Statology

Statistics Made Easy

How to Write Hypothesis Test Conclusions (With Examples)

A   hypothesis test is used to test whether or not some hypothesis about a population parameter is true.

To perform a hypothesis test in the real world, researchers obtain a random sample from the population and perform a hypothesis test on the sample data, using a null and alternative hypothesis:

  • Null Hypothesis (H 0 ): The sample data occurs purely from chance.
  • Alternative Hypothesis (H A ): The sample data is influenced by some non-random cause.

If the p-value of the hypothesis test is less than some significance level (e.g. Îą = .05), then we reject the null hypothesis .

Otherwise, if the p-value is not less than some significance level then we fail to reject the null hypothesis .

When writing the conclusion of a hypothesis test, we typically include:

  • Whether we reject or fail to reject the null hypothesis.
  • The significance level.
  • A short explanation in the context of the hypothesis test.

For example, we would write:

We reject the null hypothesis at the 5% significance level.   There is sufficient evidence to support the claim that…

Or, we would write:

We fail to reject the null hypothesis at the 5% significance level.   There is not sufficient evidence to support the claim that…

The following examples show how to write a hypothesis test conclusion in both scenarios.

Example 1: Reject the Null Hypothesis Conclusion

Suppose a biologist believes that a certain fertilizer will cause plants to grow more during a one-month period than they normally do, which is currently 20 inches. To test this, she applies the fertilizer to each of the plants in her laboratory for one month.

She then performs a hypothesis test at a 5% significance level using the following hypotheses:

  • H 0 : Îź = 20 inches (the fertilizer will have no effect on the mean plant growth)
  • H A : Îź > 20 inches (the fertilizer will cause mean plant growth to increase)

Suppose the p-value of the test turns out to be 0.002.

Here is how she would report the results of the hypothesis test:

We reject the null hypothesis at the 5% significance level.   There is sufficient evidence to support the claim that this particular fertilizer causes plants to grow more during a one-month period than they normally do.

Example 2: Fail to Reject the Null Hypothesis Conclusion

Suppose the manager of a manufacturing plant wants to test whether or not some new method changes the number of defective widgets produced per month, which is currently 250. To test this, he measures the mean number of defective widgets produced before and after using the new method for one month.

He performs a hypothesis test at a 10% significance level using the following hypotheses:

  • H 0 : Îź after = Îź before (the mean number of defective widgets is the same before and after using the new method)
  • H A : Îź after ≠ Îź before (the mean number of defective widgets produced is different before and after using the new method)

Suppose the p-value of the test turns out to be 0.27.

Here is how he would report the results of the hypothesis test:

We fail to reject the null hypothesis at the 10% significance level.   There is not sufficient evidence to support the claim that the new method leads to a change in the number of defective widgets produced per month.

Additional Resources

The following tutorials provide additional information about hypothesis testing:

Introduction to Hypothesis Testing 4 Examples of Hypothesis Testing in Real Life How to Write a Null Hypothesis

Featured Posts

7 Common Beginner Stats Mistakes and How to Avoid Them

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis and conclusion in statement

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis and conclusion in statement

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

science made simple logo

The Scientific Method by Science Made Simple

Understanding and using the scientific method.

The Scientific Method is a process used to design and perform experiments. It's important to minimize experimental errors and bias, and increase confidence in the accuracy of your results.

science experiment

In the previous sections, we talked about how to pick a good topic and specific question to investigate. Now we will discuss how to carry out your investigation.

Steps of the Scientific Method

  • Observation/Research
  • Experimentation

Now that you have settled on the question you want to ask, it's time to use the Scientific Method to design an experiment to answer that question.

If your experiment isn't designed well, you may not get the correct answer. You may not even get any definitive answer at all!

The Scientific Method is a logical and rational order of steps by which scientists come to conclusions about the world around them. The Scientific Method helps to organize thoughts and procedures so that scientists can be confident in the answers they find.

OBSERVATION is first step, so that you know how you want to go about your research.

HYPOTHESIS is the answer you think you'll find.

PREDICTION is your specific belief about the scientific idea: If my hypothesis is true, then I predict we will discover this.

EXPERIMENT is the tool that you invent to answer the question, and

CONCLUSION is the answer that the experiment gives.

Don't worry, it isn't that complicated. Let's take a closer look at each one of these steps. Then you can understand the tools scientists use for their science experiments, and use them for your own.

OBSERVATION

observation  magnifying glass

This step could also be called "research." It is the first stage in understanding the problem.

After you decide on topic, and narrow it down to a specific question, you will need to research everything that you can find about it. You can collect information from your own experiences, books, the internet, or even smaller "unofficial" experiments.

Let's continue the example of a science fair idea about tomatoes in the garden. You like to garden, and notice that some tomatoes are bigger than others and wonder why.

Because of this personal experience and an interest in the problem, you decide to learn more about what makes plants grow.

For this stage of the Scientific Method, it's important to use as many sources as you can find. The more information you have on your science fair topic, the better the design of your experiment is going to be, and the better your science fair project is going to be overall.

Also try to get information from your teachers or librarians, or professionals who know something about your science fair project. They can help to guide you to a solid experimental setup.

research science fair topic

The next stage of the Scientific Method is known as the "hypothesis." This word basically means "a possible solution to a problem, based on knowledge and research."

The hypothesis is a simple statement that defines what you think the outcome of your experiment will be.

All of the first stage of the Scientific Method -- the observation, or research stage -- is designed to help you express a problem in a single question ("Does the amount of sunlight in a garden affect tomato size?") and propose an answer to the question based on what you know. The experiment that you will design is done to test the hypothesis.

Using the example of the tomato experiment, here is an example of a hypothesis:

TOPIC: "Does the amount of sunlight a tomato plant receives affect the size of the tomatoes?"

HYPOTHESIS: "I believe that the more sunlight a tomato plant receives, the larger the tomatoes will grow.

This hypothesis is based on:

(1) Tomato plants need sunshine to make food through photosynthesis, and logically, more sun means more food, and;

(2) Through informal, exploratory observations of plants in a garden, those with more sunlight appear to grow bigger.

science fair project ideas

The hypothesis is your general statement of how you think the scientific phenomenon in question works.

Your prediction lets you get specific -- how will you demonstrate that your hypothesis is true? The experiment that you will design is done to test the prediction.

An important thing to remember during this stage of the scientific method is that once you develop a hypothesis and a prediction, you shouldn't change it, even if the results of your experiment show that you were wrong.

An incorrect prediction does NOT mean that you "failed." It just means that the experiment brought some new facts to light that maybe you hadn't thought about before.

Continuing our tomato plant example, a good prediction would be: Increasing the amount of sunlight tomato plants in my experiment receive will cause an increase in their size compared to identical plants that received the same care but less light.

This is the part of the scientific method that tests your hypothesis. An experiment is a tool that you design to find out if your ideas about your topic are right or wrong.

It is absolutely necessary to design a science fair experiment that will accurately test your hypothesis. The experiment is the most important part of the scientific method. It's the logical process that lets scientists learn about the world.

On the next page, we'll discuss the ways that you can go about designing a science fair experiment idea.

The final step in the scientific method is the conclusion. This is a summary of the experiment's results, and how those results match up to your hypothesis.

You have two options for your conclusions: based on your results, either:

(1) YOU CAN REJECT the hypothesis, or

(2) YOU CAN NOT REJECT the hypothesis.

This is an important point!

You can not PROVE the hypothesis with a single experiment, because there is a chance that you made an error somewhere along the way.

What you can say is that your results SUPPORT the original hypothesis.

If your original hypothesis didn't match up with the final results of your experiment, don't change the hypothesis.

Instead, try to explain what might have been wrong with your original hypothesis. What information were you missing when you made your prediction? What are the possible reasons the hypothesis and experimental results didn't match up?

Remember, a science fair experiment isn't a failure simply because does not agree with your hypothesis. No one will take points off if your prediction wasn't accurate. Many important scientific discoveries were made as a result of experiments gone wrong!

A science fair experiment is only a failure if its design is flawed. A flawed experiment is one that (1) doesn't keep its variables under control, and (2) doesn't sufficiently answer the question that you asked of it.

Search This Site:

Science Fairs

  • Introduction
  • Project Ideas
  • Types of Projects
  • Pick a Topic
  • Scientific Method
  • Design Your Experiment
  • Present Your Project
  • What Judges Want
  • Parent Info

Recommended *

  • Sample Science Projects - botany, ecology, microbiology, nutrition

scientific method book

* This site contains affiliate links to carefully chosen, high quality products. We may receive a commission for purchases made through these links.

  • Terms of Service

Copyright © 2006 - 2023, Science Made Simple, Inc. All Rights Reserved.

The science fair projects & ideas, science articles and all other material on this website are covered by copyright laws and may not be reproduced without permission.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

K12 LibreTexts

2.11: If Then Statements

  • Last updated
  • Save as PDF
  • Page ID 2144

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Hypothesis followed by a conclusion in a conditional statement.

Conditional Statements

A conditional statement (also called an if-then statement ) is a statement with a hypothesis followed by a conclusion . The hypothesis is the first, or “if,” part of a conditional statement. The conclusion is the second, or “then,” part of a conditional statement. The conclusion is the result of a hypothesis.

f-d_4db5d03aa180674c10187c8961dc571238102082156ee867771ecea3+IMAGE_TINY+IMAGE_TINY.png

If-then statements might not always be written in the “if-then” form. Here are some examples of conditional statements:

  • Statement 1: If you work overtime, then you’ll be paid time-and-a-half.
  • Statement 2: I’ll wash the car if the weather is nice.
  • Statement 3: If 2 divides evenly into \(x\), then \(x\) is an even number.
  • Statement 4: I’ll be a millionaire when I win the lottery.
  • Statement 5: All equiangular triangles are equilateral.

Statements 1 and 3 are written in the “if-then” form. The hypothesis of Statement 1 is “you work overtime.” The conclusion is “you’ll be paid time-and-a-half.” Statement 2 has the hypothesis after the conclusion. If the word “if” is in the middle of the statement, then the hypothesis is after it. The statement can be rewritten: If the weather is nice, then I will wash the car. Statement 4 uses the word “when” instead of “if” and is like Statement 2. It can be written: If I win the lottery, then I will be a millionaire. Statement 5 “if” and “then” are not there. It can be rewritten: If a triangle is equiangular, then it is equilateral.

What if you were given a statement like "All squares are rectangles"? How could you determine the hypothesis and conclusion of this statement?

Example \(\PageIndex{1}\)

Determine the hypothesis and conclusion: I'll bring an umbrella if it rains.

Hypothesis: "It rains." Conclusion: "I'll bring an umbrella."

Example \(\PageIndex{2}\)

Determine the hypothesis and conclusion: All right angles are \(90^{\circ}\).

Hypothesis: "An angle is right." Conclusion: "It is \(90^{\circ}\)."

Example \(\PageIndex{3}\)

Use the statement: I will graduate when I pass Calculus.

Rewrite in if-then form and determine the hypothesis and conclusion.

This statement can be rewritten as If I pass Calculus, then I will graduate. The hypothesis is “I pass Calculus,” and the conclusion is “I will graduate.”

Example \(\PageIndex{4}\)

Use the statement: All prime numbers are odd.

Rewrite in if-then form, determine the hypothesis and conclusion, and determine whether this is a true statement.

This statement can be rewritten as If a number is prime, then it is odd. The hypothesis is "a number is prime" and the conclusion is "it is odd". This is not a true statement (remember that not all conditional statements will be true!) since 2 is a prime number but it is not odd.

Example \(\PageIndex{5}\)

Determine the hypothesis and conclusion: Sarah will go to the store if Riley does the laundry.

The statement can be rewritten as "If Riley does the laundry then Sarah will go to the store." The hypothesis is "Riley does the laundry" and the conclusion is "Sarah will go to the store."

Determine the hypothesis and the conclusion for each statement.

  • If 5 divides evenly into \(x\), then \(x\) ends in 0 or 5.
  • If a triangle has three congruent sides, it is an equilateral triangle.
  • Three points are coplanar if they all lie in the same plane.
  • If \(x=3\), then \(x^2=9\).
  • If you take yoga, then you are relaxed.
  • All baseball players wear hats.
  • I'll learn how to drive when I am 16 years old.
  • If you do your homework, then you can watch TV.
  • Alternate interior angles are congruent if lines are parallel.
  • All kids like ice cream.

Additional Resources

Video: If-Then Statements Principles - Basic

Activities: If-Then Statements Discussion Questions

Study Aids: Conditional Statements Study Guide

Practice: If Then Statements

Real World: If Then Statements

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

3.3: Truth Tables- Conditional, Biconditional

  • Last updated
  • Save as PDF
  • Page ID 52962

  • David Lippman
  • Pierce College via The OpenTextBookStore

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Conditional

A conditional is a logical compound statement in which a statement \(p\), called the hypothesis, implies a statement \(q\), called the conclusion.

A conditional is written as \(p \rightarrow q\) and is translated as "if \(p\), then \(q\)".

The English statement “If it is raining, then there are clouds is the sky” is a conditional statement. It makes sense because if the hypothesis “it is raining” is true, then the conclusion “there are clouds in the sky” must also be true.

Notice that the statement tells us nothing of what to expect if it is not raining; there might be clouds in the sky, or there might not. If the hypothesis is false, then the conclusion becomes irrelevant.

Suppose you order a team jersey online on Tuesday and want to receive it by Friday so you can wear it to Saturday’s game. The website says that if you pay for expedited shipping, you will receive the jersey by Friday. In what situation is the website telling a lie?

There are four possible outcomes:

  • You pay for expedited shipping and receive the jersey by Friday
  • You pay for expedited shipping and don’t receive the jersey by Friday
  • You don’t pay for expedited shipping and receive the jersey by Friday
  • You don’t pay for expedited shipping and don’t receive the jersey by Friday

Only one of these outcomes proves that the website was lying: the second outcome in which you pay for expedited shipping but don’t receive the jersey by Friday. The first outcome is exactly what was promised, so there’s no problem with that. The third outcome is not a lie because the website never said what would happen if you didn’t pay for expedited shipping; maybe the jersey would arrive by Friday whether you paid for expedited shipping or not. The fourth outcome is not a lie because, again, the website didn’t make any promises about when the jersey would arrive if you didn’t pay for expedited shipping.

It may seem strange that the third outcome in the previous example, in which the first part is false but the second part is true, is not a lie. Remember, though, that if the hypothesis is false, we cannot make any judgment about the conclusion. The website never said that paying for expedited shipping was the only way to receive the jersey by Friday.

A friend tells you “If you upload that picture to Facebook, you’ll lose your job.” Under what conditions can you say that your friend was wrong?

  • You upload the picture and lose your job
  • You upload the picture and don’t lose your job
  • You don’t upload the picture and lose your job
  • You don’t upload the picture and don’t lose your job

There is only one possible case in which you can say your friend was wrong: the second outcome in which you upload the picture but still keep your job. In the last two cases, your friend didn’t say anything about what would happen if you didn’t upload the picture, so you can’t say that their statement was wrong. Even if you didn’t upload the picture and lost your job anyway, your friend never said that you were guaranteed to keep your job if you didn’t upload the picture; you might lose your job for missing a shift or punching your boss instead.

Truth Table for the Conditional

\(\begin{array}{|c|c|c|} \hline p & q & p \rightarrow q \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Again, if the hypothesis \(p\) is false, we cannot prove that the statement is a lie, so the result of the third and fourth rows is true.

Construct a truth table for the statement \((m \wedge \sim p) \rightarrow r\)

We start by constructing a truth table with 8 rows to cover all possible scenarios. Next, we can focus on the hypothesis, \(m \wedge \sim p\).

\(\begin{array}{|c|c|c|} \hline m & p & r \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline m & p & r & \sim p \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|c|} \hline m & p & r & \sim p & m \wedge \sim p \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \end{array}\)

Now we can create a column for the conditional. Because it can be confusing to keep track of all the Ts and \(\mathrm{Fs}\), why don't we copy the column for \(r\) to the right of the column for \(m \wedge \sim p\) ? This makes it a lot easier to read the conditional from left to right.

\(\begin{array}{|c|c|c|c|c|c|c|} \hline m & p & r & \sim p & m \wedge \sim p & r & (m \wedge \sim p) \rightarrow r \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

When \(m\) is true, \(p\) is false, and \(r\) is false- -the fourth row of the table-then the hypothesis \(m \wedge \sim p\) will be true but the conclusion false, resulting in an invalid conditional; every other case gives a valid conditional.

If you want a real-life situation that could be modeled by \((m \wedge \sim p) \rightarrow r\), consider this: let \(m=\) we order meatballs, \(p=\) we order pasta, and \(r=\) Rob is happy. The statement \((m \wedge \sim p) \rightarrow r\) is "if we order meatballs and don't order pasta, then Rob is happy". If \(m\) is true (we order meatballs), \(p\) is false (we don't order pasta), and \(r\) is false (Rob is not happy), then the statement is false, because we satisfied the hypothesis but Rob did not satisfy the conclusion.

For any conditional, there are three related statements, the converse, the inverse, and the contrapositive.

Derived Forms of a Conditional

The original conditional is \(\quad\) "if \(p,\) then \(q^{\prime \prime} \quad p \rightarrow q\)

The converse is \(\quad\) "if \(q,\) then \(p^{\prime \prime} \quad q \rightarrow p\)

The inverse is \(\quad\) "if not \(p,\) then not \(q^{\prime \prime} \quad \sim p \rightarrow \sim q\)

The contrapositive is "if not \(q,\) then not \(p^{\prime \prime} \quad \sim q \rightarrow \sim p\)

Consider again the conditional “If it is raining, then there are clouds in the sky.” It seems reasonable to assume that this is true.

The converse would be “If there are clouds in the sky, then it is raining.” This is not always true.

The inverse would be “If it is not raining, then there are not clouds in the sky.” Likewise, this is not always true.

The contrapositive would be “If there are not clouds in the sky, then it is not raining.” This statement is true, and is equivalent to the original conditional.

Looking at truth tables, we can see that the original conditional and the contrapositive are logically equivalent, and that the converse and inverse are logically equivalent.

clipboard_e4fc512ef5eaeb010f3e7328168fcef19.png

Equivalence

A conditional statement and its contrapositive are logically equivalent.

The converse and inverse of a conditional statement are logically equivalent.

In other words, the original statement and the contrapositive must agree with each other; they must both be true, or they must both be false. Similarly, the converse and the inverse must agree with each other; they must both be true, or they must both be false.

We typically represent the conditional using the words, "if ..., then ...," but there are other ways this logical connective can be represented in English. Consider the conditional from Example 5: "If it is raining, then there are clouds in the sky." We could equivalently write, "It is raining only if there are clouds in the sky." You can probably imagine how these two statements are saying the same thing - whenever it's raining outside, it is a safe conclusion there are clouds in the sky as well. Some other wordings that communicate the same information use either "sufficient" or "necessary." For example, "Raining is a sufficient condition for it to be cloudy," and "Being cloudy is a necessary condition for it to be raining." Here is a table summarizing the different wordings.

Different Wordings of the Conditional

The following statements are equivalent:

  • If \(p\), then \(q\).
  • \(q\) only if \(p\).
  • \(p\) is sufficient for \(q\).
  • \(q\) is necessary for \(p\).

In everyday life, we often have a stronger meaning in mind when we use a conditional statement. Consider “If you submit your hours today, then you will be paid next Friday.” What the payroll rep really means is “If you submit your hours today, then you will be paid next Friday, and if you don’t submit your hours today, then you won’t be paid next Friday.” The conditional statement if t , then p also includes the inverse of the statement: if not t , then not p . A more compact way to express this statement is “You will be paid next Friday if and only if you submit your timesheet today.” A statement of this form is called a biconditional .

Biconditional

A biconditional is a logical conditional statement in which the hypothesis and conclusion are interchangeable.

A biconditional is written as \(p \leftrightarrow q\) and is translated as " \(p\) if and only if \(q^{\prime \prime}\).

Because a biconditional statement \(p \leftrightarrow q\) is equivalent to \((p \rightarrow q) \wedge(q \rightarrow p),\) we may think of it as a conditional statement combined with its converse: if \(p\), then \(q\) and if \(q\), then \(p\). The double-headed arrow shows that the conditional statement goes from left to right and from right to left. A biconditional is considered true as long as the hypothesis and the conclusion have the same truth value; that is, they are either both true or both false.

Truth Table for the Biconditional

\(\begin{array}{|c|c|c|} \hline p & q & p \leftrightarrow q \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Notice that the fourth row, where both components are false, is true; if you don’t submit your timesheet and you don’t get paid, the person from payroll told you the truth.

Suppose this statement is true: “The garbage truck comes down my street if and only if it is Thursday morning.” Which of the following statements could be true?

  • It is noon on Thursday and the garbage truck did not come down my street this morning.
  • It is Monday and the garbage truck is coming down my street.
  • It is Wednesday at 11:59PM and the garbage truck did not come down my street today.
  • This cannot be true. This is like the second row of the truth table; it is true that I just experienced Thursday morning, but it is false that the garbage truck came.
  • This cannot be true. This is like the third row of the truth table; it is false that it is Thursday, but it is true that the garbage truck came.
  • This could be true. This is like the fourth row of the truth table; it is false that it is Thursday, but it is also false that the garbage truck came, so everything worked out like it should.

Try it Now 1

Suppose this statement is true: “I wear my running shoes if and only if I am exercising.” Determine whether each of the following statements must be true or false.

  • I am exercising and I am not wearing my running shoes.
  • I am wearing my running shoes and I am not exercising.
  • I am not exercising and I am not wearing my running shoes.

Choices a & b are false; c is true.

Create a truth table for the statement \((A \vee B) \leftrightarrow \sim C\)

Whenever we have three component statements, we start by listing all the possible truth value combinations for \(A, B,\) and \(C .\) After creating those three columns, we can create a fourth column for the hypothesis, \(A \vee B\). Now we will temporarily ignore the column for \(C\) and focus on \(A\) and \(B\), writing the truth values for \(A \vee B\).

\(\begin{array}{|c|c|c|} \hline A & B & C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline A & B & C & A \vee B \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

Next we can create a column for the negation of \(C\). (Ignore the \(A \vee B\) column and simply negate the values in the \(C\) column.)

\(\begin{array}{|c|c|c|c|c|} \hline A & B & C & A \vee B & \sim C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Finally, we find the truth values of \((A \vee B) \leftrightarrow \sim C\). Remember, a biconditional is true when the truth value of the two parts match, but it is false when the truth values do not match.

\(\begin{array}{|c|c|c|c|c|c|} \hline A & B & C & A \vee B & \sim C & (A \vee B) \leftrightarrow \sim C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \end{array}\)

To illustrate this situation, suppose your boss needs you to do either project \(A\) or project \(B\) (or both, if you have the time). If you do one of the projects, you will not get a crummy review ( \(C\) is for crummy). So \((A \vee B) \leftrightarrow \sim C\) means "You will not get a crummy review if and only if you do project \(A\) or project \(B\)." Looking at a few of the rows of the truth table, we can see how this works out. In the first row, \(A, B,\) and \(C\) are all true: you did both projects and got a crummy review, which is not what your boss told you would happen! That is why the final result of the first row is false. In the fourth row, \(A\) is true, \(B\) is false, and \(C\) is false: you did project \(A\) and did not get a crummy review. This is what your boss said would happen, so the final result of this row is true. And in the eighth row, \(A, B\), and \(C\) are all false: you didn't do either project and did not get a crummy review. This is not what your boss said would happen, so the final result of this row is false. (Even though you may be happy that your boss didn't follow through on the threat, the truth table shows that your boss lied about what would happen.)

hypothesis and conclusion in statement

SplashLearn Logo

Conditional Statement – Definition, Truth Table, Examples, FAQs

What is a conditional statement, how to write a conditional statement, what is a biconditional statement, solved examples on conditional statements, practice problems on conditional statements, frequently asked questions about conditional statements.

A conditional statement is a statement that is written in the “If p, then q” format. Here, the statement p is called the hypothesis and q is called the conclusion. It is a fundamental concept in logic and mathematics. 

Conditional statement symbol :  p → q

A conditional statement consists of two parts.

  • The “if” clause, which presents a condition or hypothesis.
  • The “then” clause, which indicates the consequence or result that follows if the condition is true. 

Example : If you brush your teeth, then you won’t get cavities.

Hypothesis (Condition): If you brush your teeth

Conclusion (Consequence): then you won’t get cavities 

Conditional statement

Conditional Statement: Definition

A conditional statement is characterized by the presence of “if” as an antecedent and “then” as a consequent. A conditional statement, also known as an “if-then” statement consists of two parts:

  • The “if” clause (hypothesis): This part presents a condition, situation, or assertion. It is the initial condition that is being considered.
  • The “then” clause (conclusion): This part indicates the consequence, result, or action that will occur if the condition presented in the “if” clause is true or satisfied. 

Related Worksheets

Complete the Statements Using Addition Sentence Worksheet

Representation of Conditional Statement

The conditional statement of the form ‘If p, then q” is represented as p → q. 

It is pronounced as “p implies q.”

Different ways to express a conditional statement are:

  • p implies q
  • p is sufficient for q
  • q is necessary for p

Parts of a Conditional Statement

There are two parts of conditional statements, hypothesis and conclusion. The hypothesis or condition will begin with the “if” part, and the conclusion or action will begin with the “then” part. A conditional statement is also called “implication.”

Conditional Statements Examples:

Example 1: If it is Sunday, then you can go to play. 

Hypothesis: If it is Sunday

Conclusion: then you can go to play. 

Example 2: If you eat all vegetables, then you can have the dessert.

Condition: If you eat all vegetables

Conclusion: then you can have the dessert 

To form a conditional statement, follow these concise steps:

Step 1 : Identify the condition (antecedent or “if” part) and the consequence (consequent or “then” part) of the statement.

Step 2 : Use the “if… then…” structure to connect the condition and consequence.

Step 3 : Ensure the statement expresses a logical relationship where the condition leads to the consequence.

Example 1 : “If you study (condition), then you will pass the exam (consequence).” 

This conditional statement asserts that studying leads to passing the exam. If you study (condition is true), then you will pass the exam (consequence is also true).

Example 2 : If you arrange the numbers from smallest to largest, then you will have an ascending order.

Hypothesis: If you arrange the numbers from smallest to largest

Conclusion: then you will have an ascending order

Truth Table for Conditional Statement

The truth table for a conditional statement is a table used in logic to explore the relationship between the truth values of two statements. It lists all possible combinations of truth values for “p” and “q” and determines whether the conditional statement is true or false for each combination. 

The truth value of p → q is false only when p is true and q is False. 

If the condition is false, the consequence doesn’t affect the truth of the conditional; it’s always true.

In all the other cases, it is true.

The truth table is helpful in the analysis of possible combinations of truth values for hypothesis or condition and conclusion or action. It is useful to understand the presence of truth or false statements. 

Converse, Inverse, and Contrapositive

The converse, inverse, and contrapositive are three related conditional statements that are derived from an original conditional statement “p → q.” 

Consider a conditional statement: If I run, then I feel great.

  • Converse: 

The converse of “p → q” is “q → p.” It reverses the order of the original statement. While the original statement says “if p, then q,” the converse says “if q, then p.” 

Converse: If I feel great, then I run.

  • Inverse: 

The inverse of “p → q” is “~p → ~q,” where “” denotes negation (opposite). It negates both the antecedent (p) and the consequent (q). So, if the original statement says “if p, then q,” the inverse says “if not p, then not q.”

Inverse : If I don’t run, then I don’t feel great.

  • Contrapositive: 

The contrapositive of “p → q” is “~q → ~p.” It reverses the order and also negates both the statements. So, if the original statement says “if p, then q,” the contrapositive says “if not q, then not p.”

Contrapositive: If I don’t feel great, then I don’t run.

A biconditional statement is a type of compound statement in logic that expresses a bidirectional or two-way relationship between two statements. It asserts that “p” is true if and only if “q” is true, and vice versa. In symbolic notation, a biconditional statement is represented as “p ⟺ q.”

In simpler terms, a biconditional statement means that the truth of “p” and “q” are interdependent. 

If “p” is true, then “q” must also be true, and if “q” is true, then “p” must be true. Conversely, if “p” is false, then “q” must be false, and if “q” is false, then “p” must be false. 

Biconditional statements are often used to express equality, equivalence, or conditions where two statements are mutually dependent for their truth values. 

Examples : 

  • I will stop my bike if and only if the traffic light is red.  
  • I will stay if and only if you play my favorite song.

Facts about Conditional Statements

  • The negation of a conditional statement “p → q” is expressed as “p and not q.” It is denoted as “𝑝 ∧ ∼𝑞.” 
  • The conditional statement is not logically equivalent to its converse and inverse.
  • The conditional statement is logically equivalent to its contrapositive. 
  • Thus, we can write p → q ∼q → ∼p

In this article, we learned about the fundamentals of conditional statements in mathematical logic, including their structure, parts, truth tables, conditional logic examples, and various related concepts. Understanding conditional statements is key to logical reasoning and problem-solving. Now, let’s solve a few examples and practice MCQs for better comprehension.

Example 1: Identify the hypothesis and conclusion. 

If you sing, then I will dance.

Solution : 

Given statement: If you sing, then I will dance.

Here, the antecedent or the hypothesis is “if you sing.”

The conclusion is “then I will dance.”

Example 2: State the converse of the statement: “If the switch is off, then the machine won’t work.” 

Here, p: The switch is off

q: The machine won’t work.

The conditional statement can be denoted as p → q.

Converse of p → q is written by reversing the order of p and q in the original statement.

Converse of  p → q is q → p.

Converse of  p → q: q → p: If the machine won’t work, then the switch is off.

Example 3: What is the truth value of the given conditional statement? 

If 2+2=5 , then pigs can fly.

Solution:  

q: Pigs can fly.

The statement p is false. Now regardless of the truth value of statement q, the overall statement will be true. 

F → F = T

Hence, the truth value of the statement is true. 

Conditional Statement - Definition, Truth Table, Examples, FAQs

Attend this quiz & Test your knowledge.

What is the antecedent in the given conditional statement? If it’s sunny, then I’ll go to the beach.

A conditional statement can be expressed as, what is the converse of “a → b”, when the antecedent is true and the consequent is false, the conditional statement is.

What is the meaning of conditional statements?

Conditional statements, also known as “if-then” statements, express a cause-and-effect or logical relationship between two propositions.

When does the truth value of a conditional statement is F?

A conditional statement is considered false when the antecedent is true and the consequent is false.

What is the contrapositive of a conditional statement?

The contrapositive reverses the order of the statements and also negates both the statements. It is equivalent in truth value to the original statement.

RELATED POSTS

  • Ordering Decimals: Definition, Types, Examples
  • Decimal to Octal: Steps, Methods, Conversion Table
  • Lattice Multiplication – Definition, Method, Examples, Facts, FAQs
  • X Intercept – Definition, Formula, Graph, Examples
  • Lateral Face – Definition With Examples

Banner Image

Math & ELA | PreK To Grade 5

Kids see fun., you see real learning outcomes..

Make study-time fun with 14,000+ games & activities, 450+ lesson plans, and more—free forever.

Parents, Try for Free Teachers, Use for Free

Conditional Statement

A conditional statement is a part of mathematical reasoning which is a critical skill that enables students to analyze a given hypothesis without any reference to a particular context or meaning. In layman words, when a scientific inquiry or statement is examined, the reasoning is not based on an individual's opinion. Derivations and proofs need a factual and scientific basis. 

Mathematical critical thinking and logical reasoning are important skills that are required to solve maths reasoning questions.

If and Then  conditional image

In this mini-lesson, we will explore the world of conditional statements. We will walk through the answers to the questions like what is meant by a conditional statement, what are the parts of a conditional statement, and how to create conditional statements along with solved examples and interactive questions.

Lesson Plan  

What is meant by a conditional statement.

A statement that is of the form "If p, then q" is a conditional statement. Here 'p' refers to 'hypothesis' and 'q' refers to 'conclusion'.

For example, "If Cliff is thirsty, then she drinks water."

conditional statement

This is a conditional statement. It is also called an implication.

'\(\rightarrow\)' is the symbol used to represent the relation between two statements. For example, A\(\rightarrow\)B. It is known as the logical connector. It can be read as A implies B. 

Here are two more conditional statement examples

Example 1: If a number is divisible by 4, then it is divisible by 2.

Example 2: If today is Monday, then yesterday was Sunday.

What Are the Parts of a Conditional Statement?

Hypothesis (if) and Conclusion (then) are the two main parts that form a conditional statement.

Let us consider the above-stated example to understand the parts of a conditional statement.

Conditional Statement : If today is Monday, then yesterday was Sunday.

Hypothesis : "If today is Monday."

Conclusion : "Then yesterday was Sunday."

On interchanging the form of statement the relationship gets changed.

To check whether the statement is true or false here, we have subsequent parts of a conditional statement. They are:

  • Contrapositive

Biconditional Statement

Let us consider hypothesis as statement A and Conclusion as statement B.

Following are the observations made:

Conditions of conditional statement

Converse of Statement

When hypothesis and conclusion are switched or interchanged, it is termed as converse statement . For example,

Conditional Statement : “If today is Monday, then yesterday was Sunday.”

Hypothesis : “If today is Monday”

Converse : “If yesterday was Sunday, then today is Monday.”

Here the conditional statement logic is, If B, then A (B → A)

Inverse of Statement

When both the hypothesis and conclusion of the conditional statement are negative, it is termed as an inverse of the statement. For example,

Conditional Statement: “If today is Monday, then yesterday was Sunday”.

Inverse : “If today is not Monday, then yesterday was not Sunday.”

Here the conditional statement logic is, If not A, then not B (~A → ~B)

Contrapositive Statement

When the hypothesis and conclusion are negative and simultaneously interchanged, then the statement is contrapositive. For example,

Contrapositive: “If yesterday was not Sunday, then today is not Monday”

Here the conditional statement logic is, if not B, then not A (~B → ~A)

The statement is a biconditional statement when a statement satisfies both the conditions as true, being conditional and converse at the same time. For example,

Biconditional : “Today is Monday if and only if yesterday was Sunday.”

Here the conditional statement logic is, A if and only if B (A ↔ B)

How to Create Conditional Statements?

Here, the point to be kept in mind is that the 'If' and 'then' part must be true.

If a number is a perfect square , then it is even.

  • 'If' part is a number that is a perfect square.

Think of 4 which is a perfect square.

This has become true.

  • The 'then' part is that the number should be even. 4 is even.

This has also become true. 

Thus, we have set up a conditional statement.

Let us hypothetically consider two statements, statement A and statement B. Observe the truth table for the statements:

According to the table, only if the hypothesis (A) is true and the conclusion (B) is false then, A → B will be false, or else A → B will be true for all other conditions.

tips and tricks

  • A sentence needs to be either true or false, but not both, to be considered as a mathematically accepted statement.
  • Any sentence which is either imperative or interrogative or exclamatory cannot be considered a mathematically validated statement. 
  • A sentence containing one or many variables is termed as an open statement. An open statement can become a statement if the variables present in the sentence are replaced by definite values.

Solved Examples

Let us have a look at a few solved examples on conditional statements.

Identify the types of conditional statements.

There are four types of conditional statements:

  • If condition
  • If-else condition
  • Nested if-else
  • If-else ladder.

Ray tells "If the perimeter of a rectangle is 14, then its area is 10."

Which of the following could be the counterexamples? Justify your decision.

a) A rectangle with sides measuring 2 and 5

b) A rectangle with sides measuring 10 and 1

c) A rectangle with sides measuring 1 and 5

d) A rectangle with sides measuring 4 and 3

a) Rectangle with sides 2 and 5: Perimeter = 14 and area = 10

Both 'if' and 'then' are true.

b) Rectangle with sides 10 and 1: Perimeter = 22 and area = 10

'If' is false and 'then' is true.

c) Rectangle with sides 1 and 5: Perimeter = 12 and area = 5

Both 'if' and 'then' are false.

d) Rectangle with sides 4 and 3: Perimeter = 14 and area = 12

'If' is true and 'then' is false.

Joe examined the set of numbers {16, 27, 24} to check if they are the multiples of 3. He claimed that they are divisible by 9. Do you agree or disagree? Justify your answer.

Conditional statement : If a number is a multiple of 3, then it is divisible by 9.

Let us find whether the conditions are true or false.

a) 16 is not a multiple of 3. Thus, the condition is false. 

16 is not divisible by 9. Thus, the conclusion is false. 

b) 27 is a multiple of 3. Thus, the condition is true.

27 is divisible by 9. Thus, the conclusion is true. 

c) 24 is a multiple of 3. Thus the condition is true.

24 is not divisible by 9. Thus the conclusion is false.

Write the converse, inverse, and contrapositive statement for the following conditional statement. 

If you study well, then you will pass the exam.

The given statement is - If you study well, then you will pass the exam.

It is of the form, "If p, then q"

The converse statement is, "You will pass the exam if you study well" (if q, then p).

The inverse statement is, "If you do not study well then you will not pass the exam" (if not p, then not q).

The contrapositive statement is, "If you did not pass the exam, then you did not study well" (if not q, then not p).

Interactive Questions

Here are a few activities for you to practice. Select/Type your answer and click the "Check Answer" button to see the result.

Challenge your math skills

Let's Summarize

The mini-lesson targeted the fascinating concept of the conditional statement. The math journey around conditional statements started with what a student already knew and went on to creatively crafting a fresh concept in the young minds. Done in a way that not only it is relatable and easy to grasp, but also will stay with them forever.

About Cuemath

At  Cuemath , our team of math experts is dedicated to making learning fun for our favorite readers, the students!

Through an interactive and engaging learning-teaching-learning approach, the teachers explore all angles of a topic.

Be it worksheets, online classes, doubt sessions, or any other form of relation, it’s the logical thinking and smart learning approach that we, at Cuemath, believe in.

FAQs on Conditional Statement

1. what is the most common conditional statement.

'If and then' is the most commonly used conditional statement.

2. When do you use a conditional statement?

Conditional statements are used to justify the given condition or two statements as true or false.

3. What is if and if-else statement?

If is used when a specified condition is true. If-else is used when a particular specified condition is not satisfying and is false.

4. What is the symbol for a conditional statement?

'\(\rightarrow\)' is the symbol used to represent the relation between two statements. For example, A\(\rightarrow\)B. It is known as the logical connector. It can be read as A implies B.

5. What is the Contrapositive of a conditional statement?

If not B, then not A (~B → ~A)

6. What is a universal conditional statement?

Conditional statements are those statements where a hypothesis is followed by a conclusion. It is also known as an " If-then" statement. If the hypothesis is true and the conclusion is false, then the conditional statement is false. Likewise, if the hypothesis is false the whole statement is false. Conditional statements are also termed as implications.

Conditional Statement: If today is Monday, then yesterday was Sunday

Hypothesis: "If today is Monday."

Conclusion: "Then yesterday was Sunday."

If A, then B (A → B)

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school

senioritis

Understanding the Role of Hypotheses and Conclusions in Mathematical Reasoning

Hypothesis and conclusion.

In the context of mathematics and logic, a hypothesis is a statement or proposition that is assumed to be true for the purpose of a logical argument or investigation. It is usually denoted by “H” or “P” and is the starting point for many mathematical proofs.

For example, let’s consider the hypothesis: “If it is raining outside, then the ground is wet.” This statement assumes that whenever it rains, the ground will be wet.

The conclusion, on the other hand, is the statement or proposition that is inferred or reached by logical reasoning, based on the hypothesis or given information. It is typically denoted by “C” or “Q”.

Using the same example, the conclusion derived from the hypothesis could be: “It is currently raining outside, so the ground is wet.” This conclusion is based on the assumption that the given condition of rain implies a wet ground.

In mathematics, hypotheses and conclusions are commonly used in proofs and logical arguments. By stating a hypothesis and then deducing a conclusion from it, mathematicians can demonstrate the validity of certain mathematical concepts, theorems, or formulas.

It’s important to note that in mathematics, a hypothesis is not the same as a guess or a prediction. It is a statement that is assumed to be true and serves as the basis for logical reasoning, while the conclusion is the logical consequence or outcome that is drawn from the hypothesis.

More Answers:

Recent posts, ramses ii a prominent pharaoh and legacy of ancient egypt.

Ramses II (c. 1279–1213 BCE) Ramses II, also known as Ramses the Great, was one of the most prominent and powerful pharaohs of ancient Egypt.

Formula for cyclic adenosine monophosphate & Its Significance

Is the formula of cyclic adenosine monophosphate (cAMP) $ce{C_{10}H_{11}N_{5}O_{6}P}$ or $ce{C_{10}H_{12}N_{5}O_{6}P}$? Does it matter? The correct formula for cyclic adenosine monophosphate (cAMP) is $ce{C_{10}H_{11}N_{5}O_{6}P}$. The

Development of a Turtle Inside its Egg

How does a turtle develop inside its egg? The development of a turtle inside its egg is a fascinating process that involves several stages and

The Essential Molecule in Photosynthesis for Energy and Biomass

Why does photosynthesis specifically produce glucose? Photosynthesis is the biological process by which plants, algae, and some bacteria convert sunlight, carbon dioxide (CO2), and water

How the Human Body Recycles its Energy Currency

Source for “The human body recycles its body weight of ATP each day”? The statement that “the human body recycles its body weight of ATP

Don't Miss Out! Sign Up Now!

Sign up now to get started for free!

Calcworkshop

Conditional Statement If Then's Defined in Geometry - 15+ Examples!

// Last Updated: January 21, 2020 - Watch Video //

In today’s geometry lesson , you’re going to learn all about conditional statements!

Jenn (B.S., M.Ed.) of CalcworkshopÂŽ introducing conditional statements

Jenn, Founder Calcworkshop ® , 15+ Years Experience (Licensed & Certified Teacher)

We’re going to walk through several examples to ensure you know what you’re doing.

In addition, this lesson will prepare you for deductive reasoning and two column proofs later on.

Here we go!

What are Conditional Statements?

To better understand deductive reasoning, we must first learn about conditional statements.

A conditional statement has two parts: hypothesis ( if ) and conclusion ( then ).

In fact, conditional statements are nothing more than “If-Then” statements!

Sometimes a picture helps form our hypothesis or conclusion. Therefore, we sometimes use Venn Diagrams to visually represent our findings and aid us in creating conditional statements.

But to verify statements are correct, we take a deeper look at our if-then statements. This is why we form the converse , inverse , and contrapositive of our conditional statements.

What is the Converse of a Statement?

Well, the converse is when we switch or interchange our hypothesis and conclusion.

Conditional Statement : “If today is Wednesday, then yesterday was Tuesday.”

Hypothesis : “If today is Wednesday” so our conclusion must follow “Then yesterday was Tuesday.”

So the converse is found by rearranging the hypothesis and conclusion, as Math Planet accurately states.

Converse : “If yesterday was Tuesday, then today is Wednesday.”

What is the Inverse of a Statement?

Now the inverse of an If-Then statement is found by negating (making negative) both the hypothesis and conclusion of the conditional statement.

So using our current conditional statement, “If today is Wednesday, then yesterday was Tuesday”.

Inverse : “If today is not Wednesday, then yesterday was not Tuesday.”

What is a Contrapositive?

And the contrapositive is formed by interchanging the hypothesis and conclusion and then negating both.

Contrapositive : “If yesterday was not Tuesday, then today is not Wednesday”

What is a Biconditional Statement?

A statement written in “if and only if” form combines a reversible statement and its true converse. In other words the conditional statement and converse are both true.

Continuing with our initial condition, “If today is Wednesday, then yesterday was Tuesday.”

Biconditional : “Today is Wednesday if and only if yesterday was Tuesday.”

examples of conditional statements

Examples of Conditional Statements

In the video below we will look at several harder examples of how to form a proper statement, converse, inverse, and contrapositive. And here’s a big hint…

Whenever you see “con” that means you switch! It’s like being a con-artist!

Moreover, we will detail the process for coming up with reasons for our conclusions using known postulates. We will review the ten postulates that we have learned so far, and add a few more problems dealing with perpendicular lines, planes, and perpendicular bisectors.

After this lesson, we will be ready to tackle deductive reasoning head-on, and feel confident as we march onward toward learning two-column proofs!

Conditional Statements – Lesson & Examples (Video)

  • Introduction to conditional statements
  • 00:00:25 – What are conditional statements, converses, and biconditional statements? (Examples #1-2)
  • 00:05:21 – Understanding venn diagrams (Examples #3-4)
  • 00:11:07 – Supply the missing venn diagram and conditional statement for each question (Examples #5-8)
  • Exclusive Content for Member’s Only
  • 00:17:48 – Write the statement and converse then determine if they are reversible (Examples #9-12)
  • 00:29:17 – Understanding the inverse, contrapositive, and symbol notation
  • 00:35:33 – Write the statement, converse, inverse, contrapositive, and biconditional statements for each question (Examples #13-14)
  • 00:45:40 – Using geometry postulates to verify statements (Example #15)
  • 00:53:23 – What are perpendicular lines, perpendicular planes and the perpendicular bisector?
  • 00:56:26 – Using the figure, determine if the statement is true or false (Example #16)
  • Practice Problems with Step-by-Step Solutions
  • Chapter Tests with Video Solutions

Get access to all the courses and over 450 HD videos with your subscription

Monthly and Yearly Plans Available

Get My Subscription Now

Still wondering if CalcWorkshop is right for you? Take a Tour and find out how a membership can take the struggle out of learning math.

5 Star Excellence award from Shopper Approved for collecting at least 100 5 star reviews

A free service from Mattecentrum

If-then statement

  • Logical correct I
  • Logical correct II

When we previously discussed inductive reasoning we based our reasoning on examples and on data from earlier events. If we instead use facts, rules and definitions then it's called deductive reasoning.

We will explain this by using an example.

If you get good grades then you will get into a good college.

The part after the "if": you get good grades - is called a hypotheses and the part after the "then" - you will get into a good college - is called a conclusion.

Hypotheses followed by a conclusion is called an If-then statement or a conditional statement.

This is noted as

$$p \to q$$

This is read - if p then q.

A conditional statement is false if hypothesis is true and the conclusion is false. The example above would be false if it said "if you get good grades then you will not get into a good college".

If we re-arrange a conditional statement or change parts of it then we have what is called a related conditional.

Our conditional statement is: if a population consists of 50% men then 50% of the population must be women.

If we exchange the position of the hypothesis and the conclusion we get a converse statemen t: if a population consists of 50% women then 50% of the population must be men.

$$q\rightarrow p$$

If both statements are true or if both statements are false then the converse is true. A conditional and its converse do not mean the same thing

If we negate both the hypothesis and the conclusion we get a inverse statemen t: if a population do not consist of 50% men then the population do not consist of 50% women.

$$\sim p\rightarrow \: \sim q$$

The inverse is not true juest because the conditional is true. The inverse always has the same truth value as the converse.

We could also negate a converse statement, this is called a contrapositive statemen t:  if a population do not consist of 50% women then the population do not consist of 50% men.

$$\sim q\rightarrow \: \sim p$$

The contrapositive does always have the same truth value as the conditional. If the conditional is true then the contrapositive is true.

A pattern of reaoning is a true assumption if it always lead to a true conclusion. The most common patterns of reasoning are detachment and syllogism.

If we turn of the water in the shower, then the water will stop pouring.

If we call the first part p and the second part q then we know that p results in q. This means that if p is true then q will also be true. This is called the law of detachment and is noted:

$$\left [ (p \to q)\wedge p \right ] \to q$$

The law of syllogism tells us that if p → q and q → r then p → r is also true.

This is noted:

$$\left [ (p \to q)\wedge (q \to r ) \right ] \to (p \to r)$$

If the following statements are true:

If we turn of the water (p), then the water will stop pouring (q). If the water stops pouring (q) then we don't get wet any more (r).

Then the law of syllogism tells us that if we turn of the water (p) then we don't get wet (r) must be true.

Video lesson

Write a converse, inverse and contrapositive to the conditional

"If you eat a whole pint of ice cream, then you won't be hungry"

  • Angles, parallel lines and transversals
  • Congruent triangles
  • More about triangles
  • Inequalities
  • Mean and geometry
  • The converse of the Pythagorean theorem and special triangles
  • Properties of parallelograms
  • Common types of transformation
  • Transformation using matrices
  • Basic information about circles
  • Inscribed angles and polygons
  • Advanced information about circles
  • Parallelogram, triangles etc
  • The surface area and the volume of pyramids, prisms, cylinders and cones
  • SAT Overview
  • ACT Overview

What is an income statement?

  • Key components of an income statement 
  • Why they matter
  • How to read an income statement 

What is an Income Statement?

Paid non-client promotion: Affiliate links for the products on this page are from partners that compensate us (see our advertiser disclosure with our list of partners for more details). However, our opinions are our own. See how we rate investing products to write unbiased product reviews.

  • An income statement is a financial document that details the revenue and expenses of a company.
  • Some investors and analysts use income statements to make investing decisions.  
  • The income statement, along with additional financial documents, is required to be filed with the Securities and Exchange Commission (SEC).

An income statement is one of three major financial statements used to evaluate the health of a company, along with the balance sheet and cash flow statement . There are several terms you'll need to understand in order to know how to read an income statement. 

An income statement is a financial statement that outlines a company's gains, losses, revenue, and expenses during a specific period. 

Also called a Profit and Loss (P&L) Statement or a statement of revenue and expense, the income statement is one of three major documents, along with the cash flow statement and the balance sheet , that provide information on a company's financial results during a specified time frame. 

Key components of an income statement  

There are several key components of an income statement, and knowing them can go a long way toward helping you interpret one of these documents effectively. 

Revenue 

Revenue is the amount of money the company brought in during the reporting period. With revenue, it may be important to note any trends to determine whether the company is making more money over time or if sales are slowing down. 

Expenses 

This section, crucial to analyzing an income statement, details how much the company has spent. Similar to revenue, it may be important to note trends to see if the company is spending more or if they're becoming more efficient over time. When looking at expenses, "We should consider whether the expenses grow in proportion to revenue and the drivers of these expenses," says Patrick Badolato, PhD, CPA, an associate professor in the accounting department at the McCombs School of Business at the University of Texas. 

Expenses can include many different line items, for example interest paid on debt, depreciation and amortization, rent and overhead, as well as money paid toward salaries and benefits. 

For the sake of clarity, depreciation is an accounting measure to account for the cost in the loss of value for tangible assets of the company, whereas amortization is an accounting technique to lower the book value of debt over time. 

Expenses also include cost of goods sold (COGS), which is the amount spent on the production of the products or services sold. For a company like Apple, it would include the glass to make the phone screen or the chips that go into the iPhone. 

Other costs that would be counted under expenses would be operating and non-operating expenses. Operating expenses are the cost to bring the product to the market. This could include things like marketing, payroll, and overhead expenses, such as insurance and rent. Non-operating expenses could include things that do not directly relate to core business functions. It may include things like contributions to pension plans or dividends to shareholders. 

Another major consideration is taxes, which of course cuts into any financial results a company generates. 

Net income 

Net income represents the total income left over after all deductions and expenses, including taxes, have been taken out. This is the last line on the income statement, frequently referred to as the bottom line, and it tells you what a company's profit or loss was during a specific time period. 

Why income statements matter

The income statement is important for a wide range of parties, including investors and people responsible for running a company (its executives and managers). 

"The income statement should be used by anyone trying to understand the business conducted as well as the profitability of a company," says Badolato. 

Assesses profitability

One simple way an income statement can come in handy is by providing a sense of just how profitable a company really is. Is the company in question making money? 

Income statements can help answer this question, along with providing some excellent insight into why, exactly, a company is experiencing its current financial performance. 

Informs business decisions 

By reviewing a company's income statement, you can quickly pinpoint areas that have room for improvement. For example, a company could cut costs in one area and put more money into others, such as sales and marketing, that could potentially fuel expansion. 

Attract investors 

Investors may use income statements, along with other financial statements, to make investing decisions and determine the financial health of a company. 

For example, an increasing amount of sales from year to year might be attractive for a potential investor and can be found in the first line of an income statement. Conversely, if costs are rising this can also be seen on the income statement and may lead an investor to ask more questions about the long-term profitability of the company. 

Investors and financial analysts also use the income statement to derive popular financial ratios like Earnings Per Share (EPS) .

Earnings per share is a measure that compares a company's net income compared to the outstanding shares. The price-to-earnings ratio, or P/E ratio , is another commonly used metric that factors in the company's stock price in relation to EPS. When comparing companies, EPS and the P/E ratio can help differentiate two companies in the same category and help an investor make a more sound investing decision, but both use information provided through the income statement. 

"The equation driving the Income Statement is: Revenues – Expenses + Gains – Losses = Net Income," says Badolato. 

Income statements are also important to regulators. All public companies are required to file a Form 10-K each year with the Securities and Exchange Commission (SEC) and Form 10-Q each quarter which include the income statement and other financial documents and disclosures. 

Income statement analysis

When analyzing income statements, there are two primary methods that are used: vertical analysis and horizontal analysis.

Vertical analysis shows each item on a financial statement as a percentage. An example of this would be the COGS expressed as 35% of the total revenue. This type of analysis can be useful when comparing with other companies in the industry. 

Horizontal analysis is used to review a company's performance over two or more periods by stacking each line item directly next to each other from the previous period. Instead of looking at one income statement at a time from different periods, horizontal analysis compares them side-by-side in one view. 

How to read an income statement 

Below is the 2021 quarterly income statement from Ford's Form 10-Q . One of the first things that you will notice is that the report is using horizontal analysis. This is because the report is comparing the second quarter of 2020 to the second quarter of 2021 as well as the first half of 2020 and the first half of 2021. 

In the first section under Revenues, you'll see each of Ford's major revenue streams, including car sales under Automotive, Ford Credit, and Mobility. In the notes section of the 10-Q, the Mobility line refers to Ford's autonomous vehicles and related business as well as its equity stake in Argo AI.

Next in the cost and expenses section, you'll notice where Ford is spending its cash. The bulk of those expenses fall under cost of sales, which is another name for the cost of goods sold. You can also see that costs have increased from the second quarter of 2020 to the second quarter of 2021 resulting in a net income of $561 million during the second quarter and $3.8B during the first half of 2021 in the final column on the right. 

Income statement vs. balance sheet 

Both income statements and balance sheets provide important details about how a company uses its cash and other assets, but there are a few key differences between the two.

Think of an income statement like a financial timeline, whereas a balance sheet is a snapshot at one point in time. This is because income statements provide details on the amount of money made and spent during a period. The income statement essentially answers the following questions: How much money did the company make? How was that money spent? Did the company make a profit? 

The balance sheet, on the other hand, tells you how much the company has in assets, liabilities and shareholder's equity. The balance sheet follows a simple formula:

Asset = Liabilities + Shareholder's equity

Like the name mentions, the figures on the balance sheet must match as any increases or decreases must be offset. Unlike the income statement, it does not provide information on how much money the company has made or lost, it only provides the amount of debt, cash and other assets that the company owns at that point in time. 

While these financial statements are different, both the income statement and balance sheet along with the cash flow statement are still linked and should be used together to determine a more holistic financial picture of a company. 

Income statements: Conclusion

The income statement is a good entry point to understand and evaluate a company's revenue and costs, but it's important to keep in mind that it's not a document that can tell the full story. 

"Financial statements are designed to work as a system and not as stand-alone statements," adds Badolato. "The Income Statement is only one piece in understanding the financial performance of a business. Using one financial statement without the others and other publicly available information — such as the footnotes in a financial filing — would be similar to betting before looking at one's cards."

The frequency can vary, but usually, companies prepare income statements either quarterly or annually. 

An income statement shows a company's financial performance during a specific time frame, whereas a balance sheet shows a company's assets and liabilities at one point. 

Companies release income statements in their financial reports, and you can also find them on the investor relations sections of corporate websites. 

An income statement can display a negative net income, which indicates that a company suffered a loss during a specific period. 

You can use the information on an income statement to calculate key ratios like gross margin, operating margin and earnings per share. 

hypothesis and conclusion in statement

  • Main content

hypothesis and conclusion in statement

Fact check: Trump delivers flurry of false and misleading claims as trial nears conclusion

F ormer President Donald Trump has uttered multiple false or misleading claims about his Manhattan criminal trial this week as the trial has neared a conclusion. Here is a fact check of some of the statements Trump has made on social media and to reporters from Tuesday to Thursday morning.

Merchan and the ‘advice of counsel’

After  closing arguments Tuesday , Trump posted on social media to repeat his misleading complaint that Judge Juan Merchan has prevented him from employing a certain defense.

Trump  wrote  on his platform Truth Social: “THE GREATEST CASE I’VE EVER SEEN FOR RELIANCE ON COUNSEL, AND JUDGE MERCHAN WILL NOT, FOR WHATEVER REASON, LET ME USE THAT AS A DEFENSE IN THIS RIGGED TRIAL. ANOTHER TERM, ADVICE OF COUNSEL DEFENSE!” He added in another post on Wednesday morning: “RELIANCE ON COUNSEL (ADVISE OF COUNSEL) NOT ALLOWED BY MERCHAN, A FIRST.”

Facts First :  Trump’s claim remains misleading. He didn’t mention,  again , that the reason Merchan will not allow Trump’s legal team to invoke “advice of counsel” during the trial is that, when Trump was asked before the trial whether he would be using an “advice of counsel” defense,  his lawyers   told Merchan he would not .

An “advice of counsel” defense  typically requires  the defendant to waive attorney-client privilege. Trump’s lawyers told Merchan before the trial that instead of a “formal” defense of “advice of counsel,” Trump wanted to use a different defense in which he would not waive attorney-client privilege but  would still  “elicit evidence concerning the presence, involvement and advice of lawyers in relevant events giving rise to the charges in the Indictment.”

Merchan rejected this proposal. He  wrote in March : â€œTo allow said defense in this matter would effectively permit Defendant to invoke the very defense he has declared he will not rely upon, without the concomitant obligations that come with it. The result would undoubtedly be to confuse and mislead the jury. This Court can not endorse such a tactic.” Therefore, Merchan ruled, Trump could not invoke or even suggest a “presence of counsel” defense in the trial.

Last week, during courtroom discussions about Merchan’s instructions to the jury, Merchan  rejected  an attempt by Trump’s defense to invoke the â€œinvolvement of counsel.” Merchan noted he had already made his stance on the proposal clear.

Merchan said: “This is an argument that you’ve been advancing for many, many, many, months. This is something you’ve been trying to get through to the jury for many, many, many months. It’s denied, it’s not going to happen, please don’t raise it again.”

Merchan and jury unanimity

Trump claimed Wednesday that Merchan “is not requiring a unanimous decision on the fake charges against me.”

Trump made the claim in a  social media post  in which he described Merchan’s supposed position as “RIDICULOUS, UNCONSTITUTIONAL, AND UNAMERICAN.” He was echoing assertions that had been  circulating among conservatives  after Fox News anchor John Roberts  wrote  on social media earlier on Wednesday that “Judge Merchan just told the jury that they do not need unanimity to convict.”

Facts First :  Trump’s claim inaccurately depicts what Merchan said.

Merchan  told the jury in his instructions on Wednesday  that their verdict “must be unanimous” on each of the 34 counts that Trump faces and that, to convict Trump of felony falsification of business records, they have to unanimously agree that he falsified business records with the intent to commit, aid or conceal another crime – that other crime being a violation of a New York election law. But Merchan explained that while  this New York election law  prohibits people from conspiring to use “unlawful means” to promote a candidate’s election, jurors don’t have to unanimously agree on which particular “unlawful means” Trump may have used; they can find him guilty as long as they unanimously agree that Trump used some unlawful means. Prosecutors provided three theories of what unlawful means Trump used.

Merchan told the jury: “Although you must conclude unanimously that the defendant conspired to promote or prevent the election of any person to a public office by unlawful means, you need not be unanimous as to what those unlawful means were. In determining whether the defendant conspired to promote or prevent the election of any person to a public office by unlawful means, you may consider the following: one, violations of the Federal Election Campaign Act otherwise known as FECA; two, the falsification of other business records; or three, violation of tax laws.”

Lee Kovarsky , a University of Texas law professor who has been following the trial,  put it this way  on social media on Wednesday: “If a law says NO VEHICLES IN THE PARK & list of vehicles includes mopeds and motorcycles, all the instruction means is that you need unanimous conclusion of vehicle but not unanimous on whether vehicle was moped or harley.”

- CNN’s Jeremy Herb contributed to this item.

The charges against Trump

After Merchan recited his instructions to the jury on Wednesday, Trump wrote on social media : “I DON’T EVEN KNOW WHAT THE CHARGES ARE IN THIS RIGGED CASE—I AM ENTITLED TO SPECIFICITY JUST LIKE ANYONE ELSE.

THERE IS NO CRIME!”

Facts First : This needs context. Less than two hours before Trump made this post claiming he doesn’t even know what the charges are, Merchan had explained each of the 34 charges during his jury instructions  in the courtroom – with Trump present. 

We can’t definitively fact-check what Trump actually knows about the charges, and even some legal analysts have said this case can be a difficult one to understand. But there is no basis for any suggestion that the charges have not been specified.

Merchan had told the jury, “I will now instruct you on the law applicable to the charged offenses. That offense is Falsifying Business Records in the First Degree – 34 Counts.” He then explained how the crime of first-degree falsifying business records is defined in New York law, further explained the definitions of particular words in that law, and then, one by one, identified each of the 34 business records that make up the 34 counts.

The 34 counts were also specified in Trump’s indictment in the case  more than a year ago.

The judge and a possible witness

Trump claimed to reporters on Wednesday that Merchan had refused to allow Trump’s defense to call a leading election-law expert to testify.

“This judge didn’t even let us use the number-one election attorney,” Trump said. He continued moments later, “We had the leading election expert in the country, Brad Smith, ready to testify. Wouldn’t let him do it.”

Facts First : Trump’s claim is false. Merchan did not prohibit this potential witness, former Federal Election Commission chairman Bradley Smith, from testifying. Rather, Merchan limited what Smith was allowed to testify about. He decided in March that Smith could provide background information about the FEC and define certain terms relevant to this case but could not opine on whether Trump broke federal election laws or offer opinions about how to interpret or apply those laws. After Merchan refused last week to change his mind , Trump’s defense decided not to call Smith as a witness. 

Smith wrote on social media last week: “Judge Merchan has so restricted my testimony that defense has decided not to call me.”

Trump could argue that Merchan’s decision to restrict Smith’s testimony rendered Smith useless as a witness. But his assertion that Merchan flat-out banned Smith from testifying is not true.

Biden and the case

After the jury began deliberations on Wednesday, Trump spoke repeated his frequent claim that this case was “all done by Joe Biden.” And on Thursday morning, he claimed that Manhattan District Attorney Alvin Bragg had revived the case during Trump’s campaign “at the request of Biden.”

Facts First :  There is no basis for Trump’s claim. There is no evidence that Biden had any role in launching or running Bragg’s prosecution - and Bragg is a locally elected official who does not report to the federal government. The  indictment  in the case was approved by a grand jury of ordinary citizens.

Trump has  repeatedly invoked  a lawyer on Bragg’s team, Matthew Colangelo, while making such claims; Colangelo left the Justice Department in 2022  to join the district attorney’s office  as  senior counsel to Bragg .

But there is no evidence that Biden had anything to do with Colangelo’s employment decision. Colangelo and Bragg had been colleagues before Bragg was elected Manhattan district attorney in 2021.

Before Colangelo worked at the Justice Department, he and Bragg worked at the same time in the office of New York’s state attorney general, where Colangelo  investigated Trump’s charity  and Trump’s financial practices and was  involved in bringing various lawsuits  against the Trump administration.

For more CNN news and newsletters create an account at CNN.com

Former US President Donald Trump speak to members of the media at Manhattan criminal court in New York, US, on Wednesday, May 29, 2024. Yuki Iwamura/Pool via REUTERS

Trump guilty, now what? Why the verdict isn't the most shocking part of the trial

hypothesis and conclusion in statement

The most shocking thing about the first-ever criminal trial of a former U.S. president may not be the guilty verdict that a New York jury delivered Thursday afternoon.

It's this: It is possible, even probable, that one of the most momentous trials in American history won't end up affecting American history − at least not in time to reshape the presidential campaign in which Donald Trump is all−but-guaranteed to be the Republican nominee.

"Unprecedented" − admittedly an overworked word since Trump announced his first presidential campaign nine years ago − undeniably applies. The 45th president of the United States is now a convicted felon.

In a hushed courtroom, the jury foreperson read their unanimous conclusion.

Count 1: Guilty.

Prep for the polls: See who is running for president and compare where they stand on key issues in our Voter Guide

Count 2: Guilty.

Count 3: Guilty.

Count 4: Guilty.

Count 5: Guilty.

And so, it went through all 34 counts: Guilty. Guilty. Guilty. Convicted of falsifying business records to cover up hush money payments to a porn star, part of an effort to affect the outcome of the 2016 election. The jury of seven men and five women dismissed the protestations of innocence from a defendant who once lived in the White House and has a realistic possibility of moving back in.

Judge Juan Merchan set sentencing for July 11, four days before the Republican National Convention begins in Milwaukee. None of the other three criminal cases against Trump is likely to go to trial before the November election.

"The FIX was always in..." Trump's campaign manager, Chris LaCivita, posted instantly on the social-media platform known as X, formerly called Twitter. Florida Sen. Marco Rubio, on the list of Trump's potential running mates, declared, "The verdict in New York is a complete travesty that makes a mockery of our system of justice," calling it "a political show trial."

A seething Trump, his face flushed, used the word "rigged" five times when he briefly addressed reporters outside the courtroom.

"This is far from over," he declared looking ahead to Election Day, now less than six months away. Calling it a "rigged, disgraceful trial," Trump said "the real verdict is going to be Nov. 5 by the people who know what happened here."

He blamed, without evidence, that President Biden had orchestrated a politically motivated prosecution.

Trump announced his determination to appeal, a process that will have to unfold before he could conceivably be sent to jail or be fined.

Even so, the unanimous verdict by 12 citizens, a decision that took them less than 12 hours of deliberation to reach, surely carried a certain force. For Trump, the conviction immediately became his leading grievance. "I'm a political prisoner!" he declared on Truth Social, asking for campaign contributions.

For Biden, it just as quickly became a rallying cry.

"There's only one way to keep Donald Trump out of the Oval Office: At the ballot box," the president, who generally shied from commenting on the trial while it was going on, posted on X.

Biden coupled it with an appeal for campaign contributions, too.

Charges against Scottie Scheffler dropped after ‘big misunderstanding’ outside PGA Championship

Scottie Scheffler watches his tee shot.

  • Show more sharing options
  • Copy Link URL Copied!

Charges against Scottie Scheffler have been dropped after the Jefferson County attorney’s office in Louisville, Ky., told a judge Wednesday that it was not moving forward with the case nearly two weeks after the world’s No. 1 golfer was arrested outside the PGA Championship.

“Based upon the totality of the evidence, my office cannot move forward in the prosecution of the charges filed against Mr. Scheffler,” Jefferson County Atty. Mike O’Connell said during a court hearing. “Mr. Scheffler’s characterization that this was ‘a big misunderstanding’ is corroborated by the evidence.”

Scheffler was arrested May 17 before the start of the second round of the tournament after attempting to drive into the entrance at Valhalla Golf Club in Louisville as police were investigating a fatal traffic accident that had occurred at the site earlier that morning.

Scheffler was booked on four charges: second-degree assault of a police officer, which is a felony, third-degree criminal mischief, reckless driving and disregarding traffic signals from an officer directing traffic. He was released without bail and was able to play his round that day, shooting a five-under 66.

In this mug shot provided by the Louisville Metropolitan Department of Corrections, Scott Scheffler is shown.

Scottie Scheffler arrested in alleged assault of officer outside PGA Championship. He still played

Scottie Scheffler was arrested outside the PGA Championship after allegedly injuring a police officer while trying to drive past the scene of a fatal accident.

May 17, 2024

According to a police report filed soon after the incident, Louisville Metro Police Department Det. Bryan Gillis stopped Scheffler, who refused to comply with the officer’s instructions and accelerated his vehicle forward, “dragging Detective Gillis to the ground” and causing injuries.

Last week, Louisville Metro Police Chief Jacquelyn Gwinn-Villaroel said during a news conference that no video was available from the first part of Gillis’ interaction with Scheffler and that Gillis had been disciplined for not turning on his body camera during the interaction. The department did post two videos showing Scheffler’s arrest on its YouTube channel .

“The evidence we reviewed supports the conclusion that Det. Gillis was concerned for public safety at the scene when he initiated contact with Mr. Scheffler,” O’Connell said in the courtroom. “However, Mr. Scheffler’s actions and the evidence surrounding their exchange during this misunderstanding do not satisfy the elements of any criminal offenses.”

The Louisville Metro Police Department said in a statement posted Wednesday on X, “ We respect the County Attorney’s decision , and we respect the judicial process.”

Scheffler, who was not present at the hearing, posted a statement to his Instagram Story soon after the decision was announced.

“I hold no ill will toward Officer Gillis,” Scheffler wrote. “I wish to put this incident behind me and move on, and I hope he will do the same. Police officers have a difficult job and I hold them in high regard. This was a severe miscommunication in a chaotic situation.”

Scheffler’s attorney, Steven Romines, told reporters after the hearing that two eyewitnesses had disputed the police account that Scheffler’s car had dragged Gillis. He also said that he and his client had been prepared to go forward with civil litigation against the police department Monday, the day Scheffler’s arraignment was scheduled to take place, but will not be doing so now that the charges have been dropped.

More to Read

Scottie Scheffler speaks during a news conference after the second round of the PGA Championship golf tournament

Officer disciplined for not using body cam while Scottie Scheffler allegedly dragged him with car

May 23, 2024

Generic police crime scene photograph - Police investigate a multiple murder scene at a dance studio near Garvey Ave. & Garfield Ave., in Monterey Park on Saturday morning, Jan. 22, 2023.

Jealousy of porn actor led to murder attempt with golf club, LAPD says

May 22, 2024

LOUISVILLE, KENTUCKY - MAY 16: Tiger Woods of the United States plays a shot from a bunker on the 17th hole during the first round of the 2024 PGA Championship at Valhalla Golf Club on May 16, 2024 in Louisville, Kentucky. (Photo by Andy Lyons/Getty Images)

PGA Championship: Tiger Woods is rusty and Xander Schauffele shoots a record round

May 16, 2024

In this mug shot provided by the Louisville Metropolitan Department of Corrections, Scott Scheffler is shown.

Entertainment & Arts

Golf champ Rory McIlroy files for divorce after seven years of marriage

May 14, 2024

Jon Rahm, of Spain, puts the green jacket on winner Scottie Scheffler after the Masters.

Scottie Scheffler lives up to his No. 1 ranking by winning his second Masters title

April 14, 2024

Los Angeles, CA - March 18: Joseph Lee speaks during the the LA golf advisory committee meeting as Southland golfers are upset following a story published on tee time brokers on Monday, March 18, 2024 in Los Angeles, CA. (Jason Armond / Los Angeles Times)

‘I am angry’: Golfers demand that L.A. officials stop booming black market in tee times

March 19, 2024

Scottie Scheffler flips his club after missing a birdie putt on the 18th green during the final round.

Scottie Scheffler wins The Players Championship for a second straight year

March 17, 2024

Arrest photo of Rajon Rondo, who was arrested in Indiana on charges related to firearm and drug possession.

Former Laker Rajon Rondo arrested on gun, marijuana charges in Indiana

Jan. 30, 2024

Get our high school sports newsletter

Prep Rally is devoted to the SoCal high school sports experience, bringing you scores, stories and a behind-the-scenes look at what makes prep sports so popular.

You may occasionally receive promotional content from the Los Angeles Times.

hypothesis and conclusion in statement

Chuck Schilken is a sports reporter on the Fast Break team. He spent more than 18 years with the Los Angeles Times’ Sports Department in a variety of roles. Before joining The Times, he worked for more than a decade as a sports reporter and editor at newspapers in Virginia and Maryland.

More From the Los Angeles Times

LOS ANGELES, CA - MAY 9, 2024 - A lone traveler makes his way above others that wait in cue at the Tom Bradley International Terminal at LAX in Los Angeles on May 9, 2024. (Genaro Molina/Los Angeles Times)

New COVID subvariants are rising: How bad will California get hit this summer?

June 1, 2024

A man shot and killed a young bear in an unincorporated area of Lake Tahoe this week, sparking anger among residents, including neighbors who dispute the man's story about why he shot the bear.

Man fatally shoots bear cub near Lake Tahoe, angering residents

May 31, 2024

The Roman Catholic Diocese of Fresno from 2019.

Fresno’s Roman Catholic diocese to file for bankruptcy as new sexual abuse claims soar

Metro train kills pedestrian walking across tracks in south l.a., closing vernon station.

IMAGES

  1. PPT

    hypothesis and conclusion in statement

  2. conclusion hypothesis example

    hypothesis and conclusion in statement

  3. ACTIVITY 1: IF-THEN STATEMENTSIdentify the hypothesis and conclusion of

    hypothesis and conclusion in statement

  4. Determine the hypothesis and conclusion of a conditional statement

    hypothesis and conclusion in statement

  5. Conditional Statements

    hypothesis and conclusion in statement

  6. Conditional Statements

    hypothesis and conclusion in statement

VIDEO

  1. Identifying Hypothesis and Conclusion of “If-Then” Statement

  2. HOW TO FORMULATE OBJECTIVES & HYPOTHESIS WITH AN EXAMPLE

  3. HYPOTHESIS STATEMENT IS ACCEPTED OR REJECTED l THESIS TIPS & GUIDE

  4. Conclusion Definition & Meaning

  5. Characteristics of Hypothesis Statement

  6. How to State the Hypothesis (Conditional Statements)

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. How to Write Hypothesis Test Conclusions (With Examples)

    A hypothesis test is used to test whether or not some hypothesis about a population parameter is true.. To perform a hypothesis test in the real world, researchers obtain a random sample from the population and perform a hypothesis test on the sample data, using a null and alternative hypothesis:. Null Hypothesis (H 0): The sample data occurs purely from chance.

  3. 1.1: Statements and Conditional Statements

    The statement "If \(P\) then \(Q\)" means that \(Q\) must be true whenever \(P\) is true. The statement \(P\) is called the hypothesis of the conditional statement, and the statement \(Q\) is called the conclusion of the conditional statement. Since conditional statements are probably the most important type of statement in mathematics, we ...

  4. How to identify the hypothesis and conclusion of a conditional statement

    A conditional statement is an if-then statement connecting a hypothesis (p) and the conclusion (q... 👉 Learn how to label the parts of a conditional statement.

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  6. What is a Research Hypothesis: How to Write it, Types, and Examples

    A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation. Characteristics of a good hypothesis

  7. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  8. What is a Hypothesis

    An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate. ... It is not a final conclusion or assertion. Relevant: A hypothesis should ...

  9. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  10. The Scientific Method

    CONCLUSION. The final step in the scientific method is the conclusion. This is a summary of the experiment's results, and how those results match up to your hypothesis. You have two options for your conclusions: based on your results, either: (1) YOU CAN REJECT the hypothesis, or (2) YOU CAN NOT REJECT the hypothesis. This is an important point!

  11. 2.11: If Then Statements

    The conclusion is the result of a hypothesis. Figure 2.11.1 2.11. 1. If-then statements might not always be written in the "if-then" form. Here are some examples of conditional statements: Statement 1: If you work overtime, then you'll be paid time-and-a-half. Statement 2: I'll wash the car if the weather is nice.

  12. 3.3: Truth Tables- Conditional, Biconditional

    It makes sense because if the hypothesis "it is raining" is true, then the conclusion "there are clouds in the sky" must also be true. Notice that the statement tells us nothing of what to expect if it is not raining; there might be clouds in the sky, or there might not. If the hypothesis is false, then the conclusion becomes irrelevant.

  13. Understanding Logical Statements

    A logical statement A statement that allows drawing a conclusion or result based on a hypothesis or premise. is a statement that, when true, allows us to take a known set of facts and infer (or assume) a new fact from them. Logical statements have two parts: The hypothesis The part of a logical statement that provides the premise on which the conclusion is based.

  14. Writing a Research Paper Conclusion

    Having summed up your key arguments or findings, the conclusion ends by considering the broader implications of your research. This means expressing the key takeaways, practical or theoretical, from your paper—often in the form of a call for action or suggestions for future research. Argumentative paper: Strong closing statement

  15. Conditional Statement: Definition, Truth Table, Examples

    A conditional statement is a statement that is written in the "If p, then q" format. Here, the statement p is called the hypothesis and q is called the conclusion. It is a fundamental concept in logic and mathematics. Conditional statement symbol: p → q. A conditional statement consists of two parts.

  16. Understanding a Conditional Statement

    Definition: A Conditional Statement is... symbolized by p q, it is an if-then statement in which p is a hypothesis and q is a conclusion. The logical connector in a conditional statement is denoted by the symbol . The conditional is defined to be true unless a true hypothesis leads to a false conclusion. A truth table for p q is shown below.

  17. Conditional Statement

    Conditional Statement. A conditional statement is a part of mathematical reasoning which is a critical skill that enables students to analyze a given hypothesis without any reference to a particular context or meaning. In layman words, when a scientific inquiry or statement is examined, the reasoning is not based on an individual's opinion.

  18. Understanding the Role of Hypotheses and Conclusions in Mathematical

    Hypothesis and conclusion. In the context of mathematics and logic, a hypothesis is a statement or proposition that is assumed to be true for the purpose of a logical argument or investigation. It is usually denoted by "H" or "P" and is the starting point for many mathematical proofs. For example, let's consider the hypothesis: "If ...

  19. Conditional Statements (15+ Examples in Geometry)

    A conditional statement has two parts: hypothesis (if) and conclusion (then). In fact, conditional statements are nothing more than "If-Then" statements! Sometimes a picture helps form our hypothesis or conclusion. Therefore, we sometimes use Venn Diagrams to visually represent our findings and aid us in creating conditional statements.

  20. IDENTIFYING HYPOTHESIS AND CONCLUSION OF IF

    ‼️SECOND QUARTER‼️🟡 GRADE 8: IDENTIFYING HYPOTHESIS AND CONCLUSION OF IF - THEN STATEMENTS🟡 GRADE 8 PLAYLISTFirst Quarter: https://tinyurl.com/yxug7jv9 ...

  21. If-then statement (Geometry, Proof)

    Hypotheses followed by a conclusion is called an If-then statement or a conditional statement. This is noted as. p → q p → q. This is read - if p then q. A conditional statement is false if hypothesis is true and the conclusion is false. The example above would be false if it said "if you get good grades then you will not get into a good ...

  22. With 5 Short Words, Walmart Just Taught a Brilliant Lesson In ...

    A "conditional statement" in English is one that begins with a hypothesis, and follows with a conclusion. ... That last sentence is a thing of beauty for a conditional statements aficionado. ...

  23. What Is an Income Statement? Your Business Profitability Snapshot

    Income statements: Conclusion. The income statement is a good entry point to understand and evaluate a company's revenue and costs, but it's important to keep in mind that it's not a document that ...

  24. Full article: Spatial influences on first impressions: a case study on

    Theoretical hypothesis. Irving Goffman's works (Citation 1973, Citation 1974) on dramaturgy investigate the social implications of space with direct and indirect references on how it intersects with social judgment.As with the concept of ZAJ, Goffman (Citation 1973) also identifies and interrelates judgments based on both the static and active attributes of others (how they look and behave).

  25. Full article: Migration and well-being: an impact study of migrant

    The test follows a hypothesis where the null hypothesis states that the difference between the paired sample mean is different from zero, while the alternative hypothesis states the difference is not equal to zero. ... Conclusion and implication. ... Data availability statement. Data will be made available upon request. Additional information.

  26. How to Write a Thesis or Dissertation Conclusion

    Step 1: Answer your research question. Step 2: Summarize and reflect on your research. Step 3: Make future recommendations. Step 4: Emphasize your contributions to your field. Step 5: Wrap up your thesis or dissertation. Full conclusion example. Conclusion checklist. Other interesting articles.

  27. Fact check: Trump delivers flurry of false and misleading claims as

    Former President Donald Trump has uttered multiple false or misleading claims about his Manhattan criminal trial this week as the trial has neared a conclusion. Here is a fact check of some of the ...

  28. Why Trump's guilty verdict isn't the most shocking part of the trial

    Florida Sen. Marco Rubio, on the list of Trump's potential running mates, declared, "The verdict in New York is a complete travesty that makes a mockery of our system of justice," calling it "a ...

  29. Fact check: Trump delivers flurry of false and misleading claims as

    Here is a fact check of some of the statements Trump has made on social media and to reporters from Tuesday to Thursday morning. Merchan and the 'advice of counsel'

  30. Charges dropped against Scottie Scheffler in PGA Championship arrest

    Charges against Scottie Scheffler have been dropped Wednesday, nearly two weeks after the world's No. 1 golfer was arrested outside the PGA Championship.