Hypothesis Testing (cont...)

Hypothesis testing, the null and alternative hypothesis.

In order to undertake hypothesis testing you need to express your research hypothesis as a null and alternative hypothesis. The null hypothesis and alternative hypothesis are statements regarding the differences or effects that occur in the population. You will use your sample to test which statement (i.e., the null hypothesis or alternative hypothesis) is most likely (although technically, you test the evidence against the null hypothesis). So, with respect to our teaching example, the null and alternative hypothesis will reflect statements about all statistics students on graduate management courses.

The null hypothesis is essentially the "devil's advocate" position. That is, it assumes that whatever you are trying to prove did not happen ( hint: it usually states that something equals zero). For example, the two different teaching methods did not result in different exam performances (i.e., zero difference). Another example might be that there is no relationship between anxiety and athletic performance (i.e., the slope is zero). The alternative hypothesis states the opposite and is usually the hypothesis you are trying to prove (e.g., the two different teaching methods did result in different exam performances). Initially, you can state these hypotheses in more general terms (e.g., using terms like "effect", "relationship", etc.), as shown below for the teaching methods example:

Depending on how you want to "summarize" the exam performances will determine how you might want to write a more specific null and alternative hypothesis. For example, you could compare the mean exam performance of each group (i.e., the "seminar" group and the "lectures-only" group). This is what we will demonstrate here, but other options include comparing the distributions , medians , amongst other things. As such, we can state:

Now that you have identified the null and alternative hypotheses, you need to find evidence and develop a strategy for declaring your "support" for either the null or alternative hypothesis. We can do this using some statistical theory and some arbitrary cut-off points. Both these issues are dealt with next.

Significance levels

The level of statistical significance is often expressed as the so-called p -value . Depending on the statistical test you have chosen, you will calculate a probability (i.e., the p -value) of observing your sample results (or more extreme) given that the null hypothesis is true . Another way of phrasing this is to consider the probability that a difference in a mean score (or other statistic) could have arisen based on the assumption that there really is no difference. Let us consider this statement with respect to our example where we are interested in the difference in mean exam performance between two different teaching methods. If there really is no difference between the two teaching methods in the population (i.e., given that the null hypothesis is true), how likely would it be to see a difference in the mean exam performance between the two teaching methods as large as (or larger than) that which has been observed in your sample?

So, you might get a p -value such as 0.03 (i.e., p = .03). This means that there is a 3% chance of finding a difference as large as (or larger than) the one in your study given that the null hypothesis is true. However, you want to know whether this is "statistically significant". Typically, if there was a 5% or less chance (5 times in 100 or less) that the difference in the mean exam performance between the two teaching methods (or whatever statistic you are using) is as different as observed given the null hypothesis is true, you would reject the null hypothesis and accept the alternative hypothesis. Alternately, if the chance was greater than 5% (5 times in 100 or more), you would fail to reject the null hypothesis and would not accept the alternative hypothesis. As such, in this example where p = .03, we would reject the null hypothesis and accept the alternative hypothesis. We reject it because at a significance level of 0.03 (i.e., less than a 5% chance), the result we obtained could happen too frequently for us to be confident that it was the two teaching methods that had an effect on exam performance.

Whilst there is relatively little justification why a significance level of 0.05 is used rather than 0.01 or 0.10, for example, it is widely used in academic research. However, if you want to be particularly confident in your results, you can set a more stringent level of 0.01 (a 1% chance or less; 1 in 100 chance or less).

Testimonials

One- and two-tailed predictions

When considering whether we reject the null hypothesis and accept the alternative hypothesis, we need to consider the direction of the alternative hypothesis statement. For example, the alternative hypothesis that was stated earlier is:

The alternative hypothesis tells us two things. First, what predictions did we make about the effect of the independent variable(s) on the dependent variable(s)? Second, what was the predicted direction of this effect? Let's use our example to highlight these two points.

Sarah predicted that her teaching method (independent variable: teaching method), whereby she not only required her students to attend lectures, but also seminars, would have a positive effect (that is, increased) students' performance (dependent variable: exam marks). If an alternative hypothesis has a direction (and this is how you want to test it), the hypothesis is one-tailed. That is, it predicts direction of the effect. If the alternative hypothesis has stated that the effect was expected to be negative, this is also a one-tailed hypothesis.

Alternatively, a two-tailed prediction means that we do not make a choice over the direction that the effect of the experiment takes. Rather, it simply implies that the effect could be negative or positive. If Sarah had made a two-tailed prediction, the alternative hypothesis might have been:

In other words, we simply take out the word "positive", which implies the direction of our effect. In our example, making a two-tailed prediction may seem strange. After all, it would be logical to expect that "extra" tuition (going to seminar classes as well as lectures) would either have a positive effect on students' performance or no effect at all, but certainly not a negative effect. However, this is just our opinion (and hope) and certainly does not mean that we will get the effect we expect. Generally speaking, making a one-tail prediction (i.e., and testing for it this way) is frowned upon as it usually reflects the hope of a researcher rather than any certainty that it will happen. Notable exceptions to this rule are when there is only one possible way in which a change could occur. This can happen, for example, when biological activity/presence in measured. That is, a protein might be "dormant" and the stimulus you are using can only possibly "wake it up" (i.e., it cannot possibly reduce the activity of a "dormant" protein). In addition, for some statistical tests, one-tailed tests are not possible.

Rejecting or failing to reject the null hypothesis

Let's return finally to the question of whether we reject or fail to reject the null hypothesis.

If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis. Alternatively, if the significance level is above the cut-off value, we fail to reject the null hypothesis and cannot accept the alternative hypothesis. You should note that you cannot accept the null hypothesis, but only find evidence against it.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

9.1: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 23459

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

\(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

\(H_a\): The alternative hypothesis: It is a claim about the population that is contradictory to \(H_0\) and what we conclude when we reject \(H_0\). This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_0\)" if the sample information favors the alternative hypothesis or "do not reject \(H_0\)" or "decline to reject \(H_0\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 66\)
  • \(H_{a}: \mu \_ 66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 5\)
  • \(H_{a}: \mu < 5\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu \_ 45\)
  • \(H_{a}: \mu \_ 45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p \_ 0.40\)
  • \(H_{a}: p \_ 0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 , the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 H a : More than 30 percent of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-1-null-and-alternative-hypotheses

© Jan 23, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

What 'Fail to Reject' Means in a Hypothesis Test

Casarsa Guru/Getty Images

  • Inferential Statistics
  • Statistics Tutorials
  • Probability & Games
  • Descriptive Statistics
  • Applications Of Statistics
  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade
  • Ph.D., Mathematics, Purdue University
  • M.S., Mathematics, Purdue University
  • B.A., Mathematics, Physics, and Chemistry, Anderson University

In statistics , scientists can perform a number of different significance tests to determine if there is a relationship between two phenomena. One of the first they usually perform is a null hypothesis test. In short, the null hypothesis states that there is no meaningful relationship between two measured phenomena. After a performing a test, scientists can:

  • Reject the null hypothesis (meaning there is a definite, consequential relationship between the two phenomena), or
  • Fail to reject the null hypothesis (meaning the test has not identified a consequential relationship between the two phenomena)

Key Takeaways: The Null Hypothesis

• In a test of significance, the null hypothesis states that there is no meaningful relationship between two measured phenomena.

• By comparing the null hypothesis to an alternative hypothesis, scientists can either reject or fail to reject the null hypothesis.

• The null hypothesis cannot be positively proven. Rather, all that scientists can determine from a test of significance is that the evidence collected does or does not disprove the null hypothesis.

It is important to note that a failure to reject does not mean that the null hypothesis is true—only that the test did not prove it to be false. In some cases, depending on the experiment, a relationship may exist between two phenomena that is not identified by the experiment. In such cases, new experiments must be designed to rule out alternative hypotheses.

Null vs. Alternative Hypothesis

The null hypothesis is considered the default in a scientific experiment . In contrast, an alternative hypothesis is one that claims that there is a meaningful relationship between two phenomena. These two competing hypotheses can be compared by performing a statistical hypothesis test, which determines whether there is a statistically significant relationship between the data.

For example, scientists studying the water quality of a stream may wish to determine whether a certain chemical affects the acidity of the water. The null hypothesis—that the chemical has no effect on the water quality—can be tested by measuring the pH level of two water samples, one of which contains some of the chemical and one of which has been left untouched. If the sample with the added chemical is measurably more or less acidic—as determined through statistical analysis—it is a reason to reject the null hypothesis. If the sample's acidity is unchanged, it is a reason to not reject the null hypothesis.

When scientists design experiments, they attempt to find evidence for the alternative hypothesis. They do not try to prove that the null hypothesis is true. The null hypothesis is assumed to be an accurate statement until contrary evidence proves otherwise. As a result, a test of significance does not produce any evidence pertaining to the truth of the null hypothesis.

Failing to Reject vs. Accept

In an experiment, the null hypothesis and the alternative hypothesis should be carefully formulated such that one and only one of these statements is true. If the collected data supports the alternative hypothesis, then the null hypothesis can be rejected as false. However, if the data does not support the alternative hypothesis, this does not mean that the null hypothesis is true. All it means is that the null hypothesis has not been disproven—hence the term "failure to reject." A "failure to reject" a hypothesis should not be confused with acceptance.

In mathematics, negations are typically formed by simply placing the word “not” in the correct place. Using this convention, tests of significance allow scientists to either reject or not reject the null hypothesis. It sometimes takes a moment to realize that “not rejecting” is not the same as "accepting."

Null Hypothesis Example

In many ways, the philosophy behind a test of significance is similar to that of a trial. At the beginning of the proceedings, when the defendant enters a plea of “not guilty,” it is analogous to the statement of the null hypothesis. While the defendant may indeed be innocent, there is no plea of “innocent” to be formally made in court. The alternative hypothesis of “guilty” is what the prosecutor attempts to demonstrate.

The presumption at the outset of the trial is that the defendant is innocent. In theory, there is no need for the defendant to prove that he or she is innocent. The burden of proof is on the prosecuting attorney, who must marshal enough evidence to convince the jury that the defendant is guilty beyond a reasonable doubt. Likewise, in a test of significance, a scientist can only reject the null hypothesis by providing evidence for the alternative hypothesis.

If there is not enough evidence in a trial to demonstrate guilt, then the defendant is declared “not guilty.” This claim has nothing to do with innocence; it merely reflects the fact that the prosecution failed to provide enough evidence of guilt. In a similar way, a failure to reject the null hypothesis in a significance test does not mean that the null hypothesis is true. It only means that the scientist was unable to provide enough evidence for the alternative hypothesis.

For example, scientists testing the effects of a certain pesticide on crop yields might design an experiment in which some crops are left untreated and others are treated with varying amounts of pesticide. Any result in which the crop yields varied based on pesticide exposure—assuming all other variables are equal—would provide strong evidence for the alternative hypothesis (that the pesticide does affect crop yields). As a result, the scientists would have reason to reject the null hypothesis.

  • Hypothesis Test for the Difference of Two Population Proportions
  • Type I and Type II Errors in Statistics
  • Null Hypothesis and Alternative Hypothesis
  • Null Hypothesis Examples
  • How to Conduct a Hypothesis Test
  • An Example of a Hypothesis Test
  • What Is a P-Value?
  • The Difference Between Type I and Type II Errors in Hypothesis Testing
  • What Is a Hypothesis? (Science)
  • Null Hypothesis Definition and Examples
  • Hypothesis Test Example
  • What Level of Alpha Determines Statistical Significance?
  • The Runs Test for Random Sequences
  • How to Do Hypothesis Tests With the Z.TEST Function in Excel
  • Scientific Method Vocabulary Terms
  • What Is the Difference Between Alpha and P-Values?

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null and Alternative Hypotheses | Definitions & Examples

Published on 5 October 2022 by Shaun Turney . Revised on 6 December 2022.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis (H 0 ): There’s no effect in the population .
  • Alternative hypothesis (H A ): There’s an effect in the population.

The effect is usually the effect of the independent variable on the dependent variable .

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, differences between null and alternative hypotheses, how to write null and alternative hypotheses, frequently asked questions about null and alternative hypotheses.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”, the null hypothesis (H 0 ) answers “No, there’s no effect in the population.” On the other hand, the alternative hypothesis (H A ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample.

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept. Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect”, “no difference”, or “no relationship”. When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis (H A ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect”, “a difference”, or “a relationship”. When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes > or <). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question
  • They both make claims about the population
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis (H 0 ): Independent variable does not affect dependent variable .
  • Alternative hypothesis (H A ): Independent variable affects dependent variable .

Test-specific

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Turney, S. (2022, December 06). Null and Alternative Hypotheses | Definitions & Examples. Scribbr. Retrieved 22 April 2024, from https://www.scribbr.co.uk/stats/null-and-alternative-hypothesis/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, levels of measurement: nominal, ordinal, interval, ratio, the standard normal distribution | calculator, examples & uses, types of variables in research | definitions & examples.

P-Value And Statistical Significance: What It Is & Why It Matters

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

The p-value in statistics quantifies the evidence against a null hypothesis. A low p-value suggests data is inconsistent with the null, potentially favoring an alternative hypothesis. Common significance thresholds are 0.05 or 0.01.

P-Value Explained in Normal Distribution

Hypothesis testing

When you perform a statistical test, a p-value helps you determine the significance of your results in relation to the null hypothesis.

The null hypothesis (H0) states no relationship exists between the two variables being studied (one variable does not affect the other). It states the results are due to chance and are not significant in supporting the idea being investigated. Thus, the null hypothesis assumes that whatever you try to prove did not happen.

The alternative hypothesis (Ha or H1) is the one you would believe if the null hypothesis is concluded to be untrue.

The alternative hypothesis states that the independent variable affected the dependent variable, and the results are significant in supporting the theory being investigated (i.e., the results are not due to random chance).

What a p-value tells you

A p-value, or probability value, is a number describing how likely it is that your data would have occurred by random chance (i.e., that the null hypothesis is true).

The level of statistical significance is often expressed as a p-value between 0 and 1.

The smaller the p -value, the less likely the results occurred by random chance, and the stronger the evidence that you should reject the null hypothesis.

Remember, a p-value doesn’t tell you if the null hypothesis is true or false. It just tells you how likely you’d see the data you observed (or more extreme data) if the null hypothesis was true. It’s a piece of evidence, not a definitive proof.

Example: Test Statistic and p-Value

Suppose you’re conducting a study to determine whether a new drug has an effect on pain relief compared to a placebo. If the new drug has no impact, your test statistic will be close to the one predicted by the null hypothesis (no difference between the drug and placebo groups), and the resulting p-value will be close to 1. It may not be precisely 1 because real-world variations may exist. Conversely, if the new drug indeed reduces pain significantly, your test statistic will diverge further from what’s expected under the null hypothesis, and the p-value will decrease. The p-value will never reach zero because there’s always a slim possibility, though highly improbable, that the observed results occurred by random chance.

P-value interpretation

The significance level (alpha) is a set probability threshold (often 0.05), while the p-value is the probability you calculate based on your study or analysis.

A p-value less than or equal to your significance level (typically ≤ 0.05) is statistically significant.

A p-value less than or equal to a predetermined significance level (often 0.05 or 0.01) indicates a statistically significant result, meaning the observed data provide strong evidence against the null hypothesis.

This suggests the effect under study likely represents a real relationship rather than just random chance.

For instance, if you set α = 0.05, you would reject the null hypothesis if your p -value ≤ 0.05. 

It indicates strong evidence against the null hypothesis, as there is less than a 5% probability the null is correct (and the results are random).

Therefore, we reject the null hypothesis and accept the alternative hypothesis.

Example: Statistical Significance

Upon analyzing the pain relief effects of the new drug compared to the placebo, the computed p-value is less than 0.01, which falls well below the predetermined alpha value of 0.05. Consequently, you conclude that there is a statistically significant difference in pain relief between the new drug and the placebo.

What does a p-value of 0.001 mean?

A p-value of 0.001 is highly statistically significant beyond the commonly used 0.05 threshold. It indicates strong evidence of a real effect or difference, rather than just random variation.

Specifically, a p-value of 0.001 means there is only a 0.1% chance of obtaining a result at least as extreme as the one observed, assuming the null hypothesis is correct.

Such a small p-value provides strong evidence against the null hypothesis, leading to rejecting the null in favor of the alternative hypothesis.

A p-value more than the significance level (typically p > 0.05) is not statistically significant and indicates strong evidence for the null hypothesis.

This means we retain the null hypothesis and reject the alternative hypothesis. You should note that you cannot accept the null hypothesis; we can only reject it or fail to reject it.

Note : when the p-value is above your threshold of significance,  it does not mean that there is a 95% probability that the alternative hypothesis is true.

One-Tailed Test

Probability and statistical significance in ab testing. Statistical significance in a b experiments

Two-Tailed Test

statistical significance two tailed

How do you calculate the p-value ?

Most statistical software packages like R, SPSS, and others automatically calculate your p-value. This is the easiest and most common way.

Online resources and tables are available to estimate the p-value based on your test statistic and degrees of freedom.

These tables help you understand how often you would expect to see your test statistic under the null hypothesis.

Understanding the Statistical Test:

Different statistical tests are designed to answer specific research questions or hypotheses. Each test has its own underlying assumptions and characteristics.

For example, you might use a t-test to compare means, a chi-squared test for categorical data, or a correlation test to measure the strength of a relationship between variables.

Be aware that the number of independent variables you include in your analysis can influence the magnitude of the test statistic needed to produce the same p-value.

This factor is particularly important to consider when comparing results across different analyses.

Example: Choosing a Statistical Test

If you’re comparing the effectiveness of just two different drugs in pain relief, a two-sample t-test is a suitable choice for comparing these two groups. However, when you’re examining the impact of three or more drugs, it’s more appropriate to employ an Analysis of Variance ( ANOVA) . Utilizing multiple pairwise comparisons in such cases can lead to artificially low p-values and an overestimation of the significance of differences between the drug groups.

How to report

A statistically significant result cannot prove that a research hypothesis is correct (which implies 100% certainty).

Instead, we may state our results “provide support for” or “give evidence for” our research hypothesis (as there is still a slight probability that the results occurred by chance and the null hypothesis was correct – e.g., less than 5%).

Example: Reporting the results

In our comparison of the pain relief effects of the new drug and the placebo, we observed that participants in the drug group experienced a significant reduction in pain ( M = 3.5; SD = 0.8) compared to those in the placebo group ( M = 5.2; SD  = 0.7), resulting in an average difference of 1.7 points on the pain scale (t(98) = -9.36; p < 0.001).

The 6th edition of the APA style manual (American Psychological Association, 2010) states the following on the topic of reporting p-values:

“When reporting p values, report exact p values (e.g., p = .031) to two or three decimal places. However, report p values less than .001 as p < .001.

The tradition of reporting p values in the form p < .10, p < .05, p < .01, and so forth, was appropriate in a time when only limited tables of critical values were available.” (p. 114)

  • Do not use 0 before the decimal point for the statistical value p as it cannot equal 1. In other words, write p = .001 instead of p = 0.001.
  • Please pay attention to issues of italics ( p is always italicized) and spacing (either side of the = sign).
  • p = .000 (as outputted by some statistical packages such as SPSS) is impossible and should be written as p < .001.
  • The opposite of significant is “nonsignificant,” not “insignificant.”

Why is the p -value not enough?

A lower p-value  is sometimes interpreted as meaning there is a stronger relationship between two variables.

However, statistical significance means that it is unlikely that the null hypothesis is true (less than 5%).

To understand the strength of the difference between the two groups (control vs. experimental) a researcher needs to calculate the effect size .

When do you reject the null hypothesis?

In statistical hypothesis testing, you reject the null hypothesis when the p-value is less than or equal to the significance level (α) you set before conducting your test. The significance level is the probability of rejecting the null hypothesis when it is true. Commonly used significance levels are 0.01, 0.05, and 0.10.

Remember, rejecting the null hypothesis doesn’t prove the alternative hypothesis; it just suggests that the alternative hypothesis may be plausible given the observed data.

The p -value is conditional upon the null hypothesis being true but is unrelated to the truth or falsity of the alternative hypothesis.

What does p-value of 0.05 mean?

If your p-value is less than or equal to 0.05 (the significance level), you would conclude that your result is statistically significant. This means the evidence is strong enough to reject the null hypothesis in favor of the alternative hypothesis.

Are all p-values below 0.05 considered statistically significant?

No, not all p-values below 0.05 are considered statistically significant. The threshold of 0.05 is commonly used, but it’s just a convention. Statistical significance depends on factors like the study design, sample size, and the magnitude of the observed effect.

A p-value below 0.05 means there is evidence against the null hypothesis, suggesting a real effect. However, it’s essential to consider the context and other factors when interpreting results.

Researchers also look at effect size and confidence intervals to determine the practical significance and reliability of findings.

How does sample size affect the interpretation of p-values?

Sample size can impact the interpretation of p-values. A larger sample size provides more reliable and precise estimates of the population, leading to narrower confidence intervals.

With a larger sample, even small differences between groups or effects can become statistically significant, yielding lower p-values. In contrast, smaller sample sizes may not have enough statistical power to detect smaller effects, resulting in higher p-values.

Therefore, a larger sample size increases the chances of finding statistically significant results when there is a genuine effect, making the findings more trustworthy and robust.

Can a non-significant p-value indicate that there is no effect or difference in the data?

No, a non-significant p-value does not necessarily indicate that there is no effect or difference in the data. It means that the observed data do not provide strong enough evidence to reject the null hypothesis.

There could still be a real effect or difference, but it might be smaller or more variable than the study was able to detect.

Other factors like sample size, study design, and measurement precision can influence the p-value. It’s important to consider the entire body of evidence and not rely solely on p-values when interpreting research findings.

Can P values be exactly zero?

While a p-value can be extremely small, it cannot technically be absolute zero. When a p-value is reported as p = 0.000, the actual p-value is too small for the software to display. This is often interpreted as strong evidence against the null hypothesis. For p values less than 0.001, report as p < .001

Further Information

  • P-values and significance tests (Kahn Academy)
  • Hypothesis testing and p-values (Kahn Academy)
  • Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond “ p “< 0.05”.
  • Criticism of using the “ p “< 0.05”.
  • Publication manual of the American Psychological Association
  • Statistics for Psychology Book Download

Bland, J. M., & Altman, D. G. (1994). One and two sided tests of significance: Authors’ reply.  BMJ: British Medical Journal ,  309 (6958), 874.

Goodman, S. N., & Royall, R. (1988). Evidence and scientific research.  American Journal of Public Health ,  78 (12), 1568-1574.

Goodman, S. (2008, July). A dirty dozen: twelve p-value misconceptions . In  Seminars in hematology  (Vol. 45, No. 3, pp. 135-140). WB Saunders.

Lang, J. M., Rothman, K. J., & Cann, C. I. (1998). That confounded P-value.  Epidemiology (Cambridge, Mass.) ,  9 (1), 7-8.

Print Friendly, PDF & Email

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6.6 - confidence intervals & hypothesis testing.

Confidence intervals and hypothesis tests are similar in that they are both inferential methods that rely on an approximated sampling distribution. Confidence intervals use data from a sample to estimate a population parameter. Hypothesis tests use data from a sample to test a specified hypothesis. Hypothesis testing requires that we have a hypothesized parameter. 

The simulation methods used to construct bootstrap distributions and randomization distributions are similar. One primary difference is a bootstrap distribution is centered on the observed sample statistic while a randomization distribution is centered on the value in the null hypothesis. 

In Lesson 4, we learned confidence intervals contain a range of reasonable estimates of the population parameter. All of the confidence intervals we constructed in this course were two-tailed. These two-tailed confidence intervals go hand-in-hand with the two-tailed hypothesis tests we learned in Lesson 5. The conclusion drawn from a two-tailed confidence interval is usually the same as the conclusion drawn from a two-tailed hypothesis test. In other words, if the the 95% confidence interval contains the hypothesized parameter, then a hypothesis test at the 0.05 \(\alpha\) level will almost always fail to reject the null hypothesis. If the 95% confidence interval does not contain the hypothesize parameter, then a hypothesis test at the 0.05 \(\alpha\) level will almost always reject the null hypothesis.

Example: Mean Section  

This example uses the Body Temperature dataset built in to StatKey for constructing a  bootstrap confidence interval and conducting a randomization test . 

Let's start by constructing a 95% confidence interval using the percentile method in StatKey:

  

The 95% confidence interval for the mean body temperature in the population is [98.044, 98.474].

Now, what if we want to know if there is enough evidence that the mean body temperature is different from 98.6 degrees? We can conduct a hypothesis test. Because 98.6 is not contained within the 95% confidence interval, it is not a reasonable estimate of the population mean. We should expect to have a p value less than 0.05 and to reject the null hypothesis.

\(H_0: \mu=98.6\)

\(H_a: \mu \ne 98.6\)

\(p = 2*0.00080=0.00160\)

\(p \leq 0.05\), reject the null hypothesis

There is evidence that the population mean is different from 98.6 degrees. 

Selecting the Appropriate Procedure Section  

The decision of whether to use a confidence interval or a hypothesis test depends on the research question. If we want to estimate a population parameter, we use a confidence interval. If we are given a specific population parameter (i.e., hypothesized value), and want to determine the likelihood that a population with that parameter would produce a sample as different as our sample, we use a hypothesis test. Below are a few examples of selecting the appropriate procedure. 

Example: Cheese Consumption Section  

Research question: How much cheese (in pounds) does an average American adult consume annually? 

What is the appropriate inferential procedure? 

Cheese consumption, in pounds, is a quantitative variable. We have one group: American adults. We are not given a specific value to test, so the appropriate procedure here is a  confidence interval for a single mean .

Example: Age Section  

Research question:  Is the average age in the population of all STAT 200 students greater than 30 years?

There is one group: STAT 200 students. The variable of interest is age in years, which is quantitative. The research question includes a specific population parameter to test: 30 years. The appropriate procedure is a  hypothesis test for a single mean .

Try it! Section  

For each research question, identify the variables, the parameter of interest and decide on the the appropriate inferential procedure.

Research question:  How strong is the correlation between height (in inches) and weight (in pounds) in American teenagers?

There are two variables of interest: (1) height in inches and (2) weight in pounds. Both are quantitative variables. The parameter of interest is the correlation between these two variables.

We are not given a specific correlation to test. We are being asked to estimate the strength of the correlation. The appropriate procedure here is a  confidence interval for a correlation . 

Research question:  Are the majority of registered voters planning to vote in the next presidential election?

The parameter that is being tested here is a single proportion. We have one group: registered voters. "The majority" would be more than 50%, or p>0.50. This is a specific parameter that we are testing. The appropriate procedure here is a  hypothesis test for a single proportion .

Research question:  On average, are STAT 200 students younger than STAT 500 students?

We have two independent groups: STAT 200 students and STAT 500 students. We are comparing them in terms of average (i.e., mean) age.

If STAT 200 students are younger than STAT 500 students, that translates to \(\mu_{200}<\mu_{500}\) which is an alternative hypothesis. This could also be written as \(\mu_{200}-\mu_{500}<0\), where 0 is a specific population parameter that we are testing. 

The appropriate procedure here is a  hypothesis test for the difference in two means .

Research question:  On average, how much taller are adult male giraffes compared to adult female giraffes?

There are two groups: males and females. The response variable is height, which is quantitative. We are not given a specific parameter to test, instead we are asked to estimate "how much" taller males are than females. The appropriate procedure is a  confidence interval for the difference in two means .

Research question:  Are STAT 500 students more likely than STAT 200 students to be employed full-time?

There are two independent groups: STAT 500 students and STAT 200 students. The response variable is full-time employment status which is categorical with two levels: yes/no.

If STAT 500 students are more likely than STAT 200 students to be employed full-time, that translates to \(p_{500}>p_{200}\) which is an alternative hypothesis. This could also be written as \(p_{500}-p_{200}>0\), where 0 is a specific parameter that we are testing. The appropriate procedure is a  hypothesis test for the difference in two proportions.

Research question:  Is there is a relationship between outdoor temperature (in Fahrenheit) and coffee sales (in cups per day)?

There are two variables here: (1) temperature in Fahrenheit and (2) cups of coffee sold in a day. Both variables are quantitative. The parameter of interest is the correlation between these two variables.

If there is a relationship between the variables, that means that the correlation is different from zero. This is a specific parameter that we are testing. The appropriate procedure is a  hypothesis test for a correlation . 

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

AP®︎/College Statistics

Course: ap®︎/college statistics   >   unit 10.

  • Idea behind hypothesis testing
  • Examples of null and alternative hypotheses
  • Writing null and alternative hypotheses
  • P-values and significance tests
  • Comparing P-values to different significance levels
  • Estimating a P-value from a simulation
  • Estimating P-values from simulations

Using P-values to make conclusions

  • (Choice A)   Fail to reject H 0 ‍   A Fail to reject H 0 ‍  
  • (Choice B)   Reject H 0 ‍   and accept H a ‍   B Reject H 0 ‍   and accept H a ‍  
  • (Choice C)   Accept H 0 ‍   C Accept H 0 ‍  
  • (Choice A)   The evidence suggests that these subjects can do better than guessing when identifying the bottled water. A The evidence suggests that these subjects can do better than guessing when identifying the bottled water.
  • (Choice B)   We don't have enough evidence to say that these subjects can do better than guessing when identifying the bottled water. B We don't have enough evidence to say that these subjects can do better than guessing when identifying the bottled water.
  • (Choice C)   The evidence suggests that these subjects were simply guessing when identifying the bottled water. C The evidence suggests that these subjects were simply guessing when identifying the bottled water.
  • (Choice A)   She would have rejected H a ‍   . A She would have rejected H a ‍   .
  • (Choice B)   She would have accepted H 0 ‍   . B She would have accepted H 0 ‍   .
  • (Choice C)   She would have rejected H 0 ‍   and accepted H a ‍   . C She would have rejected H 0 ‍   and accepted H a ‍   .
  • (Choice D)   She would have reached the same conclusion using either α = 0.05 ‍   or α = 0.10 ‍   . D She would have reached the same conclusion using either α = 0.05 ‍   or α = 0.10 ‍   .
  • (Choice A)   The evidence suggests that these bags are being filled with a mean amount that is different than 7.4  kg ‍   . A The evidence suggests that these bags are being filled with a mean amount that is different than 7.4  kg ‍   .
  • (Choice B)   We don't have enough evidence to say that these bags are being filled with a mean amount that is different than 7.4  kg ‍   . B We don't have enough evidence to say that these bags are being filled with a mean amount that is different than 7.4  kg ‍   .
  • (Choice C)   The evidence suggests that these bags are being filled with a mean amount of 7.4  kg ‍   . C The evidence suggests that these bags are being filled with a mean amount of 7.4  kg ‍   .
  • (Choice A)   They would have rejected H a ‍   . A They would have rejected H a ‍   .
  • (Choice B)   They would have accepted H 0 ‍   . B They would have accepted H 0 ‍   .
  • (Choice C)   They would have failed to reject H 0 ‍   . C They would have failed to reject H 0 ‍   .
  • (Choice D)   They would have reached the same conclusion using either α = 0.05 ‍   or α = 0.01 ‍   . D They would have reached the same conclusion using either α = 0.05 ‍   or α = 0.01 ‍   .

Ethics and the significance level α ‍  

Want to join the conversation.

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Incredible Answer

9.8: Hypothesis: Accept or Fail to Reject?

Chapter 1: understanding statistics, chapter 2: summarizing and visualizing data, chapter 3: measure of central tendency, chapter 4: measures of variation, chapter 5: measures of relative standing, chapter 6: probability distributions, chapter 7: estimates, chapter 8: distributions, chapter 9: hypothesis testing, chapter 10: analysis of variance, chapter 11: correlation and regression, chapter 12: statistics in practice.

The JoVE video player is compatible with HTML5 and Adobe Flash. Older browsers that do not support HTML5 and the H.264 video codec will still use a Flash-based video player. We recommend downloading the newest version of Flash here, but we support all versions 10 and above.

reject hypothesis difference

In an experiment, a farm with infected plants is subjected to a widely applicable insecticide.

This insecticide is expected to increase the number of healthy plants after its application. However, at the end of the experiment, the proportion of healthy and infected plants remained the same.

Here, the null hypothesis that the insecticide has no effect seems to hold, but should one accept the hypothesis or fail to reject it?

Accepting this hypothesis would mean that the insecticide is ineffective and cannot improve the plants' health.

This decision actually overlooks the other plausible explanations for the observed results.

In this case, using an unprescribed amount or concentration of insecticide might have resulted in no effect.

There is a possibility of plants being infected by something that the insecticide cannot target.

Failing to reject a null hypothesis means there is no sufficient evidence for the expected or the observed effect.

Today, if scientists had accepted null hypotheses, the discovery of plant viruses or the rediscovery of many extinct species would not have been possible.

The outcome of any hypothesis testing leads to rejecting or not rejecting the null hypothesis. This decision is taken based on the analysis of the data, an appropriate test statistic, an appropriate confidence level, the critical values, and P -values. However, when the evidence suggests that the null hypothesis cannot be rejected, is it right to say, 'Accept' the null hypothesis?

There are two ways to indicate that the null hypothesis is not rejected. 'Accept' the null hypothesis and 'fail to reject' the null hypothesis. Superficially, both these phrases mean the same, but in statistics, the meanings are somewhat different. The phrase 'accept the null hypothesis' implies that the null hypothesis is by nature true, and it is proved. But a hypothesis test simply provides information that there is no sufficient evidence in support of the alternative hypothesis, and therefore the null hypothesis cannot be rejected. The null hypothesis cannot be proven, although the hypothesis test begins with an assumption that the hypothesis is true, and the final result indicates the failure of the rejection of the null hypothesis. Thus, it is always advisable to state 'fail to reject the null hypothesis' instead of 'accept the null hypothesis.'

'Accepting' a hypothesis may also imply that the given hypothesis is now proven, so there is no need to study it further. Nevertheless, that is never the case, as newer scientific evidence often challenges the existing studies. Discovery of viruses and fossils, rediscovery of presumed extinct species, criminal trials, and novel drug tests follow the same principles of testing hypotheses. In those cases, 'accepting' a hypothesis may lead to severe consequences.

Get cutting-edge science videos from J o VE sent straight to your inbox every month.

mktb-description

We use cookies to enhance your experience on our website.

By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.

WeChat QR Code - JoVE

Statology

Statistics Made Easy

Decision Rule Calculator

One-tailed or two-tailed hypothesis?

Significance level

Z-statistic or t-statistic?

Decision Rule: fail to reject the null hypothesis

Explanation:

The p-value for a Z-statistic of 1.34 for a two-tailed test is 0.18025 . Since this p-value is greater than 0.05 , we fail to reject the null hypothesis .

Featured Posts

5 Statistical Biases to Avoid

Hey there. My name is Zach Bobbitt. I have a Master of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

IMAGES

  1. Hypothesis Testing: A Way to Accept or Reject Your Hypothesis Using p

    reject hypothesis difference

  2. Significance Level and Power of a Hypothesis Test Tutorial

    reject hypothesis difference

  3. How to accept or reject a hypothesis?

    reject hypothesis difference

  4. PPT

    reject hypothesis difference

  5. PPT

    reject hypothesis difference

  6. How to Accept & Reject Hypothesis?

    reject hypothesis difference

VIDEO

  1. Hypothesis Testing

  2. HYPOTHESIS STATEMENT IS ACCEPTED OR REJECTED l THESIS TIPS & GUIDE

  3. Type 1 Error & Type 2 Error || Research Aptitude || UGC NET

  4. Difference between Hypothesis and Theory

  5. Rejection Region and Level of Significance

  6. NORMALITY AND IT'S TESTING(KOLMOGOROV-SMIRNOV TEST)WITH SPSS

COMMENTS

  1. Hypothesis Testing

    Typically, if there was a 5% or less chance (5 times in 100 or less) that the difference in the mean exam performance between the two teaching methods (or whatever statistic you are using) is as different as observed given the null hypothesis is true, you would reject the null hypothesis and accept the alternative hypothesis.

  2. What Is The Null Hypothesis & When To Reject It

    When your p-value is less than or equal to your significance level, you reject the null hypothesis. In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis. In this case, the sample data provides ...

  3. When Do You Reject the Null Hypothesis? (3 Examples)

    A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical hypothesis. We always use the following steps to perform a hypothesis test: Step 1: State the null and alternative hypotheses. The null hypothesis, denoted as H0, is the hypothesis that the sample data occurs purely from chance.

  4. Null Hypothesis: Definition, Rejecting & Examples

    The null hypothesis in statistics states that there is no difference between groups or no relationship between variables. It is one of two mutually exclusive hypotheses about a population in a hypothesis test. When your sample contains sufficient evidence, you can reject the null and conclude that the effect is statistically significant.

  5. Null & Alternative Hypotheses

    On the other hand, if you fail to reject the null hypothesis, then you can say that the alternative hypothesis is not supported. Never say that you've proven or disproven a hypothesis. Alternative hypotheses often include phrases such as "an effect," "a difference," or "a relationship."

  6. 9.1: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. \(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  7. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  8. Support or Reject Null Hypothesis in Easy Steps

    Use the P-Value method to support or reject null hypothesis. Step 1: State the null hypothesis and the alternate hypothesis ("the claim"). H o :p ≤ 0.23; H 1 :p > 0.23 (claim) Step 2: Compute by dividing the number of positive respondents from the number in the random sample: 63 / 210 = 0.3.

  9. S.3.1 Hypothesis Testing (Critical Value Approach)

    The critical value for conducting the left-tailed test H0 : μ = 3 versus HA : μ < 3 is the t -value, denoted -t( α, n - 1), such that the probability to the left of it is α. It can be shown using either statistical software or a t -table that the critical value -t0.05,14 is -1.7613. That is, we would reject the null hypothesis H0 : μ = 3 ...

  10. Failing to Reject the Null Hypothesis

    Hi thank you for a wonderful explanation. I have a doubt: My Null hypothesis says: no significant difference between the effect fo A and B treatment Alternative hypothesis: there will be significant difference between the effect of A and B treatment. and my results show that i fail to reject null hypothesis.. Both the treatments were effective ...

  11. 6a.1

    The first step in hypothesis testing is to set up two competing hypotheses. The hypotheses are the most important aspect. If the hypotheses are incorrect, your conclusion will also be incorrect. The two hypotheses are named the null hypothesis and the alternative hypothesis. The null hypothesis is typically denoted as H 0.

  12. 9.1 Null and Alternative Hypotheses

    In other words, the difference equals 0. H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0. Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not.

  13. What 'Fail to Reject' Means in a Hypothesis Test

    Key Takeaways: The Null Hypothesis. • In a test of significance, the null hypothesis states that there is no meaningful relationship between two measured phenomena. • By comparing the null hypothesis to an alternative hypothesis, scientists can either reject or fail to reject the null hypothesis. • The null hypothesis cannot be positively ...

  14. Null and Alternative Hypotheses

    The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test: Null hypothesis (H0): There's no effect in the population. Alternative hypothesis (HA): There's an effect in the population. The effect is usually the effect of the independent variable on the dependent ...

  15. Understanding P-values

    P values are used in hypothesis testing to help decide whether to reject the null hypothesis. The smaller the p value, the more likely you are to reject the null hypothesis. Table of contents. ... For example, in a two-tailed t test, the null hypothesis is that the difference between two groups is zero.

  16. Hypothesis Testing

    Example: Criminal Trial Analogy. First, state 2 hypotheses, the null hypothesis ("H 0 ") and the alternative hypothesis ("H A "). H 0: Defendant is not guilty.; H A: Defendant is guilty.; Usually the H 0 is a statement of "no effect", or "no change", or "chance only" about a population parameter.. While the H A, depending on the situation, is that there is a difference ...

  17. Understanding P-Values and Statistical Significance

    In statistical hypothesis testing, you reject the null hypothesis when the p-value is less than or equal to the significance level (α) you set before conducting your test. The significance level is the probability of rejecting the null hypothesis when it is true. Commonly used significance levels are 0.01, 0.05, and 0.10.

  18. How Hypothesis Tests Work: Significance Levels (Alpha) and P values

    Using P values and Significance Levels Together. If your P value is less than or equal to your alpha level, reject the null hypothesis. The P value results are consistent with our graphical representation. The P value of 0.03112 is significant at the alpha level of 0.05 but not 0.01.

  19. 6.6

    We should expect to have a p value less than 0.05 and to reject the null hypothesis. \(H_0: \mu=98.6\) ... >0\), where 0 is a specific parameter that we are testing. The appropriate procedure is a hypothesis test for the difference in two proportions. Research question: Is there is a relationship between outdoor temperature (in Fahrenheit) and ...

  20. Using P-values to make conclusions (article)

    Onward! We use p -values to make conclusions in significance testing. More specifically, we compare the p -value to a significance level α to make conclusions about our hypotheses. If the p -value is lower than the significance level we chose, then we reject the null hypothesis H 0 in favor of the alternative hypothesis H a .

  21. 9.8: Hypothesis: Accept or Fail to Reject?

    There are two ways to indicate that the null hypothesis is not rejected. 'Accept' the null hypothesis and 'fail to reject' the null hypothesis. Superficially, both these phrases mean the same, but in statistics, the meanings are somewhat different. The phrase 'accept the null hypothesis' implies that the null hypothesis is by nature true, and ...

  22. T-test and Hypothesis Testing (Explained Simply)

    The possible outcomes of hypothesis testing: Reject the null hypothesis —a person is found guilty. Fail to reject the null hypothesis — the accused is acquitted. David decided to state hypotheses in the following way: H₀ — There is no difference in the grade means of those students in class A and those from class B.

  23. Reject the Null or Accept the Alternative? Semantics of Statistical

    The null hypothesis would state that there is no difference between the variables that you are testing (e.g., "there is no difference in the IQs of arts majors and science majors"). ... ." Once again, this is because your study is designed to reject the null hypothesis, not to reject the alternative hypothesis. These are just some general ...

  24. Decision Rule Calculator

    Decision Rule Calculator. In hypothesis testing, we want to know whether we should reject or fail to reject some statistical hypothesis. To make this decision, we compare the p-value of the test statistic to a significance level we have chosen to use for the test. If the p-value is less than the significance level, we reject the null hypothesis.