student is trying to say, but also how well they are making their argument. Are they using evidence effectively? Are they drawing valid conclusions? A teacher needs to be able to evaluate an essay holistically in order to give a fair grade.

In order to properly evaluate an essay, teachers need to be able to think critically about the writing. Only then can they provide an accurate assessment of the work.

6. Active Reading

Active reading is a skill that requires the reader to be engaged with the text in order to fully understand it. This means not only being able to read the words on the page, but also being able to interpret the meaning behind them.

In order to do this, active readers need to have good critical thinking skills.

They need to be able to ask questions about the text and look for evidence to support their answers. Additionally, active readers need to be able to make connections between the text and their own experiences.

Active reading leads to better comprehension and retention of information.

7. Deciding Whether or Not to Believe Something

When trying to determine whether or not to believe something, you’re engaging in critical thinking.

For example, you might need to consider the source of the information. If the information comes from a reliable source, such as a reputable news organization or a trusted friend, then it is more likely to be accurate.

However, if the source is less reliable, such as an anonymous website or a person with a known bias, then the information should be viewed with more skepticism.

In addition, it is important to consider the evidence that is being presented. If the evidence is well-supported and logically presented, then it is more likely to be true. However, if the evidence is weak or relies on fallacious reasoning, then the claim is less likely to be true.

8. Determining the Best Solution to a Situation

Determining the best solution to a problem generally requires you to critique the different options. There are often many different factors to consider, and it can be difficult to know where to start.

However, there are some general guidelines that can help to make the process a little easier.

For example, if you have a few possible solutions to the problem, it is important to weigh the pros and cons of each one. Consider both the short-term and long-term effects of each option before making a decision.

Furthermore, it is important to be aware of your own biases. Be sure to consider all of the options objectively, without letting your personal preferences get in the way.

9. Giving Formative Feedback

Formative feedback is feedback that you give to someone part-way through a learning experience. To do this, you need to think critically.

For example, one thing you need to do is see where the student’s strengths and weaknesses like. Perhaps the student is doing extremely well at a task, so your feedback might be that they should try to extend themselves by adding more complexity to the task.

Or, perhaps the student is struggling, so you suggest to them that they approach the learning experience from a different angle.

10. Giving Summative Feedback

Summative feedback occurs at the end of a learning scenario. For example, the written feedback at the end of an essay or on a report card is summative.

When providing summative feedback, it is important to take a step back and consider the situation from multiple perspectives. What are areas for improvement and where exactly might the student have missed some key points? How could the student have done better?

Asking yourself these questions is all part of the process of giving feedback, and they can all be considered examples of critical thinking. You’re literally critiquing the student’s work and identifying opportunities for improvement.

11. Evaluating Evidence

When evaluating evidence, critical thinkers take a step back and look at the bigger picture. They consider all of the available information and weigh it up. They look at logical flaws, the reliability of the evidence, and its validity.

This process allows them to arrive at a conclusion that is based on sound reasoning, rather than emotion or personal bias.

For example, when a social scientist looks at the evidence from his study, he needs to evaluate whether the data was corrupted and ensure the methodology was sound in order to determine if the evidence is valuable or not.

12. Media Literacy

Media literacy seems to be in short supply these days. Too many people take information off the internet or television and just assume it is true.

A person with media literacy, however, will not just trust what they see and read. Instead, they look at the data and weigh up the evidence. They will see if there was a sound study to back up claims. They will see if there is bias in the media source and whether it’s just following an ideological line.

Furthermore, they will make sure they seek out trustworthy media sources. These are not just media sources you like or that confirm your own point of view. They need to be sources that do their own research, find solid data, and don’t pursue one blind agenda.

13. Asking your Own Questions

Asking your own questions is an important part of critical thinking. When you ask questions, you are forcing yourself to think more deeply about the information you are considering.

Asking questions also allows you to gather more information from others who may have different perspectives.

This helps you to better understand the issue and to come up with your own conclusions.

So, often at schools, we give students a list of questions to ask about something in order to dig deeper into it. For example, in a book review lesson, the teacher might give a list of questions to ask about the book’s characters and plot.

14. Conducting Rigorous Research

Research is a process of inquiry that encompasses the gathering of data, interpretation of findings, and communication of results. The researcher needs to engage in critical thinking throughout the process, but most importantly, when designing their methodology.

Research can be done through a variety of methods, such as experiments, surveys, interviews, and observations. Each method has strengths and weaknesses.

Once the data has been collected, it must be analyzed and interpreted. This is often done through statistical methods or qualitative analysis.

Research is an essential tool for discovering new knowledge and for solving problems, but researchers need to think critically about how valid and reliable their data truly is.

15. Examining your own Beliefs and Prejudices

It’s important to examine your own beliefs and prejudices in order to ensure that they are fair and accurate. People who don’t examine their own beliefs have not truly critically examined their lives.

One way to do this is to take the time to consider why you believe what you do. What experiences have you had that have led you to this belief? Are there other ways to interpret these experiences? It’s also important to be aware of the potential for confirmation bias , which is when we seek out information that confirms our existing beliefs, while ignoring information that contradicts them.

This can lead us to hold onto inaccurate or unfair beliefs even when presented with evidence to the contrary.

To avoid this, it’s important to seek out diverse perspectives, and to be open-minded when considering new information. By taking these steps, you can help ensure that your beliefs are fair and accurate.

16. Looking at a Situation from Multiple Perspectives

One of the most important critical thinking skills that you can learn in life is how to look at a situation from multiple perspectives.

Being able to see things from different angles can help you to understand complex issues, spot potential problems, and find creative solutions. It can also help you to build better relationships, as you will be able to see where others are coming from and find common ground.

There are a few simple techniques that you can use to develop this skill.

First, try to imagine how someone else would feel in the same situation.

Second, put yourself in their shoes and try to see things from their point of view.

Finally, ask yourself what other factors may be influencing their perspective. By taking the time to view things from multiple angles, you will be better prepared to deal with whatever life throws your way.

17. Considering Implications before Taking Action

When faced with a difficult decision, it is important to consider the implications of each possible action before settling on a course of action.

This is because the consequences of our actions can be far-reaching and often unforeseen.

For example, a seemingly small decision like whether to attend a party or not might have much larger implications. If we decide to go to the party, we might miss an important deadline at work.

However, if we stay home, we might miss out on an opportunity to meet new people and make valuable connections.

In either case, our choice can have a significant impact on our lives.

Fortunately, critical thinking can help people to make well-informed decisions that could have a positive impact on their lives.

For example, you might have to weight up the pros and cons of attending the party and identify potential downsides, like whether you might be in a car with an impaired driver, and whether the party is really worth losing your job.

Having weighed up the potential outcomes, you can make a more rational and informed decision.

18. Reflective Practice

Reflecting on your actions is an important part of critical thinking. When you take the time to reflect, you are able to step back and examine your choices and their consequences more objectively.

This allows you to learn from your mistakes and make better decisions in the future.

In order to reflect effectively, it is important to be honest with yourself and open to learning new things. You must also be willing to question your own beliefs and assumptions. By taking these steps, you can develop the critical thinking skills that are essential for making sound decisions next time.

This will also, fortunately, help you to constantly improve upon yourself.

19. Problem-Solving

Problem-solving requires the ability to think critically in order to accurately assess a situation and determine the best course of action.

This means being able to identify the root cause of a problem , as well as any potential obstacles that may stand in the way of a solution. It also involves breaking down a problem into smaller, more manageable pieces in order to more easily find a workable solution.

In addition, critical thinking skills also require the ability to think creatively in order to come up with original solutions to these problems.

Go Deeper: Problem-Solving Examples

20. Brainstorming New Solutions

When brainstorming new solutions , critical thinking skills are essential in order to generate fresh ideas and identify potential issues.

For example, the ability to identify the problems with the last solution you tried is important in order to come up with better solutions this time. Similarly, analytical thinking is necessary in order to evaluate the feasibility of each idea. Furthermore, it is also necessary to consider different perspectives and adapt to changing circumstances.

By utilizing all of these critical thinking skills, it will be possible to develop innovative solutions that are both practical and effective.

21. Reserving Judgment

A key part of critical thinking is reserving judgment. This means that we should not rush to conclusions, but instead take the time to consider all the evidence before making up our minds.

By reserving judgment, we can avoid making premature decisions that we might later regret. We can also avoid falling victim to confirmation bias, which is the tendency to only pay attention to information that supports our existing beliefs.

Instead, by keeping an open mind and considering all the evidence, we can make better decisions and reach more accurate conclusions.

22. Identifying Deceit

Critical thinking is an important skill to have in any situation, but it is especially important when trying to identify deceit.

There are a few key things to look for when using critical thinking to identify deceit.

First, pay attention to the person’s body language. Second, listen closely to what the person is saying and look for any inconsistencies. Finally, try to get a sense of the person’s motive – why would they want to deceive you?

Each of these questions helps you to not just take things at their face value. Instead, you’re critiquing the situation and coming to a conclusion using all of your intellect and senses, rather than just believing what you’re told.

23. Being Open-Minded to New Evidence that Contradicts your Beliefs

People with critical thinking skills are more open-minded because they are willing to consider different points of view and evidence.

They also realize that their own beliefs may be wrong and are willing to change their minds if new information is presented.

Similarly, people who are not critical thinkers tend to be close-minded because they fail to critique themselves and challenge their own mindset. This can lead to conflicts, as closed-minded people are not willing to budge on their beliefs even when presented with contradictory evidence.

Critical thinkers, on the other hand, are able to have more productive conversations as they are willing to listen to others and consider different viewpoints. Ultimately, being open-minded and willing to change one’s mind is a sign of intelligence and maturity.

24. Accounting for Bias

We all have biases, based on our individual experiences, perspectives, and beliefs. These can lead us to see the world in a certain way and to interpret information in a way that supports our existing views.

However, if we want to truly understand an issue, it is important to try to put aside our personal biases and look at the evidence objectively.

This is where critical thinking skills come in.

By using critical thinking, we can examine the evidence dispassionately and assess different arguments without letting our own prejudices get in the way. Start by looking at weaknesses and logical flaws in your own thinking.

Play the devil’s advocate.

In this way, you can start to get a more accurate picture of an issue and make more informed decisions.

25. Basing your Beliefs on Logic and Reasoning

In order to lead a successful and fulfilling life, it is important to base your beliefs on logic and reasoning.

This does not mean that you should never believe in something without evidence, but it does mean that you should be thoughtful and intentional about the things that you choose to believe.

One way to ensure that your beliefs are based on logic and reasoning is to seek out reliable sources of information. Another method is to use thought games to follow all your thoughts to their logical conclusions.

By basing your beliefs on logic and reasoning, you will be more likely to make sound decisions, and less likely to be swayed by emotions or misinformation.

Critical thinking is an important skill for anyone who wants to be successful in the modern world. It allows us to evaluate information and make reasoned decisions, rather than simply accepting things at face value. 

Thus, employers often want to employ people with strong critical thinking skills. These employees will be able to solve problems by themselves and identify ways to improve the workplace. They will be able to push back against bad decisions and use their own minds to make good decisions.

Furthermore, critical thinking skills are important for students. This is because they need to be able to evaluate information and think through problems with a critical mindset in order to learn and improve.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Animism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 10 Magical Thinking Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ Social-Emotional Learning (Definition, Examples, Pros & Cons)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ What is Educational Psychology?

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Search form

  • ADVERTISE here!
  • How To Contribute Articles
  • How To Use This in Teaching
  • To Post Lectures

Sponsored Links

You are here, our free e-learning automated reviewers.

critical thinking philosophy example

  • Mathematics
  • Home Economics
  • Physical Education
  • Music and Arts
  • Philippine Studies
  • Language Studies
  • Social Sciences
  • Extracurricular
  • Preschool Lessons
  • Life Lessons
  • AP (Social Studies)
  • EsP (Values Education)

critical thinking philosophy example

Logic, Critical Thinking, and Philosophy

critical thinking philosophy example

Logic defined

Logic as a science and an art, philosophy and logic, critical thinking defined, logic and critical thinking, for students' comments, click here:  how to start a cool discussion in myinfobasket.com, ourhappyschool recommends.

critical thinking philosophy example

Critical thinking definition

critical thinking philosophy example

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

SEP logo

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment. Political and business leaders endorse its importance.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o'clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68-69; 1933: 91-92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot's position, it must appear to project far out in front of the boat. Morevoer, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69-70; 1933: 92-93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond line from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009), others on the resulting judgment (Facione 1990a), and still others on the subsequent emotive response (Siegel 1988).

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in frequency in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the frequency of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Critical thinking dispositions can usefully be divided into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started) (Facione 1990a: 25). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), and Black (2012).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work.

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? Abrami et al. (2015) found that in the experimental and quasi-experimental studies that they analyzed dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), and Bailin et al. (1999b).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Casserly, Megan, 2012, “The 10 Skills That Will Get You Hired in 2013”, Forbes , Dec. 10, 2012. Available at https://www.forbes.com/sites/meghancasserly/2012/12/10/the-10-skills-that-will-get-you-a-job-in-2013/#79e7ff4e633d ; accessed 2017 11 06.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; accessed 2017 09 26.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; accessed 2018 04 09.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; accessed 2018 04 14.
  • Dumke, Glenn S., 1980, Chancellor’s Executive Order 338 , Long Beach, CA: California State University, Chancellor’s Office. Available at https://www.calstate.edu/eo/EO-338.pdf ; accessed 2017 11 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”. Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; accessed 2017 12 02.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://drive.google.com/file/d/0BzUoP_pmwy1gdEpCR05PeW9qUzA/view ; accessed 2017 12 01.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • Obama, Barack, 2014, State of the Union Address , January 28, 2014. [ Obama 2014 available online ]
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Information available at http://www.ocr.org.uk/qualifications/as-a-level-gce-critical-thinking-h052-h452/ ; accessed 2017 10 12.
  • OECD [Organization for Economic Cooperation and Development] Centre for Educational Research and Innovation, 2018, Fostering and Assessing Students’ Creative and Critical Thinking Skills in Higher Education , Paris: OECD. Available at http://www.oecd.org/education/ceri/Fostering-and-assessing-students-creative-and-critical-thinking-skills-in-higher-education.pdf ; accessed 2018 04 22.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; accessed 2017 11 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; accessed 2017 11 29.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2011, Curriculum for the Compulsory School, Preschool Class and the Recreation Centre , Stockholm: Ordförrådet AB. Available at http://malmo.se/download/18.29c3b78a132728ecb52800034181/pdf2687.pdf ; accessed 2017 11 16.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Center for Teaching Thinking (CTT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach (criticalTHINKING.net)
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2018 by David Hitchcock < hitchckd @ mcmaster . ca >

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

Stanford Center for the Study of Language and Information

The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Enhancing students’ critical thinking and creative thinking: An integrated mind mapping and robot-based learning approach

  • Published: 16 May 2024

Cite this article

critical thinking philosophy example

  • Min-Chi Chiu 1 , 2 &
  • Gwo-Jen Hwang   ORCID: orcid.org/0000-0001-5155-276X 3 , 4  

Fostering students’ critical thinking and creative thinking is an important aim in education. For example, art courses not only focus on artwork creation, but also on theoretical knowledge for identifying artworks. In the conventional lecture-based instruction mode for theoretical knowledge delivery, students’ learning outcomes could be affected owing to the lack of student-teacher interactions, and hence researchers have started to employ interactive learning technologies, such as robots, to cope with this problem. However, without proper guidance and support, students’ learning outcomes in such an interactive learning mode could be limited. To improve students’ learning effectiveness, this study proposed a mind mapping-assisted robot (MM-R) approach for an art course. A quasi-experimental design was adopted to explore the effects of the proposed learning approach on students’ performance in art appreciation, digital painting creation, creative thinking tendency, and critical thinking awareness. A total of 48 students from two classes in a university in central Taiwan were recruited to participate in this study. One class was the experimental group ( n  = 25) adopting the MM-R approach, while the other class was the control group ( n  = 23) adopting the conventional robot (C-R) approach. The results indicated that the integration of the MM-R approach improved students’ learning achievement, performance in digital painting creation, creative thinking tendency, and critical thinking awareness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

critical thinking philosophy example

Data availability

The data and materials are available upon request to the corresponding author.

Code availability

Not applicable.

Abd Karim, R., & Abu, A. G. (2018). Using mobile-assisted mind mapping technique (mammat) to improve writing skills of esl students. Journal of Social Science and Humanities, 1 (2), 1–6. https://doi.org/10.26666/rmp.jssh.2018.2.1

Article   Google Scholar  

Abd Karim, R., & Mustapha, R. (2022). TVET student’s perception on digital mind map to stimulate learning of technical skills in Malaysia. Journal of Technical Education and Training, 14 (1), 1–13.

Afari, E., & Khine, M. S. (2017). Robotics as an educational tool: Impact of Lego mindstorms. International Journal of Information and Education Technology, 7 (6), 437–442. https://doi.org/10.18178/ijiet.2017.7.6.908

Alam, A. (2022). Employing adaptive learning and intelligent tutoring robots for virtual classrooms and smart campuses: Reforming education in the age of artificial intelligence. In Advanced Computing and Intelligent Technologies , 395–406. https://doi.org/10.1007/978-981-19-2980-9_32

Alkhatib, O. J. (2019, March 1–8). A framework for implementing higher-order thinking skills (problem-solving, critical thinking, creative thinking, and decision-making) in engineering & humanities . In 2019 Advances in Science and Engineering Technology International Conferences (ASET), IEEE.

An, J. S., & Huh, Y. J. (2019). Effect of creative thinking through art collaboration class. Journal of the Korea Convergence Society, 10 (7), 121–131. https://doi.org/10.15207/JKCS.2019.10.7.121

Andrews, R. (2015). Critical thinking and/or argumentation in higher education. The Palgrave handbook of critical thinking in higher education (pp. 49–62). Palgrave Macmillan US.

Chapter   Google Scholar  

Astrodjojo, D. R. (2018). The development of teaching materials using learning cycle 5E to increase critical thinking skills and students learning outcome of high school students on the subject of reaction rate. JPPS (Jurnal Penelitian Pendidikan Sains), 8 (1). https://doi.org/10.26740/jpps.v8n1.p%25p

Aykac, V. (2015). An application regarding the availability of mind maps in visual art education based on active learning method. Procedia-Social and Behavioral Sciences, 174 , 1859–1866. https://doi.org/10.1016/j.sbspro.2015.01.848

Bezanilla, M. J., Domínguez, H. G., & Ruiz, M. P. (2021). Importance and possibilities of development of critical thinking in the university: The teacher’s perspective. REMIE: Multidisciplinary Journal of Educational Research, 11 (1), 20–48.

Bhuvaneswari, T., & Beh, S. L. (2013). Changes in teaching and learning through digital media for higher education institutions. International Journal of Mobile Learning and Organisation, 2 (3), 201–215. https://doi.org/10.1504/IJMLO.2008.020315

Bonk, C. J., & Cunningham, D. J. (2012). Searching for learner-centered, constructivist, and sociocultural components of collaborative educational learning tools. Electronic collaborators (pp. 25–50). Routledge.

Bravo, F. A., Hurtado, J. A., & González, E. (2021). Using robots with storytelling and drama activities in science education. Education Sciences, 11 (7), 329.

Bravo Sánchez, F. Á, González Correal, A. M., & Guerrero, E. G. (2017). Interactive drama with robots for teaching non-technical subjects. Journal of Human-Robot Interaction, 6 (2), 48–69.

Brown, G. T., & Wang, Z. (2013). Illustrating assessment: How Hong Kong university students conceive of the purposes of assessment. Studies in Higher Education, 38 (7), 1037–1057. https://doi.org/10.1080/03075079.2011.616955

Buzan, T., & Buzan, B. (2002). How to mind map . Thorsons.

Google Scholar  

Buzan, T., & Buzan, B. (2006). The mind map book . Pearson Education.

Bybee, R. W., & Trowbridge, J. H. (1990). Applying standards-based constructivism: A two-step guide for motivating students . Cambridge University Press.

Carless, D., & Lam, R. (2014). The examined life: Perspectives of lower primary school students in Hong Kong. Education 3–13, 42 (3), 313–329. https://doi.org/10.1080/03004279.2012.689988

Chai, C. S., Deng, F., Tsai, P. S., Koh, J. H. L., & Tsai, C. C. (2015). Assessing multidimensional students’ perceptions of twenty-first-century learning practices. Asia Pacific Education Review, 16 (3), 389–398. https://doi.org/10.1007/s12564-015-9379-4

Chang, C. W., Lee, J. H., Wang, C. Y., & Chen, G. D. (2010). Improving the authentic learning experience by integrating robots into the mixed-reality environment. Computers & Education, 55 (4), 1572–1578. https://doi.org/10.1016/j.compedu.2010.06.023

Chang, C. Y., Panjaburee, P., Lin, H. C., Lai, C. L., & Hwang, G. H. (2022). Effects of online strategies on students’ learning performance, self-efficacy, self-regulation and critical thinking in university online courses. Educational Technology Research and Development, 70 (1), 185–204. https://doi.org/10.1007/s11423-021-10071-y

Chao, J. Y., Liu, C. H., & Kao, H. C. (2023). Science, Technology, Engineering, and Mathematics Curriculum Design for Teaching Mathematical Concept of Perspective at Indigenous Elementary School using Robots. Sensors and Materials, 35 (5), 1547–1556.

Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: A narrative overview. Procedia Computer Science, 136 , 16–24. https://doi.org/10.1016/j.procs.2018.08.233

Chen, C. H., & Chung, H. Y. (2023). Fostering computational thinking and problem-solving in programming: Integrating Concept maps into Robot Block-based programming. Journal of Educational Computing Research . https://doi.org/10.1177/07356331231205052

Chen, X., Cheng, G., Zou, D., Zhong, B., & Xie, H. (2023). Artificial Robots for Precision Education. Educational Technology & Society, 26 (1), 171–186.

Chen Hsieh, J. (2022). Multimodal Digital Storytelling Presentations among Middle-School learners of English as a Foreign Language: Emotions, grit and perceptions. RELC Journal . https://doi.org/10.1177/00336882221102233

Chin, K. Y., Hong, Z. W., & Chen, Y. L. (2014). Impact of using an educational robot-based learning system on students’ motivation in elementary education. IEEE Transactions on Learning Technologies, 7 (4), 333–345.

Chiu, M. C., Hwang, G. J., & Tu, Y. F. (2022). Roles, applications, and research designs of robots in science education: a systematic review and bibliometric analysis of journal publications from 1996 to 2020. Interactive Learning Environments, 1–26. https://doi.org/10.1080/10494820.2022.2129392

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). SAGE Publications.

Cristea, A. D., Berdie, A. D., Osaci, M., & Chirtoc, D. (2011). The advantages of using mind map for learning web dynpro. Computer Applications in Engineering Education, 19 (1), 201–207.

Cruickshank, D. (1996). The ‘art’of reflection: Using drawing to uncover knowledge development in student nurses. Nurse Education Today, 16 (2), 127–130. https://doi.org/10.1016/S0260-6917(96)80069-4

Davies, M. (2011). Concept mapping, mind mapping and argument mapping: What are the differences and do they matter? Higher Education, 62 (3), 279–301. https://doi.org/10.1007/s10734-010-9387-6

Deaver, S. P. (2012). Art-based learning strategies in art therapy graduate education. Art Therapy, 29 (4), 158–165. https://doi.org/10.1080/07421656.2012.730029

Debbag, M., Cukurbasi, B., & Fidan, M. (2021). Use of digital mind maps in technology education: A pilot study with pre-service science teachers. Informatics in Education, 20 (1), 47–68.

Dewey, J. (1934). In J. Boydston (Ed.), Art as experience, reprinted in 1989, John dewey: The later works, 1925–1953. (Vol. 10). Southern Illinois University.

Dong, Y., Zhu, S., & Li, W. (2021). Promoting sustainable creativity: An empirical study on the application of mind mapping tools in graphic design education. Sustainability, 13 (10), 5373. https://doi.org/10.3390/su13105373

Dorouka, P., Papadakis, S., & Kalogiannakis, M. (2020). Tablets and apps for promoting robotics, mathematics, STEM education and literacy in early childhood education. International Journal of Mobile Learning and Organisation, 14 (2), 255–274.

Dumitru, D. (2019). Creating meaning. The importance of arts, humanities and Culture for critical thinking development. Studies in Higher Education, 44 (5), 870–879. https://doi.org/10.1080/03075079.2019.1586345

Edwards, S., & Cooper, N. (2010). Mind mapping as a teaching resource. The Clinical Teacher, 7 (4), 236–239. https://doi.org/10.1111/j.1743-498X.2010.00395.x

Edwards, C., Edwards, A., Spence, P. R., & Lin, X. (2018). I, teacher: Using artificial intelligence (AI) and social robots in communication and instruction. Communication Education, 67 (4), 473–480. https://doi.org/10.1080/03634523.2018.1502459

Eppler, M. J. (2006). A comparison between concept maps, mind maps, conceptual diagrams, and visual metaphors as complementary tools for knowledge construction and sharing. Information Visualization, 5 (3), 202–210.

Evripidou, S., Amanatiadis, A., Christodoulou, K., & Chatzichristofis, S. A. (2021). Introducing algorithmic thinking and sequencing using tangible robots. IEEE Transactions on Learning Technologies, 14 (1), 93–105. https://doi.org/10.1109/TLT.2021.3058060

Fadillah, R. (2019). STUDENTS’perception on the use of mind mapping application software in learning writing. Celtic: A Journal of Culture English Language Teaching Literature and Linguistics, 6 (1), 58–64.

Fan, X., & Zhong, X. (2022). Artificial intelligence-based creative thinking skill analysis model using human–computer interaction in art design teaching. Computers and Electrical Engineering, 100 , 107957. https://doi.org/10.1016/j.compeleceng.2022.107957

Fish, B. J. (2019). Response art in art therapy: Historical and contemporary overview. Art Therapy, 36 (3), 122–132. https://doi.org/10.1080/07421656.2019.1648915

Freire, P. (1973). Education for critical consciousness (Vol. 1). Bloomsbury Publishing.

Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education. Computers & Education, 70 , 53–64. https://doi.org/10.1016/j.compedu.2013.07.043

Fu, Q. K., Lin, C. J., Hwang, G. J., & Zhang, L. (2019). Impacts of a mind mapping-based contextual gaming approach on EFL students’ writing performance, learning perceptions and generative uses in an English course. Computers & Education, 137 , 59–77. https://doi.org/10.1016/j.compedu.2019.04.005

Gerecke, U., & Wagner, B. (2007). The challenges and benefits of using robots in higher education. Intelligent Automation & Soft Computing, 13 (1), 29–43. https://doi.org/10.1080/10798587.2007.10642948

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research . Routledge.

Goldstain, O. H., Ben-Gal, I., & Bukchin, Y. (2011). Evaluation of telerobotic interface components for teaching robot operation. IEEE Transactions on Learning Technologies, 4 (4), 365–376. https://doi.org/10.1109/TLT.2011.19

Goldston, M. J., Day, J. B., Sundberg, C., & Dantzler, J. (2010). Psychometric analysis of a 5E learning cycle lesson plan assessment instrument. International Journal of Science and Mathematics Education, 8 (4), 633–648. https://doi.org/10.1007/s10763-009-9178-7

Hardiman, M. M., JohnBull, R. M., Carran, D. T., & Shelton, A. (2019). The effects of arts-integrated instruction on memory for science content. Trends in Neuroscience and Education, 14 , 25–32. https://doi.org/10.1016/j.tine.2019.02.002

Hayadi, B. H., Bastian, A., Rukun, K., Jalius, N., Lizar, Y., & Guci, A. (2018). Expert system in the application of learning models with forward chaining method. International Journal of Engineering Technology, 7 (2.29), 845–848.

Heyvaert, M., Maes, B., & Onghena, P. (2013). Mixed methods research synthesis: Definition, framework, and potential. Quality & Quantity, 47 , 659–676.

Hidayati, N., Zubaidah, S., Suarsini, E., & Praherdhiono, H. (2019). Examining the relationship between creativity and critical thinking through integrated problem-based learning and digital mind maps. Universal Journal of Education Research , 7 (9A), 171–179. https://doi.org/10.13189/ujer.2019.071620

Ho, T. K. L., & Lin, H. S. (2015). A web-based painting tool for enhancing student attitudes toward learning art creation. Computers & Education, 89 , 32–41. https://doi.org/10.1016/j.compedu.2015.08.015

Howitt, C. (2009). 3-D mind maps: Placing young children in the centre of their own learning. Teaching Science: The Journal of the Australian Science Teachers Association , 55 (2).

Hölling, H. (2016). The aesthetics of change: on the relative durations of the impermanent and critical thinking in conservation. Authenticity in Transition: Changing Practices in Art Making and Conservation, 13–24.

Hsu, T. C., & Chen, M. S. (2022). The engagement of students when learning to use a personal audio classifier to control robot cars in a computational thinking board game. Research and Practice in Technology Enhanced Learning, 17 (1), 1–17. https://doi.org/10.1186/s41039-022-00202-1

Article   MathSciNet   Google Scholar  

Huang, Z. M. (2021). Exploring imagination as a methodological source of knowledge: Painting students’ intercultural experience at a UK university. International Journal of Research & Method in Education, 44 (4), 366–378. https://doi.org/10.1080/1743727X.2020.1796958

Hutson, J., & Olsen, T. (2022). Virtual reality and art history: A case study of digital humanities and immersive learning environments. Journal of Higher Education Theory and Practice, 22 (2).

Hwang, G. J., Yang, T. C., Tsai, C. C., & Yang, S. J. H. (2009). A context-aware ubiquitous learning environment for conducting complex science experiments. Computers & Education, 53 (2), 402–413. https://doi.org/10.1016/j.compedu.2009.02.016

Hwang, G. J., Lee, H. Y., & Chen, C. H. (2019). Lessons learned from integrating concept mapping and gaming approaches into learning scenarios using mobile devices: Analysis of an activity for a geology course. International Journal of Mobile Learning and Organisation, 13 (3), 286–308.

Ishiguro, C., & Okada, T. (2022). How can inspiration be encouraged in art learning? Arts-based methods in education around the world (pp. 205–230). River.

Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10 (4), 905. https://doi.org/10.3390/su10040905

Kalaitzidou, M., & Pachidis, T. P. (2023). Recent robots in STEAM Education. Education Sciences, 13 (3), 272. https://doi.org/10.3390/educsci13030272

Kokotovich, V. (2008). Problem analysis and thinking tools: an empirical study of non-hierarchical mind mapping. Design studies, 29 (1), 49–69. https://doi.org/10.1016/j.destud.2007.09.001

Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: A field trial. Human–Computer Interaction, 19 (1–2), 61–84.

Köhler, C., Hartig, J., & Naumann, A. (2021). Detecting instruction effects-deciding between covariance analytical and change-score approach. Educational Psychology Review, 33 , 1191–1211. https://doi.org/10.1007/s10648-020-09590-6

Kotcherlakota, S., Zimmerman, L., & Berger, A. M. (2013). Developing scholarly thinking using mind maps in graduate nursing education. Nurse educator , 27 (6), 252–255. https://doi.org/10.1097/01.NNE.0000435264.15495.51

Konijn , E. A., & Hoorn, J. F. (2020). Robot tutor and pupils’ educational ability: Teaching the times tables. Computers & Education , 157 , 103970. https://doi.org/10.1016/j.compedu.2020.103970

Kuo, Y. T., Garcia Bravo, E., Whittinghill, D. M., & Kuo, Y. C. (2023). Walking into a modern painting: The impacts of using virtual reality on student learning performance and experiences in art appreciation. International Journal of Human–Computer Interaction, 1–22. https://doi.org/10.1080/10447318.2023.2278929

Lai, C. L., & Hwang, G. J. (2014). Effects of mobile learning time on students’ conception of collaboration, communication, complex problem-solving, meta-cognitive awareness and creativity. International Journal of Mobile Learning and Organisation, 8 (3), 276–291. https://doi.org/10.1504/IJMLO.2014.067029

Lai, C. L., & Hwang, G. J. (2015). An interactive peer-assessment criteria development approach to improving students’ art design performance using handheld devices. Computers & Education, 85 , 149–159. https://doi.org/10.1016/j.compedu.2015.02.011

Lee, C. S., Wang, M. H., Kuan, W. K., Huang, S. H., Tsai, Y. L., Ciou, Z. H., Yang, C. K., & Kubota, N. (2021). BCI-based hit-loop agent for human and AI robot co-learning with AIoT application. Journal of Ambient Intelligence and Humanized Computing, 1–25. https://doi.org/10.1007/s12652-021-03487-0

Liang, J. C., & Hwang, G. J. (2023). A robot-based digital storytelling approach to enhancing EFL learners’ multimodal storytelling ability and narrative engagement. Computers & Education, 201 , 104827. https://doi.org/10.1016/j.compedu.2023.104827

Lin, C. J., Hwang, G. J., Fu, Q. K., & Chen, J. F. (2018). A flipped contextual game-based learning approach to enhancing EFL students’ English business writing performance and reflective behaviors. Journal of Educational Technology & Society, 21 (3), 117–131.

Lin, H. C., Hwang, G. J., & Hsu, Y. D. (2019). Effects of ASQ-based flipped learning on nurse practitioner learners’ nursing skills, learning achievement and learning perceptions. Computers & Education, 139 , 207–221. https://doi.org/10.1016/j.compedu.2019.05.014

Liu, H., Sheng, J., & Zhao, L. (2022). Innovation of teaching tools during robot programming learning to promote middle school students’ critical thinking. Sustainability, 14 (11), 6625. https://doi.org/10.3390/su14116625

Malycha, C. P., & Maier, G. W. (2017). Enhancing creativity on different complexity levels by eliciting mental models. Psychology of Aesthetics Creativity and the Arts, 11 (2), 187. https://doi.org/10.1037/aca0000080

Mernick, A. (2021). Critical arts pedagogy: Nurturing critical consciousness and self-actualization through art education. Art Education, 74 (5), 19–24. https://doi.org/10.1080/00043125.2021.1928468

Meyer, T. (2017). Next art education: Eight theses future art educators should think about. International Journal of Education through Art, 13 (3), 369–384. https://doi.org/10.1386/eta.13.3.369_1

Mijwil, M. M., Aggarwal, K., Mutar, D. S., Mansour, N., & Singh, R. (2022). The position of artificial intelligence in the future of education: an overview. Journal of Applied Sciences, 10 (2).

Miles, M. B., Huberman, A. M., & Saldaña, J. (2013). Qualitative data analysis: A methods sourcebook (3rd ed.). SAGE Publications, Inc.

Moraiti, I., Fotoglou, A., & Drigas, A. (2022). Coding with block programming languages in educational robotics and mobiles, improve problem solving, creativity & critical thinking skills. International Journal of Interactive Mobile Technologies , 16 (20). https://doi.org/10.3991/ijim.v16i20.34247

 Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J. J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning , 1 (209 – 0015), 13. https://doi.org/10.2316/Journal.209.2013.1.209-0015

Nurkhin, A., & Pramusinto, H. (2020). Problem-based learning strategy: Its impact on students’ critical and creative thinking skills. European Journal of Educational Research, 9 (3), 1141–1150.

O’Connell, R. M. (2014). Mind mapping for critical thinking. In Cases on teaching critical thinking through visual representation strategies , 354–386. https://doi.org/10.4018/978-1-4666-5816-5.ch014

Oreck, B. (2004). The artistic and professional development of teachers: A study of teachers’ attitudes toward and use of the arts in teaching. Journal of Teacher Education, 55 (1), 55–69. https://doi.org/10.1177/0022487103260072

Otukile-Mongwaketse, M. (2018). Teacher centered approaches: Their implications for today’s inclusive classrooms. International Journal of Psychoogy and Counseling, 10 (2), 11–21. https://doi.org/10.5897/IJPC2016.0393

Park, Y. S. (2023). Creative and critical entanglements with AI in Art Education. Studies in Art Education, 64 (4), 406–425. https://doi.org/10.1080/00393541.2023.2255084

Patton, R. M., & Buffington, M. L. (2016). Keeping up with our students: The evolution of technology and standards in art education. Arts Education Policy Review, 117 (3), 1–9. https://doi.org/10.1080/10632913.2014.944961

Ramdani, A., Jufri, A. W., Gunawan, G., Fahrurrozi, M., & Yustiqvar, M. (2021). Analysis of students’ critical thinking skills in terms of gender using Science Teaching materials based on the 5E learning cycle Integrated with local Wisdom. Jurnal Pendidikan IPA Indonesia, 10 (2), 187–199. https://doi.org/10.15294/jpii.v10i2.29956

Rim, H., Choi, I., & Noh, S. (2014). A study on the application of robotic programming to promote logical and critical thinking in mathematics education. The Mathematical Education, 53 (3), 413–434. https://doi.org/10.7468/mathedu.2014.53.3.413

Ryu, H. J., Kwak, S. S., & KIM, M. S. (2008). Design factors for external form of robots as elementary school teaching assistants. Bulletin of Japanese Society for the Science of Design, 54 (6), 39–48. https://doi.org/10.11247/jssdj.54.39_3

Sajnani, N., Mayor, C., & Tillberg-Webb, H. (2020). Aesthetic presence: The role of the arts in the education of creative arts therapists in the classroom and online. The Arts in Psychotherapy, 69 , 101. https://doi.org/10.1016/j.aip.2020.101668

Sari, R., Sumarmi, S., Astina, I., Utomo, D., & Ridhwan, R. (2021). Increasing students critical thinking skills and learning motivation using inquiry mind map. International Journal of Emerging Technologies in Learning (iJET), 16 (3), 4–19. https://doi.org/10.3991/ijet.v16i03.16515

Saunders, G., & Klemming, F. (2003). Integrating technology into a traditional learning environment: Reasons for and risks of success. Active Learning in Higher Education, 4 (1), 74–86. https://doi.org/10.1177/1469787403004001006

Setiawan, I. W. P., Suartama, I. K., & Putri, D. A. W. M. (2017). Pengaruh Model Pembelajaran Learning Cycle 5e Berbantuan Mind Mapping Terhadap Hasil Belajar Matematika. Mimbar PGSD Undiksha, 5 (2). https://doi.org/10.23887/jjpgsd.v5i2.10841

Štuikys, V., & Burbaitė, R. (2018). Smart devices and educational robotics as technology for STEM knowledge. Springer , 57–67. https://doi.org/10.1007/978-3-319-78485-4_3

Sun, M., Wang, M., & Wegerif, R. (2019). Using computer-based cognitive mapping to improve students’ divergent thinking for creativity development. British Journal of Educational Technology, 50 (5), 2217–2233. https://doi.org/10.1111/bjet.12825

Sun, Q., Lu, Z., & Ren, X. (2023). The influence of humanities on art and design learning performance: An empirical study. International Journal of Art & Design Education . https://doi.org/10.1111/jade.12474

Ulger, K. (2018). The effect of problem-based learning on the creative thinking and critical thinking disposition of students in visual arts education. Interdisciplinary Journal of Problem-Based Learning, 12 (1).

Usengül, L., & Bahçeci, F. (2020). The Effect of LEGO WeDo 2.0 education on academic achievement and attitudes and computational thinking skills of Learners toward Science. World Journal of Education, 10 (4), 83–93. https://doi.org/10.5430/wje.v10n4p83

Utami, D., & Subali, B. (2019, October). The effectiveness of 5E learning cycle accompanied by mind mapping on creative thinking. In Proceeding of the 2nd International Conference Education Culture and Technology, ICONECT 2019, 20–21 August 2019, Kudus, Indonesia .

Van den Berghe, R., Verhagen, J., Oudgenoeg-Paz, O., Van der Ven, S., & Leseman, P. (2019). Social robots for language learning: A review. Review of Educational Research, 89 (2), 259–295. https://doi.org/10.3102/0034654318821286

Ververi, C., Koufou, T., Moutzouris, A., & Andreou, L. V. (2020, April 20–21). Introducing robotics to an English for academic purposes curriculum in higher education: The student experience . In 2020 IEEE Global Engineering Education Conference (EDUCON), Porto, Portugal.

Walia, D. N. (2012). Traditional teaching methods vs. CLT: A study. Frontiers of Language and Teaching, 3 (1), 125–131.

Westlund, J. K., & Breazeal, C. (2015, March 65–66). The interplay of robot language level with children’s language learning during storytelling. In Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts, New York, United States.

Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., & Picard, R. (2009). Affect-aware tutors: Recognising and responding to student affect. International Journal of Learning Technology, 4 (3–4), 129–164. https://doi.org/10.1504/IJLT.2009.028804

Wu, H. Z., & Wu, Q. T. (2020). Impact of mind mapping on the critical thinking ability of clinical nursing students and teaching application. Journal of International Medical Research, 48 (3). https://doi.org/10.1177/0300060519893225

Wu, W. L., Hsu, Y., Yang, Q. F., Chen, J. J., & Jong, M. S. Y. (2021). Effects of the self-regulated strategy within the context of spherical video-based virtual reality on students’ learning performances in an art history class. Interactive Learning Environments, 1–24. https://doi.org/10.1080/10494820.2021.1878231

Yang, J., & Zhang, B. (2019). Artificial intelligence in intelligent tutoring robots: A systematic review and design guidelines. Applied Sciences , 9 (10), 2078. https://doi.org/10.3390/app9102078

Yang, Q. F., Lian, L. W., & Zhao, J. H. (2023). Developing a gamified artificial intelligence educational robot to promote learning effectiveness and behavior in laboratory safety courses for undergraduate students. International Journal of Educational Technology in Higher Education, 20 (1), 18. https://doi.org/10.1186/s41239-023-00391-9

Yu, F. Y., & Liu, Y. H. (2005). Potential values of incorporating a multiple-choice question construction in physics experimentation instruction. International Journal of Science Education, 27 (11), 1319–1335. https://doi.org/10.1080/09500690500102854

Yuliyanto, A., Basit, R. A., Muqodas, I., Wulandari, H., & Mifta, D. (2020). Alternative learning of the future based on Verbal-Linguistic, and visual-spatial intelligence through Youtube-based mind map when Pandemic Covid-19. Jurnal JPSD (Jurnal Pendidikan Sekolah Dasar), 7 (2), 132–141. https://doi.org/10.12928/jpsd.v7i2.16925

Zampetakis, L. A., Tsironis, L., & Moustakis, V. (2007). Creativity development in engineering education: The case of mind mapping. Journal of Management Development, 26 (4), 370–380. https://doi.org/10.1108/02621710710740110

Zhang, X., Chen, Y., Li, D., Hu, L., Hwang, G. J., & Tu, Y. F. (2023). Engaging young students in effective robotics education: an embodied learning-based computer programming approach. Journal of Educational Computing Research, 62 (2), 532–558. https://doi.org/10.1177/07356331231213548

Download references

This study is supported in part by the National Science and Technology Council of Taiwan under contract numbers NSTC 112-2410-H-011-012-MY3 and MOST 111-2410-H-011 -007 -MY3. The study is also supported by the “Empower Vocational Education Research Center” of National Taiwan University of Science and Technology (NTUST) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and affiliations.

Department of Information Management, Ling Tung University, Taichung, Taiwan

Min-Chi Chiu

Department of Multimedia Design, National Taichung University of Science and Technology, Taichung, Taiwan

Graduate Institute of Educational Information and Measurement, National Taichung University of Education, Taichung, Taiwan

Gwo-Jen Hwang

Graduate Institute of Digital Learning and Education, National Taiwan University of Science and Technology, Taipei, Taiwan

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Min-Chi Chiu. Project administration were performed by Gwo-Jen Hwang and Min-Chi Chiu. Methodology and supervision were performed Gwo-Jen Hwang and Min-Chi Chiu. The first draft of the manuscript was written by Min-Chi Chiu. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gwo-Jen Hwang .

Ethics declarations

Ethics approval.

The ethical requirements for research in this selected university were followed.

Consent to participate

The participants all agreed to take part in this study.

Consent for publication

The publication of this study has been approved by all authors.

Conflicts of interest/Competing interests

There is no potential conflict of interest in this study.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Chiu, MC., Hwang, GJ. Enhancing students’ critical thinking and creative thinking: An integrated mind mapping and robot-based learning approach. Educ Inf Technol (2024). https://doi.org/10.1007/s10639-024-12752-6

Download citation

Received : 14 August 2023

Accepted : 29 April 2024

Published : 16 May 2024

DOI : https://doi.org/10.1007/s10639-024-12752-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Mind mapping
  • Intelligent robot
  • 5E instructional model
  • Artwork appreciation
  • Creative thinking tendency
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Critical Thinking in the Classroom

    critical thinking philosophy example

  2. Critical Thinking Essay Sample

    critical thinking philosophy example

  3. Critical Thinking Definition, Skills, and Examples

    critical thinking philosophy example

  4. The 5 Most Useful Critical Thinking Flowcharts For Your Learners

    critical thinking philosophy example

  5. Example of a Critical Thinking Conceptual Map.

    critical thinking philosophy example

  6. 6 Examples of Critical Thinking Skills

    critical thinking philosophy example

VIDEO

  1. Logic & Critical Thinking (Philosophy, its features,& branches)

  2. Argumentation

  3. Critical Thinking and Politics Discussion

  4. "Critical Thinking and Learning: Essentials for Growth and Wisdom" #inspireutofriend

  5. What is Critical Thinking and Benefits of Critical Thinking?

  6. The Most Practical Definition of Critical Thinking #criticalthinking #teacher

COMMENTS

  1. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  2. Critical Thinking

    Critical Theory refers to a way of doing philosophy that involves a moral critique of culture. A "critical" theory, in this sense, is a theory that attempts to disprove or discredit a widely held or influential idea or way of thinking in society. Thus, critical race theorists and critical gender theorists offer critiques of traditional ...

  3. LOGOS: Critical Thinking, Arguments, and Fallacies

    I have been teaching philosophy and humanities classes for nearly 20 years; critical thinking is the single most important skill you can develop. In close but second place is communication, In my view, communication skills follow as a natural result of critical thinking because you are attempting to think through and articulate stronger and ...

  4. Critical Thinking: What is it to be a Critical Thinker?

    1. What is Critical Thinking? Speaking generally, critical thinking consists of reasoning and inquiring in careful ways, so as to form and update one's beliefs based on good reasons. [1] A critical thinker is someone who typically reasons and inquires in these ways, having mastered relevant skills and developed the disposition to apply them ...

  5. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  6. PHIL102: Introduction to Critical Thinking and Logic

    Free Certificate. This course will introduce you to critical thinking, informal logic, and a small amount of formal logic. Its purpose is to provide you with the basic tools of analytical reasoning, which will give you a distinctive edge in a wide variety of careers and courses of study. While many university courses focus on presenting content ...

  7. Critical thinking

    Critical thinking, in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a ... philosophy of education: Critical thinking.

  8. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  9. Critical Thinking: Explanation and Examples

    Example 1. Although video games are sometimes simply a passive way to enjoy yourself, they sometimes rely on critical thinking skills. This is particularly true of puzzle games and role playing games (RPGs) that present your character with puzzles at critical moments. For example, at one stage in the classic RPG Neverwinter Nights, your ...

  10. Introduction to Logic and Critical Thinking

    This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a ...

  11. Critical thinking introduction (video)

    1. Logic is the study of arguments. Critical thinking is application of logic. 2. Without critical thinking we would not survive for long. Even if we do, life would be empty 3. TV ads and newspapers are full of it 4. Critical thinking is clear and logical thinking. 5. If a thing is supported by sound/cogent arguments, we should believe it.

  12. Critical Thinking Definition, Skills, and Examples

    Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings. Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful ...

  13. Defining Critical Thinking

    Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.

  14. Philosophical Issues in Critical Thinking

    Summary. Critical thinking is active, good-quality thinking. This kind of thinking is initiated by an agent's desire to decide what to believe, it satisfies relevant norms, and the decision on the matter at hand is reached through the use of available reasons under the control of the thinking agent. In the educational context, critical ...

  15. A Teaching Philosophy Built on Knowledge, Critical Thinking and

    I believe that success - whether personal or professional - is generated from three critical building blocks: knowledge, critical thinking, and curiosity. These building blocks have an enduring, cyclical relationship; knowledge helps us to understand the world around us as well as ourselves, critical thinking gives us the ability to incorporate knowledge and apply it endlessly, and ...

  16. Philosophical Issues in Critical Thinking

    Philosophical Issues in Critical Thinking. Critical thinking is active, good-quality thinking. This kind of thinking is initiated by an agent's desire to decide what to believe, it satisfies relevant norms, and the decision on the matter at hand is reached through the use of available reasons under the control of the thinking agent.

  17. Critical Thinking

    If an item probes less directly for a critical thinking disposition, for example by asking how often the test taker pays close attention to views with which the test taker disagrees, the answer may differ from reality because of self-deception or simple lack of awareness of one's personal thinking style, and its interpretation is problematic ...

  18. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  19. 25 Critical Thinking Examples (2024)

    By Chris Drew (PhD) / May 2, 2024. Critical thinking is the ability to analyze information and make reasoned decisions. It involves suspended judgment, open-mindedness, and clarity of thought. It involves considering different viewpoints and weighing evidence carefully. It is essential for solving complex problems and making good decisions.

  20. Logic, Critical Thinking, and Philosophy

    Logic as a science and an art. Though Logic is fundamentally under Philosophy, it is also considered a science and an art. Logic is a science for it is a 'systematic study' of the standards of good reasoning. In formulating rules for correct thinking, for instance, Logic does not do it arbitrarily but deduces those rules from general ...

  21. How to Write a Critical Thinking Essay Guide with Examples

    Body Paragraphs. Each body paragraph in a critical thinking essay should focus on a single idea that supports the thesis. Start with a topic sentence that clearly states the main point of the paragraph. Follow this with evidence, which could include quotes, data, or examples from credible sources. Analyze this evidence critically, explaining ...

  22. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...

  23. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...

  24. Enhancing students' critical thinking and creative thinking: An

    Fostering students' critical thinking and creative thinking is an important aim in education. For example, art courses not only focus on artwork creation, but also on theoretical knowledge for identifying artworks. In the conventional lecture-based instruction mode for theoretical knowledge delivery, students' learning outcomes could be affected owing to the lack of student-teacher ...