U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.36(50); 2021 Dec 27

Logo of jkms

Formulating Hypotheses for Different Study Designs

Durga prasanna misra.

1 Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.

Armen Yuri Gasparyan

2 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, UK.

Olena Zimba

3 Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Vikas Agarwal

George d. kitas.

5 Centre for Epidemiology versus Arthritis, University of Manchester, Manchester, UK.

Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate hypotheses. Observational and interventional studies help to test hypotheses. A good hypothesis is usually based on previous evidence-based reports. Hypotheses without evidence-based justification and a priori ideas are not received favourably by the scientific community. Original research to test a hypothesis should be carefully planned to ensure appropriate methodology and adequate statistical power. While hypotheses can challenge conventional thinking and may be controversial, they should not be destructive. A hypothesis should be tested by ethically sound experiments with meaningful ethical and clinical implications. The coronavirus disease 2019 pandemic has brought into sharp focus numerous hypotheses, some of which were proven (e.g. effectiveness of corticosteroids in those with hypoxia) while others were disproven (e.g. ineffectiveness of hydroxychloroquine and ivermectin).

Graphical Abstract

An external file that holds a picture, illustration, etc.
Object name is jkms-36-e338-abf001.jpg

DEFINING WORKING AND STANDALONE SCIENTIFIC HYPOTHESES

Science is the systematized description of natural truths and facts. Routine observations of existing life phenomena lead to the creative thinking and generation of ideas about mechanisms of such phenomena and related human interventions. Such ideas presented in a structured format can be viewed as hypotheses. After generating a hypothesis, it is necessary to test it to prove its validity. Thus, hypothesis can be defined as a proposed mechanism of a naturally occurring event or a proposed outcome of an intervention. 1 , 2

Hypothesis testing requires choosing the most appropriate methodology and adequately powering statistically the study to be able to “prove” or “disprove” it within predetermined and widely accepted levels of certainty. This entails sample size calculation that often takes into account previously published observations and pilot studies. 2 , 3 In the era of digitization, hypothesis generation and testing may benefit from the availability of numerous platforms for data dissemination, social networking, and expert validation. Related expert evaluations may reveal strengths and limitations of proposed ideas at early stages of post-publication promotion, preventing the implementation of unsupported controversial points. 4

Thus, hypothesis generation is an important initial step in the research workflow, reflecting accumulating evidence and experts' stance. In this article, we overview the genesis and importance of scientific hypotheses and their relevance in the era of the coronavirus disease 2019 (COVID-19) pandemic.

DO WE NEED HYPOTHESES FOR ALL STUDY DESIGNS?

Broadly, research can be categorized as primary or secondary. In the context of medicine, primary research may include real-life observations of disease presentations and outcomes. Single case descriptions, which often lead to new ideas and hypotheses, serve as important starting points or justifications for case series and cohort studies. The importance of case descriptions is particularly evident in the context of the COVID-19 pandemic when unique, educational case reports have heralded a new era in clinical medicine. 5

Case series serve similar purpose to single case reports, but are based on a slightly larger quantum of information. Observational studies, including online surveys, describe the existing phenomena at a larger scale, often involving various control groups. Observational studies include variable-scale epidemiological investigations at different time points. Interventional studies detail the results of therapeutic interventions.

Secondary research is based on already published literature and does not directly involve human or animal subjects. Review articles are generated by secondary research. These could be systematic reviews which follow methods akin to primary research but with the unit of study being published papers rather than humans or animals. Systematic reviews have a rigid structure with a mandatory search strategy encompassing multiple databases, systematic screening of search results against pre-defined inclusion and exclusion criteria, critical appraisal of study quality and an optional component of collating results across studies quantitatively to derive summary estimates (meta-analysis). 6 Narrative reviews, on the other hand, have a more flexible structure. Systematic literature searches to minimise bias in selection of articles are highly recommended but not mandatory. 7 Narrative reviews are influenced by the authors' viewpoint who may preferentially analyse selected sets of articles. 8

In relation to primary research, case studies and case series are generally not driven by a working hypothesis. Rather, they serve as a basis to generate a hypothesis. Observational or interventional studies should have a hypothesis for choosing research design and sample size. The results of observational and interventional studies further lead to the generation of new hypotheses, testing of which forms the basis of future studies. Review articles, on the other hand, may not be hypothesis-driven, but form fertile ground to generate future hypotheses for evaluation. Fig. 1 summarizes which type of studies are hypothesis-driven and which lead on to hypothesis generation.

An external file that holds a picture, illustration, etc.
Object name is jkms-36-e338-g001.jpg

STANDARDS OF WORKING AND SCIENTIFIC HYPOTHESES

A review of the published literature did not enable the identification of clearly defined standards for working and scientific hypotheses. It is essential to distinguish influential versus not influential hypotheses, evidence-based hypotheses versus a priori statements and ideas, ethical versus unethical, or potentially harmful ideas. The following points are proposed for consideration while generating working and scientific hypotheses. 1 , 2 Table 1 summarizes these points.

Evidence-based data

A scientific hypothesis should have a sound basis on previously published literature as well as the scientist's observations. Randomly generated (a priori) hypotheses are unlikely to be proven. A thorough literature search should form the basis of a hypothesis based on published evidence. 7

Unless a scientific hypothesis can be tested, it can neither be proven nor be disproven. Therefore, a scientific hypothesis should be amenable to testing with the available technologies and the present understanding of science.

Supported by pilot studies

If a hypothesis is based purely on a novel observation by the scientist in question, it should be grounded on some preliminary studies to support it. For example, if a drug that targets a specific cell population is hypothesized to be useful in a particular disease setting, then there must be some preliminary evidence that the specific cell population plays a role in driving that disease process.

Testable by ethical studies

The hypothesis should be testable by experiments that are ethically acceptable. 9 For example, a hypothesis that parachutes reduce mortality from falls from an airplane cannot be tested using a randomized controlled trial. 10 This is because it is obvious that all those jumping from a flying plane without a parachute would likely die. Similarly, the hypothesis that smoking tobacco causes lung cancer cannot be tested by a clinical trial that makes people take up smoking (since there is considerable evidence for the health hazards associated with smoking). Instead, long-term observational studies comparing outcomes in those who smoke and those who do not, as was performed in the landmark epidemiological case control study by Doll and Hill, 11 are more ethical and practical.

Balance between scientific temper and controversy

Novel findings, including novel hypotheses, particularly those that challenge established norms, are bound to face resistance for their wider acceptance. Such resistance is inevitable until the time such findings are proven with appropriate scientific rigor. However, hypotheses that generate controversy are generally unwelcome. For example, at the time the pandemic of human immunodeficiency virus (HIV) and AIDS was taking foot, there were numerous deniers that refused to believe that HIV caused AIDS. 12 , 13 Similarly, at a time when climate change is causing catastrophic changes to weather patterns worldwide, denial that climate change is occurring and consequent attempts to block climate change are certainly unwelcome. 14 The denialism and misinformation during the COVID-19 pandemic, including unfortunate examples of vaccine hesitancy, are more recent examples of controversial hypotheses not backed by science. 15 , 16 An example of a controversial hypothesis that was a revolutionary scientific breakthrough was the hypothesis put forth by Warren and Marshall that Helicobacter pylori causes peptic ulcers. Initially, the hypothesis that a microorganism could cause gastritis and gastric ulcers faced immense resistance. When the scientists that proposed the hypothesis themselves ingested H. pylori to induce gastritis in themselves, only then could they convince the wider world about their hypothesis. Such was the impact of the hypothesis was that Barry Marshall and Robin Warren were awarded the Nobel Prize in Physiology or Medicine in 2005 for this discovery. 17 , 18

DISTINGUISHING THE MOST INFLUENTIAL HYPOTHESES

Influential hypotheses are those that have stood the test of time. An archetype of an influential hypothesis is that proposed by Edward Jenner in the eighteenth century that cowpox infection protects against smallpox. While this observation had been reported for nearly a century before this time, it had not been suitably tested and publicised until Jenner conducted his experiments on a young boy by demonstrating protection against smallpox after inoculation with cowpox. 19 These experiments were the basis for widespread smallpox immunization strategies worldwide in the 20th century which resulted in the elimination of smallpox as a human disease today. 20

Other influential hypotheses are those which have been read and cited widely. An example of this is the hygiene hypothesis proposing an inverse relationship between infections in early life and allergies or autoimmunity in adulthood. An analysis reported that this hypothesis had been cited more than 3,000 times on Scopus. 1

LESSONS LEARNED FROM HYPOTHESES AMIDST THE COVID-19 PANDEMIC

The COVID-19 pandemic devastated the world like no other in recent memory. During this period, various hypotheses emerged, understandably so considering the public health emergency situation with innumerable deaths and suffering for humanity. Within weeks of the first reports of COVID-19, aberrant immune system activation was identified as a key driver of organ dysfunction and mortality in this disease. 21 Consequently, numerous drugs that suppress the immune system or abrogate the activation of the immune system were hypothesized to have a role in COVID-19. 22 One of the earliest drugs hypothesized to have a benefit was hydroxychloroquine. Hydroxychloroquine was proposed to interfere with Toll-like receptor activation and consequently ameliorate the aberrant immune system activation leading to pathology in COVID-19. 22 The drug was also hypothesized to have a prophylactic role in preventing infection or disease severity in COVID-19. It was also touted as a wonder drug for the disease by many prominent international figures. However, later studies which were well-designed randomized controlled trials failed to demonstrate any benefit of hydroxychloroquine in COVID-19. 23 , 24 , 25 , 26 Subsequently, azithromycin 27 , 28 and ivermectin 29 were hypothesized as potential therapies for COVID-19, but were not supported by evidence from randomized controlled trials. The role of vitamin D in preventing disease severity was also proposed, but has not been proven definitively until now. 30 , 31 On the other hand, randomized controlled trials identified the evidence supporting dexamethasone 32 and interleukin-6 pathway blockade with tocilizumab as effective therapies for COVID-19 in specific situations such as at the onset of hypoxia. 33 , 34 Clues towards the apparent effectiveness of various drugs against severe acute respiratory syndrome coronavirus 2 in vitro but their ineffectiveness in vivo have recently been identified. Many of these drugs are weak, lipophilic bases and some others induce phospholipidosis which results in apparent in vitro effectiveness due to non-specific off-target effects that are not replicated inside living systems. 35 , 36

Another hypothesis proposed was the association of the routine policy of vaccination with Bacillus Calmette-Guerin (BCG) with lower deaths due to COVID-19. This hypothesis emerged in the middle of 2020 when COVID-19 was still taking foot in many parts of the world. 37 , 38 Subsequently, many countries which had lower deaths at that time point went on to have higher numbers of mortality, comparable to other areas of the world. Furthermore, the hypothesis that BCG vaccination reduced COVID-19 mortality was a classic example of ecological fallacy. Associations between population level events (ecological studies; in this case, BCG vaccination and COVID-19 mortality) cannot be directly extrapolated to the individual level. Furthermore, such associations cannot per se be attributed as causal in nature, and can only serve to generate hypotheses that need to be tested at the individual level. 39

IS TRADITIONAL PEER REVIEW EFFICIENT FOR EVALUATION OF WORKING AND SCIENTIFIC HYPOTHESES?

Traditionally, publication after peer review has been considered the gold standard before any new idea finds acceptability amongst the scientific community. Getting a work (including a working or scientific hypothesis) reviewed by experts in the field before experiments are conducted to prove or disprove it helps to refine the idea further as well as improve the experiments planned to test the hypothesis. 40 A route towards this has been the emergence of journals dedicated to publishing hypotheses such as the Central Asian Journal of Medical Hypotheses and Ethics. 41 Another means of publishing hypotheses is through registered research protocols detailing the background, hypothesis, and methodology of a particular study. If such protocols are published after peer review, then the journal commits to publishing the completed study irrespective of whether the study hypothesis is proven or disproven. 42 In the post-pandemic world, online research methods such as online surveys powered via social media channels such as Twitter and Instagram might serve as critical tools to generate as well as to preliminarily test the appropriateness of hypotheses for further evaluation. 43 , 44

Some radical hypotheses might be difficult to publish after traditional peer review. These hypotheses might only be acceptable by the scientific community after they are tested in research studies. Preprints might be a way to disseminate such controversial and ground-breaking hypotheses. 45 However, scientists might prefer to keep their hypotheses confidential for the fear of plagiarism of ideas, avoiding online posting and publishing until they have tested the hypotheses.

SUGGESTIONS ON GENERATING AND PUBLISHING HYPOTHESES

Publication of hypotheses is important, however, a balance is required between scientific temper and controversy. Journal editors and reviewers might keep in mind these specific points, summarized in Table 2 and detailed hereafter, while judging the merit of hypotheses for publication. Keeping in mind the ethical principle of primum non nocere, a hypothesis should be published only if it is testable in a manner that is ethically appropriate. 46 Such hypotheses should be grounded in reality and lend themselves to further testing to either prove or disprove them. It must be considered that subsequent experiments to prove or disprove a hypothesis have an equal chance of failing or succeeding, akin to tossing a coin. A pre-conceived belief that a hypothesis is unlikely to be proven correct should not form the basis of rejection of such a hypothesis for publication. In this context, hypotheses generated after a thorough literature search to identify knowledge gaps or based on concrete clinical observations on a considerable number of patients (as opposed to random observations on a few patients) are more likely to be acceptable for publication by peer-reviewed journals. Also, hypotheses should be considered for publication or rejection based on their implications for science at large rather than whether the subsequent experiments to test them end up with results in favour of or against the original hypothesis.

Hypotheses form an important part of the scientific literature. The COVID-19 pandemic has reiterated the importance and relevance of hypotheses for dealing with public health emergencies and highlighted the need for evidence-based and ethical hypotheses. A good hypothesis is testable in a relevant study design, backed by preliminary evidence, and has positive ethical and clinical implications. General medical journals might consider publishing hypotheses as a specific article type to enable more rapid advancement of science.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Data curation: Gasparyan AY, Misra DP, Zimba O, Yessirkepov M, Agarwal V, Kitas GD.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

1.1: The Working Hypothesis

  • Last updated
  • Save as PDF
  • Page ID 33319

  • Penn State's Department of Statistics
  • The Pennsylvania State University

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Using the scientific method, before any statistical analysis can be conducted, a researcher must generate a guess, or hypothesis about what is going on. The process begins with a Working Hypothesis . This is a direct statement of the research idea. For example, a plant biologist may think that plant height may be affected by applying different fertilizers. So they might say: " Plants with different fertilizers will grow to different heights ".

But according to the Popperian Principle of Falsification, we can't conclusively affirm a hypothesis, but we can conclusively negate a hypothesis. So we need to translate the working hypothesis into a framework wherein we state a null hypothesis that the average height (or mean height) for plants with the different fertilizers will all be the same. The alternative hypothesis (which the biologist hopes to show) is that they are not all equal, but rather some of the fertilizer treatments have produced plants with different mean heights. The strength of the data will determine whether the null hypothesis can be rejected with a specified level of confidence.

Pictured in the graph below, we can imagine testing three kinds of fertilizer and also one group of plants that are untreated (the control). The plant biologist kept all the plants under controlled conditions in the greenhouse, to focus on the effect of the fertilizer, the only thing we know to differ among the plants. At the end of the experiment, the biologist measured the height of each plant. Plant height is the dependent or response variable and is plotted on the vertical (\(y\)) axis. The biologist used a simple boxplot to plot the difference in the heights.

Box plot showing the distribution of plant height, separated by fertilizer treatment.

This boxplot is a customary way to show treatment (or factor) level differences. In this case, there was only one treatment: fertilizer. The fertilizer treatment had four levels that included the control, which received no fertilizer. Using this language convention is important because later on we will be using ANOVA to handle multi-factor studies (for example if the biologist manipulated the amount of water AND the type of fertilizer) and we will need to be able to refer to different treatments, each with their own set of levels.

Another alternative for viewing the differences in the heights is with a means plot (a scatter or interval plot):

LS-Means plot for fertilizer treatments, with 95% confidence limits.

This second method to plot the difference in the means of the treatments provides essentially the same information. However, this plot illustrates the variability in the data with 'error bars' that are the 95% confidence interval limits around the means.

In between the statement of a Working Hypothesis and the creation of the 95% confidence intervals used to create this means plot is a 7-step process of statistical hypothesis testing, presented in the following section.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 31 May 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

The potential of working hypotheses for deductive exploratory research

  • Open access
  • Published: 08 December 2020
  • Volume 55 , pages 1703–1725, ( 2021 )

Cite this article

You have full access to this open access article

formulation of working hypothesis

  • Mattia Casula   ORCID: orcid.org/0000-0002-7081-8153 1 ,
  • Nandhini Rangarajan 2 &
  • Patricia Shields   ORCID: orcid.org/0000-0002-0960-4869 2  

65k Accesses

82 Citations

4 Altmetric

Explore all metrics

While hypotheses frame explanatory studies and provide guidance for measurement and statistical tests, deductive, exploratory research does not have a framing device like the hypothesis. To this purpose, this article examines the landscape of deductive, exploratory research and offers the working hypothesis as a flexible, useful framework that can guide and bring coherence across the steps in the research process. The working hypothesis conceptual framework is introduced, placed in a philosophical context, defined, and applied to public administration and comparative public policy. Doing so, this article explains: the philosophical underpinning of exploratory, deductive research; how the working hypothesis informs the methodologies and evidence collection of deductive, explorative research; the nature of micro-conceptual frameworks for deductive exploratory research; and, how the working hypothesis informs data analysis when exploratory research is deductive.

Similar content being viewed by others

formulation of working hypothesis

What is Qualitative in Qualitative Research

formulation of working hypothesis

Criteria for Good Qualitative Research: A Comprehensive Review

Reporting reliability, convergent and discriminant validity with structural equation modeling: a review and best-practice recommendations.

Avoid common mistakes on your manuscript.

1 Introduction

Exploratory research is generally considered to be inductive and qualitative (Stebbins 2001 ). Exploratory qualitative studies adopting an inductive approach do not lend themselves to a priori theorizing and building upon prior bodies of knowledge (Reiter 2013 ; Bryman 2004 as cited in Pearse 2019 ). Juxtaposed against quantitative studies that employ deductive confirmatory approaches, exploratory qualitative research is often criticized for lack of methodological rigor and tentativeness in results (Thomas and Magilvy 2011 ). This paper focuses on the neglected topic of deductive, exploratory research and proposes working hypotheses as a useful framework for these studies.

To emphasize that certain types of applied research lend themselves more easily to deductive approaches, to address the downsides of exploratory qualitative research, and to ensure qualitative rigor in exploratory research, a significant body of work on deductive qualitative approaches has emerged (see for example, Gilgun 2005 , 2015 ; Hyde 2000 ; Pearse 2019 ). According to Gilgun ( 2015 , p. 3) the use of conceptual frameworks derived from comprehensive reviews of literature and a priori theorizing were common practices in qualitative research prior to the publication of Glaser and Strauss’s ( 1967 ) The Discovery of Grounded Theory . Gilgun ( 2015 ) coined the terms Deductive Qualitative Analysis (DQA) to arrive at some sort of “middle-ground” such that the benefits of a priori theorizing (structure) and allowing room for new theory to emerge (flexibility) are reaped simultaneously. According to Gilgun ( 2015 , p. 14) “in DQA, the initial conceptual framework and hypotheses are preliminary. The purpose of DQA is to come up with a better theory than researchers had constructed at the outset (Gilgun 2005 , 2009 ). Indeed, the production of new, more useful hypotheses is the goal of DQA”.

DQA provides greater level of structure for both the experienced and novice qualitative researcher (see for example Pearse 2019 ; Gilgun 2005 ). According to Gilgun ( 2015 , p. 4) “conceptual frameworks are the sources of hypotheses and sensitizing concepts”. Sensitizing concepts frame the exploratory research process and guide the researcher’s data collection and reporting efforts. Pearse ( 2019 ) discusses the usefulness for deductive thematic analysis and pattern matching to help guide DQA in business research. Gilgun ( 2005 ) discusses the usefulness of DQA for family research.

Given these rationales for DQA in exploratory research, the overarching purpose of this paper is to contribute to that growing corpus of work on deductive qualitative research. This paper is specifically aimed at guiding novice researchers and student scholars to the working hypothesis as a useful a priori framing tool. The applicability of the working hypothesis as a tool that provides more structure during the design and implementation phases of exploratory research is discussed in detail. Examples of research projects in public administration that use the working hypothesis as a framing tool for deductive exploratory research are provided.

In the next section, we introduce the three types of research purposes. Second, we examine the nature of the exploratory research purpose. Third, we provide a definition of working hypothesis. Fourth, we explore the philosophical roots of methodology to see where exploratory research fits. Fifth, we connect the discussion to the dominant research approaches (quantitative, qualitative and mixed methods) to see where deductive exploratory research fits. Sixth, we examine the nature of theory and the role of the hypothesis in theory. We contrast formal hypotheses and working hypotheses. Seven, we provide examples of student and scholarly work that illustrates how working hypotheses are developed and operationalized. Lastly, this paper synthesizes previous discussion with concluding remarks.

2 Three types of research purposes

The literature identifies three basic types of research purposes—explanation, description and exploration (Babbie 2007 ; Adler and Clark 2008 ; Strydom 2013 ; Shields and Whetsell 2017 ). Research purposes are similar to research questions; however, they focus on project goals or aims instead of questions.

Explanatory research answers the “why” question (Babbie 2007 , pp. 89–90), by explaining “why things are the way they are”, and by looking “for causes and reasons” (Adler and Clark 2008 , p. 14). Explanatory research is closely tied to hypothesis testing. Theory is tested using deductive reasoning, which goes from the general to the specific (Hyde 2000 , p. 83). Hypotheses provide a frame for explanatory research connecting the research purpose to other parts of the research process (variable construction, choice of data, statistical tests). They help provide alignment or coherence across stages in the research process and provide ways to critique the strengths and weakness of the study. For example, were the hypotheses grounded in the appropriate arguments and evidence in the literature? Are the concepts imbedded in the hypotheses appropriately measured? Was the best statistical test used? When the analysis is complete (hypothesis is tested), the results generally answer the research question (the evidence supported or failed to support the hypothesis) (Shields and Rangarajan 2013 ).

Descriptive research addresses the “What” question and is not primarily concerned with causes (Strydom 2013 ; Shields and Tajalli 2006 ). It lies at the “midpoint of the knowledge continuum” (Grinnell 2001 , p. 248) between exploration and explanation. Descriptive research is used in both quantitative and qualitative research. A field researcher might want to “have a more highly developed idea of social phenomena” (Strydom 2013 , p. 154) and develop thick descriptions using inductive logic. In science, categorization and classification systems such as the periodic table of chemistry or the taxonomies of biology inform descriptive research. These baseline classification systems are a type of theorizing and allow researchers to answer questions like “what kind” of plants and animals inhabit a forest. The answer to this question would usually be displayed in graphs and frequency distributions. This is also the data presentation system used in the social sciences (Ritchie and Lewis 2003 ; Strydom 2013 ). For example, if a scholar asked, what are the needs of homeless people? A quantitative approach would include a survey that incorporated a “needs” classification system (preferably based on a literature review). The data would be displayed as frequency distributions or as charts. Description can also be guided by inductive reasoning, which draws “inferences from specific observable phenomena to general rules or knowledge expansion” (Worster 2013 , p. 448). Theory and hypotheses are generated using inductive reasoning, which begins with data and the intention of making sense of it by theorizing. Inductive descriptive approaches would use a qualitative, naturalistic design (open ended interview questions with the homeless population). The data could provide a thick description of the homeless context. For deductive descriptive research, categories, serve a purpose similar to hypotheses for explanatory research. If developed with thought and a connection to the literature, categories can serve as a framework that inform measurement, link to data collection mechanisms and to data analysis. Like hypotheses they can provide horizontal coherence across the steps in the research process.

Table  1 demonstrated these connections for deductive, descriptive and explanatory research. The arrow at the top emphasizes the horizontal or across the research process view we emphasize. This article makes the case that the working hypothesis can serve the same purpose as the hypothesis for deductive, explanatory research and categories for deductive descriptive research. The cells for exploratory research are filled in with question marks.

The remainder of this paper focuses on exploratory research and the answers to questions found in the table:

What is the philosophical underpinning of exploratory, deductive research?

What is the Micro-conceptual framework for deductive exploratory research? [ As is clear from the article title we introduce the working hypothesis as the answer .]

How does the working hypothesis inform the methodologies and evidence collection of deductive exploratory research?

How does the working hypothesis inform data analysis of deductive exploratory research?

3 The nature of exploratory research purpose

Explorers enter the unknown to discover something new. The process can be fraught with struggle and surprises. Effective explorers creatively resolve unexpected problems. While we typically think of explorers as pioneers or mountain climbers, exploration is very much linked to the experience and intention of the explorer. Babies explore as they take their first steps. The exploratory purpose resonates with these insights. Exploratory research, like reconnaissance, is a type of inquiry that is in the preliminary or early stages (Babbie 2007 ). It is associated with discovery, creativity and serendipity (Stebbins 2001 ). But the person doing the discovery, also defines the activity or claims the act of exploration. It “typically occurs when a researcher examines a new interest or when the subject of study itself is relatively new” (Babbie 2007 , p. 88). Hence, exploration has an open character that emphasizes “flexibility, pragmatism, and the particular, biographically specific interests of an investigator” (Maanen et al. 2001 , p. v). These three purposes form a type of hierarchy. An area of inquiry is initially explored . This early work lays the ground for, description which in turn becomes the basis for explanation . Quantitative, explanatory studies dominate contemporary high impact journals (Twining et al. 2017 ).

Stebbins ( 2001 ) makes the point that exploration is often seen as something like a poor stepsister to confirmatory or hypothesis testing research. He has a problem with this because we live in a changing world and what is settled today will very likely be unsettled in the near future and in need of exploration. Further, exploratory research “generates initial insights into the nature of an issue and develops questions to be investigated by more extensive studies” (Marlow 2005 , p. 334). Exploration is widely applicable because all research topics were once “new.” Further, all research topics have the possibility of “innovation” or ongoing “newness”. Exploratory research may be appropriate to establish whether a phenomenon exists (Strydom 2013 ). The point here, of course, is that the exploratory purpose is far from trivial.

Stebbins’ Exploratory Research in the Social Sciences ( 2001 ), is the only book devoted to the nature of exploratory research as a form of social science inquiry. He views it as a “broad-ranging, purposive, systematic prearranged undertaking designed to maximize the discovery of generalizations leading to description and understanding of an area of social or psychological life” (p. 3). It is science conducted in a way distinct from confirmation. According to Stebbins ( 2001 , p. 6) the goal is discovery of potential generalizations, which can become future hypotheses and eventually theories that emerge from the data. He focuses on inductive logic (which stimulates creativity) and qualitative methods. He does not want exploratory research limited to the restrictive formulas and models he finds in confirmatory research. He links exploratory research to Glaser and Strauss’s ( 1967 ) flexible, immersive, Grounded Theory. Strydom’s ( 2013 ) analysis of contemporary social work research methods books echoes Stebbins’ ( 2001 ) position. Stebbins’s book is an important contribution, but it limits the potential scope of this flexible and versatile research purpose. If we accepted his conclusion, we would delete the “Exploratory” row from Table  1 .

Note that explanatory research can yield new questions, which lead to exploration. Inquiry is a process where inductive and deductive activities can occur simultaneously or in a back and forth manner, particularly as the literature is reviewed and the research design emerges. Footnote 1 Strict typologies such as explanation, description and exploration or inductive/deductive can obscures these larger connections and processes. We draw insight from Dewey’s ( 1896 ) vision of inquiry as depicted in his seminal “Reflex Arc” article. He notes that “stimulus” and “response” like other dualities (inductive/deductive) exist within a larger unifying system. Yet the terms have value. “We need not abandon terms like stimulus and response, so long as we remember that they are attached to events based upon their function in a wider dynamic context, one that includes interests and aims” (Hildebrand 2008 , p. 16). So too, in methodology typologies such as deductive/inductive capture useful distinctions with practical value and are widely used in the methodology literature.

We argue that there is a role for exploratory, deductive, and confirmatory research. We maintain all types of research logics and methods should be in the toolbox of exploratory research. First, as stated above, it makes no sense on its face to identify an extremely flexible purpose that is idiosyncratic to the researcher and then basically restrict its use to qualitative, inductive, non-confirmatory methods. Second, Stebbins’s ( 2001 ) work focused on social science ignoring the policy sciences. Exploratory research can be ideal for immediate practical problems faced by policy makers, who could find a framework of some kind useful. Third, deductive, exploratory research is more intentionally connected to previous research. Some kind of initial framing device is located or designed using the literature. This may be very important for new scholars who are developing research skills and exploring their field and profession. Stebbins’s insights are most pertinent for experienced scholars. Fourth, frameworks and deductive logic are useful for comparative work because some degree of consistency across cases is built into the design.

As we have seen, the hypotheses of explanatory and categories of descriptive research are the dominate frames of social science and policy science. We certainly concur that neither of these frames makes a lot of sense for exploratory research. They would tend to tie it down. We see the problem as a missing framework or missing way to frame deductive, exploratory research in the methodology literature. Inductive exploratory research would not work for many case studies that are trying to use evidence to make an argument. What exploratory deductive case studies need is a framework that incorporates flexibility. This is even more true for comparative case studies. A framework of this sort could be usefully applied to policy research (Casula 2020a ), particularly evaluative policy research, and applied research generally. We propose the Working Hypothesis as a flexible conceptual framework and as a useful tool for doing exploratory studies. It can be used as an evaluative criterion particularly for process evaluation and is useful for student research because students can develop theorizing skills using the literature.

Table  1 included a column specifying the philosophical basis for each research purpose. Shifting gears to the philosophical underpinning of methodology provides useful additional context for examination of deductive, exploratory research.

4 What is a working hypothesis

The working hypothesis is first and foremost a hypothesis or a statement of expectation that is tested in action. The term “working” suggest that these hypotheses are subject to change, are provisional and the possibility of finding contradictory evidence is real. In addition, a “working” hypothesis is active, it is a tool in an ongoing process of inquiry. If one begins with a research question, the working hypothesis could be viewed as a statement or group of statements that answer the question. It “works” to move purposeful inquiry forward. “Working” also implies some sort of community, mostly we work together in relationship to achieve some goal.

Working Hypothesis is a term found in earlier literature. Indeed, both pioneering pragmatists, John Dewey and George Herbert Mead use the term working hypothesis in important nineteenth century works. For both Dewey and Mead, the notion of a working hypothesis has a self-evident quality and it is applied in a big picture context. Footnote 2

Most notably, Dewey ( 1896 ), in one of his most pivotal early works (“Reflex Arc”), used “working hypothesis” to describe a key concept in psychology. “The idea of the reflex arc has upon the whole come nearer to meeting this demand for a general working hypothesis than any other single concept (Italics added)” (p. 357). The notion of a working hypothesis was developed more fully 42 years later, in Logic the Theory of Inquiry , where Dewey developed the notion of a working hypothesis that operated on a smaller scale. He defines working hypotheses as a “provisional, working means of advancing investigation” (Dewey 1938 , pp. 142). Dewey’s definition suggests that working hypotheses would be useful toward the beginning of a research project (e.g., exploratory research).

Mead ( 1899 ) used working hypothesis in a title of an American Journal of Sociology article “The Working Hypothesis and Social Reform” (italics added). He notes that a scientist’s foresight goes beyond testing a hypothesis.

Given its success, he may restate his world from this standpoint and get the basis for further investigation that again always takes the form of a problem. The solution of this problem is found over again in the possibility of fitting his hypothetical proposition into the whole within which it arises. And he must recognize that this statement is only a working hypothesis at the best, i.e., he knows that further investigation will show that the former statement of his world is only provisionally true, and must be false from the standpoint of a larger knowledge, as every partial truth is necessarily false over against the fuller knowledge which he will gain later (Mead 1899 , p. 370).

Cronbach ( 1975 ) developed a notion of working hypothesis consistent with inductive reasoning, but for him, the working hypothesis is a product or result of naturalistic inquiry. He makes the case that naturalistic inquiry is highly context dependent and therefore results or seeming generalizations that may come from a study and should be viewed as “working hypotheses”, which “are tentative both for the situation in which they first uncovered and for other situations” (as cited in Gobo 2008 , p. 196).

A quick Google scholar search using the term “working hypothesis” show that it is widely used in twentieth and twenty-first century science, particularly in titles. In these articles, the working hypothesis is treated as a conceptual tool that furthers investigation in its early or transitioning phases. We could find no explicit links to exploratory research. The exploratory nature of the problem is expressed implicitly. Terms such as “speculative” (Habib 2000 , p. 2391) or “rapidly evolving field” (Prater et al. 2007 , p. 1141) capture the exploratory nature of the study. The authors might describe how a topic is “new” or reference “change”. “As a working hypothesis, the picture is only new, however, in its interpretation” (Milnes 1974 , p. 1731). In a study of soil genesis, Arnold ( 1965 , p. 718) notes “Sequential models, formulated as working hypotheses, are subject to further investigation and change”. Any 2020 article dealing with COVID-19 and respiratory distress would be preliminary almost by definition (Ciceri et al. 2020 ).

5 Philosophical roots of methodology

According to Kaplan ( 1964 , p. 23) “the aim of methodology is to help us understand, in the broadest sense not the products of scientific inquiry but the process itself”. Methods contain philosophical principles that distinguish them from other “human enterprises and interests” (Kaplan 1964 , p. 23). Contemporary research methodology is generally classified as quantitative, qualitative and mixed methods. Leading scholars of methodology have associated each with a philosophical underpinning—positivism (or post-positivism), interpretivism or constructivist and pragmatism, respectively (Guba 1987 ; Guba and Lincoln 1981 ; Schrag 1992 ; Stebbins 2001 ; Mackenzi and Knipe 2006 ; Atieno 2009 ; Levers 2013 ; Morgan 2007 ; O’Connor et al. 2008 ; Johnson and Onwuegbuzie 2004 ; Twining et al. 2017 ). This section summarizes how the literature often describes these philosophies and informs contemporary methodology and its literature.

Positivism and its more contemporary version, post-positivism, maintains an objectivist ontology or assumes an objective reality, which can be uncovered (Levers 2013 ; Twining et al. 2017 ). Footnote 3 Time and context free generalizations are possible and “real causes of social scientific outcomes can be determined reliably and validly (Johnson and Onwuegbunzie 2004 , p. 14). Further, “explanation of the social world is possible through a logical reduction of social phenomena to physical terms”. It uses an empiricist epistemology which “implies testability against observation, experimentation, or comparison” (Whetsell and Shields 2015 , pp. 420–421). Correspondence theory, a tenet of positivism, asserts that “to each concept there corresponds a set of operations involved in its scientific use” (Kaplan 1964 , p. 40).

The interpretivist, constructivists or post-modernist approach is a reaction to positivism. It uses a relativist ontology and a subjectivist epistemology (Levers 2013 ). In this world of multiple realities, context free generalities are impossible as is the separation of facts and values. Causality, explanation, prediction, experimentation depend on assumptions about the correspondence between concepts and reality, which in the absence of an objective reality is impossible. Empirical research can yield “contextualized emergent understanding rather than the creation of testable theoretical structures” (O’Connor et al. 2008 , p. 30). The distinctively different world views of positivist/post positivist and interpretivist philosophy is at the core of many controversies in methodology, social and policy science literature (Casula 2020b ).

With its focus on dissolving dualisms, pragmatism steps outside the objective/subjective debate. Instead, it asks, “what difference would it make to us if the statement were true” (Kaplan 1964 , p. 42). Its epistemology is connected to purposeful inquiry. Pragmatism has a “transformative, experimental notion of inquiry” anchored in pluralism and a focus on constructing conceptual and practical tools to resolve “problematic situations” (Shields 1998 ; Shields and Rangarajan 2013 ). Exploration and working hypotheses are most comfortably situated within the pragmatic philosophical perspective.

6 Research approaches

Empirical investigation relies on three types of methodology—quantitative, qualitative and mixed methods.

6.1 Quantitative methods

Quantitative methods uses deductive logic and formal hypotheses or models to explain, predict, and eventually establish causation (Hyde 2000 ; Kaplan 1964 ; Johnson and Onwuegbunzie 2004 ; Morgan 2007 ). Footnote 4 The correspondence between the conceptual and empirical world make measures possible. Measurement assigns numbers to objects, events or situations and allows for standardization and subtle discrimination. It also allows researchers to draw on the power of mathematics and statistics (Kaplan 1964 , pp. 172–174). Using the power of inferential statistics, quantitative research employs research designs, which eliminate competing hypotheses. It is high in external validity or the ability to generalize to the whole. The research results are relatively independent of the researcher (Johnson & Onwuegbunzie 2004 ).

Quantitative methods depend on the quality of measurement and a priori conceptualization, and adherence to the underlying assumptions of inferential statistics. Critics charge that hypotheses and frameworks needlessly constrain inquiry (Johnson and Onwuegbunzie 2004 , p. 19). Hypothesis testing quantitative methods support the explanatory purpose.

6.2 Qualitative methods

Qualitative researchers who embrace the post-modern, interpretivist view, Footnote 5 question everything about the nature of quantitative methods (Willis et al. 2007 ). Rejecting the possibility of objectivity, correspondence between ideas and measures, and the constraints of a priori theorizing they focus on “unique impressions and understandings of events rather than to generalize the findings” (Kolb 2012 , p. 85). Characteristics of traditional qualitative research include “induction, discovery, exploration, theory/hypothesis generation and the researcher as the primary ‘instrument’ of data collection” (Johnson and Onwuegbunzie 2004 , p. 18). It also concerns itself with forming “unique impressions and understandings of events rather than to generalize findings” (Kolb 2012 , p. 85). The data of qualitative methods are generated via interviews, direct observation, focus groups and analysis of written records or artifacts.

Qualitative methods provide for understanding and “description of people’s personal experiences of phenomena”. They enable descriptions of detailed “phenomena as they are situated and embedded in local contexts.” Researchers use naturalistic settings to “study dynamic processes” and explore how participants interpret experiences. Qualitative methods have an inherent flexibility, allowing researchers to respond to changes in the research setting. They are particularly good at narrowing to the particular and on the flipside have limited external validity (Johnson and Onwuegbunzie 2004 , p. 20). Instead of specifying a suitable sample size to draw conclusions, qualitative research uses the notion of saturation (Morse 1995 ).

Saturation is used in grounded theory—a widely used and respected form of qualitative research, and a well-known interpretivist qualitative research method. Introduced by Glaser and Strauss ( 1967 ), this “grounded on observation” (Patten and Newhart 2000 , p. 27) methodology, focuses on “the creation of emergent understanding” (O’Connor et al. 2008 , p. 30). It uses the Constant Comparative method, whereby researchers develop theory from data as they code and analyze at the same time. Data collection, coding and analysis along with theoretical sampling are systematically combined to generate theory (Kolb 2012 , p. 83). The qualitative methods discussed here support exploratory research.

A close look at the two philosophies and assumptions of quantitative and qualitative research suggests two contradictory world views. The literature has labeled these contradictory views the Incompatibility Theory, which sets up a quantitative versus qualitative tension similar to the seeming separation of art and science or fact and values (Smith 1983a , b ; Guba 1987 ; Smith and Heshusius 1986 ; Howe 1988 ). The incompatibility theory does not make sense in practice. Yin ( 1981 , 1992 , 2011 , 2017 ), a prominent case study scholar, showcases a deductive research methodology that crosses boundaries using both quantaitive and qualitative evidence when appropriate.

6.3 Mixed methods

Turning the “Incompatibility Theory” on its head, Mixed Methods research “combines elements of qualitative and quantitative research approaches … for the broad purposes of breadth and depth of understanding and corroboration” (Johnson et al. 2007 , p. 123). It does this by partnering with philosophical pragmatism. Footnote 6 Pragmatism is productive because “it offers an immediate and useful middle position philosophically and methodologically; it offers a practical and outcome-oriented method of inquiry that is based on action and leads, iteratively, to further action and the elimination of doubt; it offers a method for selecting methodological mixes that can help researchers better answer many of their research questions” (Johnson and Onwuegbunzie 2004 , p. 17). What is theory for the pragmatist “any theoretical model is for the pragmatist, nothing more than a framework through which problems are perceived and subsequently organized ” (Hothersall 2019 , p. 5).

Brendel ( 2009 ) constructed a simple framework to capture the core elements of pragmatism. Brendel’s four “p”’s—practical, pluralism, participatory and provisional help to show the relevance of pragmatism to mixed methods. Pragmatism is purposeful and concerned with the practical consequences. The pluralism of pragmatism overcomes quantitative/qualitative dualism. Instead, it allows for multiple perspectives (including positivism and interpretivism) and, thus, gets around the incompatibility problem. Inquiry should be participatory or inclusive of the many views of participants, hence, it is consistent with multiple realities and is also tied to the common concern of a problematic situation. Finally, all inquiry is provisional . This is compatible with experimental methods, hypothesis testing and consistent with the back and forth of inductive and deductive reasoning. Mixed methods support exploratory research.

Advocates of mixed methods research note that it overcomes the weaknesses and employs the strengths of quantitative and qualitative methods. Quantitative methods provide precision. The pictures and narrative of qualitative techniques add meaning to the numbers. Quantitative analysis can provide a big picture, establish relationships and its results have great generalizability. On the other hand, the “why” behind the explanation is often missing and can be filled in through in-depth interviews. A deeper and more satisfying explanation is possible. Mixed-methods brings the benefits of triangulation or multiple sources of evidence that converge to support a conclusion. It can entertain a “broader and more complete range of research questions” (Johnson and Onwuegbunzie 2004 , p. 21) and can move between inductive and deductive methods. Case studies use multiple forms of evidence and are a natural context for mixed methods.

One thing that seems to be missing from mixed method literature and explicit design is a place for conceptual frameworks. For example, Heyvaert et al. ( 2013 ) examined nine mixed methods studies and found an explicit framework in only two studies (transformative and pragmatic) (p. 663).

7 Theory and hypotheses: where is and what is theory?

Theory is key to deductive research. In essence, empirical deductive methods test theory. Hence, we shift our attention to theory and the role and functions of the hypotheses in theory. Oppenheim and Putnam ( 1958 ) note that “by a ‘theory’ (in the widest sense) we mean any hypothesis, generalization or law (whether deterministic or statistical) or any conjunction of these” (p. 25). Van Evera ( 1997 ) uses a similar and more complex definition “theories are general statements that describe and explain the causes of effects of classes of phenomena. They are composed of causal laws or hypotheses, explanations, and antecedent conditions” (p. 8). Sutton and Staw ( 1995 , p. 376) in a highly cited article “What Theory is Not” assert the that hypotheses should contain logical arguments for “why” the hypothesis is expected. Hypotheses need an underlying causal argument before they can be considered theory. The point of this discussion is not to define theory but to establish the importance of hypotheses in theory.

Explanatory research is implicitly relational (A explains B). The hypotheses of explanatory research lay bare these relationships. Popular definitions of hypotheses capture this relational component. For example, the Cambridge Dictionary defines a hypothesis a “an idea or explanation for something that is based on known facts but has not yet been proven”. Vocabulary.Com’s definition emphasizes explanation, a hypothesis is “an idea or explanation that you then test through study and experimentation”. According to Wikipedia a hypothesis is “a proposed explanation for a phenomenon”. Other definitions remove the relational or explanatory reference. The Oxford English Dictionary defines a hypothesis as a “supposition or conjecture put forth to account for known facts.” Science Buddies defines a hypothesis as a “tentative, testable answer to a scientific question”. According to the Longman Dictionary the hypothesis is “an idea that can be tested to see if it is true or not”. The Urban Dictionary states a hypothesis is “a prediction or educated-guess based on current evidence that is yet be tested”. We argue that the hypotheses of exploratory research— working hypothesis — are not bound by relational expectations. It is this flexibility that distinguishes the working hypothesis.

Sutton and Staw (1995) maintain that hypotheses “serve as crucial bridges between theory and data, making explicit how the variables and relationships that follow from a logical argument will be operationalized” (p. 376, italics added). The highly rated journal, Computers and Education , Twining et al. ( 2017 ) created guidelines for qualitative research as a way to improve soundness and rigor. They identified the lack of alignment between theoretical stance and methodology as a common problem in qualitative research. In addition, they identified a lack of alignment between methodology, design, instruments of data collection and analysis. The authors created a guidance summary, which emphasized the need to enhance coherence throughout elements of research design (Twining et al. 2017 p. 12). Perhaps the bridging function of the hypothesis mentioned by Sutton and Staw (1995) is obscured and often missing in qualitative methods. Working hypotheses can be a tool to overcome this problem.

For reasons, similar to those used by mixed methods scholars, we look to classical pragmatism and the ideas of John Dewey to inform our discussion of theory and working hypotheses. Dewey ( 1938 ) treats theory as a tool of empirical inquiry and uses a map metaphor (p. 136). Theory is like a map that helps a traveler navigate the terrain—and should be judged by its usefulness. “There is no expectation that a map is a true representation of reality. Rather, it is a representation that allows a traveler to reach a destination (achieve a purpose). Hence, theories should be judged by how well they help resolve the problem or achieve a purpose ” (Shields and Rangarajan 2013 , p. 23). Note that we explicitly link theory to the research purpose. Theory is never treated as an unimpeachable Truth, rather it is a helpful tool that organizes inquiry connecting data and problem. Dewey’s approach also expands the definition of theory to include abstractions (categories) outside of causation and explanation. The micro-conceptual frameworks Footnote 7 introduced in Table  1 are a type of theory. We define conceptual frameworks as the “way the ideas are organized to achieve the project’s purpose” (Shields and Rangarajan 2013 p. 24). Micro-conceptual frameworks do this at the very close to the data level of analysis. Micro-conceptual frameworks can direct operationalization and ways to assess measurement or evidence at the individual research study level. Again, the research purpose plays a pivotal role in the functioning of theory (Shields and Tajalli 2006 ).

8 Working hypothesis: methods and data analysis

We move on to answer the remaining questions in the Table  1 . We have established that exploratory research is extremely flexible and idiosyncratic. Given this, we will proceed with a few examples and draw out lessons for developing an exploratory purpose, building a framework and from there identifying data collection techniques and the logics of hypotheses testing and analysis. Early on we noted the value of the Working Hypothesis framework for student empirical research and applied research. The next section uses a masters level student’s work to illustrate the usefulness of working hypotheses as a way to incorporate the literature and structure inquiry. This graduate student was also a mature professional with a research question that emerged from his job and is thus an example of applied research.

Master of Public Administration student, Swift ( 2010 ) worked for a public agency and was responsible for that agency’s sexual harassment training. The agency needed to evaluate its training but had never done so before. He also had never attempted a significant empirical research project. Both of these conditions suggest exploration as a possible approach. He was interested in evaluating the training program and hence the project had a normative sense. Given his job, he already knew a lot about the problem of sexual harassment and sexual harassment training. What he did not know much about was doing empirical research, reviewing the literature or building a framework to evaluate the training (working hypotheses). He wanted a framework that was flexible and comprehensive. In his research, he discovered Lundvall’s ( 2006 ) knowledge taxonomy summarized with four simple ways of knowing ( Know - what, Know - how, Know - why, Know - who ). He asked whether his agency’s training provided the participants with these kinds of knowledge? Lundvall’s categories of knowing became the basis of his working hypotheses. Lundvall’s knowledge taxonomy is well suited for working hypotheses because it is so simple and is easy to understand intuitively. It can also be tailored to the unique problematic situation of the researcher. Swift ( 2010 , pp. 38–39) developed four basic working hypotheses:

WH1: Capital Metro provides adequate know - what knowledge in its sexual harassment training

WH2: Capital Metro provides adequate know - how knowledge in its sexual harassment training

WH3: Capital Metro provides adequate know - why knowledge in its sexual harassment training

WH4: Capital Metro provides adequate know - who knowledge in its sexual harassment training

From here he needed to determine what would determine the different kinds of knowledge. For example, what constitutes “know what” knowledge for sexual harassment training. This is where his knowledge and experience working in the field as well as the literature come into play. According to Lundvall et al. ( 1988 , p. 12) “know what” knowledge is about facts and raw information. Swift ( 2010 ) learned through the literature that laws and rules were the basis for the mandated sexual harassment training. He read about specific anti-discrimination laws and the subsequent rules and regulations derived from the laws. These laws and rules used specific definitions and were enacted within a historical context. Laws, rules, definitions and history became the “facts” of Know-What knowledge for his working hypothesis. To make this clear, he created sub-hypotheses that explicitly took these into account. See how Swift ( 2010 , p. 38) constructed the sub-hypotheses below. Each sub-hypothesis was defended using material from the literature (Swift 2010 , pp. 22–26). The sub-hypotheses can also be easily tied to evidence. For example, he could document that the training covered anti-discrimination laws.

WH1: Capital Metro provides adequate know - what knowledge in its sexual Harassment training

WH1a: The sexual harassment training includes information on anti-discrimination laws (Title VII).

WH1b: The sexual harassment training includes information on key definitions.

WH1c: The sexual harassment training includes information on Capital Metro’s Equal Employment Opportunity and Harassment policy.

WH1d: Capital Metro provides training on sexual harassment history.

Know-How knowledge refers to the ability to do something and involves skills (Lundvall and Johnson 1994 , p. 12). It is a kind of expertise in action. The literature and his experience allowed James Smith to identify skills such as how to file a claim or how to document incidents of sexual harassment as important “know-how” knowledge that should be included in sexual harassment training. Again, these were depicted as sub-hypotheses.

WH2: Capital Metro provides adequate know - how knowledge in its sexual Harassment training

WH2a: Training is provided on how to file and report a claim of harassment

WH2b: Training is provided on how to document sexual harassment situations.

WH2c: Training is provided on how to investigate sexual harassment complaints.

WH2d: Training is provided on how to follow additional harassment policy procedures protocol

Note that the working hypotheses do not specify a relationship but rather are simple declarative sentences. If “know-how” knowledge was found in the sexual harassment training, he would be able to find evidence that participants learned about how to file a claim (WH2a). The working hypothesis provides the bridge between theory and data that Sutton and Staw (1995) found missing in exploratory work. The sub-hypotheses are designed to be refined enough that the researchers would know what to look for and tailor their hunt for evidence. Figure  1 captures the generic sub-hypothesis design.

figure 1

A Common structure used in the development of working hypotheses

When expected evidence is linked to the sub-hypotheses, data, framework and research purpose are aligned. This can be laid out in a planning document that operationalizes the data collection in something akin to an architect’s blueprint. This is where the scholar explicitly develops the alignment between purpose, framework and method (Shields and Rangarajan 2013 ; Shields et al. 2019b ).

Table  2 operationalizes Swift’s working hypotheses (and sub-hypotheses). The table provide clues as to what kind of evidence is needed to determine whether the hypotheses are supported. In this case, Smith used interviews with participants and trainers as well as a review of program documents. Column one repeats the sub-hypothesis, column two specifies the data collection method (here interviews with participants/managers and review of program documents) and column three specifies the unique questions that focus the investigation. For example, the interview questions are provided. In the less precise world of qualitative data, evidence supporting a hypothesis could have varying degrees of strength. This too can be specified.

For Swift’s example, neither the statistics of explanatory research nor the open-ended questions of interpretivist, inductive exploratory research is used. The deductive logic of inquiry here is somewhat intuitive and similar to a detective (Ulriksen and Dadalauri 2016 ). It is also a logic used in international law (Worster 2013 ). It should be noted that the working hypothesis and the corresponding data collection protocol does not stop inquiry and fieldwork outside the framework. The interviews could reveal an unexpected problem with Smith’s training program. The framework provides a very loose and perhaps useful ways to identify and make sense of the data that does not fit the expectations. Researchers using working hypotheses should be sensitive to interesting findings that fall outside their framework. These could be used in future studies, to refine theory or even in this case provide suggestions to improve sexual harassment training. The sensitizing concepts mentioned by Gilgun ( 2015 ) are free to emerge and should be encouraged.

Something akin to working hypotheses are hidden in plain sight in the professional literature. Take for example Kerry Crawford’s ( 2017 ) book Wartime Sexual Violence. Here she explores how basic changes in the way “advocates and decision makers think about and discuss conflict-related sexual violence” (p. 2). She focused on a subsequent shift from silence to action. The shift occurred as wartime sexual violence was reframed as a “weapon of war”. The new frame captured the attention of powerful members of the security community who demanded, initiated, and paid for institutional and policy change. Crawford ( 2017 ) examines the legacy of this key reframing. She develops a six-stage model of potential international responses to incidents of wartime violence. This model is fairly easily converted to working hypotheses and sub-hypotheses. Table  3 shows her model as a set of (non-relational) working hypotheses. She applied this model as a way to gather evidence among cases (e.g., the US response to sexual violence in the Democratic Republic of the Congo) to show the official level of response to sexual violence. Each case study chapter examined evidence to establish whether the case fit the pattern formalized in the working hypotheses. The framework was very useful in her comparative context. The framework allowed for consistent comparative analysis across cases. Her analysis of the three cases went well beyond the material covered in the framework. She freely incorporated useful inductively informed data in her analysis and discussion. The framework, however, allowed for alignment within and across cases.

9 Conclusion

In this article we argued that the exploratory research is also well suited for deductive approaches. By examining the landscape of deductive, exploratory research, we proposed the working hypothesis as a flexible conceptual framework and a useful tool for doing exploratory studies. It has the potential to guide and bring coherence across the steps in the research process. After presenting the nature of exploratory research purpose and how it differs from two types of research purposes identified in the literature—explanation, and description. We focused on answering four different questions in order to show the link between micro-conceptual frameworks and research purposes in a deductive setting. The answers to the four questions are summarized in Table  4 .

Firstly, we argued that working hypothesis and exploration are situated within the pragmatic philosophical perspective. Pragmatism allows for pluralism in theory and data collection techniques, which is compatible with the flexible exploratory purpose. Secondly, after introducing and discussing the four core elements of pragmatism (practical, pluralism, participatory, and provisional), we explained how the working hypothesis informs the methodologies and evidence collection of deductive exploratory research through a presentation of the benefits of triangulation provided by mixed methods research. Thirdly, as is clear from the article title, we introduced the working hypothesis as the micro-conceptual framework for deductive explorative research. We argued that the hypotheses of explorative research, which we call working hypotheses are distinguished from those of the explanatory research, since they do not require a relational component and are not bound by relational expectations. A working hypothesis is extremely flexible and idiosyncratic, and it could be viewed as a statement or group of statements of expectations tested in action depending on the research question. Using examples, we concluded by explaining how working hypotheses inform data collection and analysis for deductive exploratory research.

Crawford’s ( 2017 ) example showed how the structure of working hypotheses provide a framework for comparative case studies. Her criteria for analysis were specified ahead of time and used to frame each case. Thus, her comparisons were systemized across cases. Further, the framework ensured a connection between the data analysis and the literature review. Yet the flexible, working nature of the hypotheses allowed for unexpected findings to be discovered.

The evidence required to test working hypotheses is directed by the research purpose and potentially includes both quantitative and qualitative sources. Thus, all types of evidence, including quantitative methods should be part of the toolbox of deductive, explorative research. We show how the working hypotheses, as a flexible exploratory framework, resolves many seeming dualisms pervasive in the research methods literature.

To conclude, this article has provided an in-depth examination of working hypotheses taking into account philosophical questions and the larger formal research methods literature. By discussing working hypotheses as applied, theoretical tools, we demonstrated that working hypotheses fill a unique niche in the methods literature, since they provide a way to enhance alignment in deductive, explorative studies.

In practice, quantitative scholars often run multivariate analysis on data bases to find out if there are correlations. Hypotheses are tested because the statistical software does the math, not because the scholar has an a priori, relational expectation (hypothesis) well-grounded in the literature and supported by cogent arguments. Hunches are just fine. This is clearly an inductive approach to research and part of the large process of inquiry.

In 1958 , Philosophers of Science, Oppenheim and Putnam use the notion of Working Hypothesis in their title “Unity of Science as Working Hypothesis.” They too, use it as a big picture concept, “unity of science in this sense, can be fully realized constitutes an over-arching meta-scientific hypothesis, which enables one to see a unity in scientific activities that might otherwise appear disconnected or unrelated” (p. 4).

It should be noted that the positivism described in the research methods literature does not resemble philosophical positivism as developed by philosophers like Comte (Whetsell and Shields 2015 ). In the research methods literature “positivism means different things to different people….The term has long been emptied of any precise denotation …and is sometimes affixed to positions actually opposed to those espoused by the philosophers from whom the name derives” (Schrag 1992 , p. 5). For purposes of this paper, we are capturing a few essential ways positivism is presented in the research methods literature. This helps us to position the “working hypothesis” and “exploratory” research within the larger context in contemporary research methods. We are not arguing that the positivism presented here is anything more. The incompatibility theory discussed later, is an outgrowth of this research methods literature…

It should be noted that quantitative researchers often use inductive reasoning. They do this with existing data sets when they run correlations or regression analysis as a way to find relationships. They ask, what does the data tell us?

Qualitative researchers are also associated with phenomenology, hermeneutics, naturalistic inquiry and constructivism.

See Feilzer ( 2010 ), Howe ( 1988 ), Johnson and Onwuegbunzie ( 2004 ), Morgan ( 2007 ), Onwuegbuzie and Leech ( 2005 ), Biddle and Schafft ( 2015 ).

The term conceptual framework is applicable in a broad context (see Ravitch and Riggan 2012 ). The micro-conceptual framework narrows to the specific study and informs data collection (Shields and Rangarajan 2013 ; Shields et al. 2019a ) .

Adler, E., Clark, R.: How It’s Done: An Invitation to Social Research, 3rd edn. Thompson-Wadsworth, Belmont (2008)

Google Scholar  

Arnold, R.W.: Multiple working hypothesis in soil genesis. Soil Sci. Soc. Am. J. 29 (6), 717–724 (1965)

Article   Google Scholar  

Atieno, O.: An analysis of the strengths and limitation of qualitative and quantitative research paradigms. Probl. Educ. 21st Century 13 , 13–18 (2009)

Babbie, E.: The Practice of Social Research, 11th edn. Thompson-Wadsworth, Belmont (2007)

Biddle, C., Schafft, K.A.: Axiology and anomaly in the practice of mixed methods work: pragmatism, valuation, and the transformative paradigm. J. Mixed Methods Res. 9 (4), 320–334 (2015)

Brendel, D.H.: Healing Psychiatry: Bridging the Science/Humanism Divide. MIT Press, Cambridge (2009)

Bryman, A.: Qualitative research on leadership: a critical but appreciative review. Leadersh. Q. 15 (6), 729–769 (2004)

Casula, M.: Under which conditions is cohesion policy effective: proposing an Hirschmanian approach to EU structural funds, Regional & Federal Studies, https://doi.org/10.1080/13597566.2020.1713110 (2020a)

Casula, M.: Economic gowth and cohesion policy implementation in Italy and Spain, Palgrave Macmillan, Cham (2020b)

Ciceri, F., et al.: Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 15 , 1–3 (2020)

Crawford, K.F.: Wartime sexual violence: From silence to condemnation of a weapon of war. Georgetown University Press (2017)

Cronbach, L.: Beyond the two disciplines of scientific psychology American Psychologist. 30 116–127 (1975)

Dewey, J.: The reflex arc concept in psychology. Psychol. Rev. 3 (4), 357 (1896)

Dewey, J.: Logic: The Theory of Inquiry. Henry Holt & Co, New York (1938)

Feilzer, Y.: Doing mixed methods research pragmatically: implications for the rediscovery of pragmatism as a research paradigm. J. Mixed Methods Res. 4 (1), 6–16 (2010)

Gilgun, J.F.: Qualitative research and family psychology. J. Fam. Psychol. 19 (1), 40–50 (2005)

Gilgun, J.F.: Methods for enhancing theory and knowledge about problems, policies, and practice. In: Katherine Briar, Joan Orme., Roy Ruckdeschel., Ian Shaw. (eds.) The Sage handbook of social work research pp. 281–297. Thousand Oaks, CA: Sage (2009)

Gilgun, J.F.: Deductive Qualitative Analysis as Middle Ground: Theory-Guided Qualitative Research. Amazon Digital Services LLC, Seattle (2015)

Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine, Chicago (1967)

Gobo, G.: Re-Conceptualizing Generalization: Old Issues in a New Frame. In: Alasuutari, P., Bickman, L., Brannen, J. (eds.) The Sage Handbook of Social Research Methods, pp. 193–213. Sage, Los Angeles (2008)

Chapter   Google Scholar  

Grinnell, R.M.: Social work research and evaluation: quantitative and qualitative approaches. New York: F.E. Peacock Publishers (2001)

Guba, E.G.: What have we learned about naturalistic evaluation? Eval. Pract. 8 (1), 23–43 (1987)

Guba, E., Lincoln, Y.: Effective Evaluation: Improving the Usefulness of Evaluation Results Through Responsive and Naturalistic Approaches. Jossey-Bass Publishers, San Francisco (1981)

Habib, M.: The neurological basis of developmental dyslexia: an overview and working hypothesis. Brain 123 (12), 2373–2399 (2000)

Heyvaert, M., Maes, B., Onghena, P.: Mixed methods research synthesis: definition, framework, and potential. Qual. Quant. 47 (2), 659–676 (2013)

Hildebrand, D.: Dewey: A Beginners Guide. Oneworld Oxford, Oxford (2008)

Howe, K.R.: Against the quantitative-qualitative incompatibility thesis or dogmas die hard. Edu. Res. 17 (8), 10–16 (1988)

Hothersall, S.J.: Epistemology and social work: enhancing the integration of theory, practice and research through philosophical pragmatism. Eur. J. Social Work 22 (5), 860–870 (2019)

Hyde, K.F.: Recognising deductive processes in qualitative research. Qual. Market Res. Int. J. 3 (2), 82–90 (2000)

Johnson, R.B., Onwuegbuzie, A.J.: Mixed methods research: a research paradigm whose time has come. Educ. Res. 33 (7), 14–26 (2004)

Johnson, R.B., Onwuegbuzie, A.J., Turner, L.A.: Toward a definition of mixed methods research. J. Mixed Methods Res. 1 (2), 112–133 (2007)

Kaplan, A.: The Conduct of Inquiry. Chandler, Scranton (1964)

Kolb, S.M.: Grounded theory and the constant comparative method: valid research strategies for educators. J. Emerg. Trends Educ. Res. Policy Stud. 3 (1), 83–86 (2012)

Levers, M.J.D.: Philosophical paradigms, grounded theory, and perspectives on emergence. Sage Open 3 (4), 2158244013517243 (2013)

Lundvall, B.A.: Knowledge management in the learning economy. In: Danish Research Unit for Industrial Dynamics Working Paper Working Paper, vol. 6, pp. 3–5 (2006)

Lundvall, B.-Å., Johnson, B.: Knowledge management in the learning economy. J. Ind. Stud. 1 (2), 23–42 (1994)

Lundvall, B.-Å., Jenson, M.B., Johnson, B., Lorenz, E.: Forms of Knowledge and Modes of Innovation—From User-Producer Interaction to the National System of Innovation. In: Dosi, G., et al. (eds.) Technical Change and Economic Theory. Pinter Publishers, London (1988)

Maanen, J., Manning, P., Miller, M.: Series editors’ introduction. In: Stebbins, R. (ed.) Exploratory research in the social sciences. pp. v–vi. Thousands Oak, CA: SAGE (2001)

Mackenzie, N., Knipe, S.: Research dilemmas: paradigms, methods and methodology. Issues Educ. Res. 16 (2), 193–205 (2006)

Marlow, C.R.: Research Methods for Generalist Social Work. Thomson Brooks/Cole, New York (2005)

Mead, G.H.: The working hypothesis in social reform. Am. J. Sociol. 5 (3), 367–371 (1899)

Milnes, A.G.: Structure of the Pennine Zone (Central Alps): a new working hypothesis. Geol. Soc. Am. Bull. 85 (11), 1727–1732 (1974)

Morgan, D.L.: Paradigms lost and pragmatism regained: methodological implications of combining qualitative and quantitative methods. J. Mixed Methods Res. 1 (1), 48–76 (2007)

Morse, J.: The significance of saturation. Qual. Health Res. 5 (2), 147–149 (1995)

O’Connor, M.K., Netting, F.E., Thomas, M.L.: Grounded theory: managing the challenge for those facing institutional review board oversight. Qual. Inq. 14 (1), 28–45 (2008)

Onwuegbuzie, A.J., Leech, N.L.: On becoming a pragmatic researcher: The importance of combining quantitative and qualitative research methodologies. Int. J. Soc. Res. Methodol. 8 (5), 375–387 (2005)

Oppenheim, P., Putnam, H.: Unity of science as a working hypothesis. In: Minnesota Studies in the Philosophy of Science, vol. II, pp. 3–36 (1958)

Patten, M.L., Newhart, M.: Understanding Research Methods: An Overview of the Essentials, 2nd edn. Routledge, New York (2000)

Pearse, N.: An illustration of deductive analysis in qualitative research. In: European Conference on Research Methodology for Business and Management Studies, pp. 264–VII. Academic Conferences International Limited (2019)

Prater, D.N., Case, J., Ingram, D.A., Yoder, M.C.: Working hypothesis to redefine endothelial progenitor cells. Leukemia 21 (6), 1141–1149 (2007)

Ravitch, B., Riggan, M.: Reason and Rigor: How Conceptual Frameworks Guide Research. Sage, Beverley Hills (2012)

Reiter, B.: The epistemology and methodology of exploratory social science research: Crossing Popper with Marcuse. In: Government and International Affairs Faculty Publications. Paper 99. http://scholarcommons.usf.edu/gia_facpub/99 (2013)

Ritchie, J., Lewis, J.: Qualitative Research Practice: A Guide for Social Science Students and Researchers. Sage, London (2003)

Schrag, F.: In defense of positivist research paradigms. Educ. Res. 21 (5), 5–8 (1992)

Shields, P.M.: Pragmatism as a philosophy of science: A tool for public administration. Res. Pub. Admin. 41995-225 (1998)

Shields, P.M., Rangarajan, N.: A Playbook for Research Methods: Integrating Conceptual Frameworks and Project Management. New Forums Press (2013)

Shields, P.M., Tajalli, H.: Intermediate theory: the missing link in successful student scholarship. J. Public Aff. Educ. 12 (3), 313–334 (2006)

Shields, P., & Whetsell, T.: Public administration methodology: A pragmatic perspective. In: Raadshelders, J., Stillman, R., (eds). Foundations of Public Administration, pp. 75–92. New York: Melvin and Leigh (2017)

Shields, P., Rangarajan, N., Casula, M.: It is a Working Hypothesis: Searching for Truth in a Post-Truth World (part I). Sotsiologicheskie issledovaniya 10 , 39–47 (2019a)

Shields, P., Rangarajan, N., Casula, M.: It is a Working Hypothesis: Searching for Truth in a Post-Truth World (part 2). Sotsiologicheskie issledovaniya 11 , 40–51 (2019b)

Smith, J.K.: Quantitative versus qualitative research: an attempt to clarify the issue. Educ. Res. 12 (3), 6–13 (1983a)

Smith, J.K.: Quantitative versus interpretive: the problem of conducting social inquiry. In: House, E. (ed.) Philosophy of Evaluation, pp. 27–52. Jossey-Bass, San Francisco (1983b)

Smith, J.K., Heshusius, L.: Closing down the conversation: the end of the quantitative-qualitative debate among educational inquirers. Educ. Res. 15 (1), 4–12 (1986)

Stebbins, R.A.: Exploratory Research in the Social Sciences. Sage, Thousand Oaks (2001)

Book   Google Scholar  

Strydom, H.: An evaluation of the purposes of research in social work. Soc. Work/Maatskaplike Werk 49 (2), 149–164 (2013)

Sutton, R. I., Staw, B.M.: What theory is not. Administrative science quarterly. 371–384 (1995)

Swift, III, J.: Exploring Capital Metro’s Sexual Harassment Training using Dr. Bengt-Ake Lundvall’s taxonomy of knowledge principles. Applied Research Project, Texas State University https://digital.library.txstate.edu/handle/10877/3671 (2010)

Thomas, E., Magilvy, J.K.: Qualitative rigor or research validity in qualitative research. J. Spec. Pediatric Nurs. 16 (2), 151–155 (2011)

Twining, P., Heller, R.S., Nussbaum, M., Tsai, C.C.: Some guidance on conducting and reporting qualitative studies. Comput. Educ. 107 , A1–A9 (2017)

Ulriksen, M., Dadalauri, N.: Single case studies and theory-testing: the knots and dots of the process-tracing method. Int. J. Soc. Res. Methodol. 19 (2), 223–239 (2016)

Van Evera, S.: Guide to Methods for Students of Political Science. Cornell University Press, Ithaca (1997)

Whetsell, T.A., Shields, P.M.: The dynamics of positivism in the study of public administration: a brief intellectual history and reappraisal. Adm. Soc. 47 (4), 416–446 (2015)

Willis, J.W., Jost, M., Nilakanta, R.: Foundations of Qualitative Research: Interpretive and Critical Approaches. Sage, Beverley Hills (2007)

Worster, W.T.: The inductive and deductive methods in customary international law analysis: traditional and modern approaches. Georget. J. Int. Law 45 , 445 (2013)

Yin, R.K.: The case study as a serious research strategy. Knowledge 3 (1), 97–114 (1981)

Yin, R.K.: The case study method as a tool for doing evaluation. Curr. Sociol. 40 (1), 121–137 (1992)

Yin, R.K.: Applications of Case Study Research. Sage, Beverley Hills (2011)

Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage Publications, Beverley Hills (2017)

Download references

Acknowledgements

The authors contributed equally to this work. The authors would like to thank Quality & Quantity’ s editors and the anonymous reviewers for their valuable advice and comments on previous versions of this paper.

Open access funding provided by Alma Mater Studiorum - Università di Bologna within the CRUI-CARE Agreement. There are no funders to report for this submission.

Author information

Authors and affiliations.

Department of Political and Social Sciences, University of Bologna, Strada Maggiore 45, 40125, Bologna, Italy

Mattia Casula

Texas State University, San Marcos, TX, USA

Nandhini Rangarajan & Patricia Shields

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Mattia Casula .

Ethics declarations

Conflict of interest.

No potential conflict of interest was reported by the author.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Casula, M., Rangarajan, N. & Shields, P. The potential of working hypotheses for deductive exploratory research. Qual Quant 55 , 1703–1725 (2021). https://doi.org/10.1007/s11135-020-01072-9

Download citation

Accepted : 05 November 2020

Published : 08 December 2020

Issue Date : October 2021

DOI : https://doi.org/10.1007/s11135-020-01072-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Exploratory research
  • Working hypothesis
  • Deductive qualitative research
  • Find a journal
  • Publish with us
  • Track your research
  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Summary

Research Summary – Structure, Examples and...

Theoretical Framework

Theoretical Framework – Types, Examples and...

Data Analysis

Data Analysis – Process, Methods and Types

Survey Instruments

Survey Instruments – List and Their Uses

Evaluating Research

Evaluating Research – Process, Examples and...

References in Research

References in Research – Types, Examples and...

Definition of a Hypothesis

What it is and how it's used in sociology

  • Key Concepts
  • Major Sociologists
  • News & Issues
  • Research, Samples, and Statistics
  • Recommended Reading
  • Archaeology

A hypothesis is a prediction of what will be found at the outcome of a research project and is typically focused on the relationship between two different variables studied in the research. It is usually based on both theoretical expectations about how things work and already existing scientific evidence.

Within social science, a hypothesis can take two forms. It can predict that there is no relationship between two variables, in which case it is a null hypothesis . Or, it can predict the existence of a relationship between variables, which is known as an alternative hypothesis.

In either case, the variable that is thought to either affect or not affect the outcome is known as the independent variable, and the variable that is thought to either be affected or not is the dependent variable.

Researchers seek to determine whether or not their hypothesis, or hypotheses if they have more than one, will prove true. Sometimes they do, and sometimes they do not. Either way, the research is considered successful if one can conclude whether or not a hypothesis is true. 

Null Hypothesis

A researcher has a null hypothesis when she or he believes, based on theory and existing scientific evidence, that there will not be a relationship between two variables. For example, when examining what factors influence a person's highest level of education within the U.S., a researcher might expect that place of birth, number of siblings, and religion would not have an impact on the level of education. This would mean the researcher has stated three null hypotheses.

Alternative Hypothesis

Taking the same example, a researcher might expect that the economic class and educational attainment of one's parents, and the race of the person in question are likely to have an effect on one's educational attainment. Existing evidence and social theories that recognize the connections between wealth and cultural resources , and how race affects access to rights and resources in the U.S. , would suggest that both economic class and educational attainment of the one's parents would have a positive effect on educational attainment. In this case, economic class and educational attainment of one's parents are independent variables, and one's educational attainment is the dependent variable—it is hypothesized to be dependent on the other two.

Conversely, an informed researcher would expect that being a race other than white in the U.S. is likely to have a negative impact on a person's educational attainment. This would be characterized as a negative relationship, wherein being a person of color has a negative effect on one's educational attainment. In reality, this hypothesis proves true, with the exception of Asian Americans , who go to college at a higher rate than whites do. However, Blacks and Hispanics and Latinos are far less likely than whites and Asian Americans to go to college.

Formulating a Hypothesis

Formulating a hypothesis can take place at the very beginning of a research project , or after a bit of research has already been done. Sometimes a researcher knows right from the start which variables she is interested in studying, and she may already have a hunch about their relationships. Other times, a researcher may have an interest in ​a particular topic, trend, or phenomenon, but he may not know enough about it to identify variables or formulate a hypothesis.

Whenever a hypothesis is formulated, the most important thing is to be precise about what one's variables are, what the nature of the relationship between them might be, and how one can go about conducting a study of them.

Updated by Nicki Lisa Cole, Ph.D

  • Null Hypothesis Examples
  • Examples of Independent and Dependent Variables
  • Difference Between Independent and Dependent Variables
  • What Is a Hypothesis? (Science)
  • Understanding Path Analysis
  • What Are the Elements of a Good Hypothesis?
  • What It Means When a Variable Is Spurious
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How Intervening Variables Work in Sociology
  • Null Hypothesis Definition and Examples
  • Understanding Simple vs Controlled Experiments
  • Scientific Method Vocabulary Terms
  • Null Hypothesis and Alternative Hypothesis
  • Six Steps of the Scientific Method
  • What Are Examples of a Hypothesis?
  • Structural Equation Modeling

Campus Career Club

Follow What Your Heart Says

5 Basic Steps in Formulation of Hypothesis in Research

Abdul Awal

Formulation of a Hypothesis in research is an essential task in the entire Research Process that comes in the third step. A hypothesis is a tentative solution to a research problem or question. Here, we will cover a functional definition of a hypothesis & basic Steps in the formulation of hypotheses for your research.

Research works, in fact, are designed to verify the hypothesis. Therefore, a researcher, of course, would understand the meaning and nature of the hypothesis in order to formulate a hypothesis and then test the hypothesis.

What is Hypothesis in Research?

A hypothesis is a tentative statement of a proposition that the researcher seeks to prove. It’s basically a concrete generalization. Of course, this generalization requires essential characteristics that pertain to an entire class of phenomena.

When a theory is stated as a testable proposition formally and subjects to empirical verification we can define it as a hypothesis. Researchers make a hypothesis on the basis of some earlier theories and some rationale that is generally accepted as true. The hypothesis test finally will decide whether it is true or rejected.

So, to clarify a hypothesis is a statement about the relationship between two or more variables. The researcher set out the variables to prove or disprove. Hypothesis essentially includes three elements. For example-

  • Relationship between variables.

Example of Hypothesis

  • Rewards increase reading achievements
  • Rewards decrease reading achievements
  • Or rewards have no effect on reading achievements

In the above examples- variables are- Rewards & Achievements.

Steps in Formulation of Hypothesis

A hypothesis is a tentative assumption drawn from practical knowledge or theory. A hypothesis is used as a guide in the inquiry of other facts or theories that a researcher does not know. However, the formulation of the hypothesis is one of the most difficult steps in the entire scientific research process.

Therefore, in this regard, we intend to point out the basic steps in the formulation of a hypothesis. We are pretty sure that this guideline will be helpful in your research work.

1. Define Variables

At first, with a view to formulating a hypothesis, you must define your variables. What do you want to test? Will you test that rewards increase reading achievement? Or do rewards decrease reading achievement? Whatever your goals are, they need to be clearly defined, quantifiable, and measurable. This will provide you with a clear idea of what to follow to achieve results.

2. Study In-Depth the Variables

If we do think that your variables are Rewards & Achievements, then you need to intense study how rewards increase reading achievements? An in-depth study, rigorous questions, and data of rewards increase reading achievements will make you able to confirm your hypothesis. Specify dependent and independent variables.

3. Specify the Nature of the Relationship

Then, identify what relationship there exist between the variables. What variable influences the other? That is what is the dependent variable and what is the independent variable? How do Rewards impact achievements? If reward plays a key role in reading achievements, then reward is the independent variable.

4. Identify Study Population

The population in research means the entire group of individuals is going to study. If you want to test how rewards increase reading achievements in the United Kingdom, you need not study the whole population of the United Kingdom. Because the total population does not involve in reading achievements. Therefore, the researcher must identify the study population.

5. Make Sure Variables are Testable

Variables in your hypothesis must be testable. Otherwise, the hypothesis would be worthless. Because your research study must accept or reject a variable. So, variables you must need to test. Testable variables can only be accepted or rejected. Moreover, the sole aim of a research hypothesis is to test variables in the long run.

How to Choose a Research Design?

You might also like

Basic concept of research methodology and method, importance of education in our life, what happens if you don’t read books, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

University of Illinois at Chicago

Make your mouth agua: idioms and the integrated hypothesis

Investigations in language contact: code-switching | funder: dutch research council, usage metrics.

  • Cognitive and computational psychology
  • Linguistics
  • Biological psychology
  • Language, communication and culture

IMAGES

  1. Hypothesis Formulation

    formulation of working hypothesis

  2. Hypothesis Formulation

    formulation of working hypothesis

  3. Ppt e module on 'formulation of hypothesis'

    formulation of working hypothesis

  4. Formulation of hypothesis and relevant data table (see online version

    formulation of working hypothesis

  5. Ppt e module on 'formulation of hypothesis'

    formulation of working hypothesis

  6. Hypothesis specification and formulation for research

    formulation of working hypothesis

VIDEO

  1. Formulation of Hypothesis and Research questions

  2. Formulation of a Hypothesis

  3. Formulation of Hypothesis

  4. RESEARCH #HYPOTHESIS #CLASS BY DR.RS MOURYA FOR BAMS FINAL STUDENTS

  5. What Is A Hypothesis?

  6. Formulation of Hypothesis

COMMENTS

  1. Formulating Hypotheses for Different Study Designs

    Formulating Hypotheses for Different Study Designs. Generating a testable working hypothesis is the first step towards conducting original research. Such research may prove or disprove the proposed hypothesis. Case reports, case series, online surveys and other observational studies, clinical trials, and narrative reviews help to generate ...

  2. 1.1: The Working Hypothesis

    In between the statement of a Working Hypothesis and the creation of the 95% confidence intervals used to create this means plot is a 7-step process of statistical hypothesis testing, presented in the following section. This page titled 1.1: The Working Hypothesis is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated ...

  3. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  4. Working hypothesis

    A working hypothesis is a hypothesis that is provisionally accepted as a basis for further ongoing research in the hope that a tenable theory will be produced, even if the hypothesis ultimately fails. Like all hypotheses, a working hypothesis is constructed as a statement of expectations, which can be linked to deductive, exploratory research in empirical investigation and is often used as a ...

  5. PDF 1. Formulation of Research Hypothesis with student samples

    Your hypothesis is what you propose to "prove" by your research. As a result of your research, you will arrive at a conclusion, a theory, or understanding that will be useful or applicable beyond the research itself. 3. Avoid judgmental words in your hypothesis. Value judgments are subjective and are not appropriate for a hypothesis.

  6. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  7. Research Hypothesis: Definition, Types, Examples and Quick Tips

    6. Empirical hypothesis. Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess. Say, the hypothesis is "Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12."

  8. PDF DEVELOPING HYPOTHESIS AND RESEARCH QUESTIONS

    "A hypothesis is a conjectural statement of the relation between two or more variables". (Kerlinger, 1956) "Hypothesis is a formal statement that presents the expected relationship between an independent and dependent variable."(Creswell, 1994) "A research question is essentially a hypothesis asked in the form of a question."

  9. How Do You Formulate (Important) Hypotheses?

    Shifting to the Hypothesis Formulation and Testing Path. Research questions can play an important role in the research process. They provide a succinct way of capturing your research interests and communicating them to others. When colleagues want to know about your work, they will often ask "What are your research questions?"

  10. Formulating Research Hypothesis and Objective

    Abstract. Formulating a research hypothesis and objectives is the first and foremost step in any research process as they provide a clear direction and purpose for your study. In this chapter, we shall learn about formulating an ideal research hypothesis and objectives. Formulation and development of the hypothesis and objectives take place ...

  11. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  12. PDF HYPOTHESIS: MEANING, TYPES AND FORMULATION

    various types such as working, scientific, alternative, research, null or statistical hypothesis. A hypothesis can virtually relate to anything under the sun. Hence, a great caution and practical approach needs to be adopted while formulating a hypothesis. Two basic methods of hypothesis formulation are qualitative method and quantitative method.

  13. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  14. Scientific hypothesis

    The formulation and testing of a hypothesis is part of the scientific method, the approach scientists use when attempting to understand and test ideas about natural phenomena. The generation of a hypothesis frequently is described as a creative process and is based on existing scientific knowledge, intuition , or experience.

  15. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  16. The potential of working hypotheses for deductive ...

    The working hypothesis provides the bridge between theory and data that Sutton and Staw (1995) found missing in exploratory work. The sub-hypotheses are designed to be refined enough that the researchers would know what to look for and tailor their hunt for evidence. Figure 1 captures the generic sub-hypothesis design.

  17. (PDF) Research and working hypotheses

    It presents three possible access points for the formulation of working hypotheses to be tested in the course of an empirical analysis of the explanatory factors behind the six policy products. It ...

  18. What is a Hypothesis

    The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the ...

  19. What a Hypothesis Is and How to Formulate One

    A hypothesis is a prediction of what will be found at the outcome of a research project and is typically focused on the relationship between two different variables studied in the research. It is usually based on both theoretical expectations about how things work and already existing scientific evidence. Within social science, a hypothesis can ...

  20. (PDF) FORMULATING AND TESTING HYPOTHESIS

    A hypothesis provides the frame work for drawing conclusions. ... Therefore formulation of hypothesis is a crucial ste p of this type of studies. Chapter ...

  21. Full article: Concepts as a working hypothesis

    4 Working hypotheses. A working hypothesis is a hypothesis that is provisionally accepted as a basis for further research in the hope that a tenable theory will be produced, even if the hypothesis ultimately fails. In this way, a working hypothesis is an accepted starting point for further research.

  22. 5 Basic Steps in Formulation of Hypothesis in Research

    However, the formulation of the hypothesis is one of the most difficult steps in the entire scientific research process. Therefore, in this regard, we intend to point out the basic steps in the formulation of a hypothesis. We are pretty sure that this guideline will be helpful in your research work. 1. Define Variables

  23. How Does the Null Hypothesis Work?

    Usually, statistical tests have two hypotheses: the null and the alternative. The null hypothesis is the hypothesis of "no effect," i.e., the hypothesis opposite to the effect we want to test for. In contrast, the alternative hypothesis is the one positing the existence of the effect of interest. 3.

  24. Make your mouth agua: idioms and the integrated hypothesis

    Recent work argues that a bilingual linguistic system is fully integrated in one competence system and does not consist of two separate, autonomous systems as is commonly assumed (see Goldrick et al 2016, Grimstad et al 2014, López 2020, Riksam 2017). Here, we explore the organization of the lexicon within the integration hypothesis using data based on idioms and code-switching. The working ...

  25. IMF Working Papers

    This study investigates the relationship between the adoption of renewable energy and the sensitivity of inflation to changes in fossil energy prices across 69 countries over a 50-year period from 1973 to 2022. In the wake of recently increased oil and gas prices leading to a surge in inflation, the notion of a "divine coincidence" suggests that higher levels of renewable energy adoption ...