• ENVIRONMENT

Renewable energy, explained

Solar, wind, hydroelectric, biomass, and geothermal power can provide energy without the planet-warming effects of fossil fuels.

In any discussion about climate change , renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources such as solar and wind don't emit carbon dioxide and other greenhouse gases that contribute to global warming .

Clean energy has far more to recommend it than just being "green." The growing sector creates jobs , makes electric grids more resilient, expands energy access in developing countries, and helps lower energy bills. All of those factors have contributed to a renewable energy renaissance in recent years, with wind and solar setting new records for electricity generation .

For the past 150 years or so, humans have relied heavily on coal, oil, and other fossil fuels to power everything from light bulbs to cars to factories. Fossil fuels are embedded in nearly everything we do, and as a result, the greenhouse gases released from the burning of those fuels have reached historically high levels .

As greenhouse gases trap heat in the atmosphere that would otherwise escape into space, average temperatures on the surface are rising . Global warming is one symptom of climate change, the term scientists now prefer to describe the complex shifts affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas , and a range of other impacts .

Of course, renewables—like any source of energy—have their own trade-offs and associated debates. One of them centers on the definition of renewable energy. Strictly speaking, renewable energy is just what you might think: perpetually available, or as the U.S. Energy Information Administration puts it, " virtually inexhaustible ." But "renewable" doesn't necessarily mean sustainable, as opponents of corn-based ethanol or large hydropower dams often argue. It also doesn't encompass other low- or zero-emissions resources that have their own advocates, including energy efficiency and nuclear power.

Types of renewable energy sources

Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China, Brazil, Canada, the U.S., and Russia the leading hydropower producers . While hydropower is theoretically a clean energy source replenished by rain and snow, it also has several drawbacks.

FREE BONUS ISSUE

Large dams can disrupt river ecosystems and surrounding communities , harming wildlife and displacing residents. Hydropower generation is vulnerable to silt buildup, which can compromise capacity and harm equipment. Drought can also cause problems. In the western U.S., carbon dioxide emissions over a 15-year period were 100 megatons higher than they normally would have been, according to a 2018 study , as utilities turned to coal and gas to replace hydropower lost to drought. Even hydropower at full capacity bears its own emissions problems, as decaying organic material in reservoirs releases methane.

Dams aren't the only way to use water for power: Tidal and wave energy projects around the world aim to capture the ocean's natural rhythms. Marine energy projects currently generate an estimated 500 megawatts of power —less than one percent of all renewables—but the potential is far greater. Programs like Scotland’s Saltire Prize have encouraged innovation in this area.

Wind: Harnessing the wind as a source of energy started more than 7,000 years ago . Now, electricity-generating wind turbines are proliferating around the globe, and China, the U.S., and Germany are the leading wind energy producers. From 2001 to 2017 , cumulative wind capacity around the world increased to more than 539,000 megawatts from 23,900 mw—more than 22 fold.

Some people may object to how wind turbines look on the horizon and to how they sound, but wind energy, whose prices are declining , is proving too valuable a resource to deny. While most wind power comes from onshore turbines, offshore projects are appearing too, with the most in the U.K. and Germany. The first U.S. offshore wind farm opened in 2016 in Rhode Island, and other offshore projects are gaining momentum . Another problem with wind turbines is that they’re a danger for birds and bats, killing hundreds of thousands annually , not as many as from glass collisions and other threats like habitat loss and invasive species, but enough that engineers are working on solutions to make them safer for flying wildlife.

You May Also Like

renewable energy day essay

Can energy harnessed from Earth’s interior help power the world?

renewable energy day essay

How the historic climate bill will dramatically reduce U.S. emissions

renewable energy day essay

5 environmental victories from 2021 that offer hope

Solar: From home rooftops to utility-scale farms, solar power is reshaping energy markets around the world. In the decade from 2007 and 2017 the world's total installed energy capacity from photovoltaic panels increased a whopping 4,300 percent .

In addition to solar panels, which convert the sun's light to electricity, concentrating solar power (CSP) plants use mirrors to concentrate the sun's heat, deriving thermal energy instead. China, Japan, and the U.S. are leading the solar transformation, but solar still has a long way to go, accounting for around two percent of the total electricity generated in the U.S. in 2017. Solar thermal energy is also being used worldwide for hot water, heating, and cooling.

Biomass: Biomass energy includes biofuels such as ethanol and biodiesel , wood and wood waste, biogas from landfills, and municipal solid waste. Like solar power, biomass is a flexible energy source, able to fuel vehicles, heat buildings, and produce electricity. But biomass can raise thorny issues.

Critics of corn-based ethanol , for example, say it competes with the food market for corn and supports the same harmful agricultural practices that have led to toxic algae blooms and other environmental hazards. Similarly, debates have erupted over whether it's a good idea to ship wood pellets from U.S. forests over to Europe so that it can be burned for electricity. Meanwhile, scientists and companies are working on ways to more efficiently convert corn stover , wastewater sludge , and other biomass sources into energy, aiming to extract value from material that would otherwise go to waste.

Geothermal: Used for thousands of years in some countries for cooking and heating, geothermal energy is derived from the Earth’s internal heat . On a large scale, underground reservoirs of steam and hot water can be tapped through wells that can go a mile deep or more to generate electricity. On a smaller scale, some buildings have geothermal heat pumps that use temperature differences several feet below ground for heating and cooling. Unlike solar and wind energy, geothermal energy is always available, but it has side effects that need to be managed, such as the rotten egg smell that can accompany released hydrogen sulfide.

Ways to boost renewable energy

Cities, states, and federal governments around the world are instituting policies aimed at increasing renewable energy. At least 29 U.S. states have set renewable portfolio standards —policies that mandate a certain percentage of energy from renewable sources, More than 100 cities worldwide now boast at least 70 percent renewable energy, and still others are making commitments to reach 100 percent . Other policies that could encourage renewable energy growth include carbon pricing, fuel economy standards, and building efficiency standards. Corporations are making a difference too, purchasing record amounts of renewable power in 2018.

Wonder whether your state could ever be powered by 100 percent renewables? No matter where you live, scientist Mark Jacobson believes it's possible. That vision is laid out here , and while his analysis is not without critics , it punctuates a reality with which the world must now reckon. Even without climate change, fossil fuels are a finite resource, and if we want our lease on the planet to be renewed, our energy will have to be renewable.

Related Topics

  • SUSTAINABILITY
  • RENEWABLE ENERGY
  • GEOTHERMAL ENERGY
  • SOLAR POWER
  • HYDROELECTRIC POWER
  • CLIMATE CHANGE

renewable energy day essay

Activists fear a new threat to biodiversity—renewable energy

renewable energy day essay

How the Ukraine war is accelerating Germany's renewable energy transition

renewable energy day essay

We took the Great American Road Trip—in electric cars

renewable energy day essay

What’s at stake at COP26—the crucial global climate summit

renewable energy day essay

Climate change goals and oil production are clashing in the U.S.

  • Environment
  • Perpetual Planet

History & Culture

  • History & Culture
  • Mind, Body, Wonder
  • Paid Content
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

Renewable Energy Explained

Solar, wind, hydroelectric, biomass, and geothermal power can provide energy without the planet-warming effects of fossil fuels.

Chemistry, Conservation, Earth Science, Engineering

Braes of Doune Wind Farm

As of 2017, wind turbines, like the Braes of Doune wind farm near Stirling, Scotland, are now producing 539,000 megawatts of power around the world—22 times more than 16 years before. Unfortunately, this renewable, clean energy generator isn't perfect.

Photograph by Jim Richardson

As of 2017, wind turbines, like the Braes of Doune wind farm near Stirling, Scotland, are now producing 539,000 megawatts of power around the world—22 times more than 16 years before. Unfortunately, this renewable, clean energy generator isn't perfect.

In any discussion about climate change , renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources, such as solar and wind, don't emit carbon dioxide and other greenhouse gases that contribute to global warming. Clean energy has far more to recommend it than just being "green." The growing sector creates jobs, makes electric grids more resilient, expands energy access in developing countries, and helps lower energy bills. All of those factors have contributed to a renewable energy renaissance in recent years, with wind and solar setting new records for electricity generation. For the past 150 years or so, humans have relied heavily on coal, oil, and other fossil fuels to power everything from light bulbs to cars to factories. Fossil fuels are embedded in nearly everything we do, and as a result, the greenhouse gases released from the burning of those fuels have reached historically high levels. As greenhouse gases trap heat in the atmosphere that would otherwise escape into space, average temperatures on the surface are rising. Global warming is one symptom of climate change, the term scientists now prefer to describe the complex shifts affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and habitats, rising seas, and a range of other impacts. Of course, renewables—like any source of energy—have their own trade-offs and associated debates. One of them centers on the definition of renewable energy. Strictly speaking, renewable energy is just what you might think: perpetually available, or as the United States Energy Information Administration puts it, "virtually inexhaustible." But "renewable" doesn't necessarily mean sustainable, as opponents of corn-based ethanol or large hydropower dams often argue. It also doesn't encompass other low- or zero-emissions resources that have their own advocates, including energy efficiency and nuclear power. Types of Renewable Energy Sources Hydropower: For centuries, people have harnessed the energy of river currents, using dams to control water flow. Hydropower is the world's biggest source of renewable energy by far, with China, Brazil, Canada, the U.S., and Russia being the leading hydropower producers. While hydropower is theoretically a clean energy source replenished by rain and snow, it also has several drawbacks. Large dams can disrupt river ecosystems and surrounding communities, harming wildlife, and displacing residents. Hydropower generation is vulnerable to silt buildup, which can compromise capacity and harm equipment. Drought can also cause problems. In the western U.S., carbon dioxide emissions over a 15-year period were 100 megatons higher than they would have been with normal precipitation levels, according to a 2018 study, as utilities turned to coal and gas to replace hydropower lost to drought. Even hydropower at full capacity bears its own emissions problems, as decaying organic material in reservoirs releases methane. Dams aren't the only way to use water for power: Tidal and wave energy projects around the world aim to capture the ocean's natural rhythms. Marine energy projects currently generate an estimated 500 megawatts of power—less than one percent of all renewables—but the potential is far greater. Programs like Scotland’s Saltire Prize have encouraged innovation in this area. Wind: Harnessing the wind as a source of energy started more than 7,000 years ago. Now, electricity-generating wind turbines are proliferating around the globe, and China, the U.S., and Germany are the world's leading wind-energy producers. From 2001 to 2017, cumulative wind capacity around the world increased to more than 539,000 megawatts from 23,900 megawatts—more than 22 fold. Some people may object to how wind turbines look on the horizon and to how they sound, but wind energy, whose prices are declining, is proving too valuable a resource to deny. While most wind power comes from onshore turbines, offshore projects are appearing too, with the most in the United Kingdom and Germany. The first U.S. offshore wind farm opened in 2016 in Rhode Island, and other offshore projects are gaining momentum. Another problem with wind turbines is that they’re a danger for birds and bats, killing hundreds of thousands annually, not as many as from glass collisions and other threats like habitat loss and invasive species, but enough that engineers are working on solutions to make them safer for flying wildlife. Solar: From home rooftops to utility-scale farms, solar power is reshaping energy markets around the world. In the decade from 2007 and 2017 the world's total installed energy capacity from photovoltaic panels increased a whopping 4,300 percent. In addition to solar panels, which convert the sun's light to electricity, concentrating solar power (CSP) plants use mirrors to concentrate the sun's heat, deriving thermal energy instead. China, Japan, and the U.S. are leading the solar transformation, but solar still has a long way to go, accounting for around just two percent of the total electricity generated in the U.S. in 2017. Solar thermal energy is also being used worldwide for hot water, heating, and cooling. Biomass: Biomass energy includes biofuels, such as ethanol and biodiesel, wood, wood waste, biogas from landfills, and municipal solid waste. Like solar power, biomass is a flexible energy source, able to fuel vehicles, heat buildings, and produce electricity. But biomass can raise thorny issues. Critics of corn-based ethanol, for example, say it competes with the food market for corn and supports the same harmful agricultural practices that have led to toxic algae blooms and other environmental hazards. Similarly, debates have erupted over whether it's a good idea to ship wood pellets from U.S. forests over to Europe so that it can be burned for electricity. Meanwhile, scientists and companies are working on ways to more efficiently convert corn stover, wastewater sludge, and other biomass sources into energy, aiming to extract value from material that would otherwise go to waste. Geothermal: Used for thousands of years in some countries for cooking and heating, geothermal energy is derived from Earth’s internal heat. On a large scale, underground reservoirs of steam and hot water can be tapped through wells that can go a two kilometers deep or more to generate electricity. On a smaller scale, some buildings have geothermal heat pumps that use temperature differences several meters below ground for heating and cooling. Unlike solar and wind energy, geothermal energy is always available, but it has side effects that need to be managed, such as the rotten-egg smell that can accompany released hydrogen sulfide. Ways To Boost Renewable Energy Cities, states, and federal governments around the world are instituting policies aimed at increasing renewable energy. At least 29 U.S. states have set renewable portfolio standards—policies that mandate a certain percentage of energy from renewable sources. More than 100 cities worldwide now boast receiving at least 70 percent of their energy from renewable sources, and still others are making commitments to reach 100 percent. Other policies that could encourage renewable energy growth include carbon pricing, fuel economy standards, and building efficiency standards. Corporations are making a difference too, purchasing record amounts of renewable power in 2018. Wonder whether your state could ever be powered by 100 percent renewables? No matter where you live, scientist Mark Jacobson believes it's possible. That vision is laid out here , and while his analysis is not without critics , it punctuates a reality with which the world must now reckon. Even without climate change, fossil fuels are a finite resource, and if we want our lease on the planet to be renewed, our energy will have to be renewable.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

January 22, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

renewable energy day essay

This Is the Future: Essay on Renewable Energy

renewable energy day essay

Today the world population depends on nonrenewable energy resources. With the constantly growing demand for energy, natural gas, coal, and oil get used up and cannot replenish themselves. 

Aside from limited supply, heavy reliance on fossil fuels causes planetary-scale damage. Sea levels are rising. Heat-trapping carbon dioxide increased the warming effect by 45% from 1990 to 2019. The only way to tackle the crisis is to start the transition to renewable energy now. 

What is renewable energy? It is energy that comes from replenishable natural resources like sunlight, wind, thermal energy, moving water, and organic materials. Renewable resources do not run out. They are cost-efficient and renew faster than they are consumed. How does renewable energy save money? It creates new jobs, supports economic growth, and decreases inequitable fossil fuel subsidies. 

At the current rates of production, some fossil fuels will not even last another century. This is why the future depends on reliable and eco-friendly resources. This renewable energy essay examines the types and benefits of renewable energy and its role in creating a sustainable future.

Top 5 Types of Renewable Energy: The Apollo Alliance Rankings

There are many natural resources that can provide people with clean energy. To make a list of the five most booming types of renewable energy on the market today, this energy essay uses data gathered by the Apollo Alliance. It is a project that aims to revolutionize the energy sector of the US with a focus on clean energy. 

The Apollo Alliance unites businesses, community leaders, and environmental experts to support the transition to more sustainable and efficient living. Their expert opinion helped to compile information about the most common and cost-competitive sources of renewable energy. However, if you want to get some more in-depth research, you can entrust it to an essay writer . Here’s a quick overview of renewable energy resources that have a huge potential to substitute fossil fuels. 

Solar Renewable Energy

The most abundant and practically endless resource is solar energy. It can be turned into electricity by photovoltaic systems that convert radiant energy captured from sunlight. Solar farms could generate enough energy for thousands of homes.

An endless supply is the main benefit of solar energy. The rate at which the Earth receives it is 10,000 times greater than people can consume it, as a paper writer points out based on their analysis of research findings. It can substitute fossil fuels and deliver people electricity, hot water, cooling, heat, etc. 

The upfront investment in solar systems is rather expensive. This is one of the primary limitations that prevent businesses and households from switching to this energy source at once. However, the conclusion of solar energy is still favorable. In the long run, it can significantly decrease energy costs. Besides, solar panels are gradually becoming more affordable to manufacture and adopt, even at an individual level. 

Wind Renewable Energy

Another clean energy source is wind. Wind farms use the kinetic energy of wind flow to convert it into electricity. The Appolo Alliance notes that, unlike solar farms, they can’t be placed in any location. To stay cost-competitive, wind farms should operate in windy areas. Although not all countries have the right conditions to use them on a large scale, wind farms might be introduced for some energy diversity. The technical potential for it is still tremendous. 

Wind energy is clean and safe for the environment. It does not pollute the atmosphere with any harmful products compared to nonrenewable energy resources. 

The investment in wind energy is also economically wise. If you examine the cost of this energy resource in an essay on renewable resources, you’ll see that wind farms can deliver electricity at a price lower than nonrenewable resources. Besides, since wind isn’t limited, its cost won’t be influenced by the imbalance of supply and demand.

Geothermal Renewable Energy

Natural renewable resources are all around us, even beneath the ground. Geothermal energy can be produced from the thermal energy from the Earth’s interior. Sometimes heat reaches the surface naturally, for example, in the form of geysers. But it can also be used by geothermal power plants. The Earth’s heat gets captured and converted to steam that turns a turbine. As a result, we get geothermal energy.

This source provides a significant energy supply while having low emissions and no significant footprint on land. A factsheet and essay on renewable resources state that geothermal plants will increase electricity production from 17 billion kWh in 2020 to 49.8 billion kWh in 2050.

However, this method is not without limitations. While writing a renewable resources essay, consider that geothermal energy can be accessed only in certain regions. Geological hotspots are off-limits as they are vulnerable to earthquakes. Yet, the quantity of geothermal resources is likely to grow as technology advances. 

Ocean Renewable Energy

The kinetic and thermal energy of the ocean is a robust resource. Ocean power systems rely on:

  • Changes in sea level;
  • Wave energy;
  • Water surface temperatures;
  • The energy released from seawater and freshwater mixing.

Ocean energy is more predictable compared to other resources. As estimated by EPRI, it has the potential to produce 2640 TWh/yr. However, an important point to consider in a renewable energy essay is that the kinetic energy of the ocean varies. Yet, since it is ruled by the moon’s gravity, the resource is plentiful and continues to be attractive for the energy industry. 

Wave energy systems are still developing. The Apollo energy corporation explores many prototypes. It is looking for the most reliable and robust solution that can function in the harsh ocean environment. 

Another limitation of ocean renewable energy is that it may cause disruptions to marine life. Although its emissions are minimal, the system requires large equipment to be installed in the ocean. 

Biomass Renewable Energy

Organic materials like wood and charcoal have been used for heating and lighting for centuries. There are a lot more types of biomass: from trees, cereal straws, and grass to processed waste. All of them can produce bioenergy. 

Biomass can be converted into energy through burning or using methane produced during the natural process of decomposition. In an essay on renewable sources of energy, the opponents of the method point out that biomass energy is associated with carbon dioxide emissions. Yet, the amount of released greenhouse gases is much lower compared to nonrenewable energy use. 

While biomass is a reliable source of energy, it is only suitable for limited applications. If used too extensively, it might lead to disruptions in biodiversity, a negative impact on land use, and deforestation. Still, Apollo energy includes biomass resources that become waste and decompose quickly anyway. These are organic materials like sawdust, chips from sawmills, stems, nut shells, etc. 

What Is the Apollo Alliance?

The Apollo Alliance is a coalition of business leaders, environmental organizations, labor unions, and foundations. They all unite their efforts in a single project to harness clean energy in new, innovative ways. 

Why Apollo? Similarly to President John F. Kennedy’s Apollo Project, Apollo energy is a strong visionary initiative. It is a dare, a challenge. The alliance calls for the integrity of science, research, technology, and the public to revolutionize the energy industry.

The project has a profound message. Apollo energy solutions are not only about the environment or energy. They are about building a new economy. The alliance gives hope to building a secure future for Americans. 

What is the mission of the Apollo Alliance? 

  • Achieve energy independence with efficient and limitless resources of renewable energy.
  • Pioneer innovation in the energy sector.
  • Build education campaigns and communication to inspire new perceptions of energy. 
  • Create new jobs.
  • Reduce dependence on imported fossil fuels. 
  • Build healthier and happier communities. 

The transformation of the industry will lead to planet-scale changes. The Apollo energy corporation can respond to the global environmental crisis and prevent climate change. 

Apollo renewable energy also has the potential to become a catalyst for social change. With more affordable energy and new jobs in the industry, people can bridge the inequality divide and build stronger communities. 

Why Renewable Energy Is Important for the Future

Renewable energy resources have an enormous potential to cover people’s energy needs on a global scale. Unlike fossil fuels, they are available in abundance and generate minimal to no emissions. 

The burning of fossil fuels caused a lot of environmental problems—from carbon dioxide emissions to ocean acidification. Research this issue in more detail with academic assistance from essay writer online . You can use it to write an essay on renewable sources of energy to explain the importance of change and its global impact. 

Despite all the damage people caused to the planet, there’s still hope to mitigate further repercussions. Every renewable energy essay adds to the existing body of knowledge we have today and advances research in the field. Here are the key advantages and disadvantages of alternative energy resources people should keep in mind. 

Advantage of Green Energy

The use of renewable energy resources has a number of benefits for the climate, human well-being, and economy:

  • Renewable energy resources have little to no greenhouse gas emissions. Even if we take into account the manufacturing and recycling of the technologies involved, their impact on the environment is significantly lower compared to fossil fuels. 
  • Renewable energy promotes self-sufficiency and reduces a country’s dependence on foreign fuel. According to a study, a 1% increase in the use of renewable energy increases economic growth by 0.21%. This gives socio-economic stability.
  • Due to a lack of supply of fossil fuels and quick depletion of natural resources, prices for nonrenewable energy keep increasing. In contrast, green energy is limitless and can be produced locally. In the long run, this allows decreasing the cost of energy. 
  • Unlike fossil fuels, renewable energy doesn’t emit air pollutants. This positively influences health and quality of life. 
  • The emergence of green energy plants creates new jobs. Thus, Apollo energy solutions support the growth of local communities. By 2030, the transition to renewable energy is expected to generate 10.3 million new jobs. 
  • Renewable energy allows decentralization of the industry. Communities get their independent sources of energy that are more flexible in terms of distribution. 
  • Renewable energy supports equality. It has the potential to make energy more affordable to low-income countries and expand access to energy even in remote and less fortunate neighborhoods. 

Disadvantages of Non-Conventional Energy Sources

No technology is perfect. Renewable energy resources have certain drawbacks too: 

  • The production of renewable energy depends on weather conditions. For example, wind farms could be effective only in certain locations where the weather conditions allow it. The weather also makes it so that renewable energy cannot be generated around the clock. 
  • The initial cost of renewable energy technology is expensive. Both manufacturing and installation require significant investment. This is another disadvantage of renewable resources. It makes them unaffordable to a lot of businesses and unavailable for widespread individual use. In addition, the return on investment might not be immediate.
  • Renewable energy technology takes up a lot of space. It may affect life in the communities where these clean energy farms are installed. They may also cause disruptions to wildlife in the areas. 
  • One more limitation a renewable resources essay should consider is the current state of technology. While the potential of renewable energy resources is tremendous, the technology is still in its development phase. Therefore, renewable energy might not substitute fossil fuels overnight. There’s a need for more research, investment, and time to transition to renewable energy completely. Yet, some diversity of energy resources should be introduced as soon as possible. 
  • Renewable energy resources have limited emissions, but they are not entirely pollution-free. The manufacturing process of equipment is associated with greenhouse gas emissions while, for example, the lifespan of a wind turbine is only 20 years. 

For high school seniors eyeing a future rich with innovative endeavors in renewable energy or other fields, it's crucial to seek financial support early on. Explore the top 10 scholarships for high school seniors to find the right fit that can propel you into a future where you can contribute to the renewable energy movement and beyond. Through such financial support, the road to making meaningful contributions to a sustainable future becomes a tangible reality.

Renewable energy unlocks the potential for humanity to have clean energy that is available in abundance. It leads us to economic growth, independence, and stability. With green energy, we can also reduce the impact of human activity on the environment and stop climate change before it’s too late. 

So what’s the conclusion of renewable energy? Transitioning to renewable energy resources might be challenging and expensive. However, most experts agree that the advantages of green energy outweigh any drawbacks. Besides, since technology is continuously evolving, we’ll be able to overcome most limitations in no time.

renewable energy day essay

Frequently asked questions

She was flawless! first time using a website like this, I've ordered article review and i totally adored it! grammar punctuation, content - everything was on point

This writer is my go to, because whenever I need someone who I can trust my task to - I hire Joy. She wrote almost every paper for me for the last 2 years

Term paper done up to a highest standard, no revisions, perfect communication. 10s across the board!!!!!!!

I send him instructions and that's it. my paper was done 10 hours later, no stupid questions, he nailed it.

Sometimes I wonder if Michael is secretly a professor because he literally knows everything. HE DID SO WELL THAT MY PROF SHOWED MY PAPER AS AN EXAMPLE. unbelievable, many thanks

You Might Also Like

Research Proposal

New Posts to Your Inbox!

Stay in touch

Why renewables are the cornerstone of the global energy transition

renewable energy transition

Renewable energy, energy efficiency and electrification are key to energy transition Image:  Dan Meyers on Unsplash

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Dolf Gielen

Francisco boshell.

renewable energy day essay

.chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} Explore and monitor how .chakra .wef-15eoq1r{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;color:#F7DB5E;}@media screen and (min-width:56.5rem){.chakra .wef-15eoq1r{font-size:1.125rem;}} Climate Crisis is affecting economies, industries and global issues

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved with our crowdsourced digital platform to deliver impact at scale

Stay up to date:, decarbonizing energy.

Listen to the article

  • It's now clear that renewable energy, energy efficiency and electrification must be the drivers of the deep decarbonization we need.
  • New analysis from IRENA finds that renewables are now the cheapest form of energy - and capacity is set to rise significantly over the next few decades.

Addressing climate change requires us to decarbonize both energy supply and demand by 2050. The US, Europe and China have committed to net zero or carbon neutrality by mid-century. Others are following suit. This will have a profound effect on the global energy transition, placing electricity as a key vector in decarbonizing the entire energy sector.

The latest insights from IRENA’s World Energy Transitions Outlook were released on 16 March at the Berlin Energy Transitions Dialogue. It provides in-depth analysis of what these effects will look like, starting from the Paris Climate agreement objective of limiting climate change to well below 2˚C and with an effort for 1.5˚C by the end of this century. While several options are being considered for a deep decarbonization, it is clear that renewable energy, energy efficiency and electrification are at the centre of the global energy transition .

Renewable energy and global energy transition

While climate change mitigation is a powerful driver behind the shift away from fossil fuel-based power generation, this is not the only driver. At the same time, renewable power has become the cheapest form of electricity generation and the costs continue to fall thanks to improvements in technology and economies of scale. The share of renewable power continue to rise from year to year, with nearly 30% renewables in the global power mix at present and renewables dominating yearly capacity additions (see Figure 1, below).

Increasing share of renewable energy in the mix, is pushing the green energy transition goals in the right direction

New IRENA analysis indicates a continued swift energy transition to renewable power generation worldwide in the coming three decades, with shares of variable (or intermittent) renewables – solar PV and wind – growing especially rapidly. Variable renewables will dominate the world's total power supply by 2050, a major change from today’s situation. Yet experience from around the world shows it is possible to operate power systems with high shares of variable renewables, as witnessed in Germany, Ireland and the UK, amongst others. During 2020, despite the COVID-19 pandemic, the share of renewables (mainly variable) in total electricity generation was 40% in Europe, a more than 4% increase in the share in comparison to 2019. Most notably, the share of other generation sources fell in Europe over the same period between 6% and 16%, as in the case of coal-based generation.

Increasing flexibility to smoothen energy transition

The operation of power systems with a high share of variable renewables requires much higher flexibility. Today, dispatchable fossil plants (that is, plants that can generate electricity on demand) provide that flexibility, but this will change going forward as their role declines. IRENA has identified 30 options for increasing flexibility across four main pillars : hardware, markets and regulations, and operational practices and business models (see figure 2, below). This toolkit of options must be deployed in the context of each power system’s specific characteristics. Especially the demand side offers interesting possibilities, as the electrification trend results in new loads connected to the system -such as electric vehicles, behind-the-meter batteries and heat pumps- which if operated smartly can support grid balancing. This is helped by rapid digitalization of power systems. Time-of-use pricing, aggregators, Demand Side Management are some of the strategies that benefit from digitalization and smart grids continue to expand worldwide. Still many transmission and distribution grids will require expansion and upgrading in order to deal with the new power system realities.

green energy transition renewables

Also, regulations and grid codes need to be adjusted in order to enable to full deployment of the new flexibility options. This is an area that warrants more attention.

Electrification, including buildings, transport and industry, as well as the production of green hydrogen, will play a key role in a net-zero CO2 emissions future.

IRENA analysis suggests that up to a quarter of all electricity will be used for the production of green hydrogen . At the same time, a massive shift will occur towards electrification of road transportation while synfuels produced from clean hydrogen will play an increasing role in aviation and shipping. Whereas better building efficiency will reduce the need for heating and cooling, this is balanced by a shift to electric heat pumps. The analysis suggests that direct electricity use and indirect electricity use for the production of green hydrogen and derived synfuels may account for 60% of total final energy use by 2050, up from around 21% today. As a consequence, electricity demand will grow 3-4 fold from today’s level. This represents a massive shift; the electricity sector will become the central pillar of global energy supply and demand, a much bigger role than it has played in previous decades. Traditional incumbents in the energy sector, such as oil and gas companies, are already eyeing this trend and developing strategies to become electricity market players . It remains to be seen who will become the dominant player in this market in coming decades.

Moving to clean energy is key to combating climate change, yet in the past five years, the energy transition has stagnated.

Energy consumption and production contribute to two-thirds of global emissions, and 81% of the global energy system is still based on fossil fuels, the same percentage as 30 years ago. Plus, improvements in the energy intensity of the global economy (the amount of energy used per unit of economic activity) are slowing. In 2018 energy intensity improved by 1.2%, the slowest rate since 2010.

Effective policies, private-sector action and public-private cooperation are needed to create a more inclusive, sustainable, affordable and secure global energy system.

Benchmarking progress is essential to a successful transition. The World Economic Forum’s Energy Transition Index , which ranks 115 economies on how well they balance energy security and access with environmental sustainability and affordability, shows that the biggest challenge facing energy transition is the lack of readiness among the world’s largest emitters, including US, China, India and Russia. The 10 countries that score the highest in terms of readiness account for only 2.6% of global annual emissions.

renewable energy day essay

To future-proof the global energy system, the Forum’s Centre for Energy & Materials is working on initiatives including Clean Power and Electrification , Energy and Industry Transition Intelligence, Industrial Ecosystems Transformation , and Transition Enablers to encourage and enable innovative energy investments, technologies and solutions.

Additionally, the Mission Possible Partnership (MPP) is working to assemble public and private partners to further the industry transition to set heavy industry and mobility sectors on the pathway towards net-zero emissions. MPP is an initiative created by the World Economic Forum and the Energy Transitions Commission.

Is your organisation interested in working with the World Economic Forum? Find out more here .

Given the growth in electricity demand and the shift to renewable power a massive expansion of clean power generation will be needed and infrastructure planning must be ramped up accordingly. The investment needs are hefty and it is critical to ensure that the infrastructure rollout speed is commensurate with the needs of the energy transition. This will require further streamlining of planning and approval processes.

IRENA continues to work with its 164 member countries to devise and implement renewable energy transition strategies for power sector transformation based on its Innovation Toolbox , Flextool , power systems planning and grid studies.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:

The agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} weekly.

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Climate Action .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

renewable energy day essay

From predicting heatwaves to developing climate-resilient seeds: Here’s how agritech can help farmers

Pooja Chhabria and Michelle Meineke

April 28, 2024

renewable energy day essay

Electric vehicles are key to the energy transition - but the switch must be sustainable. Here's why

Lisa Donahue and Vance Scott

renewable energy day essay

Climate finance: What are debt-for-nature swaps and how can they help countries?

Kate Whiting

April 26, 2024

renewable energy day essay

Beyond greenwashing: 5 key strategies for genuine sustainability in agriculture

Santiago Gowland

April 24, 2024

renewable energy day essay

How Indigenous expertise is empowering climate action: A case study from Oceania

Amanda Young and Ginelle Greene-Dewasmes

April 23, 2024

renewable energy day essay

What is desertification and why is it important to understand?

Andrea Willige

Find anything you save across the site in your account

In a World on Fire, Stop Burning Things

By Bill McKibben

Illustration of a butterfly on fire

On the last day of February, the Intergovernmental Panel on Climate Change issued its most dire report yet. The Secretary-General of the United Nations, António Guterres, had, he said, “seen many scientific reports in my time, but nothing like this.” Setting aside diplomatic language, he described the document as “an atlas of human suffering and a damning indictment of failed climate leadership,” and added that “the world’s biggest polluters are guilty of arson of our only home.” Then, just a few hours later, at the opening of a rare emergency special session of the U.N. General Assembly, he catalogued the horrors of Vladimir Putin’s invasion of Ukraine , and declared, “Enough is enough.” Citing Putin’s declaration of a nuclear alert , the war could, Guterres said, turn into an atomic conflict, “with potentially disastrous implications for us all.”

What unites these two crises is combustion. Burning fossil fuel has driven the temperature of the planet ever higher, melting most of the sea ice in the summer Arctic, bending the jet stream , and slowing the Gulf Stream. And selling fossil fuel has given Putin both the money to equip an army (oil and gas account for sixty per cent of Russia’s export earnings) and the power to intimidate Europe by threatening to turn off its supply. Fossil fuel has been the dominant factor on the planet for centuries, and so far nothing has been able to profoundly alter that. After Putin invaded, the American Petroleum Institute insisted that our best way out of the predicament was to pump more oil. The climate talks in Glasgow last fall, which John Kerry, the U.S. envoy, had called the “last best hope” for the Earth, provided mostly vague promises about going “net-zero by 2050”; it was a festival of obscurantism, euphemism, and greenwashing, which the young climate activist Greta Thunberg summed up as “blah, blah, blah.” Even people trying to pay attention can’t really keep track of what should be the most compelling battle in human history.

So let’s reframe the fight. Along with discussing carbon fees and green-energy tax credits, amid the momentary focus on disabling Russian banks and flattening the ruble, there’s a basic, underlying reality: the era of large-scale combustion has to come to a rapid close. If we understand that as the goal, we might be able to keep score, and be able to finally get somewhere. Last Tuesday, President Biden banned the importation of Russian oil. This year, we may need to compensate for that with American hydrocarbons, but, as a senior Administration official put it ,“the only way to eliminate Putin’s and every other producing country’s ability to use oil as an economic weapon is to reduce our dependency on oil.” As we are one of the largest oil-and-gas producers in the world, that is a remarkable statement. It’s a call for an end of fire.

We don’t know when or where humans started building fires; as with all things primordial there are disputes. But there is no question of the moment’s significance. Fire let us cook food, and cooked food delivers far more energy than raw; our brains grew even as our guts, with less processing work to do, shrank. Fire kept us warm, and human enterprise expanded to regions that were otherwise too cold. And, as we gathered around fires, we bonded in ways that set us on the path to forming societies. No wonder Darwin wrote that fire was “the greatest discovery ever made by man, excepting language.”

Darwin was writing in the years following the Industrial Revolution, as we learned how to turn coal into steam power, gas into light, and oil into locomotion, all by way of combustion. Our species depends on combustion; it made us human, and then it made us modern. But, having spent millennia learning to harness fire, and three centuries using it to fashion the world we know, we must spend the next years systematically eradicating it. Because, taken together, those blazes—the fires beneath the hoods of 1.4 billion vehicles and in the homes of billions more people, in giant power plants, and in the boilers of factories and the engines of airplanes ships—are more destructive than the most powerful volcanoes, dwarfing Krakatoa and Tambora. The smoke and smog from those engines and appliances directly kill nine million people a year, more deaths than those caused by war and terrorism, not to mention malaria and tuberculosis, together. (In 2020, fossil-fuel pollution killed three times as many people as COVID -19 did.) Those flames, of course, also spew invisible and odorless carbon dioxide at an unprecedented rate; that CO 2 is already rearranging the planet’s climate, threatening not only those of us who live on it now but all those who will come after us.

A coalfired power plant.

But here’s the good news, which makes this exercise more than merely rhetorical: rapid advances in clean-energy technology mean that all that destruction is no longer necessary. In the place of those fires we keep lit day and night, it’s possible for us to rely on the fact that there is a fire in the sky—a great ball of burning gas about ninety-three million miles away, whose energy can be collected in photovoltaic panels, and which differentially heats the Earth, driving winds whose energy can now be harnessed with great efficiency by turbines. The electricity they produce can warm and cool our homes, cook our food, and power our cars and bikes and buses. The sun burns, so we don’t need to.

Wind and solar power are not a replacement for everything, at least not yet. Three billion people still cook over fire daily, and will at least until sufficient electricity reaches them, and perhaps thereafter, since culture shifts slowly. Even then, flames will still burn—for birthday-cake candles, for barbecues, for joints (until you’ve figured out the dosing for edibles)—just as we still use bronze, though its age has long passed. And there are a few larger industries—intercontinental air travel, certain kinds of metallurgy such as steel production—that may require combustion, probably of hydrogen, for some time longer. But these are relatively small parts of the energy picture. And in time they, too, will likely be replaced by renewable electricity. (Electric-arc furnaces are already producing some kinds of steel, and Japanese researchers have just announced a battery so light that it might someday power passenger flights across oceans.) In fact, I can see only one sublime, long-term use for large-scale planned combustion, which I will get to. Mostly, our job as a species is clear: stop smoking.

As of 2022, this task is both possible and affordable. We have the technology necessary to move fast, and deploying it will save us money. Those are the first key ideas to internalize. They are new and counterintuitive, but a few people have been working to realize them for years, and their stories make clear the power of this moment.

When Mark Jacobson was growing up in northern California in the nineteen-seventies, he showed a gift for science, and also for tennis. He travelled for tournaments to Los Angeles and San Diego, where, he told me recently, he was shocked by how dirty the air was: “You’d get scratchy eyes, your throat would start hurting. You couldn’t see very far. I thought, Why should people live like this?” He eventually wound up at Stanford, first as an undergraduate and then, in the mid-nineteen-nineties, as a professor of civil and environmental engineering, by which time it was clear that visible air pollution was only part of the problem. It was understood that the unseen gas produced by combustion—carbon dioxide—posed an even more comprehensive threat.

To get at both problems, Jacobson analyzed data to see if an early-model wind turbine sold by General Electric could compete with coal. He worked out its capacity by calculating its efficiency at average wind speeds; a paper he wrote, published in the journal Science in 2001, showed that you “could get rid of sixty per cent of coal in the U.S. with a modest number of turbines.” It was, he said, “the shortest paper I’ve ever written—three-quarters of a page in the journal—and it got the most feedback, almost all from haters.” He ignored them; soon he had a graduate student mapping wind speeds around the world, and then he expanded his work to other sources of renewable energy. In 2009, he and Mark Delucchi, a research scientist at the University of California, published a paper suggesting that hydroelectric, wind, and solar energy could conceivably supply enough power to meet all the world’s energy needs. The conventional wisdom at the time was that renewables were unreliable, because the sun insists on setting each night and the wind can turn fickle. In 2015, Jacobson wrote a paper for the Proceedings of the National Academy of Sciences , showing that, on the contrary, wind and solar energy could keep the electric grid running. That paper won a prestigious prize from the editors of the journal, but it didn’t prevent more pushback—a team of twenty academics from around the country published a rebuttal, stating that “policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power.”

Time, however, is proving Jacobson correct: a few nations—including Iceland, Costa Rica, Namibia, and Norway—are already producing more than ninety per cent of their electricity from clean sources. When Jacobson began his work, wind turbines were small fans atop California ridgelines, whirligigs that looked more like toys than power sources. Now G.E. routinely erects windmills about three times as tall as the Statue of Liberty, and, in August, a Chinese firm announced a new model, whose blades will sweep an area the size of six soccer fields, with each turbine generating enough power for twenty thousand homes. (An added benefit: bigger turbines kill fewer birds than smaller ones, though, in any event, tall buildings, power lines, and cats are responsible for far more avian deaths.) In December, Jacobson’s Stanford team published an updated analysis , stating that we have ninety-five per cent of the technology required to produce a hundred per cent of America’s power needs from renewable energy by 2035, while keeping the electric grid secure and reliable.

Making clean technology affordable is the other half of the challenge, and here the news is similarly upbeat. In September, after almost fifteen years of work, a team of researchers at Oxford University released a paper that is currently under peer review but which, fifty years from now, people may look back on as a landmark step in addressing the climate crisis. The lead author of the report is Oxford’s Rupert Way; the research team was led by an American named Doyne (pronounced “ dough -en”) Farmer.

Farmer grew up in New Mexico, a precocious physicist and mathematician. His first venture, formed while he was a graduate student at U.C. Santa Cruz, was called Eudaemonic Enterprises, after Aristotle’s term for the condition of human flourishing. The goal was to beat roulette wheels. Farmer wore a shoe (now housed in a German museum) with a computer in its sole, and watched as a croupier tossed a ball into a wheel; noting the ball’s initial position and velocity, he tapped his toe to send the information to the computer, which performed quick calculations, giving him a chance to make a considered bet in the few seconds the casino allowed. This achievement led him to building algorithms to beat the stock market—a statistical-arbitrage technique that underpinned an enterprise he co-founded called the Prediction Company, which was eventually sold to the Swiss banking giant UBS. Happily, Farmer eventually turned his talents to something of greater social worth: developing a way to forecast rates of technological progress. The basis for this work was research published in 1936, when Theodore Wright, an executive at the Curtiss Aeroplane Company, had noted that every time the production of airplanes doubled, the cost of building them fell by twenty per cent. Farmer and his colleagues were intrigued by this “learning curve” (and its semiconductor-era variant, Moore’s Law ); if you could figure out which technologies fit on the curve, and which didn’t, you’d be able to forecast the future.

“It was about fifteen years ago,” Farmer told me, in December. “I was at the Santa Fe Institute, and the head of the National Renewable Energy Lab came down. He said, ‘You guys are complex-systems people. Help us think outside the box—what are we missing?’ I had a Transylvanian postdoctoral fellow at the time, and he started putting together a database—he had high-school kids working on it, kids from St. John’s College in Santa Fe, anyone. And, as we looked at it, we saw this point about the improvement trends being persistent over time.” The first practical application of solar electricity was on the Vanguard I satellite, in 1958—practical if you had the budget of the space program. Yet the cost had been falling steadily, as people improved each generation of the technology—not because of one particular breakthrough or a single visionary entrepreneur but because of constant incremental improvement. Every time the number of solar panels manufactured doubles, the price drops another thirty per cent, which means that it’s currently falling about ten per cent every year.

But—and here’s the key—not all technologies follow this curve. “We looked at the price of coal over a hundred and forty years,” Farmer said. “Mines are much more sophisticated, the technology for locating new deposits is much better. But prices have not come down.” A likely explanation is that we got to all the easy stuff first: oil once bubbled up out of the ground; now we have to drill deep beneath the ocean for it. Whatever the reason, by 2013, the cost of a kilowatt-hour of solar energy had fallen by more than ninety-nine per cent since it was first used on the Vanguard I. Meanwhile, the price of coal has remained about the same. It was cheap to start, but it hasn’t gotten cheaper.

The more data sets that Farmer’s team members included, the more robust numbers they got, and by the autumn of 2021 they were ready to publish their findings. They found that the price trajectories of fossil fuels and renewables are already crossing. Renewable energy is now cheaper than fossil fuel, and becoming more so. So a “decisive transition” to renewable energy, they reported, would save the world twenty-six trillion dollars in energy costs in the coming decades.

This is precisely the opposite of how we have viewed energy transition. It has long been seen as an economically terrifying undertaking: if we had to transition to avoid calamity (and obviously we did), we should go as slowly as possible. Bill Gates, just last year, wrote a book, arguing that consumers would need to pay a “green premium” for clean energy because it would be more expensive. But Emily Grubert, a Georgia Tech engineer who now works for the Department of Energy, has recently shown that it could cost less to replace every coal plant in the country with renewables than to simply maintain the existing coal plants. You could call it a “green discount.”

The constant price drops mean, Farmer said, that we might still be able to move quickly enough to meet the target set in the 2016 Paris climate agreement of trying to limit temperature rise to 1.5 degrees Celsius. “One point five is going to suck,” he said. “But it sure beats three. We just need to put our money down and do it. So many people are pessimistic and despairing, and we need to turn that around.”

Numbers like Farmer’s make people who’ve been working in this field for years absolutely giddy. At COP 26, I retreated one day from Glasgow’s giant convention center to the relative quiet of the city’s university district for a pizza with a man named Kingsmill Bond. Bond is an Englishman and a former investment professional, and he looks the part: lean, in a bespoke suit, with a good haircut. His daughter, he said, was that day sitting her exams for Cambridge, the university he’d attended before a career at Citi and Deutsche Bank that had taken him to Hong Kong and Moscow. He’d quit some years ago, taking a cut in pay that he’s too modest to disclose. He’d worked first for the Carbon Tracker Initiative, in London, and now the Rocky Mountain Institute, based in Colorado, two groups working on energy transition.

He drew on a napkin excitedly, expounding on the numbers in the Oxford report. We would have to build out the electric grid to carry all the new power, and install millions of E.V. chargers, and so on, down a long list—amounting to maybe a trillion dollars in extra capital expenditure a year over the next two or three decades. But, in return, Bond said, we get an economic gift: “We save about two trillion dollars a year on fossil-fuel rents. Forever.” Fossil-fuel rent is what economists call the money that goes from consumers to those who control the hydrocarbon supply. Saudi Arabia can pull oil out of the ground for less than ten dollars a barrel and sell it at fifty or seventy-five dollars a barrel (or, during the emergency caused by Putin’s war, more than a hundred dollars); the difference is the rent they command. Bond insists that higher projections for the cost of the energy transition—a recent analysis from the consulting firm McKinsey predicted that it would cost trillions more than Farmer’s team did—ignore these rents, and also assume that, before long, renewable energy will veer from the steeply falling cost curve. Even if you’re pessimistic about how much it will cost to make the change, though, it’s clear that it would be far less expensive than not moving fast—that’s measured in hundreds of trillions of dollars but also in millions of lives and whatever value we place on maintaining an orderly civilization.

The new numbers turn the economic logic we’re used to upside down. A few years ago, at a petroleum-industry conference in Texas, the Canadian Prime Minister, Justin Trudeau, said something both terrible and true: that “no country would find a hundred and seventy-three billion barrels of oil in the ground and leave them there.” He was referring to Alberta’s tar sands, where a third of Canada’s natural gas is used to heat the oil trapped in the soil sufficiently to get it to flow to the surface and separate it from the sand. Just extracting the oil would put Canada over its share of the carbon budget set in Paris, and actually burning it would heat the planet nearly half a degree Celsius and use up about a third of the total remaining budget. (And Canadians account for only about one half of one per cent of the world’s population.)

An energy refinery.

Even on purely economic terms, such logic makes less sense with each passing quarter. That’s especially true for the eighty per cent of people in the world who live in countries that must import fossil fuels—for them it’s all cost and no gain. Even for petrostates, however, the spreadsheet is increasingly difficult to rationalize. Bond supplied some numbers: Canada has fossil-fuel reserves totalling a hundred and sixty-seven petawatt hours, which is a lot. (A petawatt is a quadrillion watts.) But, he said, it has potential renewable energy from wind and solar power alone of seventy-one petawatt hours a year . A reasonable question to ask Trudeau would be: What kind of country finds a windfall like that and simply leaves it in the sky?

Making the energy transition won’t be easy, of course. Because we’ve been burning fuel to power our economies for more than two hundred years, we have in place long and robust supply chains and deep technical expertise geared to a combustion economy. “We’ve tried to think about possible infrastructure walls that might get in the way,” Farmer said. That’s a virtue of this kind of learning-curve analysis: if renewable energy has overcome obstacles in the past to keep dropping in price, it will probably be able to do so again. A few years ago, for instance, a number of reports said that the windmill business might crash because it was running short of the balsa wood used in turbine blades. But, within a year of the shortages emerging, many of the big windmill makers had started substituting a synthetic foam.

Now the focus is on minerals, such as cobalt, that are used in solar panels and batteries. Late last year, the Times published a long investigation of the success that China has had in cornering the world’s supply of the metal, which is found most abundantly in the Democratic Republic of the Congo. Brian Menell, the C.E.O. of TechMet, a supplier of cobalt and other specialty metals, told me, “We run the risk that in five years, the factories for E.V.s will be sitting half idle, because those companies—the Fords and General Motors and Teslas and VWs—will not be able to secure the feedstock to maintain the capacity they’re building now.” But the fact that the Fords and G.M.s are in the hunt means that the political weight for what Menell calls a “massive and coördinated effort by government and end users” is likely to develop. Humans are good at solving the kind of dilemmas represented by scarcity. A Ford spokesman told the Times that the company is learning to recycle cobalt and to develop substitutes, adding, “We do not see cobalt as a constraining issue.”

Harder to solve may be the human-rights challenges that come with new mining efforts, such as the use of so-called “artisanal” cobalt mining, in which impoverished workers pry the metal from the ground with spades, or the plan to build a lithium mine on a site in Nevada that is sacred to Indigenous peoples. But, as we work to tackle those problems, it’s worth remembering that a transition to renewable energy would, by some estimates, reduce the total global mining burden by as much as eighty per cent, because so much of what we dig up today is burned (and then we have to go dig up some more). You dig up lithium once, and put it to use for decades in a solar panel or battery. In fact, a switch to renewable energy will reduce the load on all kinds of systems. At the moment, roughly forty per cent of the cargo carried by ocean-going ships is coal, gas, oil, and wood pellets—a never-ending stream of vessels crammed full of stuff to burn. You need a ship to carry a wind turbine blade, too, if it’s coming from across the sea, but you only need it once. A solar panel or a windmill, once erected, stands for a quarter of a century or longer. The U.S. military is the world’s largest single consumer of fossil fuels, but seventy per cent of its logistical “lift capacity” is devoted solely to transporting the fossil fuels used to keep the military machine running.

Raw materials aren’t the only possible pinch point. We’re also short of some kinds of expertise. Saul Griffith is perhaps the world’s leading apostle of electrification. (His 2021 book is called “ Electrify .”) An Australian by birth, he has spent recent years in Silicon Valley, rallying entrepreneurs to the project of installing E.V. chargers, air-source heat pumps, induction cooktops, and the like. He can show that they save homeowners, landlords, and businesses money; he’s also worked out the numbers to show that banks can prosper by extending, in essence, mortgages for these improvements. But he told me that, to stay within the 1.5 degree Celsius range, “America is going to need a million more electricians this decade.” That’s not impossible . Working as an electrician is a good job, and community colleges and apprenticeship programs could train many more people to become one. But, as with the rest of the transition, it’s going to take leadership and coördination to make it happen.

Change on this scale would be difficult even if everyone was working in good faith, and not everyone is. So far, for instance, the climate provisions of the Build Back Better Act, which would help provide, among many other things, training for renewable-energy installers, have been blocked not just by the oil-dominated G.O.P. but by Joe Manchin , the Democrat who received more fossil-fuel donations in the past election cycle than anyone else in the Senate. The thirty-year history of the global-warming fight is largely a story of the efforts by the fossil-fuel industry to deny the need for change, or, more recently, to insist that it must come slowly.

The fossil-fuel industry wants to be able to keep burning something. That way, it can keep both its infrastructure and its business model usefully employed. It’s like an industry of rational pyromania. A decade or so ago, the thing it wanted to burn next was natural gas. Since it produces less carbon dioxide than coal does, it was billed as the “bridge fuel” that would get us to renewables. The logic seemed sound. But researchers, led by Bob Howarth, at Cornell University, found that producing large quantities of natural gas released large quantities of methane into the atmosphere. And methane (CH 4 ) is, like CO 2 , a potent heat-trapping gas, so it’s become clear that natural gas is a bridge fuel to nowhere—clear, that is, to everyone but the industry. The head of a big gas firm told a conference in Texas last week that he thought the domestic gas industry could be producing for the next hundred years.

Other parts of the industry want to go further back in time and burn wood; the European Union and the United States officially class “biomass burning” as carbon neutral. The city of Burlington, in my home state of Vermont, claims to source all its energy from renewables, but much of its electricity comes from a plant that burns trees. Again, the logic originally seemed sound: if you cut a tree, another grows in its place, and it will eventually soak up the carbon dioxide emitted from that burning the first tree. But, again, “eventually” is the problem . Burning wood is highly inefficient, and so it releases a huge pulse of carbon right now , when the world’s climate system is most vulnerable. Trees that grow back in a few generations’ time will come too late to save the ice caps. The world’s largest wood-burning plant is in England, run by a company called Drax; the plant used to burn coal, and it does scarcely less damage now than it did then. In January, news came that Enviva, a company based in Maryland that is the largest producer of wood pellets in the world, plans to double its output.

Or consider the huge sums of money in the bipartisan infrastructure bill passed last year, which will support another technology called carbon capture. This involves fitting power plants with enough filters and pipes so that they can go on burning coal or gas, but capture the CO 2 that pours out of the smokestacks and pipe it safely away—into an old salt mine, perhaps. (Or, ironically, into a depleted oil well, where it may be used to push more crude to the surface.) So far, these carbon-capture schemes don’t really work—but, even if they did, why spend the money to outfit systems with pipes and filters when solar power is already cheaper than coal power? We will have to remove some of the carbon in the atmosphere, and new generations of direct-air-capture machines may someday play a role, if their cost drops quickly. (They use chemicals to filter carbon straight from the ambient air; think of them as artificial trees.) But using this technology to lengthen the lifespan of coal-fired power plants is just one more gift to a politically connected industry.

Increasingly, the fossil-fuel industry is turning toward hydrogen as an out. Hydrogen does burn cleanly, without contributing to global warming, but the industry likes hydrogen because one way to produce it is by burning natural gas. And, as Howarth and Jacobson demonstrated in a recent paper, even if you combine burning that gas with expensive carbon capture, the methane that leaks from the frack wells is enough to render the whole process ruinous environmentally, and it makes no sense economically without huge subsidies.

There is another way to produce hydrogen, and, in time, it will almost certainly fuel the last big artificial fires on our planet. Through electrolysis, hydrogen can be separated from oxygen in water. And if the electricity used in the process is renewably produced then this “green hydrogen” would allow countries such as Japan, Singapore, and Korea, which may struggle to find enough space in their landscapes for renewable-energy generation, to power their grids. The Australian billionaire Andrew Forrest, the founder of the Fortescue Metals Group, is proposing to use solar power to produce green hydrogen that he can then ship to those countries. In January, Mukesh Ambani, the head of Reliance Industries and the richest man in India, announced plans to spend seventy-five billion dollars on the technology. Airbus recently predicted that green hydrogen could fuel its long-haul planes by 2035. And the good news—though Doyne Farmer cautions that the data sets are still pretty scanty—is that the electrolyzers which use solar energy to produce hydrogen seem to be on the same downward cost curve as solar panels, wind turbines, and batteries.

The fossil-fuel industry can be relied on to fight these shifts. Last autumn, a utility company in Oklahoma announced that it would charge fourteen hundred dollars to disconnect residential gas lines and move home stoves and furnaces to electricity. Within days, other utilities followed suit. That’s why the climate movement is increasingly taking on the banks that make loans for the expansion of fossil-fuel infrastructure. Last year, the International Energy Agency said that such expansion needed to end immediately if we are to meet the Paris targets, yet the world’s biggest banks, while making noises about “net zero by 2050,” continue to lend to new pipelines and wells. The issue came to the fore earlier this year, when Joe Biden nominated Sarah Bloom Raskin to the position of vice-chair for supervision at the Federal Reserve. “There is opportunity in pre-emptive, early and bold actions by federal economic policy makers looking to avoid catastrophe,” Raskin wrote in 2020. And it’s why certain lawmakers mobilized to stop her nomination . Senator Patrick Toomey, of Pennsylvania, who was the Senate’s sixth-biggest recipient of oil-and-gas contributions during his last campaign, in 2016 (he is not running for reëlection this year), said that Raskin “has specifically called for the Fed to pressure banks to choke off credit to traditional energy companies.” She’s tried, in other words, to extinguish the flames a little—and on Monday, for her pains, Manchin effectively derailed her nomination, saying that he would vote against her, because she “failed to satisfactorily address my concerns about the critical importance of financing an all-of-the-above energy policy.” On Tuesday, she withdrew her nomination .

The shift away from combustion is large and novel enough that it bumps up against everyone’s prior assumptions—environmentalists’, too. The fight against nuclear power, for example, was an early mainstay of the green movement, because it was easy to see that if something went wrong it could go badly wrong. I applauded, more than a decade ago, when the Vermont legislature voted to close the state’s old nuclear plant at the end of its working life, but I wouldn’t today. Indeed, for some years I’ve argued that existing nuclear reactors that can still be run with any margin of safety probably should be, as we’re making the transition—the spent fuel they produce is an evil inheritance for our descendants, but it’s not as dangerous as an overheated Earth, even if the scenes of Russian troops shelling nuclear plants added to the sense of horror enveloping the planet these past weeks. Yet the rapidly falling cost of renewables also indicates why new nuclear plants will have a hard time finding backers; it’s evaporating nuclear power’s one big advantage—that it’s always on. Farmer’s Oxford team ran the numbers. “If the cost of coal is flat, and the cost of solar is plummeting, nuclear is the rare technology whose cost is going up,” he said. Advocates will argue that this is because safety fears have driven up the cost of construction. “But the only place on Earth where you can find the cost of nuclear coming down is Korea,” Farmer said. “Even there, the rate of decline is one per cent a year. Compared to ten per cent for renewables, that’s not enough to matter.”

Accepting nuclear power for a while longer is not the only place environmentalists will need to bend. A reason I supported shutting down Vermont’s nuclear plant was because campaigners had promised that its output would be replaced with renewable energy. In the years that followed, though, advocates of scenery, wildlife, and forests managed to put the state’s mountaintops off limits to wind turbines. More recently, the state’s public-utility commission blocked construction of an eight-acre solar farm on aesthetic grounds. Those of us who live in and love rural areas have to accept that some of that landscape will be needed to produce energy. Not all of it, or even most of it—Jacobson’s latest numbers show that renewable power actually uses less land than fossil fuels, which require drilling fifty thousand new holes every year in North America alone. But we do need to see our landscape differently—as Ezra Klein wrote this week in the Times , “to conserve anything close to the climate we’ve had, we need to build as we’ve never built before.”

Corn fields, for instance, are a classic American sight, but they’re also just solar-energy collectors of another sort. (And ones requiring annual applications of nitrogen, which eventually washes into lakes and rivers, causing big algae blooms.) More than half the corn grown in Iowa actually ends up as ethanol in the tanks of cars and trucks—in other words, those fields are already growing fuel, just inefficiently. Because solar panels are far more efficient than photosynthesis, and because E.V.s are far more efficient than cars with gas engines, Jacobson’s data show that, by switching from ethanol to solar, you could produce eighty times the amount of automobile mileage using an equivalent area of land. And the transition could bring some advantages: the market for electrons is predictable, so solar panels can provide a fairly stable income for farmers, some of whom are learning to grow shade-tolerant crops or to graze animals around and beneath them.

Another concession will strike many environmentalists more deeply even than accepting a degraded landscape, and that’s the notion that reckoning with the climate crisis would force wholesale changes in the way that people live their lives. Remember, the long-held assumption was that renewable energy was going to be expensive and limited in supply. So, it was thought, this would move us in the direction of simpler, less energy-intensive ways of life, something that many of us welcomed, in part because there are deep environmental challenges that go beyond carbon and climate. Cheap new energy technologies may let us evade some of those more profound changes. Whenever I write about the rise of E.V.s, Twitter responds that we’d be better off riding bikes and electric buses. In many ways we would be, and some cities are thankfully starting to build extensive bike paths and rapid-transit lanes for electric buses. But, as of 2017, just two per cent of passenger miles in this country come from public transportation. Bike commuting has doubled in the past two decades—to about one per cent of the total. We could (and should) quintuple the number of people riding bikes and buses, and even then we’d still need to replace tens of millions of cars with E.V.s to meet the targets in the time the scientists have set to meet them. That time is the crucial variable. As hard as it will be to rewire the planet’s energy system by decade’s end, I think it would be harder—impossible, in fact—to sufficiently rewire social expectations, consumer preferences, and settlement patterns in that short stretch.

So one way to look at the work that must be done with the tools we have at hand is as triage. If we do it quickly, we will open up more possibilities for the generations to come. Just one example: Farmer says that it’s possible to see the cost of nuclear-fusion reactors, as opposed to the current fission reactors, starting to come steeply down the cost curve—and to imagine that a within a generation or two people may be taking solar panels off farm fields, because fusion (which is essentially the physics of the sun brought to Earth) may be providing all the power we need. If we make it through the bottleneck of the next decade, much may be possible.

Solar panels on a vineyard.

There is one ethical element of the energy transition that we can’t set aside: the climate crisis is deeply unfair—by and large, the less you did to cause it, the harder and faster it hits you—but in the course of trying to fix it we do have an opportunity to also remedy some of that unfairness. For Americans, the best part of the Build Back Better bill may be that it tries to target significant parts of its aid to communities hardest hit by poverty and environmental damage, a residue of the Green New Deal that is its parent. And advocates are already pressing to insure that at least some of the new technology is owned by local communities—by churches and local development agencies, not by the solar-era equivalents of Koch Industries or Exxon.

Advocates are also calling for some of the first investments in green transformations to happen in public-housing projects, on reservations, and in public schools serving low-income students. There can be some impatience from environmentalists who worry that such considerations might slow down the transition. But, as Naomi Klein recently told me, “The hard truth is that environmentalists can’t win the emission-reduction fight on our own. Winning will take sweeping alliances beyond the self-identified green bubble—with trade unions, housing-rights advocates, racial-justice organizers, teachers, transit workers, nurses, artists, and more. But, to build that kind of coalition, climate action needs to hold out the promise of making daily life better for the people who are most neglected right away—not far off in the future. Green, affordable homes and water that is safe to drink is something people will fight for a hell of a lot harder than carbon pricing.”

These are principles that must apply around the world, for basic fairness and because solving the climate crisis in just the U.S. would be the most pyrrhic of victories. (They don’t call it “global warming” for nothing.) In Glasgow, I sat down with Mohamed Nasheed, the former President of the Maldives and the current speaker of the People’s Majlis, the nation’s legislative body. He has been at the forefront of climate action for decades, because the highest land in his country, an archipelago that stretches across the equator in the Indian Ocean, is just a few metres above sea level. At COP 26, he was representing the Climate Vulnerable Forum, a consortium of fifty-five of the nations with the most to lose as temperatures rise. As he noted, poor countries have gone deeply into debt trying to deal with the effects of climate change. If they need to move an airport or shore up seawalls, or recover from a devastating hurricane or record rainfall, borrowing may be their only recourse. And borrowing gets harder, in part, because the climate risks mean that lenders demand more. The climate premium on loans may approach ten per cent, Nasheed said; some nations are already spending twenty per cent of their budgets just paying interest. He suggested that it might be time for a debt strike by poor nations.

The rapid fall in renewable-energy prices makes it more possible to imagine the rest of the world chipping in. So far, though, the rich countries haven’t even come up with the climate funds they promised the Global South more than a decade ago, much less any compensation for the ongoing damage that they have done the most to cause. (All of sub-Saharan Africa is responsible for less than two per cent of the carbon emissions currently heating the earth; the United States is responsible for twenty-five per cent.)

Tom Athanasiou’s Berkeley-based organization EcoEquity, as part of the Climate Equity Reference Project, has done the most detailed analyses of who owes what in the climate fight. He found that the U.S. would have to cut its emissions a hundred and seventy-five per cent to make up for the damage it’s already caused—a statistical impossibility. Therefore, the only way it can meet that burden is to help the rest of the world transition to clean energy, and to help bear the costs that global warming has already produced. As Athanasiou put it, “The pressing work of decarbonization is only going to be embraced by the people of the Global South if it comes as part of a package that includes adaptation aid and disaster relief.”

I said at the start that there is one sublime exception to the rule that we should be dousing fires, and that is the use of flame to control flame, and to manage land—a skill developed over many millennia by the original inhabitants of much of the world. Of all the fires burning on Earth, none are more terrifying than the conflagrations that light the arid West, the Mediterranean, the eucalyptus forests of Australia, and the boreal woods of Siberia and the Canadian north. By last summer, blazes in Oregon and Washington and British Columbia were fouling the air across the continent in New York and New England. Smoke from fires in the Russian far north choked the sky above the North Pole. For people in these regions, fire has become a scary psychological companion during the hot and dry months—and those months stretch out longer each year. The San Francisco Chronicle recently asked whether parts of California, once the nation’s idyll, were now effectively uninhabitable. In Siberia, even last winter’s icy cold was not enough to blot out the blazes; researchers reported “zombie fires” smoking and smoldering beneath feet of snow. There’s no question that the climate crisis is driving these great blazes—and also being driven by them, since they put huge clouds of carbon into the air.

There’s also little question, at least in the West, that the fires, though sparked by our new climate, feed on an accumulation of fuel left there by a century of a strict policy which treated any fire as a threat to be extinguished immediately. That policy ignored millennia of Indigenous experience using fire as a tool, an experience now suddenly in great demand. Indigenous people around the world have been at the forefront of the climate movement, and they have often been skilled early adopters of renewable energy. But they have also, in the past, been able to use fire to fight fire: to burn when the risk is low, in an effort to manage landscapes for safety and for productivity.

Frank Lake, a descendant of the Karuk tribe indigenous to what is now northern California, works as a research ecologist at the U.S. Forest Service, and he is helping to recover this old and useful technology. He described a controlled burn in the autumn of 2015 near his house on the Klamath River. “I have legacy acorn trees on my property,” he said—meaning the great oaks that provided food for tribal people in ages past—but those trees were hemmed in by fast-growing shrubs. “So we had twenty-something fire personnel there that day, and they had their equipment, and they laid hose. And I gave the operational briefing. I said, ‘We’re going to be burning today to reduce hazardous fuels. And also so we can gather acorns more easily, without the undergrowth, and the pests attacking the trees.’ My wife was there and my five-year-old son and my three-year-old daughter. And I lit a branch from a lightning-struck sugar pine—it conveys its medicine from the lightning—and with that I lit everyone’s drip torches, and then they went to work burning. My son got to walk hand-in-hand down the fire line with the burn boss.”

Lake’s work at the Forest Service involves helping tribes burn again. It’s not always easy; some have been so decimated by the colonial experience that they’ve lost their traditions. “Maybe they have two or three generations that haven’t been allowed to burn,” he said. There are important pockets of residual knowledge, often among elders, but they can be reluctant to share that knowledge with others, Lake told me, “fearful that it will be co-opted and that they’ll be kept out of the leadership and decision-making.” But, for half a decade, the Indigenous Peoples Burning Network—organized by various tribes, the Nature Conservancy, and government agencies, including the Forest Service—has slowly been expanding across the country. There are outposts in Oregon, Minnesota, New Mexico, and in other parts of the world. Lake has travelled to Australia to learn from aboriginal practitioners. “It’s family-based burning. The kids get a Bic lighter and burn a little patch of eucalyptus. The teen-agers a bigger area, adults much bigger swaths. I just saw it all unfold.” As that knowledge and confidence is recovered, it’s possible to imagine a world in which we’ve turned off most of the man-made fires, and Indigenous people teach the rest of us to use fire as the important force it was when we first discovered it.

Amy Cardinal Christianson, who works for the Canadian equivalent of the Forest Service, is a member of the Métis Nation. Her family kept trapping lines near Fort McMurray, in northern Alberta, but left them for the city because the development of the vast tar-sands complex overwhelmed the landscape. (That’s the hundred and seventy-three billion barrels that Justin Trudeau says no country would leave in the ground—a pool of carbon so vast the climate scientist James Hansen said that pumping it from the ground would mean “game over for the climate.”) The industrial fires it stoked have helped heat the Earth, and one result was a truly terrifying forest fire that overtook Fort McMurray in 2016, after a stretch of unseasonably high temperatures. The blaze forced the evacuation of eighty-eight thousand people, and became the costliest disaster in Canadian history.

“What we’re seeing now is bad fire,” Christianson said. “When we talk about returning fire to the landscape, we’re talking about good fire. I heard an elder describe it once as fire you could walk next to, fire of a low intensity.” Fire that builds a mosaic of landscapes that, in turn, act as natural firebreaks against devastating blazes; fire that opens meadows where wildlife can flourish. “Fire is a kind of medicine for the land. And it lets you carry out your culture—like, why you are in the world, basically.”

New Yorker Favorites

A Harvard undergrad took her roommate’s life, then her own. She left behind her diary.

Ricky Jay’s magical secrets .

A thirty-one-year-old who still goes on spring break .

How the greatest American actor lost his way .

What should happen when patients reject their diagnosis ?

The reason an Addams Family painting wound up hidden in a university library .

Fiction by Kristen Roupenian: “Cat Person”

Sign up for our daily newsletter to receive the best stories from The New Yorker .

renewable energy day essay

By signing up, you agree to our User Agreement and Privacy Policy & Cookie Statement . This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Is the Fight Against Climate Change Losing Momentum?

By Elizabeth Kolbert

Our Environmental Pledge

By Megan Amram

The Biden Administration’s Plan to Make American Homes More Efficient

Going Right

April 29, 2016

Renewable Energy Persuasive Essay

Robert Caba

Dr. Freymiller

12 April 2016

Out with the Old, In with the Re(new)able

The United States has been operating as a country using limited fossil fuels, but what happens when it all runs out? Would it not be more beneficial to never find out? Renewable energy, energy that is not depleted after its use, is limitless and more sustainable than any other source in energy history. To initiate the clean energy movement is expensive, but there are countless benefits ranging from individual to global impacts in going completely renewable. The first recorded use of renewable energy was harnessing wind power to drive ships over water about 7000 years ago (Darling). However, renewable energy has been around as long as Earth has existed: wind, sun, geothermal, biomass and many more. Clean energy sources can be harnessed to produce electricity, process heat, fuel and other chemicals with significantly less impact on the environment. In 2014, renewable energy sources accounted for fourteen percent of America’s total electricity use (“Renewable Energy Sources”), a four percent incline from the prior year. Completely diverting from fossil fuels to renewable energy clearly is not a new concept for a select few of innovative countries. A few countries, for example, are Costa Rica, Norway and Iceland, all of whom have ran on renewable energy for the entire 2015 calendar year, diving deep into their own land’s resources and utilizing volcanic presence to produce energy (Rosecrance & Thompson 7). Following in the footsteps of Costa Rica and a few other third world countries, major economic powerhouses and biggest users of fossil fuels like the United States should convert to clean energy as a way to benefit the economy, environment and overall health of the country.

As a consumer, one is worried about how abandoning a safe form of energy and transitioning to something new can help or hurt their wallet. Not only can renewable energy help save money, it can also help make money. A 150 billion dollar investment into this new industry would result in 1.7 million job opportunities, reducing the unemployment rate in America by an entire percentage (Pollin & Heintz). The reason for the potential high employment rate is because the industry is labor intensive in the means of installation and maintenance, requiring a lot of manpower for ultimate success. However, the more we wait the more future benefits we are currently losing. In an American Solar Energy Association (ASES) report in 2009, they stated “the 2008 predictions for renewable energy industry in 2030 are significantly lower than the 2007 predictions (National Research Council 169).” Unlike fossil fuels, which are subject to volatile pricing fluctuating over time depending on the market, renewable energy is relatively “free” after installation, using natural resources. The process of transportation and maintenance is minimized allowing prices to stay constant throughout the years. The only way price can head is down; for instance, clean energy is more affordable than 25 years ago. In particular, wind energy, the fastest growing source of power, prices have declined from forty cents per kilowatt per hour to less than five cents per kilowatt per hour (“The Energy Story”), a remarkable change and a huge upside in favor of the conversion. As time continues, technology should continue its progression resulting in cheaper mediums to acquire the energy. Despite of this, the conversion should take place now so results are maximized for the future. All in all, clean energy can both save Americans money while help them make money, the perfect win-win for producers and consumers alike.

Abstaining from burning countless, yet limited fossil fuels every day and polluting the environment is the single biggest benefactor for moving towards a cleaner approach. Not only would greenhouse gas emissions, as well as other pollutants that cause smog and acid rain, reach minimal levels, but also the country is consequently assisting in the reduction of the global warming speed and effects. Unlike fossil fuels, which are unable to be replenished easily, renewable energy is limitless, feeding from natural resources. With the global and national population expected to continue rising, the demand for energy will follow. There is a multitude of different approaches to acquire renewable energy including the most used types: solar and wind power. Specifically, solar energy is the epitome of sustainability and efficiency, calculated through production and prices. Despite the massive amounts of energy used yearly nationwide, “the sunlight falling on the United States in one day contains more than twice the energy we consume in an entire year ( The Energy Story ).” As for wind power, “California [alone] has enough wind gusts to produce 11 percent of the world’s wind electricity ( The Energy Story).” Wind turbines take up a lot of space but still allow the area around it, usually farms, to be used regularly. In the United Kingdom, for comparison, the government set a target for renewable energy to make up 15 percent of their total energy expense by 2020. This motive results in a 34 percent cut in the country’s carbon emission in the same time span (National Research Council 180). Needless to say, renewable energy will make landmark strides in the progression towards a cleaner, better environment. The most important thing on this Earth is this Earth, and it’s society’s job to maintain it.

As well as helping the environment and wallets, renewable energy can help with everyone’s health. By cutting the emission of greenhouse gasses and fossil fuels, air pollution decreases. Air pollution, primarily those contributed through coal burning power plants emitting fine-particulate pollutants, is most associated with causing health problems, chiefly lung cancer. The Environment Protection Agency (EPA) predicts that conversion, or even standards, will prevent at least 100,000 heart attacks and asthma attacks per year. Additionally, EPA also estimates a projected 1,100 billion dollar income in health benefits due to avoiding illnesses and deaths (U.S. EPA). As a form of partnership, the health industry could invest a portion of this money into the clean air movement due to its beneficial health impacts and help make installation cheaper. A majority of these pollutants are associated with dangerous levels of climate change, this century’s biggest threat to human health. Climate change, a change in global climate patterns, “will increasingly jeopardize the fundamental requirements for health, including clean urban air, safe and sufficient drinking-water, a secure and nutritious food supply, and adequate shelter (World Health Organization).” Climate change is the main contributor and accelerator towards global warming. Global warming increases the risk of two deadly diseases: Plague and Ebola, to name a few. For Plague, changes in temperature and rainfall will affect rodent populations as well as the infected fleas they carry. Additionally, Ebola outbreaks tend to follow serious downpours or droughts, a likely result of climate change (Biello). The movement would not only lower the pollution rate and risk of infection, but also save countless lives across the globe during the process.

America, along with most other countries, needs to initiate their plans towards a more sustainable, cleaner form of energy. Renewable energy helps increase the production of the economy through the addition of million of jobs. Simultaneously, energy prices would be lower, also helping the consumer save money. However, it is vital to start now. The longer the wait, the less benefits are reaped. Likewise, the clean air movement will mark the beginning of recovery for the environment. Greenhouse gases and other emission will reach all time lows, possibly zero. This deduction is important to slow the rate of climate change and global warming. Stopping climate change and gas emissions in its tracks would also lead to more health benefits. There are dozens of deadly diseases and carriers that spawn from the irregular climate patterns. Also, climate change could affect physiological needs by lessening safe drinking water, food supply and shelter. The United States has a reputation of being an innovator, a leader for many countries. Why has it been so lackadaisical with something so important to everything in today’s society? It has a history of being scared of change; people are too comfortable with life as it is, but it could be better. With the United States recently moving in the right direction, it will be better.

Works Cited

Biello, David. “Diseases Due to Climate Change.” Scientific American . N.p., 8 Oct. 2008. Web. 9 Apr. 2016.

Darling, David. “Wind Energy.” Encyclopedia of Alternative Energy . N.p., n.d. Web. 11 Apr. 2016.

National Research Council, and Chinese Academy of Sciences. The Power of Renewables: Opportunities and Challenges for China and the United States . Washington, D.C.: National Academies, 2010. Print.

Pollin, Robert, and James Heintz. “The Economic Benefits of Investing in Clean Energy.” Center for American Progress . N.p., 18 June 2009. Web. 06 Apr. 2016.

“Renewable Energy Sources – Energy Explained, Your Guide To Understanding Energy – Energy Information Administration.” EIA . US Energy Information Administration, 17 Mar. 2015. Web. 11 Apr. 2016.

Rosecrance, Richard, and Peter Thompson. “Global Trends in Sustainable Energy Investment.” Annual Review of Political Science 6.1 (2003): 7. UNEP . United Nations Environment Programme, 13 Oct. 2014. Web. 10 Apr. 2016.

“The Energy Story – Chapter 17: Renewable Energy vs. Fossil Fuels.” The Energy Story . California Energy Commission, n.d. Web. 11 Apr. 2016.

U.S. EPA. “Cleaning Up Toxic Air Pollution.” Benefits and Costs of Cleaning up Toxic Air Pollution (n.d.): n. pag. EPA . Environment Protection Agency. Web. 10 Apr. 2016.

World Health Organization. Renewable Energy (n.d.): 7. WHO . World Health Organization, 2012. Web. 10 Apr. 2016.

Leave a Reply

You must be logged in to post a comment.

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

What is renewable energy?

Renewable energy is energy derived from natural sources that are replenished at a higher rate than they are consumed. Sunlight and wind, for example, are such sources that are constantly being replenished. Renewable energy sources are plentiful and all around us.

Fossil fuels - coal, oil and gas - on the other hand, are non-renewable resources that take hundreds of millions of years to form. Fossil fuels, when burned to produce energy, cause harmful greenhouse gas emissions, such as carbon dioxide.

Generating renewable energy creates far lower emissions than burning fossil fuels. Transitioning from fossil fuels, which currently account for the lion’s share of emissions, to renewable energy is key to addressing the climate crisis.

Renewables are now cheaper in most countries, and generate three times more jobs than fossil fuels.

Here are a few common sources of renewable energy:

x

SOLAR ENERGY

Solar energy is the most abundant of all energy resources and can even be harnessed in cloudy weather. The rate at which solar energy is intercepted by the Earth is about 10,000 times greater than the rate at which humankind consumes energy.

Solar technologies can deliver heat, cooling, natural lighting, electricity, and fuels for a host of applications. Solar technologies convert sunlight into electrical energy either through photovoltaic panels or through mirrors that concentrate solar radiation.

Although not all countries are equally endowed with solar energy, a significant contribution to the energy mix from direct solar energy is possible for every country.

The cost of manufacturing solar panels has plummeted dramatically in the last decade, making them not only affordable but often the cheapest form of electricity. Solar panels have a lifespan of roughly 30 years , and come in variety of shades depending on the type of material used in manufacturing.

x

WIND ENERGY

Wind energy harnesses the kinetic energy of moving air by using large wind turbines located on land (onshore) or in sea- or freshwater (offshore). Wind energy has been used for millennia, but onshore and offshore wind energy technologies have evolved over the last few years to maximize the electricity produced - with taller turbines and larger rotor diameters.

Though average wind speeds vary considerably by location, the world’s technical potential for wind energy exceeds global electricity production, and ample potential exists in most regions of the world to enable significant wind energy deployment.

Many parts of the world have strong wind speeds, but the best locations for generating wind power are sometimes remote ones. Offshore wind power offers t remendous potential .

x

GEOTHERMAL ENERGY

Geothermal energy utilizes the accessible thermal energy from the Earth’s interior. Heat is extracted from geothermal reservoirs using wells or other means.

Reservoirs that are naturally sufficiently hot and permeable are called hydrothermal reservoirs, whereas reservoirs that are sufficiently hot but that are improved with hydraulic stimulation are called enhanced geothermal systems.

Once at the surface, fluids of various temperatures can be used to generate electricity. The technology for electricity generation from hydrothermal reservoirs is mature and reliable, and has been operating for more than 100 years .

x

Hydropower harnesses the energy of water moving from higher to lower elevations. It can be generated from reservoirs and rivers. Reservoir hydropower plants rely on stored water in a reservoir, while run-of-river hydropower plants harness energy from the available flow of the river.

Hydropower reservoirs often have multiple uses - providing drinking water, water for irrigation, flood and drought control, navigation services, as well as energy supply.

Hydropower currently is the largest source of renewable energy in the electricity sector. It relies on generally stable rainfall patterns, and can be negatively impacted by climate-induced droughts or changes to ecosystems which impact rainfall patterns.

The infrastructure needed to create hydropower can also impact on ecosystems in adverse ways. For this reason, many consider small-scale hydro a more environmentally-friendly option , and especially suitable for communities in remote locations.

x

OCEAN ENERGY

Ocean energy derives from technologies that use the kinetic and thermal energy of seawater - waves or currents for instance -  to produce electricity or heat.

Ocean energy systems are still at an early stage of development, with a number of prototype wave and tidal current devices being explored. The theoretical potential for ocean energy easily exceeds present human energy requirements.

x

Bioenergy is produced from a variety of organic materials, called biomass, such as wood, charcoal, dung and other manures for heat and power production, and agricultural crops for liquid biofuels. Most biomass is used in rural areas for cooking, lighting and space heating, generally by poorer populations in developing countries.

Modern biomass systems include dedicated crops or trees, residues from agriculture and forestry, and various organic waste streams.

Energy created by burning biomass creates greenhouse gas emissions, but at lower levels than burning fossil fuels like coal, oil or gas. However, bioenergy should only be used in limited applications, given potential negative environmental impacts related to large-scale increases in forest and bioenergy plantations, and resulting deforestation and land-use change.

For more information on renewable sources of energy, please check out the following websites:

International Renewable Energy Agency | Renewables

International Energy Agency | Renewables

Intergovernmental Panel on Climate Change | Renewable Sources of Energy

UN Environment Programme | Roadmap to a Carbon-Free Future

Sustainable Energy for All | Renewable Energy

renewable energy day essay

Renewable energy – powering a safer future

What is renewable energy and why does it matter? Learn more about why the shift to renewables is our only hope for a brighter and safer world.

renewable energy day essay

Five ways to jump-start the renewable energy transition now

UN Secretary-General outlines five critical actions the world needs to prioritize now to speed up the global shift to renewable energy.

renewable energy day essay

Climate issues

Learn more about how climate change impacts are felt across different sectors and ecosystems, and why we must nurture rather than exploit nature’s resources to advance climate action.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

The Understand Energy Learning Hub is a cross-campus effort of the Precourt Institute for Energy .

Understand Energy Learning Hub

Introduction to Renewable Energy

Exploring our content.

Fast Facts View our summary of key facts and information. ( Printable PDF, 270 KB )

Before You Watch Our Lecture Maximize your learning experience by reviewing these carefully curated readings we assign to our students.

Our Lecture Watch the Stanford course lecture.

Additional Resources Find out where to explore beyond our site.

Orange sunset with wind turbines on the horizon

Fast Facts About Renewable Energy

Principle Energy Uses: Electricity, Heat Forms of Energy: Kinetic, Thermal, Radiant, Chemical

The term “renewable” encompasses a wide diversity of energy resources with varying economics, technologies, end uses, scales, environmental impacts, availability, and depletability. For example, fully “renewable” resources are not depleted by human use, whereas “semi-renewable” resources must be properly managed to ensure long-term availability. The most renewable type of energy is energy efficiency, which reduces overall consumption while providing the same energy service. Most renewable energy resources have significantly lower environmental and climate impacts than their fossil fuel counterparts.

The data in these Fast Facts do not reflect two important renewable energy resources: traditional biomass, which is widespread but difficult to measure; and energy efficiency, a critical strategy for reducing energy consumption while maintaining the same energy services and quality of life. See the Biomass and Energy Efficiency pages to learn more.

Significance

14% of world 🌎 9% of US 🇺🇸

Electricity Generation

30% of world 🌎 21% of US 🇺🇸

Global Renewable Energy Uses

Electricity 65% Heat 26% Transportation 9%

Global Consumption of Renewable Electricity Change

Increase: ⬆ 33% (2017 to 2022)

Energy Efficiency

Energy efficiency measures such as LED light bulbs reduce the need for energy in the first place

Renewable Resources

Wind Solar Ocean

Semi-Renewable Resources

Hydro Geothermal Biomass

Renewable Energy Has Vast Potential to Meet Global Energy Demand

Solar >1,000x global demand Wind ~3x global demand

Share of Global Energy Demand Met by Renewable Resources

Hydropower 7% Wind 3% Solar 2% Biomass <2%  

Share of Global Electricity Generation Met by Renewable Resources

Hydropower 15% Wind 7% Solar 5% Biomass & Geothermal <3%

Global Growth

Hydropower generation increase ⬆6% Wind generation increase ⬆84% Solar generation increase ⬆197% Biofuels consumption increase ⬆23% (2017-2022)

Largest Renewable Energy Producers

China 34% 🇨🇳 US 10% 🇺🇸 of global renewable energy

Highest Penetration of Renewable Energy

Norway 72% 🇳🇴 of the country’s primary energy is renewable

(China is at 16%, the US is at 11%)

Largest Renewable Electricity Producers

China 31% 🇨🇳 US 11% 🇺🇸 of global renewable electricity

Highest Penetration of Renewable Electricity

Albania, Bhutan, CAR, Lesotho, Nepal, & Iceland 100%

Iceland, Ethiopia, Paraguay, DRC, Norway, Costa Rica, Uganda, Namibia, Eswatini, Zambia, Tajikistan, & Sierra Leone > 90% of the country’s primary electricity is renewable

(China is at 31%, the US is at 22%)

Share of US Energy Demand Met by Renewable Resources

Biomass 5% Wind 2% Hydro 1% Solar 1%

Share of US Electricity Generation Met by Renewable Resources

Wind 10% Hydropower 6% Solar 3% Biomass 1%

US States That Produce the Most Renewable Electricity

Texas 21% California 11% of US renewable energy production

US States With Highest Penetration of Renewable Electricity

Vermont >99% South Dakota 84% Washington 76% Idaho 75% of state’s total generation comes from renewable fuels

Renewable Energy Expansion Policies

The Inflation Reduction Act continued tax credits for new renewable energy projects in the US.

Production Tax Credit (PTC)

Tax credit of $0.0275/kWh of electricity produced at qualifying renewable power generation sites

Investment Tax Credit (ITC)

Tax credit of 30% of the cost of a new qualifying renewable power generation site

To read more about the credit qualifications, visit this EPA site .

*LCOE (levelized cost of electricity) - price for which a unit of electricity must be sold for system to break even

Important Factors for Renewable Site Selection

  • Resource availability
  • Environmental constraints and sensitivities, including cultural and archeological sites
  • Transmission infrastructure
  • Power plant retirements
  • Transmission congestion and prices
  • Electricity markets
  • Load growth driven by population and industry
  • Policy support
  • Land rights and permitting
  • Competitive and declining costs of wind, solar, and energy storage
  • Lower environmental and climate impacts (social costs) than fossil fuels
  • Expansion of competitive wholesale electricity markets
  • Governmental clean energy and climate targets and policies
  • Corporate clean energy targets and procurement of renewable energy
  • No fuel cost or fuel price volatility
  • Retirements of old and/or expensive coal and nuclear power plants
  • Most renewable resources are abundant, undepletable
  • Permitting hurdles and NIMBY/BANANA* concerns
  • Competition from subsidized fossil fuels and a lack of price for their social cost (e.g., price on carbon)
  • Site-specific resources means greater need to transport energy/electricity to demand
  • High initial capital expenditure requirements required to access fuel cost/operating savings
  • Intermittent resources
  • Inconsistent governmental incentives and subsidies
  • Managing environmental impacts to the extent that they exist

*NIMBY - not in my backyard; BANANA - build absolutely nothing anywhere near anything

Climate Impact: Low to High

renewable energy day essay

  • Solar, wind, geothermal, and ocean have low climate impacts with near-zero emissions; hydro and biomass can have medium to high climate impact
  • Hydro: Some locations have greenhouse gas emissions due to decomposing flooded vegetation
  • Biomass: Some crops require significant energy inputs, land use change can release carbon dioxide and methane

Environmental Impact: Low to High

  • Most renewable energy resources have low environmental impacts, particularly relative to fossil fuels; some, like biomass, can have more significant impacts
  • No air pollution with the exception of biomass from certain feedstocks
  • Can have land and habitat disruption for biomass production, solar, and hydro
  • Potential wildlife impacts from wind turbines (birds and bats)
  • Modest environmental impacts during manufacturing, transportation, and end of life

Updated January 2024

Before You Watch Our Lecture on Introduction to Renewable Energy

We assign videos and readings to our Stanford students as pre-work for each lecture to help contextualize the lecture content. We strongly encourage you to review the Essential reading below before watching our lecture on  Introduction to Renewable Energy . Include the Optional and Useful readings based on your interests and available time.

  • The Sustainable Energy in America 2023 Factbook (Executive Summary pp. 5-11) . Bloomberg New Energy Finance. 2023. (7 pages) Provides valuable year-over-year data and insights on the American energy transformation.

Optional and Useful

  • Renewables 2023 Global Status Report (Global Overview pp. 11-40) . REN21. 2023. (30 pages).  Documents the progress made in the renewable energy sector and highlights the opportunities afforded by a renewable-based economy and society.

Our Lecture on Introduction to Renewable Energy

This is our Stanford University Understand Energy course lecture that introduces renewable energy. We strongly encourage you to watch the full lecture to gain foundational knowledge about renewable energy and important context for learning more about specific renewable energy resources. For a complete learning experience, we also encourage you to review the Essential reading we assign to our students before watching the lecture.

Kirsten Stasio

Presented by: Kirsten Stasio , Adjunct Lecturer, Civil and Environmental Engineering, Stanford University; CEO, Nevada Clean Energy Fund (NCEF) Recorded on:  November 16, 2022   Duration: 52 minutes

Table of Contents

(Clicking on a timestamp will take you to YouTube.) 00:00 What Does "Renewable" Mean? 12:56 What Role Do Renewables Play In Our Energy Use? 20:29  What Factors Affect Renewable Energy Project Development? 52:13 Conclusion

Lecture slides available upon request .

Additional Resources About Renewable Energy

Stanford university.

  • Precourt Institute for Energy Renewable Energy , Energy Efficiency
  • Stanford Energy Club
  • Energy Modeling Forum
  • Sustainable Stanford
  • Sustainable Finance Initiative
  • Mark Jacobson - Renewable energy
  • Michael Lepech - Life-cycle analysis
  • Leonard Ortolano - Environmental and water resource planning
  • Chris Field - Climate change, land use, bioenergy, solar energy
  • David Lobell - Climate change, agriculture, biofuels, land use
  • Sally Benson - Climate change, energy, carbon capture and storage

Government and International Organizations

  • International Energy Agency (IEA) Renewables Renewables 2022 Repor .
  • National Renewable Energy Laboratory (NREL)
  • US Department of Energy (DOE) Office of Energy Efficiency & Renewable Energy (EERE)
  • US Energy Information Administration (EIA) Renewable Energy Explained
  • US Energy Information Administration (EIA) Energy Kids Renewable Energy
  • US Energy Information Administration (EIA) Today in Energy Renewables

Non-Governmental Organizations (NGOs)

  • Carnegie Institution for Science  Biosphere Sciences and Engineering
  • The Solutions Project

Other Resources

  • REN21: Renewable Energy Policy Network for the 21st Century
  • REN21 Renewables 2023 Global Status Report Renewables in Energy Supply
  • BloombergNEF (BNEF)
  • Renewable Energy World
  • World of Renewables
  • Energy Upgrade California
  • Windustry Community Wind Toolbox

Next Topic: Energy Efficiency Other Energy Topics to Explore

Fast Facts Sources

  • Energy Mix (World 2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Energy Mix (US 2022): US Energy Information Agency (EIA). Total Energy: Energy Overview, Table 1.3 . 
  • Electricity Mix (World 2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Electricity Mix (US 2022): US Energy Information Agency (EIA). Total Energy: Electricity, Table 7.2a.  
  • Global Solar Use (2022): REN21. Renewables 2023 Global Status Report: Renewables in Energy Supply , page 42. 2023
  • Global Consumption of Renewable Electricity Change (2017-2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Renewable Energy Potential: Perez & Perez. A Fundamental Look at Energy Reserves for the Planet . 2009
  • Share of Global Energy Demand (2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Share of Global Electricity Demand (2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Global Growth (2017-2022): Energy Institute. Statistical Review of World Energy . 2023.
  • Largest Renewable Energy Producers (World 2022): International Renewable Energy Agency (IRENA). Renewable Capacity Statistics 2023 . 2023.
  • Highest Penetration Renewable Energy (World 2022): Our World in Data. Renewable Energy . 2023.
  • Largest Renewable Electricity Producers (World 2022):   Energy Institute. Statistical Review of World Energy . 2023.
  • Highest Penetration Renewable Electricity (World 2022): Our World in Data. Renewable Energy . 2023.
  • Share of US Energy Demand (2022): Energy Information Administration (EIA). Electric Power Monthly. 2023.
  • Share of Electricity Generation (2022): Energy Information Administration (EIA). Electric Power Monthly. 2023.
  • States with Highest Generation (2022): Energy Information Administration (EIA). Electric Power Monthly. 2023.
  • States with Highest Penetration (2021): Energy Information Administration (EIA). State Profile and Energy Estimates. 2023.
  • LCOE of US Renewable Resources: Lazard. LCOE. April 2023.
  • LCOE of US Non Renewable Resources: Lazard. LCOE. April 2023.

More details available on request . Back to Fast Facts

April 24, 2024

A Golden Age of Renewables Is Beginning, and California Is Leading the Way

California has hit record-breaking milestones in renewable electricity generation, showing that wind, water and solar are ready to cover our electricity needs

By Mark Z. Jacobson

Landscape photographed in California with a solar farm in the foreground. Mountains with wind turbines stretch into the distance in the background

LADWPs Pine Tree Wind Farm and Solar Power Plant in the Tehachapi Mountains of California.

Irfan Khan/Los Angeles Times via Getty Images

Something spectacular is happening in the Golden State. California—the fifth-largest economy in the world—has experienced a record-breaking string of days in which the combined generation of wind, geothermal, hydroelectric and solar electricity has exceeded demand on the main electricity grid for anywhere from 15 minutes to 9.25 hours per day. These clean, renewable electricity sources are collectively known as wind-water-solar (WWS) sources.

It is impossible to understate how monumental this clean, renewable energy milestone is and how quickly WWS supplies have ramped up. In 2022 and 2023, California reached 100 percent WWS on the grid but only for the occasional day on a weekend—never two days in a row and never during the week. Now it’s an almost daily occurrence during spring. And it heralds in a new era of clean, renewable electricity, which will ultimately power the entire U.S. and the rest of the world for nearly all energy purposes.

At press time, for 39 of the past 47 days (through April 23, supplies of WWS electricity have exceeded demand on the grid. On April 20, WWS supply peaked at 148.3 percent of demand ( see top chart below ). About half of the excess electricity each day is exported to other Western U.S. states; most of the rest is stored in batteries. Some electricity is even thrown away due to lack of demand. Battery electricity is then used to provide electricity for California’s grid at night. On April 21, nighttime battery electricity output reached a new record of nearly 6.5 gigawatts on California’s grid. That is the equivalent of the output of more than seven nuclear reactors and one quarter of the maximum grid demand during all seasons except summer, when demand can double at night.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Chart shows California’s main grid electricity demand and percentage supplied by wind, water, and solar (WWS) electricity on April 20, 2024.

Mark Z. Jacobson, restyled by Shuyao Xiao; Source: California Independent System Operator (data)

Moreover, on April 11, solar alone provided more than 100 percent of demand for the first time ever in California: solar supply exceeded demand for 1.5 hours, reaching a peak of 102.4 percent of demand during that period. That record was subsequently smashed on April 21, when solar peaked at 123.9 percent of demand.

That solar output does not even include most of California’s rooftop solar output, which supplied about 12 percent of electricity generation in the state last year. Rooftop solar directly powers homes and businesses, so while it does not contribute much directly to overall grid supply, it does reduce demand significantly during the day, as seen in the bottom graph above.

The string of days that have reached 100 percent WWS has so far occurred only during the end of winter and much of spring, when temperatures have been mild and solar output has been high. Electricity demand during summer can double because of heavy air conditioner use. Whether there will be days that reach 100 percent WWS during summer this year is yet to be seen. With the future growth of both utility-scale and rooftop solar, however, California will ultimately provide 100 percent WWS during summer daytime hours as well. Solar, though, provides electricity during the day only. Nighttime demand can be met by a combination of using batteries powered by daytime solar, offshore wind, shifting more hydropower production to night hours, and setting electricity prices so that demand shifts to daytime.

Detractors claim that the growth of renewables in California has resulted in high electricity prices. California has the third-highest electricity prices in the U.S. To the contrary, the growth of WWS in California has prevented prices from rising further. This effect is demonstrated by high WWS generation but low electricity prices in other states: Of the 11 that have higher annual-average production of WWS as a percent of demand than California, 10 are among the 25 states with the lowest electricity prices . Five are among the 10 states with the lowest prices.

So why are California’s electricity prices high? California has the third-highest natural gas prices in the U.S. and still uses that fossil fuel for backup electricity. In addition, utilities have passed on to customers the costs of the San Bruno and Aliso Canyon gas disasters, gas pipe retrofits , wildfires caused by transmission line sparks , and burial of transmission lines to reduce such fires.

California still has a long way to go to become 100 percent WWS-supplied every hour of every day of every year in its electric power sector and an even longer way to go to transition transportation, buildings and industry to WWS. But as my colleagues and I have found in our 100 percent all-sector energy plans for California and the other 49 states, it is possible to transition with enormous financial benefit to consumers. Similarly, our energy plans for the world indicate the potential to convert all countries to WWS at low cost. California’s success and all of these plans indicate that fossil fuels with or without carbon capture, bioenergy and nuclear power are not needed to power future grids. The amazing progress seen so far in California in 2024, even compared with just last year, is a reason to believe the future will be golden in the Golden State.

This is an opinion and analysis article, and the views expressed by the author or authors are not necessarily those of Scientific American.

Biden is marking Earth Day by announcing $7 billion in federal solar power grants

WASHINGTON — President  Joe Biden  is marking  Earth Day  by announcing $7 billion in federal grants for residential solar projects serving 900,000-plus households in low- and middle-income communities. He also plans to expand his New Deal-style  American Climate Corps green jobs training program .

The grants are being awarded by the Environmental Protection Agency, which unveiled the 60 recipients on Monday. The projects are expected to eventually reduce emissions by the equivalent of 30 million metric tons of carbon dioxide and save households $350 million annually, according to senior administration officials.

Biden’s latest environmental announcements come as he is working to energize young voters for his reelection campaign. Young people were a key part of a broad but potentially fragile coalition that helped him defeat then-President  Donald Trump  in 2020. Some have  joined protests  around the country of the administration’s handling of Israel’s war with Hamas in the Gaza Strip.

Nicholas Hartnett, owner of Pure Power Solar, carries a panel as he and Brian Hoeppner install a solar array on the roof of a home in Frankfort, Ky., on July 17, 2023.

Senior administration officials said young Americans are keenly invested in the Biden climate agenda and want to actually help enact it. The Climate Corps initiative is a way for them to do that, the officials said.

Solar  is gaining traction  as a key renewable energy source that could reduce the nation’s reliance on fossil fuels, which emit planet-warming greenhouse gases. Not only is it clean, but solar energy can also boost the reliability of the electric grid.

But solar energy can have high costs for initial installation, making it inaccessible for many Americans — and potentially meaning a mingling of environmental policy with election-year politics.

Forty-nine of the new grants are state-level awards, six serve Native American tribes and five are multi-state awards. They can be used for investments such as rooftop solar and community solar gardens.

Biden is making the announcement at northern Virginia’s Prince William Forest Park, about 30 miles southwest of Washington. It was established in 1936 as a summer camp for underprivileged youth from Washington, part of President Franklin D. Roosevelt’s Civilian Conservation Corps to help create jobs during the Great Depression.

Biden used executive action last year to create the American Climate Corps modeled on Roosevelt’s New Deal. He is announcing Monday that nearly 2,000 corps positions are being offered across 36 states, including jobs offered in partnership with the North American Building Trades Unions.

Biden has often used Earth Day as a backdrop to further his administration’s climate initiatives. Last year, he signed an executive order creating the White House Office of Environmental Justice, meant to help ensure that poverty, race and ethnic status do not lead to worse exposure to pollution and environmental harm.

He has tried to draw a contrast with GOP congressional leaders, who have called for less regulation of oil production to lower energy prices. Biden officials counter that GOP policies benefit highly profitable oil companies and could ultimately undermine U.S. efforts to compete with the Chinese in the renewable energy sector.

Biden will use his Virginia visit to discuss how “a climate crisis fully manifest to the American people in communities all across the country, is also an opportunity for us to come together,” said White House National Climate Adviser Ali Zaidi.

He said the programs can “unlock economic opportunity to create pathways to middle-class-supporting careers, to save people money and improve their quality of life.”

The awards came from the  Solar for All program , part of the $27 billion “green bank” created as part of a sweeping  climate law  passed in 2022. The bank is intended to reduce climate and air pollution and send money to neighborhoods most in need, especially disadvantaged and low-income communities disproportionately impacted by climate change.

EPA Deputy Administrator Janet McCabe said she was “looking forward to these funds getting out into the community, giving people skills, putting them to work in their local communities, and allowing people to save on their energy bills so that they can put those dollars to other needs.”

Among those receiving grants are state projects to provide solar-equipped roofs for homes, college residences and residential-serving community solar projects in West Virginia, a non-profit operating Mississippi solar lease program and solar workforce training initiatives in South Carolina.

The  taxpayer-funded green bank has faced Republican opposition  and concerns over accountability for how the money gets used. EPA previously disbursed  the other $20 billion of the bank’s funds  to nonprofits and community development banks for clean energy projects such as residential heat pumps, additional energy-efficient home improvements and larger-scale projects like electric vehicle charging stations and community cooling centers.

The Associated Press

' class=

News | November 28, 2011

Nasa envisions clean energy from algae.

Massive algae blooms grow depending on the amount of light they receive, the temperature, and the amount of nutrients available in the water.

Massive algae blooms grow depending on the amount of light they receive, the temperature, and the amount of nutrients available in the water.

Plastic bags with semi-permeable membranes allow fresh water to flow out into the ocean, while retaining the algae and nutrients. Photo Credit: Penny Slinger Hills

When astronauts go into space, they must bring everything they need to survive. Living quarters on a spaceship require careful planning and management of limited resources, which is what inspired the project called “Sustainable Energy for Spaceship Earth.” It is a process that produces "clean energy" biofuels very efficiently and very resourcefully.

Oil producing algae

"The reason why algae are so interesting is because some of them produce lots of oil," said Jonathan Trent, the lead research scientist on the Spaceship Earth project at NASA Ames Research Center, Moffett Field, Calif. “In fact, most of the oil we are now getting out of the ground comes from algae that lived millions of years ago. Algae are still the best source of oil we know."

Algae are similar to other plants in that they remove carbon dioxide from the atmosphere, produce oxygen as a by-product of photosynthesis, and use phosphates, nitrogen, and trace elements to grow and flourish. Unlike many plants, they produce fatty, lipid cells loaded with oil that can be used as fuel.

Land plants currently used to produce biodiesel and other fuels include soy, canola, and palm trees. For the sake of comparison, soy beans produce about 50 gallons of oil per acre per year; canola produces about 160 gallons per acre per year, and palms about 600 gallons per acre per year. But some types of algae can produce at least 2,000 gallons of oil per acre per year.

The basic problem is growing enough algae to meet our country's enormous energy-consumption demands. Although algae live in water, land-based methods are used to grow algae. Two land-based methods used today are open ponds and closed bioreactors. Open ponds are shallow channels filled with freshwater or seawater, depending on the kind of algae that is grown. The water is circulated with paddle wheels to keep the algae suspended and the pond aerated. They are inexpensive to build and work well to grow algae, but have the inevitable problem of water evaporation. To prevent the ponds from drying out or becoming too salty, conditions that kill the algae, an endless supply of freshwater is needed to replenish the evaporating water.

When closed bioreactors are used to grow algae, water evaporation is no longer the biggest problem for algae's mass-production. Bioreactors, enclosed hardware systems made of clear plastic or glass, present their own problems. They can be computer-controlled and monitored around the clock for a more bountiful supply of algae. However, storing water on land and controlling its temperature are the big problems, making them prohibitively expensive to build and operate. In addition, both systems require a lot of land.

Plastic bags and waste water

"The inspiration I had was to use offshore membrane enclosures to grow algae. We're going to deploy a large plastic bag in the ocean, and fill it with sewage. The algae use sewage to grow, and in the process of growing they clean up the sewage," said Trent.

Waste water produces biomass, oil, and oxygen.

Floating on the ocean's surface, the inexpensive plastic bags will be collecting solar energy as the algae inside produce oxygen by photosynthesis. The algae will feed on the nutrients in the sewage, growing rich, fatty cells. Through osmosis, the bag will absorb carbon dioxide from the air, and release oxygen and fresh water. The temperature will be controlled by the heat capacity of the ocean, and the ocean's waves will keep the system mixed and active.

When the process is completed, biofuels will be made and sewage will be processed. For the first time, harmful sewage will no longer be dumped into the ocean. The algae and nutrients will be contained and collected in a bag. Not only will oil be produced, but nutrients will no longer be lost to the sea. According to Trent, the system ideally is fail proof. Even if the bag leaks, it won’t contaminate the local environment. The enclosed fresh water algae will die in the ocean.

The bags are expected to last two years, and will be recycled afterwards. The plastic material may be used as plastic mulch, or possibly as a solid amendment in fields to retain moisture.

“We have to remember,” Trent said, quoting Marshall McLuhan: “we are not passengers on spaceship Earth, we are the crew.”

  • Skip to main content
  • Keyboard shortcuts for audio player

Short Wave

  • LISTEN & FOLLOW
  • Apple Podcasts
  • Google Podcasts
  • Amazon Music
  • Amazon Alexa

Your support helps make our show possible and unlocks access to our sponsor-free feed.

How the new Catan board game can spark conversations on climate change

Nathan Rott at NPR headquarters in Washington, D.C., September 27, 2018. (photo by Allison Shelley)

Nathan Rott

Emily Kwong, photographed for NPR, 6 June 2022, in Washington DC. Photo by Farrah Skeiky for NPR.

Emily Kwong

Headshot of Berly McCoy

Berly McCoy

Rebecca Ramirez, photographed for NPR, 6 June 2022, in Washington DC. Photo by Farrah Skeiky for NPR.

Rebecca Ramirez

renewable energy day essay

A new version of the popular board game Catan, which hits shelves this summer, introduces energy production and pollution into the gameplay. Catan GmbH hide caption

A new version of the popular board game Catan, which hits shelves this summer, introduces energy production and pollution into the gameplay.

Today, we're going full nerd to talk about a new board game — Catan: New Energies. The game's goal is simple: Build and develop a modern-day island without catastrophically polluting it.

Although the concept mirrors the effects of climate change, those words don't actually appear in the game. NPR correspondent Nate Rott talks to Emily about the thinking behind the new game and how the developers hope it can start conversations around energy use and pollution.

A Board Game Where Birds (And Science) Win

A Board Game Where Birds (And Science) Win

Read Nate's full story here .

Have questions or comments for us to consider for a future episode? Email us at [email protected] — we'd love to hear from you!

Listen to Short Wave on Spotify , Apple Podcasts and Google Podcasts .

Listen to every episode of Short Wave sponsor-free and support our work at NPR by signing up for Short Wave+ at plus.npr.org/shortwave .

This episode was produced by Berly McCoy, edited by our showrunner Rebecca Ramirez and fact checked by Nate Rott. The audio engineer was Robert Rodriguez.

  • Share full article

Advertisement

Supported by

Three Places Changing Quickly to Fight Climate Change

Paris is becoming a city of bikes. Across China, people are snapping up $5,000 electric cars. On Earth Day, a look at a few bright spots for emission reductions.

Children surround a cartoon picture of the globe with a happy face in the ocean.

By Delger Erdenesanaa

Glaciers are shrinking , coral reefs are in crisis and last year was the hottest on record . Atmospheric concentrations of carbon dioxide , the main greenhouse gas, have passed a dangerous new threshold as people continue to burn fossil fuels. Is anyplace making progress on climate change?

The short answer is: It’s complicated, but yes.

In South America, one country has pivoted in less than a decade to generating almost all its electricity from a diverse mix of renewables. In China, an electric car that costs just $5,000 is suddenly one of the biggest sellers. Paris is transforming itself into a city of bikes.

Steps like these, taken individually, aren’t enough to avoid the most serious consequences of climate change — worsening droughts, intensified storms and human suffering. Still, they show how some places are pulling off significant local changes very quickly.

Globally, “we’re not moving as fast as we need to,” said Thomas Spencer, an analyst at the International Energy Agency. “But we definitely have the tools to go much faster.”

“Climate solutions actually do exist. They’re here now,” said Jonathan Foley, the executive director of Project Drawdown, a nonprofit organization focused on climate action.

To mark Earth Day (and to try to reach young, environmentally-minded voters) President Biden is promoting a new national program to train and employ people in climate-related jobs, and reminding voters of the clean-energy investments underway following the Inflation Reduction Act.

These programs are just getting started, but around the world, there are places where climate solutions have become ubiquitous parts of everyday life.

Uruguay’s energy revolution

Uruguay, a nation of 3.4 million people wedged between Argentina and Brazil, generates nearly all its electricity from renewable sources. In 2008, the government set a goal of transforming the electric grid, which had come to depend on imported oil.

The country had a lot of hydropower, but years of drought in the 1990s and 2000s slashed the dams’ output. Uruguay was forced to import oil instead, at volatile prices, and faced shortages and blackouts. Officials noted the increasing cost competitiveness of renewables, especially wind, and set out to build a local wind industry nearly from scratch.

Between 2013 and 2018, wind generation grew sharply from almost nothing to about a quarter of Uruguay’s electricity mix. By the end of 2022, the most recent year data is available, Uruguay generated more than 90 percent of its power from renewables, with wind and solar growing even as hydropower declined.

This small nation represents one especially fast example of the massive growth of renewable energy globally.

Electricity and heat together are the biggest source of humans’ greenhouse gas emissions . But in “many, many countries now,” renewables are growing faster than electricity demand and displacing fossil fuels from the power sector, said Bill Hare, C.E.O. and senior scientist at Climate Analytics, an international climate science and policy organization. “That has got the most potential in the next five years to get us onto a one and a half degree pathway and anything close to it.”

Tiny E.V., big effect

Transportation is the second biggest source of greenhouse gas emissions. Electric car sales have grown exponentially over the past decade, and China is by far the largest market for these vehicles. About 7.3 million battery electric vehicles were sold around the world in 2022, according to the International Energy Agency. More than half of these cars, about 4.4 million, were sold in China.

Historically, megacities like Shanghai have driven this trend. But in recent years China’s smaller cities have started taking up a larger share of the market. In 2022, the two cities where electric vehicles made up the largest percentage of total new car registrations were Sanya, a city of beach resorts on Hainan Island, and Liuzhou, an industrial hub in southern China. Battery electric vehicles accounted for about 40 percent of new vehicles registrations in both cities, far above the national average of 19 percent, according to a recent report by the International Council on Clean Transportation.

Electric vehicles’ success in China has hinged partially on policy, and partially on sheer convenience and affordability. The most popular electric car in China is currently the Hongguang Mini, a tiny two-door model that costs about $5,000. It’s manufactured by the three-way international joint venture SAIC-GM-Wuling, in the factories of Liuzhou.

Paris, city of bikes

Some cities are trying not just to electrify cars, but to replace as many of them as possible with cleaner forms of transportation, like bicycles. In 2021, officials in Paris announced a plan to make their city “ 100 percent cycle-friendly ” in the next five years.

Paris was already on a yearslong journey to do away with cars in the city center, or at least to reduce their numbers. Between 2001 and 2018, the number of car trips taken in Paris fell by 60 percent. Over that same period, public transit trips increased by 40 percent and bicycle trips by 20 percent.

Cycling has boomed even more in recent years, spurred in part by new bike lanes set up during the coronavirus pandemic, nicknamed “coronapistes , ” or “corona lanes.” The percentage of trips taken by bicycle within Paris more than doubled between 2020 and 2024, from 5 to 11 percent , according to the Paris Region Institute, an urban planning agency that works for cities around Europe.

Paris currently has more than 1,000 kilometers of bike lanes, and will get 180 more under the current plan, along with tens of thousands of bicycle parking spots and new traffic light patterns that prioritize cyclists and public transit.

Delger Erdenesanaa is a reporter covering climate and the environment and a member of the 2023-24 Times Fellowship class, a program for journalists early in their careers. More about Delger Erdenesanaa

IMAGES

  1. ≫ Renewable Energy Development Free Essay Sample on Samploon.com

    renewable energy day essay

  2. ≫ My Future Career Goals in Renewable Energy Free Essay Sample on

    renewable energy day essay

  3. ≫ Impact of Renewable Energy on Decrease Global Warming Effects Free

    renewable energy day essay

  4. Solar Energy Essay

    renewable energy day essay

  5. Renewable Energy Day

    renewable energy day essay

  6. ≫ My Interest to Renewable Energy Free Essay Sample on Samploon.com

    renewable energy day essay

COMMENTS

  1. Renewable Energy

    The wind, the sun, and Earth are sources of renewable energy . These energy sources naturally renew, or replenish themselves. Wind, sunlight, and the planet have energy that transforms in ways we can see and feel. We can see and feel evidence of the transfer of energy from the sun to Earth in the sunlight shining on the ground and the warmth we ...

  2. Essay on Renewable Energy

    These emissions are released every single day on the planet, whether it be a car, a factory, or a college, air pollutants are constantly being released. The same could not be said if renewable energy was being used. Renewable energy releases no harmful emissions. ... Essay on Renewable Energy. (2022, December 27). Edubirdie. Retrieved April 27 ...

  3. Renewable energy

    Renewable energy is cheaper. ... In 2018, air pollution from fossil fuels caused $2.9 trillion in health and economic costs, about $8 billion a day. Switching to clean sources of energy, such as ...

  4. Renewable energy

    In contrast, renewable energy sources accounted for nearly 20 percent of global energy consumption at the beginning of the 21st century, largely from traditional uses of biomass such as wood for heating and cooking.By 2015 about 16 percent of the world's total electricity came from large hydroelectric power plants, whereas other types of renewable energy (such as solar, wind, and geothermal ...

  5. Renewable energy, facts and information

    At least 29 U.S. states have set renewable portfolio standards—policies that mandate a certain percentage of energy from renewable sources, More than 100 cities worldwide now boast at least 70 ...

  6. Renewable Energy Explained

    Background Info. Vocabulary. In any discussion about climate change, renewable energy usually tops the list of changes the world can implement to stave off the worst effects of rising temperatures. That's because renewable energy sources, such as solar and wind, don't emit carbon dioxide and other greenhouse gases that contribute to global warming.

  7. This Is the Future: Essay on Renewable Energy

    According to a study, a 1% increase in the use of renewable energy increases economic growth by 0.21%. This gives socio-economic stability. Due to a lack of supply of fossil fuels and quick depletion of natural resources, prices for nonrenewable energy keep increasing. In contrast, green energy is limitless and can be produced locally.

  8. Renewable energy is the cornerstone of the energy transition

    New IRENA analysis indicates a continued swift energy transition to renewable power generation worldwide in the coming three decades, with shares of variable (or intermittent) renewables - solar PV and wind - growing especially rapidly. Variable renewables will dominate the world's total power supply by 2050, a major change from today's ...

  9. Essay on Importance of Renewable Energy

    Clean energy coming from renewable sources is a great way to produce electricity and fuel without the devastating effects on the environment. According to global energy estimates, "50% of global energy supply will be generated using renewable energy resources" after 2050 (Kumar 3).

  10. In a World on Fire, Stop Burning Things

    Renewable energy is now cheaper than fossil fuel, and becoming more so. So a "decisive transition" to renewable energy, they reported, would save the world twenty-six trillion dollars in ...

  11. Renewable Energy Persuasive Essay

    The first recorded use of renewable energy was harnessing wind power to drive ships over water about 7000 years ago (Darling). However, renewable energy has been around as long as Earth has existed: wind, sun, geothermal, biomass and many more. Clean energy sources can be harnessed to produce electricity, process heat, fuel and other chemicals ...

  12. What is renewable energy?

    Renewable energy is&nbsp;energy derived from natural sources&nbsp;that are replenished at a higher rate than they are consumed. Sunlight and wind, for example, are such sources that are constantly ...

  13. Renewable Energy Essay

    This essay is focused on the main three renewable energies, wind, sunlight, and water. Renewable resources are well on the way to out rule the fossil fuel industry because of the diminishing amount of fossil fuels left in the world and increase of renewable resource use, the damage fossil fuels do to the environment, and the various. 1944 Words.

  14. Renewable Energy

    Renewable energy comes from unlimited, naturally replenished resources, such as the sun, tides, and wind. Renewable energy can be used for electricity generation, space and water heating and cooling, and transportation. Non-renewable energy, in contrast, comes from finite sources, such as coal, natural gas, and oil.

  15. Renewable Energy Argumentative Essay

    Words: 655. Page: 1. This essay sample was donated by a student to help the academic community. Papers provided by EduBirdie writers usually outdo students' samples. Cite this essay. Download. Recently, some people believe that nuclear, solar, wind and hydropower provide cheap and clean energy.

  16. PDF THREE ESSAYS ON RENEWABLE ENERGY AND SUSTAINABILITY

    Table 1.10. Gross output for and input payments by the wind energy sector..... 95 Table 1.11. MACRS depreciation schedule for renewable projects, wind included ..... 96 Table 1.12. Financial and technical assumptions of representative wind farm in period 2008-2012

  17. Introduction to Renewable Energy

    The term "renewable" encompasses a wide diversity of energy resources with varying economics, technologies, end uses, scales, environmental impacts, availability, and depletability. For example, fully "renewable" resources are not depleted by human use, whereas "semi-renewable" resources must be properly managed to ensure long-term ...

  18. Benefits of Renewable Energy Use

    Increasing the supply of renewable energy would allow us to replace carbon-intensive energy sources and significantly reduce US global warming emissions. For example, a 2009 UCS analysis found that a 25 percent by 2025 national renewable electricity standard would lower power plant CO2 emissions 277 million metric tons annually by 2025—the ...

  19. A Golden Age of Renewables Is Beginning, and California Is Leading the

    Moreover, on April 11, solar alone provided more than 100 percent of demand for the first time ever in California: solar supply exceeded demand for 1.5 hours, reaching a peak of 102.4 percent of ...

  20. G7 ministers: Energy storage is key to global renewable goals

    Battery deployment in the energy sector last year increased more than 130 percent from 2022, according to a report released last week by the International Energy Agency (IEA).

  21. Biden is marking Earth Day by announcing $7 billion in federal solar

    WASHINGTON — President Joe Biden is marking Earth Day by announcing $7 billion in federal grants for residential solar projects serving 900,000-plus households in low- and middle-income communities.

  22. PDF Probabilistic Balancing of Grid with Renewables and Storage

    States of California and Hawaii push for 100% renewable energy by 2045, Massachusetts, by 2050. France, Germany, Denmark, and other EU states have similar plans. Existing methods for analysis of grid based on dispatchable generation are unsuitable for grid dominated by variable generation and with substantial energy storage. Probabilistic

  23. NASA envisions clean energy from algae

    It is a process that produces "clean energy" biofuels very efficiently and very resourcefully. Oil producing algae. "The reason why algae are so interesting is because some of them produce lots of oil," said Jonathan Trent, the lead research scientist on the Spaceship Earth project at NASA Ames Research Center, Moffett Field, Calif.

  24. Biden marks Earth Day with new solar energy funds and steps to ...

    President Joe Biden traveled to Triangle, Virginia, Monday to mark Earth Day, unveiling $7 billion in grant funding for solar power under the Inflation Reduction Act and announcing new steps to ...

  25. Catan: New Energies challenges players to build

    Today, we're going full nerd to talk about a new board game — Catan: New Energies. The game's goal is simple: Build and develop a modern-day island without catastrophically polluting it.

  26. Renewable Energy Essays & Research Papers

    Renewable Energy Essay Examples 🗨️ More than 20000 essays Find the foremost Renewable Energy essay to get results! ... Energy is a prime requirement of our day-to-day life functioning and thus in general words energy is defined as the ability to do work. In the present world, energy plays a very important role in day-to-day life.

  27. Earth Day 2024: A Look at 3 Places Adapting Quickly to Fight Climate

    About 7.3 million battery electric vehicles were sold around the world in 2022, according to the International Energy Agency. More than half of these cars, about 4.4 million, were sold in China.

  28. U.S. Department of Energy to Invest Over $100 Million to Prepare the

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) today announced its intent to issue multiple funding opportunity announcements (FOAs) totaling over $100 million for field demonstrations and other research to support better planning and operation of the electric grid.

  29. Elon University partners with eight other colleges and universities for

    In exchange, Elon University will receive renewable energy credits, which can be used to account for greenhouse gas emissions related to purchased electricity. ... Elon dancers blend art and science for neuroscience study, concert on SURF Day. ... Maya Simmons '24 won first place in the 2024 Phillip L. Carret Thomas Jefferson Essay Contest ...

  30. Energy and Electrification

    Energy efficiency, renewable energy and electrification of buildings and transportation are key climate action strategies to support a healthier future. The City of Santa Clara is uniquely poised to support our community in climate action and sustainability because of having our own electric utility provider, Silicon Valley Power (SVP). SVP has ...