Youtube

  • TPC and eLearning
  • What's NEW at TPC?
  • Read Watch Interact
  • Practice Review Test
  • Teacher-Tools
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Classes (Version 2)
  • Student Progress Edit
  • Task Properties
  • Export Student Progress
  • Task, Activities, and Scores
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Nuclear Chemistry Preview
  • Gaining Teacher Access
  • Tasks and Classes
  • Tasks - Classic
  • Subscription
  • Subscription Locator
  • 1-D Kinematics

Newton's Laws

  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Atomic Physics
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity
  • Waves, Sound and Light
  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Task Tracker Directions
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Algebra Based Physics
  • Other Tools
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the CD
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Classes (Legacy Version)
  • Teacher Resources
  • Subscriptions

assignment 01.04 the laws of motion

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law

assignment 01.04 the laws of motion

  • Lesson 1 - Newton's First Law of Motion
  • Inertia and Mass
  • State of Motion
  • Balanced and Unbalanced Forces
  • Lesson 2 - Force and Its Representation
  • The Meaning of Force
  • Types of Forces
  • Drawing Free-Body Diagrams
  • Determining the Net Force
  • Lesson 3 - Newton's Second Law of Motion
  • The Big Misconception
  • Finding Acceleration
  • Finding Individual Forces
  • Free Fall and Air Resistance
  • Double Trouble
  • Lesson 4 - Newton's Third Law of Motion
  • Identifying Interaction Force Pairs

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Physics LibreTexts

04: The Laws of Motion

  • Last updated
  • Save as PDF
  • Page ID 16938

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Problems & Exercises

13.3 m/s 2 13.3 m/s 2

(a) 12 m/s 2 12 m/s 2 .

(b) The acceleration is not one-fourth of what it was with all rockets burning because the frictional force is still as large as it was with all rockets burning.

(a) The system is the child in the wagon plus the wagon.

(c) a = 0 . 130 m/s 2 a = 0 . 130 m/s 2 in the direction of the second child’s push.

(d) a = 0.00 m/s 2 a = 0.00 m/s 2

(a) 3.68 × 10 3 N 3.68 × 10 3 N . This force is 5.00 times greater than his weight.

(b) 3750 N; 11.3º above horizontal 3750 N; 11.3º above horizontal

1.5 × 10 3 N , 150 kg , 150 kg 1.5 × 10 3 N , 150 kg , 150 kg

Force on shell: 2 . 64 × 10 7 N 2 . 64 × 10 7 N

Force exerted on ship = − 2 . 64 × 10 7 N − 2 . 64 × 10 7 N , by Newton’s third law

(a) 0.11 m/s 2 0.11 m/s 2 (b) 1.2 × 10 4 N 1.2 × 10 4 N

(a) 7 . 84 × 10 -4 N 7 . 84 × 10 -4 N

(b) 1 . 89 × 10 –3 N 1 . 89 × 10 –3 N . This is 2.41 times the tension in the vertical strand.

Newton’s second law applied in vertical direction gives

Using the free-body diagram:

F net = T − f − m g = ma F net = T − f − m g = ma ,

a = T − f − mg m = 1 . 250 × 10 7 N − 4.50 × 10 6 N − ( 5.00 × 10 5 kg ) ( 9. 80 m/s 2 ) 5.00 × 10 5 kg = 6.20 m/s 2 a = T − f − mg m = 1 . 250 × 10 7 N − 4.50 × 10 6 N − ( 5.00 × 10 5 kg ) ( 9. 80 m/s 2 ) 5.00 × 10 5 kg = 6.20 m/s 2 .

Find: F F .

F = ( 70.0 kg ) [ ( 39 . 2 m/s 2 ) + ( 9 . 80 m/s 2 ) ] F = ( 70.0 kg ) [ ( 39 . 2 m/s 2 ) + ( 9 . 80 m/s 2 ) ] = 3. 43 × 10 3 N = 3. 43 × 10 3 N . The force exerted by the high-jumper is actually down on the ground, but F F is up from the ground and makes him jump.

  • This result is reasonable, since it is quite possible for a person to exert a force of the magnitude of 10 3 N 10 3 N .

(a) 4 . 41 × 10 5 N 4 . 41 × 10 5 N

(b) 1 . 50 × 10 5 N 1 . 50 × 10 5 N

(a) 910 N 910 N

(b) 1 . 11 × 10 3 N 1 . 11 × 10 3 N

a = 0.139 m/s a = 0.139 m/s , θ = 12.4º θ = 12.4º north of east

  • Use Newton’s laws since we are looking for forces.

The x -components of the tension cancel. ∑ F x = 0 ∑ F x = 0 .

  • This seems reasonable, since the applied tensions should be greater than the force applied to the tooth.

10.2 m/s 2 , 4.67º from vertical 10.2 m/s 2 , 4.67º from vertical

T 1 = 736 N T 1 = 736 N

T 2 = 194 N T 2 = 194 N

(a) 7.43 m/s 7.43 m/s

(a) 4.20 m/s 4.20 m/s

(b) 29.4 m/s 2 29.4 m/s 2

(c) 4 . 31 × 10 3 N 4 . 31 × 10 3 N

(a) 47.1 m/s

(b) 2 . 47 × 10 3 m/s 2 2 . 47 × 10 3 m/s 2

(c) 6.18 × 10 3 N 6.18 × 10 3 N . The average force is 252 times the shell’s weight.

(a) 1 × 10 − 13 1 × 10 − 13

(b) 1 × 10 − 11 1 × 10 − 11

(a) Box A travels faster at the finishing distance since a greater force with equal mass results in a greater acceleration. Also, a greater acceleration over the same distance results in a greater final speed.

(b) i. Yes, it is consistent because a greater force results in a greater final speed. ii. It does not make sense because V = 2 ( f / m ) x = K ( F ) V = 2 ( f / m ) x = K ( F ) .

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
  • Authors: Paul Peter Urone, Roger Hinrichs
  • Publisher/website: OpenStax
  • Book title: College Physics 2e
  • Publication date: Jul 13, 2022
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/college-physics-2e/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units
  • Section URL: https://openstax.org/books/college-physics-2e/pages/chapter-4

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

IMAGES

  1. PPT

    assignment 01.04 the laws of motion

  2. Newton's laws of motion

    assignment 01.04 the laws of motion

  3. Laws of Motion

    assignment 01.04 the laws of motion

  4. Newtons Laws of Motion Review Sheet and Application Assignment by

    assignment 01.04 the laws of motion

  5. Laws Of Motion

    assignment 01.04 the laws of motion

  6. 6th Grade Science: 4th Six Weeks (Wk 4) Newtons 3 Laws of Motion: How

    assignment 01.04 the laws of motion

VIDEO

  1. Ch-04|| Laws of Motion|| PYQ DISCUSSION SERIES|| By Dr. Prankush|| #neet2024 #prarambh

  2. Newton's laws of motion explained

  3. Pseudo Force class 11th

  4. AP Chemistry May 2 2024 Part 1

  5. W-04 Laws of electromagnetism part-4

  6. Class 10 Science Light Reflection and Refraction L-1

COMMENTS

  1. Laws of motion

    The Laws of Motion Worksheet. Name: Instructions: For this assignment, describe Newton's laws of motion while skateboarding. Next, study the graph of distance traveled to determine if the skateboarder is on a dry, wet, or muddy road condition. Describe how these conditions affect the motion of the skateboard.

  2. Lab: Newton's Laws of Motion Flashcards

    10. 0.0147. 0.147. Consider the relationship of the variables in Newton's second law. In a drag car race, the force applied to the car is doubled by the driver stepping on the gas pedal. double. remain unchanged. increase. Assignment: Reflect on the Lab Learn with flashcards, games, and more — for free.

  3. Forces and Newton's laws of motion

    Newton's third law of motion Get 5 of 7 questions to level up! All of Newton's laws of motion Get 5 of 7 questions to level up! Quiz 1. Level up on the above skills and collect up to 240 Mastery points Start quiz. Normal force and contact force. Learn. Normal force and contact force (Opens a modal)

  4. All of Newton's laws of motion (practice)

    Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class education for anyone, anywhere.

  5. 6.2: Solving Problems with Newton's Laws (Part 1)

    It is almost always convenient to make one axis parallel to the direction of motion, if this is known. Generally, just write Newton's second law in components along the different directions. Then, you have the following equations: ∑Fx = max, ∑Fy = may. (6.2.1) (6.2.1) ∑ F x = m a x, ∑ F y = m a y.

  6. Newton's Laws of Motion Tutorial

    Go ad-free for 1 year. Newton's Laws of motion describe the connection between the forces that act upon an object and the manner in which the object moves. An understanding of forces and their tendency to balance or not balance each other is crucial to understanding how the object will change or not change its state of motion.

  7. Newton's laws and equilibrium questions

    B. An object with zero acceleration and an object traveling at a constant acceleration are considered similar states. Mass is a measure of an object's ability to resist motion or movement of any kind. C. Mass is a measure of an object's ability to resist motion or movement of any kind. The object is difficult to bring to a complete stop due ...

  8. 4.1: Introduction

    Second law: The acceleration aa of a body is parallel and directly proportional to the net force F F acting on the body, is in the direction of the net force, and is inversely proportional to the mass mm of the body: F = m ⋅ a or a = F m (4.1.1) (4.1.1) F = m ⋅ a or a = F m. For example, if you push the car with a greater force it will ...

  9. Newton's Laws of Motion Study Guide Flashcards

    Explain what happens if two forces act in the same direction. net force can be found by adding the strength of individual forces/forces are added together. Newton's first law of motion. an object at rest will stay at rest, objects moving at a constant speed will continue moving at a constant speed unless acted upon by an unbalanced force.

  10. 04: The Laws of Motion

    Prince George's Community College. PHY 1030: General Physics I. 04: The Laws of Motion. Expand/collapse global location.

  11. Answer Key Chapter 4

    4.2 Newton's First Law of Motion: Inertia; 4.3 Newton's Second Law of Motion: Concept of a System; 4.4 Newton's Third Law of Motion: Symmetry in Forces; 4.5 Normal, Tension, and Other Examples of Forces; 4.6 Problem-Solving Strategies; 4.7 Further Applications of Newton's Laws of Motion; 4.8 Extended Topic: The Four Basic Forces—An ...

  12. Newton's Laws of Motion

    Create a free account to gain full access to the website. Save & Organize Resources. See State Standards. Manage Classes & Assignments. Sync with Google Classroom. Create Lessons. Customized Dashboard. Find lessons on Newton's Laws of Motion for all grades. Free interactive resources and activities for the classroom and home.

  13. Physics Chapter 4 (Holt Physics) (Forces and the Laws of Motion)

    Newton's first law of motion/ Law of inertia. An object at rest will stay at rest, and an object in motion continues in motion with constant velocity unless the object experiences a net external force. Inertia. tendency of an object not to accelerate. When net external force is 0, acceleration is. 0/zero. About us.

  14. PHYSICAL SCIENCE 1.03 : The Laws of motion

    The Laws of Motion Worksheet Name: Evan Lozano Instructions: For this assignment, describe Newton's laws of motion while skateboarding. Next, study the graph of distance traveled to determine if the skateboarder is on a dry, wet, or muddy road condition. Solutions available. PHYSICAL SCIENCE 1.03. FLVS.

  15. Chapter 6: Newton's Laws of Motion Chapter Review Flashcards

    There can never be a force acting alone, without its action-reaction partner. Forces only come in action-reaction pairs. Creates 2 equal and opposite forces, an action and reaction. Example: Moving a skateboard with your foot. The force acts on the ground however the force acts on you which is action-reaction.

  16. Newtons Laws of Motion Review Flashcards

    An object in motion will remain in motion unless acted upon by an unbalanced force. Newton's First Law of Motion. Force is the product of mass and acceleration. Newton's Second Law of Motion. For every action there is an equal and opposite reaction. Newton's Third Law of Motion. Who was the scientist who gave us the Laws of Motion.

  17. 01.03 The Law of Motion by Maira Murillo on Prezi

    01.03 The Laws of Motion User: Maira Pena Murillo In Course: Physical Science Instructor: Allanna Glusica Newton's First Law: Newton's First Law - An object at rest (not moving) will stay at rest unless a force acts on it. An object in motion will stay in motion (in a straight. Get started for FREE Continue.

  18. 01.03 The Laws of Motion Flashcards

    On Earth, this unbalanced force can be friction. The first law of motion has two simple principles: An object at rest (not moving) will stay at rest unless an unbalanced force acts on it. An object in motion will stay in motion (in a straight line and at a constant speed) unless an unbalanced force acts on it. Inertia.