REALIZING THE PROMISE:

Leading up to the 75th anniversary of the UN General Assembly, this “Realizing the promise: How can education technology improve learning for all?” publication kicks off the Center for Universal Education’s first playbook in a series to help improve education around the world.

It is intended as an evidence-based tool for ministries of education, particularly in low- and middle-income countries, to adopt and more successfully invest in education technology.

While there is no single education initiative that will achieve the same results everywhere—as school systems differ in learners and educators, as well as in the availability and quality of materials and technologies—an important first step is understanding how technology is used given specific local contexts and needs.

The surveys in this playbook are designed to be adapted to collect this information from educators, learners, and school leaders and guide decisionmakers in expanding the use of technology.  

Introduction

While technology has disrupted most sectors of the economy and changed how we communicate, access information, work, and even play, its impact on schools, teaching, and learning has been much more limited. We believe that this limited impact is primarily due to technology being been used to replace analog tools, without much consideration given to playing to technology’s comparative advantages. These comparative advantages, relative to traditional “chalk-and-talk” classroom instruction, include helping to scale up standardized instruction, facilitate differentiated instruction, expand opportunities for practice, and increase student engagement. When schools use technology to enhance the work of educators and to improve the quality and quantity of educational content, learners will thrive.

Further, COVID-19 has laid bare that, in today’s environment where pandemics and the effects of climate change are likely to occur, schools cannot always provide in-person education—making the case for investing in education technology.

Here we argue for a simple yet surprisingly rare approach to education technology that seeks to:

  • Understand the needs, infrastructure, and capacity of a school system—the diagnosis;
  • Survey the best available evidence on interventions that match those conditions—the evidence; and
  • Closely monitor the results of innovations before they are scaled up—the prognosis.

RELATED CONTENT

essay about school technology

Podcast: How education technology can improve learning for all students

essay about school technology

To make ed tech work, set clear goals, review the evidence, and pilot before you scale

The framework.

Our approach builds on a simple yet intuitive theoretical framework created two decades ago by two of the most prominent education researchers in the United States, David K. Cohen and Deborah Loewenberg Ball. They argue that what matters most to improve learning is the interactions among educators and learners around educational materials. We believe that the failed school-improvement efforts in the U.S. that motivated Cohen and Ball’s framework resemble the ed-tech reforms in much of the developing world to date in the lack of clarity improving the interactions between educators, learners, and the educational material. We build on their framework by adding parents as key agents that mediate the relationships between learners and educators and the material (Figure 1).

Figure 1: The instructional core

Adapted from Cohen and Ball (1999)

As the figure above suggests, ed-tech interventions can affect the instructional core in a myriad of ways. Yet, just because technology can do something, it does not mean it should. School systems in developing countries differ along many dimensions and each system is likely to have different needs for ed-tech interventions, as well as different infrastructure and capacity to enact such interventions.

The diagnosis:

How can school systems assess their needs and preparedness.

A useful first step for any school system to determine whether it should invest in education technology is to diagnose its:

  • Specific needs to improve student learning (e.g., raising the average level of achievement, remediating gaps among low performers, and challenging high performers to develop higher-order skills);
  • Infrastructure to adopt technology-enabled solutions (e.g., electricity connection, availability of space and outlets, stock of computers, and Internet connectivity at school and at learners’ homes); and
  • Capacity to integrate technology in the instructional process (e.g., learners’ and educators’ level of familiarity and comfort with hardware and software, their beliefs about the level of usefulness of technology for learning purposes, and their current uses of such technology).

Before engaging in any new data collection exercise, school systems should take full advantage of existing administrative data that could shed light on these three main questions. This could be in the form of internal evaluations but also international learner assessments, such as the Program for International Student Assessment (PISA), the Trends in International Mathematics and Science Study (TIMSS), and/or the Progress in International Literacy Study (PIRLS), and the Teaching and Learning International Study (TALIS). But if school systems lack information on their preparedness for ed-tech reforms or if they seek to complement existing data with a richer set of indicators, we developed a set of surveys for learners, educators, and school leaders. Download the full report to see how we map out the main aspects covered by these surveys, in hopes of highlighting how they could be used to inform decisions around the adoption of ed-tech interventions.

The evidence:

How can school systems identify promising ed-tech interventions.

There is no single “ed-tech” initiative that will achieve the same results everywhere, simply because school systems differ in learners and educators, as well as in the availability and quality of materials and technologies. Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages and complement the work of educators to accelerate student learning (Figure 2). These comparative advantages include:

  • Scaling up quality instruction, such as through prerecorded quality lessons.
  • Facilitating differentiated instruction, through, for example, computer-adaptive learning and live one-on-one tutoring.
  • Expanding opportunities to practice.
  • Increasing learner engagement through videos and games.

Figure 2: Comparative advantages of technology

Here we review the evidence on ed-tech interventions from 37 studies in 20 countries*, organizing them by comparative advantage. It’s important to note that ours is not the only way to classify these interventions (e.g., video tutorials could be considered as a strategy to scale up instruction or increase learner engagement), but we believe it may be useful to highlight the needs that they could address and why technology is well positioned to do so.

When discussing specific studies, we report the magnitude of the effects of interventions using standard deviations (SDs). SDs are a widely used metric in research to express the effect of a program or policy with respect to a business-as-usual condition (e.g., test scores). There are several ways to make sense of them. One is to categorize the magnitude of the effects based on the results of impact evaluations. In developing countries, effects below 0.1 SDs are considered to be small, effects between 0.1 and 0.2 SDs are medium, and those above 0.2 SDs are large (for reviews that estimate the average effect of groups of interventions, called “meta analyses,” see e.g., Conn, 2017; Kremer, Brannen, & Glennerster, 2013; McEwan, 2014; Snilstveit et al., 2015; Evans & Yuan, 2020.)

*In surveying the evidence, we began by compiling studies from prior general and ed-tech specific evidence reviews that some of us have written and from ed-tech reviews conducted by others. Then, we tracked the studies cited by the ones we had previously read and reviewed those, as well. In identifying studies for inclusion, we focused on experimental and quasi-experimental evaluations of education technology interventions from pre-school to secondary school in low- and middle-income countries that were released between 2000 and 2020. We only included interventions that sought to improve student learning directly (i.e., students’ interaction with the material), as opposed to interventions that have impacted achievement indirectly, by reducing teacher absence or increasing parental engagement. This process yielded 37 studies in 20 countries (see the full list of studies in Appendix B).

Scaling up standardized instruction

One of the ways in which technology may improve the quality of education is through its capacity to deliver standardized quality content at scale. This feature of technology may be particularly useful in three types of settings: (a) those in “hard-to-staff” schools (i.e., schools that struggle to recruit educators with the requisite training and experience—typically, in rural and/or remote areas) (see, e.g., Urquiola & Vegas, 2005); (b) those in which many educators are frequently absent from school (e.g., Chaudhury, Hammer, Kremer, Muralidharan, & Rogers, 2006; Muralidharan, Das, Holla, & Mohpal, 2017); and/or (c) those in which educators have low levels of pedagogical and subject matter expertise (e.g., Bietenbeck, Piopiunik, & Wiederhold, 2018; Bold et al., 2017; Metzler & Woessmann, 2012; Santibañez, 2006) and do not have opportunities to observe and receive feedback (e.g., Bruns, Costa, & Cunha, 2018; Cilliers, Fleisch, Prinsloo, & Taylor, 2018). Technology could address this problem by: (a) disseminating lessons delivered by qualified educators to a large number of learners (e.g., through prerecorded or live lessons); (b) enabling distance education (e.g., for learners in remote areas and/or during periods of school closures); and (c) distributing hardware preloaded with educational materials.

Prerecorded lessons

Technology seems to be well placed to amplify the impact of effective educators by disseminating their lessons. Evidence on the impact of prerecorded lessons is encouraging, but not conclusive. Some initiatives that have used short instructional videos to complement regular instruction, in conjunction with other learning materials, have raised student learning on independent assessments. For example, Beg et al. (2020) evaluated an initiative in Punjab, Pakistan in which grade 8 classrooms received an intervention that included short videos to substitute live instruction, quizzes for learners to practice the material from every lesson, tablets for educators to learn the material and follow the lesson, and LED screens to project the videos onto a classroom screen. After six months, the intervention improved the performance of learners on independent tests of math and science by 0.19 and 0.24 SDs, respectively but had no discernible effect on the math and science section of Punjab’s high-stakes exams.

One study suggests that approaches that are far less technologically sophisticated can also improve learning outcomes—especially, if the business-as-usual instruction is of low quality. For example, Naslund-Hadley, Parker, and Hernandez-Agramonte (2014) evaluated a preschool math program in Cordillera, Paraguay that used audio segments and written materials four days per week for an hour per day during the school day. After five months, the intervention improved math scores by 0.16 SDs, narrowing gaps between low- and high-achieving learners, and between those with and without educators with formal training in early childhood education.

Yet, the integration of prerecorded material into regular instruction has not always been successful. For example, de Barros (2020) evaluated an intervention that combined instructional videos for math and science with infrastructure upgrades (e.g., two “smart” classrooms, two TVs, and two tablets), printed workbooks for students, and in-service training for educators of learners in grades 9 and 10 in Haryana, India (all materials were mapped onto the official curriculum). After 11 months, the intervention negatively impacted math achievement (by 0.08 SDs) and had no effect on science (with respect to business as usual classes). It reduced the share of lesson time that educators devoted to instruction and negatively impacted an index of instructional quality. Likewise, Seo (2017) evaluated several combinations of infrastructure (solar lights and TVs) and prerecorded videos (in English and/or bilingual) for grade 11 students in northern Tanzania and found that none of the variants improved student learning, even when the videos were used. The study reports effects from the infrastructure component across variants, but as others have noted (Muralidharan, Romero, & Wüthrich, 2019), this approach to estimating impact is problematic.

A very similar intervention delivered after school hours, however, had sizeable effects on learners’ basic skills. Chiplunkar, Dhar, and Nagesh (2020) evaluated an initiative in Chennai (the capital city of the state of Tamil Nadu, India) delivered by the same organization as above that combined short videos that explained key concepts in math and science with worksheets, facilitator-led instruction, small groups for peer-to-peer learning, and occasional career counseling and guidance for grade 9 students. These lessons took place after school for one hour, five times a week. After 10 months, it had large effects on learners’ achievement as measured by tests of basic skills in math and reading, but no effect on a standardized high-stakes test in grade 10 or socio-emotional skills (e.g., teamwork, decisionmaking, and communication).

Drawing general lessons from this body of research is challenging for at least two reasons. First, all of the studies above have evaluated the impact of prerecorded lessons combined with several other components (e.g., hardware, print materials, or other activities). Therefore, it is possible that the effects found are due to these additional components, rather than to the recordings themselves, or to the interaction between the two (see Muralidharan, 2017 for a discussion of the challenges of interpreting “bundled” interventions). Second, while these studies evaluate some type of prerecorded lessons, none examines the content of such lessons. Thus, it seems entirely plausible that the direction and magnitude of the effects depends largely on the quality of the recordings (e.g., the expertise of the educator recording it, the amount of preparation that went into planning the recording, and its alignment with best teaching practices).

These studies also raise three important questions worth exploring in future research. One of them is why none of the interventions discussed above had effects on high-stakes exams, even if their materials are typically mapped onto the official curriculum. It is possible that the official curricula are simply too challenging for learners in these settings, who are several grade levels behind expectations and who often need to reinforce basic skills (see Pritchett & Beatty, 2015). Another question is whether these interventions have long-term effects on teaching practices. It seems plausible that, if these interventions are deployed in contexts with low teaching quality, educators may learn something from watching the videos or listening to the recordings with learners. Yet another question is whether these interventions make it easier for schools to deliver instruction to learners whose native language is other than the official medium of instruction.

Distance education

Technology can also allow learners living in remote areas to access education. The evidence on these initiatives is encouraging. For example, Johnston and Ksoll (2017) evaluated a program that broadcasted live instruction via satellite to rural primary school students in the Volta and Greater Accra regions of Ghana. For this purpose, the program also equipped classrooms with the technology needed to connect to a studio in Accra, including solar panels, a satellite modem, a projector, a webcam, microphones, and a computer with interactive software. After two years, the intervention improved the numeracy scores of students in grades 2 through 4, and some foundational literacy tasks, but it had no effect on attendance or classroom time devoted to instruction, as captured by school visits. The authors interpreted these results as suggesting that the gains in achievement may be due to improving the quality of instruction that children received (as opposed to increased instructional time). Naik, Chitre, Bhalla, and Rajan (2019) evaluated a similar program in the Indian state of Karnataka and also found positive effects on learning outcomes, but it is not clear whether those effects are due to the program or due to differences in the groups of students they compared to estimate the impact of the initiative.

In one context (Mexico), this type of distance education had positive long-term effects. Navarro-Sola (2019) took advantage of the staggered rollout of the telesecundarias (i.e., middle schools with lessons broadcasted through satellite TV) in 1968 to estimate its impact. The policy had short-term effects on students’ enrollment in school: For every telesecundaria per 50 children, 10 students enrolled in middle school and two pursued further education. It also had a long-term influence on the educational and employment trajectory of its graduates. Each additional year of education induced by the policy increased average income by nearly 18 percent. This effect was attributable to more graduates entering the labor force and shifting from agriculture and the informal sector. Similarly, Fabregas (2019) leveraged a later expansion of this policy in 1993 and found that each additional telesecundaria per 1,000 adolescents led to an average increase of 0.2 years of education, and a decline in fertility for women, but no conclusive evidence of long-term effects on labor market outcomes.

It is crucial to interpret these results keeping in mind the settings where the interventions were implemented. As we mention above, part of the reason why they have proven effective is that the “counterfactual” conditions for learning (i.e., what would have happened to learners in the absence of such programs) was either to not have access to schooling or to be exposed to low-quality instruction. School systems interested in taking up similar interventions should assess the extent to which their learners (or parts of their learner population) find themselves in similar conditions to the subjects of the studies above. This illustrates the importance of assessing the needs of a system before reviewing the evidence.

Preloaded hardware

Technology also seems well positioned to disseminate educational materials. Specifically, hardware (e.g., desktop computers, laptops, or tablets) could also help deliver educational software (e.g., word processing, reference texts, and/or games). In theory, these materials could not only undergo a quality assurance review (e.g., by curriculum specialists and educators), but also draw on the interactions with learners for adjustments (e.g., identifying areas needing reinforcement) and enable interactions between learners and educators.

In practice, however, most initiatives that have provided learners with free computers, laptops, and netbooks do not leverage any of the opportunities mentioned above. Instead, they install a standard set of educational materials and hope that learners find them helpful enough to take them up on their own. Students rarely do so, and instead use the laptops for recreational purposes—often, to the detriment of their learning (see, e.g., Malamud & Pop-Eleches, 2011). In fact, free netbook initiatives have not only consistently failed to improve academic achievement in math or language (e.g., Cristia et al., 2017), but they have had no impact on learners’ general computer skills (e.g., Beuermann et al., 2015). Some of these initiatives have had small impacts on cognitive skills, but the mechanisms through which those effects occurred remains unclear.

To our knowledge, the only successful deployment of a free laptop initiative was one in which a team of researchers equipped the computers with remedial software. Mo et al. (2013) evaluated a version of the One Laptop per Child (OLPC) program for grade 3 students in migrant schools in Beijing, China in which the laptops were loaded with a remedial software mapped onto the national curriculum for math (similar to the software products that we discuss under “practice exercises” below). After nine months, the program improved math achievement by 0.17 SDs and computer skills by 0.33 SDs. If a school system decides to invest in free laptops, this study suggests that the quality of the software on the laptops is crucial.

To date, however, the evidence suggests that children do not learn more from interacting with laptops than they do from textbooks. For example, Bando, Gallego, Gertler, and Romero (2016) compared the effect of free laptop and textbook provision in 271 elementary schools in disadvantaged areas of Honduras. After seven months, students in grades 3 and 6 who had received the laptops performed on par with those who had received the textbooks in math and language. Further, even if textbooks essentially become obsolete at the end of each school year, whereas laptops can be reloaded with new materials for each year, the costs of laptop provision (not just the hardware, but also the technical assistance, Internet, and training associated with it) are not yet low enough to make them a more cost-effective way of delivering content to learners.

Evidence on the provision of tablets equipped with software is encouraging but limited. For example, de Hoop et al. (2020) evaluated a composite intervention for first grade students in Zambia’s Eastern Province that combined infrastructure (electricity via solar power), hardware (projectors and tablets), and educational materials (lesson plans for educators and interactive lessons for learners, both loaded onto the tablets and mapped onto the official Zambian curriculum). After 14 months, the intervention had improved student early-grade reading by 0.4 SDs, oral vocabulary scores by 0.25 SDs, and early-grade math by 0.22 SDs. It also improved students’ achievement by 0.16 on a locally developed assessment. The multifaceted nature of the program, however, makes it challenging to identify the components that are driving the positive effects. Pitchford (2015) evaluated an intervention that provided tablets equipped with educational “apps,” to be used for 30 minutes per day for two months to develop early math skills among students in grades 1 through 3 in Lilongwe, Malawi. The evaluation found positive impacts in math achievement, but the main study limitation is that it was conducted in a single school.

Facilitating differentiated instruction

Another way in which technology may improve educational outcomes is by facilitating the delivery of differentiated or individualized instruction. Most developing countries massively expanded access to schooling in recent decades by building new schools and making education more affordable, both by defraying direct costs, as well as compensating for opportunity costs (Duflo, 2001; World Bank, 2018). These initiatives have not only rapidly increased the number of learners enrolled in school, but have also increased the variability in learner’ preparation for schooling. Consequently, a large number of learners perform well below grade-based curricular expectations (see, e.g., Duflo, Dupas, & Kremer, 2011; Pritchett & Beatty, 2015). These learners are unlikely to get much from “one-size-fits-all” instruction, in which a single educator delivers instruction deemed appropriate for the middle (or top) of the achievement distribution (Banerjee & Duflo, 2011). Technology could potentially help these learners by providing them with: (a) instruction and opportunities for practice that adjust to the level and pace of preparation of each individual (known as “computer-adaptive learning” (CAL)); or (b) live, one-on-one tutoring.

Computer-adaptive learning

One of the main comparative advantages of technology is its ability to diagnose students’ initial learning levels and assign students to instruction and exercises of appropriate difficulty. No individual educator—no matter how talented—can be expected to provide individualized instruction to all learners in his/her class simultaneously . In this respect, technology is uniquely positioned to complement traditional teaching. This use of technology could help learners master basic skills and help them get more out of schooling.

Although many software products evaluated in recent years have been categorized as CAL, many rely on a relatively coarse level of differentiation at an initial stage (e.g., a diagnostic test) without further differentiation. We discuss these initiatives under the category of “increasing opportunities for practice” below. CAL initiatives complement an initial diagnostic with dynamic adaptation (i.e., at each response or set of responses from learners) to adjust both the initial level of difficulty and rate at which it increases or decreases, depending on whether learners’ responses are correct or incorrect.

Existing evidence on this specific type of programs is highly promising. Most famously, Banerjee et al. (2007) evaluated CAL software in Vadodara, in the Indian state of Gujarat, in which grade 4 students were offered two hours of shared computer time per week before and after school, during which they played games that involved solving math problems. The level of difficulty of such problems adjusted based on students’ answers. This program improved math achievement by 0.35 and 0.47 SDs after one and two years of implementation, respectively. Consistent with the promise of personalized learning, the software improved achievement for all students. In fact, one year after the end of the program, students assigned to the program still performed 0.1 SDs better than those assigned to a business as usual condition. More recently, Muralidharan, et al. (2019) evaluated a “blended learning” initiative in which students in grades 4 through 9 in Delhi, India received 45 minutes of interaction with CAL software for math and language, and 45 minutes of small group instruction before or after going to school. After only 4.5 months, the program improved achievement by 0.37 SDs in math and 0.23 SDs in Hindi. While all learners benefited from the program in absolute terms, the lowest performing learners benefited the most in relative terms, since they were learning very little in school.

We see two important limitations from this body of research. First, to our knowledge, none of these initiatives has been evaluated when implemented during the school day. Therefore, it is not possible to distinguish the effect of the adaptive software from that of additional instructional time. Second, given that most of these programs were facilitated by local instructors, attempts to distinguish the effect of the software from that of the instructors has been mostly based on noncausal evidence. A frontier challenge in this body of research is to understand whether CAL software can increase the effectiveness of school-based instruction by substituting part of the regularly scheduled time for math and language instruction.

Live one-on-one tutoring

Recent improvements in the speed and quality of videoconferencing, as well as in the connectivity of remote areas, have enabled yet another way in which technology can help personalization: live (i.e., real-time) one-on-one tutoring. While the evidence on in-person tutoring is scarce in developing countries, existing studies suggest that this approach works best when it is used to personalize instruction (see, e.g., Banerjee et al., 2007; Banerji, Berry, & Shotland, 2015; Cabezas, Cuesta, & Gallego, 2011).

There are almost no studies on the impact of online tutoring—possibly, due to the lack of hardware and Internet connectivity in low- and middle-income countries. One exception is Chemin and Oledan (2020)’s recent evaluation of an online tutoring program for grade 6 students in Kianyaga, Kenya to learn English from volunteers from a Canadian university via Skype ( videoconferencing software) for one hour per week after school. After 10 months, program beneficiaries performed 0.22 SDs better in a test of oral comprehension, improved their comfort using technology for learning, and became more willing to engage in cross-cultural communication. Importantly, while the tutoring sessions used the official English textbooks and sought in part to help learners with their homework, tutors were trained on several strategies to teach to each learner’s individual level of preparation, focusing on basic skills if necessary. To our knowledge, similar initiatives within a country have not yet been rigorously evaluated.

Expanding opportunities for practice

A third way in which technology may improve the quality of education is by providing learners with additional opportunities for practice. In many developing countries, lesson time is primarily devoted to lectures, in which the educator explains the topic and the learners passively copy explanations from the blackboard. This setup leaves little time for in-class practice. Consequently, learners who did not understand the explanation of the material during lecture struggle when they have to solve homework assignments on their own. Technology could potentially address this problem by allowing learners to review topics at their own pace.

Practice exercises

Technology can help learners get more out of traditional instruction by providing them with opportunities to implement what they learn in class. This approach could, in theory, allow some learners to anchor their understanding of the material through trial and error (i.e., by realizing what they may not have understood correctly during lecture and by getting better acquainted with special cases not covered in-depth in class).

Existing evidence on practice exercises reflects both the promise and the limitations of this use of technology in developing countries. For example, Lai et al. (2013) evaluated a program in Shaanxi, China where students in grades 3 and 5 were required to attend two 40-minute remedial sessions per week in which they first watched videos that reviewed the material that had been introduced in their math lessons that week and then played games to practice the skills introduced in the video. After four months, the intervention improved math achievement by 0.12 SDs. Many other evaluations of comparable interventions have found similar small-to-moderate results (see, e.g., Lai, Luo, Zhang, Huang, & Rozelle, 2015; Lai et al., 2012; Mo et al., 2015; Pitchford, 2015). These effects, however, have been consistently smaller than those of initiatives that adjust the difficulty of the material based on students’ performance (e.g., Banerjee et al., 2007; Muralidharan, et al., 2019). We hypothesize that these programs do little for learners who perform several grade levels behind curricular expectations, and who would benefit more from a review of foundational concepts from earlier grades.

We see two important limitations from this research. First, most initiatives that have been evaluated thus far combine instructional videos with practice exercises, so it is hard to know whether their effects are driven by the former or the latter. In fact, the program in China described above allowed learners to ask their peers whenever they did not understand a difficult concept, so it potentially also captured the effect of peer-to-peer collaboration. To our knowledge, no studies have addressed this gap in the evidence.

Second, most of these programs are implemented before or after school, so we cannot distinguish the effect of additional instructional time from that of the actual opportunity for practice. The importance of this question was first highlighted by Linden (2008), who compared two delivery mechanisms for game-based remedial math software for students in grades 2 and 3 in a network of schools run by a nonprofit organization in Gujarat, India: one in which students interacted with the software during the school day and another one in which students interacted with the software before or after school (in both cases, for three hours per day). After a year, the first version of the program had negatively impacted students’ math achievement by 0.57 SDs and the second one had a null effect. This study suggested that computer-assisted learning is a poor substitute for regular instruction when it is of high quality, as was the case in this well-functioning private network of schools.

In recent years, several studies have sought to remedy this shortcoming. Mo et al. (2014) were among the first to evaluate practice exercises delivered during the school day. They evaluated an initiative in Shaanxi, China in which students in grades 3 and 5 were required to interact with the software similar to the one in Lai et al. (2013) for two 40-minute sessions per week. The main limitation of this study, however, is that the program was delivered during regularly scheduled computer lessons, so it could not determine the impact of substituting regular math instruction. Similarly, Mo et al. (2020) evaluated a self-paced and a teacher-directed version of a similar program for English for grade 5 students in Qinghai, China. Yet, the key shortcoming of this study is that the teacher-directed version added several components that may also influence achievement, such as increased opportunities for teachers to provide students with personalized assistance when they struggled with the material. Ma, Fairlie, Loyalka, and Rozelle (2020) compared the effectiveness of additional time-delivered remedial instruction for students in grades 4 to 6 in Shaanxi, China through either computer-assisted software or using workbooks. This study indicates whether additional instructional time is more effective when using technology, but it does not address the question of whether school systems may improve the productivity of instructional time during the school day by substituting educator-led with computer-assisted instruction.

Increasing learner engagement

Another way in which technology may improve education is by increasing learners’ engagement with the material. In many school systems, regular “chalk and talk” instruction prioritizes time for educators’ exposition over opportunities for learners to ask clarifying questions and/or contribute to class discussions. This, combined with the fact that many developing-country classrooms include a very large number of learners (see, e.g., Angrist & Lavy, 1999; Duflo, Dupas, & Kremer, 2015), may partially explain why the majority of those students are several grade levels behind curricular expectations (e.g., Muralidharan, et al., 2019; Muralidharan & Zieleniak, 2014; Pritchett & Beatty, 2015). Technology could potentially address these challenges by: (a) using video tutorials for self-paced learning and (b) presenting exercises as games and/or gamifying practice.

Video tutorials

Technology can potentially increase learner effort and understanding of the material by finding new and more engaging ways to deliver it. Video tutorials designed for self-paced learning—as opposed to videos for whole class instruction, which we discuss under the category of “prerecorded lessons” above—can increase learner effort in multiple ways, including: allowing learners to focus on topics with which they need more help, letting them correct errors and misconceptions on their own, and making the material appealing through visual aids. They can increase understanding by breaking the material into smaller units and tackling common misconceptions.

In spite of the popularity of instructional videos, there is relatively little evidence on their effectiveness. Yet, two recent evaluations of different versions of the Khan Academy portal, which mainly relies on instructional videos, offer some insight into their impact. First, Ferman, Finamor, and Lima (2019) evaluated an initiative in 157 public primary and middle schools in five cities in Brazil in which the teachers of students in grades 5 and 9 were taken to the computer lab to learn math from the platform for 50 minutes per week. The authors found that, while the intervention slightly improved learners’ attitudes toward math, these changes did not translate into better performance in this subject. The authors hypothesized that this could be due to the reduction of teacher-led math instruction.

More recently, Büchel, Jakob, Kühnhanss, Steffen, and Brunetti (2020) evaluated an after-school, offline delivery of the Khan Academy portal in grades 3 through 6 in 302 primary schools in Morazán, El Salvador. Students in this study received 90 minutes per week of additional math instruction (effectively nearly doubling total math instruction per week) through teacher-led regular lessons, teacher-assisted Khan Academy lessons, or similar lessons assisted by technical supervisors with no content expertise. (Importantly, the first group provided differentiated instruction, which is not the norm in Salvadorian schools). All three groups outperformed both schools without any additional lessons and classrooms without additional lessons in the same schools as the program. The teacher-assisted Khan Academy lessons performed 0.24 SDs better, the supervisor-led lessons 0.22 SDs better, and the teacher-led regular lessons 0.15 SDs better, but the authors could not determine whether the effects across versions were different.

Together, these studies suggest that instructional videos work best when provided as a complement to, rather than as a substitute for, regular instruction. Yet, the main limitation of these studies is the multifaceted nature of the Khan Academy portal, which also includes other components found to positively improve learner achievement, such as differentiated instruction by students’ learning levels. While the software does not provide the type of personalization discussed above, learners are asked to take a placement test and, based on their score, educators assign them different work. Therefore, it is not clear from these studies whether the effects from Khan Academy are driven by its instructional videos or to the software’s ability to provide differentiated activities when combined with placement tests.

Games and gamification

Technology can also increase learner engagement by presenting exercises as games and/or by encouraging learner to play and compete with others (e.g., using leaderboards and rewards)—an approach known as “gamification.” Both approaches can increase learner motivation and effort by presenting learners with entertaining opportunities for practice and by leveraging peers as commitment devices.

There are very few studies on the effects of games and gamification in low- and middle-income countries. Recently, Araya, Arias Ortiz, Bottan, and Cristia (2019) evaluated an initiative in which grade 4 students in Santiago, Chile were required to participate in two 90-minute sessions per week during the school day with instructional math software featuring individual and group competitions (e.g., tracking each learner’s standing in his/her class and tournaments between sections). After nine months, the program led to improvements of 0.27 SDs in the national student assessment in math (it had no spillover effects on reading). However, it had mixed effects on non-academic outcomes. Specifically, the program increased learners’ willingness to use computers to learn math, but, at the same time, increased their anxiety toward math and negatively impacted learners’ willingness to collaborate with peers. Finally, given that one of the weekly sessions replaced regular math instruction and the other one represented additional math instructional time, it is not clear whether the academic effects of the program are driven by the software or the additional time devoted to learning math.

The prognosis:

How can school systems adopt interventions that match their needs.

Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning.

1. Take stock of how your current schools, educators, and learners are engaging with technology .

Carry out a short in-school survey to understand the current practices and potential barriers to adoption of technology (we have included suggested survey instruments in the Appendices); use this information in your decisionmaking process. For example, we learned from conversations with current and former ministers of education from various developing regions that a common limitation to technology use is regulations that hold school leaders accountable for damages to or losses of devices. Another common barrier is lack of access to electricity and Internet, or even the availability of sufficient outlets for charging devices in classrooms. Understanding basic infrastructure and regulatory limitations to the use of education technology is a first necessary step. But addressing these limitations will not guarantee that introducing or expanding technology use will accelerate learning. The next steps are thus necessary.

“In Africa, the biggest limit is connectivity. Fiber is expensive, and we don’t have it everywhere. The continent is creating a digital divide between cities, where there is fiber, and the rural areas.  The [Ghanaian] administration put in schools offline/online technologies with books, assessment tools, and open source materials. In deploying this, we are finding that again, teachers are unfamiliar with it. And existing policies prohibit students to bring their own tablets or cell phones. The easiest way to do it would have been to let everyone bring their own device. But policies are against it.” H.E. Matthew Prempeh, Minister of Education of Ghana, on the need to understand the local context.

2. Consider how the introduction of technology may affect the interactions among learners, educators, and content .

Our review of the evidence indicates that technology may accelerate student learning when it is used to scale up access to quality content, facilitate differentiated instruction, increase opportunities for practice, or when it increases learner engagement. For example, will adding electronic whiteboards to classrooms facilitate access to more quality content or differentiated instruction? Or will these expensive boards be used in the same way as the old chalkboards? Will providing one device (laptop or tablet) to each learner facilitate access to more and better content, or offer students more opportunities to practice and learn? Solely introducing technology in classrooms without additional changes is unlikely to lead to improved learning and may be quite costly. If you cannot clearly identify how the interactions among the three key components of the instructional core (educators, learners, and content) may change after the introduction of technology, then it is probably not a good idea to make the investment. See Appendix A for guidance on the types of questions to ask.

3. Once decisionmakers have a clear idea of how education technology can help accelerate student learning in a specific context, it is important to define clear objectives and goals and establish ways to regularly assess progress and make course corrections in a timely manner .

For instance, is the education technology expected to ensure that learners in early grades excel in foundational skills—basic literacy and numeracy—by age 10? If so, will the technology provide quality reading and math materials, ample opportunities to practice, and engaging materials such as videos or games? Will educators be empowered to use these materials in new ways? And how will progress be measured and adjusted?

4. How this kind of reform is approached can matter immensely for its success.

It is easy to nod to issues of “implementation,” but that needs to be more than rhetorical. Keep in mind that good use of education technology requires thinking about how it will affect learners, educators, and parents. After all, giving learners digital devices will make no difference if they get broken, are stolen, or go unused. Classroom technologies only matter if educators feel comfortable putting them to work. Since good technology is generally about complementing or amplifying what educators and learners already do, it is almost always a mistake to mandate programs from on high. It is vital that technology be adopted with the input of educators and families and with attention to how it will be used. If technology goes unused or if educators use it ineffectually, the results will disappoint—no matter the virtuosity of the technology. Indeed, unused education technology can be an unnecessary expenditure for cash-strapped education systems. This is why surveying context, listening to voices in the field, examining how technology is used, and planning for course correction is essential.

5. It is essential to communicate with a range of stakeholders, including educators, school leaders, parents, and learners .

Technology can feel alien in schools, confuse parents and (especially) older educators, or become an alluring distraction. Good communication can help address all of these risks. Taking care to listen to educators and families can help ensure that programs are informed by their needs and concerns. At the same time, deliberately and consistently explaining what technology is and is not supposed to do, how it can be most effectively used, and the ways in which it can make it more likely that programs work as intended. For instance, if teachers fear that technology is intended to reduce the need for educators, they will tend to be hostile; if they believe that it is intended to assist them in their work, they will be more receptive. Absent effective communication, it is easy for programs to “fail” not because of the technology but because of how it was used. In short, past experience in rolling out education programs indicates that it is as important to have a strong intervention design as it is to have a solid plan to socialize it among stakeholders.

essay about school technology

Beyond reopening: A leapfrog moment to transform education?

On September 14, the Center for Universal Education (CUE) will host a webinar to discuss strategies, including around the effective use of education technology, for ensuring resilient schools in the long term and to launch a new education technology playbook “Realizing the promise: How can education technology improve learning for all?”

file-pdf Full Playbook – Realizing the promise: How can education technology improve learning for all? file-pdf References file-pdf Appendix A – Instruments to assess availability and use of technology file-pdf Appendix B – List of reviewed studies file-pdf Appendix C – How may technology affect interactions among students, teachers, and content?

About the Authors

Alejandro j. ganimian, emiliana vegas, frederick m. hess.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

Stanford University

Along with Stanford news and stories, show me:

  • Student information
  • Faculty/Staff information

We want to provide announcements, events, leadership messages and resources that are relevant to you. Your selection is stored in a browser cookie which you can remove at any time using “Clear all personalization” below.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational technology at the GSE and faculty director of the Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately worried that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or coach students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the AI + Education initiative at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of CRAFT (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the Digital Learning initiative at the Stanford Accelerator for Learning, which runs a program exploring the use of virtual field trips to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Main Question Paper
  • JEE Main Cutoff
  • JEE Main Advanced Admit Card
  • AP EAPCET Hall Ticket
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • KCET Result
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2023
  • CAT 2023 College Predictor
  • CMAT 2024 Admit Card
  • TS ICET 2024 Hall Ticket
  • CMAT Result 2024
  • MAH MBA CET Cutoff 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Admit Card 2024
  • NEET PG Application Form 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET Exam City Intimation Slip 2024
  • IGNOU Date Sheet
  • CUET Mock Test 2024
  • CUET Admit card 2024
  • CUET PG Syllabus 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • CUET Exam Analysis 2024
  • IGNOU Exam Form 2024
  • CUET 2024 Exam Live
  • CUET Answer Key 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Technology In Education Essay

Essay On Technology In Education- Technology makes education very easy. Technology is now very essential to maintaining society, and it will definitely have an impact on education. In today's life, technology has made study easier. Here are 100, 200 and 500 word essays on Technology In Education

Technology plays a huge part in education. The students' learning process gets simpler as technology advances. Students can easily learn the concepts thanks to technologies utilised in schools and universities, such as computer labs and high-end equipment and instruments. In today's life, technology has made study easier. Here are some sample essays on Technology In Education

Technology In Education Essay

100 Words Essay On Technology In Education

Technology makes education very easy. Technology is now essential to maintaining society, and it will definitely have an impact on education. Previously teachers didn't allow students to use technology in education. Today's everything is connected to technology including education,communication, etc. Although technology has been a part of our lives for many years, the development and use of technology in education have only lately started to take shape. One of the most crucial things we have now that can help students perform better academically is technology. As technology advances, it creates new opportunities for students to interact and learn through a variety of sources. Online classes are the best example of technology.

200 Words Essay On Technology In Education

The word "technology" is derived from the Greek word "tekhnologia," where "tekh" signifies an art, a skill, etc., and "logy" defines a subject of interest. Technology makes our tasks easy and makes life easy. Today, technology plays a significant role in our lives and offers a digital platform. The term "smart classes" is being used increasingly in schools and colleges, and these classes are the best use of technology.

Technology And Education

Technology made education easy and attractive. Students study because of technology with their mobile phones and laptops.

By using technology, online classes have started, and students love doing smart classes.

Technology keeps students updated on the world and shows the right direction to do good in education.

Through technology, students can read newspapers daily wise. Technology made education easy and attractive.

From technology, schools make their app and take attendance online, which helps the environment also by not using paper and pen.

Technology attracts children more, which helps them to choose their path.

Education should not be done with only books; students should get a chance to explore their knowledge and try something new. Technology is the best thing to explore. By using technology, students' knowledge will grow faster than before.

500 Words Essay On Technology In Education

Technology has become an integral part of education because of different apps and websites. Nowadays, if you want to clear your doubts or to know your syllabus, everything is available online. Nowadays, education is nothing without technology.

Is Technology Helpful In Education?

Yes, technology is helpful to education. Nowadays, you will see the difference in how technology has changed teaching. In older days, students read from their books, and if they faced any problem, they would ask their teachers the next day at school or for tuition.

But nowadays, students clear their doubts by using apps and websites. Due to technology, they can also ask a question or can have live interaction with their teachers personally. Education has progressed a lot.

Technology has made education easy, and today we have multiple options to clear our doubts and interact online with our teachers. Nowadays, we have easy access to the internet, and other helping apps have made education accessible and exciting.

Technology is essential for students. Parents and teachers should permit their children to use technology for their students because time has changed, and the mode of education should also be changed. Students should be given a chance to learn something new and exciting and technology makes it possible.

Different Technologies for Education

Many devices make education easier for students and clear students' doubts. Some of them are-

Laptops | One of the best tools for learning is a laptop. You can obtain information on the Internet either in written form, video form, or audio form. On several applications and websites, you can find tutors who can give you a thorough explanation. Students can acquire extensive information and have their questions answered thanks to it. You may effortlessly visit several educational portals using a laptop.

Smartphone | Smartphones are smaller versions of laptops; you can use them more easily than laptops and take them with you wherever you go. It is user-friendly due to its compact size and simple internet connection. Students can speak with their teacher about questions using a smartphone. Many students have smartphones, which they use for academic purposes. Numerous apps were available for students on mobile devices.

Kindle for Textbooks | Kindle Textbooks are a type of online book. Kindle books are available at half the price of paper books. This helps to reduce the production of paper, which allows our environment and online books to be easily stored. Kindle Textbooks are popular these days. Many students use them.

My Experience

From the 12th standard, I used a smartphone and laptop for education. Technology makes study easier. When I didn't understand something from school, I used to look for those online and try to clear all my doubts by watching topic specific videos. In my school days, I learned different crafts and drawing skills by watching videos online. I used to take help from online videos to understand many science experiments and easy tricks to solve various mathematical questions. Technology in education is perfect for the future because the use of technology in education will bring a drastic change in our education system.

Applications for Admissions are open.

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

ALLEN Digital Scholarship Admission Test (ADSAT)

ALLEN Digital Scholarship Admission Test (ADSAT)

Register FREE for ALLEN Digital Scholarship Admission Test (ADSAT)

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

PW JEE Coaching

PW JEE Coaching

Enrol in PW Vidyapeeth center for JEE coaching

PW NEET Coaching

PW NEET Coaching

Enrol in PW Vidyapeeth center for NEET coaching

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

How Important Is Technology in Education? Benefits, Challenges, and Impact on Students

A group of students use their electronics while sitting at their desks.

Many of today’s high-demand jobs were created in the last decade, according to the International Society for Technology in Education (ISTE). As advances in technology drive globalization and digital transformation, teachers can help students acquire the necessary skills to succeed in the careers of the future.

How important is technology in education? The COVID-19 pandemic is quickly demonstrating why online education should be a vital part of teaching and learning. By integrating technology into existing curricula, as opposed to using it solely as a crisis-management tool, teachers can harness online learning as a powerful educational tool.

The effective use of digital learning tools in classrooms can increase student engagement, help teachers improve their lesson plans, and facilitate personalized learning. It also helps students build essential 21st-century skills.

Virtual classrooms, video, augmented reality (AR), robots, and other technology tools can not only make class more lively, they can also create more inclusive learning environments that foster collaboration and inquisitiveness and enable teachers to collect data on student performance.

Still, it’s important to note that technology is a tool used in education and not an end in itself. The promise of educational technology lies in what educators do with it and how it is used to best support their students’ needs.

Educational Technology Challenges

BuiltIn reports that 92 percent of teachers understand the impact of technology in education. According to Project Tomorrow, 59 percent of middle school students say digital educational tools have helped them with their grades and test scores. These tools have become so popular that the educational technology market is projected to expand to $342 billion by 2025, according to the World Economic Forum.

However, educational technology has its challenges, particularly when it comes to implementation and use. For example, despite growing interest in the use of AR, artificial intelligence, and other emerging technology, less than 10 percent of schools report having these tools in their classrooms, according to Project Tomorrow. Additional concerns include excessive screen time, the effectiveness of teachers using the technology, and worries about technology equity.

Prominently rising from the COVID-19 crisis is the issue of content. Educators need to be able to develop and weigh in on online educational content, especially to encourage students to consider a topic from different perspectives. The urgent actions taken during this crisis did not provide sufficient time for this. Access is an added concern — for example, not every school district has resources to provide students with a laptop, and internet connectivity can be unreliable in homes.

Additionally, while some students thrive in online education settings, others lag for various factors, including support resources. For example, a student who already struggled in face-to-face environments may struggle even more in the current situation. These students may have relied on resources that they no longer have in their homes.

Still, most students typically demonstrate confidence in using online education when they have the resources, as studies have suggested. However, online education may pose challenges for teachers, especially in places where it has not been the norm.

Despite the challenges and concerns, it’s important to note the benefits of technology in education, including increased collaboration and communication, improved quality of education, and engaging lessons that help spark imagination and a search for knowledge in students.

The Benefits of Technology in Education

Teachers want to improve student performance, and technology can help them accomplish this aim. To mitigate the challenges, administrators should help teachers gain the competencies needed to enhance learning for students through technology. Additionally, technology in the classroom should make teachers’ jobs easier without adding extra time to their day.

Technology provides students with easy-to-access information, accelerated learning, and fun opportunities to practice what they learn. It enables students to explore new subjects and deepen their understanding of difficult concepts, particularly in STEM. Through the use of technology inside and outside the classroom, students can gain 21st-century technical skills necessary for future occupations.

Still, children learn more effectively with direction. The World Economic Forum reports that while technology can help young students learn and acquire knowledge through play, for example, evidence suggests that learning is more effective through guidance from an adult, such as a teacher.

Leaders and administrators should take stock of where their faculty are in terms of their understanding of online spaces. From lessons learned during this disruptive time, they can implement solutions now for the future. For example, administrators could give teachers a week or two to think carefully about how to teach courses not previously online. In addition to an exploration of solutions, flexibility during these trying times is of paramount importance.

Below are examples of how important technology is in education and the benefits it offers to students and teachers.

Increased Collaboration and Communication

Educational technology can foster collaboration. Not only can teachers engage with students during lessons, but students can also communicate with each other. Through online lessons and learning games, students get to work together to solve problems. In collaborative activities, students can share their thoughts and ideas and support each other. At the same time, technology enables one-on-one interaction with teachers. Students can ask classroom-related questions and seek additional help on difficult-to-understand subject matter. At home, students can upload their homework, and teachers can access and view completed assignments using their laptops.

Personalized Learning Opportunities

Technology allows 24/7 access to educational resources. Classes can take place entirely online via the use of a laptop or mobile device. Hybrid versions of learning combine the use of technology from anywhere with regular in-person classroom sessions. In both scenarios, the use of technology to tailor learning plans for each student is possible. Teachers can create lessons based on student interests and strengths. An added benefit is that students can learn at their own pace. When they need to review class material to get a better understanding of essential concepts, students can review videos in the lesson plan. The data generated through these online activities enable teachers to see which students struggled with certain subjects and offer additional assistance and support.

Curiosity Driven by Engaging Content

Through engaging and educational content, teachers can spark inquisitiveness in children and boost their curiosity, which research says has ties to academic success. Curiosity helps students get a better understanding of math and reading concepts. Creating engaging content can involve the use of AR, videos, or podcasts. For example, when submitting assignments, students can include videos or interact with students from across the globe.

Improved Teacher Productivity and Efficiency

Teachers can leverage technology to achieve new levels of productivity, implement useful digital tools to expand learning opportunities for students, and increase student support and engagement. It also enables teachers to improve their instruction methods and personalize learning. Schools can benefit from technology by reducing the costs of physical instructional materials, enhancing educational program efficiency, and making the best use of teacher time.

Become a Leader in Enriching Classrooms through Technology

Educators unfamiliar with some of the technology used in education may not have been exposed to the tools as they prepared for their careers or as part of their professional development. Teachers looking to make the transition and acquire the skills to incorporate technology in education can take advantage of learning opportunities to advance their competencies. For individuals looking to help transform the education system through technology, American University’s School of Education online offers a Master of Arts in Teaching and a Master of Arts in Education Policy and Leadership to prepare educators with essential tools to become leaders. Courses such as Education Program and Policy Implementation and Teaching Science in Elementary School equip graduate students with critical competencies to incorporate technology into educational settings effectively.

Learn more about American University’s School of Education online and its master’s degree programs.

Virtual Reality in Education: Benefits, Tools, and Resources

Data-Driven Decision Making in Education: 11 Tips for Teachers & Administration

Helping Girls Succeed in STEM

BuiltIn, “Edtech 101”

EdTech, “Teaching Teachers to Put Tech Tools to Work”

International Society for Technology in Education, “Preparing Students for Jobs That Don’t Exist”

The Journal, “How Teachers Use Technology to Enrich Learning Experiences”

Pediatric Research, “Early Childhood Curiosity and Kindergarten Reading and Math Academic Achievement”

Project Tomorrow, “Digital Learning: Peril or Promise for Our K-12 Students”

World Economic Forum, “The Future of Jobs Report 2018”

World Economic Forum, “Learning through Play: How Schools Can Educate Students through Technology”

Request Information

Education: Impact of Technology Essay

Technology’s impact on education has been a popular discussion subject in recent years. Remote learning during the pandemic changed the public perspectives on the role of technology in teaching and learning. According to Himmelsbach (2022), educators realize the power of digital tools, devices, and applications. However, there are several ethical concerns and legal issues that need to be addressed. Teachers’ main objective is to improve students’ performance, and technology can help them achieve it. School of Education (2020) states that technology provides students access to information, accelerated learning, and interesting opportunities to practice their knowledge. It enables learners to engage in self-education and acquire technical skills needed for future jobs.

As the use of technology in the classroom increases, people have to be more mindful of ethical issues that arise from it. As per Mattison (2018), one big ethical problem is plagiarism, especially considering how search engines make it easy to find an answer to any question. Moreover, there is the matter of electronic communication between teachers and students and the blurring of lines in it between business and personal. Then there are concerns related to cyberbullying and the collection of students’ personal data by schools.

It is important to remember that there are also legal issues connected to the implementation of technology in the classroom. The main one, according to Smith (2020), is the issue of the legal right to use sources. However, the creator owns the content that they made, and in accordance with the chain of command policy, one has to obtain the creator’s permission if they wish to utilize the asset in their teaching.

A counter-point to this issue is presented by Poole et al. (2021), who found that many companies in the business of information publicizing are essentially privatizing the results of research sponsored by government grants and taxpayer money. Such financial and informational gatekeeping, according to Poole et al. (2021), promises to increase inequality, harming the poor and minorities first. That inequality is likely to exacerbate during the pandemic, with many students being forced to study from home, not having access to libraries in their respective universities. The legal issues of copyright, according to Winchester (2020) have been ignored for the past 20 years, but the increased necessity for studying from home might see a revision of knowledge rights. These changes might affect the way students study and utilize technology in the future.

Himmelsbach, V. (2022). How education technology in the classroom can impact student learning . Top Hat. Web.

Mattison, L. (2018). Ethical issues with using technology in the classroom . Study.com. Web.

Poole, A. H., Agosto, D., Greenberg, J., Lin, X., & Yan, E. (2021). Where do we stand? Diversity, equity, inclusion, and social justice in North American library and information science education. Journal of Education for Library and Information Science , 62 (3), 258-286.

School of Education. (2020). How important is technology in education? Benefits, challenges, and impact on students . SOE Online. Web.

Smith, L. (2020). Overcoming legal issues with implementing technology in the classroom . Study.com. Web.

Winchester, I. (2020). Culture, Freedom, Oppression, and Better Educational Opportunities. Journal of Educational Thought/Revue de la Pensée Educative , 53 (2), 123-124.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, March 21). Education: Impact of Technology. https://ivypanda.com/essays/education-impact-of-technology/

"Education: Impact of Technology." IvyPanda , 21 Mar. 2024, ivypanda.com/essays/education-impact-of-technology/.

IvyPanda . (2024) 'Education: Impact of Technology'. 21 March.

IvyPanda . 2024. "Education: Impact of Technology." March 21, 2024. https://ivypanda.com/essays/education-impact-of-technology/.

1. IvyPanda . "Education: Impact of Technology." March 21, 2024. https://ivypanda.com/essays/education-impact-of-technology/.

Bibliography

IvyPanda . "Education: Impact of Technology." March 21, 2024. https://ivypanda.com/essays/education-impact-of-technology/.

  • Social Security System Privatizing Results for Women
  • The Benefits of Privatizing the Postal Service
  • Arguments Against Privatizing Security System
  • Acceptable Use Policy in Miami Public Schools
  • Academic Writing Under Impact of Technology
  • Reading and Writing with Use of Technology
  • The Use of Technologies in the Classroom
  • Human Performance and Technology in Education

How Has Technology Changed Education?

Technology has impacted almost every aspect of life today, and education is no exception. Or is it? In some ways, education seems much the same as it has been for many years. A 14th century illustration by Laurentius de Voltolina depicts a university lecture in medieval Italy. The scene is easily recognizable because of its parallels to the modern day. The teacher lectures from a podium at the front of the room while the students sit in rows and listen. Some of the students have books open in front of them and appear to be following along. A few look bored. Some are talking to their neighbors. One appears to be sleeping. Classrooms today do not look much different, though you might find modern students looking at their laptops, tablets, or smart phones instead of books (though probably open to Facebook). A cynic would say that technology has done nothing to change education.

However, in many ways, technology has profoundly changed education. For one, technology has greatly expanded access to education. In medieval times, books were rare and only an elite few had access to educational opportunities. Individuals had to travel to centers of learning to get an education. Today, massive amounts of information (books, audio, images, videos) are available at one’s fingertips through the Internet, and opportunities for formal learning are available online worldwide through the Khan Academy, MOOCs, podcasts, traditional online degree programs, and more. Access to learning opportunities today is unprecedented in scope thanks to technology.

Opportunities for communication and collaboration have also been expanded by technology. Traditionally, classrooms have been relatively isolated, and collaboration has been limited to other students in the same classroom or building. Today, technology enables forms of communication and collaboration undreamt of in the past. Students in a classroom in the rural U.S., for example, can learn about the Arctic by following the expedition of a team of scientists in the region, read scientists’ blog posting, view photos, e-mail questions to the scientists, and even talk live with the scientists via a videoconference. Students can share what they are learning with students in other classrooms in other states who are tracking the same expedition. Students can collaborate on group projects using technology-based tools such as wikis and Google docs. The walls of the classrooms are no longer a barrier as technology enables new ways of learning, communicating, and working collaboratively.

Technology has also begun to change the roles of teachers and learners. In the traditional classroom, such as what we see depicted in de Voltolina’s illustration, the teacher is the primary source of information, and the learners passively receive it. This model of the teacher as the “sage on the stage” has been in education for a long time, and it is still very much in evidence today. However, because of the access to information and educational opportunity that technology has enabled, in many classrooms today we see the teacher’s role shifting to the “guide on the side” as students take more responsibility for their own learning using technology to gather relevant information. Schools and universities across the country are beginning to redesign learning spaces to enable this new model of education, foster more interaction and small group work, and use technology as an enabler.

Technology is a powerful tool that can support and transform education in many ways, from making it easier for teachers to create instructional materials to enabling new ways for people to learn and work together. With the worldwide reach of the Internet and the ubiquity of smart devices that can connect to it, a new age of anytime anywhere education is dawning. It will be up to instructional designers and educational technologies to make the most of the opportunities provided by technology to change education so that effective and efficient education is available to everyone everywhere.

You can help shape the influence of technology in education with an Online Master of Science in Education in Learning Design and Technology from Purdue University Online. This accredited program offers studies in exciting new technologies that are shaping education and offers students the opportunity to take part in the future of innovation.

Learn more about the online MSEd in Learning Design and Technology at Purdue University today and help redefine the way in which individuals learn. Call (877) 497-5851 to speak with an admissions advisor or to request more information.

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

What 126 studies say about education technology

Press contact :.

J-PAL North America's recently released publication summarizes 126 rigorous evaluations of different uses of education technology and their impact on student learning.

Previous image Next image

In recent years, there has been widespread excitement around the transformative potential of technology in education. In the United States alone, spending on education technology has now exceeded $13 billion . Programs and policies to promote the use of education technology may expand access to quality education, support students’ learning in innovative ways, and help families navigate complex school systems.

However, the rapid development of education technology in the United States is occurring in a context of deep and persistent inequality . Depending on how programs are designed, how they are used, and who can access them, education technologies could alleviate or aggravate existing disparities. To harness education technology’s full potential, education decision-makers, product developers, and funders need to understand the ways in which technology can help — or in some cases hurt — student learning.

To address this need, J-PAL North America recently released a new publication summarizing 126 rigorous evaluations of different uses of education technology. Drawing primarily from research in developed countries, the publication looks at randomized evaluations and regression discontinuity designs across four broad categories: (1) access to technology, (2) computer-assisted learning or educational software, (3) technology-enabled nudges in education, and (4) online learning.

This growing body of evidence suggests some areas of promise and points to four key lessons on education technology.

First, supplying computers and internet alone generally do not improve students’ academic outcomes from kindergarten to 12th grade, but do increase computer usage and improve computer proficiency. Disparities in access to information and communication technologies can exacerbate existing educational inequalities. Students without access at school or at home may struggle to complete web-based assignments and may have a hard time developing digital literacy skills.

Broadly, programs to expand access to technology have been effective at increasing use of computers and improving computer skills. However, computer distribution and internet subsidy programs generally did not improve grades and test scores and in some cases led to adverse impacts on academic achievement. The limited rigorous evidence suggests that distributing computers may have a more direct impact on learning outcomes at the postsecondary level.

Second, educational software (often called “computer-assisted learning”) programs designed to help students develop particular skills have shown enormous promise in improving learning outcomes, particularly in math. Targeting instruction to meet students’ learning levels has been found to be effective in improving student learning, but large class sizes with a wide range of learning levels can make it hard for teachers to personalize instruction. Software has the potential to overcome traditional classroom constraints by customizing activities for each student. Educational software programs range from light-touch homework support tools to more intensive interventions that re-orient the classroom around the use of software.

Most educational software that have been rigorously evaluated help students practice particular skills through personalized tutoring approaches. Computer-assisted learning programs have shown enormous promise in improving academic achievement, especially in math. Of all 30 studies of computer-assisted learning programs, 20 reported statistically significant positive effects, 15 of which were focused on improving math outcomes.

Third, technology-based nudges — such as text message reminders — can have meaningful, if modest, impacts on a variety of education-related outcomes, often at extremely low costs. Low-cost interventions like text message reminders can successfully support students and families at each stage of schooling. Text messages with reminders, tips, goal-setting tools, and encouragement can increase parental engagement in learning activities, such as reading with their elementary-aged children.

Middle and high schools, meanwhile, can help parents support their children by providing families with information about how well their children are doing in school. Colleges can increase application and enrollment rates by leveraging technology to suggest specific action items, streamline financial aid procedures, and/or provide personalized support to high school students.

Online courses are developing a growing presence in education, but the limited experimental evidence suggests that online-only courses lower student academic achievement compared to in-person courses. In four of six studies that directly compared the impact of taking a course online versus in-person only, student performance was lower in the online courses. However, students performed similarly in courses with both in-person and online components compared to traditional face-to-face classes.

The new publication is meant to be a resource for decision-makers interested in learning which uses of education technology go beyond the hype to truly help students learn. At the same time, the publication outlines key open questions about the impacts of education technology, including questions relating to the long-term impacts of education technology and the impacts of education technology on different types of learners.

To help answer these questions, J-PAL North America’s Education, Technology, and Opportunity Initiative is working to build the evidence base on promising uses of education technology by partnering directly with education leaders.

Education leaders are invited to submit letters of interest to partner with J-PAL North America through its  Innovation Competition . Anyone interested in learning more about how to apply is encouraged to contact initiative manager Vincent Quan .

Share this news article on:

Related links.

  • J-PAL Education, Technology, and Opportunity Initiative
  • Education, Technology, and Opportunity Innovation Competition
  • Article: "Will Technology Transform Education for the Better?"
  • Abdul Latif Jameel Poverty Action Lab
  • Department of Economics

Related Topics

  • School of Humanities Arts and Social Sciences
  • Education, teaching, academics
  • Technology and society
  • Computer science and technology

Related Articles

essay about school technology

J-PAL North America calls for proposals from education leaders

J-PAL North America’s Education, Technology, and Opportunity Innovation Competition supports education leaders in using randomized evaluations to generate evidence on how technology can improve student learning, particularly for students from disadvantaged backgrounds.

J-PAL North America’s Education, Technology, and Opportunity Innovation Competition announces inaugural partners

Applications for second offering of the ReACT Computer and Data Science Program are now open.

New learning opportunities for displaced persons

J-PAL North America will partner with the Sacramento-based California Franchise Tax Board to evaluate the impact of strategies to encourage households to file for the California Earned Income Tax Credit (CalEITC).

J-PAL North America announces new partnerships with three state and local governments

essay about school technology

A new way to measure women’s and girls’ empowerment in impact evaluations

Previous item Next item

More MIT News

Colorful rendering shows a lattice of black and grey balls making a honeycomb-shaped molecule, the MOF. Snaking around it is the polymer, represented as a translucent string of teal balls. Brown molecules, representing toxic gas, also float around.

Researchers develop a detector for continuously monitoring toxic gases

Read full story →

Portrait photo of Hanjun Lee

The beauty of biology

Three people sit on a stage, one of them speaking. Red and white panels with the MIT AgeLab logo are behind them.

Navigating longevity with industry leaders at MIT AgeLab PLAN Forum

Jeong Min Park poses leaning on an outdoor sculpture in Killian Court.

Jeong Min Park earns 2024 Schmidt Science Fellowship

Elaine Liu leans against an electric vehicle charger inside a parking garage.

Elaine Liu: Charging ahead

A cute robot is at the chalkboard. The chalkboard is filled with complex charts, waves and shapes.

Scientists use generative AI to answer complex questions in physics

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

Become an Insider

Sign up today to receive premium content.

Home

The Evolution of Technology in K–12 Classrooms: 1659 to Today

Bio Photo of Alexander Huls

Alexander Huls is a Toronto-based writer whose work has appeared in  The New York Times ,  Popular Mechanics ,  Esquire ,  The Atlantic  and elsewhere.

In the 21st century, it can feel like advanced technology is changing the K–12 classroom in ways we’ve never seen before. But the truth is, technology and education have a long history of evolving together to dramatically change how students learn.

With more innovations surely headed our way, why not look back at how we got to where we are today, while looking forward to how educators can continue to integrate new technologies into their learning?

DISCOVER:  Special education departments explore advanced tech in their classrooms.

Using Technology in the K–12 Classroom: A History

1659: magic lantern.

  • Inventor:  Christiaan Huygens
  • A Brief History:  An ancestor of the slide projector, the magic lantern projected glass slides with light from oil lamps or candles. In the 1680s, the technology was brought to the education space to show detailed anatomical illustrations, which were difficult to sketch on a chalkboard.
  • Interesting Fact:  Huygens initially regretted his creation, thinking it was too frivolous.

1795: Pencil

  • Inventor:  Nicolas-Jacques Conté
  • A Brief History : Versions of the pencil can be traced back hundreds of years, but what’s considered the modern pencil is credited to Conté, a scientist in Napoleon Bonaparte’s army. It made its impact on the classroom, however, when it began to be mass produced in the 1900s.
  • Interesting Fact:  The Aztecs used a form of graphite pencil in the 13th century.

1801: Chalkboard

  • Inventor:  James Pillans
  • A Brief History:  Pillans — a headmaster at a high school in Edinburgh, Scotland — created the first front-of-class chalkboard, or “blackboard,” to better teach his students geography with large maps. Prior to his creation, educators worked with students on smaller, individual pieces of wood or slate. In the 1960s, the creation was upgraded to a green board, which became a familiar fixture in every classroom.
  • Interesting Fact:  Before chalkboards were commercially manufactured, some were made do-it-yourself-style with ingredients like pine board, egg whites and charred potatoes.

1888: Ballpoint Pen

  • Inventory:  John L. Loud
  • A Brief History:  John L. Loud invented and patented the first ballpoint pen after seeking to create a tool that could write on leather. It was not a commercial success. Fifty years later, following the lapse of Loud’s patent, Hungarian journalist László Bíró invented a pen with a quick-drying special ink that wouldn’t smear thanks to a rolling ball in its nib.
  • Interesting Fact:  When ballpoint pens debuted in the U.S., they were so popular that Gimbels, the department store selling them, made $81 million in today’s money within six months.

LEARN MORE:  Logitech Pen works with Chromebooks to combine digital and physical learning.

1950s: Overhead Projector

  • Inventor:  Roger Appeldorn
  • A Brief History:  Overhead projects were used during World War II for mission briefings. However, 3M employee Appeldorn is credited with creating not only a projectable transparent film, but also the overhead projectors that would find a home in classrooms for decades.
  • Interesting Fact:  Appeldorn’s creation is the predecessor to today’s  bright and efficient laser projectors .

1959: Photocopier

  • Inventor:  Chester Carlson
  • A Brief History:  Because of his arthritis, patent attorney and inventor Carlson wanted to create a less painful alternative to making carbon copies. Between 1938 and 1947, working with The Haloid Photographic Company, Carlson perfected the process of electrophotography, which led to development of the first photocopy machines.
  • Interesting Fact:  Haloid and Carlson named their photocopying process xerography, which means “dry writing” in Greek. Eventually, Haloid renamed its company (and its flagship product line) Xerox .

1967: Handheld Calculator

  • Inventor:   Texas Instruments
  • A Brief History:  As recounted in our  history of the calculator , Texas Instruments made calculators portable with a device that weighed 45 ounces and featured a small keyboard with 18 keys and a visual display of 12 decimal digits.
  • Interesting Fact:  The original 1967 prototype of the device can be found in the Smithsonian Institution’s  National Museum of American History .

1981: The Osborne 1 Laptop

  • Inventor:  Adam Osborne, Lee Felsenstein
  • A Brief History:  Osborne, a computer book author, teamed up with computer engineer Felsenstein to create a portable computer that would appeal to general consumers. In the process, they provided the technological foundation that made modern one-to-one devices — like Chromebooks — a classroom staple.
  • Interesting Fact:  At 24.5 pounds, the Osborne 1 was about as big and heavy as a sewing machine, earning it the current classification of a “luggable” computer, rather than a laptop.

1990: World Wide Web

  • Inventor:  Tim Berners-Lee
  • A Brief History:  In the late 1980s, British scientist Berners-Lee created the World Wide Web to enable information sharing between scientists and academics. It wasn’t long before the Web could connect anyone, anywhere to a wealth of information, and it was soon on its way to powering the modern classroom.
  • Interesting Fact:  The first web server Berners-Lee created was so new, he had to put a sign on the computer that read, “This machine is a server. DO NOT POWER IT DOWN!”

Click the banner  to access customized K–12 technology content when you sign up as an Insider.

K-12 Insider Mobile Devices

What Technology Is Used in Today’s K–12 Classrooms?

Technology has come so far that modern classrooms are more technologically advanced than many science labs were two decades ago. Students have access to digital textbooks,  personal devices , collaborative  cloud-based tools , and  interactive whiteboards . Emerging technologies now being introduced to K–12 classrooms include voice assistants, virtual reality devices and 3D printers.

Perhaps the most important thing about ed tech in K–12 isn’t what the technology is, but how it’s used.

How to Integrate Technology into K–12 Classrooms

The first step to integrating technology into the K–12 classroom is  figuring out which solution to integrate , given the large variety of tools available to educators. That variety comes with benefits — like the ability to align tech with district objectives and grade level — but also brings challenges.

“It’s difficult to know how to choose the appropriate digital tool or resource,” says Judi Harris, professor and Pavey Family Chair in Educational Technology at the William & Mary School of Education. “Teachers need some familiarity with the tools so that they understand the potential advantages and disadvantages.”

Dr. Judi Harris

Judi Harris Professor and Pavey Family Chair in Educational Technology, William and Mary School of Education

K–12 IT leaders should also be careful not to focus too much on technology implementation at the expense of curriculum-based learning needs. “What districts need to ask themselves is not only whether they’re going to adopt a technology, but how they’re going to adopt it,” says Royce Kimmons, associate professor of instructional psychology and technology at Brigham Young University.

In other words, while emerging technologies may be exciting, acquiring them without proper consideration of their role in improving classroom learning will likely result in mixed student outcomes. For effective integration, educators should ask themselves, in what ways would the tech increase or support a student’s productivity and learning outcomes? How will it improve engagement?

Integrating ed tech also requires some practical know-how. “Teachers need to be comfortable and confident with the tools they ask students to use,” says Harris.

Professional development for new technologies is crucial, as are supportive IT teams, tech providers with generous onboarding programs and technology integration specialists. Harris also points to initiatives like YES: Youth and Educators Succeeding, a nonprofit organization that prepares students to act as resident experts and classroom IT support.

KEEP READING:  What is the continued importance of professional development in K–12 education?

But as educational technology is rolled out and integrated, it’s important to keep academic goals in sight. “We should never stop focusing on how to best understand and help the learner to achieve those learning objectives,” says Harris.

That should continue to be the case as the technology timeline unfolds, something Harris has witnessed firsthand during her four decades in the field. “It’s been an incredible thing to watch and to participate in,” she notes. “The great majority of teachers are extremely eager to learn and to do anything that will help their students learn better.”

essay about school technology

  • Professional Development

Related Articles

Sustainable computing

Unlock white papers, personalized recommendations and other premium content for an in-depth look at evolving IT

Copyright © 2024 CDW LLC 200 N. Milwaukee Avenue , Vernon Hills, IL 60061 Do Not Sell My Personal Information

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 12 February 2024

Education reform and change driven by digital technology: a bibliometric study from a global perspective

  • Chengliang Wang 1 ,
  • Xiaojiao Chen 1 ,
  • Teng Yu   ORCID: orcid.org/0000-0001-5198-7261 2 , 3 ,
  • Yidan Liu 1 , 4 &
  • Yuhui Jing 1  

Humanities and Social Sciences Communications volume  11 , Article number:  256 ( 2024 ) Cite this article

5690 Accesses

1 Citations

1 Altmetric

Metrics details

  • Development studies
  • Science, technology and society

Amidst the global digital transformation of educational institutions, digital technology has emerged as a significant area of interest among scholars. Such technologies have played an instrumental role in enhancing learner performance and improving the effectiveness of teaching and learning. These digital technologies also ensure the sustainability and stability of education during the epidemic. Despite this, a dearth of systematic reviews exists regarding the current state of digital technology application in education. To address this gap, this study utilized the Web of Science Core Collection as a data source (specifically selecting the high-quality SSCI and SCIE) and implemented a topic search by setting keywords, yielding 1849 initial publications. Furthermore, following the PRISMA guidelines, we refined the selection to 588 high-quality articles. Using software tools such as CiteSpace, VOSviewer, and Charticulator, we reviewed these 588 publications to identify core authors (such as Selwyn, Henderson, Edwards), highly productive countries/regions (England, Australia, USA), key institutions (Monash University, Australian Catholic University), and crucial journals in the field ( Education and Information Technologies , Computers & Education , British Journal of Educational Technology ). Evolutionary analysis reveals four developmental periods in the research field of digital technology education application: the embryonic period, the preliminary development period, the key exploration, and the acceleration period of change. The study highlights the dual influence of technological factors and historical context on the research topic. Technology is a key factor in enabling education to transform and upgrade, and the context of the times is an important driving force in promoting the adoption of new technologies in the education system and the transformation and upgrading of education. Additionally, the study identifies three frontier hotspots in the field: physical education, digital transformation, and professional development under the promotion of digital technology. This study presents a clear framework for digital technology application in education, which can serve as a valuable reference for researchers and educational practitioners concerned with digital technology education application in theory and practice.

Similar content being viewed by others

essay about school technology

A bibliometric analysis of knowledge mapping in Chinese education digitalization research from 2012 to 2022

essay about school technology

Digital transformation and digital literacy in the context of complexity within higher education institutions: a systematic literature review

essay about school technology

Education big data and learning analytics: a bibliometric analysis

Introduction.

Digital technology has become an essential component of modern education, facilitating the extension of temporal and spatial boundaries and enriching the pedagogical contexts (Selwyn and Facer, 2014 ). The advent of mobile communication technology has enabled learning through social media platforms (Szeto et al. 2015 ; Pires et al. 2022 ), while the advancement of augmented reality technology has disrupted traditional conceptions of learning environments and spaces (Perez-Sanagustin et al., 2014 ; Kyza and Georgiou, 2018 ). A wide range of digital technologies has enabled learning to become a norm in various settings, including the workplace (Sjöberg and Holmgren, 2021 ), home (Nazare et al. 2022 ), and online communities (Tang and Lam, 2014 ). Education is no longer limited to fixed locations and schedules, but has permeated all aspects of life, allowing learning to continue at any time and any place (Camilleri and Camilleri, 2016 ; Selwyn and Facer, 2014 ).

The advent of digital technology has led to the creation of several informal learning environments (Greenhow and Lewin, 2015 ) that exhibit divergent form, function, features, and patterns in comparison to conventional learning environments (Nygren et al. 2019 ). Consequently, the associated teaching and learning processes, as well as the strategies for the creation, dissemination, and acquisition of learning resources, have undergone a complete overhaul. The ensuing transformations have posed a myriad of novel issues, such as the optimal structuring of teaching methods by instructors and the adoption of appropriate learning strategies by students in the new digital technology environment. Consequently, an examination of the principles that underpin effective teaching and learning in this environment is a topic of significant interest to numerous scholars engaged in digital technology education research.

Over the course of the last two decades, digital technology has made significant strides in the field of education, notably in extending education time and space and creating novel educational contexts with sustainability. Despite research attempts to consolidate the application of digital technology in education, previous studies have only focused on specific aspects of digital technology, such as Pinto and Leite’s ( 2020 ) investigation into digital technology in higher education and Mustapha et al.’s ( 2021 ) examination of the role and value of digital technology in education during the pandemic. While these studies have provided valuable insights into the practical applications of digital technology in particular educational domains, they have not comprehensively explored the macro-mechanisms and internal logic of digital technology implementation in education. Additionally, these studies were conducted over a relatively brief period, making it challenging to gain a comprehensive understanding of the macro-dynamics and evolutionary process of digital technology in education. Some studies have provided an overview of digital education from an educational perspective but lack a precise understanding of technological advancement and change (Yang et al. 2022 ). Therefore, this study seeks to employ a systematic scientific approach to collate relevant research from 2000 to 2022, comprehend the internal logic and development trends of digital technology in education, and grasp the outstanding contribution of digital technology in promoting the sustainability of education in time and space. In summary, this study aims to address the following questions:

RQ1: Since the turn of the century, what is the productivity distribution of the field of digital technology education application research in terms of authorship, country/region, institutional and journal level?

RQ2: What is the development trend of research on the application of digital technology in education in the past two decades?

RQ3: What are the current frontiers of research on the application of digital technology in education?

Literature review

Although the term “digital technology” has become ubiquitous, a unified definition has yet to be agreed upon by scholars. Because the meaning of the word digital technology is closely related to the specific context. Within the educational research domain, Selwyn’s ( 2016 ) definition is widely favored by scholars (Pinto and Leite, 2020 ). Selwyn ( 2016 ) provides a comprehensive view of various concrete digital technologies and their applications in education through ten specific cases, such as immediate feedback in classes, orchestrating teaching, and community learning. Through these specific application scenarios, Selwyn ( 2016 ) argues that digital technology encompasses technologies associated with digital devices, including but not limited to tablets, smartphones, computers, and social media platforms (such as Facebook and YouTube). Furthermore, Further, the behavior of accessing the internet at any location through portable devices can be taken as an extension of the behavior of applying digital technology.

The evolving nature of digital technology has significant implications in the field of education. In the 1890s, the focus of digital technology in education was on comprehending the nuances of digital space, digital culture, and educational methodologies, with its connotations aligned more towards the idea of e-learning. The advent and subsequent widespread usage of mobile devices since the dawn of the new millennium have been instrumental in the rapid expansion of the concept of digital technology. Notably, mobile learning devices such as smartphones and tablets, along with social media platforms, have become integral components of digital technology (Conole and Alevizou, 2010 ; Batista et al. 2016 ). In recent times, the burgeoning application of AI technology in the education sector has played a vital role in enriching the digital technology lexicon (Banerjee et al. 2021 ). ChatGPT, for instance, is identified as a novel educational technology that has immense potential to revolutionize future education (Rospigliosi, 2023 ; Arif, Munaf and Ul-Haque, 2023 ).

Pinto and Leite ( 2020 ) conducted a comprehensive macroscopic survey of the use of digital technologies in the education sector and identified three distinct categories, namely technologies for assessment and feedback, mobile technologies, and Information Communication Technologies (ICT). This classification criterion is both macroscopic and highly condensed. In light of the established concept definitions of digital technology in the educational research literature, this study has adopted the characterizations of digital technology proposed by Selwyn ( 2016 ) and Pinto and Leite ( 2020 ) as crucial criteria for analysis and research inclusion. Specifically, this criterion encompasses several distinct types of digital technologies, including Information and Communication Technologies (ICT), Mobile tools, eXtended Reality (XR) Technologies, Assessment and Feedback systems, Learning Management Systems (LMS), Publish and Share tools, Collaborative systems, Social media, Interpersonal Communication tools, and Content Aggregation tools.

Methodology and materials

Research method: bibliometric.

The research on econometric properties has been present in various aspects of human production and life, yet systematic scientific theoretical guidance has been lacking, resulting in disorganization. In 1969, British scholar Pritchard ( 1969 ) proposed “bibliometrics,” which subsequently emerged as an independent discipline in scientific quantification research. Initially, Pritchard defined bibliometrics as “the application of mathematical and statistical methods to books and other media of communication,” however, the definition was not entirely rigorous. To remedy this, Hawkins ( 2001 ) expanded Pritchard’s definition to “the quantitative analysis of the bibliographic features of a body of literature.” De Bellis further clarified the objectives of bibliometrics, stating that it aims to analyze and identify patterns in literature, such as the most productive authors, institutions, countries, and journals in scientific disciplines, trends in literary production over time, and collaboration networks (De Bellis, 2009 ). According to Garfield ( 2006 ), bibliometric research enables the examination of the history and structure of a field, the flow of information within the field, the impact of journals, and the citation status of publications over a longer time scale. All of these definitions illustrate the unique role of bibliometrics as a research method for evaluating specific research fields.

This study uses CiteSpace, VOSviewer, and Charticulator to analyze data and create visualizations. Each of these three tools has its own strengths and can complement each other. CiteSpace and VOSviewer use set theory and probability theory to provide various visualization views in fields such as keywords, co-occurrence, and co-authors. They are easy to use and produce visually appealing graphics (Chen, 2006 ; van Eck and Waltman, 2009 ) and are currently the two most widely used bibliometric tools in the field of visualization (Pan et al. 2018 ). In this study, VOSviewer provided the data necessary for the Performance Analysis; Charticulator was then used to redraw using the tabular data exported from VOSviewer (for creating the chord diagram of country collaboration); this was to complement the mapping process, while CiteSpace was primarily utilized to generate keyword maps and conduct burst word analysis.

Data retrieval

This study selected documents from the Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) in the Web of Science Core Collection as the data source, for the following reasons:

(1) The Web of Science Core Collection, as a high-quality digital literature resource database, has been widely accepted by many researchers and is currently considered the most suitable database for bibliometric analysis (Jing et al. 2023a ). Compared to other databases, Web of Science provides more comprehensive data information (Chen et al. 2022a ), and also provides data formats suitable for analysis using VOSviewer and CiteSpace (Gaviria-Marin et al. 2019 ).

(2) The application of digital technology in the field of education is an interdisciplinary research topic, involving technical knowledge literature belonging to the natural sciences and education-related literature belonging to the social sciences. Therefore, it is necessary to select Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) as the sources of research data, ensuring the comprehensiveness of data while ensuring the reliability and persuasiveness of bibliometric research (Hwang and Tsai, 2011 ; Wang et al. 2022 ).

After establishing the source of research data, it is necessary to determine a retrieval strategy (Jing et al. 2023b ). The choice of a retrieval strategy should consider a balance between the breadth and precision of the search formula. That is to say, it should encompass all the literature pertaining to the research topic while excluding irrelevant documents as much as possible. In light of this, this study has set a retrieval strategy informed by multiple related papers (Mustapha et al. 2021 ; Luo et al. 2021 ). The research by Mustapha et al. ( 2021 ) guided us in selecting keywords (“digital” AND “technolog*”) to target digital technology, while Luo et al. ( 2021 ) informed the selection of terms (such as “instruct*,” “teach*,” and “education”) to establish links with the field of education. Then, based on the current application of digital technology in the educational domain and the scope of selection criteria, we constructed the final retrieval strategy. Following the general patterns of past research (Jing et al. 2023a , 2023b ), we conducted a specific screening using the topic search (Topics, TS) function in Web of Science. For the specific criteria used in the screening for this study, please refer to Table 1 .

Literature screening

Literature acquired through keyword searches may contain ostensibly related yet actually unrelated works. Therefore, to ensure the close relevance of literature included in the analysis to the research topic, it is often necessary to perform a manual screening process to identify the final literature to be analyzed, subsequent to completing the initial literature search.

The manual screening process consists of two steps. Initially, irrelevant literature is weeded out based on the title and abstract, with two members of the research team involved in this phase. This stage lasted about one week, resulting in 1106 articles being retained. Subsequently, a comprehensive review of the full text is conducted to accurately identify the literature required for the study. To carry out the second phase of manual screening effectively and scientifically, and to minimize the potential for researcher bias, the research team established the inclusion criteria presented in Table 2 . Three members were engaged in this phase, which took approximately 2 weeks, culminating in the retention of 588 articles after meticulous screening. The entire screening process is depicted in Fig. 1 , adhering to the PRISMA guidelines (Page et al. 2021 ).

figure 1

The process of obtaining and filtering the necessary literature data for research.

Data standardization

Nguyen and Hallinger ( 2020 ) pointed out that raw data extracted from scientific databases often contains multiple expressions of the same term, and not addressing these synonymous expressions could affect research results in bibliometric analysis. For instance, in the original data, the author list may include “Tsai, C. C.” and “Tsai, C.-C.”, while the keyword list may include “professional-development” and “professional development,” which often require merging. Therefore, before analyzing the selected literature, a data disambiguation process is necessary to standardize the data (Strotmann and Zhao, 2012 ; Van Eck and Waltman, 2019 ). This study adopted the data standardization process proposed by Taskin and Al ( 2019 ), mainly including the following standardization operations:

Firstly, the author and source fields in the data are corrected and standardized to differentiate authors with similar names.

Secondly, the study checks whether the journals to which the literature belongs have been renamed in the past over 20 years, so as to avoid the influence of periodical name change on the analysis results.

Finally, the keyword field is standardized by unifying parts of speech and singular/plural forms of keywords, which can help eliminate redundant entries in the knowledge graph.

Performance analysis (RQ1)

This section offers a thorough and detailed analysis of the state of research in the field of digital technology education. By utilizing descriptive statistics and visual maps, it provides a comprehensive overview of the development trends, authors, countries, institutions, and journal distribution within the field. The insights presented in this section are of great significance in advancing our understanding of the current state of research in this field and identifying areas for further investigation. The use of visual aids to display inter-country cooperation and the evolution of the field adds to the clarity and coherence of the analysis.

Time trend of the publications

To understand a research field, it is first necessary to understand the most basic quantitative information, among which the change in the number of publications per year best reflects the development trend of a research field. Figure 2 shows the distribution of publication dates.

figure 2

Time trend of the publications on application of digital technology in education.

From the Fig. 2 , it can be seen that the development of this field over the past over 20 years can be roughly divided into three stages. The first stage was from 2000 to 2007, during which the number of publications was relatively low. Due to various factors such as technological maturity, the academic community did not pay widespread attention to the role of digital technology in expanding the scope of teaching and learning. The second stage was from 2008 to 2019, during which the overall number of publications showed an upward trend, and the development of the field entered an accelerated period, attracting more and more scholars’ attention. The third stage was from 2020 to 2022, during which the number of publications stabilized at around 100. During this period, the impact of the pandemic led to a large number of scholars focusing on the role of digital technology in education during the pandemic, and research on the application of digital technology in education became a core topic in social science research.

Analysis of authors

An analysis of the author’s publication volume provides information about the representative scholars and core research strengths of a research area. Table 3 presents information on the core authors in adaptive learning research, including name, publication number, and average number of citations per article (based on the analysis and statistics from VOSviewer).

Variations in research foci among scholars abound. Within the field of digital technology education application research over the past two decades, Neil Selwyn stands as the most productive author, having published 15 papers garnering a total of 1027 citations, resulting in an average of 68.47 citations per paper. As a Professor at the Faculty of Education at Monash University, Selwyn concentrates on exploring the application of digital technology in higher education contexts (Selwyn et al. 2021 ), as well as related products in higher education such as Coursera, edX, and Udacity MOOC platforms (Bulfin et al. 2014 ). Selwyn’s contributions to the educational sociology perspective include extensive research on the impact of digital technology on education, highlighting the spatiotemporal extension of educational processes and practices through technological means as the greatest value of educational technology (Selwyn, 2012 ; Selwyn and Facer, 2014 ). In addition, he provides a blueprint for the development of future schools in 2030 based on the present impact of digital technology on education (Selwyn et al. 2019 ). The second most productive author in this field, Henderson, also offers significant contributions to the understanding of the important value of digital technology in education, specifically in the higher education setting, with a focus on the impact of the pandemic (Henderson et al. 2015 ; Cohen et al. 2022 ). In contrast, Edwards’ research interests focus on early childhood education, particularly the application of digital technology in this context (Edwards, 2013 ; Bird and Edwards, 2015 ). Additionally, on the technical level, Edwards also mainly prefers digital game technology, because it is a digital technology that children are relatively easy to accept (Edwards, 2015 ).

Analysis of countries/regions and organization

The present study aimed to ascertain the leading countries in digital technology education application research by analyzing 75 countries related to 558 works of literature. Table 4 depicts the top ten countries that have contributed significantly to this field in terms of publication count (based on the analysis and statistics from VOSviewer). Our analysis of Table 4 data shows that England emerged as the most influential country/region, with 92 published papers and 2401 citations. Australia and the United States secured the second and third ranks, respectively, with 90 papers (2187 citations) and 70 papers (1331 citations) published. Geographically, most of the countries featured in the top ten publication volumes are situated in Australia, North America, and Europe, with China being the only exception. Notably, all these countries, except China, belong to the group of developed nations, suggesting that economic strength is a prerequisite for fostering research in the digital technology education application field.

This study presents a visual representation of the publication output and cooperation relationships among different countries in the field of digital technology education application research. Specifically, a chord diagram is employed to display the top 30 countries in terms of publication output, as depicted in Fig. 3 . The chord diagram is composed of nodes and chords, where the nodes are positioned as scattered points along the circumference, and the length of each node corresponds to the publication output, with longer lengths indicating higher publication output. The chords, on the other hand, represent the cooperation relationships between any two countries, and are weighted based on the degree of closeness of the cooperation, with wider chords indicating closer cooperation. Through the analysis of the cooperation relationships, the findings suggest that the main publishing countries in this field are engaged in cooperative relationships with each other, indicating a relatively high level of international academic exchange and research internationalization.

figure 3

In the diagram, nodes are scattered along the circumference of a circle, with the length of each node representing the volume of publications. The weighted arcs connecting any two points on the circle are known as chords, representing the collaborative relationship between the two, with the width of the arc indicating the closeness of the collaboration.

Further analyzing Fig. 3 , we can extract more valuable information, enabling a deeper understanding of the connections between countries in the research field of digital technology in educational applications. It is evident that certain countries, such as the United States, China, and England, display thicker connections, indicating robust collaborative relationships in terms of productivity. These thicker lines signify substantial mutual contributions and shared objectives in certain sectors or fields, highlighting the interconnectedness and global integration in these areas. By delving deeper, we can also explore potential future collaboration opportunities through the chord diagram, identifying possible partners to propel research and development in this field. In essence, the chord diagram successfully encapsulates and conveys the multi-dimensionality of global productivity and cooperation, allowing for a comprehensive understanding of the intricate inter-country relationships and networks in a global context, providing valuable guidance and insights for future research and collaborations.

An in-depth examination of the publishing institutions is provided in Table 5 , showcasing the foremost 10 institutions ranked by their publication volume. Notably, Monash University and Australian Catholic University, situated in Australia, have recorded the most prolific publications within the digital technology education application realm, with 22 and 10 publications respectively. Moreover, the University of Oslo from Norway is featured among the top 10 publishing institutions, with an impressive average citation count of 64 per publication. It is worth highlighting that six institutions based in the United Kingdom were also ranked within the top 10 publishing institutions, signifying their leading position in this area of research.

Analysis of journals

Journals are the main carriers for publishing high-quality papers. Some scholars point out that the two key factors to measure the influence of journals in the specified field are the number of articles published and the number of citations. The more papers published in a magazine and the more citations, the greater its influence (Dzikowski, 2018 ). Therefore, this study utilized VOSviewer to statistically analyze the top 10 journals with the most publications in the field of digital technology in education and calculated the average citations per article (see Table 6 ).

Based on Table 6 , it is apparent that the highest number of articles in the domain of digital technology in education research were published in Education and Information Technologies (47 articles), Computers & Education (34 articles), and British Journal of Educational Technology (32 articles), indicating a higher article output compared to other journals. This underscores the fact that these three journals concentrate more on the application of digital technology in education. Furthermore, several other journals, such as Technology Pedagogy and Education and Sustainability, have published more than 15 articles in this domain. Sustainability represents the open access movement, which has notably facilitated research progress in this field, indicating that the development of open access journals in recent years has had a significant impact. Although there is still considerable disagreement among scholars on the optimal approach to achieve open access, the notion that research outcomes should be accessible to all is widely recognized (Huang et al. 2020 ). On further analysis of the research fields to which these journals belong, except for Sustainability, it is evident that they all pertain to educational technology, thus providing a qualitative definition of the research area of digital technology education from the perspective of journals.

Temporal keyword analysis: thematic evolution (RQ2)

The evolution of research themes is a dynamic process, and previous studies have attempted to present the developmental trajectory of fields by drawing keyword networks in phases (Kumar et al. 2021 ; Chen et al. 2022b ). To understand the shifts in research topics across different periods, this study follows past research and, based on the significant changes in the research field and corresponding technological advancements during the outlined periods, divides the timeline into four stages (the first stage from January 2000 to December 2005, the second stage from January 2006 to December 2011, the third stage from January 2012 to December 2017; and the fourth stage from January 2018 to December 2022). The division into these four stages was determined through a combination of bibliometric analysis and literature review, which presented a clear trajectory of the field’s development. The research analyzes the keyword networks for each time period (as there are only three articles in the first stage, it was not possible to generate an appropriate keyword co-occurrence map, hence only the keyword co-occurrence maps from the second to the fourth stages are provided), to understand the evolutionary track of the digital technology education application research field over time.

2000.1–2005.12: germination period

From January 2000 to December 2005, digital technology education application research was in its infancy. Only three studies focused on digital technology, all of which were related to computers. Due to the popularity of computers, the home became a new learning environment, highlighting the important role of digital technology in expanding the scope of learning spaces (Sutherland et al. 2000 ). In specific disciplines and contexts, digital technology was first favored in medical clinical practice, becoming an important tool for supporting the learning of clinical knowledge and practice (Tegtmeyer et al. 2001 ; Durfee et al. 2003 ).

2006.1–2011.12: initial development period

Between January 2006 and December 2011, it was the initial development period of digital technology education research. Significant growth was observed in research related to digital technology, and discussions and theoretical analyses about “digital natives” emerged. During this phase, scholars focused on the debate about “how to use digital technology reasonably” and “whether current educational models and school curriculum design need to be adjusted on a large scale” (Bennett and Maton, 2010 ; Selwyn, 2009 ; Margaryan et al. 2011 ). These theoretical and speculative arguments provided a unique perspective on the impact of cognitive digital technology on education and teaching. As can be seen from the vocabulary such as “rethinking”, “disruptive pedagogy”, and “attitude” in Fig. 4 , many scholars joined the calm reflection and analysis under the trend of digital technology (Laurillard, 2008 ; Vratulis et al. 2011 ). During this phase, technology was still undergoing dramatic changes. The development of mobile technology had already caught the attention of many scholars (Wong et al. 2011 ), but digital technology represented by computers was still very active (Selwyn et al. 2011 ). The change in technological form would inevitably lead to educational transformation. Collins and Halverson ( 2010 ) summarized the prospects and challenges of using digital technology for learning and educational practices, believing that digital technology would bring a disruptive revolution to the education field and bring about a new educational system. In addition, the term “teacher education” in Fig. 4 reflects the impact of digital technology development on teachers. The rapid development of technology has widened the generation gap between teachers and students. To ensure smooth communication between teachers and students, teachers must keep up with the trend of technological development and establish a lifelong learning concept (Donnison, 2009 ).

figure 4

In the diagram, each node represents a keyword, with the size of the node indicating the frequency of occurrence of the keyword. The connections represent the co-occurrence relationships between keywords, with a higher frequency of co-occurrence resulting in tighter connections.

2012.1–2017.12: critical exploration period

During the period spanning January 2012 to December 2017, the application of digital technology in education research underwent a significant exploration phase. As can be seen from Fig. 5 , different from the previous stage, the specific elements of specific digital technology have started to increase significantly, including the enrichment of technological contexts, the greater variety of research methods, and the diversification of learning modes. Moreover, the temporal and spatial dimensions of the learning environment were further de-emphasized, as noted in previous literature (Za et al. 2014 ). Given the rapidly accelerating pace of technological development, the education system in the digital era is in urgent need of collaborative evolution and reconstruction, as argued by Davis, Eickelmann, and Zaka ( 2013 ).

figure 5

In the domain of digital technology, social media has garnered substantial scholarly attention as a promising avenue for learning, as noted by Pasquini and Evangelopoulos ( 2016 ). The implementation of social media in education presents several benefits, including the liberation of education from the restrictions of physical distance and time, as well as the erasure of conventional educational boundaries. The user-generated content (UGC) model in social media has emerged as a crucial source for knowledge creation and distribution, with the widespread adoption of mobile devices. Moreover, social networks have become an integral component of ubiquitous learning environments (Hwang et al. 2013 ). The utilization of social media allows individuals to function as both knowledge producers and recipients, which leads to a blurring of the conventional roles of learners and teachers. On mobile platforms, the roles of learners and teachers are not fixed, but instead interchangeable.

In terms of research methodology, the prevalence of empirical studies with survey designs in the field of educational technology during this period is evident from the vocabulary used, such as “achievement,” “acceptance,” “attitude,” and “ict.” in Fig. 5 . These studies aim to understand learners’ willingness to adopt and attitudes towards new technologies, and some seek to investigate the impact of digital technologies on learning outcomes through quasi-experimental designs (Domínguez et al. 2013 ). Among these empirical studies, mobile learning emerged as a hot topic, and this is not surprising. First, the advantages of mobile learning environments over traditional ones have been empirically demonstrated (Hwang et al. 2013 ). Second, learners born around the turn of the century have been heavily influenced by digital technologies and have developed their own learning styles that are more open to mobile devices as a means of learning. Consequently, analyzing mobile learning as a relatively novel mode of learning has become an important issue for scholars in the field of educational technology.

The intervention of technology has led to the emergence of several novel learning modes, with the blended learning model being the most representative one in the current phase. Blended learning, a novel concept introduced in the information age, emphasizes the integration of the benefits of traditional learning methods and online learning. This learning mode not only highlights the prominent role of teachers in guiding, inspiring, and monitoring the learning process but also underlines the importance of learners’ initiative, enthusiasm, and creativity in the learning process. Despite being an early conceptualization, blended learning’s meaning has been expanded by the widespread use of mobile technology and social media in education. The implementation of new technologies, particularly mobile devices, has resulted in the transformation of curriculum design and increased flexibility and autonomy in students’ learning processes (Trujillo Maza et al. 2016 ), rekindling scholarly attention to this learning mode. However, some scholars have raised concerns about the potential drawbacks of the blended learning model, such as its significant impact on the traditional teaching system, the lack of systematic coping strategies and relevant policies in several schools and regions (Moskal et al. 2013 ).

2018.1–2022.12: accelerated transformation period

The period spanning from January 2018 to December 2022 witnessed a rapid transformation in the application of digital technology in education research. The field of digital technology education research reached a peak period of publication, largely influenced by factors such as the COVID-19 pandemic (Yu et al. 2023 ). Research during this period was built upon the achievements, attitudes, and social media of the previous phase, and included more elements that reflect the characteristics of this research field, such as digital literacy, digital competence, and professional development, as depicted in Fig. 6 . Alongside this, scholars’ expectations for the value of digital technology have expanded, and the pursuit of improving learning efficiency and performance is no longer the sole focus. Some research now aims to cultivate learners’ motivation and enhance their self-efficacy by applying digital technology in a reasonable manner, as demonstrated by recent studies (Beardsley et al. 2021 ; Creely et al. 2021 ).

figure 6

The COVID-19 pandemic has emerged as a crucial backdrop for the digital technology’s role in sustaining global education, as highlighted by recent scholarly research (Zhou et al. 2022 ; Pan and Zhang, 2020 ; Mo et al. 2022 ). The online learning environment, which is supported by digital technology, has become the primary battleground for global education (Yu, 2022 ). This social context has led to various studies being conducted, with some scholars positing that the pandemic has impacted the traditional teaching order while also expanding learning possibilities in terms of patterns and forms (Alabdulaziz, 2021 ). Furthermore, the pandemic has acted as a catalyst for teacher teaching and technological innovation, and this viewpoint has been empirically substantiated (Moorhouse and Wong, 2021 ). Additionally, some scholars believe that the pandemic’s push is a crucial driving force for the digital transformation of the education system, serving as an essential mechanism for overcoming the system’s inertia (Romero et al. 2021 ).

The rapid outbreak of the pandemic posed a challenge to the large-scale implementation of digital technologies, which was influenced by a complex interplay of subjective and objective factors. Objective constraints included the lack of infrastructure in some regions to support digital technologies, while subjective obstacles included psychological resistance among certain students and teachers (Moorhouse, 2021 ). These factors greatly impacted the progress of online learning during the pandemic. Additionally, Timotheou et al. ( 2023 ) conducted a comprehensive systematic review of existing research on digital technology use during the pandemic, highlighting the critical role played by various factors such as learners’ and teachers’ digital skills, teachers’ personal attributes and professional development, school leadership and management, and administration in facilitating the digitalization and transformation of schools.

The current stage of research is characterized by the pivotal term “digital literacy,” denoting a growing interest in learners’ attitudes and adoption of emerging technologies. Initially, the term “literacy” was restricted to fundamental abilities and knowledge associated with books and print materials (McMillan, 1996 ). However, with the swift advancement of computers and digital technology, there have been various attempts to broaden the scope of literacy beyond its traditional meaning, including game literacy (Buckingham and Burn, 2007 ), information literacy (Eisenberg, 2008 ), and media literacy (Turin and Friesem, 2020 ). Similarly, digital literacy has emerged as a crucial concept, and Gilster and Glister ( 1997 ) were the first to introduce this concept, referring to the proficiency in utilizing technology and processing digital information in academic, professional, and daily life settings. In practical educational settings, learners who possess higher digital literacy often exhibit an aptitude for quickly mastering digital devices and applying them intelligently to education and teaching (Yu, 2022 ).

The utilization of digital technology in education has undergone significant changes over the past two decades, and has been a crucial driver of educational reform with each new technological revolution. The impact of these changes on the underlying logic of digital technology education applications has been noticeable. From computer technology to more recent developments such as virtual reality (VR), augmented reality (AR), and artificial intelligence (AI), the acceleration in digital technology development has been ongoing. Educational reforms spurred by digital technology development continue to be dynamic, as each new digital innovation presents new possibilities and models for teaching practice. This is especially relevant in the post-pandemic era, where the importance of technological progress in supporting teaching cannot be overstated (Mughal et al. 2022 ). Existing digital technologies have already greatly expanded the dimensions of education in both time and space, while future digital technologies aim to expand learners’ perceptions. Researchers have highlighted the potential of integrated technology and immersive technology in the development of the educational metaverse, which is highly anticipated to create a new dimension for the teaching and learning environment, foster a new value system for the discipline of educational technology, and more effectively and efficiently achieve the grand educational blueprint of the United Nations’ Sustainable Development Goals (Zhang et al. 2022 ; Li and Yu, 2023 ).

Hotspot evolution analysis (RQ3)

The examination of keyword evolution reveals a consistent trend in the advancement of digital technology education application research. The emergence and transformation of keywords serve as indicators of the varying research interests in this field. Thus, the utilization of the burst detection function available in CiteSpace allowed for the identification of the top 10 burst words that exhibited a high level of burst strength. This outcome is illustrated in Table 7 .

According to the results presented in Table 7 , the explosive terminology within the realm of digital technology education research has exhibited a concentration mainly between the years 2018 and 2022. Prior to this time frame, the emerging keywords were limited to “information technology” and “computer”. Notably, among them, computer, as an emergent keyword, has always had a high explosive intensity from 2008 to 2018, which reflects the important position of computer in digital technology and is the main carrier of many digital technologies such as Learning Management Systems (LMS) and Assessment and Feedback systems (Barlovits et al. 2022 ).

Since 2018, an increasing number of research studies have focused on evaluating the capabilities of learners to accept, apply, and comprehend digital technologies. As indicated by the use of terms such as “digital literacy” and “digital skill,” the assessment of learners’ digital literacy has become a critical task. Scholarly efforts have been directed towards the development of literacy assessment tools and the implementation of empirical assessments. Furthermore, enhancing the digital literacy of both learners and educators has garnered significant attention. (Nagle, 2018 ; Yu, 2022 ). Simultaneously, given the widespread use of various digital technologies in different formal and informal learning settings, promoting learners’ digital skills has become a crucial objective for contemporary schools (Nygren et al. 2019 ; Forde and OBrien, 2022 ).

Since 2020, the field of applied research on digital technology education has witnessed the emergence of three new hotspots, all of which have been affected to some extent by the pandemic. Firstly, digital technology has been widely applied in physical education, which is one of the subjects that has been severely affected by the pandemic (Parris et al. 2022 ; Jiang and Ning, 2022 ). Secondly, digital transformation has become an important measure for most schools, especially higher education institutions, to cope with the impact of the pandemic globally (García-Morales et al. 2021 ). Although the concept of digital transformation was proposed earlier, the COVID-19 pandemic has greatly accelerated this transformation process. Educational institutions must carefully redesign their educational products to face this new situation, providing timely digital learning methods, environments, tools, and support systems that have far-reaching impacts on modern society (Krishnamurthy, 2020 ; Salas-Pilco et al. 2022 ). Moreover, the professional development of teachers has become a key mission of educational institutions in the post-pandemic era. Teachers need to have a certain level of digital literacy and be familiar with the tools and online teaching resources used in online teaching, which has become a research hotspot today. Organizing digital skills training for teachers to cope with the application of emerging technologies in education is an important issue for teacher professional development and lifelong learning (Garzón-Artacho et al. 2021 ). As the main organizers and practitioners of emergency remote teaching (ERT) during the pandemic, teachers must put cognitive effort into their professional development to ensure effective implementation of ERT (Romero-Hall and Jaramillo Cherrez, 2022 ).

The burst word “digital transformation” reveals that we are in the midst of an ongoing digital technology revolution. With the emergence of innovative digital technologies such as ChatGPT and Microsoft 365 Copilot, technology trends will continue to evolve, albeit unpredictably. While the impact of these advancements on school education remains uncertain, it is anticipated that the widespread integration of technology will significantly affect the current education system. Rejecting emerging technologies without careful consideration is unwise. Like any revolution, the technological revolution in the education field has both positive and negative aspects. Detractors argue that digital technology disrupts learning and memory (Baron, 2021 ) or causes learners to become addicted and distracted from learning (Selwyn and Aagaard, 2020 ). On the other hand, the prudent use of digital technology in education offers a glimpse of a golden age of open learning. Educational leaders and practitioners have the opportunity to leverage cutting-edge digital technologies to address current educational challenges and develop a rational path for the sustainable and healthy growth of education.

Discussion on performance analysis (RQ1)

The field of digital technology education application research has experienced substantial growth since the turn of the century, a phenomenon that is quantifiably apparent through an analysis of authorship, country/region contributions, and institutional engagement. This expansion reflects the increased integration of digital technologies in educational settings and the heightened scholarly interest in understanding and optimizing their use.

Discussion on authorship productivity in digital technology education research

The authorship distribution within digital technology education research is indicative of the field’s intellectual structure and depth. A primary figure in this domain is Neil Selwyn, whose substantial citation rate underscores the profound impact of his work. His focus on the implications of digital technology in higher education and educational sociology has proven to be seminal. Selwyn’s research trajectory, especially the exploration of spatiotemporal extensions of education through technology, provides valuable insights into the multifaceted role of digital tools in learning processes (Selwyn et al. 2019 ).

Other notable contributors, like Henderson and Edwards, present diversified research interests, such as the impact of digital technologies during the pandemic and their application in early childhood education, respectively. Their varied focuses highlight the breadth of digital technology education research, encompassing pedagogical innovation, technological adaptation, and policy development.

Discussion on country/region-level productivity and collaboration

At the country/region level, the United Kingdom, specifically England, emerges as a leading contributor with 92 published papers and a significant citation count. This is closely followed by Australia and the United States, indicating a strong English-speaking research axis. Such geographical concentration of scholarly output often correlates with investment in research and development, technological infrastructure, and the prevalence of higher education institutions engaging in cutting-edge research.

China’s notable inclusion as the only non-Western country among the top contributors to the field suggests a growing research capacity and interest in digital technology in education. However, the lower average citation per paper for China could reflect emerging engagement or different research focuses that may not yet have achieved the same international recognition as Western counterparts.

The chord diagram analysis furthers this understanding, revealing dense interconnections between countries like the United States, China, and England, which indicates robust collaborations. Such collaborations are fundamental in addressing global educational challenges and shaping international research agendas.

Discussion on institutional-level contributions to digital technology education

Institutional productivity in digital technology education research reveals a constellation of universities driving the field forward. Monash University and the Australian Catholic University have the highest publication output, signaling Australia’s significant role in advancing digital education research. The University of Oslo’s remarkable average citation count per publication indicates influential research contributions, potentially reflecting high-quality studies that resonate with the broader academic community.

The strong showing of UK institutions, including the University of London, The Open University, and the University of Cambridge, reinforces the UK’s prominence in this research field. Such institutions are often at the forefront of pedagogical innovation, benefiting from established research cultures and funding mechanisms that support sustained inquiry into digital education.

Discussion on journal publication analysis

An examination of journal outputs offers a lens into the communicative channels of the field’s knowledge base. Journals such as Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology not only serve as the primary disseminators of research findings but also as indicators of research quality and relevance. The impact factor (IF) serves as a proxy for the quality and influence of these journals within the academic community.

The high citation counts for articles published in Computers & Education suggest that research disseminated through this medium has a wide-reaching impact and is of particular interest to the field. This is further evidenced by its significant IF of 11.182, indicating that the journal is a pivotal platform for seminal work in the application of digital technology in education.

The authorship, regional, and institutional productivity in the field of digital technology education application research collectively narrate the evolution of this domain since the turn of the century. The prominence of certain authors and countries underscores the importance of socioeconomic factors and existing academic infrastructure in fostering research productivity. Meanwhile, the centrality of specific journals as outlets for high-impact research emphasizes the role of academic publishing in shaping the research landscape.

As the field continues to grow, future research may benefit from leveraging the collaborative networks that have been elucidated through this analysis, perhaps focusing on underrepresented regions to broaden the scope and diversity of research. Furthermore, the stabilization of publication numbers in recent years invites a deeper exploration into potential plateaus in research trends or saturation in certain sub-fields, signaling an opportunity for novel inquiries and methodological innovations.

Discussion on the evolutionary trends (RQ2)

The evolution of the research field concerning the application of digital technology in education over the past two decades is a story of convergence, diversification, and transformation, shaped by rapid technological advancements and shifting educational paradigms.

At the turn of the century, the inception of digital technology in education was largely exploratory, with a focus on how emerging computer technologies could be harnessed to enhance traditional learning environments. Research from this early period was primarily descriptive, reflecting on the potential and challenges of incorporating digital tools into the educational setting. This phase was critical in establishing the fundamental discourse that would guide subsequent research, as it set the stage for understanding the scope and impact of digital technology in learning spaces (Wang et al. 2023 ).

As the first decade progressed, the narrative expanded to encompass the pedagogical implications of digital technologies. This was a period of conceptual debates, where terms like “digital natives” and “disruptive pedagogy” entered the academic lexicon, underscoring the growing acknowledgment of digital technology as a transformative force within education (Bennett and Maton, 2010 ). During this time, the research began to reflect a more nuanced understanding of the integration of technology, considering not only its potential to change where and how learning occurred but also its implications for educational equity and access.

In the second decade, with the maturation of internet connectivity and mobile technology, the focus of research shifted from theoretical speculations to empirical investigations. The proliferation of digital devices and the ubiquity of social media influenced how learners interacted with information and each other, prompting a surge in studies that sought to measure the impact of these tools on learning outcomes. The digital divide and issues related to digital literacy became central concerns, as scholars explored the varying capacities of students and educators to engage with technology effectively.

Throughout this period, there was an increasing emphasis on the individualization of learning experiences, facilitated by adaptive technologies that could cater to the unique needs and pacing of learners (Jing et al. 2023a ). This individualization was coupled with a growing recognition of the importance of collaborative learning, both online and offline, and the role of digital tools in supporting these processes. Blended learning models, which combined face-to-face instruction with online resources, emerged as a significant trend, advocating for a balance between traditional pedagogies and innovative digital strategies.

The later years, particularly marked by the COVID-19 pandemic, accelerated the necessity for digital technology in education, transforming it from a supplementary tool to an essential platform for delivering education globally (Mo et al. 2022 ; Mustapha et al. 2021 ). This era brought about an unprecedented focus on online learning environments, distance education, and virtual classrooms. Research became more granular, examining not just the pedagogical effectiveness of digital tools, but also their role in maintaining continuity of education during crises, their impact on teacher and student well-being, and their implications for the future of educational policy and infrastructure.

Across these two decades, the research field has seen a shift from examining digital technology as an external addition to the educational process, to viewing it as an integral component of curriculum design, instructional strategies, and even assessment methods. The emergent themes have broadened from a narrow focus on specific tools or platforms to include wider considerations such as data privacy, ethical use of technology, and the environmental impact of digital tools.

Moreover, the field has moved from considering the application of digital technology in education as a primarily cognitive endeavor to recognizing its role in facilitating socio-emotional learning, digital citizenship, and global competencies. Researchers have increasingly turned their attention to the ways in which technology can support collaborative skills, cultural understanding, and ethical reasoning within diverse student populations.

In summary, the past over twenty years in the research field of digital technology applications in education have been characterized by a progression from foundational inquiries to complex analyses of digital integration. This evolution has mirrored the trajectory of technology itself, from a facilitative tool to a pervasive ecosystem defining contemporary educational experiences. As we look to the future, the field is poised to delve into the implications of emerging technologies like AI, AR, and VR, and their potential to redefine the educational landscape even further. This ongoing metamorphosis suggests that the application of digital technology in education will continue to be a rich area of inquiry, demanding continual adaptation and forward-thinking from educators and researchers alike.

Discussion on the study of research hotspots (RQ3)

The analysis of keyword evolution in digital technology education application research elucidates the current frontiers in the field, reflecting a trajectory that is in tandem with the rapidly advancing digital age. This landscape is sculpted by emergent technological innovations and shaped by the demands of an increasingly digital society.

Interdisciplinary integration and pedagogical transformation

One of the frontiers identified from recent keyword bursts includes the integration of digital technology into diverse educational contexts, particularly noted with the keyword “physical education.” The digitalization of disciplines traditionally characterized by physical presence illustrates the pervasive reach of technology and signifies a push towards interdisciplinary integration where technology is not only a facilitator but also a transformative agent. This integration challenges educators to reconceptualize curriculum delivery to accommodate digital tools that can enhance or simulate the physical aspects of learning.

Digital literacy and skills acquisition

Another pivotal frontier is the focus on “digital literacy” and “digital skill”, which has intensified in recent years. This suggests a shift from mere access to technology towards a comprehensive understanding and utilization of digital tools. In this realm, the emphasis is not only on the ability to use technology but also on critical thinking, problem-solving, and the ethical use of digital resources (Yu, 2022 ). The acquisition of digital literacy is no longer an additive skill but a fundamental aspect of modern education, essential for navigating and contributing to the digital world.

Educational digital transformation

The keyword “digital transformation” marks a significant research frontier, emphasizing the systemic changes that education institutions must undergo to align with the digital era (Romero et al. 2021 ). This transformation includes the redesigning of learning environments, pedagogical strategies, and assessment methods to harness digital technology’s full potential. Research in this area explores the complexity of institutional change, addressing the infrastructural, cultural, and policy adjustments needed for a seamless digital transition.

Engagement and participation

Further exploration into “engagement” and “participation” underscores the importance of student-centered learning environments that are mediated by technology. The current frontiers examine how digital platforms can foster collaboration, inclusivity, and active learning, potentially leading to more meaningful and personalized educational experiences. Here, the use of technology seeks to support the emotional and cognitive aspects of learning, moving beyond the transactional view of education to one that is relational and interactive.

Professional development and teacher readiness

As the field evolves, “professional development” emerges as a crucial area, particularly in light of the pandemic which necessitated emergency remote teaching. The need for teacher readiness in a digital age is a pressing frontier, with research focusing on the competencies required for educators to effectively integrate technology into their teaching practices. This includes familiarity with digital tools, pedagogical innovation, and an ongoing commitment to personal and professional growth in the digital domain.

Pandemic as a catalyst

The recent pandemic has acted as a catalyst for accelerated research and application in this field, particularly in the domains of “digital transformation,” “professional development,” and “physical education.” This period has been a litmus test for the resilience and adaptability of educational systems to continue their operations in an emergency. Research has thus been directed at understanding how digital technologies can support not only continuity but also enhance the quality and reach of education in such contexts.

Ethical and societal considerations

The frontier of digital technology in education is also expanding to consider broader ethical and societal implications. This includes issues of digital equity, data privacy, and the sociocultural impact of technology on learning communities. The research explores how educational technology can be leveraged to address inequities and create more equitable learning opportunities for all students, regardless of their socioeconomic background.

Innovation and emerging technologies

Looking forward, the frontiers are set to be influenced by ongoing and future technological innovations, such as artificial intelligence (AI) (Wu and Yu, 2023 ; Chen et al. 2022a ). The exploration into how these technologies can be integrated into educational practices to create immersive and adaptive learning experiences represents a bold new chapter for the field.

In conclusion, the current frontiers of research on the application of digital technology in education are multifaceted and dynamic. They reflect an overarching movement towards deeper integration of technology in educational systems and pedagogical practices, where the goals are not only to facilitate learning but to redefine it. As these frontiers continue to expand and evolve, they will shape the educational landscape, requiring a concerted effort from researchers, educators, policymakers, and technologists to navigate the challenges and harness the opportunities presented by the digital revolution in education.

Conclusions and future research

Conclusions.

The utilization of digital technology in education is a research area that cuts across multiple technical and educational domains and continues to experience dynamic growth due to the continuous progress of technology. In this study, a systematic review of this field was conducted through bibliometric techniques to examine its development trajectory. The primary focus of the review was to investigate the leading contributors, productive national institutions, significant publications, and evolving development patterns. The study’s quantitative analysis resulted in several key conclusions that shed light on this research field’s current state and future prospects.

(1) The research field of digital technology education applications has entered a stage of rapid development, particularly in recent years due to the impact of the pandemic, resulting in a peak of publications. Within this field, several key authors (Selwyn, Henderson, Edwards, etc.) and countries/regions (England, Australia, USA, etc.) have emerged, who have made significant contributions. International exchanges in this field have become frequent, with a high degree of internationalization in academic research. Higher education institutions in the UK and Australia are the core productive forces in this field at the institutional level.

(2) Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology are notable journals that publish research related to digital technology education applications. These journals are affiliated with the research field of educational technology and provide effective communication platforms for sharing digital technology education applications.

(3) Over the past two decades, research on digital technology education applications has progressed from its early stages of budding, initial development, and critical exploration to accelerated transformation, and it is currently approaching maturity. Technological progress and changes in the times have been key driving forces for educational transformation and innovation, and both have played important roles in promoting the continuous development of education.

(4) Influenced by the pandemic, three emerging frontiers have emerged in current research on digital technology education applications, which are physical education, digital transformation, and professional development under the promotion of digital technology. These frontier research hotspots reflect the core issues that the education system faces when encountering new technologies. The evolution of research hotspots shows that technology breakthroughs in education’s original boundaries of time and space create new challenges. The continuous self-renewal of education is achieved by solving one hotspot problem after another.

The present study offers significant practical implications for scholars and practitioners in the field of digital technology education applications. Firstly, it presents a well-defined framework of the existing research in this area, serving as a comprehensive guide for new entrants to the field and shedding light on the developmental trajectory of this research domain. Secondly, the study identifies several contemporary research hotspots, thus offering a valuable decision-making resource for scholars aiming to explore potential research directions. Thirdly, the study undertakes an exhaustive analysis of published literature to identify core journals in the field of digital technology education applications, with Sustainability being identified as a promising open access journal that publishes extensively on this topic. This finding can potentially facilitate scholars in selecting appropriate journals for their research outputs.

Limitation and future research

Influenced by some objective factors, this study also has some limitations. First of all, the bibliometrics analysis software has high standards for data. In order to ensure the quality and integrity of the collected data, the research only selects the periodical papers in SCIE and SSCI indexes, which are the core collection of Web of Science database, and excludes other databases, conference papers, editorials and other publications, which may ignore some scientific research and original opinions in the field of digital technology education and application research. In addition, although this study used professional software to carry out bibliometric analysis and obtained more objective quantitative data, the analysis and interpretation of data will inevitably have a certain subjective color, and the influence of subjectivity on data analysis cannot be completely avoided. As such, future research endeavors will broaden the scope of literature screening and proactively engage scholars in the field to gain objective and state-of-the-art insights, while minimizing the adverse impact of personal subjectivity on research analysis.

Data availability

The datasets analyzed during the current study are available in the Dataverse repository: https://doi.org/10.7910/DVN/F9QMHY

Alabdulaziz MS (2021) COVID-19 and the use of digital technology in mathematics education. Educ Inf Technol 26(6):7609–7633. https://doi.org/10.1007/s10639-021-10602-3

Arif TB, Munaf U, Ul-Haque I (2023) The future of medical education and research: is ChatGPT a blessing or blight in disguise? Med Educ Online 28. https://doi.org/10.1080/10872981.2023.2181052

Banerjee M, Chiew D, Patel KT, Johns I, Chappell D, Linton N, Cole GD, Francis DP, Szram J, Ross J, Zaman S (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21. https://doi.org/10.1186/s12909-021-02870-x

Barlovits S, Caldeira A, Fesakis G, Jablonski S, Koutsomanoli Filippaki D, Lázaro C, Ludwig M, Mammana MF, Moura A, Oehler DXK, Recio T, Taranto E, Volika S(2022) Adaptive, synchronous, and mobile online education: developing the ASYMPTOTE learning environment. Mathematics 10:1628. https://doi.org/10.3390/math10101628

Article   Google Scholar  

Baron NS(2021) Know what? How digital technologies undermine learning and remembering J Pragmat 175:27–37. https://doi.org/10.1016/j.pragma.2021.01.011

Batista J, Morais NS, Ramos F (2016) Researching the use of communication technologies in higher education institutions in Portugal. https://doi.org/10.4018/978-1-5225-0571-6.ch057

Beardsley M, Albó L, Aragón P, Hernández-Leo D (2021) Emergency education effects on teacher abilities and motivation to use digital technologies. Br J Educ Technol 52. https://doi.org/10.1111/bjet.13101

Bennett S, Maton K(2010) Beyond the “digital natives” debate: towards a more nuanced understanding of students’ technology experiences J Comput Assist Learn 26:321–331. https://doi.org/10.1111/j.1365-2729.2010.00360.x

Buckingham D, Burn A (2007) Game literacy in theory and practice 16:323–349

Google Scholar  

Bulfin S, Pangrazio L, Selwyn N (2014) Making “MOOCs”: the construction of a new digital higher education within news media discourse. In: The International Review of Research in Open and Distributed Learning 15. https://doi.org/10.19173/irrodl.v15i5.1856

Camilleri MA, Camilleri AC(2016) Digital learning resources and ubiquitous technologies in education Technol Knowl Learn 22:65–82. https://doi.org/10.1007/s10758-016-9287-7

Chen C(2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature J Am Soc Inf Sci Technol 57:359–377. https://doi.org/10.1002/asi.20317

Chen J, Dai J, Zhu K, Xu L(2022) Effects of extended reality on language learning: a meta-analysis Front Psychol 13:1016519. https://doi.org/10.3389/fpsyg.2022.1016519

Article   PubMed   PubMed Central   Google Scholar  

Chen J, Wang CL, Tang Y (2022b) Knowledge mapping of volunteer motivation: a bibliometric analysis and cross-cultural comparative study. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.883150

Cohen A, Soffer T, Henderson M(2022) Students’ use of technology and their perceptions of its usefulness in higher education: International comparison J Comput Assist Learn 38(5):1321–1331. https://doi.org/10.1111/jcal.12678

Collins A, Halverson R(2010) The second educational revolution: rethinking education in the age of technology J Comput Assist Learn 26:18–27. https://doi.org/10.1111/j.1365-2729.2009.00339.x

Conole G, Alevizou P (2010) A literature review of the use of Web 2.0 tools in higher education. Walton Hall, Milton Keynes, UK: the Open University, retrieved 17 February

Creely E, Henriksen D, Crawford R, Henderson M(2021) Exploring creative risk-taking and productive failure in classroom practice. A case study of the perceived self-efficacy and agency of teachers at one school Think Ski Creat 42:100951. https://doi.org/10.1016/j.tsc.2021.100951

Davis N, Eickelmann B, Zaka P(2013) Restructuring of educational systems in the digital age from a co-evolutionary perspective J Comput Assist Learn 29:438–450. https://doi.org/10.1111/jcal.12032

De Belli N (2009) Bibliometrics and citation analysis: from the science citation index to cybermetrics, Scarecrow Press. https://doi.org/10.1111/jcal.12032

Domínguez A, Saenz-de-Navarrete J, de-Marcos L, Fernández-Sanz L, Pagés C, Martínez-Herráiz JJ(2013) Gamifying learning experiences: practical implications and outcomes Comput Educ 63:380–392. https://doi.org/10.1016/j.compedu.2012.12.020

Donnison S (2009) Discourses in conflict: the relationship between Gen Y pre-service teachers, digital technologies and lifelong learning. Australasian J Educ Technol 25. https://doi.org/10.14742/ajet.1138

Durfee SM, Jain S, Shaffer K (2003) Incorporating electronic media into medical student education. Acad Radiol 10:205–210. https://doi.org/10.1016/s1076-6332(03)80046-6

Dzikowski P(2018) A bibliometric analysis of born global firms J Bus Res 85:281–294. https://doi.org/10.1016/j.jbusres.2017.12.054

van Eck NJ, Waltman L(2009) Software survey: VOSviewer, a computer program for bibliometric mapping Scientometrics 84:523–538 https://doi.org/10.1007/s11192-009-0146-3

Edwards S(2013) Digital play in the early years: a contextual response to the problem of integrating technologies and play-based pedagogies in the early childhood curriculum Eur Early Child Educ Res J 21:199–212. https://doi.org/10.1080/1350293x.2013.789190

Edwards S(2015) New concepts of play and the problem of technology, digital media and popular-culture integration with play-based learning in early childhood education Technol Pedagogy Educ 25:513–532 https://doi.org/10.1080/1475939x.2015.1108929

Article   MathSciNet   Google Scholar  

Eisenberg MB(2008) Information literacy: essential skills for the information age DESIDOC J Libr Inf Technol 28:39–47. https://doi.org/10.14429/djlit.28.2.166

Forde C, OBrien A (2022) A literature review of barriers and opportunities presented by digitally enhanced practical skill teaching and learning in health science education. Med Educ Online 27. https://doi.org/10.1080/10872981.2022.2068210

García-Morales VJ, Garrido-Moreno A, Martín-Rojas R (2021) The transformation of higher education after the COVID disruption: emerging challenges in an online learning scenario. Front Psychol 12. https://doi.org/10.3389/fpsyg.2021.616059

Garfield E(2006) The history and meaning of the journal impact factor JAMA 295:90. https://doi.org/10.1001/jama.295.1.90

Article   PubMed   Google Scholar  

Garzón-Artacho E, Sola-Martínez T, Romero-Rodríguez JM, Gómez-García G(2021) Teachers’ perceptions of digital competence at the lifelong learning stage Heliyon 7:e07513. https://doi.org/10.1016/j.heliyon.2021.e07513

Gaviria-Marin M, Merigó JM, Baier-Fuentes H(2019) Knowledge management: a global examination based on bibliometric analysis Technol Forecast Soc Change 140:194–220. https://doi.org/10.1016/j.techfore.2018.07.006

Gilster P, Glister P (1997) Digital literacy. Wiley Computer Pub, New York

Greenhow C, Lewin C(2015) Social media and education: reconceptualizing the boundaries of formal and informal learning Learn Media Technol 41:6–30. https://doi.org/10.1080/17439884.2015.1064954

Hawkins DT(2001) Bibliometrics of electronic journals in information science Infor Res 7(1):7–1. http://informationr.net/ir/7-1/paper120.html

Henderson M, Selwyn N, Finger G, Aston R(2015) Students’ everyday engagement with digital technology in university: exploring patterns of use and “usefulness J High Educ Policy Manag 37:308–319 https://doi.org/10.1080/1360080x.2015.1034424

Huang CK, Neylon C, Hosking R, Montgomery L, Wilson KS, Ozaygen A, Brookes-Kenworthy C (2020) Evaluating the impact of open access policies on research institutions. eLife 9. https://doi.org/10.7554/elife.57067

Hwang GJ, Tsai CC(2011) Research trends in mobile and ubiquitous learning: a review of publications in selected journals from 2001 to 2010 Br J Educ Technol 42:E65–E70. https://doi.org/10.1111/j.1467-8535.2011.01183.x

Hwang GJ, Wu PH, Zhuang YY, Huang YM(2013) Effects of the inquiry-based mobile learning model on the cognitive load and learning achievement of students Interact Learn Environ 21:338–354. https://doi.org/10.1080/10494820.2011.575789

Jiang S, Ning CF (2022) Interactive communication in the process of physical education: are social media contributing to the improvement of physical training performance. Universal Access Inf Soc, 1–10. https://doi.org/10.1007/s10209-022-00911-w

Jing Y, Zhao L, Zhu KK, Wang H, Wang CL, Xia Q(2023) Research landscape of adaptive learning in education: a bibliometric study on research publications from 2000 to 2022 Sustainability 15:3115–3115. https://doi.org/10.3390/su15043115

Jing Y, Wang CL, Chen Y, Wang H, Yu T, Shadiev R (2023b) Bibliometric mapping techniques in educational technology research: a systematic literature review. Educ Inf Technol 1–29. https://doi.org/10.1007/s10639-023-12178-6

Krishnamurthy S (2020) The future of business education: a commentary in the shadow of the Covid-19 pandemic. J Bus Res. https://doi.org/10.1016/j.jbusres.2020.05.034

Kumar S, Lim WM, Pandey N, Christopher Westland J (2021) 20 years of electronic commerce research. Electron Commer Res 21:1–40

Kyza EA, Georgiou Y(2018) Scaffolding augmented reality inquiry learning: the design and investigation of the TraceReaders location-based, augmented reality platform Interact Learn Environ 27:211–225. https://doi.org/10.1080/10494820.2018.1458039

Laurillard D(2008) Technology enhanced learning as a tool for pedagogical innovation J Philos Educ 42:521–533. https://doi.org/10.1111/j.1467-9752.2008.00658.x

Li M, Yu Z (2023) A systematic review on the metaverse-based blended English learning. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.1087508

Luo H, Li G, Feng Q, Yang Y, Zuo M (2021) Virtual reality in K-12 and higher education: a systematic review of the literature from 2000 to 2019. J Comput Assist Learn. https://doi.org/10.1111/jcal.12538

Margaryan A, Littlejohn A, Vojt G(2011) Are digital natives a myth or reality? University students’ use of digital technologies Comput Educ 56:429–440. https://doi.org/10.1016/j.compedu.2010.09.004

McMillan S(1996) Literacy and computer literacy: definitions and comparisons Comput Educ 27:161–170. https://doi.org/10.1016/s0360-1315(96)00026-7

Mo CY, Wang CL, Dai J, Jin P (2022) Video playback speed influence on learning effect from the perspective of personalized adaptive learning: a study based on cognitive load theory. Front Psychology 13. https://doi.org/10.3389/fpsyg.2022.839982

Moorhouse BL (2021) Beginning teaching during COVID-19: newly qualified Hong Kong teachers’ preparedness for online teaching. Educ Stud 1–17. https://doi.org/10.1080/03055698.2021.1964939

Moorhouse BL, Wong KM (2021) The COVID-19 Pandemic as a catalyst for teacher pedagogical and technological innovation and development: teachers’ perspectives. Asia Pac J Educ 1–16. https://doi.org/10.1080/02188791.2021.1988511

Moskal P, Dziuban C, Hartman J (2013) Blended learning: a dangerous idea? Internet High Educ 18:15–23

Mughal MY, Andleeb N, Khurram AFA, Ali MY, Aslam MS, Saleem MN (2022) Perceptions of teaching-learning force about Metaverse for education: a qualitative study. J. Positive School Psychol 6:1738–1745

Mustapha I, Thuy Van N, Shahverdi M, Qureshi MI, Khan N (2021) Effectiveness of digital technology in education during COVID-19 pandemic. a bibliometric analysis. Int J Interact Mob Technol 15:136

Nagle J (2018) Twitter, cyber-violence, and the need for a critical social media literacy in teacher education: a review of the literature. Teach Teach Education 76:86–94

Nazare J, Woolf A, Sysoev I, Ballinger S, Saveski M, Walker M, Roy D (2022) Technology-assisted coaching can increase engagement with learning technology at home and caregivers’ awareness of it. Comput Educ 188:104565

Nguyen UP, Hallinger P (2020) Assessing the distinctive contributions of simulation & gaming to the literature, 1970-2019: a bibliometric review. Simul Gaming 104687812094156. https://doi.org/10.1177/1046878120941569

Nygren H, Nissinen K, Hämäläinen R, Wever B(2019) Lifelong learning: formal, non-formal and informal learning in the context of the use of problem-solving skills in technology-rich environments Br J Educ Technol 50:1759–1770. https://doi.org/10.1111/bjet.12807

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906

Pan SL, Zhang S(2020) From fighting COVID-19 pandemic to tackling sustainable development goals: an opportunity for responsible information systems research Int J Inf Manage 55:102196. https://doi.org/10.1016/j.ijinfomgt.2020.102196

Pan X, Yan E, Cui M, Hua W(2018) Examining the usage, citation, and diffusion patterns of bibliometric mapping software: a comparative study of three tools J Informetr 12:481–493. https://doi.org/10.1016/j.joi.2018.03.005

Parris Z, Cale L, Harris J, Casey A (2022) Physical activity for health, covid-19 and social media: what, where and why?. Movimento, 28. https://doi.org/10.22456/1982-8918.122533

Pasquini LA, Evangelopoulos N (2016) Sociotechnical stewardship in higher education: a field study of social media policy documents. J Comput High Educ 29:218–239

Pérez-Sanagustín M, Hernández-Leo D, Santos P, Delgado Kloos C, Blat J(2014) Augmenting reality and formality of informal and non-formal settings to enhance blended learning IEEE Trans Learn Technol 7:118–131. https://doi.org/10.1109/TLT.2014.2312719

Pinto M, Leite C (2020) Digital technologies in support of students learning in Higher Education: literature review. Digital Education Review 343–360. https://doi.org/10.1344/der.2020.37.343-360

Pires F, Masanet MJ, Tomasena JM, Scolari CA(2022) Learning with YouTube: beyond formal and informal through new actors, strategies and affordances Convergence 28(3):838–853. https://doi.org/10.1177/1354856521102054

Pritchard A (1969) Statistical bibliography or bibliometrics 25:348

Romero M, Romeu T, Guitert M, Baztán P (2021) Digital transformation in higher education: the UOC case. In ICERI2021 Proceedings (pp. 6695–6703). IATED https://doi.org/10.21125/iceri.2021.1512

Romero-Hall E, Jaramillo Cherrez N (2022) Teaching in times of disruption: faculty digital literacy in higher education during the COVID-19 pandemic. Innovations in Education and Teaching International 1–11. https://doi.org/10.1080/14703297.2022.2030782

Rospigliosi PA(2023) Artificial intelligence in teaching and learning: what questions should we ask of ChatGPT? Interactive Learning Environments 31:1–3. https://doi.org/10.1080/10494820.2023.2180191

Salas-Pilco SZ, Yang Y, Zhang Z(2022) Student engagement in online learning in Latin American higher education during the COVID-19 pandemic: a systematic review. Br J Educ Technol 53(3):593–619. https://doi.org/10.1111/bjet.13190

Selwyn N(2009) The digital native-myth and reality In Aslib proceedings 61(4):364–379. https://doi.org/10.1108/00012530910973776

Selwyn N(2012) Making sense of young people, education and digital technology: the role of sociological theory Oxford Review of Education 38:81–96. https://doi.org/10.1080/03054985.2011.577949

Selwyn N, Facer K(2014) The sociology of education and digital technology: past, present and future Oxford Rev Educ 40:482–496. https://doi.org/10.1080/03054985.2014.933005

Selwyn N, Banaji S, Hadjithoma-Garstka C, Clark W(2011) Providing a platform for parents? Exploring the nature of parental engagement with school Learning Platforms J Comput Assist Learn 27:314–323. https://doi.org/10.1111/j.1365-2729.2011.00428.x

Selwyn N, Aagaard J (2020) Banning mobile phones from classrooms-an opportunity to advance understandings of technology addiction, distraction and cyberbullying. Br J Educ Technol 52. https://doi.org/10.1111/bjet.12943

Selwyn N, O’Neill C, Smith G, Andrejevic M, Gu X (2021) A necessary evil? The rise of online exam proctoring in Australian universities. Media Int Austr 1329878X2110058. https://doi.org/10.1177/1329878x211005862

Selwyn N, Pangrazio L, Nemorin S, Perrotta C (2019) What might the school of 2030 be like? An exercise in social science fiction. Learn, Media Technol 1–17. https://doi.org/10.1080/17439884.2020.1694944

Selwyn, N (2016) What works and why?* Understanding successful technology enabled learning within institutional contexts 2016 Final report Appendices (Part B). Monash University Griffith University

Sjöberg D, Holmgren R (2021) Informal workplace learning in swedish police education-a teacher perspective. Vocations and Learning. https://doi.org/10.1007/s12186-021-09267-3

Strotmann A, Zhao D (2012) Author name disambiguation: what difference does it make in author-based citation analysis? J Am Soc Inf Sci Technol 63:1820–1833

Article   CAS   Google Scholar  

Sutherland R, Facer K, Furlong R, Furlong J(2000) A new environment for education? The computer in the home. Comput Educ 34:195–212. https://doi.org/10.1016/s0360-1315(99)00045-7

Szeto E, Cheng AY-N, Hong J-C(2015) Learning with social media: how do preservice teachers integrate YouTube and Social Media in teaching? Asia-Pac Educ Res 25:35–44. https://doi.org/10.1007/s40299-015-0230-9

Tang E, Lam C(2014) Building an effective online learning community (OLC) in blog-based teaching portfolios Int High Educ 20:79–85. https://doi.org/10.1016/j.iheduc.2012.12.002

Taskin Z, Al U(2019) Natural language processing applications in library and information science Online Inf Rev 43:676–690. https://doi.org/10.1108/oir-07-2018-0217

Tegtmeyer K, Ibsen L, Goldstein B(2001) Computer-assisted learning in critical care: from ENIAC to HAL Crit Care Med 29:N177–N182. https://doi.org/10.1097/00003246-200108001-00006

Article   CAS   PubMed   Google Scholar  

Timotheou S, Miliou O, Dimitriadis Y, Sobrino SV, Giannoutsou N, Cachia R, Moné AM, Ioannou A(2023) Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: a literature review. Educ Inf Technol 28(6):6695–6726. https://doi.org/10.1007/s10639-022-11431-8

Trujillo Maza EM, Gómez Lozano MT, Cardozo Alarcón AC, Moreno Zuluaga L, Gamba Fadul M (2016) Blended learning supported by digital technology and competency-based medical education: a case study of the social medicine course at the Universidad de los Andes, Colombia. Int J Educ Technol High Educ 13. https://doi.org/10.1186/s41239-016-0027-9

Turin O, Friesem Y(2020) Is that media literacy?: Israeli and US media scholars’ perceptions of the field J Media Lit Educ 12:132–144. https://doi.org/10.1007/s11192-009-0146-3

Van Eck NJ, Waltman L (2019) VOSviewer manual. Universiteit Leiden

Vratulis V, Clarke T, Hoban G, Erickson G(2011) Additive and disruptive pedagogies: the use of slowmation as an example of digital technology implementation Teach Teach Educ 27:1179–1188. https://doi.org/10.1016/j.tate.2011.06.004

Wang CL, Dai J, Xu LJ (2022) Big data and data mining in education: a bibliometrics study from 2010 to 2022. In 2022 7th International Conference on Cloud Computing and Big Data Analytics ( ICCCBDA ) (pp. 507-512). IEEE. https://doi.org/10.1109/icccbda55098.2022.9778874

Wang CL, Dai J, Zhu KK, Yu T, Gu XQ (2023) Understanding the continuance intention of college students toward new E-learning spaces based on an integrated model of the TAM and TTF. Int J Hum-Comput Int 1–14. https://doi.org/10.1080/10447318.2023.2291609

Wong L-H, Boticki I, Sun J, Looi C-K(2011) Improving the scaffolds of a mobile-assisted Chinese character forming game via a design-based research cycle Comput Hum Behav 27:1783–1793. https://doi.org/10.1016/j.chb.2011.03.005

Wu R, Yu Z (2023) Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. Br J Educ Technol. https://doi.org/10.1111/bjet.13334

Yang D, Zhou J, Shi D, Pan Q, Wang D, Chen X, Liu J (2022) Research status, hotspots, and evolutionary trends of global digital education via knowledge graph analysis. Sustainability 14:15157–15157. https://doi.org/10.3390/su142215157

Yu T, Dai J, Wang CL (2023) Adoption of blended learning: Chinese university students’ perspectives. Humanit Soc Sci Commun 10:390. https://doi.org/10.3390/su142215157

Yu Z (2022) Sustaining student roles, digital literacy, learning achievements, and motivation in online learning environments during the COVID-19 pandemic. Sustainability 14:4388. https://doi.org/10.3390/su14084388

Za S, Spagnoletti P, North-Samardzic A(2014) Organisational learning as an emerging process: the generative role of digital tools in informal learning practices Br J Educ Technol 45:1023–1035. https://doi.org/10.1111/bjet.12211

Zhang X, Chen Y, Hu L, Wang Y (2022) The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Front Psychol 13:1016300. https://doi.org/10.3389/fpsyg.2022.1016300

Zhou M, Dzingirai C, Hove K, Chitata T, Mugandani R (2022) Adoption, use and enhancement of virtual learning during COVID-19. Education and Information Technologies. https://doi.org/10.1007/s10639-022-10985-x

Download references

Acknowledgements

This research was supported by the Zhejiang Provincial Social Science Planning Project, “Mechanisms and Pathways for Empowering Classroom Teaching through Learning Spaces under the Strategy of High-Quality Education Development”, the 2022 National Social Science Foundation Education Youth Project “Research on the Strategy of Creating Learning Space Value and Empowering Classroom Teaching under the background of ‘Double Reduction’” (Grant No. CCA220319) and the National College Student Innovation and Entrepreneurship Training Program of China (Grant No. 202310337023).

Author information

Authors and affiliations.

College of Educational Science and Technology, Zhejiang University of Technology, Zhejiang, China

Chengliang Wang, Xiaojiao Chen, Yidan Liu & Yuhui Jing

Graduate School of Business, Universiti Sains Malaysia, Minden, Malaysia

Department of Management, The Chinese University of Hong Kong, Hong Kong, China

College of Humanities and Social Sciences, Beihang University, Beijing, China

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: Y.J., C.W.; methodology, C.W.; software, C.W., Y.L.; writing-original draft preparation, C.W., Y.L.; writing-review and editing, T.Y., Y.L., C.W.; supervision, X.C., T.Y.; project administration, Y.J.; funding acquisition, X.C., Y.L. All authors read and approved the final manuscript. All authors have read and approved the re-submission of the manuscript.

Corresponding author

Correspondence to Yuhui Jing .

Ethics declarations

Ethical approval.

Ethical approval was not required as the study did not involve human participants.

Informed consent

Informed consent was not required as the study did not involve human participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wang, C., Chen, X., Yu, T. et al. Education reform and change driven by digital technology: a bibliometric study from a global perspective. Humanit Soc Sci Commun 11 , 256 (2024). https://doi.org/10.1057/s41599-024-02717-y

Download citation

Received : 11 July 2023

Accepted : 17 January 2024

Published : 12 February 2024

DOI : https://doi.org/10.1057/s41599-024-02717-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

A meta-analysis of learners’ continuance intention toward online education platforms.

  • Chengliang Wang

Education and Information Technologies (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

essay about school technology

Classroom Technology: The Good, the Bad, and What's Next

Illustration with meter, and happy and sad faces.

Related Videos

essay about school technology

Sign Up for EdWeek Tech Leader

  • Share full article

Advertisement

Supported by

current events conversation

What Students Are Saying About Tech in the Classroom

Does technology help students be more organized, efficient and prepared for the future? Or is it just a distraction?

An illustration of a large open laptop computer with many teeth, biting down on a small schoolhouse.

By The Learning Network

Is there a problem with screens in schools?

We invited students to weigh in on that question in our Picture Prompt Tech in the Classroom , which was based on an Opinion essay arguing that we should “get tech out of the classroom before it’s too late.”

Is there too much tech in your school day? — we asked students. Would you prefer more screen-free time while you are learning, or even during lunch or free periods?

Below, they share the good, the bad and the ugly about technology use in school.

Thank you to everyone who participated in the conversation on our writing prompts this week!

Please note: Student comments have been lightly edited for length.

Some students saw the value of technology in schools, including its ability to prepare students for the future.

I believe that technology in the classroom is a good thing when it is properly moderated. I think completely taking away screens from a student will not help them develop computer skills which they will most likely need in a world like ours, where most of everything is online. Sometimes phones cannot get the job done, and computers will be needed. If schools completely remove devices from the curriculum, then students will be completely clueless when they take classes involving a computer. Too much screen time can be bad for the student, but if it is well moderated, then screen time won’t be an issue.

— Saheed, GMS

I personally do not mind the amount of technology in the classroom. I personally find typing to be a lot easier instead of writing. On top of that, this amount of technology is used in adults’ day to day lives, too. Writing has become less and less relevant for everyone, because most jobs require a computer nowadays. So I think it’s actually better to have the amount of technology we do in the classroom.

— Timothy, Greenbelt Middle

They said, even though there might be down sides, the good outweighs the bad.

Screens in the classroom allows students to complete work in a more organized manner and use online resources to help them learn. It helps teachers to be able to make sure students turn work in before a certain time. However, having screens in the classroom raises students overall screen time which is bad for their eye health and sleep.

— Emily, Greenbelt Middle

I believe that computers should definitely be used at school because it has more pros than cons. They help with everything. The only problem with them is the people using them. The people using them are often misusing them and not charging them.

— Deegan, California

And they argued that tech is so entrenched in the student experience that taking it away would cause a lot of disruption.

There are no problems with screens in school. I believe without screens, school would be much less productive, produce so much waste of paper, and assignments would be lost a lot. Also when I have paper homework, which is almost never, almost every time I get it I forget because everything is on the iPad. This is important because if there is any change in the iPads we use, it’ll affect everyone drastically. Also it would just be really annoying to get used to a whole new thing.

— August, GBW

But another contingent of students said, “There is definitely a problem with screens in school.” They called them a distraction.

There is definitely a problem with screens in school. While regular technology use in school is highly efficient and much more convenient than using textbooks and paper, I still feel like using technology as the main method for learning is detrimental. There are plenty of students in my classes who are hiding behind their iPads to play games or go on their phones rather than utilizing their technology to enhance their learning experience. So in turn, I think we need to minimize (but not completely take away) the prominence of tech in our classrooms. This matters because it’s so important for students to learn how to completely pay attention and focus in on one task so that they are prepared for the moments in life where they don’t get the opportunity to look at their phone if they’re bored or to text their friends. Trust me, this may seem like I’m one hundred percent anti-phones but the truth is I love my phone and am somewhat addicted to it, so I realize that it’s a major distraction for myself in the classroom. Moreover, staring at an iPad screen for 7 hours a day puts significant strain on our eyes, so for the sake of our health and our attention spans, we need to minimize tech use in school.

— Mary, Glenbard West High School

Tech inside classrooms has had many positive effects and many negative effects. Without technology, it would take forever to find sources/information and it would also take ages to do complex things. With technology, people can easily find information and they can easily do many things but the big downside is that they can easily just search up games and get distracted. On one side, it has provided many different changes to students so they can learn in a fun and entertaining way but in another, people are mostly on their phones scrolling through YouTube or Instagram. Many people don’t have control over their body and have a big urge to go on their cellphones.

— Srikanth, Greenbelt Middle School

In my opinion, yes there is a problem with screens in schools. It distracts kids from focusing on their work. Many students are always on their phone during class, and it is disrespectful as well as sad for them. They will not be able to learn the material that is being taught. Personally, I think that screens should be reduced in class, but I do not think that is possible. Whenever a teacher takes away someone’s phone, they get very mad and say that it is their right to have their phone. In these cases it is very confusing on how to act for the teacher!

— Kadambari, gms

Some reported that their peers use technology to cheat.

It might be a problem depending on what people are doing. If it is used for school, like typing an essay, working on homework, or checking your grades it’s okay, but I know people who abuse this privilege. They go onto YouTube and watch things, listen to music when they aren’t supposed to, and play games. Many people cheat to the point where it takes forever to start a test because people don’t close out their tabs. It helps to be able to do these ‘Quick Writes’ as we call them in my ELA class because I can write faster (I know it’s called typing). It’s harder to access things because of the restriction because people mess around so they block so many useful websites and words from our computer. I like to type on the computer, but I feel people abuse this privilege too much.

— Nina, California

When the teachers assign tests on computers, sometimes teachers have to lock students’ screens to make sure they’re not cheating. Sometimes they do it on paper and they try to cheat while hiding their phones in their laps. And then if another student sees them doing that, they will tell and the student who would have the phone out could start a big argument.

— Taylor, Huntington Beach

Several lamented the sheer number of hours teenagers spend in front of screens.

I feel that we have become too comfortable with using screens for nearly every lesson in school, because it has gotten to the point where we are spending upwards of 4 hours on our laptops in school alone. I understand that it would be hard to switch back to using journals and worksheets, but it would be very beneficial for kids if we did.

— Chase, school

I think we should reduce the tech a little just because most students are going straight to screens when they get home, after a full day of screens … Although I know this would be very difficult to do because everything in the world now seems to go online.

— Jaydin, California

And they even worried about their handwriting in a world full of typing.

I think technology in a class is very helpful, but I think that we should incorporate more writing. Since the pandemic, most of the work has been online and it never gave students the opportunity to write as much. When we came back from lockdown, I almost forgot how to write with a pencil. My handwriting was very different. And now we don’t get much time to write with our hands so I think we should have fewer screens.

— Eric, Greenbelt

Some students said that less time spent on screens in school would give them a break from the always-on digital culture they live in.

Although typing is useful and using the internet is very useful, I think we should go back to how it was about 20-40 years ago when all people used the computer for was to type an essay. Drama didn’t get spread in a millisecond, we didn’t have to worry as much about stereotypes. Now all kids want to do is text each other and watch videos. I’m well aware that I have fallen into this trap and I want out, but our lives revolve around technology. You can’t get away from it. I know this is about schools not using technology, which the world without it would be impossible now, but life would be so much simpler again.

— Ivy, Huntington Beach, CA

I will say that my phone is usually always with me during school hours, but I don’t use it all the time. I may check the time or play a short game as a brain break. But I do see some people absolutely glued to their phones during class time, and it’s honestly embarrassing. You really can’t go without your phone for an hour?? It’s almost like an addiction at this point. I understand using your phone to quickly distract yourself; I do it too. And I also think it’s okay to have your phone/electronic during lunch time or free periods. But using it to the point that you can’t properly pay attention in class is just embarrassing. So, in summary, I do think that schools are having a problem with screens.

— Allison, Greenbelt Middle School

And they named classes in which they think screens do and do not have a place.

I feel like for classes for younger kids, technology is definitely not good. Kids should be playing, using their hands, and actually experiencing things instead of being on tablets in kindergarten. I think using computers in school is good though. It’s a lot more efficient, and we live in a society where fast and efficient things are the trend.

— sarah, maryland

I think screens have their place, and will always have their place, in schools and education. The capabilities of computers will always surpass anything else, and they should not be banned from school environments. Still, I have one exception: English class. Other than final drafts of essays, everything in English should be on paper. You can formulate ideas better and minimize outside influence on your thinking.

— Addie, The Potomac School

Learn more about Current Events Conversation here and find all of our posts in this column .

  • Faculty of Arts and Sciences
  • FAS Theses and Dissertations
  • Communities & Collections
  • By Issue Date
  • FAS Department
  • Quick submit
  • Waiver Generator
  • DASH Stories
  • Accessibility
  • COVID-related Research

Terms of Use

  • Privacy Policy
  • By Collections
  • By Departments

Essays on Technology in Education

Thumbnail

Citable link to this page

Collections.

  • FAS Theses and Dissertations [6138]

Contact administrator regarding this item (to report mistakes or request changes)

Talk to our experts

1800-120-456-456

  • Technology Essay

ffImage

Essay on Technology

The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes. Technology provides innovative ways of doing work through various smart and innovative means. 

Electronic appliances, gadgets, faster modes of communication, and transport have added to the comfort factor in our lives. It has helped in improving the productivity of individuals and different business enterprises. Technology has brought a revolution in many operational fields. It has undoubtedly made a very important contribution to the progress that mankind has made over the years.

The Advancement of Technology:

Technology has reduced the effort and time and increased the efficiency of the production requirements in every field. It has made our lives easy, comfortable, healthy, and enjoyable. It has brought a revolution in transport and communication. The advancement of technology, along with science, has helped us to become self-reliant in all spheres of life. With the innovation of a particular technology, it becomes part of society and integral to human lives after a point in time.

Technology is Our Part of Life:

Technology has changed our day-to-day lives. Technology has brought the world closer and better connected. Those days have passed when only the rich could afford such luxuries. Because of the rise of globalisation and liberalisation, all luxuries are now within the reach of the average person. Today, an average middle-class family can afford a mobile phone, a television, a washing machine, a refrigerator, a computer, the Internet, etc. At the touch of a switch, a man can witness any event that is happening in far-off places.  

Benefits of Technology in All Fields: 

We cannot escape technology; it has improved the quality of life and brought about revolutions in various fields of modern-day society, be it communication, transportation, education, healthcare, and many more. Let us learn about it.

Technology in Communication:

With the advent of technology in communication, which includes telephones, fax machines, cellular phones, the Internet, multimedia, and email, communication has become much faster and easier. It has transformed and influenced relationships in many ways. We no longer need to rely on sending physical letters and waiting for several days for a response. Technology has made communication so simple that you can connect with anyone from anywhere by calling them via mobile phone or messaging them using different messaging apps that are easy to download.

Innovation in communication technology has had an immense influence on social life. Human socialising has become easier by using social networking sites, dating, and even matrimonial services available on mobile applications and websites.

Today, the Internet is used for shopping, paying utility bills, credit card bills, admission fees, e-commerce, and online banking. In the world of marketing, many companies are marketing and selling their products and creating brands over the internet. 

In the field of travel, cities, towns, states, and countries are using the web to post detailed tourist and event information. Travellers across the globe can easily find information on tourism, sightseeing, places to stay, weather, maps, timings for events, transportation schedules, and buy tickets to various tourist spots and destinations.

Technology in the Office or Workplace:

Technology has increased efficiency and flexibility in the workspace. Technology has made it easy to work remotely, which has increased the productivity of the employees. External and internal communication has become faster through emails and apps. Automation has saved time, and there is also a reduction in redundancy in tasks. Robots are now being used to manufacture products that consistently deliver the same product without defect until the robot itself fails. Artificial Intelligence and Machine Learning technology are innovations that are being deployed across industries to reap benefits.

Technology has wiped out the manual way of storing files. Now files are stored in the cloud, which can be accessed at any time and from anywhere. With technology, companies can make quick decisions, act faster towards solutions, and remain adaptable. Technology has optimised the usage of resources and connected businesses worldwide. For example, if the customer is based in America, he can have the services delivered from India. They can communicate with each other in an instant. Every company uses business technology like virtual meeting tools, corporate social networks, tablets, and smart customer relationship management applications that accelerate the fast movement of data and information.

Technology in Education:

Technology is making the education industry improve over time. With technology, students and parents have a variety of learning tools at their fingertips. Teachers can coordinate with classrooms across the world and share their ideas and resources online. Students can get immediate access to an abundance of good information on the Internet. Teachers and students can access plenty of resources available on the web and utilise them for their project work, research, etc. Online learning has changed our perception of education. 

The COVID-19 pandemic brought a paradigm shift using technology where school-going kids continued their studies from home and schools facilitated imparting education by their teachers online from home. Students have learned and used 21st-century skills and tools, like virtual classrooms, AR (Augmented Reality), robots, etc. All these have increased communication and collaboration significantly. 

Technology in Banking:

Technology and banking are now inseparable. Technology has boosted digital transformation in how the banking industry works and has vastly improved banking services for their customers across the globe.

Technology has made banking operations very sophisticated and has reduced errors to almost nil, which were somewhat prevalent with manual human activities. Banks are adopting Artificial Intelligence (AI) to increase their efficiency and profits. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. 

You can now access your money, handle transactions like paying bills, money transfers, and online purchases from merchants, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe. You do not need to carry cash in your pocket or wallet; the payments can be made digitally using e-wallets. Mobile banking, banking apps, and cybersecurity are changing the face of the banking industry.

Manufacturing and Production Industry Automation:

At present, manufacturing industries are using all the latest technologies, ranging from big data analytics to artificial intelligence. Big data, ARVR (Augmented Reality and Virtual Reality), and IoT (Internet of Things) are the biggest manufacturing industry players. Automation has increased the level of productivity in various fields. It has reduced labour costs, increased efficiency, and reduced the cost of production.

For example, 3D printing is used to design and develop prototypes in the automobile industry. Repetitive work is being done easily with the help of robots without any waste of time. This has also reduced the cost of the products. 

Technology in the Healthcare Industry:

Technological advancements in the healthcare industry have not only improved our personal quality of life and longevity; they have also improved the lives of many medical professionals and students who are training to become medical experts. It has allowed much faster access to the medical records of each patient. 

The Internet has drastically transformed patients' and doctors’ relationships. Everyone can stay up to date on the latest medical discoveries, share treatment information, and offer one another support when dealing with medical issues. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many sites and apps through which we can contact doctors and get medical help. 

Breakthrough innovations in surgery, artificial organs, brain implants, and networked sensors are examples of transformative developments in the healthcare industry. Hospitals use different tools and applications to perform their administrative tasks, using digital marketing to promote their services.

Technology in Agriculture:

Today, farmers work very differently than they would have decades ago. Data analytics and robotics have built a productive food system. Digital innovations are being used for plant breeding and harvesting equipment. Software and mobile devices are helping farmers harvest better. With various data and information available to farmers, they can make better-informed decisions, for example, tracking the amount of carbon stored in soil and helping with climate change.

Disadvantages of Technology:

People have become dependent on various gadgets and machines, resulting in a lack of physical activity and tempting people to lead an increasingly sedentary lifestyle. Even though technology has increased the productivity of individuals, organisations, and the nation, it has not increased the efficiency of machines. Machines cannot plan and think beyond the instructions that are fed into their system. Technology alone is not enough for progress and prosperity. Management is required, and management is a human act. Technology is largely dependent on human intervention. 

Computers and smartphones have led to an increase in social isolation. Young children are spending more time surfing the internet, playing games, and ignoring their real lives. Usage of technology is also resulting in job losses and distracting students from learning. Technology has been a reason for the production of weapons of destruction.

Dependency on technology is also increasing privacy concerns and cyber crimes, giving way to hackers.

arrow-right

FAQs on Technology Essay

1. What is technology?

Technology refers to innovative ways of doing work through various smart means. The advancement of technology has played an important role in the development of human civilization. It has helped in improving the productivity of individuals and businesses.

2. How has technology changed the face of banking?

Technology has made banking operations very sophisticated. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. You can now access your money, handle transactions, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe.

3. How has technology brought a revolution in the medical field?

Patients and doctors keep each other up to date on the most recent medical discoveries, share treatment information, and offer each other support when dealing with medical issues. It has allowed much faster access to the medical records of each patient. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many websites and mobile apps through which we can contact doctors and get medical help.

4. Are we dependent on technology?

Yes, today, we are becoming increasingly dependent on technology. Computers, smartphones, and modern technology have helped humanity achieve success and progress. However, in hindsight, people need to continuously build a healthy lifestyle, sorting out personal problems that arise due to technological advancements in different aspects of human life.

essay about school technology

30,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay about school technology

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay about school technology

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Technology

essay about school technology

  • Updated on  
  • Aug 25, 2023

essay on technology

The word technology comes from the Greek words ‘techne’ and ‘logos’. ‘Techne’ means skill, art, or craft, and ‘logos’ means a word, expression, or saying that can convey an idea. Therefore, technology means conveying an idea through skills or art.

Technology refers to the practical application of scientific knowledge to change or manipulate the human environment. Examples include artificial intelligence, printing, the internet, computers, and augmented reality. Students in grades 6-12 may be asked to write an essay on technology, and we have provided sample essays for reference.

Table of Contents

  • 1 100 Words Essay On Technology Boon or Bane in English
  • 2 200 Words Essay On Technology
  • 3 800+ Words Essay On Technology
  • 4 7+ Interesting Facts About Technology

100 Words Essay On Technology Boon or Bane in English

Also Read: Top Tech Courses in 2023

200 Words Essay On Technology

Also Read: Leverage Edu Reviews Career in Artificial Intelligence

800+ Words Essay On Technology

Also Read: Here Are the World’s Top Tech YouTubers 

7+ Interesting Facts About Technology

Here are some interesting facts about technology. These facts can be added while writing the essay on technology.  An essay on technology must include a proper introduction, body, and conclusion.

  • The word technology was first used by Aristotle in 330 BC.
  • Xerox is not the verb for photocopying. It is the name of the company that invented the technology.
  • The first product of Nokia was toilet paper
  • Amazon’s Alexa listens to the user’s conversations
  • The Bitcoin founders’ identity has not yet been verified by anyone
  • Japan offers the fastest internet connection in the world. That is, it is 319 terabits per second
  • The word ‘robot’ has been taken from a Czech word. It means ‘forced labour’
  • More than 92% of the world’s money is stored digitally.

A. The introduction of an essay on technology must include the main details about technology. The origin of technology terms, top technological innovations, and the impact of technology can be discussed in the introductory paragraph. However, it is important to make the introduction short, crisp, and engaging.

A. An essay on technology means the student must write about technology in a detailed manner. That is, the essay must include an introduction, body, and conclusion. Moreover, the student can add details about the history, advantages, and disadvantages of technology in the body of the essay.

A. There are several benefits of technology. Some of them are simplification of tasks, breaking the distance barrier, easy and fast access to information, providing entertainment, increasing effectiveness of task completion, and increased productivity and life expectancy.

Technology has its benefits and drawbacks. Hence while writing an essay on technology it is important to include both advantages and disadvantages. An essay on technology must follow a proper format. That is, it must contain an introduction, body, and conclusion. To discover more articles like this one consult the study abroad experts at Leverage Edu.

' src=

Blessy George

Blessy George is a Content Marketing Associate at Leverage Edu, boasting over a year of experience in the industry. Her expertise lies in crafting compelling content tailored to online courses, making her a go-to source for those navigating the vast landscape of digital learning. In addition to online classes, she writes content related to study abroad, English test preparation and visas. She has completed her MA degree in Political Science and has gained valuable experience as an intern.She is known for her extensive writing on various aspects of international education, garnering recognition for her insights and contributions. Apart from her professional pursuits, Blessy is passionate about creative writing, particularly poetry and songwriting.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

essay about school technology

Connect With Us

essay about school technology

30,000+ students realised their study abroad dream with us. Take the first step today.

essay about school technology

Resend OTP in

essay about school technology

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

essay about school technology

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

essay about school technology

Make your study abroad dream a reality in January 2022 with

essay about school technology

India's Biggest Virtual University Fair

essay about school technology

Essex Direct Admission Day

Why attend .

essay about school technology

Don't Miss Out

  • Future Students
  • Current Students
  • Faculty/Staff

Stanford Graduate School of Education

News and Media

  • News & Media Home
  • Research Stories
  • School's In
  • In the Media

You are here

How technology is reinventing education.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of  Stanford Graduate School of Education  (GSE), who is also a professor of educational technology at the GSE and faculty director of the  Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately  worried  that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or  coach  students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the  AI + Education initiative  at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of  CRAFT  (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the  Digital Learning initiative  at the Stanford Accelerator for Learning, which runs a program exploring the use of  virtual field trips  to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

More Stories

Kids getting onto a school bus

⟵ Go to all Research Stories

Get the Educator

Subscribe to our monthly newsletter.

Stanford Graduate School of Education

482 Galvez Mall Stanford, CA 94305-3096 Tel: (650) 723-2109

  • Contact Admissions
  • GSE Leadership
  • Site Feedback
  • Web Accessibility
  • Career Resources
  • Faculty Open Positions
  • Explore Courses
  • Academic Calendar
  • Office of the Registrar
  • Cubberley Library
  • StanfordWho
  • StanfordYou

Improving lives through learning

Make a gift now

  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Non-Discrimination
  • Accessibility

© Stanford University , Stanford , California 94305 .

Girl in headphones using tablet

Billions are spent on educational technology, but we don’t know if it works

essay about school technology

Professor of Reading and Children’s Development, The Open University

Disclosure statement

Natalia Kucirkova receives funding from the Norwegian Research Council and The Jacobs Foundation. She works in WiKIT AS, which is a university spin-off concerned with EdTech evidence. She is affiliated with the University of Stavanger, The Open University and University College London.

The Open University provides funding as a founding partner of The Conversation UK.

View all partners

During the COVID lockdowns, schools and universities worldwide relied on education technology – edtech – to keep students learning. They used online platforms to give lessons, mark work and send feedback, used apps to teach and introduced students to programs that let them work together on projects.

In the aftermath of school closures, the market for edtech has kept on growing. The value of the sector is projected to rise to US$132.4 billion globally by 2032 (£106 billion).

The problem is that we don’t know very much about how effective many edtech apps or programs are – or if they are effective at all .

And some effects may be negative. Some of the so-called educational apps advertised to families show many adverts to children. They may use manipulative features to keep children on screens without teaching them anything new.

This technology is here to stay and will remain a significant part of how children learn – so knowing whether it works is imperative.

Children using phones in classroom

Assessing and addressing the quality of edtech is a significant task, especially when it is already so widely used. For edtech under development, a valuable option is to foster closer collaboration between tech developers and scientists who study learning to embed existing research and knowledge into the design.

Research consultancy firms can carry out swift assessments to provide edtech developers with information on how well what they are offering works. Transparency and integrity in the research process is vital, though, to prevent bias. Ways of ensuring this include pre-registration : reporting that a study is going to take place before it happens.

Partnerships with schools could also provide valuable feedback . However, minimum standards of quality and ethical considerations would need to be assured before technologies are sent to schools.

Setting a standard

When it comes to edtech that is already available, what is really needed is some kind of standardised metric to assess how well it works.

But establishing minimum standards for the effect of edtech is easier said than done. There is, historically, a lack of standardised metrics for assessing educational impact within impact economics – the study of how businesses create financial returns while ensuring positive social or environmental outcomes.

Without standardisation, there are too many ways to assess edtech. A review commissioned by the UK government of evaluation criteria and standards for edtech analysed 74 methods for assessing their quality.

Similarly, I carried out a research study with colleagues on available criteria to assess the effectiveness and efficacy of edtech produced specifically for schools. We found 65 different frameworks for evaluating whether these school-specific offerings work.

The abundance of evaluation possibilities can be confusing for edtech businesses. The multitude of options makes it difficult to ascertain the quality of their products. It is confusing to investors too, especially those who want to prioritise not only edtech’s return on investment but also a return on education and community.

Read more: Schools are using research to try to improve children's learning – but it's not working

A yardstick that establishes the minimum quality requirements for a edtech product to be used in schools is crucial to ensure technology does more good and no harm. The creation of a yardstick needs to take into account both the product quality and the process of using the technology – whether it works for diverse populations and diverse learning environments.

The independent verification of evidence is vital , considering that any company can simply “generate” a study with the data they daily collect on users. In my research work with colleagues, I have argued for a focus on the rigour and validity of various research types.

New initiatives, such as the International Certification of Evidence of Impact in Education , have begun to consolidate the different research approaches, standards and certifications related to evidence of edtech impact globally. Ultimately, the goal is to make it easier for schools and parents to navigate the thousands of educational apps and online platforms available.

Whether individual countries will create the legal and institutional frameworks to enforce any of the standards remains to be seen. Countries will need to select standards that suit both their economic and educational agendas. An important shift is needed so that schools can strategically select edtech they know will help children’s learning.

  • Young people
  • educational apps
  • Keep me on trend

essay about school technology

Case Management Specialist

essay about school technology

Lecturer / Senior Lecturer - Marketing

essay about school technology

Assistant Editor - 1 year cadetship

essay about school technology

Executive Dean, Faculty of Health

essay about school technology

Lecturer/Senior Lecturer, Earth System Science (School of Science)

  • Essay On Technology

Essay on Technology

500+ words essay on technology.

The word technology comes from the two Greek words, ‘techne’ and ‘logos’. Techne means art, skills, or craft, and Logos means a word, saying, or expression that expresses inward thought. Thus, technology means the skill to convey an idea to reach a goal. But nowadays, the term technology mainly signifies the knowledge of tools, machines, techniques, crafts, systems, and organisation methods to solve a problem. Today, technological advancement has provided the human race with the ability to control and adapt to their natural environment. In this Essay on Technology, students will know the importance of technology, its advantages and disadvantages and the future of technology.

How Has Technology Changed Our Lives?

Various innovations and development took place in the field of technology which has made a significant impact on our lives in different ways. With the invention of technology, we become more powerful. We have the ability to transform the environment, extend our lifetime, create big and interconnected societies and even explore various new things about the universe. Today, we use technology from morning to evening, from the simplest nail cutter to television and personal laptop. Technology has touched all aspects of our lives, whether it is mobile phones, kettles, kitchen microwaves, electric cookers, television, water heaters, remote control, fridge, and other larger communication systems such as internet facilities, railways, air routes, and so on. Thus, technology plays an extremely crucial role in the lives of human beings.

Advantages of Technology

The advancement in technology has made our lives easier, more comfortable and enjoyable. It has reduced the effort and time required to complete a task, thus enhancing the quality and efficiency of work. Technology has become a part of our life and benefited us in many ways. Today, we can communicate with people living in any city or country. Communication has become much faster and easier as we are just a click away from people. In education, technology has played a vital role, especially during the COVID-19 breakdown period. It has brought virtual and online classes for students and teachers across the globe to share knowledge, ideas and resources online. Moreover, technology has made it easier for students to understand complex concepts with the help of virtualisation, graphics, 3D animation and diagrams.

Technology is considered to be the driving force behind improvements in the medical and healthcare field. Modern machines have helped doctors to perform operations successfully. Due to technology, the lifespan of the common person has increased. There are many more sectors, such as banking, automation, automobile, and various industries, where technology is making significant changes and helping us.

Disadvantages of Technology

Although we have so many advantages of technology, there are also disadvantages. Robots and machines have taken over the job of many people. Instead of bringing people together, technology has made them socially isolated. People now spend most of their time on smartphones or computers rather than interacting with other people. Technology in education has reduced the intellectual and analytical ability of students. It is like spoon-feeding to students as they don’t have the reasoning and aptitude skills to think differently. Technology has raised the issue of internet privacy. So, one has to be very careful while using banking passwords to make online transactions.

Future of Technology

The future of technology seems to be exciting but also scary. Futuristic predictions in technology can dish out some exciting or scary visions for the future of machines and science. Technology will either enhance or replace the products and activities that are near and dear to us. The answer to our technological dilemma about what will be the upcoming technological innovation in the future is not surprising. In the past, technology was mainly focused on retaining more information and efficient processing, but in the future, it will be based on industrial robots, artificial intelligence, machine learning, etc.

Technology alone cannot help in building a better world. The collateral collaboration of machines and human effort is required for the progress and prosperity of the nation. We need to develop a more robust management system for the efficient functioning of technology.

Practise CBSE Essays on more topics to improve the writing section. Students can get the latest updates on CBSE/ICSE/State Board/Competitive Exams at BYJU’S website. They can also download the BYJU’S App for interactive study videos.

Frequently Asked Questions on Technology Essay

What is the simple definition of technology.

The real-time application of science and knowledge is how technology can be defined in simple terms.

Which country is ranked first in technological advancement?

Finland ranks top in technological advancement ahead of the USA according to the UNDP.

Why is the development of technology important?

Technology has now become an important part of our lives and thus technical and technological advancements are essential to take us forward in all aspects.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

essay about school technology

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

Counselling

Essay on Technology

Here we have shared the Essay on Technology in detail so you can use it in your exam or assignment of 150, 250, 400, 500, or 1000 words.

You can use this Essay on Technology in any assignment or project whether you are in school (class 10th or 12th), college, or preparing for answer writing in competitive exams. 

Topics covered in this article.

Essay on Technology in 150-250 words

  • Essay on Technology in 300-400 words

Essay on Technology in 500-1000 words

Technology has become an integral part of our daily lives, revolutionizing the way we live, work, and communicate. It encompasses a wide range of tools, devices, and systems that enhance productivity, efficiency, and convenience. From smartphones and computers to advanced medical equipment and smart home devices, technology has transformed every aspect of our world.

The impact of technology is evident in various sectors, including education, healthcare, transportation, and communication. It has improved access to information, enabling faster and more efficient learning. In healthcare, technology has revolutionized diagnosis, treatment, and patient care, saving lives and improving outcomes. Transportation has become more efficient and safer with the advent of smart vehicles and navigation systems. Communication has transcended physical boundaries, connecting people across the globe instantly.

While technology brings numerous benefits, it also presents challenges. Concerns about privacy, cybersecurity, and the impact of technology on employment and social interactions have emerged. It is essential to harness technology responsibly and ethically to mitigate these challenges.

In conclusion, technology has transformed our lives, providing us with unprecedented convenience, efficiency, and connectivity. It continues to evolve and shape the world around us. As we embrace technology, we must also navigate the associated challenges and ensure that it is utilized for the betterment of society. The responsible and ethical use of technology is key to harnessing its full potential and creating a positive impact on individuals and communities.

Essay on Technology in 300-450 words

Technology has become an inseparable part of our modern lives, revolutionizing the way we live, work, and communicate. It encompasses a vast array of tools, systems, and devices that have transformed every aspect of our world. From smartphones and computers to artificial intelligence and advanced robotics, technology has brought about significant advancements and improvements in various fields.

One of the most significant impacts of technology is in the realm of communication. The advent of the internet and social media platforms has connected people from all corners of the world, enabling instant communication and global collaboration. The ability to share information, ideas, and experiences has fostered cultural exchange, expanded educational opportunities, and promoted social interactions on an unprecedented scale.

Technology has also revolutionized the business world, enhancing efficiency, productivity, and profitability. Automation and digitalization have streamlined processes, increased accuracy, and reduced human error. Organizations can now analyze vast amounts of data to make informed decisions, target specific markets, and personalize customer experiences. E-commerce platforms have opened new avenues for entrepreneurs and small businesses to reach a global customer base.

Education has also been greatly influenced by technology. Digital learning tools and online platforms have expanded access to education, making it more inclusive and flexible. Students can now engage in interactive and personalized learning experiences, access a wealth of educational resources, and collaborate with peers from around the world. Virtual reality and augmented reality technologies have also transformed the way we perceive and engage with educational content, bringing subjects to life and making learning more immersive and interactive.

The healthcare sector has witnessed remarkable advancements with the aid of technology. Medical devices, imaging technologies, and telemedicine have improved diagnosis, treatment, and patient care. Electronic health records and data analytics have enhanced efficiency and accuracy in medical processes. Moreover, wearable devices and mobile applications have enabled individuals to monitor their health, promote wellness, and access medical information easily.

While technology brings numerous benefits, it also poses challenges and concerns. Privacy and security issues have become more prevalent, as personal data is increasingly stored and shared digitally. The rapid pace of technological advancements has also raised concerns about job displacement and the widening digital divide. Moreover, over-reliance on technology can lead to sedentary lifestyles, social isolation, and addiction.

In conclusion, technology has become an integral part of our society, transforming the way we live, work, and communicate. It has brought numerous advancements and benefits across various sectors, enhancing efficiency, connectivity, and accessibility. However, it is crucial to address the challenges associated with technology, such as privacy and security concerns, job displacement, and the need for digital literacy. By harnessing technology responsibly and ethically, we can ensure that it continues to bring positive changes and improves the lives of individuals and communities around the world.

Title: Technology – The Evolution and Impact on Society

Introduction :

Technology has become an integral part of our modern lives, permeating every aspect of society. From communication and transportation to education and healthcare, technology has revolutionized the way we live, work, and interact with the world around us. This essay explores the evolution of technology, its impact on various sectors, and the challenges and opportunities it presents.

Evolution of Technology

The journey of technology can be traced back to the early inventions of the wheel, the printing press, and the steam engine. However, the rapid advancement of technology in the 20th and 21st centuries has transformed the world at an unprecedented pace. The invention of computers, the internet, and mobile devices have laid the foundation for the digital age we live in today.

The Impact of Technology on Communication

Technology has revolutionized communication, making the world more interconnected than ever before. The advent of the internet and social media platforms has transformed the way we communicate, allowing for instant global connectivity. Individuals can connect with friends, family, and colleagues across the globe through video calls, messaging apps, and social networks. Moreover, technology has facilitated the exchange of information and ideas on a global scale, fostering cultural exchange, promoting social activism, and increasing awareness of global issues.

Impact on Education

Technology has reshaped the landscape of education, providing new opportunities for learning and knowledge sharing. Digital learning tools, online platforms, and educational apps have expanded access to education, making it more flexible and inclusive. Students can engage in interactive and personalized learning experiences, access a wealth of educational resources, and collaborate with peers from different backgrounds. Additionally, technology has enabled remote learning, allowing individuals to pursue education regardless of geographical constraints. Virtual reality and augmented reality technologies have also enhanced the learning experience, bringing subjects to life and making education more immersive and engaging.

Impact on Healthcare

The healthcare sector has experienced significant advancements with the aid of technology. Medical devices, imaging technologies, and telemedicine have revolutionized diagnosis, treatment, and patient care. Electronic health records and data analytics have improved efficiency and accuracy in medical processes. Moreover, wearable devices and mobile applications have empowered individuals to monitor their health, promote wellness, and access medical information easily. The integration of artificial intelligence and machine learning has the potential to revolutionize healthcare further, enabling predictive analytics, personalized medicine, and improved patient outcomes.

Challenges and Concerns

Despite the numerous benefits of technology, it also poses challenges and concerns. Privacy and security issues have become more prevalent as personal data is increasingly stored and shared digitally. Cyberattacks, data breaches, and identity theft are growing concerns. The rapid pace of technological advancements also raises concerns about job displacement and the widening digital divide. As automation and artificial intelligence continue to advance, certain job roles may become obsolete, impacting employment rates and economic inequality. Additionally, over-reliance on technology can lead to sedentary lifestyles, social isolation, and addiction. Striking a balance between utilizing technology for its benefits while mitigating its negative impacts is crucial.

Conclusion :

Technology has transformed society, bringing unprecedented advancements and opportunities. It has revolutionized communication, education, healthcare, and various other sectors. However, it is essential to address the challenges and concerns associated with technology, such as privacy, job displacement, and the need for digital literacy. By harnessing technology responsibly and ethically, we can ensure that it continues to bring positive changes and improve the lives of individuals and communities worldwide. Technology should be seen as a tool to enhance human capabilities and foster human connections, while always striving for a balance between innovation and the preservation of humanity’s core values.

Related Posts

  • Essay on Pollution
  • Essay on “Impact of Social Media on Youth”

Essential Elements of Valid Contract

Essential Elements of Valid Contract (Explained With Examples)

what is world population

What is World Population? Main Causes, Effects, Top 20 Countries

Physics Wallah

Essay on Technology for School Students and Children

Essay on Technology: Technology changes how we do things, making life easier, but we need to use it carefully to keep the world safe and happy. Check below the essay on technology for students.

Photo of author

November 17, 2023

Essay on Technology

Table of Contents

Essay on Technology: Technology is everywhere in our lives, changing how we do things. From the very first inventions like the wheel to the advanced gadgets we use today, it keeps evolving and reshaping how we live, work, talk, and have fun. It’s all about the tools and machines that make things easier and better for us every day. Below we are providing Essay on Technology in 500 words, Essay on Technology in 250 words and Short Essay on Technology. 

Essay on Technology in English

In the fast-paced world of the 21st century, technology has become an integral part of our daily lives, transforming the way we live, work, communicate, and conduct business. This essay explores the multifaceted aspects of technology, from its rapid advancement to its profound impact on various sectors, while also shedding light on both its advantages and disadvantages.

The Advancement of Technology

In recent times, there have been a lot of amazing progress in technology. This means that making new and better things is not just something extra nice – it’s something we really, really need. From the invention of the wheel to the development of artificial intelligence, technology has consistently evolved to meet the ever-growing needs of society. The digital age, characterized by the Internet, smartphones, and sophisticated computing systems, has redefined the way we perceive and interact with the world.

Technology is Our Part of Life

In contemporary society, technology is inseparable from our daily routines. Smartphones have become extensions of ourselves, offering instant access to information, communication, and entertainment. Social media platforms connect people across the globe, fostering a global village where ideas and cultures converge. The integration of technology into our lives has become so seamless that it is challenging to imagine a world without it.

Benefits of Technology in All Fields

The pervasive influence of technology extends to virtually every aspect of human endeavor, bringing about transformative benefits in diverse fields.

Technology in Communication

One of the most significant impacts of technology is evident in the realm of communication. The advent of the Internet and the rise of social media platforms have revolutionized how we connect and share information. Instant messaging, video calls, and social networking have made the world a smaller place, enabling real-time communication irrespective of geographical boundaries.

Technology in the Office or Workplace

In the business world, technology has streamlined operations and increased efficiency. From advanced project management tools to cloud computing, businesses now have the ability to collaborate seamlessly and access data from anywhere in the world. Automation has optimized routine tasks, allowing human resources to focus on more strategic and creative aspects of their work.

Technology in Education

The educational landscape has been significantly transformed by technology. Digital classrooms, e-learning platforms, and interactive educational software have enhanced the learning experience, making education more accessible and engaging. Virtual reality and augmented reality technologies are revolutionizing how students perceive and interact with information.

Technology in Banking

The financial sector has undergone a radical transformation with the integration of technology. Online banking, mobile payment systems, and cryptocurrency have revolutionized the way we manage and transfer money. Financial transactions that once took days can now be completed in a matter of seconds, enhancing convenience and accessibility.

Manufacturing and Production Industry Automation

Automation technologies have revolutionized the manufacturing and production industries. Robotics, artificial intelligence, and advanced machinery have increased efficiency, reduced production costs, and improved product quality. The seamless integration of technology into manufacturing processes has paved the way for smart factories, where machines communicate and collaborate with minimal human intervention.

Technology in the Healthcare Industry

In the healthcare sector, technology has played an important role in diagnosis, treatment, and patient care. Electronic health records have streamlined the management of patient information, improving accuracy and accessibility. Telemedicine has made healthcare services more accessible, especially in remote areas. Advanced medical imaging technologies and robotic-assisted surgeries have enhanced precision and outcomes.

Technology in Agriculture

The agricultural sector has not been left untouched by technological advancements. Precision agriculture, drones, and smart farming techniques have optimized crop management, resource utilization, and yield prediction. Technology has empowered farmers with real-time data and analytics, enabling them to make informed decisions for sustainable and efficient farming practices.

Disadvantages of Technology

While the benefits of technology are undeniable, it is crucial to acknowledge its drawbacks as well.

Dependency and Addiction: The constant use of technology has led to dependency and addiction, particularly concerning smartphones and social media. Excessive screen time can have adverse effects on mental health and interpersonal relationships.

Privacy Concerns: The digital age has raised significant concerns about privacy. Data breaches, identity theft, and surveillance pose serious threats to individuals’ privacy, leading to a growing sense of vulnerability.

Job Displacement: Automation and artificial intelligence have led to the automation of various jobs, raising concerns about job displacement. The need for reskilling and upskilling is more critical than ever to adapt to the changing job market.

Environmental Impact: The production and disposal of electronic devices contribute to environmental pollution. E-waste management and the carbon footprint of technology pose challenges to sustainable development.

Essay on Technology in 500 Words

Below is the Essay on Technology in 500 Words.

Technology has become an integral part of our lives, affecting nearly every aspect of our existence. In simple terms, technology refers to tools, machines, devices, and systems that help solve problems, make tasks easier, and improve our lives. From the invention of the wheel to the smartphones we use today, technology has constantly evolved, revolutionizing how we live, work, communicate, and entertain ourselves.

One of the most remarkable aspects of technology is its ability to make things more accessible and efficient. Communication, for example, has drastically changed with the advent of technology. In the past, people relied on sending letters or using landline telephones to communicate over long distances. Today, we can instantly connect with someone on the other side of the world through emails, social media, video calls, and instant messaging. This has made the world a smaller and more connected place.

Furthermore, technology has transformed the way we work. Automation and machinery have made production processes faster and more precise. Computers and software have streamlined office tasks, making data management, analysis, and communication quicker and more accurate. This has increased productivity and efficiency in various industries.

Healthcare is another field greatly impacted by technology. Advanced medical equipment and breakthroughs in treatments have improved the quality of care and extended human life expectancy. From MRI machines to minimally invasive surgeries, technology has enabled healthcare professionals to diagnose diseases more accurately and treat them more effectively.

Education has also been revolutionized by technology. Access to information and learning materials is now easier than ever. Online courses, educational videos, and interactive learning tools have made learning more engaging and accessible, breaking down geographical barriers.

Entertainment is yet another area significantly influenced by technology. Streaming services, video games, social media platforms, and virtual reality have transformed the way we entertain ourselves. We can now access a vast amount of entertainment options from the comfort of our homes.

However, technology also brings challenges and concerns. One of the major concerns is the impact of technology on our social interactions. With the prevalence of social media and digital communication, face-to-face interactions have diminished, leading to concerns about social isolation and the erosion of genuine human connections.

Moreover, the rapid pace of technological advancement raises questions about job displacement due to automation and artificial intelligence. As machines become more capable, some traditional jobs might become obsolete, necessitating the need for retraining and new skill acquisition.

Another critical issue is the environmental impact of technology. The production and disposal of electronic devices contribute to environmental pollution. Addressing this issue requires sustainable and eco-friendly practices in the manufacturing and disposal of technology.

Technology has undoubtedly t ransformed our lives in numerous positive ways, making tasks easier, improving communication, enhancing healthcare, and offering new forms of entertainment and education. However, it also presents challenges that need to be addressed, such as its impact on social interactions, potential job displacement, and environmental concerns. Striking a balance between embracing technological progress and mitigating its negative effects is crucial for a sustainable and prosperous future.

Essay on Technology in 250 Words

Below is the Essay on Technology in 250 Words.

Technology is like a superpower that helps us do things better and faster. It’s the tools and gadgets we use to make life easier. Imagine life without phones, computers, or even simple machines like the wheel! From the past to now, technology has made big changes.

Communication is much easier because of technology. Instead of sending letters, we can chat instantly with people anywhere using phones or computers. This makes the world feel smaller, bringing everyone closer together.

Work and industry have changed a lot too. Machines and computers help us do things faster and with fewer mistakes. Whether it’s making things in a factory or doing office work, technology makes tasks simpler and quicker.

Healthcare has gotten better due to technology. We have machines that can look inside our bodies and find problems. New treatments and medicines help people live healthier and longer.

Education has transformed with technology. Now, we can learn using computers and the internet. There are videos, games, and online classes that make learning more fun and accessible to many more people.

But technology has some challenges too. Some worry that it might affect how we talk and spend time together. Jobs might change or go away because machines can do some work. Technology has made life better in many ways. But we need to be careful and think about how to use it wisely to avoid its problems. Balancing the good and the challenges of technology is important for a better future.

Short Essay on Technology 

Below is the Short Essay on Technology.

Technology is all about the cool things that help us every day. It’s like a magic box full of tools and gadgets that make life easier and more fun.

Our phones, computers, and even simple things like toasters are all technology. They help us talk to friends, play games, learn new things, and do our work faster.

Technology has made the world smaller. We can talk to people far away in an instant using texts, calls, or video chats. It’s like having friends all around the world, right in our pockets.

At work, technology is a superhero. It helps us do things faster and better. Machines and computers in factories and offices make our jobs easier and more accurate.

In the doctor’s office, technology helps keep us healthy. There are amazing machines that can see inside our bodies to find problems and fix them.

Even school is more fun with technology. We can learn on computers, watch videos, and play educational games. Learning feels more like an adventure!

Technology is like a superpower. It makes life better, but we need to be careful how we use it. Balancing the good and not-so-good sides of technology is important for a happy and healthy world.

Essay on Technology FAQs

Technology encompasses tools, machines, devices, and systems designed to solve problems, simplify tasks, and improve our lives.

Technology has revolutionized communication, enabling instant connectivity through various mediums like emails, social media, video calls, and instant messaging.

Technology has significantly increased efficiency in work and industry through automation and computerization, making processes faster and more precise.

Advanced medical equipment and breakthrough treatments have elevated the quality of healthcare, aiding in precise diagnostics and more effective treatments.

Technology has made education more accessible through online courses, educational videos, and interactive learning tools, breaking geographical barriers and making learning engaging.

Doppler Effect Formula, Definition, Limitations, Applications

Paragraph on Christmas in English for Childrens

right adv

.st1{display:none} Related Articles

  • Rajasthan Board 12th Result 2024 OUT Anytime Soon @rajresults.nic.in
  • NCERT Solutions for Class 10 English Footprints without Feet Chapter 6 The Making of a Scientist
  • NCERT Solutions for Class 10 English Footprints without Feet Chapter 5 Footprints without Feet
  • NCERT Solutions for Class 10 English Footprints without Feet Chapter 4 A Question of Trust
  • NCERT Solutions for Class 10 English Footprints without Feet Chapter 3 The Midnight Visitor
  • NCERT Solutions for Class 10 English First Flight Chapter 8 Mijbil the Otter
  • NCERT Solutions for Class 10 English First Flight Chapter 7 Glimpses of India
  • NCERT Solutions for Class 10 English First Flight Chapter 6 The Hundred Dresses – II
  • JAC 9th Result 2024 OUT Anytime Soon Get Download Link Here
  • JAC 11th Result 2024 OUT Anytime Soon Get Download Link Here

bottom banner

Essay on Technology – A Boon or Bane for Students

500+ words essay on technology for students.

In this essay on technology, we are going to discuss what technology is, what are its uses, and also what technology can do? First of all, technology refers to the use of technical and scientific knowledge to create, monitor, and design machinery. Also, technology helps in making other goods that aid mankind.

Essay on Technology – A Boon or Bane?

Experts are debating on this topic for years. Also, the technology covered a long way to make human life easier but the negative aspect of it can’t be ignored. Over the years technological advancement has caused a severe rise in pollution . Also, pollution has become a major cause of many health issues. Besides, it has cut off people from society rather than connecting them. Above all, it has taken away many jobs from the workers class.

Essay on technology

Familiarity between Technology and Science

As they are completely different fields but they are interdependent on each other. Also, it is due to science contribution we can create new innovation and build new technological tools. Apart from that, the research conducted in laboratories contributes a lot to the development of technologies. On the other hand, technology extends the agenda of science.

Vital Part of our Life

Regularly evolving technology has become an important part of our lives. Also, newer technologies are taking the market by storm and the people are getting used to them in no time. Above all, technological advancement has led to the growth and development of nations.

Negative Aspect of Technology

Although technology is a good thing, everything has two sides. Technology also has two sides one is good and the other is bad. Here are some negative aspects of technology that we are going to discuss.

Get the huge list of more than 500 Essay Topics and Ideas

With new technology the industrialization increases which give birth to many pollutions like air, water, soil, and noise. Also, they cause many health-related issues in animals, birds, and human beings.

Exhaustion of Natural Resources

New technology requires new resources for which the balance is disturbed. Eventually, this will lead to over-exploitation of natural resources which ultimately disturbs the balance of nature.

Unemployment

A single machine can replace many workers. Also, machines can do work at a constant pace for several hours or days without stopping. Due to this, many workers lost their job which ultimately increases unemployment .

Types of Technology

Generally, we judge technology on the same scale but in reality, technology is divided into various types. This includes information technology, industrial technology , architectural technology, creative technology and many more. Let’s discuss these technologies in brief.

Industrial Technology

This technology organizes engineering and manufacturing technology for the manufacturing of machines. Also, this makes the production process easier and convenient.

Creative Technology

This process includes art, advertising, and product design which are made with the help of software. Also, it comprises of 3D printers , virtual reality, computer graphics, and other wearable technologies.

Information Technology

This technology involves the use of telecommunication and computer to send, receive and store information. Internet is the best example of Information technology.

essay about school technology

FAQs on Essay on Technology

Q.1 What is Information technology?

A –  It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data.

Q.2 Is technology harmful to humans?

 A – No, technology is not harmful to human beings until it is used properly. But, misuses of technology can be harmful and deadly.

Download Toppr – Best Learning App for Class 5 to 12

Toppr provides free study materials, last 10 years of question papers, 1000+ hours of video lectures, live 24/7 doubts solving, and much more for FREE! Download Toppr app for Android and iOS or signup for free.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

essay about school technology

What is the Latest Technology Used in Education?

The latest technology in education includes ai, ar, vr, blockchain, and analytics, transforming teaching, learning, and administrative processes.

essay about school technology

Key points:

  • AI, AR, VR, blockchain, and analytics revolutionize modern educationBottom of Form
  • Discover the technology used in education today
  • Stay up-to-date on higher ed tech innovation news

The latest technology in education encompasses a diverse array of innovative tools and platforms designed to enhance teaching, learning, and administrative processes. From artificial intelligence and augmented reality to blockchain and learning analytics, higher ed tech innovation news illustrates how these advancements are reshaping the landscape of education in profound ways.

What is the latest technology used in education?

The latest examples of technology used in education encompass a broad spectrum of innovative tools and platforms designed to enhance teaching, learning, and administrative processes. One notable example is artificial intelligence (AI), which offers personalized learning experiences through adaptive algorithms. AI-powered tutoring systems provide real-time feedback and support, improving student outcomes and engagement.

Another example is augmented reality (AR), which overlays digital content onto the physical world, creating immersive and interactive learning experiences. AR applications allow students to visualize abstract concepts, explore virtual environments, and engage in hands-on learning activities.

Moreover, virtual reality (VR) technology creates immersive learning environments that simulate real-world scenarios, providing opportunities for experiential learning and skill development. VR simulations can be used in various subjects, from science and engineering to history and literature.

Additionally, blockchain technology is gaining traction in education for secure credentialing and verification. Blockchain-based platforms enable transparent record-keeping and secure sharing of academic credentials, reducing fraud and ensuring the integrity of educational records.

Furthermore, learning analytics utilizes data to provide insights into student learning behaviors and performance. By tracking student progress and identifying areas for improvement, educators can personalize instruction and interventions, optimizing learning experiences.

Overall, examples of technology used in education offer opportunities to revolutionize teaching and learning, making it more personalized, immersive, and efficient. By embracing these advancements, educators can create dynamic learning environments that prepare students for success in the digital age.

What is the newest technology in education?

Among emerging educational technologies, the newest technology in education encompasses a variety of innovative tools and platforms designed to enhance teaching, learning, and administrative processes. One notable advancement is the use of artificial intelligence (AI) in education. AI-powered systems offer personalized learning experiences through adaptive algorithms, providing real-time feedback and support to students.

Another emerging technology is augmented reality (AR), which overlays digital content onto the physical world, creating immersive and interactive learning experiences. AR applications allow students to visualize abstract concepts, explore virtual environments, and engage in hands-on learning activities.

Moreover, virtual reality (VR) technology is gaining traction in education for its ability to create immersive learning environments that simulate real-world scenarios. VR simulations can be used in various subjects, from science and engineering to history and literature, providing opportunities for experiential learning and skill development.

Additionally, blockchain technology is being explored for its potential in education for secure credentialing and verification. Blockchain-based platforms enable transparent record-keeping and secure sharing of academic credentials, reducing fraud and ensuring the integrity of educational records.

Furthermore, learning analytics utilizes data to provide insights into student learning behaviors and performance, enabling educators to personalize instruction and interventions to optimize learning experiences.

Overall, the newest technology in education offers opportunities to revolutionize teaching and learning, making it more personalized, immersive, and efficient, and preparing students for success in the digital age.

What is the next big thing in education?

In looking at technology used in education today, the next big thing in education is likely to be the widespread integration of immersive technologies such as virtual reality (VR) and augmented reality (AR). These technologies offer transformative potential by providing immersive and interactive learning experiences that engage students in ways traditional methods cannot.

VR allows students to explore realistic simulations of environments and scenarios that would otherwise be inaccessible or too dangerous to experience firsthand. For example, students can virtually visit historical landmarks, explore the depths of the ocean, or conduct science experiments in a virtual laboratory. This experiential learning promotes deeper understanding and retention of concepts.

Similarly, AR overlays digital content onto the physical world, creating interactive learning experiences that blend the virtual and real worlds. Students can interact with digital objects overlaid onto their physical environment, enhancing their understanding of abstract concepts and promoting hands-on learning.

Moreover, advancements in artificial intelligence (AI) and machine learning are expected to revolutionize personalized learning experiences. AI-powered adaptive learning systems can analyze student data to tailor instruction to individual learning styles, preferences, and pace, ensuring that each student receives the support they need to succeed.

Overall, the next big thing in education will likely involve the widespread adoption of immersive technologies like VR and AR, as well as advancements in AI-driven personalized learning experiences, transforming the way students learn and educators teach.

What are 3 technologies that will change the future of education?

As we review examples of educational technology in the classroom, three technologies poised to change the future of education are artificial intelligence (AI), virtual reality (VR), and blockchain. AI enables personalized learning experiences through adaptive algorithms, VR provides immersive and interactive learning environments, and blockchain ensures secure credentialing and verification, revolutionizing teaching, learning, and administrative processes. These technologies offer opportunities to create dynamic and inclusive learning environments that cater to diverse student needs and prepare students for success in the digital age.

The latest technology in education, including AI, AR, VR, blockchain, and analytics, represents a transformative shift in teaching, learning, and administrative practices. Embracing these advancements empowers educators to create dynamic and inclusive learning environments that prepare students for success in the digital age.

essay about school technology

Sign up for our newsletter

  • Recent Posts

eCampus News Staff

  • Chief Releases Fit Mobile Cart for Interactive Displays - May 6, 2024
  • Higher Ed Tech Innovation News - April 25, 2024
  • How is Technology Used in Higher Education? - April 25, 2024

essay about school technology

Username or Email Address

Remember Me

essay about school technology

essay about school technology

Does ChatGPT Plagiarize? Examining the Chatbot's Sources

Quick links, what exactly is plagiarism, and how do llms work, does chatgpt plagiarize essays, does chatgpt plagiarize code, does chatgpt plagiarize mathematical solutions, does chatgpt use content from blogs, should you use chatgpt for work or school.

  • The plagiarism detected in an essay and a programming code generated by ChatGPT was relatively low, indicating that it doesn't typically copy such content from online sources.
  • The plagiarism rate was a bit higher when calculating a mathematical solution. This might be because mathematical reasoning is usually similar across sources, so the responses can match other materials.
  • ChatGPT's responses to questions about information publicly available on blogs showed higher plagiarism percentages.

While ChatGPT can answer any question you may have, some users wonder whether its responses contain plagiarism. To investigate this, we generated four different types of texts using ChatGPT and then evaluated their originality using various plagiarism detection tools.

To determine if ChatGPT is guilty of plagiarism, you should first understand what constitutes plagiarism. Plagiarism involves using another person's words, ideas, or work without proper attribution. This includes directly copying text from a source without citation or closely paraphrasing someone else's ideas without acknowledgment.

ChatGPT, like other Large Language Models (LLMs) , is trained on large datasets, mostly from publicly available content. However, collecting such vast amounts of data raises ethical questions, as the original creators haven't consented to their work being used in training the LLMs. This leads to debates about the ethics and legality of such practices.

Although ChatGPT generates responses based on the prompts it receives, the issue lies in the broader context of how OpenAI (ChatGPT's developer) obtained the data used to train it, which involves using content without proper consent. Many see this as plagiarism and, for many websites, content theft. However, pinpointing the exact sources of plagiarism is difficult.

For the remainder of this article, we'll concentrate on whether ChatGPT plagiarizes its output from other sources without delving into the specifics of where its responses come from. Let's check the originality of ChatGPT's responses using various plagiarism detection tools to see whether the chatbot uses text from online sources directly.

In this first example, we tasked ChatGPT with composing a 300-word essay on mental health issues.

Following that, we used various plagiarism detection tools to assess the originality of the essay generated by the chatbot. These tools included the Quetext plagiarism checker, Microsoft Word's built-in plagiarism checker, Grammarly's plagiarism checker, and the Duplichecker plagiarism scanner.

Microsoft's built-in similarity checker reported zero percent similarity with online sources. The levels of plagiarism detected by other tools were also minimal: Grammarly's plagiarism detector found four percent, QueText's plagiarism detector found five percent, and Duplichecker's plagiarism scanner showed zero percent.

Considering the small percentage of detected plagiarism, it appears that ChatGPT does not directly copy essays from existing sources.

To assess whether ChatGPT plagiarizes code, we tasked the chatbot with writing code for a calculator in Python.

Following this, we conducted a plagiarism check on the code using a specialized programming plagiarism checker called Dolos , which detected zero percent similarity. Also, when we checked the code using general text plagiarism detection tools mentioned above, the results were consistent, with almost none of the programs detecting more than four percent plagiarism.

When we prompted ChatGPT to generate a code for a calculator from different accounts, the responses appeared different. This observation and the results from the plagiarism checks indicate that ChatGPT doesn't simply replicate codes from online sources. Instead, it draws upon the dataset it was trained on to generate code independently.

During the third test, we tasked the chatbot to solve a mathematical problem and provide detailed reasoning for each step.

To check the originality of the response, we tested its output using several academic-specific plagiarism detection tools , including PapersOwl plagiarism checker, AI-powered Trinka plagiarism scanner, as well as general plagiarism checker tools such as Grammarly, Duplichecker, and QueText.

PapersOwl's plagiarism detector indicated a nearly 46 percent similarity between the chatbot's generated reasoning and online sources. Similarly, the Trinka plagiarism detector reported more than 10 percent similarity. Additionally, Grammarly's plagiarism detector detected 14 percent similarity, QueText found 17 percent, and Duplichecker showed seven percent.

The detection of high plagiarism in the generated response doesn't suggest that the chatbot directly copies reasoning for mathematical questions from online sources. This is mainly because solutions and reasoning for math problems are often standard and widely available online.

So, even though ChatGPT comes up with its own responses, finding the same answers and reasoning online is possible, which might have added to the high plagiarism percentages.

To check whether ChatGPT uses content from online blogs, we asked the chatbot to provide tips for maintaining laptop battery health.

Microsoft Word detected 10 percent plagiarism in the generated text. Duplichecker showed four percent, Grammarly's plagiarism checker indicated 14 percent, but Quetext found 58 percent plagiarism in the text. Upon digging further, some of the text in the chatbot's response matched the content on some blogs.

To double-check if the high plagiarism detection wasn't just coincidental, I asked the chatbot a few more questions about information that is easily available online. The plagiarism percentage in the generated responses was much higher. Based on our testing, it appears that the chatbot sometimes uses phrases and text from online sources, which is quite surprising.

Although many free online plagiarism checkers haven't detected major plagiarism in ChatGPT's responses, you shouldn't use it for academic or professional purposes.

Don't use ChatGPT for your school assignments if you're a student . Instructors can use tools such as GPTZero and Turnitin's AI writing detector to spot AI-generated content. If your work gets flagged as AI-generated by such tools, you could fail the assignment or even be expelled from school. Even though many GPT-detection tools specifically state that they shouldn't be used for this purpose, they are, and it could land you in trouble. Not to mention, you're really only cheating yourself by not studying the topic properly.

Can you use the chatbot to improve your work performance ? It depends. If you want to improve your writing flow in emails or other text forms, using AI can save you time and effort. However, you should only use it as a tool to assist you in your tasks rather than relying on it to do the entire job for you.

In contrast, if your job, like professional writing, prohibits using such tools, you should avoid using ChatGPT or any other tool altogether.

Hopefully, our testing has given you insight into the extent to which ChatGPT may draw from resources available on the web. However, it's important to note that we've used free plagiarism tools and tested only a limited dataset. So, while our findings might be helpful, they shouldn't be taken as absolute facts.

Does ChatGPT Plagiarize? Examining the Chatbot's Sources

COMMENTS

  1. Realizing the promise: How can education technology improve learning

    Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning. 1. Take stock of how your current schools ...

  2. How technology is reinventing K-12 education

    In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data. Technology is "requiring people to check their assumptions ...

  3. Technology In Education Essay

    Here are 100, 200 and 500 word essays on Technology In Education. Technology plays a huge part in education. The students' learning process gets simpler as technology advances. Students can easily learn the concepts thanks to technologies utilised in schools and universities, such as computer labs and high-end equipment and instruments.

  4. How Important Is Technology in Education?

    Technology allows 24/7 access to educational resources. Classes can take place entirely online via the use of a laptop or mobile device. Hybrid versions of learning combine the use of technology from anywhere with regular in-person classroom sessions. In both scenarios, the use of technology to tailor learning plans for each student is possible.

  5. Education: Impact of Technology

    School of Education (2020) states that technology provides students access to information, accelerated learning, and interesting opportunities to practice their knowledge. It enables learners to engage in self-education and acquire technical skills needed for future jobs. We will write a custom essay on your topic. As the use of technology in ...

  6. Technology in Education: An Overview

    The 2015-16 school year will be the first in which more state-required summative assessments in U.S. middle and elementary schools will be delivered via technology rather than paper and pencil ...

  7. How Has Technology Changed Education?

    Technology has also begun to change the roles of teachers and learners. In the traditional classroom, such as what we see depicted in de Voltolina's illustration, the teacher is the primary source of information, and the learners passively receive it. This model of the teacher as the "sage on the stage" has been in education for a long ...

  8. What 126 studies say about education technology

    J-PAL North America's recently released publication summarizes 126 rigorous evaluations of different uses of education technology and their impact on student learning. In recent years, there has been widespread excitement around the transformative potential of technology in education. In the United States alone, spending on education technology ...

  9. The Evolution Of Technology In The Classroom

    Perhaps the most important thing about ed tech in K-12 isn't what the technology is, but how it's used. How to Integrate Technology into K-12 Classrooms. The first step to integrating technology into the K-12 classroom is figuring out which solution to integrate, given the large variety of tools available to educators. That variety ...

  10. PDF Technology and Its Use in Education: Present Roles and Future ...

    The role of technology, in a traditional school setting, is to facilitate, through increased. efficiency and effectiveness, the education of knowledge and skills. In order to fully examine this. thesis, we must first define several terms. Efficiency will be defined as the quickness by which.

  11. Education reform and change driven by digital technology: a

    Technology is a key factor in enabling education to transform and upgrade, and the context of the times is an important driving force in promoting the adoption of new technologies in the education ...

  12. Classroom Technology: The Good, the Bad, and What's Next

    Classroom Technology: The Good, the Bad, and What's Next. March 9, 2022. Francis Sheehan/Education Week and Getty. States, local communities, and the federal government have helped schools ...

  13. What Students Are Saying About Tech in the Classroom

    Below, they share the good, the bad and the ugly about technology use in school. Thank you to everyone who participated in the conversation on our writing prompts this week! Please note: Student ...

  14. Essays on Technology in Education

    The three essays in this dissertation investigate the ways in which technology may affect a student's academic performance or learning process. Each essay considers a different technology currently used in education. The first essay estimates the effect of a statewide one-to-one laptop program in Maine middle and high schools on high school ...

  15. PDF Essay 6. Using Educational Technology to Enhance Learning and Teaching

    In this essay, we focus on our capacity to build on our diverse experiences and to develop a more cohesive approach to leadership, infrastructure, and services based on a shared understanding of the uses of technology that will have the greatest impact on student learning and faculty teaching.

  16. Essay on Contribution of Technology in Education for School Students

    Essay on Contribution of Technology in Education (200 words) The importance of online learning methods has seen an unusual jump in the local, national, and international educational markets. The COVID-19 pandemic has acted as a catalyst that has helped to drive digital education in an unparalleled way.

  17. Technology Essay for Students in English

    Essay on Technology. The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes.

  18. Essay on Technology

    A. An essay on technology means the student must write about technology in a detailed manner. That is, the essay must include an introduction, body, and conclusion. Moreover, the student can add details about the history, advantages, and disadvantages of technology in the body of the essay. Q3.

  19. Persuasive Essay On Technology In Schools

    Decent Essays. 745 Words. 3 Pages. Open Document. Technology, one of the greatest advancements of civilization, is a major factor in our world today. The young adults and children of this generation grew up in a wired environment with iPads, computers, mobile phones, laptops, and more. Although technology can foster a possible disconnect of ...

  20. How technology is reinventing education

    But that promise is not without its pitfalls. "Technology is a game-changer for education - it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching," said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational ...

  21. Billions are spent on educational technology, but we don't know if it works

    In the aftermath of school closures, the market for edtech has kept on growing. The value of the sector is projected to rise to US$132.4 billion globally by 2032 (£106 billion).

  22. Essay on Technology For Students In English

    The word technology comes from the two Greek words, 'techne' and 'logos'. Techne means art, skills, or craft, and Logos means a word, saying, or expression that expresses inward thought. Thus, technology means the skill to convey an idea to reach a goal. But nowadays, the term technology mainly signifies the knowledge of tools, machines ...

  23. Essay on Technology: 250, 500-1000 words for Students

    You can use this Essay on Technology in any assignment or project whether you are in school (class 10th or 12th), college, or preparing for answer writing in competitive exams. Topics covered in this article. Essay on Technology in 150-250 words. Essay on Technology in 300-400 words.

  24. Essay On Technology For School Students And Children

    Below is the Essay on Technology in 500 Words. Technology has become an integral part of our lives, affecting nearly every aspect of our existence. In simple terms, technology refers to tools, machines, devices, and systems that help solve problems, make tasks easier, and improve our lives. From the invention of the wheel to the smartphones we ...

  25. Essay on Technology

    FAQs on Essay on Technology. Q.1 What is Information technology? A - It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data. Q.2 Is technology harmful to humans? A - No, technology is not harmful to human beings until it is used properly.

  26. What is the Latest Technology Used in Education?

    Key points: AI, AR, VR, blockchain, and analytics revolutionize modern educationBottom of Form; Discover the technology used in education today; Stay up-to-date on higher ed tech innovation news; The latest technology in education encompasses a diverse array of innovative tools and platforms designed to enhance teaching, learning, and administrative processes.

  27. Teaching middle school students with learning disabilities

    The present study extends the research base (Ray et al., 2019; Ray & Graham, 2021) as the SRSD instruction in argumentative writing using the HIT SONGS3 strategy to support extended essay writing from source texts with the support of ubiquitous technology tools was effective in enhancing middle school students with learning disabilities writing ...

  28. Does ChatGPT Plagiarize? Examining the Chatbot's Sources

    Does ChatGPT Plagiarize Essays? In this first example, we tasked ChatGPT with composing a 300-word essay on mental health issues. Following that, we used various plagiarism detection tools to ...