100+ Great Chemistry Research Topics

image

Table of contents

  • 1 What are the best chemistry research topics?
  • 2 5 Tips for Writing Chemistry Research Papers
  • 3 Chemical Engineering Research Topics
  • 4 Organic Сhemistry Research Topics
  • 5 Іnorganic Сhemistry Research Topics
  • 6 Biomolecular Сhemistry Research Topics
  • 7 Analytical Chemistry Research Topics
  • 8 Computational Chemistry Research Topics
  • 9 Physical Chemistry Research Topics
  • 10 Innovative Chemistry Research Topics
  • 11 Environmental Chemistry Research Topics
  • 12 Green Chemistry Research Topics
  • 13.1 Conclusion

Do you need a topic for your chemistry research paper? Are you unsure of where to start? Don’t worry – we’re here to help. In this post, we’ll go over a series of the best chemistry research paper topics as well as Tips for Writing Chemistry Research Papers on different topics. By the time you finish reading this post, you’ll have plenty of ideas to get started on your next research project!

There are many different subfields of chemistry, so it can be tough to find interesting chemistry topics to write about. If you’re struggling to narrow down your topic, we’ll go over lists of topics in multiple fields of study.

What are the best chemistry research topics?

Doing research is important to help scientists learn more about the world around us. By researching different compounds and elements, we can learn more about how they interact with one another and how they can be used to create new products or improve existing ones.

There are many different topics that you can choose to research in chemistry. Here are just a few examples:

  • The history of chemistry and how it has evolved over time
  • How different chemicals react with one another
  • How to create new compounds or improve existing ones
  • The role of chemistry in the environment
  • The health effects of different chemicals

5 Tips for Writing Chemistry Research Papers

Once you have chosen a topic for your research paper , it is important to follow some tips to ensure that your paper is well-written and accurate. Here are a few tips to get you started:

  • Start by doing some background research on your topic. This will help you understand the basics of the topic and give you a good foundation to build your paper on.
  • Make sure to cite all of the sources that you use in your paper. This will help to show where you got your information and will also help to add credibility to your work.
  • Be sure to proofread your paper before you submit it. This will ensure that there are no errors and that your paper is clear and concise.
  • Get help from a tutor or friend if you are struggling with your paper. They may be able to offer helpful advice or feedback.
  • Take your time when writing your research paper . This is not a race, and it is important to make sure that you do a good job on your research.

By following these tips, you can be sure that your chemistry research paper will be a success! So what are you waiting for? Let’s go over some of the best research paper topics out there.

Chemical Engineering Research Topics

Chemical Engineering is a branch of engineering that deals with the design and application of chemical processes. If you’re wondering how to choose a paper topic, here are some ideas to inspire you:

  • How to create new alloy compounds or improve existing ones
  • The health effects of the food industry chemicals
  • Chemical engineering and sustainable development
  • The future of chemical engineering
  • Chemical engineering and the food industry
  • Chemical engineering and the pharmaceutical industry
  • Chemical engineering and the cosmetics industry
  • Chemical engineering and the petrochemical industry

These are just a few examples – there are many more possibilities out there! So get started on your research today. Who knows what you might discover!

more_shortcode

Organic Сhemistry Research Topics

Organic chemistry is the study of carbon-containing molecules. There are many different organic chemistry research topics that a student could choose to focus on and here are just a few examples of possible research projects in organic chemistry:

  • Investigating new methods for synthesizing chiral molecules
  • Studying the structure and reactivity of carbon nanotubes
  • Investigating metal complexes with organometallic ligands
  • Designing benzene derivatives with improved thermal stability
  • Exploring new ways to control the stereochemistry of chemical reactions
  • Studying the role of enzymes in organic synthesis
  • Investigating new strategies for combating drug resistance
  • Developing new methods for detecting explosives residues
  • Studying the photochemistry of organic molecules
  • Studying the behavior of organometallic compounds in biological systems

Іnorganic Сhemistry Research Topics

Inorganic Chemistry is the study of the chemistry of materials that do not contain carbon. Unlike other chemistry research topics, these include elements such as metals, minerals, and inorganic compounds. If you are looking for inorganic chemistry research topics on inorganic chemistry, here are some ideas to get you started:

  • How different metals react with one another
  • How to create new alloys or improve existing ones
  • The role of inorganic chemistry in the environment
  • Inorganic chemistry and sustainable development
  • The future of inorganic chemistry
  • Inorganic chemistry and the food industry
  • Inorganic chemistry and the pharmaceutical industry
  • Atomic structure progressive scale grading
  • Inorganiс Сhemistry and the cosmetics industry

Biomolecular Сhemistry Research Topics

Biomolecular chemistry is the study of molecules that are important for life. These molecules can be found in all living things, from tiny bacteria to the largest animals. Researchers who work in this field use a variety of techniques to learn more about how these molecules function and how they interact with each other.

If you are looking for essential biomolecular chemistry research topics, here are some ideas to get you started:

  • The structure and function of DNA
  • The structure and function of proteins
  • The role of carbohydrates in the body
  • The role of lipids in the body
  • How enzymes work
  • The role of biochemistry in heart disease
  • Cyanides and their effect on the body
  • The role of biochemistry in cancer treatment
  • The role of biochemistry in Parkison’s disease treatment
  • The role of biochemistry in the immune system

The possibilities are endless for someone willing to dedicate some time to research.

Analytical Chemistry Research Topics

Analytical Chemistry is a type of chemistry that helps scientists figure out what something is made of. This can be done through a variety of methods, such as spectroscopy or chromatography. If you are looking for research topics, here are some ideas to get you started:

  • How food chemicals react with one another
  • Mass spectrometry
  • Analytical aspects of gas and liquid chromatography
  • Analytical chemistry and sustainable development
  • Atomic absorption spectroscopy methods and best practices
  • Analytical chemistry and the pharmaceutical industry in Ibuprofen consumption
  • Analytical chemistry and the cosmetics industry in UV protectors
  • Dispersive x-ray analysis of damaged tissues

Analytical chemistry is considered by many a complex science and there is a lot yet to be discovered in the field.

more_shortcode

Computational Chemistry Research Topics

Computational chemistry is a way to use computers to help chemists understand chemical reactions. This can be done by simulating reactions or by designing new molecules. If you are looking for essential chemistry research topics in computational chemistry, here are some ideas to get you started:

  • Molecular mechanics simulation
  • Reaction rates of complex chemical reactions
  • Designing new molecules: how can simulation help
  • The role of computers in the study of quantum mechanics
  • How to use computers to predict chemical reactions
  • Using computers to understand organic chemistry
  • The future of computational chemistry in organic reactions
  • The impacts of simulation on the development of new medications
  • Combustion reaction simulation impact on engine development
  • Quantum-chemistry simulation review

Computers are cutting-edge technology in chemical research and this relatively new field of study has a ton yet to be explored.

Physical Chemistry Research Topics

Physical chemistry is the study of how matter behaves. It looks at the physical and chemical properties of atoms and molecules and how they interact with each other. If you are looking for physical chemistry research topics, here are some ideas to get you started:

  • Standardization of pH scales
  • Structure of atom on a quantum scale
  • Bonding across atoms and molecules
  • The effect of temperature on chemical reactions
  • The role of light in in-body chemical reactions
  • Chemical kinetics
  • Surface tension and its effects on mixtures
  • The role of pressure in chemical reactions
  • Rates of diffusion in gases and liquids
  • The role of entropy in chemical reactions

Here are just a few samples, but there are plenty more options! Start your research right now!

Innovative Chemistry Research Topics

Innovative chemistry is all about coming up with new ideas and ways to do things. This can be anything from creating new materials to finding new ways to make existing products. If you are looking for ground-breaking chemistry research topics, here are some ideas to get you started:

  • Amino acids side chain effects in protein folding
  • Chemistry in the production of nanomaterials
  • The role of enzymes in chemical reactions
  • Photocatalysis in 3D printing
  • Avoiding pesticides in agriculture
  • Combining chemical and biological processes
  • Gene modification in medicinal chemistry
  • The role of quantum mechanics in chemical reactions
  • Astrochemical research on extraterrestrial molecules
  • Spectroscopy signatures of pressurized organic components

If you need a hand, there are several sites that also offer research papers for sale and can be a great asset as you work to create your own research papers.

Whatever route you decide to take, good luck! And remember – the sky’s the limit when it comes to research! So get started today and see where your studies may take you. Who knows, you might just make a breakthrough discovery!

Environmental Chemistry Research Topics

Environmental Chemistry is the study of how chemicals interact with the environment. This can include anything from the air we breathe to the water we drink. If you are looking for environmental chemistry research topics, here are some ideas to get you started:

  • Plastic effects on ocean life
  • Urban ecology
  • The role of carbon in climate change
  • Air pollution and its effects
  • Water pollution and its effects
  • Chemicals in food and their effect on the body
  • The effect of chemicals on plant life
  • Earth temperature prediction models

A lot of research on the environment is being conducted at the moment because the environment is in danger. There are a lot of environmental problems that need to be solved, and research is the key to solving them.

Green Chemistry Research Topics

Green chemistry is the study of how to make products and processes that are environmentally friendly. This can include anything from finding new ways to recycle materials to developing new products that are biodegradable. If you are looking for green chemistry research topics, here are some ideas to get you started:

  • Recycling and reuse of materials
  • Developing biodegradable materials
  • Improving existing recycling processes
  • Green chemistry and sustainable development
  • The future of green chemistry
  • Green chemistry and the food industry
  • Green chemistry and the pharmaceutical industry
  • Green chemistry and the cosmetics industry

A more environmentally friendly world is something we all aspire for and a lot of research has been conducted on how we can achieve this, making this one of the most promising areas of study. The results have been varied, but there are a few key things we can do to make a difference.

Controversial Chemistry Research Topics

Controversial chemistry is all about hot-button topics that people are passionate about. This can include anything from the use of chemicals in warfare to the health effects of different chemicals. If you are looking for controversial topics to write about , here are some ideas to get you started:

  • The use of chemicals in warfare
  • Gene modification in human babies
  • Bioengineering
  • How fast food chemicals affect the human brain
  • The role of the government in regulating chemicals
  • Evolution of cigarette chemicals over time
  • Chemical effects of CBD oils
  • Antidepressant chemical reactions
  • Synthetic molecules replication methods
  • Gene analysis

Controversial research papers often appear in the media before it has been peer-reviewed and published in a scientific journal. The reason for this is that the media is interested in stories that are new, exciting, and generate a lot of debate.

Chemistry is an incredibly diverse and interesting field, with many controversial topics to write about. If you are looking for a research topic, consider the examples listed in this article. With a little bit of effort, you are sure to find a topic that is both interesting and within your skillset.

In order to be a good researcher, it is important to be able to think critically and solve problems. However, innovation in chemistry research can be challenging. When thinking about how to innovate, it is important to consider both the practical and theoretical aspects of your research. Additionally, try to build on the work of others in order to create something new and unique. With a little bit of effort, you are sure to be able to find a topic that is both interesting and within your skillset.

Happy writing!

Readers also enjoyed

Exploring Cutting-Edge Trends: Engineering Research Paper Topics

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

possible thesis topics in chemistry

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

177 Hot Chemistry Topics Every Student Should Have

chemistry topics

Finding a topic in chemistry may not be every student’s favorite idea. Many college and university students perceive chemistry as a technical field that needs only top minds. Statistics point to a dwindling number of students pursuing chemistry-related courses. For the few who still follow this field, arriving at impressive general chemistry topics is also a hard nut to crack.

Let us first break down the myth concerning chemistry paper topics.

What Is A Chemistry in the Field of Academics?

Chemistry refers to a branch of science specializing in the composition, properties, and structure of elements and compounds. It also looks at how they change and the energy they release or absorb during the change. You will find the latest findings of tests or experiments and what they mean to typical day-to-day life.

Topics in chemistry will therefore range from experimental to theoretical concepts that come into play. Chemistry is applied in what we do regularly and thus the ease of identifying interesting chemistry topics for presentation or research.

When thinking of what to have for your chemistry project topics, consider the following:

  • The specific field of chemistry you are handling
  • The relationship between your idea and the society at large
  • How the topic will impact society positively

To have excellent chemistry topics, ensure that you follow your professor’s instructions to the latter. Many online sites offer help for students, but not all can precisely meet your requirements.

That is why you need a quality writing site that offers you the best chemistry topics for research papers.

What To Avoid When Writing Chemistry Related Topics

The knowledge of the do’s and don’ts of any paper is crucial in giving the best piece. Furthermore, it will help you stick within the scope of your supervisor’s requirements. As such, here are some of the pitfalls to avoid in writing chemistry topics for presentation:

  • A lot of technical terms: The field of chemistry has jargon that can turn off a reader who is new to it. Therefore, using many technological times that are only known to a few individuals for topics in current chemistry may not auger well with the readers.
  • Using numbers in chemistry topics: We understand that issues requiring experiments may have several numerical data. However, these numerals should not be part of the topic. It is because staffing numbers at the beginning of any paper turn off many prospective readers.
  • Lengthy chemistry topics: This does not only apply in chemistry topics but all other papers as well. Extended issues may not give the reader a good picture of the gist of the content. As such, it may confuse them all the more.
  • Do not use rhetorical questions: Unlike English or literature papers, chemistry-related assignments require a specific topic. The idea should be precise and point the reader to what they should expect in the subsequent paragraphs. Remember that there is a difference between scientific papers and those in the humanities and arts fields.

So, whether you are writing chemistry research topics for high school or controversial chemistry topics, always use the right words to present your stance, void of any disputes. Your case should clearly state your stand rather than try to force the reader to adopt your particular point of view.

When presenting your arguments, ensure that you support them with undisputed evidence. Science requires facts rather than mere speculations and hearsay. Therefore, avoid the temptation of assuming that your reader may not be skeptical of your arguments. Persons in science are keen on facts, figures, numbers, and outcomes of various experiments.

Finally, remember always to show the relationship between chemistry and other related fields. Since this is an interdisciplinary subject, its relationship must come out so that the reader can make the comparison for himself/herself.

You can find a hot topic in chemistry from:

  • Chemistry encyclopedias
  • Research findings and other chemistry-related articles online
  • Well-reputed scientific repositories
  • Science documentaries and features

Join me as we explore 177 of the most brilliant chemistry topics from top-notch experts.

Nuclear Chemistry Topics For Undergraduates

  • The role of the electronic structure of species in chemical reactions
  • What is the essence of ions, molecules, and atoms in nuclear chemistry?
  • How does the arrangement of the electrons around atoms influence nuclear reactions?
  • The role of the discovery of radioactivity in nuclear chemistry
  • Discuss the implication of various technologies related to energy in nuclear chemistry
  • How has nuclear chemistry evolved from the 18 th century to date?
  • What facilitates the repulsion of protons during reactions?
  • Assess why a nucleus contains less mass than the total mass of the constituent nucleons
  • The role of the binding energy in ensuring nuclear stability
  • Discuss the application of Einstein’s mass-energy equivalence equation
  • Evaluate reactions that make nuclei change their energy state
  • Evaluate the part of high-energy helium nuclei
  • How to use high-energy electromagnetic radiation in a chemical reaction
  • Why do unstable nuclei experience spontaneous radioactive decay?
  • Discuss positron emission and electron capture
  • Factors that contribute to the formation of a stable isotope
  • Discuss the relevance of first-order kinetics in radioactive decay

Fun Chemistry Research Topics

  • How the PH of acids and bases apply to aqueous solutions
  • Catalysts that are necessary for acid-base reactions in chemistry
  • The role of chemical reactions in living cells and industrial processes
  • Why is it essential to study the atomic structure?
  • Discuss the factors that affect oxidation-reduction reactions or redox reactions.
  • How to produce electrodes and batteries from electrochemical reactions
  • The role of measurements and performing calculations in chemistry
  • How thermochemistry plays out in physical chemistry
  • Evaluate the role of enthalpy and entropy in thermochemistry
  • Factors that affect endothermic reactions and exothermic reactions
  • The role of oxidation numbers in covalent bonding
  • Describe the unique characteristics of the periodic table
  • How to balance chemical equations
  • Factors that affect the rate of chemical reactions
  • Discuss the properties of various mixtures and solutions
  • What is the essence of suspensions, dilutions, and colloids?

Interesting Chemistry Topics

  • The role of nanophotonic in military operations
  • How does the chemical equilibrium influence reactions?
  • The role of chemistry in preparing drugs and dosages
  • Why do most students view chemistry as a prestigious course in college?
  • Evaluate some of the practical applications of surface tensions
  • The role of chemistry in the development of dyes
  • Explain how a paper loses its color when exposed to light and moisture
  • The chemical reactions behind the production of ethanol
  • Evaluate the safety mechanisms applied in gas chambers
  • Compare and contrast between manufactured and naturally occurring oxygen
  • The importance of Lewis Structure in chemical reactions
  • Discuss how hydrogen and oxygen combine to produce water
  • What properties of the laughing gas make it unique from the others?
  • Describe the stabilization process of lithium
  • Evaluate the risks and dangers associated with Ibuprofen
  • The role of chlorophyll in the green color of plants

High School Chemistry Topics

  • Discuss the considerations for a chemistry experiment in the lab
  • How to minimize heat loss during endothermic reactions
  • The role of technology in advancing chemical reactions
  • How UV rays affect the response of gases
  • Evaluate the role of chemistry in medicine
  • Why are most chemicals kept away from light and heat?
  • Discuss why most chemicals have a shorter life span
  • Is the chemistry curriculum in high schools sufficient enough?
  • What makes caffeine an additive element in coffee?
  • Discuss the chemical implications of an overdose
  • What is the role of enzymes in chemical reactions in the body?
  • What makes petroleum products highly flammable?
  • Discuss how scientists can separate the gases from the atmosphere
  • The process of detecting heavy metals in plants
  • How to evaluate the oxidation levels of various experiments
  • Effects of having excess catalysts in a reaction

Current Topics In Medicinal Chemistry

  • The role of chemistry in managing the current coronavirus pandemic
  • Chemical reactions involved in the formation of 5G technology
  • The impact of online journals on the practice of chemistry
  • What should be the minimum academic qualification of a chemistry lecturer?
  • The role of the Brownian chamber if assessing chemical properties of gases
  • How does fermentation occur in the production of ethanol?
  • Why is chemistry an essential component of any society?
  • Discuss the chemical properties involved in the development of ventilators
  • What makes gas masks effective in filtering between different gases?
  • Discuss the process of determining and reducing toxicity levels
  • The role of chemistry in the study of anthropology
  • Chemical reactions involved in dating
  • How acid rain causes corrosion of iron sheets
  • The influence of chemicals on human allergies
  • Discuss the effect of soft drinks on the human body?
  • Is there any chemical implication of serving food on a plastic plate?

Impressive Chemistry Projects Topics

  • The application of chemistry in the cosmetic industry
  • How aluminum foils and cling films affect the quality of food
  • The role of cold weather in facilitating enzymatic action
  • How have scientists made the world healthier and safe?
  • Latest chemical inventions in the field of chemistry
  • Impact of vitamins in the human body reactions
  • The role of fatty acids in human metabolism
  • How the structure and properties of various enzymes affect reactions
  • The role of chemical reactions in biological developments
  • Discuss some of the ethics involved in chemical reactions
  • The part of chemistry in the manufacture of bioweapons
  • Discuss how chemical reactions affect synthetic molecule replication
  • What are the dangers of bioconjugation chemistry?
  • The impact of pesticides in affecting agricultural development
  • Why are photocatalysts necessary in 3D printing?
  • Discuss the role of polymers in chemical reactions

Organic Chemistry Topics

  • Discuss the factors involved in the formation of enolate anions
  • What are the catalysts involved in benzene reactions?
  • What is the procedure of naming benzene derivatives?
  • Discuss the aromatic suitability of compounds in reactions
  • What are the processes involved in the synthesis of alcohols?
  • Discuss the nomenclature and properties of alcohols
  • Evaluate the effectiveness of alkene reactions under extreme heat
  • What are the factors that affect free radical reactions?
  • Discuss the stereoisomerism relationships of various compounds
  • What constitutes the conformation of alkanes?
  • Discuss the properties of functional groups
  • Factors that affect organic acid-base chemistry
  • What is the implication of bond-line structures
  • Factors affecting electronegativity in chemical reactions
  • What are the optimum levels for nucleophilicity and basicity?
  • The role of elimination reactions in chemistry

Inorganic Chemistry Topics

  • Discuss the structure and periodicity of the atom in inorganic chemistry
  • How symmetry and group theory affect inorganic chemistry
  • Analyze the origin of elements and their distribution
  • The impact of the discovery of aspects in inorganic chemistry
  • How the electronic structure of elements affects their reactions
  • Evaluate the block classification of various bonding states
  • Geometrical factors involved in inorganic reactions
  • Discuss the relationship between inorganic chemistry and thermodynamics
  • How the structures of metal complexes affect their reactions
  • Discuss the concepts and scope of the ligand field
  • Evaluate the electronic spectra of complexes
  • Discuss the magnetic properties of complexes
  • How symmetry elements co-relate with optical isomerism
  • Describe the osmotic pressure and the theory of solution
  • Evaluate the idea of ionization
  • Discuss the bonding theories both in inorganic molecules and in the solid-state

Environmental Chemistry Topics

  • Chemistry of air and soil with specific emphasis on the effects of human-made chemical products
  • Discuss the tragedy of environmental problems
  • Eliminating the carbon foot-print using chemistry
  • Discuss the history of environmental regulations
  • Factors that facilitate the formation and destruction of ozone
  • Specific requirements for the Chapman mechanism
  • Catalytic processes of ozone destruction in the 21 st century
  • Analyze the chemistry of ozone depletion using carbon as a case study
  • What are the properties of chemicals that cause ozone destruction?
  • Evaluate the CFC replacements that are effective
  • Analyze the effectiveness of international agreements in environmental management
  • Evaluate the chemical fate of trace gases in the air
  • Factors that necessitate the photochemical smog process
  • Chemical ways of improving air quality
  • How to limit VOC and NO emissions
  • The role of catalytic converters in environmental conservation

Physical Chemistry Topics

  • The role of sulfur-based emissions in contributing to air pollution
  • Discuss the evolution of the atomic structure over time
  • How to use mass number to find the number of fundamental particles in ions and atoms
  • Discuss the existence of isotopes in various reactions
  • Analyze the principles of a simple time of flight (TOF) mass spectrometer
  • How to obtain accurate information about relative isotopic mass
  • Discuss how to write equations for first and successive ionization energies
  • Evaluate the role of The Avogadro Constant in physical chemistry
  • How does the concentration of a substance in a solution affect its reaction?
  • Discuss the functions of the ideal gas equation in physical chemistry
  • Explain the relationship between empirical formula and a molecular formula
  • Discuss the economic challenges of developing chemical processes with a high atom economy
  • How to write balanced equations for reactions in physical chemistry
  • What determines the concentrations and volumes for reactions in solutions?
  • How to predict the charge on a simple ion using the position of the element in the Periodic Table
  • Discuss why multiple bonds contain multiple pairs of electrons

Chemistry Presentation Topics

  • Discuss the environmental and health consequences of polluted air
  • What are the chemical mechanisms involved in the Greenhouse effect?
  • Discuss the global energy use and energy sources
  • Analyze the process of treatment of wastewater and sewage
  • Discuss the effects of chloro-organic, organophosphate, and carbonate insecticides
  • Evaluate the litmus lichen found in West Africa
  • How does Ammonia gas dissolve in water to form aqueous ammonia?
  • Discuss the catalysts that dissolve ionic compounds and other polar solvents
  • What makes some acids strong and others weak?
  • The role of the number of moles in the concentration of an acid
  • How ions present in a solution conduct electricity
  • Discuss the role of chemistry in the development of robotics
  • The role of women in the field of chemistry
  • Engaging ways of learning chemistry apart from experiments
  • Chemical compounds that facilitate the development of cancerous cells
  • Discuss the current results in rational drug design

Do you need help to complete your chemistry paper fast? Our professional assistance is all you need. Try our cheap writing help today and succeed in your chemistry paper effortlessly.

Engineering Research Paper Topics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

  • Privacy Policy

Research Method

Home » 300+ Chemistry Research Topics

300+ Chemistry Research Topics

Table of Contents

Chemistry Research Topics

Chemistry is a fascinating and complex field that explores the composition, properties, and behavior of matter at the molecular and atomic level. As a result, there are numerous chemistry research topics that can be explored, ranging from the development of new materials and drugs to the study of natural compounds and the environment. In this rapidly evolving field, researchers are constantly uncovering new insights and pushing the boundaries of our understanding of chemistry. Whether you are a student, a professional researcher, or simply curious about the world around you, there is always something new to discover in the field of chemistry. In this post, we will explore some of the exciting and important research topics in chemistry today.

Chemistry Research Topics

Chemistry Research Topics are as follows:

Organic Chemistry Research Topics

Organic Chemistry Research Topics are as follows:

  • Development of novel synthetic routes for the production of biologically active natural products
  • Investigation of reaction mechanisms and kinetics for organic transformations
  • Design and synthesis of new catalysts for asymmetric organic reactions
  • Synthesis and characterization of chiral compounds for pharmaceutical applications
  • Development of sustainable methods for the synthesis of organic molecules using renewable resources
  • Discovery of new reaction pathways for the conversion of biomass into high-value chemicals
  • Study of molecular recognition and host-guest interactions for drug design
  • Design and synthesis of new materials for energy storage and conversion
  • Development of efficient and selective methods for C-H functionalization reactions
  • Exploration of the reactivity of reactive intermediates such as radicals and carbenes
  • Study of supramolecular chemistry and self-assembly of organic molecules
  • Development of new methods for the synthesis of heterocyclic compounds
  • Investigation of the biological activities and mechanisms of action of natural products
  • Synthesis of polymeric materials with controlled architecture and functionality
  • Development of new synthetic methodologies for the preparation of bioconjugates
  • Investigation of the mechanisms of enzyme catalysis and the design of enzyme inhibitors
  • Synthesis and characterization of novel fluorescent probes for biological imaging
  • Development of new synthetic strategies for the preparation of carbohydrates and glycoconjugates
  • Study of the properties and reactivity of carbon nanomaterials
  • Design and synthesis of novel drugs for the treatment of diseases such as cancer, diabetes, and Alzheimer’s disease.

Inorganic Chemistry Research Topics

Inorganic Chemistry Research Topics are as follows:

  • Synthesis and characterization of new metal-organic frameworks (MOFs) for gas storage and separation applications
  • Development of new catalysts for sustainable chemical synthesis reactions
  • Investigation of the electronic and magnetic properties of transition metal complexes for spintronics applications
  • Synthesis and characterization of novel nanomaterials for energy storage applications
  • Development of new ligands for metal coordination complexes with potential medical applications
  • Investigation of the mechanism of metal-catalyzed reactions using advanced spectroscopic techniques
  • Synthesis and characterization of new inorganic materials for photocatalytic water splitting
  • Development of new materials for electrochemical carbon dioxide reduction reactions
  • Investigation of the properties of transition metal oxides for energy storage and conversion applications
  • Synthesis and characterization of new metal chalcogenides for optoelectronic applications
  • Development of new methods for the preparation of inorganic nanoparticles with controlled size and shape
  • Investigation of the reactivity and catalytic properties of metal clusters
  • Synthesis and characterization of new metal-organic polyhedra (MOPs) for gas storage and separation applications
  • Development of new methods for the synthesis of metal nanoparticles using environmentally friendly reducing agents
  • Investigation of the properties of metal-organic frameworks for gas sensing applications
  • Synthesis and characterization of new coordination polymers with potential magnetic and electronic properties
  • Development of new materials for electrocatalytic water oxidation reactions
  • Investigation of the properties of metal-organic frameworks for carbon capture and storage applications
  • Synthesis and characterization of new metal-containing polymers with potential applications in electronics and energy storage
  • Development of new methods for the synthesis of metal-organic frameworks using green solvents and renewable resources.

Physical Chemistry Research Topics

Physical Chemistry Research Topics are as follows:

  • Investigation of the properties and interactions of ionic liquids in aqueous and non-aqueous solutions.
  • Development of advanced analytical techniques for the study of protein structure and dynamics.
  • Investigation of the thermodynamic properties of supercritical fluids for use in industrial applications.
  • Development of novel nanomaterials for energy storage applications.
  • Studies of the surface chemistry of catalysts for the optimization of their performance in chemical reactions.
  • Development of new methods for the synthesis of complex organic molecules with improved yields and selectivity.
  • Investigation of the molecular mechanisms involved in the catalysis of biochemical reactions.
  • Development of new strategies for the controlled release of drugs and other bioactive molecules.
  • Studies of the interaction of nanoparticles with biological systems for biomedical applications.
  • Investigation of the thermodynamic properties of materials under extreme conditions of temperature and pressure.
  • Development of new methods for the characterization of materials at the nanoscale.
  • Investigation of the electronic and magnetic properties of materials for use in spintronics.
  • Development of new materials for energy conversion and storage.
  • Studies of the kinetics and thermodynamics of adsorption processes on surfaces.
  • Investigation of the transport properties of ionic liquids for use in energy storage and conversion devices.
  • Development of new materials for the capture and sequestration of greenhouse gases.
  • Studies of the structure and properties of biomolecules for use in drug design and development.
  • Investigation of the dynamics of chemical reactions in solution using time-resolved spectroscopic techniques.
  • Development of new approaches for the synthesis of metallic and semiconductor nanoparticles with controlled size and shape.
  • Studies of the structure and properties of materials for use in electrochemical energy storage devices.

Analytical Chemistry Research Topics

Analytical Chemistry Research Topics are as follows:

  • Development and optimization of analytical techniques for the quantification of trace elements in food and environmental samples.
  • Design and synthesis of novel analytical probes for the detection of biomolecules in complex matrices.
  • Investigation of the fundamental mechanisms involved in the separation and detection of complex mixtures using chromatographic techniques.
  • Development of sensors and biosensors for the detection of chemical and biological species in real-time.
  • Investigation of the chemical and structural properties of nanomaterials and their applications in analytical chemistry.
  • Development and validation of analytical methods for the quantification of contaminants and pollutants in water, air, and soil.
  • Investigation of the molecular mechanisms underlying drug metabolism and toxicity using mass spectrometry.
  • Development of analytical tools for the identification and quantification of drugs of abuse in biological matrices.
  • Investigation of the chemical composition and properties of natural products and their applications in medicine and food science.
  • Development of advanced analytical techniques for the characterization of proteins and peptides.
  • Investigation of the chemistry and mechanism of action of antioxidants in foods and their impact on human health.
  • Development of analytical methods for the detection and quantification of microorganisms in food and environmental samples.
  • Investigation of the molecular mechanisms involved in the biosynthesis and degradation of important biomolecules such as proteins, carbohydrates, and lipids.
  • Development of analytical methods for the detection and quantification of environmental toxins and their impact on human health.
  • Investigation of the structure and properties of biological membranes and their role in drug delivery and disease.
  • Development of analytical techniques for the characterization of complex mixtures such as petroleum and crude oil.
  • Investigation of the chemistry and mechanism of action of natural and synthetic dyes.
  • Development of analytical techniques for the detection and quantification of pharmaceuticals and personal care products in water and wastewater.
  • Investigation of the chemical composition and properties of biopolymers and their applications in biomedicine and biomaterials.
  • Development of analytical methods for the identification and quantification of essential nutrients and vitamins in food and dietary supplements.

Biochemistry Research Topics

Biochemistry Research Topics are as follows:

  • The role of enzymes in metabolic pathways
  • The biochemistry of DNA replication and repair
  • Protein folding and misfolding diseases
  • Lipid metabolism and the pathogenesis of atherosclerosis
  • The role of vitamins and minerals in human metabolism
  • Biochemistry of cancer and the development of targeted therapies
  • The biochemistry of signal transduction pathways and their regulation
  • The mechanisms of antibiotic resistance in bacteria
  • The biochemistry of neurotransmitters and their roles in behavior and disease
  • The role of oxidative stress in aging and age-related diseases
  • The biochemistry of microbial fermentation and its applications in industry
  • The biochemistry of the immune system and its response to pathogens
  • The biochemistry of plant metabolism and its regulation
  • The molecular basis of genetic diseases and gene therapy
  • The biochemistry of membrane transport and its role in cell function
  • The biochemistry of muscle contraction and its regulation
  • The role of lipids in membrane structure and function
  • The biochemistry of photosynthesis and its regulation
  • The biochemistry of RNA splicing and alternative splicing events
  • The biochemistry of epigenetics and its regulation in gene expression.

Environmental Chemistry Research Topics

Environmental Chemistry Research Topics are as follows:

  • Investigating the effects of microplastics on aquatic ecosystems and their potential impact on human health.
  • Examining the impact of climate change on soil quality and nutrient availability in agricultural systems.
  • Developing methods to improve the removal of heavy metals from contaminated soils and waterways.
  • Assessing the effectiveness of natural and synthetic antioxidants in mitigating the effects of air pollution on human health.
  • Investigating the potential for using algae and other microorganisms to sequester carbon dioxide from the atmosphere.
  • Studying the role of biodegradable plastics in reducing plastic waste and their impact on the environment.
  • Examining the impact of pesticides and other agricultural chemicals on water quality and the health of aquatic organisms.
  • Investigating the effects of ocean acidification on marine organisms and ecosystems.
  • Developing new materials and technologies to reduce carbon emissions from industrial processes.
  • Evaluating the effectiveness of phytoremediation in cleaning up contaminated soils and waterways.
  • Studying the impact of microplastics on terrestrial ecosystems and their potential to enter the food chain.
  • Developing sustainable methods for managing and recycling electronic waste.
  • Investigating the role of natural processes, such as weathering and erosion, in regulating atmospheric carbon dioxide levels.
  • Assessing the impact of urbanization on air quality and developing strategies to mitigate pollution in cities.
  • Examining the effects of climate change on the distribution and abundance of species in different ecosystems.
  • Investigating the impact of ocean currents on the distribution of pollutants and other environmental contaminants.
  • Developing new materials and technologies for renewable energy generation and storage.
  • Studying the effects of deforestation on soil quality, water availability, and biodiversity.
  • Assessing the potential for using waste materials, such as agricultural residues and municipal solid waste, as sources of renewable energy.
  • Investigating the role of natural and synthetic chemicals in regulating ecosystem functions, such as nutrient cycling and carbon sequestration.

Polymer Chemistry Research Topics

Polymer Chemistry Research Topics are as follows:

  • Development of new monomers for high-performance polymers
  • Synthesis and characterization of biodegradable polymers for sustainable packaging
  • Design of stimuli-responsive polymers for drug delivery applications
  • Investigation of the properties and applications of conductive polymers
  • Development of new catalysts for controlled/living polymerization
  • Synthesis of polymers with tailored mechanical properties
  • Characterization of the structure-property relationship in polymer nanocomposites
  • Study of the impact of polymer architecture on material properties
  • Design and synthesis of new polymeric materials for energy storage
  • Development of high-throughput methods for polymer synthesis and characterization
  • Exploration of new strategies for polymer recycling and upcycling
  • Synthesis and characterization of responsive polymer networks for smart textiles
  • Design of advanced polymer coatings with self-healing properties
  • Investigation of the impact of processing conditions on the morphology and properties of polymer materials
  • Study of the interactions between polymers and biological systems
  • Development of biocompatible polymers for tissue engineering applications
  • Synthesis and characterization of block copolymers for advanced membrane applications
  • Exploration of the potential of polymer-based sensors and actuators
  • Design of novel polymer electrolytes for advanced batteries and fuel cells
  • Study of the behavior of polymers under extreme conditions, such as high pressure or temperature.

Materials Chemistry Research Topics

Materials Chemistry Research Topics are as follows:

  • Development of new advanced materials for energy storage and conversion
  • Synthesis and characterization of nanomaterials for environmental remediation
  • Design and fabrication of stimuli-responsive materials for drug delivery
  • Investigation of electrocatalytic materials for fuel cells and electrolysis
  • Fabrication of flexible and stretchable electronic materials for wearable devices
  • Development of novel materials for high-performance electronic devices
  • Exploration of organic-inorganic hybrid materials for optoelectronic applications
  • Study of corrosion-resistant coatings for metallic materials
  • Investigation of biomaterials for tissue engineering and regenerative medicine
  • Synthesis and characterization of metal-organic frameworks for gas storage and separation
  • Design and fabrication of new materials for water purification
  • Investigation of carbon-based materials for supercapacitors and batteries
  • Synthesis and characterization of self-healing materials for structural applications
  • Development of new materials for catalysis and chemical reactions
  • Exploration of magnetic materials for spintronic devices
  • Investigation of thermoelectric materials for energy conversion
  • Study of 2D materials for electronic and optoelectronic applications
  • Development of sustainable and eco-friendly materials for packaging
  • Fabrication of advanced materials for sensors and actuators
  • Investigation of materials for high-temperature applications such as aerospace and nuclear industries.

Nuclear Chemistry Research Topics

Nuclear Chemistry Research Topics are as follows:

  • Nuclear fission and fusion reactions
  • Nuclear power plant safety and radiation protection
  • Radioactive waste management and disposal
  • Nuclear fuel cycle and waste reprocessing
  • Nuclear energy and its impact on climate change
  • Radiation therapy for cancer treatment
  • Radiopharmaceuticals for medical imaging
  • Nuclear medicine and its role in diagnostics
  • Nuclear forensics and nuclear security
  • Isotopic analysis in environmental monitoring and pollution control
  • Nuclear magnetic resonance (NMR) spectroscopy
  • Nuclear magnetic resonance imaging (MRI)
  • Radiation damage in materials and radiation effects on electronic devices
  • Nuclear data evaluation and validation
  • Nuclear reactors design and optimization
  • Nuclear fuel performance and irradiation behavior
  • Nuclear energy systems integration and optimization
  • Neutron and gamma-ray detection and measurement techniques
  • Nuclear astrophysics and cosmology
  • Nuclear weapons proliferation and disarmament.

Medicinal Chemistry Research Topics

Medicinal Chemistry Research Topics are as follows:

  • Drug discovery and development
  • Design and synthesis of novel drugs
  • Medicinal chemistry of natural products
  • Structure-activity relationships (SAR) of drugs
  • Rational drug design using computational methods
  • Target identification and validation
  • Drug metabolism and pharmacokinetics (DMPK)
  • Drug delivery systems
  • Development of new antibiotics
  • Design of drugs for the treatment of cancer
  • Development of drugs for the treatment of neurological disorders
  • Medicinal chemistry of peptides and proteins
  • Development of drugs for the treatment of infectious diseases
  • Discovery of new antiviral agents
  • Design of drugs for the treatment of cardiovascular diseases
  • Medicinal chemistry of enzyme inhibitors
  • Development of drugs for the treatment of inflammatory diseases
  • Design of drugs for the treatment of metabolic disorders
  • Medicinal chemistry of anti-cancer agents
  • Development of drugs for the treatment of rare diseases.

Food Chemistry Research Topics

Food Chemistry Research Topics are as follows:

  • Investigating the effect of cooking methods on the nutritional value of food.
  • Analyzing the role of antioxidants in preventing food spoilage and degradation.
  • Examining the effect of food processing techniques on the nutritional value of fruits and vegetables.
  • Studying the chemistry of food additives and their impact on human health.
  • Evaluating the role of enzymes in food digestion and processing.
  • Investigating the chemical properties and functional uses of food proteins.
  • Analyzing the effect of food packaging materials on the quality and safety of food products.
  • Examining the chemistry of food flavorings and the impact of flavor on consumer acceptance.
  • Studying the role of carbohydrates in food texture and structure.
  • Investigating the chemistry of food lipids and their impact on human health.
  • Analyzing the chemical properties and functional uses of food gums and emulsifiers.
  • Examining the effect of processing on the flavor and aroma of food products.
  • Studying the chemistry of food preservatives and their impact on food safety.
  • Investigating the chemical properties and functional uses of food fibers.
  • Analyzing the effect of food processing on the bioavailability of nutrients.
  • Examining the chemistry of food colorants and their impact on consumer acceptance.
  • Studying the role of vitamins and minerals in food and their impact on human health.
  • Investigating the chemical properties and functional uses of food hydrocolloids.
  • Analyzing the effect of food processing on the allergenicity of food products.
  • Examining the chemistry of food sweeteners and their impact on human health.

Industrial Chemistry Research Topics

Industrial Chemistry Research Topics are as follows:

  • Development of catalysts for selective hydrogenation reactions in the petrochemical industry.
  • Green chemistry approaches for the synthesis of biodegradable polymers from renewable sources.
  • Optimization of solvent extraction processes for the separation of rare earth elements from ores.
  • Development of novel materials for energy storage applications, such as lithium-ion batteries.
  • Production of biofuels from non-food sources, such as algae or waste biomass.
  • Application of computational chemistry to optimize the design of new catalysts and materials.
  • Design and optimization of continuous flow processes for large-scale chemical production.
  • Development of new synthetic routes for the production of pharmaceutical intermediates.
  • Investigation of the environmental impact of industrial processes and development of sustainable alternatives.
  • Development of innovative water treatment technologies for industrial wastewater.
  • Synthesis of functionalized nanoparticles for use in drug delivery and other biomedical applications.
  • Optimization of processes for the production of high-performance polymers, such as polyamides or polyesters.
  • Design and optimization of process control strategies for efficient and safe chemical production.
  • Development of new methods for the detection and removal of heavy metal ions from industrial effluents.
  • Investigation of the behavior of surfactants in complex mixtures, such as crude oil or food products.
  • Development of new materials for catalytic oxidation reactions, such as the removal of volatile organic compounds from air.
  • Investigation of the properties and behavior of materials under extreme conditions, such as high pressure or high temperature.
  • Development of new processes for the production of chemicals from renewable resources, such as bio-based building blocks.
  • Study of the kinetics and mechanism of chemical reactions in complex systems, such as multi-phase reactors.
  • Optimization of the production of fine chemicals, such as flavors and fragrances, using biocatalytic processes.

Computational Chemistry Research Topics

Computational Chemistry Research Topics are as follows:

  • Development and application of machine learning algorithms for predicting chemical reactions and properties.
  • Investigation of the role of solvents in chemical reactions using molecular dynamics simulations.
  • Modeling and simulation of protein-ligand interactions to aid drug design.
  • Study of the electronic structure and reactivity of catalysts for sustainable energy production.
  • Analysis of the thermodynamics and kinetics of complex chemical reactions using quantum chemistry methods.
  • Exploration of the mechanism and kinetics of enzyme-catalyzed reactions using molecular dynamics simulations.
  • Investigation of the properties and behavior of nanoparticles using computational modeling.
  • Development of computational tools for the prediction of chemical toxicity and environmental impact.
  • Study of the electronic properties of graphene and other 2D materials for applications in electronics and energy storage.
  • Investigation of the mechanisms of protein folding and aggregation using molecular dynamics simulations.
  • Development and optimization of computational methods for calculating thermodynamic properties of liquids and solids.
  • Study of the properties of supercritical fluids for applications in separation and extraction processes.
  • Development of new methods for the calculation of electron transfer rates in complex systems.
  • Investigation of the electronic and mechanical properties of carbon nanotubes for applications in nanoelectronics and nanocomposites.
  • Development of new approaches for modeling the interaction of biomolecules with biological membranes.
  • Study of the mechanisms of charge transfer in molecular and hybrid solar cells.
  • Analysis of the structural and mechanical properties of materials under extreme conditions using molecular dynamics simulations.
  • Development of new approaches for the calculation of free energy differences in complex systems.
  • Investigation of the reaction mechanisms of metalloenzymes using quantum mechanics/molecular mechanics (QM/MM) methods.
  • Study of the properties of ionic liquids for applications in catalysis and energy storage.

Theoretical Chemistry Research Topics

Theoretical Chemistry Research Topics are as follows:

  • Quantum Chemical Studies of Excited State Processes in Organic Molecules
  • Theoretical Investigation of Structure and Reactivity of Metal-Organic Frameworks
  • Computational Modeling of Reaction Mechanisms and Kinetics in Enzyme Catalysis
  • Theoretical Investigation of Non-Covalent Interactions in Supramolecular Chemistry
  • Quantum Chemical Studies of Photochemical Processes in Organic Molecules
  • Theoretical Analysis of Charge Transport in Organic and Inorganic Materials
  • Computational Modeling of Protein Folding and Dynamics
  • Quantum Chemical Investigations of Electron Transfer Processes in Complex Systems
  • Theoretical Studies of Surface Chemistry and Catalysis
  • Computational Design of Novel Materials for Energy Storage Applications
  • Theoretical Analysis of Chemical Bonding and Molecular Orbital Theory
  • Quantum Chemical Investigations of Magnetic Properties of Complex Systems
  • Computational Modeling of Biological Membranes and Transport Processes
  • Theoretical Studies of Nonlinear Optical Properties of Molecules and Materials
  • Quantum Chemical Studies of Spectroscopic Properties of Molecules
  • Theoretical Investigations of Reaction Mechanisms in Organometallic Chemistry
  • Computational Modeling of Heterogeneous Catalysis
  • Quantum Chemical Studies of Excited State Dynamics in Photosynthesis
  • Theoretical Analysis of Chemical Reaction Networks
  • Computational Design of Nanomaterials for Biomedical Applications

Astrochemistry Research Topics

Astrochemistry Research Topics are as follows:

  • Investigating the chemical composition of protoplanetary disks and its implications for planet formation
  • Examining the role of magnetic fields in the formation of complex organic molecules in space
  • Studying the effects of interstellar radiation on the chemical evolution of molecular clouds
  • Exploring the chemistry of comets and asteroids to better understand the early solar system
  • Investigating the origin and evolution of interstellar dust and its relationship to organic molecules
  • Examining the formation and destruction of interstellar molecules in shocked gas
  • Studying the chemical processes that occur in the atmospheres of planets and moons in our solar system
  • Exploring the possibility of life on other planets through astrobiology and astrochemistry
  • Investigating the chemistry of planetary nebulae and their role in the evolution of stars
  • Studying the chemical properties of exoplanets and their potential habitability
  • Examining the chemical reactions that occur in the interstellar medium
  • Investigating the chemical composition of supernova remnants and their impact on the evolution of galaxies
  • Studying the chemical composition of interstellar grains and their role in the formation of stars and planets
  • Exploring the chemistry of astrocytes and their role in the evolution of galaxies
  • Investigating the formation of interstellar ice and its implications for the origin of life
  • Examining the chemistry of molecular clouds and its relationship to star formation
  • Studying the chemical composition of the interstellar medium in different galaxies and how it varies
  • Investigating the role of cosmic rays in the formation of complex organic molecules in space
  • Exploring the chemical properties of interstellar filaments and their relationship to star formation
  • Studying the chemistry of protostars and the role of turbulence in the formation of stars.

Geochemistry Research Topics

Geochemistry Research Topics are as follows:

  • Understanding the role of mineralogical and geochemical factors on metal mobility in contaminated soils
  • Investigating the sources and fate of dissolved organic matter in aquatic systems
  • Exploring the geochemical signatures of ancient sedimentary rocks to reconstruct Earth’s past atmospheric conditions
  • Studying the impacts of land-use change on soil organic matter content and quality
  • Investigating the impact of acid mine drainage on water quality and ecosystem health
  • Examining the processes controlling the behavior and fate of emerging contaminants in the environment
  • Characterizing the organic matter composition of shale gas formations to better understand hydrocarbon storage and migration
  • Evaluating the potential for carbon capture and storage in geologic formations
  • Investigating the geochemical processes controlling the formation and evolution of ore deposits
  • Studying the geochemistry of geothermal systems to better understand energy production potential and environmental impacts
  • Exploring the impacts of climate change on the biogeochemistry of terrestrial ecosystems
  • Investigating the geochemical cycling of nutrients in coastal marine environments
  • Characterizing the isotopic composition of minerals and fluids to understand Earth’s evolution
  • Developing new analytical techniques to better understand the chemistry of natural waters
  • Studying the impact of anthropogenic activities on the geochemistry of urban soils
  • Investigating the role of microbial processes in geochemical cycling of elements in soils and sediments
  • Examining the impact of wildfires on soil and water chemistry
  • Characterizing the geochemistry of mineral dust and its impact on climate and biogeochemical cycles
  • Investigating the geochemical factors controlling the release and transport of contaminants from mine tailings
  • Exploring the biogeochemistry of wetlands and their role in carbon sequestration and nutrient cycling.

Electrochemistry Research Topics

Electrochemistry Research Topics are as follows:

  • Development of high-performance electrocatalysts for efficient electrochemical conversion of CO2 to fuels and chemicals
  • Investigation of electrode-electrolyte interfaces in lithium-ion batteries for enhanced battery performance and durability
  • Design and synthesis of novel electrolytes for high-energy-density and stable lithium-sulfur batteries
  • Development of advanced electrochemical sensors for the detection of trace-levels of analytes in biological and environmental samples
  • Analysis of the electrochemical behavior of new materials and their electrocatalytic properties in fuel cells
  • Study of the kinetics of electrochemical reactions and their effect on the efficiency and selectivity of electrochemical processes
  • Development of novel strategies for the electrochemical synthesis of value-added chemicals from biomass and waste materials
  • Analysis of the electrochemical properties of metal-organic frameworks (MOFs) for energy storage and conversion applications
  • Investigation of the electrochemical degradation mechanisms of polymer electrolyte membranes in fuel cells
  • Study of the electrochemical properties of 2D materials and their applications in energy storage and conversion devices
  • Development of efficient electrochemical systems for desalination and water treatment applications
  • Investigation of the electrochemical properties of metal-oxide nanoparticles for energy storage and conversion applications
  • Analysis of the electrochemical behavior of redox-active organic molecules and their application in energy storage and conversion devices
  • Study of the electrochemical behavior of metal-organic frameworks (MOFs) for the catalytic conversion of CO2 to value-added chemicals
  • Development of novel electrode materials for electrochemical capacitors with high energy density and fast charge/discharge rates
  • Investigation of the electrochemical properties of perovskite materials for energy storage and conversion applications
  • Study of the electrochemical behavior of enzymes and their application in bioelectrochemical systems
  • Development of advanced electrochemical techniques for the characterization of interfacial processes in electrochemical systems
  • Analysis of the electrochemical behavior of nanocarbons and their application in electrochemical energy storage devices
  • Investigation of the electrochemical properties of ionic liquids for energy storage and conversion applications.

Surface Chemistry Research Topics

Surface Chemistry Research Topics are as follows:

  • Surface modification of nanoparticles for enhanced catalytic activity
  • Investigating the effect of surface roughness on the wetting behavior of materials
  • Development of new materials for solar cell applications through surface chemistry techniques
  • Surface chemistry of graphene and its applications in electronic devices
  • Surface functionalization of biomaterials for biomedical applications
  • Characterization of surface defects and their effect on material properties
  • Surface modification of carbon nanotubes for energy storage applications
  • Developing surface coatings for corrosion protection of metals
  • Synthesis of self-assembled monolayers on surfaces for sensor applications
  • Surface chemistry of metal-organic frameworks for gas storage and separation
  • Investigating the role of surface charge in protein adsorption
  • Developing surfaces with superhydrophobic or superoleophobic properties for self-cleaning applications
  • Surface functionalization of nanoparticles for drug delivery applications
  • Surface chemistry of semiconductors and its effect on photovoltaic properties
  • Development of surface-enhanced Raman scattering (SERS) substrates for trace analyte detection
  • Surface functionalization of graphene oxide for water purification applications
  • Investigating the role of surface tension in emulsion formation and stabilization
  • Surface modification of membranes for water desalination and purification
  • Synthesis and characterization of metal nanoparticles for catalytic applications
  • Development of surfaces with controlled wettability for microfluidic applications.

Atmospheric Chemistry Research Topics

Atmospheric Chemistry Research Topics are as follows:

  • The impact of wildfires on atmospheric chemistry
  • The role of aerosols in atmospheric chemistry
  • The chemistry and physics of ozone depletion in the stratosphere
  • The chemistry and dynamics of the upper atmosphere
  • The impact of anthropogenic emissions on atmospheric chemistry
  • The role of clouds in atmospheric chemistry
  • The chemistry of atmospheric particulate matter
  • The impact of nitrogen oxides on atmospheric chemistry and air quality
  • The effects of climate change on atmospheric chemistry
  • The impact of atmospheric chemistry on climate change
  • The chemistry and physics of atmospheric mercury cycling
  • The impact of volcanic eruptions on atmospheric chemistry
  • The chemistry and physics of acid rain formation and effects
  • The role of halogen chemistry in the atmosphere
  • The chemistry of atmospheric radicals and their impact on air quality and health
  • The impact of urbanization on atmospheric chemistry
  • The chemistry and physics of stratospheric polar vortex dynamics
  • The role of natural sources (e.g. ocean, plants) in atmospheric chemistry
  • The impact of atmospheric chemistry on the biosphere
  • The chemistry and dynamics of the ozone hole over Antarctica.

Photochemistry Research Topics

Photochemistry Research Topics are as follows:

  • Investigating the mechanisms of photoinduced electron transfer reactions in organic photovoltaic materials.
  • Developing novel photoredox catalysts for photochemical reactions.
  • Understanding the effects of light on DNA and RNA stability and replication.
  • Studying the photochemistry of atmospheric pollutants and their impact on air quality.
  • Designing new photoresponsive materials for advanced photonic and electronic devices.
  • Exploring the photochemistry of metalloporphyrins for potential applications in catalysis.
  • Investigating the photochemistry of transition metal complexes and their use as photodynamic therapy agents.
  • Developing new photocatalytic systems for sustainable energy production.
  • Studying the photochemistry of natural products and their potential pharmaceutical applications.
  • Investigating the role of light in the formation and degradation of environmental contaminants.
  • Designing new photochromic materials for smart windows and displays.
  • Exploring the photochemistry of carbon nanomaterials for energy storage and conversion.
  • Developing new light-driven molecular machines for nanotechnology applications.
  • Investigating the photochemistry of organic dyes for potential applications in dye-sensitized solar cells.
  • Studying the effects of light on the behavior of biological macromolecules.
  • Designing new photoresponsive hydrogels for drug delivery applications.
  • Exploring the photochemistry of semiconductor nanoparticles for potential applications in quantum computing.
  • Investigating the mechanisms of photochemical reactions in ionic liquids.
  • Developing new photonic sensors for chemical and biological detection.
  • Studying the photochemistry of transition metal complexes for potential applications in water splitting and hydrogen production.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

Illustration

  • Research Paper Guides
  • Research Paper Topics

200+ Chemistry Research Topics for Papers

  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

Chemistry_Research_Topics

Table of contents

Illustration

Use our free Readability checker

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

thumbnail@2x.png

Do you find identifying suitable chemistry research topics difficult? You are not alone! Many students consider it challenging and time-consuming to choose an interesting chemistry topic for a research paper. In this blog post, we will discuss various research topics in chemistry to help simplify your research process. Continue reading to familiarize yourself with ideas from different fields and academic levels. Apart from defining research topics and discussing how to select one, we have provided examples to help kick-start your research project or assignments. Got a deadline approaching fast? Entrust your chemistry research paper to professional writers. Our academic service proceeds all ‘ write my paper for me ’ inquiries quickly and efficiently. Get your paper written now by an expert!

What Are Chemistry Research Topics?

Chemistry is a field of science that covers the structure, composition, and properties of elements and compounds. As a student taking this subject, you will encounter multiple experiments, chemical reactions, and analytical study methods. This branch of science can be subdivided into multiple areas, including organic, inorganic, biochemistry, physical, analytical, and nuclear science, among others. Chemistry research paper topics are talking points related to the branches of science outlined above. To ensure that all learning objectives are met, instructors may require students to work on various topics in chemistry. You would be expected to source your chemistry research topics ideas from all possible branches. In one instance, your topic could be associated with analytical science, in another - with practical discussions, which is an entirely different thing despite both areas being categorized as chemistry subfields.

Characteristics of Good Chemistry Research Topics

Selecting a good research topic for chemistry plays a vital role in determining the probability of success when writing your paper. It is, therefore, important to know the characteristics of good chemistry topics for a research paper. Although you can derive discussions from many sub-areas, these research topic ideas share many common characteristics. A great research topic should be:

  • Precise, meaningful, clear, and straightforward
  • Analytical and researchable using logical methodologies
  • Of theoretical or practical significance
  • Supported by numerous academic evidence and sources.

How to Choose a Chemistry Research Topic?

Chemistry is a broad subject with multiple research areas. If you are not keen enough, you may easily get lost in its variety and fail to select a congenial title. So, how do you deal with this issue? In a nutshell, the process comes down to two aspects – your passion and competence. Below are step-by-step guidelines that you can follow to determine interesting topics about chemistry:

  • Pick chemistry research topics with your knowledge capabilities in mind. Do not choose a topic that is beyond your academic level.
  • Choose something that is interesting to you. If you are fascinated with the selected topic, you will find responding to the research questions to be much simpler.
  • Select a research title that is convenient to work on due to the sufficient amount and availability of existing evidence and references.
  • Ensure that the chosen chemistry topics for research paper are within the subfield you are majoring in and that it meets your instructor’s requirements.

Once you select the most appropriate title, see how to write a research paper like an expert.

Chemistry Research Paper Topics List

There are many research topics for chemistry to choose from. In this section, we have compiled examples of the best topics from various sub-areas. Below is a list of chemistry research topics for papers:

  • Latest developments in DNA technology.
  • Negative effects of using pesticides in food production.
  • Importance and potential drawbacks of using fertilizer in commercial agriculture.
  • Acids and bases: composition, properties, and applications.
  • Industrial chemicals and environmental pollution.
  • Dangers and side effects of using ibuprofen.
  • Acid-base neutralization process.
  • Air pollution implication on global warming and climate change.
  • Ageing and the brain.
  • Catalytic reaction mechanisms.

The chemistry research topics list above is created by drawing ideas from different sub-areas, thus covering a significant part of scholars’ inquiries.

Interesting Topics in Chemistry

In some instances, one may select a research topic because it is just fascinating. There are interesting chemistry topics that can explain intriguing phenomena in your day-to-day life. Alternatively, you can also opt for something related to essential issues in the current society. Here are sample chemistry interesting topics you can research into:

  • Composition and effects of e-cigarettes.
  • Food dye composition.
  • Measuring electrical conductivity in a salt solution.
  • How to change a penny’s color to gold.
  • The scientific explanation of foam formation.
  • Silicon usage in cosmetic surgery.
  • Evidence and application of surface tension in day-to-day life.
  • Examining pesticide residue in farm products from different grocery stores.
  • How does molecule composition affect the physical appearance of things?
  • Sodium metal reaction on water surfaces.
  • How to separate dissolved sugar from water.
  • How to clean up oil spills at sea.
  • Rust formation on metal surfaces.
  • How to chemically remove rust from stainless steel.
  • The science behind turning boiling water into “snow” in a cold winter.

Easy Chemistry Research Topics

The science studied in high schools is way simpler compared to postgraduate one. You can find easy chemistry topics to research if you focus on certain academic levels and sub-areas. For example, physical chemistry has easy chemistry topics to do research paper on. On the other side, inorganic or analytical sub-areas tend to offer scientific research research topics that are more technical. The list below outlines easy topic examples you can pick from:

  • Determining the percentage composition of oxygen in the air.
  • Patterns in the periodic table.
  • Atomic theory: primary principles and applications.
  • Chemical and physical properties of starch.
  • Determining the pH level of various liquids.
  • Properties of acids and bases.
  • Why is glass the preferred material in laboratories?
  • Balancing chemical equations.
  • Analyzing different chemical bonds.
  • Alkali metals and their properties.
  • General characteristics of metals.
  • Noble gasses: properties and reaction characteristics.
  • Water purification methods.
  • The periodic table: its historical background.
  • Alkaline earth metals: properties and reactivity.

Innovative Research Topics in Chemistry

Innovative chemistry topics for research paper relate to new ideas and ways to go about things. Using these ground-breaking topics related to chemistry, you can discuss new materials or methodologies. If you are interested in innovative research topics, here are some examples you can borrow from:

  • Gene modification in medical chemistry .
  • Improved cancer treatment using bacteria-based biohybrid microrobots.
  • New methods used to detect explosive residues.
  • Studying the molecular makeup of particles in space.
  • Substitute for pesticides in farming.
  • Nanophotonics in aeronautics.
  • Nanomaterials production process and techniques.
  • Clean energy alternatives for fossil fuels.
  • Photocatalysis usage in 3D printing technology.
  • Biodegradable polymers as alternatives for plastics.
  • Silicon dioxide usage in solar cells.
  • Chemical reactions in lithium-ion batteries.
  • Self-healing concrete: basic principles.
  • New materials for lightweight planes and vehicles.
  • Polymer analysis in a restricted environment.

Cool Chemistry Research Topics

Sometimes, our title selection might be guided by how cool and fun the study results will be. If you are looking for cool chemistry topics to research on, you are in the right place. We have compiled some cool chemistry topics for you to choose from.

  • How World War II influenced computational chemistry.
  • How do chemicals in our brains create different moods?
  • Composition and properties of laughing gas.
  • European alchemy: historical background and its impact on modern science.
  • Developing a film at home: chemicals required and process.
  • Why lemon juice stops apples from browning.
  • Different flame colors and their scientific explanation.
  • Using a potato to light a bulb.
  • Principles of chromatography.
  • Utilizing cloud seeding in alleviating drought conditions.
  • Finding iron in a mixture of metals.
  • Gas chromatography: how it works and its applications.
  • Application of vibrational spectroscopy.
  • Surface tension and the dish soap experiment.
  • How to make a homemade water filter.

Have you spotted any ideas but can’t get the research process started? Contact our professional writing service where you can pay for research paper and be sure that you will get outstanding results within your deadline. 

Intriguing Chemistry Topics for Research

There are many chemistry topics to write about. However, not all topics are intriguing (and frankly, most are the other way around). Below are topic examples that can instantly draw readers’ attention:

  • Non-existing chemical compounds.
  • Molecular structure of artificial honey as compared to natural honey.
  • Stem cell studies: ethical implications.
  • Principles of polymerase chain reaction and DNA replication.
  • Organic chemistry applications in our daily living.
  • Chemicals as weapons of mass destruction.
  • How does adding sugar to a soft drink affect its density?
  • Synthetic molecules in the pharmaceutical industry .
  • Aerosol formation and its application in body spray manufacture.
  • Analyzing the gasoline production process.
  • Benzene molecular structure and its use in the cosmetic industry.
  • Why are 96,000,000 black balls dumped into the LA reservoir?
  • Water recycling methods.
  • The discovery of oxygen.
  • Importance of esters in our day-to-day living.

If you closely review the research topics for chemistry paper above, you will find them arousing your curiosity much more than the ones in other sections. These topics will challenge your initial line of thinking or introduce you to the concepts that just stand out.

Unique Chemistry Research Topics

There are some chemistry paper topics that are rarely worked on by students. People ignore these topics because they are either complex or lack adequate conclusive information from previous studies. If you are brave enough and wish to have a unique presentation, you can consider the research topics in chemistry below:

  • Organosilicon compounds and their use.
  • Nucleophiles and electrophiles.
  • Molecular structure of Teflon and its industrial application.
  • Sodium azide usage in automobile airbags.
  • Dangers of COVID-19 tests that use sodium azide as the reaction reagent.
  • Chemical composition of steroids and their effects on human beings.
  • Artificial diamond production process.
  • Insulin production biotechnology.
  • Evolution of lethal injection.
  • Effects of chiral class drugs on human health.
  • Chemical residues in livestock.
  • Artificial organs and their potential implication on transplantation.
  • Role of nanoreactors in nanotechnology and biotechnology.
  • Dangers of phosgene to human health.
  • Production of dry ice.

Popular Chemistry Research Paper Topics

Unlike the unique study subjects discussed in the previous section, popular topics relating to chemistry are widely researched. Students favor these topics due to reasons like their simplicity, availability of adequate evidence, and their relevance to current issues. You can pick a hot topic in chemistry from the list below:

  • Metal oxide usage in electronics.
  • Importance of nitrogen to human survival.
  • How do temperature changes affect chemical reactions?
  • Lewis structure for ionic compounds.
  • Analysis of the hydrophobic effect.
  • Hydrogen as an alternative to fossil fuel.
  • Application of thermodynamics law in our lives.
  • pH level calculations and analysis.
  • Gas laws and their application.
  • Why is Earth viewed as a closed thermodynamic system?
  • Redox reactions and their industrial applications.
  • Decomposition process of polymers.
  • The anomalous expansion of water.
  • Impact of fluoride ion on dental health .
  • The use of lithium, magnesium, and calcium compounds in clinical medicine.

>> View more: Medical Research Paper Topics

Controversial Chemistry Topics for Papers

Just like in any other subject, there exist chemistry project topics that are controversial in nature. People are understandably more passionate about some subject matters compared to others. Discussions related to, for instance, chemical usage in battlefields and the health effects of using certain chemicals tend to attract heated debates. Below are some controversial topics in chemistry that you can write about:

  • Biochemicals usage in warfare.
  • Impact of fast-food chemicals on the human brain.
  • Gene modification in human embryos.
  • Bioconjugation techniques and how they are used in drug delivery.
  • Synthetic molecules replication techniques.
  • Use of lethal injection in execution of criminals.
  • Ethical justification for euthanasia.
  • Manufacture of chemical poisons.
  • Fritz Haber’s controversial inventions.
  • Artificial organs and their role in healthcare.
  • Electromagnetic energy conversion to chemical energy.
  • Dangers of using fertilizer in farming.
  • Analyzing the water memory effect.
  • Synthesis of food from non-edible items.
  • Bio-inspired molecular machines and their applications.

Chemistry Research Ideas for Students

Students are often required to work on some chemistry project ideas to successfully complete their course. Depending on the sub-area one specializes in, and the academic level, research matters will vary significantly. For instance, chemistry undergraduate research project ideas are incomparable to highschool research titles. Some subject matters are only suitable for professional research. This section sorts the research ideas into their respective academic levels.

Chemistry Research Topics for High School

Chemistry research project ideas for highschool students are relatively easy compared to higher academic levels. The tasks are not very demanding in terms of the research methodologies used and the time required to complete them. At this level, students are introduced to the basic concepts of the subject. Common chemistry topics for high school are outlined in the list below.

  • Acids and bases in the reduction-oxidation reaction.
  • Importance of studying chemicals and chemical processes in high school.
  • Ionization techniques for the mass spectrometry process.
  • Avogadro’s Law: analysis, formulae, and application.
  • Thermochemistry lab experiments.
  • Laboratory safety rules.
  • The hydrolysis analysis.
  • Acids: structural composition, properties, and use.
  • Noble gasses configuration.
  • States of matter and their characteristics.
  • Optimizing indoor plants life through chemistry.
  • Role of enzymes in chemical and biological reactions.
  • Thermal effects of chemical reactions.
  • The law of multiple proportions in chemical reactions.
  • Constant and changing variables in Boyle’s law .

Chemistry Research Topics for College Students

Chemistry project ideas for college often require students to dive deep into a subject. Rather than explaining the basic concepts, you may be instructed to apply them in addressing problems. A college chemistry project will require you to dedicate more time and conduct more research. Below are some of the title ideas for college students and undergraduates:

  • How much energy is produced from burning nuts and chips?
  • Dangers of using radon in construction and potential solutions.
  • Chemical composition of aspirin and its effect on human physiology.
  • Green chemistry application in the food industry.
  • Phosphorescence versus fluorescence.
  • Dihydroxyacetone phosphate conversion.
  • Big data and biocomputing in chemical studies.
  • Thermoelectric properties of materials.
  • Artificial organic tissue development in laboratories.
  • Nuclear fusion: primary concepts and applications.
  • Power production process in lithium nickel batteries.
  • Medico-biological importance of group 3B and 4B elements.
  • Global cycle of biologically active elements.
  • Importance of chemical knowledge in cancer treatment.
  • Inorganic materials usage in the military.

Chemistry Research Topics in Different Fields

Chemistry can be divided into many sub-areas. Each subfield has interesting chemistry topics to research into. To choose a research topic in chemistry, you need to first determine a sub-area you would wish to specialize in. However, even within these fields, there are still many title options to choose from. To help reduce the confusion and simplify the selection process, we have categorized potential research discussions into their respective sub-areas.

Organic Chemistry Research Topics

Organic chemistry mainly involves studying the structure, composition, properties, and reaction of carbon-based compounds. It is among the most commercially applied subfields, which makes organic chemistry research paper topics very common. I am sure you must have encountered products manufactured using organic chemistry principles within your surroundings. If you wish to learn more about these products, you can explore these latest research topics in organic chemistry:

  • Pain relief medicine: chemical structure and composition.
  • Composition, use, and effects of polymers.
  • Retin-A usage in acne treatment.
  • Organic chemistry usage and application in daily life.
  • Types of organic compounds isomerism.
  • Aromatic hydrocarbons as industrial raw materials.
  • Alcohol hydrophilicity in aqueous solutions.
  • Physical and chemical properties of polyhydric alcohols.
  • Synthetic polymer applications: synthetic fiber, Teflon, and isoprene rubber.
  • Fetal alcohol syndrome: types and symptoms.
  • Structure and properties of phenols.
  • The application of organic chemistry in birth control.
  • Nucleic acid stability.
  • Parameters affecting proton chemical shifts.
  • Structure and properties of lipids.

Inorganic Chemistry Research Topics

This branch deals with the study of structure, composition, and properties of materials that do not contain carbon. Research paper topics for inorganic chemistry focus on metals, minerals, and inorganic compounds. The list below compiles chemistry projects topics and ideas related to inorganic chemistry.

  • How to create new and improve existing alloys.
  • Implication of inorganic chemistry on the environment.
  • Application of inorganic chemistry in the cosmetic industry.
  • Interaction between sulfuric acid and organic materials.
  • Lattice energy and enthalpy for different ionic bonds.
  • Characteristics of different types of nucleosyntheses.
  • Uniqueness of hydrogen bonds and polarity.
  • Hard and soft acids and bases ( HSAB ) theory.
  • Dalton’s Law: principles and applications.
  • Structure of a gemstone and how it impacts its appearance.
  • Relationship between inorganic and biochemistry.
  • Parameters affecting Bronsted-Lowry acidity.
  • Crystal field theory: analysis and disadvantages.
  • Application of angular overlap model.
  • Primary laws of photochemistry.

Analytical Chemistry Research Topics

The determination of the objects’ primary makeup of objects is the main interest of this branch. Various analytical methods, including spectroscopy, chromatography, and electroanalytical techniques, are often discussed in the subfield. As such, many analytical chemistry research paper topics focus on these or other analysis techniques. Below is a list of research topics on analytical chemistry:

  • Analytical techniques used in forensic science.
  • Examining the electroanalytical techniques.
  • Importance of analytical chemistry to the environment.
  • Miniaturization and its use in analyzing pharmaceutical substances.
  • Evaluating the working principles of activation analysis.
  • Gravimetric analysis principles.
  • GMOs usage and their potential hazards to human health.
  • Potentiometric measurement methods.
  • Liquid and gas chromatography.
  • Spectroscopy methods and their use in detecting and quantifying molecular and structural composition of samples.
  • Dispersive X-ray analysis of tissues.
  • Analytical methods for determining the side effects of ibuprofen usage.
  • Benefits of the isomerism framework.
  • Acid-base titration as a quantitative analysis technique.
  • Application of spectroscopy in medicine.

Environment Chemistry Topics for Research

The apparent global warming and climate change threats have led to the development of a new area of study. This sub-area has project topics in chemistry that explore the impact of human activity on the environment and the potential solutions for slowing down and reversing the climate change process. Common environmental chemistry related topics include:

  • Negative effects of deep-sea mining.
  • Ground water contamination: causes, dangers, and potential solutions.
  • Oil spillage and its effect on marine life.
  • Effect of heat engines on the environment.
  • Safe disposal of toxic waste.
  • Global warming: causes and potential remedies.
  • Potential alternatives to fossil fuels.
  • Innovative methods to minimize pesticide usage in agriculture.
  • Cultivated meat as an alternative to livestock farming.
  • How efficient is artificial photosynthesis.
  • The Chernobyl ecological disaster.
  • Analysis of life-cycle assessment (LCA).
  • Environmental benefits of using energy-saving lamps.
  • Environmental pollution by nano toxins.
  • Potential solutions for global warming.

Need more ideas on the environment? Check our list of the best environmental research topics for students. 

Physical Chemistry Research Topics

Physical chemistry is the study of the behavior of matter. Physical chemistry topics for research papers focus on analyzing the physical and chemical properties of atoms and molecules and how they interact with each other. You can use a project topic on chemistry from the list below:

  • Surface tension and its impact on mixtures.
  • Diffusion of liquid and gasses.
  • Reaction of bromine under UV rays.
  • Pressure effect in chemical reactions.
  • Bonding between atoms and molecules.
  • Analyzing Schrodinger’s equation.
  • Hess’s laws: principles and application.
  • Effects of intermolecular forces on the melting point of a material.
  • Entropy law of thermodynamics.
  • Relationship between quantum mechanics and atomic orbitals.
  • Chemical kinetics in pharmacy.
  • Analyzing the physical and chemical indicators of milk.
  • How to determine atoms’ electron configuration.
  • Why isotopes exist.
  • Determining the group based on its successive ionization energies.

Chemical Engineering Research Topics

In this section, we will discuss research topics of chemistry related to the design and application of chemical processes. Here are some of the chemical research project ideas that will impress your instructor:

  • Chemical engineering concepts in the food production industry.
  • Analyzing wastewater treatment techniques.
  • Conversion of rocket fuel to energy.
  • Analyzing different mixture separation techniques.
  • Industrial application of chemical engineering concepts.
  • Non-reactive mass balances and mass balance with reaction.
  • Binary distillation and its application.
  • Gas absorption usage in the chemical industry.
  • Reaction kinetics in a plug flow reactor.
  • Water splitting for hydrogen production.
  • The application of MIMO theory in the control of chemical process operation.
  • Chemical engineering applications in the healthcare sector.
  • Nanofiltration member usages in pharmaceutical wastewater treatment.
  • General overview of microfluidics.
  • Production of high-quality foam.

Nuclear Chemistry Research Topics

A nuclear chemistry research project deals with radioactivity-related processes. You may encounter this branch of science in nuclear energy production, military applications, and even in the hospital. Some of the researchable topics in chemistry of nuclei transformation include:

  • Computation of an element’s half-life.
  • Radioactive elements in real life and how they are being used.
  • Nuclear fusion: the process and its function.
  • Types of radioactive decay.
  • Effects of radiation on biological systems.
  • Safe radioactive waste disposal.
  • Application of nuclear science in the healthcare sector.
  • Analyzing the three types of radiation.
  • How to destroy toxic organic compounds using irradiation.
  • Is there a possibility of cold fusion ever happening?
  • Biological application of radiochemistry.
  • Dangerous consequences of ionizing versus non-ionizing radiation.
  • Optical chemo sensors: principles and applications.
  • Interaction between water and radioactive materials.
  • Radiation accident cases in human history.

There is a vast assortment of research ideas for your study on our platform. Be it biology research topics or nursing research paper topics , we have all of them here.

Bottom Line on Chemistry Research Topics

In sum, chemistry is a broad subject with multiple sub-areas. Depending on your preference, you can choose interesting chemistry research topics for papers from the many subfields. Apart from selecting a good research subject, also remember that is always mandatory to adhere to proper writing procedures! Besides, select chemistry essay topics that will keep you excited till the end of research, as you wouldn’t want to quit in the middle and switch to another topic. If you combine all provided tips together, you will definitely find it easy to select and work on research in chemistry topics.

Illustration

Our academic writing service is always happy to help. Our platform was created by students who also struggled. So the writers deliver excellent papers focusing on fast and high-quality writing. 

  • How it works

Useful Links

How much will your dissertation cost?

Have an expert academic write your dissertation paper!

Dissertation Services

Dissertation Services

Get unlimited topic ideas and a dissertation plan for just £45.00

Order topics and plan

Order topics and plan

Get 1 free topic in your area of study with aim and justification

Yes I want the free topic

Yes I want the free topic

100s of Free Chemistry Dissertation Topics & Ideas

Published by Owen Ingram at January 2nd, 2023 , Revised On August 18, 2023

It is not easy to come up with intriguing and compelling chemistry dissertation topic ideas , especially if one is juggling multiple subjects or looking at adjacent fields simultaneously. Students often choose simple and familiar topics for their dissertation papers, but that is not always effective since excellent academic papers are distinctive.

From mode reactions to experimental procedures, the selected chemistry topic should be analytical and scientific in nature. It is essential to avoid a topic that is too specific, intricate, or broad. For instance, students can explore issues related to environmental chemistry or chemical reagents. The student should ensure that the chosen subject has a clearly defined emphasis.

Related informational Links:

  • Medical Law Dissertation Topics
  • Mental Health Dissertation Topics
  • Healthcare Dissertation Topics
  • Child Health Nursing Dissertation Topics
  • Contract Law Dissertation Topics

Other Useful Links

  • Commercial Law Dissertation Topics
  • EU Law Dissertation Ideas
  • Sports Law Dissertation Topics
  • Maritime Law Dissertation Topics

Here are some ideas to explore if you’re having trouble selecting a topic for your chemistry dissertation:

Organic Chemistry Dissertation Topics

  • Infrared spectroscopy is used to detect chemical molecules
  • Discuss the chemical makeup of pain relievers
  • What causes aromatic compounds to be nonreactive?
  • Determine the variables that drive proton chemical changes
  • The composition, application, and impact of added polymers or plastics
  • Chemical synthesis is based on carbon-carbon bond formation processes
  • Developing novel ways for producing chiral compounds
  • Investigating the structure and reactivity of carbon nanotubes
  • Metal complexes containing organometallic ligands are being studied
  • Improving the thermal stability of benzene derivatives
  • Investigating novel approaches to controlling the stereochemistry of chemical reactions
  • Investigation of the role of enzymes in organic synthesis
  • Developing innovative techniques to overcome drug resistance
  • Creating new techniques for identifying explosive residues
  • The investigation of the behaviour of organometallic compounds in biological systems

Inorganic Chemistry Dissertation Topics

  • The health consequences of various substances
  • Discuss in depth the chemical processes that result in sapphire production
  • Introduction to the chemistry of sulphuric acid
  • Discuss how silicon dioxide may be used in solar cells
  • What exactly do you mean by orbital hybridization in molecules?
  • Discuss the chemical structure of hard and soft acids
  • What exactly do you mean by Crystal Field Theory?
  • Steel vs iron malleability: A comparison
  • What do you mean by the Multiple Proportions Law?
  • Give instances of Dalton’s Law of Partial Pressures
  • Understanding Lewis Structures as well as Electron Dot Models
  • How does a gemstone’s chemical structure affect its colour?
  • What roles do point groups play in inorganic chemistry?
  • How can molecular symmetry predict a molecule’s chemical properties?
  • What is the most efficient method of producing synthetic diamonds?

Chemical Engineering Dissertation Topics

  • Describe the role of biofuel in rocket fuel
  • What exactly do you mean by microfluidics?
  • Explain the wastewater treatment process
  • Explain in detail the rare earth extractions
  • What do you mean by reducing NOx emissions?
  • What exactly do you mean by molecular dynamics and simulation?
  • What exactly do you mean by simulation of density functional theory?
  • What exactly do you mean by Nano filters, and how do they work?
  • Discuss how coal and iron ore slimes are processed
  • Explain how photocatalysis works in a 3D printer
  • Explain the similarities and differences between rocket fuel and biofuels
  • Describe molecular dynamics and simulation
  • What exactly are nanofiltration systems, and how do they function?
  • Explain the density functional theory simulation
  • Analyze the processing of iron and coal slimes

Physical Chemistry Dissertation Topics

  • When does a collision not result in a response?
  • Examine harmonic and anharmonic oscillators
  • Define the energies of successive ionization
  • How can intermolecular forces influence a substance’s melting point?
  • Why is the Earth considered a closed thermodynamic system?
  • Explain how to utilize the mean bond enthalpy
  • Reasons why molecules with polar connections may not have a persistent dipole
  • What is the relationship between quantum mechanics and chemistry?
  • What exactly do you mean by vibrational spectroscopy?
  • Examine the similarities and differences between harmonic and anharmonic oscillators
  • What exactly do you mean by multielectron atoms?
  • In basic terms, discuss the elements of heteroatomic. Bonding between chemicals
  • Provide a thorough examination of the Schrodinger Equation
  • Describe the physical and chemical characteristics of the gas
  • Explain the process of water expansion during the freezing process

Hire an Expert Writer

Orders completed by our expert writers are

  • Formally drafted in an academic style
  • Free Amendments and 100% Plagiarism Free – or your money back!
  • 100% Confidential and Timely Delivery!
  • Free anti-plagiarism report
  • Appreciated by thousands of clients. Check client reviews

Hire an Expert Writer

Biochemistry Dissertation Topics

  • Evaluate the effect of PH on the plants
  • Describe in detail cell metabolic processes. Define the structure of proteins and their involvement in chemical and physiological changes in the living organism
  • Explain the process of fatty acid metabolism in the human body
  • Explain the proliferation and repair of DNA
  • Examine the structure and function of carbohydrates in the living organism
  • Provide an in-depth analysis of the composition and function of nucleic acids
  • Explain some of the unique characteristics of water
  • Discuss the roles of lipids in biological systems
  • Explain how the tea brewing process may be improved
  • Discuss the significance of biochemistry in the human immune system

Environmental Chemistry Dissertation Topics

  • What are the chemical reactions and compositions responsible for cloud formation?
  • Explain the chemical reactions that result in the creation of pearls
  • How industrial activities and acid rains are correlated with each other?
  • What lessons can one learn from ecological disasters such as Chornobyl and Fukushima?
  • Building green energy and its scope that lies in future
  • Purification of the tap water through the application of chlorine
  • How do the chemical changes in the atmosphere result in global warming?
  • What are the adverse results of deep-sea mining?
  • Discuss the contamination risks of groundwater in developing economies
  • Plastic packaging and its impact on the overall quality of food we consume

Analytical Chemistry Dissertation Topics

  • What exactly do you mean by Chemical Equilibrium?
  • Describe some of the most effective electro-analytical procedures
  • What are the advantages of the isomerism framework?
  • Name a few of the most effective electrochemical applications
  • Develop the overall idea of Soda Industrial Quality Assurance
  • Examine the evolution of spectroscopic applications
  • What exactly do you mean by Electrodes and Potentiometry?
  • Make a comparison of the vitamin pills
  • Discuss with examples the characteristics of acid-base titrations
  • Sustainable development and analytical chemistry
  • Methods and best practices for atomic absorption spectroscopy
  • In Ibuprofen use, analytical chemistry and the pharmaceutical industry.
  • UV protectors: analytical chemistry and the cosmetics sector
  • What happens when food molecules interact with one another?
  • How to make new compounds or enhance old ones

Computational Chemistry Dissertation Topics

  • Discuss the evolution of chemical sensors in depth
  • What are the primary advantages of dye-sensitized solar cells?
  • Investigate the hydrogen bonding simulation process in depth
  • What exactly do you mean by metal oxide nanoparticles?
  • Explain in detail the heterogeneous catalytic CO2 to the CH3OH conversion process
  • Energy surfaces are mathematical functions that provide a molecule with a function based on its geometry: Elaborate
  • What exactly do you mean by Coupled Cluster Theory?
  • Explain how NBO, or natural bond orbitals, produce the highest electron density

Nuclear Chemistry Dissertation Topics

  • What are the most prevalent applications for radioactive elements?
  • How do you determine the half-life of an element?
  • Hydrogen’s importance in nuclear fusion
  • Compare the effectiveness of various extraction processes
  • The discovery of radioactivity by Henri Becquerel
  • What biological uses does radiochemistry have?
  • Water and radioactive elements interact
  • What role does nuclear chemistry have in medicine?
  • How do elements transform during nuclear fission?
  • Irradiation can be used to eliminate hazardous chemical molecules
  • The negative consequences of ionizing radiation vs non-ionizing radiation
  • What role does chemosensory play in radiation chemistry?

Green Chemistry Dissertation Topics

  • Discuss the twelve green chemistry concepts
  • Discuss the most important challenges in green chemistry nowadays
  • Compare the efficiency of various solar cell materials
  • What are the most efficient techniques to extract and utilize key materials sustainably?
  • Electrocatalysis is a method of producing and using fuels
  • Will growing meat become a more environmentally friendly alternative to traditional farming?
  • Innovative pesticide-free agriculture methods
  • What are the different kinds of bio-based sustainable feedstocks?
  • How do metathesis reactions aid in the reduction of greenhouse gas emissions?
  • Explore the most effective methods to reduce carbon pollution

Common Chemistry Dissertation Topics

  • The Evolution of Chemical Warfare What is the next step?
  • How did Chemistry become one of the most dangerous scientific professions?
  • Discuss the role of chemicals in political assassinations throughout history
  • The history of the use of chemistry as a weapon in genocide during the Holocaust
  • The relevance of human rights and the notion of lethal injection
  • What role does chemistry play in murder or euthanasia?
  • How might chemistry aid in detecting and differentiating natural and manufactured diseases?
  • Why is the use of petroleum products regarded as hazardous?
  • What are the generational consequences of herbicide exposure?
  • How is pollution a significantly greater threat than melting ice caps?
  • Investigating the four distinct states of matter: Why is plasma so rare on Earth?
  • Why is lithium considered one of the most successful battery materials?
  • Examine the impact of PH on planets
  • Describe the formation of synthetic diamonds
  • Discuss how to maximize tea brewing
  • Explain how heavy metals in plants are identified
  • Examine the air that people breathe
  • Why is it risky to use petroleum products?
  • Describe how chemistry might help indoor plants
  • Explain how to clean oil successfully

This concludes the extensive list of c hemistry dissertation topic ideas produced by the industry’s best dissertation writers . It is our pleasure to inform you that these themes can be used not only for chemistry dissertations but also for research journal papers.

Nevertheless, it is a challenging task to write a flawless chemistry dissertation. You must have excellent analytical and dissertation writing skills in order to produce a well-structured dissertation . No need to worry. Our team of experts is here to help you along the way. We are happy to assist you to come up with an original chemistry dissertation topic . Our customer service is active 24/7.

Free Dissertation Topic

Phone Number

Academic Level Select Academic Level Undergraduate Graduate PHD

Academic Subject

Area of Research

Frequently Asked Questions

How to find dissertation topics about chemistry.

To find chemistry dissertation topics:

  • Research recent breakthroughs.
  • Explore unresolved questions.
  • Consider interdisciplinary areas.
  • Review scientific journals.
  • Consult professors for ideas.
  • Select a topic aligning with your passion and career aspirations.

You May Also Like

Counselling psychology is one of the various subfields of psychology. It addresses a variety of situational issues that affect people from different social groups. In order to receive a psychology degree, students must present a dissertation.

Here is a list of Research Topics on film and theatre studies and you can choose the one that suits your requirements.

Need help getting started with your dissertation? Here are some interesting MBA dissertation ideas for you to choose from.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

  • ACS Publications

28 Must-Read Topics in Chemistry

  • Mar 4, 2021
  • 14 min read

ACS Publications regularly produces collections of the most important chemistry research topics. These Virtual Collections of the most important chemistry research topics bring together the most important ideas in the field in a variety of ways, including Special Issues and ACS Selects from across the portfolio journals. These collections reflect the most important chemistry research […]

possible thesis topics in chemistry

ACS Publications regularly produces collections of the most important chemistry research topics. These Virtual Collections of the most important chemistry research topics bring together the most important ideas in the field in a variety of ways, including Special Issues and ACS Selects from across the portfolio journals. These collections reflect the most important chemistry research topics of current scientific interest and are designed for experienced investigators and educators alike.

Browse 28 of the most important, engaging topics in chemists with Virtual Collections released by ACS Publications journals in Q4 2020:

Crystalline molecular materials: from structure to function.

possible thesis topics in chemistry

This Virtual Special Issue focuses on the design and study of materials wherein the target properties arise from, or are enhanced by, the three-dimensional assembly of molecules in a solid phase. The “structure−function” relationship transcends the nature of the individual molecule, and supramolecular organization is a key component in the material’s properties. The goal of this issue is to assemble contributions from a broad community of scientists with similar research interests, as defined by the need to understand and manipulate the bulk assembly of molecules. Placing emphasis on a common interest in supramolecular architecture, this issue showcases work in apparently disparate fields, including molecule-based magnetism, rare zero thermal expansion properties, and catalytic activity.

Read the Issue. ***

Materials for Thermoelectric Energy Conversion

possible thesis topics in chemistry

This virtual issue of ACS Applied Materials & Interfaces and ACS Applied Energy Materials presents cutting edge articles in the field of Thermoelectric Energy Conversion. Thermoelectric materials and devices are central for energy conversion and management as they convert waste heat into electricity. Given the ubiquitous nature of heat, thermoelectric materials provide total-package solutions to mitigate environmental crisis and energy needs. The realization of this has caused a surge in the development of high-performance, environmentally benign, robust, and earth-abundant inorganic materials, which can be used in heat to electrical energy generations in power plants, space, automobiles, households, battery technology, and data centers. Interestingly, flexible thermoelectric materials, mainly based on organic/polymer materials, have successfully been integrated into body-worn fabrics and watches, which simply utilize body heat to generate electricity. Furthermore, using the Peltier effect, thermoelectric coolers are developed and are one of the mainstays in the consumer market for refrigeration purposes, especially for portable applications. Hence, thermoelectricity is foreseen as a potential frontrunner in energy management for the near future.

Interfacialscience Developments at the Chinese Academy of Sciences

possible thesis topics in chemistry

This virtual issue is a sampling of some of the most recent work from the Chinese Academy of Sciences, with an emphasis on work from this year (2020) so far. The 46 articles in this virtual issue cover a broad range of research topics, examples of which include Janus particle engineering and interfacial assembly, surface modification of colloid particles, stability of water monolayer in mineral under high pressure, nano-bubbles adsorption on surface, switching of underwater superhydrophilicity and superoleophobicity, nanostructured de-icing surface, lithium ion battery anode binder, bio-inspired smart liquid directional transport control, corrosion resistance of alloys, behavior of polymers at solid/liquid interface, and effect of polymer conformation on protein resistance.

Celebrating 90% Completion of the Human Proteome

possible thesis topics in chemistry

Twenty years after the establishment of the international Human Proteome Organization (HUPO) and ten years after its launch of the Human Proteome Project (HPP), researchers have much to celebrate. Today, HUPO will release the draft human proteome at the 19th Human Proteome Organization World Congress, connecting virtually, with this Virtual Issue published in the Journal of Proteome Research.

Read the Issue . ***

Nanomaterials-based Membranes for Chemical Separations

possible thesis topics in chemistry

Membranes are a critical area of research in academia and have been used in industrial applications for decades. Membrane-based separations are desired in industry because they can be highly energy efficient and up to an order of magnitude less expensive than other techniques such as distillation. In addition, these separations are easily scaled to industrial levels so that advances in the laboratory can be translated to real applications. The key challenges in this field are how to separate chemicals with similar sizes by having a high flux for only one chemical through a membrane. This difference in flux should translate into a high selectivity for one chemical over one or more other chemicals present in a mixture. An unfortunate trade-off in membrane-based separations is that as the permeation of a chemical increases, the selectivity of the membrane will often decrease. To address these challenges, scientists often use cross-linked polymers with ill-defined pores, hard materials such as zeolites with well-defined pores, 2D materials, coated nanofibers, carbon nanotubes, metal nanoparticles, or other nanomaterials.

Organic Chemistry in China: Synthetic Methodology, Natural Products, and More

During the past 20 years, China has become a powerhouse in chemistry research, now leading globally in submissions of research articles to chemical journals. In recognizing these developments, Organic Letters presents a Virtual Issue that includes a collection of 25 research articles contributed by Chinese chemists during 2019-2020, selected from among the more than 1,000 articles published in the journal from China over this period.

Advances in Microfluidics Research

possible thesis topics in chemistry

This Virtual Issue highlights articles published in Analytical Chemistry that showcase advances in microfluidics research over the past several years. The articles below are separated by sub-field and span research on virus detection to cell manipulation to 3D-printing, and are all at the cutting edge of microfluidics technologies. The thirty articles included in this collection were selected by Associate Editor Yoshinobu Baba and include previous winners of the Chemical & Biological Microsystems Society (CBMS)/ Analytical Chemistry co-sponsored Young Innovator Award.

Chemistry in Korea: IBS and Beyond

possible thesis topics in chemistry

This virtual issue of “Chemistry in Korea: IBS and Beyond” highlights the latest contributions from eight IBS centers along with exciting advances from other emerging scientists in South Korea. Topics encompass a wide range of chemistry and its cross-boundary researches from theory and simulations, nanomaterials, molecular synthesis, catalysts, spectroscopy, supramolecular chemistry, soft materials to nanomedicine.

Highlighting Analytical Chemistry 2020 Advisory Board Members

possible thesis topics in chemistry

The members of Analytical Chemistry ‘s Editorial Advisory Board (EAB) and Early Career Board (ECB) panels devote substantial voluntary time and energy to support Analytical Chemistry and deserve special recognition for their contributions. In recognition of their service, this new virtual issue is dedicated to the members of both the journal’s EAB and ECB, with each selecting one of their recent Analytical Chemistry articles to highlight.

A Bright New World of Ferroelectrics: Magic of Spontaneous Polarization

possible thesis topics in chemistry

Ferroelectric materials featured with spontaneous polarization have experienced a century of vigorous development. The permanent electric dipole moment makes ferroelectric an outstanding multifunctional material for a wide range of applications. Ferroelectrics with unique coupling effects among electric, optical, mechanical, thermal, and magnetic orders, have been developed for a wide range of functional devices and triggered a new world-wide wave of ferroelectric research. This virtual issue highlights some of the key state-of-the-art findings in ferroelectrics published in ACS Applied Materials & Interfaces and ACS Applied Electronic Materials , and the editorial attempts to reflect the rapid development and provide a perspective in this field.

Peter J. Rossky Festschrift

This Virtual Special Issue honors Professor Peter J. Rossky and his contributions to the field of physical chemistry.

Computational and Experimental Advances in Biomembranes

possible thesis topics in chemistry

As an integral component of cellular architecture and signalling, cell membranes are central to cell physiology. Comprising a vastly heterogeneous mixture of proteins and lipids, cell membranes are constantly adapting their structural organization to regulate cellular processes. Malfunction at the level of lipid-protein interaction is implicated in numerous diseases, and hence, understanding cell membrane organization at the molecular level is of critical importance. The collection of articles in this Virtual Special Issue from The Journal of Physical Chemistry B provides a survey of the advances in both computational and experimental characterization of the complex processes underlying the behavior of cellular membranes.

Sensors and Industry

possible thesis topics in chemistry

In this virtual issue, ACS Sensors and Analytical Chemistry highlight 30 of these outstanding industrial co-authored papers recently published in the two journals. The breadth of the articles in this collection emphasizes the incredible research on diagnostic methods being performed in both universities and industries, and highlights the benefits of collaboration between the two. Read the Issue . ***

Machine Learning in Physical Chemistry

possible thesis topics in chemistry

Physical chemistry stands today at an exciting transition state where the integration of machine learning and data science tools into all corners of the field is poised to do nothing short of revolutionizing the discipline. These powerful techniques – when appropriately combined with domain knowledge, tools, and expertise – have led to new physical insights, better understanding, accelerated discovery, rational design, and inverse engineering that transcend traditional approaches to materials, molecular, and chemical science and engineering. This collection of nearly 150 manuscripts from The Journal of Physical Chemistry A / B / C and The Journal of Physical Chemistry Letters reflects the relevance and popularity of this topic in physical chemistry by both the depth and breadth of excellent articles in this exciting collection.

Self-Healing Materials

possible thesis topics in chemistry

This is a spotlight on applications discusses developments made over the last six years that have enabled the fabrication of increasingly high-performance spray-coated perovskite solar cells. In particular, the various approaches adopted to spray-cast perovskite films (one-step vs two-step processes) ware charted and the development of sophisticated techniques used to control thin-film crystallinity is described. Finally, remaining research challenges are discussed that, once solved, may allow the mass deployment of low-cost solar energy.

Women in Mass Spectrometry

possible thesis topics in chemistry

This virtual issue was assembled to feature talented women mass spectrometrists who publish in JASMS as the corresponding author. The articles compiled are among the most highly cited that were published in the journal in the last 5 years, regardless of gender, and are representative of the best mass spectrometry science reported in JASMS .

In Memory of Mario Molina (1943-2020)

possible thesis topics in chemistry

Mario Molina was a Mexican chemist who shared the 1995 Nobel Prize in chemistry with the late F. Sherwood Rowland of UC Irvine and Paul Crutzen of the Max Planck Institute for Chemistry in Mainz “for their work in atmospheric chemistry particularly concerning the formation and decomposition of ozone.” Molina passed away in his birth city of Mexico City at age 77 on 7 October 2020. A physical chemist at heart, Molina published about 80 papers in The Journal of Physical Chemistry . His mentees remember him by celebrating 30 of them. His indelible legacy lives on through his publications, his collaborators, the scholars that he trained, the innovations in experimental design he made, the thousands who were inspired and informed by his science communication, and the millions whose quality of life improved thanks to his work on stratospheric ozone depletion and air quality in megacities.

Women Scientists at the Forefront of Energy Research: A Virtual Issue, Part 3

possible thesis topics in chemistry

This is the third part of a series that recognizes women energy researchers who have published new advances from their laboratories in ACS Energy Letters . The inspirational stories and advice to newcomers in the field contained in this issue should provide motivation to advance the scientific research in energy conversion and storage. Through their personal reflections, these researchers discuss the successful career paths they have taken to become leaders in the scientific community.

Scalable Organic Chemistry: A Virtual Issue to highlight Organic Process Research & Development

possible thesis topics in chemistry

From small-scale use in academic research to large-scale application in industrial processes, only select chemistries make the cut to be relevant throughout the scale-up process. This virtual issue showcases a collection of innovative and industrially-relevant papers on key topics from academic and industrial chemists in Organic Process Research & Development .

Virtual Issue in Memoriam of Dr. Alan Poland (1940-2020)

possible thesis topics in chemistry

Dr. Alan Poland was a major influence on the development of modern molecular toxicology and the understanding of how chemicals cause cancer. He is most widely known for his groundbreaking work to explain the adverse effects of dioxins, chemicals and related environmental pollutants.

Deep Eutectic Solvents

possible thesis topics in chemistry

This virtual issue focuses on scientific and engineering advances related to Deep Eutectic Solvents. It includes papers that have appeared in the last two years in ACS Sustainable Chemistry & Engineering , Industrial & Engineering Chemistry Research , Journal of Chemical & Engineering Data , and Journal of Physical Chemistry B and C .

Celebrating ACS Sensors ‘ Editorial Advisory Board

possible thesis topics in chemistry

Metal-Organic Frameworks: Fundamental Study and Applications

possible thesis topics in chemistry

Exciting developments in metal-organic frameworks (MOFs) are the focus of this Virtual Issue that is jointly produced by Langmuir and ACS Applied Materials & Interfaces ( ACS AMI ). These two journals publish complementary and ground-breaking work on interfacial science. ACS AMI has a strong focus on practical applications whereas Langmuir encourages reports of both fundamental and applied nature, when rational design is a highlighted feature of the work.

Inorganic Synthesis in Uncommon Reaction Media

possible thesis topics in chemistry

Water and organic solvents have long been the most common reaction media for chemical synthesis. Nevertheless, given limits in solubility and the need for extreme temperatures sometimes, especially for inorganic substances, chemists have had a growing interest in moving to “uncommon” reaction media to improve the access to certain compounds or to permit the fundamental study of the behavior of chemicals under unique conditions. In this Virtual Issue, “Inorganic Synthesis in Uncommon Reaction Media,” Guest Editor Julia Chan and Associate Editor Stefanie Dehnen highlight recent reports from Inorganic Chemistry and additionally from Chemistry of Materials and Crystal Growth & Design that feature reactions taking place in currently used uncommon systems: molten metals (metal flux), molten salts (nonmetal flux), ionic liquids (ionothermal if carried out under elevated temperatures), supercritical solvents (solvothermal), and liquefied gases.

The Challenge of Antibacterial Drug Permeation and Current Advances

possible thesis topics in chemistry

Recent advances in the area of drug permeation feed the pipeline of antibacterial agents with new and improved activities and keep the ever-changing landscape of antibiotic resistance effectively managed by small molecule therapeutics. The articles included in this Virtual Issue broadly represent three areas of research: 1) new experimental approaches to analyze intracellular accumulation of compounds in whole cells and compound permeation across model membranes; 2) new computational models of drug permeation across the outer membrane and integrated kinetic models of drug permeation across membranes with active efflux; and 3) new antibiotic screening campaigns and exploration of synergistic drug combinations bypassing bacterial permeation barriers.

Organic Chemistry in Japan: A Strong Foundation and Honorable Tradition

Organic chemistry has a strong foundation and honorable tradition in Japan, centering in recent decades predominantly on the development of synthetic methodologies, particularly in an interdisciplinary fashion focusing on cross-coupling and C-H activation and functionalization, the total synthesis of natural products, chemical biology research, supramolecular chemistry, and applications of (opto)electronic materials—all with an eye toward fostering international collaborations. This new Organic Letters Virtual Issue features 25 selected articles form 2019-2020 to highlight these achievements.

possible thesis topics in chemistry

This virtual issue in Environmental Science & Technology ( ES&T ) marks the 50-year anniversary of the United States Environmental Protection Agency (US EPA). Recognizing this significant milestone brings an opportunity to reflect on the enormous achievements and impact this federal agency has had on the remediation and protection of the environment, reaching both domestically within the USA and globally since its official beginnings on December 2nd, 1970.

Bioconjugate Chemistry 30th Anniversary Reviews

possible thesis topics in chemistry

The breadth and impact of these 30th anniversary reviews demonstrate how the Bioconjugate Chemistry of today continues the forward-looking embrace of new science and systems while maintaining the old-fashioned virtues of scientific rigor and reproducibility.

Want the latest stories delivered to your inbox each month?

ACS Applied Energy Materials

ACS Applied Energy Materials

logo

Chemistry Research Topics: A List of 150 Winning Ideas

Chemistry Research Topics Ideas

A chemistry science student conducts research works that are associated with their interests and seeks to study different chemical phenomena or reactions within their fields.

A top-notch research topic is an essential foundation of a good research paper. A good research paper carries the potential to boost your academic grades. On the contrary, a poorly written research paper can severely affect your grades. Most chemistry students often end up making the same mistake of choosing the wrong chemistry research topics for their papers. It significantly affects the quality of their academic grades.

Read our blog to dig deeper to get the best research topics for chemistry. We are sure this article will be helpful for you. We have prepared lists of more than 150 exciting chemistry research topics. These topics will help you attain the highest grades and enjoy your research process simultaneously.

Table of Contents

Organic Versus In- Organic Chemistry

Chemistry is an old age of science for which human knowledge has enhanced over the past decades. It was in the 17 th century when scientists discovered that there are in total two branches of chemistry: organic chemistry and in- organic chemistry.

Now, for a better understanding let us explore the differences between these two branches of chemistry.

Both of these fields include analytical laboratory techniques to analyze the behavior of different compounds within their disciplines.

Before moving forward to the topics selection, we suggest you to have a look at this guide for creating or choosing the ideal chemistry research topic.

Noteworthy Guidance for Selecting a Successful Chemistry Research Topic:

Indeed selecting chemistry research topics is not easy, but it’s not impossible, is it? Well, obviously, no. All you need is some expert help with chemistry research topics. But first, whilst you are in your selection phase, narrow down the chemistry research topics and select the topics that are:

  • Interesting to you : Interesting research topics are your way to a successful research paper. Avoid selecting tedious, dull and difficult topics; choose a chemistry topic for which you have good knowledge and understanding.
  • Analytical:  Before selecting your topic, make sure it’s analytical. Read previous scholarly articles to understand the thought process of renowned scientists. Thinking about analytical chemistry research topics would improve the credibility of your research paper.
  • Researchable : conduct background research for your chemistry topics. It will help you to structure a strong foundation for your research paper. Popular topics are always helpful for making a successful paper. You can get numerous authorized content regarding popular topics. However, to draft a unique research paper, include some new studies and hypotheses on that topic.
  • Supporting references and materials:  Make sure your research topic has enough reliable sources. Before selecting your research topic, see if it consist well- trusted books, article or journals.
  • Following university guidelines:  Before choosing your chemistry research topics, you must analyze whether your topic follows the university writing requirements or not. An impactful research paper includes all the essential norms acknowledged by the scientific community.

List of 150 Enticing Chemistry Research Topics

chemistry research areas

Here we go! In this section, we have created the best chemistry research topics in a nutshell.

Let’s have a look at some of the best chemistry research topics. Select the one that’s best for you and get started with your research work. For a better understanding, we want you to read every topic thoroughly and then decide what works best for you.

So what are you waiting for? Let’s get started!

Organic Chemistry Research Topics

Organic chemistry is a vast study area that studies carbon-containing molecules. This field contains various organic chemistry research topics to write and study about in this area. To draft an impressive chemistry research topic, invest your time and energy in conducting the prerequisite research first.

Here are just a few of the best organic chemistry science research topics for you to consider:

  • Investigation of the recent advancements in the methods for synthesizing chiral molecules
  • Studying the electronic structure and chemical reactivity of carbon nanotubes
  • Define and explain the oil in a nutshell
  • Chlorination of phenol
  • Exploring the preparations and properties of metal complexes with organometallic ligands
  • Towards rational crafting of benzene derivatives with improved thermal stability
  • Exploring the new ways of molecular reaction dynamics
  • Learning stereochemistry in organic compounds
  • A handbook on learning the isomerism types in organic compounds
  • Nucleophiles: reactions of nucleophiles with ethylenic substrates
  • Conceptive research on nucleophiles
  • Discovery of aniline dyes
  • The ups and downs of nucleic acids stability
  • Process modelling for hydrocarbon fuel conversion
  • Exploring the new C-O electrophiles in cross-coupling reactions
  • New directions toward structure formation and stability
  • Regulations of nitrogen compounds in water
  • A review of the effect of alcohols on micro-organisms
  • Snow pollution management in urban areas
  • Exploring the effects of cell-surface sugars on health, illness, and aging

Inorganic Chemistry Research Topics

Inorganic chemistry deals with in-organic compounds which consist of ionic bases into them. Excluding carbon, all the other elements mentioned in the periodic table are included in inorganic chemistry. It includes inorganic compounds such as minerals, metals, etc. But let us not dive into the details and leave that part to your research paper.

Here are some interesting inorganic chemistry research topics for you:

  • A detailed study on how metals react with each other
  • Needs trends and new alloys of inorganic chemicals
  • Inorganic chemistry and its relationship with the pharmaceutical industry
  • Effects of different chemicals and their reactions on the human body
  • Past, present, and future of inorganic chemicals
  • A conceptive study on inorganic chemistry and its role in the environment
  • The future of inorganic chemistry and sustainable development
  • The method of creating new alloys and how to improve the existing ones
  • Inorganic chemistry and its relationship with the food industry
  • The relationship between inorganic chemistry and the cosmetic industry
  • Principals of inorganic chemistry: theory, practice, and applications
  • Modifications of NaCI structure: why is it salty?
  • A detailed study on the formation of sapphires
  • The law of multiple proportions
  • Different states of matter: on Earth and in the Cosmos
  • Hydrodynamics of soft active matter handbook on the effects of sulfuric acid on organic materials
  • A comparative study of the difference between organic and inorganic compounds
  • Importance of inorganic chemistry
  • Explanation of Lewis structures and Electron Dot models

Advanced Physical Topics in Chemistry

These topics are widely focused on advanced physical topics in chemistry. If you are still confused about your chemistry-related research topics, we hope these topic ideas might interest you:

  • A concise study on the relationship between chemical reactions and heat
  • Introduction and progress in the fields of spectroscopy
  • Introduction to quantum chemistry in the age of quantum computing
  • Ideas and variations of methods in quantum chemistry
  • Recent advancements in mechanistic organic photochemistry
  • Definition and standardization of pH measures
  • A handbook on the structure of atoms on a quantum scale
  • The chemical bonding across atoms and molecules
  • The relationship between temperature and chemical reactions
  • Introductions and principles of chemical kinetics
  • Recent advancements in the role of light in in-body chemical reactions
  • The influence of surface tension and its effects on mixtures
  • An overview of interfacing of advanced computing in the electron microscope
  • Advanced technology paths towards a science of global climate stability
  • Catalytic reaction: structure sensitivity and nanoplasmonic probes
  • A detailed study on the nanoelectrodes and Sensors

Easy Research Topics in Chemistry

These are a few chemistry research topics that are important and easy simultaneously. So here are some essential chemistry topics which may interest you:

  • Introduction to modern liquid chromatography
  • Rational molecular design for achieving persistence and reducing toxicity
  • Properties of mesoscopic structure at ultrafast time scales
  • Climate chemistry: role of chemistry for preserving climate issues
  • The chemistry of allergy
  • Host-Guest Interactions of Fullerene Fragments
  • Lewis structure study

General Chemistry Topics for Research

If you are looking for general chemistry research topics, this section is specifically made for you. Have a look at this section before selecting your chemistry topics. This section comprises various general chemistry topics that are important simultaneously.

  • Batteries for vehicular applications: building better batteries
  • Conductive polymers as the new established thermoelectric material
  • Pesticides use in vegetable production: a survey of American farmers
  • The harmful impacts of pesticides on human health
  • Explain the fast dynamics of water droplets upon freezing
  • What is the reason behind the breakage of freezing rocks
  • Formation of cholesterol crystallites
  • A meta-analysis of the controversy of steroids
  • A meta-analysis on the biological synthesis of cholesterol
  • Fritz Haber: as a damned scientist  

Analytical Chemistry Topics for Research

Analytical chemistry studies and identifies matter’s composition, status, determination, and structure. Scientists use analytical chemistry to determine the matter and how much it is helpful in something. So, if you are keen to research analytical chemistry topics, here are some of the great ideas to move forward with your research:

  • Introduction to liquid chromatography
  • Environmental analytical chemistry
  • Identifying chemical reaction hazards in the laboratory
  • Introduction to chromatography
  • Understanding molecular dynamics and targeted thermostat schemes
  • An overview of chiral class drug analysis in forensic laboratories
  • Optical enantiomers flaw: symmetry and molecular chirality
  • Learning chemical equilibrium with the jigsaw technique
  • Application of electrochemical biosensor for toxic detections
  • Revisiting qualitative analysis of chemistry
  • An overview and an update on the clinical pharmacology of ibuprofen
  • Evaluation of Isomerism framework advantages
  • Principals and classifications of chromatography
  • Exploring multiple time-scale molecular dynamics
  • Effects of chemical equilibrium
  • The adulteration of drugs
  • Rethinking amide bond’s effects in polypeptide field

Innovative Research Topics for Chemistry

Innovative chemistry refers to linking your creative ideas with your chemistry research topics. So, if you were thinking of making a groundbreaking chemistry research paper, here are some chemistry topics to write about:

  • Side-chain conformational effects in protein folding
  • An overview of thiophene compounds
  • Sonochemical synthesis of nanomaterials for green chemistry
  • Enzymes and their significance in chemical reactions
  • The tragedy with fritz
  • The functions of enzymes in maintaining soil health
  • Fabrication and application of photocatalysis in 3Dprinting
  • Farming with fewer pesticides: health and environmental cost of pesticides
  • Cellular transportation of drugs
  • The introduction and science of flavonoids
  • Black drug intermediates
  • Scatter research for chemical and bio-process optimization
  • Development of responsive sensors of upconversion nanomaterials
  • The philosophy of quantum mechanics: a modern development
  • Identifying the significance of astrochemical research on extraterrestrial molecules
  • A deep analysis of cellular transport systems in facility logistics
  • Evolving medicinal chemistry: fusion of traditional and modern chemistry
  • The significance of Meta- organic frameworks
  • Monitoring chemical reactions of pressurized organic components
  • Deep research on active pharmaceutical ingredients

Controversial Chemistry Topics for Research

Controversial topic includes all those exciting buzzing topics, which make people curious to know more. If you still haven’t found your topic, have a look at these below given controversial chemistry research topics to get started with your research:

  • Chemicals in war: the history of chemicals and biological warfare agents
  • Interaction between hydrogen and dipole and their functions in protein
  • Current concepts of bioengineering
  • Association of food chemicals with the human brain
  • Production of food flavouring agent
  • Modulations of hydrophobic effects
  • Hydrophobic interactions
  • State’s role in regulating chemicals
  • Cigarettes and cigarette smoking: Evolution of chemicals in cigarettes
  • The chemical effects and trouble associated with cannabidiol oil
  • Bad chemical reactions: the rise and rise of antidepressants
  • DNA and decentralization of electrons
  • A handbook on
  • chemistry and the origin of life
  • Chemical warfare ethics
  • A structure-based platform for predicting chemical reaction
  • Synthetic self-replicating molecules
  • The growing danger of bioconjugation chemistry
  • Fritz Haber’s experiments in life and death
  • Principals and practices of green chemistry

Read Also – Interesting Biology Research Topics

Biochemical Engineering Topics in Chemistry

Biochemical engineering is an important pillar industry of this century. It is the interdisciplinary combining biotechnology and chemical engineering. So, if you are interested in this field but wondering which topic to choose. We are here to provide our help with  research papers . Here are a few exciting chemistry research topics:

  • Thermodynamics in biochemical engineering
  • Transmembrane transporters
  • An ontology of advanced engineering
  • Understanding the mathematical modelling of metabolism
  • The harmful effects of food industry chemicals
  • The future of biochemical engineering
  • Perceptions and developments of epigenetic
  • Autophagy: process and functions
  • An introduction to the mechanisms of apoptosis
  • Mechanisms of tetracycline drugs

Biochemistry Research Topics

While this term might sound obscure, it includes critical fields such as environmental protection, rehabilitation, genetics, use of opioids, etc. If you are keen to analyze more about these subjects, we have selected the ten most essential biochemistry topics. Before selecting the topic, we suggest you read each topic thoroughly and conduct primary research on the selected ones:

  • Significance of biochemistry for cancer treatment
  • The extraordinary mitochondrion citric acid cycle
  • The role of biochemistry in building the immune system
  • Epigenetic: the science of probiotic research
  • Unravelling the cell metabolism process
  • Behavioural study of biochemistry
  • Significance of
  • biochemistry in heart diseases
  • The visible history of the visible sheep: the legacy of dolly the sheep
  • Industrial applications and utilization of amino acid
  • New therapies for treating hemophilia

Final Thoughts

At last, we hope this article has provided help with selecting chemistry science research topics. We agree that choosing science research topics is difficult, especially when you are supposed to write a paper on chemistry topics. The research topic for chemistry consists of various pertinent sub fields under this domain, but you must focus on that one topic that highlights your skills and knowledge in the best way.

The above-given topics will help you to take a step toward a successful academic career. Interesting chemical research topics can create a strong foothold of your entire work in your research proposal . Highlight the importance of the topic in your research proposal. Elaborate how your research work can create a massive difference in your field, etc.

' src=

By Alex Brown

I'm an ambitious, seasoned, and versatile author. I am experienced in proposing, outlining, and writing engaging assignments. Developing contagious academic work is always my top priority. I have a keen eye for detail and diligence in producing exceptional academic writing work. I work hard daily to help students with their assignments and projects. Experimenting with creative writing styles while maintaining a solid and informative voice is what I enjoy the most.

232 Chemistry Research Topics To Make Your Neurochemicals Dance

blog image

Speaking from experience, science can be fun. The only thing that matters is that you should always choose the theme/field that fascinates you the most. Chemistry, if done right, can give you more dopamine rush than riding a racing bike. The trick is to choose a chemistry research paper topic that moves your quarks when you’re writing about it. 

Table of Contents

Chemistry Research Topics: Biochemistry, Chemical, Organic, and more

Our chemistry research writers are not regular researchers but people who actually study and love chemistry. They have spent a lot of time unearthing some of the cool topics that could pump any chemistry geeks with an adrenaline rush. They have years of experience offering chemistry research paper writing services, so you can trust their work.  (Many people around the world already do and you can find that in testimonials on our  PhD Research Paper Writing Services  page.)

Physical chemistry research topics

physical chemistry research topics

  • Laws of Thermodynamics
  • Energy Balance
  • Gases: Gas Law
  • harles and Gay Lussac’s law
  • General Ideal Gas Law
  • The mass of a chemical compound
  • The moles of an atomic species
  • The flow of Fluids in Closed Ducts
  • Impact of gravity on the fluids
  • Strength effect of elasticity of fluid actions
  • Surface tension in fluids
  • Statistical Analysis Of Thermodynamic Properties
  • Determination of the ideal gas constant
  • pH determination
  • Distillation of an azeotropic mixture
  • Cubic equations of state
  • Redox titrations
  • Ideal solutions (liquids)
  • Laboratory on the States of Matter
  • Laboratory on the construction of an atom
  • Research on molecular geometry
  • Research on the density of bodies
  • Kinetic studies of pyrolysis, combustion and gasification of various materials (organic and inorganic)
  • Physicochemical Processes of Interaction of Metals with Biomaterials
  • Photochemistry of Compounds of Environmental Interest
  • Study of the kinetic, thermodynamic and catalytic activity of compounds
  • Organic and inorganic academic and environmental interest
  • Determination of heat of combustion of acetamidophenols
  • Experimental determination of thermochemical properties of chemical compounds
  • Experimental evaluation of thermal properties of dangerous organic liquids
  • Synthesis and characterization of hydrogels based on acrylic acid
  • Incorporation of salts and other chemical substances in acrylic acid/acrylamide hydrogels
  • Physical chemistry of polymers and macromolecules
  • Pharmaceutical physical chemistry
  • Physical chemistry and material sciences
  • Biomimetic chemistry
  • Petrochemical and related sciences
  • Physical chemistry of semiconductors
  • Physical chemistry of extractive processes
  • Physical chemistry of surfaces

We bet these chemistry essay topics have blown you away. Don’t worry we have more useful topics coming your way.

Read More:  Accounting Research Topics

Electrochemistry research topics

Below are some of the best topics for research paper about chemistry and its affiliate subjects. Check them out:

electrochemistry research topics

  • Calibration of carbon paste electrodes modified with iron particles
  • Effect of ionic strength on electrochemical detection
  • Oxygenated groups present in graphite powder
  • Electrochemical analysis
  • Potentiometric titrations of functional groups
  • Physical and chemical characterization of the modified and unmodified material 
  • Electrochemical recovery of toxic metals
  • Carbon paste electrodes
  • Biological and bioelectrochemical reactors with an optimization approach based on computational methods
  • Electrogeneration of oxidizing species
  • Electroremediation of contaminated water and water soils
  • Electrochemistry: Importance in Robotics and Nanotechnology
  • Electrochemistry in Ecology and Environmental Processes
  • How electrochemistry plays an important role in energy generation
  • Photovoltaic cells and hybrid energy systems
  • Nanostructured materials for fuel cells
  • Solar Systems and Electrochemistry
  • Biomolecular interactions and electroanalysis
  • Chemical and electrochemical methods in disease diagnosis
  • Synthesis and Electrochemical Properties of Hexacyanoferrate-Doped Polypyrrole
  • Energy Storage in Hybrid Organic-Inorganic Materials
  • Conducting Organic Polymers with Electroactive Dopants
  • Electrochemistry for bioprocess engineering applications
  • Electrochemical enhancement of microbial product formation
  • Electron transfer of electrode-bound enzymes
  • Transport mechanism and interfacial reactions within the oxide layer
  • Oxide layer modelling
  • Preparative electrochemistry or electrosynthesis
  • Electrochemical methods in analytical chemistry
  • Electrochemical synthesis methods
  • Fuel cell technology in Technical Chemistry 
  • Electrochemical reactions
  • Phase boundary electrode-electrolyte
  • Phase boundary between an electronic conductor (electrode) and an ionic conductor (electrolyte)
  • Applications of electrochemistry
  • Reduction of metal salts for the production of base metals, mainly by electrolysis
  • Use of electrolytic metal deposition in electroplating
  • Provision of an electrical voltage, especially for mobile applications
  • History of Electrochemistry

We know your chemistry research projects are incomplete without these eyecatching topics. Read them and wisely write on these subject to amaze your professor.

Read More:  Business Research Topics

Organic Chemistry research topics

organic chemistry research topics

  • A novel process for the production of sophisticated molecules
  • Addition of amino sugars to acetylenic compounds
  • Environmental remediation and as a reaction containment medium
  • Intermolecular interactions for the molecular recognition of peptides and proteins
  • Synthesis of glycosylamines from disaccharides and lipooligosaccharides
  • Catalysis with metal and organocatalysts, photocatalysis, natural product synthesis, unnatural amino acids and peptide foldamers
  • Development and modification of gels based on polymers for use in drug delivery
  • Reusable catalyst makes oxidation of CH bonds with oxygen easier and more efficient
  • Structural analysis of nodulation factors produced by bacteria of the genus Rhizobium
  • Imidazopyridines as new materials
  • Effects of Ultra-Violet Light on Activation of Oxygen
  • Synthesis of large unsymmetrical imines by a palladium-catalyzed cross-coupling reaction
  • Improved pharmaceuticals thanks to fluorine
  • Application of the hydroxy-ketone reductive grouping in obtaining trans-fused polyethers
  • Role of Biochemistry in the creation of Antibiotics
  • Application of the olefin metathesis (RCM) reaction in the synthesis of Orthocondensated polyoxepanes
  • Sugars in green olives
  • Synthetic applications of d-glucose derivatives
  • Synthesis, structure, coordination and applications in asymmetric catalysis
  • Natural product synthesis and convergent technologies
  • Activation of growth factors for fibroblasts by glycosaminoglycans effect
  • Thiols, preparation and handling
  • Biotransformations of industrial interest catalyzed by fungal peroxygenases
  • Carbohydrate multivalent systems functionalize proteins and surfaces
  • Fused n-heterocyclic carbenes in biaryl systems
  • Hair structure
  • Biochemistry for bioremediation
  • Chemical and structural characterization of lignin and lipids of lignocellulosic materials of industrial interest
  • Physicochemical characterization of citronella, soapstone, and eucalyptus essential oil
  • Electrophilic Substitution Reactions: Synthesis of Nitrobenzene
  • Essential oils: uses and properties
  • Activation of growth factors for fibroblasts by glycosaminoglycans

Read More:  Finance Research Topics

Inorganic Chemistry research topics

inorganic chemistry research topics

  • Soil and water contamination by inorganic compounds
  • Synthesis and characterization of Coordination Compounds and their use as homogeneous catalysts
  • Free Radicals and Antioxidants
  • Analytical Chemistry associated with the study of inorganic compounds
  • Quantum molecular modeling and mechanics
  • Inorganic Materials
  • Hydrogen reactivity with inorganic compounds
  • Bond theory analysis
  • Chemistry of some transition elements
  • Boric Acid Preparation
  • Types of inorganic chemical reactions
  • Introduction to inorganic chemistry
  • Study of the atomic spectrum
  • Crystal defects in inorganic chemistry
  • Explosives and violent reactions in inorganic compounds
  • Objective characterization of wines through aroma components
  • Microstructural characterization of nanoparticles and magnetic “nano-composites” of iron
  • Chemical, morphological, mineralogical, and genesis characters of the salt mines
  • Physical and chemical characteristics of the soils occupied by olive groves
  • Theoretical analysis and development of instrumentation to apply the new technique of thermal analysis at a constant rate of reaction
  • Alteration of rocks and soil formation in Utah
  • The catalytic activity of 4f metal oxides in the decomposition of various carboxylic acids and alcohols
  • Activation of ethylene and carbon dioxide by molybdenum complexes
  • Platinum promoting action on nickel catalysts supported on activated Bentonite
  • Homogeneous catalysis (with an organometallic, transition metal, lanthanide and representative compounds)
  • Methods of synthesis of organometallic compounds assisted by microwaves.
  • Design of molecular precursors with relevance in materials chemistry.
  • Chemistry of inorganic heterocycles.
  • Immobilization of organometallic and coordination compounds in polypropylene membranes.

Read More: High School Research Topics

Biochemistry research topics

biochemistry research topics

  • Bioinformatics and Computational Biology
  • Cell differentiation and metabolism
  • Biochemistry of Individual Molecules
  • Enterobacteriaceae envelopes: modulation of their structure in response to environmental cues and impact on pathogenicity
  • Neuroplasticidad y Neurogenética
  • Environmental biotechnology applied to water decontamination.
  • Reproductive Aging
  • Neurobiochemistry
  • Regulatory proteins of iron metabolism
  • Iron deficiency anaemia and cardiovascular disease
  • Iron deficiency anaemia and oxidative stress
  • Nutritional anaemias independent workers
  • Food incompatibilities for iron absorption
  • Evaluation of anaemia and iron deficiency in schoolchildren
  • Iron deficiency anaemia and evaluation of school performance
  • Iron deficiency anaemia in students of Educational Centers
  • Copper Levels and Oxidative Stress in the Elderly
  • Iron Levels and Oxidative Stress in the Elderly
  • Evaluation of transcription factors (surgical samples)
  • Biochemical markers in oxidative stress
  • Antioxidant activity in irradiated food products
  • Kinetics of the reactivity of antioxidants in food
  • Evaluation of oxidative stress in various pathological states
  • Iron levels in the Elderly
  • Copper Levels in the Elderly
  • Evaluation of the synergistic effect in a mixture of antioxidant compounds
  • Antioxidant activity in medicinal plants
  • Food patterns and evaluation of antioxidant capacity in food
  • Markers in Diabetes mellitus and cardiovascular disease
  • Biochemical markers in Diabetes mellitus
  • Chemotherapy with redesigned Methotrexate
  • The Biosynthesis of triglycerides or triacylglycerides
  • Consequences of suffering from coronary disease
  • What medications should be administered in patients with osteoporosis?
  • Appearances of physiological alterations in older adults
  • The impact of the administration of clindamycin, amikacin, and ceftazidime in hospitalized patients
  • Pharmaceutical advice to reduce stress
  • Dyslipidemia in Diabetes mellitus
  • Diabetes mellitus and transcription factors (Cell culture)
  • Factors that lead to cholesterol excretion
  • Nutritional evaluation of pregnant diabetic mothers
  • How do blood alcohol levels influence drivers involved in traffic accidents?
  • Pleiotropic effects of oral hypoglycemic drugs
  • Importance of eating foods rich in carotenoids
  • The biochemical and toxicological impact of lead with environmental contact
  • The importance of emotions in the intervention of our digestive system
  • Lifestyles and Diabetes mellitus
  • Adiposity in Diabetes mellitus
  • Diabetological education of the patient with Diabetes mellitus
  • The impact of drug administration

Read More:  Nursing Research Topics

Nano / Nuclear Chemistry research topics

nano nuclear chemistry research topics

  • Modeling of metallic nanostructures
  • Modeling of nanostructures supported on oxides
  • Development of advanced nanomaterials with specific
  • Nanomaterials in the fight against cancer and spinal cord injuries in laboratory rats for neuronal reconnection
  • Study of the effects of radiation on the structure and properties of nanomaterials
  • Development of nanostructured substrates for Raman spectroscopy applications
  • Implants in neural tissues of the spinal cord to promote lost communication between the brain and the rest of the body
  • Design and preparation of theragnostic radiopharmaceuticals
  • Research and development of radiopharmaceuticals based on nanosystems for use in molecular nuclear medicine
  • Hydrogen storage, the capture of toxic gases, improvement of solar cells
  • Geometric optimization of nanostructures using classical methods
  • Calculation of energies and molecular properties
  • Synthesis of supercapacitors with carbon nanotubes
  • Simulation of high-resolution transmission electron microscopy images of nanostructures
  • Development of bactericidal dressings based on metallic nanoparticles
  • Modernization of the ININ X-Ray Diffraction Laboratory
  • Thin coatings of transparent materials with high hardness

Read More:  Psychology Research Paper Topics

Green Chemistry research topics

green chemistry research topics

  • Green chemistry and environmental sustainability
  • Strategies to make organocatalysis “greener”
  • The Chemical Knowledge and Environmental Question
  • Approach to school green chemistry, through green protocols
  • Sustainable Chemistry: Nature, purposes, and scope
  • Postgraduate studies in sustainable chemistry
  • Didactic knowledge of the content on green chemistry
  • Photochemical synthesis by sunlight
  • Green Chemistry: A Present and Future Theme for Chemistry Education
  • The environmental dimension of experimentation in the teaching of chemistry
  • Role of Chemistry and its teaching in the construction of a sustainable future
  • A foundation for the incorporation of green chemistry in organic chemistry curricula
  • Contribution of green chemistry to the construction of a socially responsible science
  • Aspects of the pedagogical knowledge of the content of green chemistry in university professors of chemistry
  • Asymmetric organocatalyzed reactions in the absence of a solvent
  • Green Chemistry for Postgraduates

Read More:  Social Work Research Topics

Archaeological Chemistry research topics

archaeological chemistry research topics

  • Archaeochemistry of the United States
  • Archaeochemistry of Egyptian Pyramids
  • Archaeochemistry of Mohanjodaro
  • Archaeochemistry of Cambodia
  • Archaeological dating, characterization, prospecting, and conservation
  • The role of bio-deteriorated ceramics in the formation processes of archaeological sites
  • Study of biodeterioration in archaeological ceramics from Mayan Ruins
  • Deterioration of ceramic fragments due to the action of lichens
  • Applicability of preventive conservation to archaeological ceramics impacted by biodeterioration

Our highly skilled professionals have provided you with superb research topics in chemistry. You can choose anyone matching your speciality and start working on making your paper a piece of art.

Conclusion:

Never believe anyone who says you can’t go for a chemistry degree or PhD. Just listen to your heart and it will all make sense. Chemistry is one of the coolest subjects. If you do it right, with a chemistry research topic that inspires you, then no one can stop you from having your chemical breakthrough. Believe in yourself and the world will see your success like a mushroom cloud. 

If you still have any confusion, or can’t find time to write a perfect chemistry paper, you can ping us through our  contact  page and get expert chemistry writing opinions from  our writers . If you just want to get on with it and seek our services, you can place your  order now .

Order Original Papers & Essays

Your First Custom Paper Sample is on Us!

timely deliveries

Timely Deliveries

premium quality

No Plagiarism & AI

unlimited revisions

100% Refund

Try Our Free Paper Writing Service

Related blogs.

blog-img

Connections with Writers and support

safe service

Privacy and Confidentiality Guarantee

quality-score

Average Quality Score

Digital Commons @ University of South Florida

  • USF Research
  • USF Libraries

Digital Commons @ USF > College of Arts and Sciences > Chemistry > Theses and Dissertations

Chemistry Theses and Dissertations

Theses/dissertations from 2023 2023.

aPKCs role in Neuroblastoma cell signaling cascades and Implications of aPKCs inhibitors as potential therapeutics , Sloan Breedy

Protein Folding Kinetics Analysis Using Fluorescence Spectroscopy , Dhanya Dhananjayan

Affordances and Limitations of Molecular Representations in General and Organic Chemistry , Ayesha Farheen

Institutional and Individual Approaches to Change in Undergraduate STEM Education: Two Framework Analyses , Stephanie B. Feola

Applications in Opioid Analysis with FAIMS Through Control of Vapor Phase Solvent Modifiers , Nathan Grimes

Synthesis, Characterization, and Separation of Loaded Liposomes for Drug Delivery , Sandra Khalife

Supramolecular Architectures Generated by Self-assembly of Guanosine and Isoguanosine Derivatives , Mengjia Liu

Syntheses, Photophysics, & Application of Porphyrinic Metal-Organic Frameworks , Zachary L. Magnuson

Chemical Analysis of Metabolites from Mangrove Endophytic Fungus , Sefat E Munjerin

Synthesis of Small Molecule Modulators of Non-Traditional Drug Targets , Jamie Nunziata

Synthetic Studies of Potential New Ketogenic Molecules , Mohammad Nazmus Sakib

Coupling Chemical and Genomic Data of Marine Sediment-Associated Bacteria for Metabolite Profiling , Stephanie P. Suarez

Enhanced Methods in Forensic Mass Spectrometry for Targeted and Untargeted Drug Analysis , Dina M. Swanson

Investigation of Challenging Transformations in Gold Catalysis , Qi Tang

Diazirines and Oxaziridines as Nitrogen Transfer Reagents in Drug Discovery , Khalilia C. Tillett

Developing New Strategy toward Ruthenium and Gold Redox Catalysis , Chenhuan Wang

Gold-Catalyzed Diyne-ene Cyclization: Synthesis of Hetero Polyaromatic Hydrocarbons and 1,2-Dihydropyridines , Jingwen Wei

Development of Antiviral Peptidomimetics , Songyi Xue

Theses/Dissertations from 2022 2022

Investigating a Potential STING Modulator , Jaret J. Crews

Exploring the Structure and Activity of Metallo-Tetracyclines , Shahedul Islam

Metabolomic Analysis, Identification and Antimicrobial Assay of Two Mangrove Endophytes , Stephen Thompson

Bioactivity of Suberitenones A and B , Jared G. Waters

Developing Efficient Transition Metal Catalyzed C-C & C-X Bond Construction , Chiyu Wei

Measurement in Chemistry, Mathematics, and Physics Education: Student Explanations of Organic Chemistry Reaction Mechanisms and Instructional Practices in Introductory Courses , Brandon J. Yik

Study on New Reactivity of Vinyl Gold and Its Sequential Transformations , Teng Yuan

Study on New Strategy toward Gold(I/III) Redox Catalysis , Shuyao Zhang

Theses/Dissertations from 2021 2021

Design, Synthesis and Testing of Bioactive Peptidomimetics , Sami Abdulkadir

Synthesis of Small Molecules for the Treatment of Infectious Diseases , Elena Bray

Social Constructivism in Chemistry Peer Leaders and Organic Chemistry Students , Aaron M. Clark

Synthesizing Laccol Based Polymers/Copolymers and Polyurethanes; Characterization and Their Applications , Imalka Marasinghe Arachchilage

The Photophysical Studies of Transition Metal Polyimines Encapsulated in Metal Organic Frameworks (MOF’s) , Jacob M. Mayers

Light Harvesting in Photoactive Guest-Based Metal-Organic Frameworks , Christopher R. McKeithan

Using Quantitative Methods to Investigate Student Attitudes Toward Chemistry: Women of Color Deserve the Spotlight , Guizella A. Rocabado Delgadillo

Simulations of H2 Sorption in Metal-Organic Frameworks , Shanelle Suepaul

Parallel Computation of Feynman Path Integrals and Many-Body Polarization with Application to Metal-Organic Materials , Brant H. Tudor

The Development of Bioactive Peptidomimetics Based on γ-AApeptides , Minghui Wang

Investigation of Immobilized Enzymes in Confined Environment of Mesoporous Host Matrices , Xiaoliang Wang

Novel Synthetic Ketogenic Compounds , Michael Scott Williams

Theses/Dissertations from 2020 2020

Biosynthetic Gene Clusters, Microbiomes, and Secondary Metabolites in Cold Water Marine Organisms , Nicole Elizabeth Avalon

Differential Mobility Spectrometry-Mass spectrometry (DMS-MS) for Forensic and Nuclear-Forensic applications , Ifeoluwa Ayodeji

Conversion from Metal Oxide to MOF Thin Films as a Platform of Chemical Sensing , Meng Chen

Asking Why : Analyzing Students' Explanations of Organic Chemistry Reaction Mechanisms using Lexical Analysis and Predictive Logistic Regression Models , Amber J. Dood

Development of Next-Generation, Fast, Accurate, Transferable, and Polarizable Force-fields for Heterogenous Material Simulations , Adam E. Hogan

Breakthroughs in Obtaining QM/MM Free Energies , Phillip S. Hudson

New Synthetic Methodology Using Base-Assisted Diazonium Salts Activation and Gold Redox Catalysis , Abiola Azeez Jimoh

Development and Application of Computational Models for Biochemical Systems , Fiona L. Kearns

Analyzing the Retention of Knowledge Among General Chemistry Students , James T. Kingsepp

A Chemical Investigation of Three Antarctic Tunicates of the Genus Synoicum , Sofia Kokkaliari

Construction of Giant 2D and 3D Metallo-Supramolecules Based on Pyrylium Salts Chemistry , Yiming Li

Assessing Many-Body van der Waals Contributions in Model Sorption Environments , Matthew K. Mostrom

Advancing Equity Amongst General Chemistry Students with Variable Preparations in Mathematics , Vanessa R. Ralph

Sustainable Non-Noble Metal based Catalysts for High Performance Oxygen Electrocatalysis , Swetha Ramani

The Role of aPKCs and aPKC Inhibitors in Cell Proliferation and Invasion in Breast and Ovarian Cancer , Tracess B. Smalley

Development of Ultrasonic-based Ambient Desorption Ionization Mass Spectrometry , Linxia Song

Covalent Organic Frameworks as an Organic Scaffold for Heterogeneous Catalysis including C-H Activation , Harsh Vardhan

Optimization of a Digital Ion Trap to Perform Isotope Ratio Analysis of Xenon for Planetary Studies , Timothy Vazquez

Multifunctional Metal-Organic Frameworks (MOFs) For Applications in Sustainability , Gaurav Verma

Design, Synthesis of Axial Chiral Triazole , Jing Wang

The Development of AApeptides , Lulu Wei

Chemical Investigation of Floridian Mangrove Endophytes and Antarctic Marine Organisms , Bingjie Yang

Theses/Dissertations from 2019 2019

An Insight into the Biological Functions, the Molecular Mechanism and the Nature of Interactions of a Set of Biologically Important Proteins. , Adam A. Aboalroub

Functional Porous Materials: Applications for Environmental Sustainability , Briana Amaris Aguila

Biomimetic Light Harvesting in Metalloporphyrins Encapsulated/Incorporated within Metal Organic Frameworks (MOFs). , Abdulaziz A. Alanazi

Design and Synthesis of Novel Agents for the Treatment of Tropical Diseases , Linda Corrinne Barbeto

Effect of Atypical protein kinase C inhibitor (DNDA) on Cell Proliferation and Migration of Lung Cancer Cells , Raja Reddy Bommareddy

The Activity and Structure of Cu2+ -Biomolecules in Disease and Disease Treatment , Darrell Cole Cerrato

Simulation and Software Development to Understand Interactions of Guest Molecules inPorous Materials , Douglas M. Franz

Construction of G-quadruplexes via Self-assembly: Enhanced Stability and Unique Properties , Ying He

The Role of Atypical Protein Kinase C in Colorectal Cancer Cells Carcinogenesis , S M Anisul Islam

Chemical Tools and Treatments for Neurological Disorders and Infectious Diseases , Andrea Lemus

Antarctic Deep Sea Coral and Tropical Fungal Endophyte: Novel Chemistry for Drug Discovery , Anne-Claire D. Limon

Constituent Partitioning Consensus Docking Models and Application in Drug Discovery , Rainer Metcalf

An Investigation into the Heterogeneity of Insect Arylalkylamine N -Acyltransferases , Brian G. O'Flynn

Evaluating the Evidence Base for Evidence-Based Instructional Practices in Chemistry through Meta-Analysis , Md Tawabur Rahman

Role of Oncogenic Protein Kinase C-iota in Melanoma Progression; A Study Based on Atypical Protein Kinase-C Inhibitors , Wishrawana Sarathi Bandara Ratnayake

Formulation to Application: Thermomechanical Characterization of Flexible Polyimides and The Improvement of Their Properties Via Chain Interaction , Alejandro Rivera Nicholls

The Chemical Ecology and Drug Discovery Potential of the Antarctic Red Alga Plocamium cartilagineum and the Antarctic Sponge Dendrilla membranosa , Andrew Jason Shilling

Synthesis, Discovery and Delivery of Therapeutic Natural Products and Analogs , Zachary P. Shultz

Development of α-AA peptides as Peptidomimetics for Antimicrobial Therapeutics and The Discovery of Nanostructures , Sylvia E. Singh

Self-Assembly of 2D and 3D Metallo-Supramolecules with Increasing Complexity , Bo Song

The Potential of Marine Microbes, Flora and Fauna in Drug Discovery , Santana Alexa Lavonia Thomas

Design, Synthesis, and Self-Assembly of Supramolecular Fractals Based on Terpyridine with Different Transition Metal Ions , Lei Wang

Theses/Dissertations from 2018 2018

Fatty Acid Amides and Their Biosynthetic Enzymes Found in Insect Model Systems , Ryan L. Anderson

Interrogation of Protein Function with Peptidomimetics , Olapeju Bolarinwa

Characterization of Nylon-12 in a Novel Additive Manufacturing Technology, and the Rheological and Spectroscopic Analysis of PEG-Starch Matrix Interactions , Garrett Michael Craft

Synthesis of Novel Agents for the treatment of Infectious and Neurodegenerative diseases , Benjamin Joe Eduful

Survey research in postsecondary chemistry education: Measurements of faculty members’ instructional practice and students’ affect , Rebecca E. Gibbons

Design, Synthesis, Application of Biodegradable Polymers , Mussie Gide

Conformational Fluctuations of Biomolecules Studied Using Molecular Dynamics and Enhanced Sampling , Geoffrey M. Gray

Analysis and New Applications of Metal Organic Frameworks (MOF): Thermal Conductivity of a Perovskite-type MOF and Incorporation of a Lewis Pair into a MOF. , Wilarachchige D C B Gunatilleke

Chemical Investigation of Bioactive Marine Extracts , Selam Hagos

Optimizing Peptide Fractionation to Maximize Content in Cancer Proteomics , Victoria Izumi

Germania-based Sol-gel Coatings and Core-shell Particles in Chromatographic Separations , Chengliang Jiang

Synthesis, Modification, Characterization and Processing of Molded and Electrospun Thermoplastic Polymer Composites and Nanocomposites , Tamalia Julien

Studies Aimed at the Synthesis of Anti-Infective Agents , Ankush Kanwar

From Florida to Antarctica: Dereplication Strategies and Chemical Investigations of Marine Organisms , Matthew A. Knestrick

Sorbent Enrichment Performance of Aromatic Compounds from Diluted Liquid Solution , Le Meng

Development of Bioactive Peptidomimetics , Fengyu She

Azamacrocyclic-based Frameworks: Syntheses and Characterizations , Chavis Andrew Stackhouse

Structure-based Design, Synthesis and Applications of a New Class of Peptidomimetics: 'Y -AA Peptides and Their Derivatives , Ma Su

Advanced Search

  • Email Notifications and RSS
  • All Collections
  • USF Faculty Publications
  • Open Access Journals
  • Conferences and Events
  • Theses and Dissertations
  • Textbooks Collection

Useful Links

  • Chemistry Department
  • Rights Information
  • SelectedWorks
  • Submit Research

Home | About | Help | My Account | Accessibility Statement | Language and Diversity Statements

Privacy Copyright

Royal Society of Chemistry

A guide to research question writing for undergraduate chemistry education research students

ORCID logo

Welcome to chemistry education research

There is no doubt that there are particular challenges associated with chemistry students taking up a project that brings together familiar aspects of chemistry with aspects of social sciences that are likely unfamiliar. There is a new world of terminology and literature and approaches that may initially seem insurmountable. However, as chemistry students, you bring something unique to the discussion on education: your expertise in chemistry and your experience of being a chemistry student. The combination of discipline speciality and focus on education has given rise to a new genre of education research, known as discipline based education research, or DBER ( NRC, 2012 ). The focus on chemistry, known as chemistry education research , intends to offer insights into issues affecting teaching and learning of chemistry from the perspective of chemistry, and offers enormous insight into factors affecting learning in our discipline. This journal ( www.rsc.org/cerp ) along with the Journal of Chemical Education published by the American Chemical Society (http://pubs.acs.org/journal/jceda8) and Chemistry Teacher International published for IUPAC (http://www.degruyter.com/view/j/cti) focus on discipline specific issues relating to chemistry education, and their prominence in being associated with major societies in chemistry indicates the high status chemistry education and chemistry education research has attained with the family of chemistry sub-disciplines.

In an attempt to help students new to chemistry education research take some first steps in their research work, this editorial focuses on the important early stage of immersing in project work: deciding what it is you want to research. Other sources of information relating to project work include the associated editorials in this journal describing more fully other parts of conducting research ( Seery et al. , 2019 ), as well as thinking about how theses published as part of university studies compare to education research publications ( Lawrie et al. , 2020 ). These editorials should be useful to students in the planning and writing stages of their research work respectively and, like all articles published in this journal, are free to access. Guidance on completing a literature review in chemistry education research is available online ( Seery, 2017 ).

What do you want to find out? Defining your research question

The “good” news is that this initial experience is very common. The task at the beginning stage of your first project is to determine what general area you would like to research, and narrow this down iteratively until you decide on a particular question you would like to answer. We will go through this process below, but an important thing to keep in mind at this stage is that work on your first project is both about the research you will do and also what you learn about doing research. Choosing a topic of interest is important for your own motivation. But regardless of the topic, doing a project in this field will involve lots of learning about the research processes and this research field. These associated skills and knowledge will likely be of most benefit to you after you complete your dissertation and go on into a future career and further studies.

Deciding on your research topic

Choosing what you want to work on when you are not quite sure of the menu to select from is very difficult. Start by writing down what kinds of things interest you that could form general topics of study. You could structure these using the following prompts:

• What from your own learning experience was satisfactory or unsatisfactory? When did you feel like you really understood something, or when did you feel really lost? Sketch out some thoughts, and discuss with some classmates to see if they had similar experiences. The task is to identify particular topics in chemistry or particular approaches of teaching that emerge, and use those as a basis for narrowing your interest to a specific theme.

• What issues from the media are topical in relation to education? Perhaps there have been changes to assessment approaches in schools, or there is a focus on graduate employability? What issues relating to education are emerging in reaction to the impact of COVID-19? Is there something current that interests you that you would like to focus on?

• Are there societal issues that are important to you? Perhaps you would like to explore the experience or performance of particular groups within education, or look at historical data and research trends. You might wish to explore education policy and subsequent impact in chemistry education.

It is likely that several broad topics will emerge that will be of interest to you. But you only have one year and one project, so you will need to choose one! So before you choose, take a shortlist of about three broad topics that interest you and find out a little more about them. The aim here is to dip your toe in the water of these topics and get a feel for what kinds of things people do, and see which one piques your interest most, and which one has most potential for a meaningful and achievable research project.

To find out a little more, you should engage in preliminary reading. This is not a literature review – the task here is to find one or two recent articles associated with each topic. To achieve this, you could go directly to one of the journal pages linked above and type in some search terms. With each article of interest you retrieve, use the following prompts to guide your reading:

1. The introduction to the article usually sets the context of the research, with some general issues relating to the research in this topic, while the final section of the paper (“limitations” or “conclusions” sections) give some specific detail on what needs further study. Read over these sections: are the issues being discussed of interest to you?

2. The experimental or methods section of the article usually describes the sample used in the study. If you were to research in this area, can you see how questions you are interested in would translate to your setting? While we will discuss scope of research more carefully below, the task here is to put yourself in the moment of doing a research project to think: what would I do? And then ask; does that moment pique your interest?

3. The results and discussion section of the article describes data the researchers report and what they think it means in the wider context of the research area. Again, while the data that you get in your project will depend on what you set out to do, use this reading to see what kind of data is impressing you, and whether you find the discussion of interest.

This kind of “sampling” of the vast literature available is a little ad hoc , but it can be useful to help bring focus on the kinds of research that are feasible and help refine some conversations that you can have with your research supervisor. While embarking on a new project will always have a big “unknown” associated with it, your task is to become as familiar as possible with your chosen topic as you can in advance, so that you are making as informed a decision as possible about your research topic. Once you have – you are ready to continue your research!

From research topic to research question

While we don’t often explicitly state the research question in chemistry research, scientists do have an implicit sense that different questions lean on different areas of theory and require different methods to answer them. We can use some of this basis in translating the context to chemistry education research; namely that the research question and the underpinning theory are clearly interdependent, and the research question we ask will mandate the approaches that we take to answer it.

In fact, in (chemistry) education research, we are very explicit with research questions, and setting out the research question at the start of a study is a major component of the research process ( White, 2008 ). As you will find repeatedly in your project, all the components of a research process are interdependent, so that the research question will determine the methods that will determine the kinds of data you can get, which in turn determine the question you can answer. The research question determines what particular aspect within a general research topic you are going to consider. Blaikie (2000, p. 58) wrote (emphasis in original):

“In my view, formulating research questions is the most critical and, perhaps, the most difficult part of a research design… Establishing research questions makes it possible to select research strategies and methods with confidence. In other words, a research project is built on the foundation of research questions .”

So there is a lot of pressure on research questions! The good news is that while you do need to start writing down your research question near the beginning of the project, it will change during the early stages of scoping out projects when considering feasibility, and as you learn more from reading. It could change as a result of ethical considerations ( Taber, 2014 ). And it will probably change and be fine-tuned as you refine your instruments and embark on your study. So the first time you write out a research question will not be the last. But the act of writing it out, however bluntly at the start, helps set the direction of the project, indicates what methods are likely to be used in the project (those that can help answer the question), and keeps the project focussed when other tempting questions arise and threaten to steer you off-course. So put the kettle on, get out a pen and a lot of paper, and start drafting your first research question!

Defining your research question

To assist your thinking and guide you through this process, an example is used to show how this might happen in practice. In this example, a student has decided that they want to research something related to a general topic of work-experience in chemistry degree programmes. The student had previously completed some work experience in an industrial chemistry laboratory, and knows of peers who have completed it formally as part of their degree programme. The student's experience and anecdotal reports from peers are that this was a very valuable part of their undergraduate studies, and that they felt much more motivated when returning to study in formal teaching at university, as well as having a much clearer idea on their career aspirations after university.

Stage 1: what type of question do you want to answer?

Some foreshadowed questions that might emerge in early stages of this research design might include:

• What kinds of industrial experience options are available to chemistry students?

• What experiences are reported by students on industrial experience?

• Why do some students choose to take up industrial placements?

• How does a students’ perception of their career-related skills change as a result of industrial experience?

• How do students on industrial experience compare to students without such experience?

All of these questions – and you can probably think of many more – are specific to the general topic of industrial experience. But as they stand, they are too broad and need some focussing. To help, we will first think about the general kind of research we want to do ( White, 2008 ).

Types of research

A second broad area of research is explanatory research, which tends to answer questions that start with “how” or “why”. Explanatory research has less of a focus on the subject of the research, and more on the processes the subjects are engaged with, seeking to establish what structures led to observed outcomes so that reasons for them can be elucidated.

A third broad area of research is comparative research, which tends to compare observations or outcomes in two or more different scenarios, using the comparison to identify useful insights into the differences observed. Many people new to education research seek to focus on comparative questions, looking to answer the generic question of is “X” better than “Y”? This is naturally attractive, especially to those with a scientific background, but it is worthwhile being cautious in approaching comparative studies. Even in well-designed research scenarios where research does find that “X” is indeed better than “Y” (and designing those experimental research scenarios is fraught with difficulty in education studies), the question immediately turns to: “but why”? Having richer research about descriptions or explanations associated with one or both of the scenarios is necessary to begin to answer that question.

Let us think again about our foreshadowed questions in the context of general types of question. The aim here is to simply bundle together foreshadowed questions by question type, and using the question type, begin to focus a little more on the particular aspects of interest to us. The intention here is to begin to elaborate on what these general questions would involve in terms of research (beginning to consider feasibility), as well as the kinds of outcomes that might be determined (beginning to consider value of research).

The descriptive questions above could be further explored as follows:

• What kinds of industrial experience options are available to chemistry students? In answering this question, our research might begin to focus on describing the types of industrial experience that are available, their location, their length, placement in the curriculum, and perhaps draw data from a range of universities. In this first iteration, it is clear that this question will provide useful baseline data, but it is unlikely to yield interesting outcomes on its own.

• What experiences are reported by students on industrial experience? In answering this question, we are likely going to focus on interviewing students individually or in groups to find out their experience, guided by whatever particular focus we are interested in, such as questions about motivation, career awareness, learning from placement, etc. This research has the potential to uncover rich narratives informing our understanding of industrial placements from the student perspective.

The explanatory questions above can be further explored as follows:

• How does students’ perception of their career-related skills change as a result of industrial experience? In answering this question, our research would remain focussed on student reports of their experiences, but look at it in the context of their sense of career development, their awareness of development of such skills, or perhaps identifying commonalities that emerge across a cohort of students. This research has the potential to surface such issues and inform the support of career development activities.

• Why do some students choose to take up industrial placements? In answering this question, our research would likely involve finding out more about individual students’ choices. But it is likely to uncover rich seams that can be explored across cohorts – do particular types of students complete placements, or are there any barriers to identify regarding encouraging students to complete placements? “Why” questions tend to throw up a lot of follow-on questions, and their feasibility and scope need to be attended to carefully. But they can offer a lot of insight and power in understanding more deeply issues around particular educational approaches.

The comparative question above can be further explored as follows:

• How do students on industrial experience compare to students without such experience? In answering this question, research might compare educational outcomes or reports of educational experience of students who did and did not complete industrial experience, and draw some inference from that. This type of question is very common among novice researchers, keen to find out whether a particular approach is better or worse, but extreme caution is needed. There may be unobservable issues relating to students who choose particular options that result in other observable measures such as grades, and in uncovering any differences in comparing cohorts, care is needed that an incorrect inference is not made. Handle comparisons with caution!

At this stage, you should pause reading, and dwell on your research topic with the above considerations in mind. Write out some general research areas that have piqued your interest (the foreshadowed questions) and identify them as descriptive, explanatory, or comparative. Use those headline categories to tease out a little more what each question entails: what would research look like, who would it involve, and what information would be obtained (in general terms). From the list of questions you identify, prioritise them in terms of their interest to you. From the exercise above, I think that the “how” question is of most interest to me – I am an educator and therefore am keen to know how we can best support students’ return to studies after being away on placement. I want to know more about difficulties experienced in relation to chemistry concepts during that reimmersion process so that I can make changes and include supports for students. For your research area and your list of foreshadowed questions, you should aim to think about what more focussed topics interest and motivate you, and write out the reason why. This is important; writing it out helps to express your interest and motivation in tangible terms, as well as continuing the process of refining what exactly it is you want to research.

Once you have, we can begin the next stage of writing your research question which involves finding some more context about your research from the literature.

Stage 2: establishing the context for your research

Finding your feet, types of context.

Let's make some of this tangible. In focussing my foreshadowed questions, I have narrowed my interest to considering how students on work experience are aware of their career development, how they acknowledge skills gained, and are able to express that knowledge. Therefore I want to have some theoretical underpinnings to this – what existing work can I lean on that will allow me to further refine my question.

As an example of how reading some literature can help refine the question, consider the notes made about the following two articles.

• A 2017 article that discusses perceived employability among business graduates in an Australian and a UK university, with the latter incorporating work experience ( Jackson and Wilton, 2017 ): this study introduces me to the term “perceived employability”, the extent to which students believe they will be employed after graduation. It highlights the need to consider development of career awareness at the individual level. It discusses the benefits of work experience on perceived employability, although a minimum length is hinted at for this to be effective. It introduces (but does not measure) concepts of self-worth and confidence. Data to inform the paper is collected by a previously published survey instrument. Future work calls for similar studies in other disciplines.

• A 2017 article that discusses undergraduate perceptions of the skills gained from their chemistry degree in a UK university ( Galloway, 2017 ): this study reports on the career relevant skills undergraduate students wished to gain from their degree studies. This study informs us about the extent to which undergraduates are thinking about their career skills, with some comparison between students who were choosing to go on to a chemistry career and those who were considering some other career. It identifies career-related skills students wished to have more of in the chemistry curriculum. Most of the data is collected by a previously published survey. This work helps me locate my general reading in the context of chemistry.

Just considering these two articles and my foreshadowed question, it is possible to clarify the research question a little more. The first article gives some insight into some theoretical issues by introducing a construct of perceived employability – that is something that can be measured (thinking about how something can be measured is called operationalisation). This is related to concepts of self-worth and confidence (something that will seed further reading). Linking this with the second article, we can begin to relate it to chemistry; we can draw on a list of skills that are important to chemistry students (whether or not they intend to pursue chemistry careers), and the perceptions about how they are developed in an undergraduate context. Both articles provide some methodological insights – the use of established surveys to elicit student opinion, and the reporting of career-important skills from the perspective of professional and regulatory bodies for chemistry, as well as chemistry students.

Taking these two readings into account, we might further refine our question. The original foreshadowed question was:

“ How does students’ perception of their career-related skills change as a result of industrial experience? ”

If we wished to draw on the literature just cited, we could refine this to:

“ How does undergraduate chemistry students’ perceived employability and awareness of career-related skills gained change as a result of a year-long industrial placement? ”

This step in focussing is beginning to move the research question development into a phase where particular methods that will answer it begin to emerge. By changing the phrase “perception” to “perceived employability”, we are moving to a particular aspect of perception that could be measured, if we follow methods used in previous studies. We can relate this rather abstract term to the work in chemistry education by also incorporating some consideration of students’ awareness of skills reported to be important for chemistry students. We are also making the details of the study a little more specific; referring to undergraduate chemistry students and the length of the industrial placement. This question then is including:

– The focus of the research: perception of development of career skills.

– The subject of the research: undergraduate chemistry students on placement.

– The data likely to be collected: perceived employment and awareness of career related skills.

It is likely that as more reading is completed, some aspects of this question might change; it may become more refined or more limited in scope. It may change subject from looking at a whole cohort to just one or two individual student journeys. But as the question crystallises, so will the associated methodology and it is important in early readings not to be immediately swayed in one direction or another. Read as broadly as you can, looking at different methods and approaches, and find something that lines up with what it is you want to explore in more detail.

Stage 3: testing your research question

Personal biases.

Whatever we like to tell ourselves, there will always be personal bias. In my own research on learning in laboratories, I have a bias whereby I cannot imagine chemistry programmes without laboratory work ( Seery, 2020 ). If I were to engage in research that examined, for example, the replacement of laboratory work with virtual reality, my personal bias would be that I could not countenance that such an approach could replace the reality of laboratory work. This is a visceral reaction – it is grounded in emotion and personal experience, rather than research, because at the time of writing, little research on this topic exists. Therefore I would need to plan carefully any study that investigated the role of virtual reality in laboratory education to ensure that it was proofed from my own biases, and work hard to ensure that voices or results that challenged my bias were allowed to emerge. The point is that we all have biases, and they need to be openly acknowledged and continually aired. I suggest to my students that they write out their own biases related to their research early in their studies as a useful checkpoint. Any results that come in that agree with the tendency of a bias are scrutinised and challenged in detail. This can be more formally done by writing out a hypothesis, which is essentially a prediction or a preconception of what a finding might be. Hypotheses are just that – they need to be tested against evidence that is powerful enough to confirm or refute them.

Bias can also emerge in research questions. Clearly, our research question written in the format: “why are industrial placements so much better than a year of lecture courses?” is exposing the bias of the author plainly. Biases can be more subtle. Asking leading questions such as “what are the advantages of…” or “what additional benefits are there to…” are not quite as explicitly biased, but there is an implicit suggestion that there will be advantages and benefits. Your research question should not pre-empt the outcome; to do so negates the power of your research. Similarly, asking dichotomous questions (is placement or in-house lecturing best?) implies the assumption that one or the other is “best”, when the reality is that both may have distinct advantages and drawbacks, and a richer approach is to explore what each of those are.

Question scope

Feasibility relates to lots of aspects of the project. In our study on industrial experience, the question asks how something will change, and this immediately implies that we will at least find out what the situation was at the beginning of the placement and at some point during or after the placement. Will that be feasible? Researchers should ask themselves how they will access those they wish to research. This becomes a particular challenge if the intention is to research students based in a different institution. The question should also be reviewed to ensure that it is feasible to achieve an answer with the resources you have to hand. Asking for example, whether doing an industrial placement influences future career choices would be difficult to answer as it would necessitate tracking down a sufficient sample of people who had (and had not) completed placements, and finding a robust way of exploring the influence of placement on their career choice. This might be feasible, but not in the timeframe or with the budget you have assigned to you. Finally, feasibility in terms of what you intend to explore should be considered. In our example research question, we have used the term “perceived employability”, as this is defined and described in previous literature with an instrument that can elicit some value associated with it. Care is needed when writing questions to ensure that you are seeking to find something that can be measured.

Of course researchers will naturally over-extend their research intentions, primarily because that initial motivation they have tapped into will prompt an eagerness to find out as much as possible about their topic of study. One way of addressing this is to write out a list of questions that draw from the main research question, with each one addressing some particular aspect of the research question. For our main research question:

we could envisage some additional related questions:

(a) Are there differences between different types of placement?

(b) Are the observations linked to experience on placement or some other factors?

(c) What career development support did students get during placement?

(d) How did students’ subsequent career plans change as a result of placement?

And the list could go on (and on). Writing out a list of related questions allows you to elaborate on as many aspects of the main question as you can. The task now is to prioritise them. You may find that in prioritising them, one of these questions itself becomes your main question. Or that you will have a main question and a list of subsidiary questions. Subsidiary questions are those which relate to the main question but take a particular focus on some aspect of the research. A good subsidiary question to our main question is question (a), above. This will drill down into the data we collect in the main question and elicit more detail. Care should be taken when identifying subsidiary questions. Firstly, subsidiary questions need to be addressed in full and with the same consideration as the main questions. Research that reports subsidiary question findings that are vague or not fully answered is poor, and undermines the value and power of the findings from the main research questions. If you don’t think you can address it in the scope of your study, it is best to leave it out. Secondly, questions that broaden the scope of the study rather than lead to a deeper focus are not subsidiary questions but rather are ancillary questions. These are effectively new and additional questions to your main research, and it is unlikely that you will have the time or scope to consider them in this iteration. Question (d) is an example of an ancillary question.

Question structure

The length of a research question is the subject of much discussion, and in essence, your question needs to be as long as it needs to be, but no longer. Questions that are too brief will not provide sufficient context for the research, whereas those that are too long will likely confuse the reader as to what it is you are actually looking to do. New researchers tend to write overly long questions, and tactics to address this include thinking about whether the question includes too many aspects. Critiquing my own question, I would point out that I am asking two things in one question – change in perceived employability and change in awareness of career-related skills gained – and if I were to shorten it, I could refer to each of those aspects in subsidiary questions instead. This would clarify that there are two components to the research, and while related, each will have their own data collection requirements and analysis protocols.

Research questions should be written as clearly as possible. While we have mentioned issues relating to language to ensure it is understandable, language issues also need to be considered in our use of terms. Words such as “frequent” or “effective” or “successful” are open to interpretation, and are best avoided, using more specific terms instead ( Kane, 1984 ). The word “significant” in education research has a specific meaning derived from statistical testing, and should only be used in that context. Care is needed when referring to groups of people as well. Researching “working class” students’ experiences on industrial placement is problematic, as the term is vague and can be viewed as emotive. It is better to use terms that can be more easily defined and better reflect a cohort profile (for example, “first generation” refers to students who are the first in their family to attend university) or terms that relate to government classifications, such as particular postcodes assigned a socio-economic status based on income.

As well as clarity with language, research questions should aim to be as precise as possible. Vagueness in research questions relating to what is going to be answered or what the detail of the research is in terms of sample or focus can lead to vagueness in the research itself, as the researcher will not have a clear guide to keep them focussed during the research process. Check that your question and any subsidiary questions are focussed on researching a specific aspect within a defined group for a clear purpose.

Moving on from research question writing

  • Blaikie N., (2000), Designing social research , Oxford: Blackwell.
  • Galloway K. W., (2017), Undergraduate perceptions of value: degree skills and career skills, Chem. Educ. Res. Pract. , 18 (3), 435–440.
  • Jackson D. and Wilton N., (2017), Perceived employability among undergraduates and the importance of career self-management, work experience and individual characteristics, High. Educ. Res. Dev. , 36 (4), 747–762.
  • Kane E., (1984), Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities , London: Marion Boyars.
  • Lawrie G. A., Graulich N., Kahveci A. and Lewis S. E., (2020), Steps towards publishing your thesis or dissertation research: avoiding the pitfalls in turning a treasured tome into a highly-focussed article for CERP, Chem. Educ. Res. Pract. , 21 (3), 694–697.
  • NRC, (2012), Discipline-based education research: Understanding and improving learning in undergraduate science and engineering , National Academies Press.
  • RSC, (2015), Accreditation of Degree Programmes , Cambridge: Royal Society of Chemistry.
  • Seery M. K., (2009), The role of prior knowledge and student aptitude in undergraduate performance in chemistry: a correlation-prediction study, Chem. Educ. Res. Pract. , 10 (3), 227–232.
  • Seery M. K., (2017), How to do a literature review when studying chemistry education. Retrieved from http://michaelseery.com/how-to-do-a-literature-review-when-studying-chemistry-education/.
  • Seery M. K., (2020), Establishing the Laboratory as the Place to Learn How to Do Chemistry, J. Chem. Educ. , 97 (6), 1511–1514.
  • Seery M. K., Kahveci A., Lawrie G. A. and Lewis S. E., (2019), Evaluating articles submitted for publication in Chemistry Education Research and Practice, Chem. Educ. Res. Pract. , 20 , 335–339.
  • Taber K. S., (2014), Ethical considerations of chemistry education research involving ‘human subjects’, Chem. Educ. Res. Pract. , 15 (2), 109–113.
  • White P., (2008), Developing Research Questions: A Guide for Social Scientists , Basingstoke: Palgrave MacMillan.

Thesis Helpers

possible thesis topics in chemistry

Find the best tips and advice to improve your writing. Or, have a top expert write your paper.

Top 100 Chemistry Topics For College Students

chemistry topics

Many students encounter difficulties when choosing chemistry topics. That’s because many learners struggle with many topic ideas. Others have to consider bordering disciplines. Unfortunately, many students look for easy and popular chemistry topics for research. But, this might not be efficient because research papers should be original.

From mode reaction and experiment rules to inorganic and organic fields, topics in chemistry should be analytical and researchable. What’s more, a topic shouldn’t be too narrow, too complex, or too general. For instance, students can choose environmental chemistry topics or chemistry reagent topics. In that case, a student should ensure that the chosen topic has a specific focus. If struggling to choose a topic for your research project, here are some of the topics to consider.

Organic Chemistry Topics for Research

Organic chemistry is a broad study area. And, there are many things to research and write about in this area. Additionally, experts in this field are always conducting research. Thus, students can find fresh information and ideas to include in their papers. Here are some of the best organic chemistry topics from our chemistry helpers for you to consider.

  • Isomerism types in organic compounds
  • Define and explain what nucleophiles are
  • Define and explain what aniline dyes are
  • What is nucleic acids stability?
  • Define and explain the oil
  • Describe the production of hydrocarbon fuel
  • Define and describe electrophiles
  • Phenol as a form of acid- Explain
  • Explain the formation of globular proteins
  • What is snow pollution?- Explain how dangerous it is

Each of these chemistry research paper topics requires extensive research to come up with a solid paper. Therefore, select the topic to write about in this category ready to invest time and energy in research.

Inorganic Chemistry Topics

Students also have many topics to choose from in the inorganic chemistry field. Here are some of the best topics to consider in this category.

  • Define NaCI salty
  • Explain the formation of sapphires
  • Explain the Multiple Proportions Law
  • Explain different states of matter
  • How are organic materials affected by sulfuric acid?
  • Why do solar cells use silicon dioxide?
  • Explain the importance of inorganic chemistry
  • Explain Dalton’s Law of Partial Pressures
  • Discuss the Lewis Structures and the Electron Dot Models
  • How do organic compounds differ from inorganic compounds?

Inorganic chemistry topics can be about anything about the behavior and synthesis of inorganic chemical compounds. Essentially, the invention and innovation of chemicals reign in this field.

The Most Interesting Chemistry Topics

Professors appreciate a research paper written about an interesting topic. Here are some of the best topics in this category.

  • Explain how photocatalysis works in a 3D printer
  • Fritz Haber- Who was he?
  • Explain why glow sticks glow
  • Define and explain what nanoreactors are in chemistry
  • Californium- What is it?
  • Explain the process of freezing air
  • Explain how the sun burns yet it does not use oxygen
  • Why is Sodium Azide used in car airbags?
  • What color is oxygen gas?
  • Explain the formation of dry ice

These are great college and high school chemistry topics. Even undergraduates can write research papers on some of these topics.

Amazing General Chemistry Topics

This category has some of the easiest chemistry topics to consider. Here are some of the ideas to consider when you want to write a paper about a topic in chemistry quickly.

  • Explain how batteries are made
  • What is a thermoelectric material?
  • How can farmers avoid using pesticides?
  • Explain the expansion of water upon freezing
  • How are pesticides made?
  • Explain the replication of synthetic molecules
  • Explain Thermodynamics Laws implications
  • Define cholesterol
  • Explain how vitamins act in the body
  • Define and describe steroids

These chemistry research topics are ideal to consider when you want to write a good paper by searching for relevant information on the search engines.

Chemistry Research Paper Topics for Undergraduates

In terms of complexity, undergraduates topics are difficult than chemistry research topics for high school and college students. Nevertheless, undergraduates have many topics that they can find relevant and sufficient information to write about. Here are some of the best chemistry projects topics for undergraduates.

  • Explain how military applications use nanophotonics
  • Explain the effect of the chemical equilibrium
  • Describe the use of hydrogen in the discovery of oxygen
  • Explain the development of an allergy
  • Describe surface tension and its applications
  • Discuss the ionization methods for the mass spectrometry process
  • Explain how lithium can be stabilized
  • What is used to make food dyes- Explain
  • Lewis Structure study
  • Explain why Ibuprofen is considered dangerous

These chemistry paper topics are complex and students need several days to write solid papers about them.

Chemistry Research Topics for High School

There are many topics in chemistry high school learners can consider. Here are some of the best topics that high school students can choose for their research papers and essays.

  • Analyze the effect of PH on planets
  • Explain the creation of pearls
  • Explain the growth of artificial diamonds
  • Explain how tea brewing can be optimized
  • Explain how heavy metals are detected in plants
  • Analyze the air that humans breathe
  • Why is the use of petroleum products dangerous?
  • Explain the barium toxicity
  • Explain how chemistry can benefit indoor plants
  • Explain how oil can be cleaned effectively

These are cool chemistry topics that students can find information about online. Some students can even take a few hours to write essays on some of these topics.

The Best Topics in Current Chemistry

Perhaps, you want to write a paper or essay on a current topic. In that case, consider a topic in this category. This category comprises topics in medicinal, physical, and environmental chemistry. You can also find controversial chemistry topics in this category. Here are some of the best current topics in medicinal chemistry and other branches.

  • Explain how acid rain affects animals and plants
  • Explain how bad plastic packaging is and how it influences food quality
  • How are human allergies influenced by chemicals?
  • How do soft drinks affect the human body?
  • What is the connection between makeup products and chemistry?
  • Define organic food- Is it safe for human consumption?
  • What is the influence of chemicals on long-distance product delivery?
  • Define radon- What health risks does it pose and how can it be prevented in buildings?
  • Describe the inventions of the scientist who contributed the most in chemistry
  • Are all vitamins important to the body?- Explain some of the disadvantages of vitamins

Chemical Engineering Topics for Research

Chemical engineering students are also required to write papers and essays. Here are some of the best topics to consider in this category.

  • Explain the wastewater treatment process
  • Rocket fuel and biofuels- Explain their similarities and differences
  • What are nano filters and how do they work?
  • Explain microfluidics
  • Explain rare earth extractions
  • Discuss iron and coal slimes processing
  • What is Nox emissions reduction?
  • Explain the molecular dynamics & simulation
  • What are nanofiltration systems and how do they work?
  • Explain the simulation of the density functional theory

This category has some of the best chemistry topics for presentation. What’s more, learners that want to learn while impressing their professors can consider them.

Great Physical Chemistry Topics

This category has some of the most interesting chemistry presentation topics. Nevertheless, physical chemistry is a difficult course for learners in different study levels. Here are some of the best topics to consider in this category.

  • Explain vibrational spectroscopy
  • Discuss chemistry and quantum mechanics
  • What is electronic spectroscopy?
  • Discuss multielectron atoms
  • Discuss the Schrodinger Equation
  • Explain applications in Kinetics
  • Discuss the Entropy laws
  • Describe the major gas properties
  • Discuss the harmonic & anharmonic oscillator
  • Explain heteroatomic or chemical bonding

Students that are pursuing physical chemistry topics can also find interesting chemistry topics for presentation in this category.

Biochemistry Topics

When looking for chemistry related topics, learners can consider ideas for their papers and essays in biochemistry. Here are some of the best chemistry topics for project in biochemistry.

  • Explain fatty acids metabolism
  • Explain the structure and role of proteins
  • What is enzymes kinetics?
  • Describe the cell metabolism processes
  • Explain the DNA replication & repair processes
  • Discuss the analysis of nucleic acid
  • Describe the structure & role of carbohydrates
  • What role do lipids play in biological systems?
  • Explain the special properties that water has
  • What is the function of protein- Explain its key principles

These are some of the best chemistry project topics to consider in biochemistry. But, every learner should select a topic they are comfortable researching and writing about.

Whether a student needs chemistry IA topics or the best AP chemistry topics, they have many options to consider. Nevertheless, every learner should settle for an interesting chemistry topic to have an easy time researching and writing their paper or essay. Also, take a look at our ecology topics .

geography research topics

Make PhD experience your own

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Chemistry Directory
  • Disability Accommodations
  • Diversity, Equity, and Inclusion Committee
  • Major Awards
  • Our Community Values
  • Our History
  • Quality of Life Committee
  • Areas of Research
  • Facilities and Centers
  • Instructors
  • Postdoctoral Research and Resources
  • Graduate Program
  • Undergraduate Programs
  • Chemistry Undergraduate Teaching Laboratory
  • Our Chemistry Education Office
  • Elementary Schools
  • High Schools
  • Community Relations and Outreach
  • Contact our Development Officer
  • Funds to Support
  • Meet Our Major Supporters

Thesis Preparation

The following information is provided to assist Chemistry graduate students as they prepare their theses. If graduate students have any questions that are not answered by this guide, they should email the Chemistry Education Office (questions about department policies) or MIT Libraries (for questions about thesis formatting, etc.)

Degree candidates must fill out the Degree Application via WebSIS at the start of the term. Important dates and deadlines (including late fees) for the upcoming academic year are listed below.  It is strongly advised that degree candidates apply for the degree list even if there is uncertainty about completing the thesis defense and submission by the  deadline, as there are no penalties for being removed from the degree list.

Students must successfully complete the thesis defense before submitting their final, signed thesis.

**Please note that the Specifications for Thesis Preparation were updated in November 2022. Please make sure you use these new guidelines.**

Important Dates & Deadlines

May 2024 degree list.

  • Degree Application Deadline: February 9, 2024 ($50 late fee if submitted after this date, $85 late fee if submitted after April 12, 2024)
  • Thesis Title Deadline: April 12, 2024 ($85 late fee if submitted after this date. If your thesis title is not finalized by this date, please enter your current working title and the final title can be updated later)
  • Thesis Submission Deadline: May 10, 2024
  • Last day of work in the lab: on or before May 29, 2024. If you plan to end your RA appointment earlier than May 29, 2024, please contact Jennifer to review your timeline.
  • Your degree will officially be conferred by MIT on May 30, 2024
  • Information about the MIT Health Plan and graduation will be available online here.

September 2024 Degree List

  • Degree Application Deadline: June 14, 2024 ($50 late fee if submitted after this date, $85 late fee if submitted after July 19, 2024)
  • Thesis Title Deadline:July 19, 2024 ($85 late fee if submitted after this date. If your thesis title is not finalized by this date, please enter your current working title and the final title can be updated later)
  • Thesis Submission Deadline: August 16, 2024
  • Last day of work in the lab: on or before August 31, 2024. If you plan to end your RA appointment earlier than August 31st, please contact Jennifer to review your timeline.
  • Your degree will officially be conferred by MIT on September 18, 2024

February 2025 Degree List

  • Degree Application Deadline: September 6, 2024 ($50 late fee if submitted after this date, $85 late fee if submitted after December 13, 2024)
  • Thesis Title Deadline: December 13, 2024 ($85 late fee if submitted after this date. If your thesis title is not finalized by this date, please enter your current working title and the final title can be updated later)
  • Thesis Submission Deadline: January 17, 2025
  • Last day of work in the lab: on or before January 15, 2025. If you plan to end your RA appointment earlier than January 15th, please contact Jennifer to review your timeline.
  • Your degree will officially be conferred by MIT on February 19, 2025

May 2025 Degree List

  • Degree Application Deadline:February 7, 2025 ($50 late fee if submitted after this date, $85 late fee if submitted after April 11, 2025)
  • Thesis Title Deadline: April 11, 2025 ($85 late fee if submitted after this date. If your thesis title is not finalized by this date, please enter your current working title and the final title can be updated later)
  • Thesis Submission Deadline: May 9, 2025
  • Last day of work in the lab: on or before May 28, 2025. If you plan to end your RA appointment earlier than May 28th, please contact Jennifer to review your timeline.
  • Your degree will officially be conferred by MIT on May 29, 2025

Scheduling your Thesis Defense

All PhD candidates must have a Thesis Defense. As soon as your defense is finalized, please email the Chemistry Education Office with the date, time, location, and thesis title . Thesis defenses are strongly encouraged to be in-person.  If there are questions or concerns about an in-person defense, please reach out to Jennifer Weisman. When thesis defenses are on campus, we recommend reserving a room once the defense date is finalized, student can reserve department rooms through the online scheduling system or request a classroom via this form .

Degree candidates should provide their advisor with a copy of the thesis at least two weeks before the defense and provide their thesis committee chair and member with a copy at least one week before the defense. However, degree candidates should talk with their advisor, committee chair, and committee member to find out if they need the thesis further in advance or if there are preferred formats. Degree candidates should allow time in between their thesis defense and the submission deadline to make edits and submit the final copies.

Please note that most receiving a PhD degree are required to present a seminar as part of the thesis defense. This seminar is open to the department. The degree candidate is responsible for providing the Chemistry Education Office with information about their thesis defense at least two weeks ahead of time. Following the seminar, the candidate will meet privately with the thesis committee.

Thesis Formatting

The Institute has very specific requirements for thesis preparation, which were updated in November 2022. Specifications for Thesis Preparation is available on the library’s website and should be read very carefully. The MIT Thesis FAQ may answer additional questions and a helpful checklist is also provided. The specifications also include information about copyright and use of previously published material in a thesis . Do  not  rely on any templates or prior theses from your research group – they may not reflect the most current guidelines. We have highlighted some especially important points below.

Font & Spacing

Title page & committee signature page.

  • The title page of the first copy will be digitally signed by the author, advisor, and Professor Adam Willard. The title page should contain the title, name of the author, previous degrees, the degree(s) to be awarded at MIT, the date the degree(s) will be conferred (May, September, or February only), copyright notice, and appropriate names and signatures. Degrees are awarded in Chemistry, regardless of your specific research area. Regardless of when you defend or submit your thesis, the date of degree conferral must be May/June, September, or February.
  • As noted above, the title page will be signed by you, your advisor, and Professor Willard. You do not need to have Professor Willard digitally sign the thesis before you submit it, we will arrange to have him sign it. If your advisor has a title (ex., Firmenich Professor of Chemistry) it should also be included under their name. If you are not sure if they have a title, you can consult the Faculty Directory . Professor Willard should have the following listed under his name, on two separate lines: Professor of Chemistry; Graduate Officer
  • Each student should place the appropriate copyright notice on the thesis title page. Copyright notice consists of four elements: the symbol “c” with a circle around it © and/or the word “copyright”; the year of publication (the year in which the degree is to be awarded); the name of the copyright owner; the words “All rights reserved” or your chosen Creative Commons license. All theses should have the following legend statement exactly: The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to exercise any and all rights under copyright, including to reproduce, preserve, distribute and publicly display copies of the thesis, or release the thesis under an open-access license. Please carefully review the copyright information to determine the appropriate copyright ownership.
  • The date under Signature of Author should be the date the final thesis is signed and submitted to the department.
  • The title page is always considered to be page 1, and every page must be included in the count regardless of whether a number would be physically printed on a page. We recommend that you do not include the page number on the title page.
  • There is also a signature page that will be digitally signed by your entire thesis committee. Your advisor will digitally sign your thesis twice, on the title page and signature page. The signature page is right after the title page.
  • More details about digital signatures are provided below.

Table of Contents

Final thesis submission, general submission process.

Please carefully review the details below, including the file naming format . There are two steps to the final submissions process:

1. Submit the following documents to the Department of Chemistry:

  • An electronic copy of your thesis in PDF/A-1 format (with no signatures)
  • A PDF of the digitally signed title page and committee signature page (using DocuSign to obtain signatures)

Please send an email to your advisor, Jennifer Weisman, and William McCoy, which includes the 2 PDFs above and the following text:

“Dear Professor/Dr X: Attached is the final version of my thesis. Please use reply-all to this message to indicate your acceptance of my thesis document and your recommendation for certification by my department.”

**Note: if your thesis document is too large to send via email, your email can include a link to access the document via Dropbox, Google Drive, etc.**

2. Submit your thesis information to MIT Libraries here . Choose to opt-in or opt-out of ProQuest license and publication.  Include the same copyright and license information that is on your thesis title page. Note: this does not involve submitting your actual thesis.

Details for Thesis Submission Process

  • After the defense, the student and thesis committee reach agreement on the final thesis document.
  • Students should follow the format specifications as stated in the Specifications for Thesis Preparation . Do not print or physically sign pages.
  • Students will have the thesis signed electronically through DocuSign. This process is described in detail in the section below.
  • The title page is always considered to be page 1, and every page must be included in the count regardless of whether a number is physically printed on a page. The entire thesis (including title page, prefatory material, illustrations, and all text and appendices) must be paginated in one consecutive numbering sequence. Your committee signature page should be page 2. Please see the  Sample Title Page and committee signature page for reference.
  • You will still include the title page and committee signature page in the full thesis PDF, they just won’t have any signatures.
  • The digitally signed title page and committee signature pages should be in one PDF, separate from the thesis document. This avoids a DocuSign tag at the top of each page of the full thesis. Please use the following naming convention: authorLastName-kerb-degree-dept-year-sig.pdf (ex., montgomery-mssimon-phd-chemistry-2021-sig.pdf).
  • Students should save their final thesis document as a PDF using the following file naming convention: authorLastName-kerb-degree-dept-year-thesis .pdf (ex., montgomery-mssimon-phd-chemistry-2021-thesis.pdf).
  • Students should not deposit the PDF of their thesis via the Libraries Library’s voluntary submission portal.
  • Please send an email to your advisor, Jennifer, and William which includes the final thesis document and file with the digitally signed title/committee signature pages with the following text:

Please also complete the MIT Doctoral Student Exit Survey and your Laboratory Safety Clearance Form .

Digital Signatures

Please see here for a full guide (with screenshots) to using DocuSign to obtain digital signatures

Required Signatures:

These should be everyone’s uploaded digital signatures in their own handwriting, not one of the pre-formatted signatures created by DocuSign.

  • Your signature on the thesis title page
  • Your advisor’s signature on both the title page and committee signature page
  • Your thesis committee chair’s and member’s signatures on the committee signature page
  • You do not need to have Adam Willard sign your title page, the Chemistry Education Office will take care of that
  • Full thesis with no signatures (including unsigned title page and thesis committee signature page)
  • Title page and committee signature page with signatures via DocuSign

Accessing DocuSign

Thesis Hold Requests

Details about requesting a thesis hold are available here and the requests are made to different offices based on the type of request. Please note that planned or pending submissions to scholarly journals related to thesis work will not be considered for thesis holds.

Written notification of patent holds and other restrictions must reach the MIT Libraries before the thesis in question is received by the MIT Libraries. Theses will not be available to the public prior to being published by the MIT Libraries. The Libraries may begin publishing theses in DSpace@MIT one month and one week from the last day of classes.

Graduate Student Exit Interviews

In order to best serve the educational, scientific, and social needs of graduate students in the Chemistry Department, it is critically important that Departmental leadership be appropriately informed of issues of importance to graduate students, ideally on an ongoing basis. Graduate student exit interviews provide information that alert the Department to acute issues that affect graduate students and provide data for longitudinal assessments of graduate student experience within the program.Graduate exit interviews are administered to all graduate students departing the Chemistry Department. The exit interview applies equally to graduate students departing with completed degrees (Ph.D. and M.S.) and without degrees.

  • Graduating students will be sent a list of interview questions by the Chemistry Education Office when the student joins the degree list. Instructions about scheduling a time for the in-person or virtual discussion will be included with other informational correspondence from the Chemistry Education Office regarding degree completion. Graduating students will perform their exit interview after the thesis defense so as to avoid making the interview an additional burden.
  • For students departing the program without a degree, the interview questions and instructions for scheduling an in-person discussion will be sent by the Chemistry Education Office at the point in time that a date for termination of their appointment in Chemistry is determined.
  • For the majority of departing students, this interview coincides with the end of the semester, but a rolling schedule of surveys is anticipated.

Postdoctoral/Research Specialist Appointments

If you plan to transition to a postdoctoral/research specialist appointment within the Department of Chemistry at MIT, please contact Jennifer Weisman and  Chemistry HR as soon as possible. Your final signed thesis must be submitted before a postdoc appointment can start. If you are an international student, it is extremely important that you start this process early to allow sufficient timing for visa processing. In addition to talking with Jennifer and HR, please consult with the International Students Office .

ScholarWorks at UMass Boston

Home > CSM > CHEMISTRY > CHEMISTRY_THESES

Chemistry Masters Theses Collection

This collection contains open access and campus access Masters theses, made possible through Graduate Studies at the University of Massachusetts Boston. The full content of open access theses is available to all, although some files may have embargoes placed on them and will be made available as soon as possible. The full content of campus access theses is only available to those either on the UMass Boston campus or with a UMass Boston campus username and password. Click on the "Off-Campus UMass Boston Users" link on the record page to download Campus Access publications. Those not on campus and those without a UMass Boston campus username and password may gain access to this thesis through resources like Proquest Dissertations & Theses Global or through Interlibrary Loan.

Theses from 2023 2023

Synthesis of Novel Fused-Heterocyclic Scaffold Via Disasteroselective Decarboxylative [3+2] Cycloadditions and Aza-Wittig Reactions , Lee Price

Synthesis of Novel Fused-Heterocyclic Scaffold Via Diastereoselective Decarboxylative [3+2] Cycloadditions and Aza-Wittig Reactions , Lee A. Price

Synthesis and Characterization of Earth Abundant Metal Catalysts for Photothermochemical Dry Reforming of Methane , Catherine Marie Schrader

Theses from 2022 2022

Non-Traditional Methods for the Green Synthesis of Fine Chemicals , Tara Renée Mooney

Environmentally Benign K-10 Montmorillonite-Catalyzed Processes: Synthesis Development and Exploration of Changes in the State of Catalyst During Reactions , Yizhou Shi

DRIFTS Analysis of Methanol Oxidation on CeO2 and Ag/CeO2 , Victoria Yen

Theses from 2021 2021

Visualization and Quantification of the Laser-Induced Art of TiO2 by Photoexcitation of Adsorbed Dyes , Daniela (Labadini) Graf Stillfried Barreto

Theses from 2020 2020

Selective Electrocatalytic Reduction of Co2 To CO with Iron Nheterocyclic Carbene Complexes and Near-Infrared Absorbance of Ruthenium(II) Photosensitizers Containing a Merocyanine π-Acceptor , Peter Andrew Catsoulis

Studying the Effect of a Preformed Protein Corona Around Gold Nanoparticles Used for Immunoassays , Alyssa Jean Pimentel

Development and Evaluation of an LC-MS3 Method Based on TOMAHAQ for the Relative Quantification of GADD45α, CKDN1A, and p53 , Anna Qiu

Development of Environmentally Benign Reductive Methods through Metal-Al-Water Facilitated Hydrogenolysis , Naranchimeg Zorigt

Theses from 2019 2019

Structural and Kinetic Characterization of Two Reduced-Flavin Dependent Monooxygenases Involved in Bacterial Sulfur Assimilation and Their Link to Climate Regulation , Jess Soule

Spectroscopic Investigation and Identification of the 1-Vinylpropargyl Radical and the 1-Ethynylcyclopenten-1-yl Radical , Meredith Lair Ward

Theses from 2018 2018

Systematic Evaluation of the Influence of Co-Isolation on the Accuracy of TMT Quantification Using Synchronous Precursor Selection MS3 with 1D and 2D Reversed Phase HPLC Nanoflow Mass Spectrometry , Dennis Zeh

Theses from 2017 2017

Photophysical & Photoacoustic Properties of Dimethylamino Terminated Curcuminoid Dyes Containing the Phenyl, Napthyl and Thienly π-Spacers , Raymond Edward Borg

Theses from 2016 2016

A Comparative Quantitative Structure-Activity Relationship Case Study for Mutagenic Potency on Aromatic Amines with Mechanistic Implications , Mitchell Joseph Sumner

Structural Studies of Two Functional Domains in Hybrid NRPS/PKS Systems: The Cyclization and Interprotein Docking Domains , Yuan Xia

Theses from 2015 2015

Exploring Alternative Cobalt Redox Mediators and β-diketonate Non-Innocent Ligands for Applications in Dye-Sensitized Solar Cells , Nicholas Anthony Lee

Quantitative Analysis of Amyloid Fibrils using Atomic Force Microscopy , Christine L. Schifone

Activity of Mannanase in Relation to Mixed Micelle Formation of Linear Alkyl Benzene Sulfonate with Linear Ethoxylated Alcohol , Jeannine D. Seyfert

Theses from 2014 2014

Effect of π-Extension and Peripheral Redox Active Groups on the Non-Innocent Character of Ruthenium(II) Polypyridyl 8-Oxyquinolate Complexes , Stephanie Erin Bellinger

Investigation of Amyloidogenic Systems by the Application of Small Molecular Probes , Sanjukta Ghosh

Flow Tube Calibration and Infrared Product Studies Using Hydrogen and Hydroperoxyl Gas-Phase Radical Reactions with Nitrogen Oxides , Christopher C. Koutros

A Hybrid Supercapacitor Based on Chemically Modified Manganese Dioxide and Active Carbon in Alkaline Electrolyte , Quan Li

Theses from 2013 2013

Determination of Absolute Rate Constants for the Reaction of OH with Cyclopentane and Cycloheptane from 233 K to 351 K , Michael A. Gennaco

An Investigation of 8-Oxyquinolate Non-Innocence in d6 Transition Metal Complexes , Helen Cuiyun Zhao

Design and Synthesis of Bioactive Compounds and their Application in Protein Self-Assembly and Enzyme Inhibition Studies , Weihong Zhou

Theses from 2012 2012

Investigating the Biochemistry of Cuticle Formation in Insects Using High Performance Liquid Chromatography and Electrospray Tandem Mass Spectrometry , Qun Fang Kuang

Development of Multifunctional Anti-Alzheimer's Compounds , Rekha Tulsan

Theses from 2011 2011

Microwave-Assisted and Fluorous Benzaldehyde-Based Synthesis of Heterocycles , Shan Ding

Multicomponent Reactions for the Preparation of Fluorous Taged Pyrimidines and Thiopyrimidines and their Derivatisation to Obtain Biaryl-Substituted Heterocycles , Bruno Piqani

Investigation of Oxygen Reduction on the Carbon Gas-Diffusion Electrode in Non-Aqueous Electrolyte , Chris Duc Tran

Theses from 2010 2010

Environmentally Benign Oxidative Coupling of Benzylamines with Anilines: A Synthetic and Mechanistic Study , Valentina T. Atanassova

Electrochemical Investigation of Nafion-clay Nanocomposite Membranes for Use in Fuel Cells , Christine E. Felice

Analysis of Triacylglycerols in Drosophila Larvae by Reversed-Phase High Performance Liquid Chromatography-Electrospray-Tandem Mass Spectrometry and Excel-Solver , Fengying Zhu

Advanced Search

  • Notify me via email or RSS
  • Collections
  • Disciplines

Author Corner

  • About ScholarWorks
  • Chemistry Department

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

Digital Commons @ Michigan Tech

Home > Sciences and Arts > Dept. of Chemistry > Dissertations and Master's Theses

Department of Chemistry

Dept. of Chemistry Dissertations and Master's Theses

Explore our collection of dissertations and master's theses from the Department of Chemistry below.

Theses/Dissertations/Reports from 2024 2024

Small Fluorescent Glycoconjugates as Imaging Agents for GLUT Sugar Transporters , Adelina Oronova

Theses/Dissertations/Reports from 2023 2023

DETECTION AND MUTATIONAL ANALYSIS OF A HUMAN PROTEIN ASSOCIATED WITH CANCER AND CARDIOVASCULAR DISEASES , Priyanka Dipak Kadav

EXPLORING TURN-ON PROBES FOR GLUTs TARGETING AND ADVANCING SAFETY EDUCATION IN THE CHEMICAL SCIENCES: A TWO-PART DISSERTATION , Monica Mame Soma Nyansa

MULTILEVEL COMPUTATIONAL INVESTIGATION INTO THE CATALYTIC MECHANISMS OF MATRIX METALLOPROTEINASE-1 AND FAT MASS AND OBESITY-ASSOCIATED ENZYME , Ann Varghese

MULTISCALE MOLECULAR MODELING STUDIES OF THE DYNAMICS AND CATALYTIC MECHANISMS OF IRON(II)- AND ZINC(II)-DEPENDENT METALLOENZYMES , Sodiq O. Waheed

ORIGINS OF OPTICAL PROPERTIES IN NATURAL ORGANIC MATTER AND FLUORESCENT ANIMALS , Nastaran Khademimoshgenani

Small Molecules Targeting Fructose Transport , Nazar Gora

UHPLC/FT-MS NON-TARGETED SCREENING APPROACH FOR BIOMASS BURNING ORGANIC AEROSOL AND LIQUID SMOKE AS BIOMASS BURNING ORGANIC AEROSOL SURROGATE , D.M.R. Thusitha Dinusha Kumarihami Divisekara

Theses/Dissertations/Reports from 2022 2022

INTERFACIAL OXIDATION REACTIONS AND FILM NUCLEATION ON IRON SURFACES IN COMPLEX ENVIRONMENTS USING SPECTROSCOPY AT THE LIQUID/SOLID AND GAS/SOLID INTERFACE , Adambarage Chathura de Alwis

ISOLATION AND CHROMATOGRAPHIC SEPARATION OF CYTOTOXIC PLANT COMPOUNDS , Michael C. Hromada

ISOLATION, PURIFICATION, AND CHARACTERIZATION OF A NEW MANNOSE-BINDING PLANT LECTIN THAT RECOGNIZES FUNGAL ANTIGENS , Jessica C. Krycia

MULTILEVEL COMPUTATIONAL INVESTIGATION INTO THE DYNAMICS AND REACTION MECHANISMS OF NON-HEME IRON AND 2-OXOGLUTARATE DEPENDENT ENZYMES , Shobhit Sanjeev Chaturvedi

NON-CHROMATOGRAPHIC OLIGONUCLEOTIDE PURIFICATION AND AUTOMATED POLYETHYLENEGLYCOL SYNTHESIS , Dhananjani N. A. M. Eriyagama

STRUCTURAL AND FUNCTIONAL ANALYSIS OF A NEW CYTOLYSIN , Jared L. Edwards

SYNTHESIS AND DEVELOPMENT OF FLUORESCENT CARBON DOTS FOR SENSING AND BIOIMAGING APPLICATIONS , Parya Siahcheshm

Theses/Dissertations/Reports from 2021 2021

BASE-LABILE PROTECTING GROUPS FOR STEPWISE PEG SYNTHESIS , Logan D. Mikesell

COBALT, MOLYBDENUM, AND NICKEL COMPLEXES, NATURAL ZEOLITES, EPOXIDATION, AND FREE RADICAL REACTIONS , Nicholas K. Newberry

DESIGN AND DEVELOPMENT OF NEAR-INFRARED FLUORESCENT PROBES FOR SENSING pH, HYPOXIA AND PEROXYNITRITE , Shulin Wan

DETERMINATION OF MOLECULAR MARKERS OF VACCINIUM BERRY STANDARD REFERENCE MATERIALS THROUGH DIFFERENTIAL ANALYSIS WITH ULTRAHIGH RESOLUTION LC/MS , Abby Mikolitis

EXPLORING GLUT5 TARGETING FOR CANCER DIAGNOSIS AND THERAPY , Avik Ghosh

High-resolution molecular characterization of complex environmental mixtures: Aquatic dissolved organic matter and wildfire-influenced aerosol , Amna Ijaz

INVESTIGATING REDOX CHEMISTRY OF GRAPHITE, IRON OXIDE & IRON SURFACES , Mikhail Trought

Theses/Dissertations/Reports from 2020 2020

EXPLORING SUBSTRATE SPECIFICITY OF FRUCTOSE TRANSPORTERS EN ROUTE TO GLUT SPECIFIC PROBES FOR BIOCHEMICAL AND BIOMEDICAL APPLICATIONS , Vagarshak Vigenovich Begoyan

Macromolecular strategies for discovering disease-related proteins and new therapeutic agents , Christina Welch

RATIOMETRIC NEAR-INFRARED FLUORESCENT PROBES FOR THE SENSITIVE DETECTION OF INTRACELLULAR pH AND BIO-THIOLS IN LIVE CELLS , Shuai Xia

Theses/Dissertations/Reports from 2019 2019

Characterizing the physicochemical properties of TDP-43 protein and Acetylated Amyloid β peptides to discern its role in neurodegenerative diseases , Rashmi Adhikari

EXTREME MOLECULAR DIVERSITY IN BIOMASS BURNING ATMOSPHERIC ORGANIC AEROSOL OBSERVED THROUGH ULTRAHIGH RESOLUTION MASS SPECTROMETRY , Matthew Brege

METHOD CONSIDERATIONS FOR COMPOUND IDENTIFICATION IN COMPLEX MIXTURES USING ELECTROSPRAY IONIZATION ULTRAHIGH RESOLUTION MASS SPECTROMETRY , Tyler Leverton

MOLECULAR CHARACTERIZATION OF FREE TROPOSPHERIC ORGANIC AEROSOL AND THE DEVELOPMENT OF COMPUTATIONAL TOOLS FOR MOLECULAR FORMULA ASSIGNMENT , Simeon Schum

NEAR-INFRARED FLUORESCENT PROBES FOR SENSITIVE DETERMINATION OF LYSOSOMAL & MITOCHONDRIAL pH IN LIVE CELLS , Wafa Mazi

SMALL MOLECULE-BASED FLUORESCENT MOLECULAR PROBES FOR FACILITATING BIOMEDICAL RESEARCH: RATIONAL DESIGN AND BIOIMAGING APPLICATIONS , Xin Yan

Synthesis of Oligodeoxynucleotides Containing Sensitive Electrophiles , Shahien Shahsavari

TOWARDS THE DISCOVERY OF OLIGONUCLEOTIDE CROSS-LINKING AGENTS , Bhaskar Halami

Theses/Dissertations/Reports from 2018 2018

DEVELOPING NOVEL MOLECULAR IMAGING AGENTS FOR SHEDDING LIGHT ON OXIDATIVE STRESS , Shanshan Hou

DEVELOPMENT OF NEAR-INFRARED FLUORESCENT PROBES FOR MONITORING LYSOSOMAL pH CHANGES , Jianheng Bi

DIRECT MEASUREMENT OF RUPTURE FORCE OF SINGLE TRIAZOLE MOLECULE BY ATOMIC FORCE MICROSCOPE AND SOLID PHASE SYNTHESIS OF MONODISPERSE POLYETHYLENE GLYCOLS , Ashok Khanal

NOVEL FLUORESCENT PROBES FOR VISUALIZATION OF pH CHANGES AND Zn (Ⅱ) IONS IN LIVE CELLS , Mingxi Fang

PHYSICOCHEMICAL, SPECTROSCOPIC PROPERTIES, AND DIFFUSION MECHANISMS OF SMALL HYDROCARBON MOLECULES IN MOF-74-MG/ZN: A QUANTUM CHEMICAL INVESTIGATION , Gemechis Degaga

Theses/Dissertations/Reports from 2017 2017

DEVELOPMENT OF A SYSTEM TO STUDY THE EFFECTS OF HISTONE MUTATIONS AND POST-TRANSLATIONAL MODIFICATIONS ON NUCLEOSOME STRUCTURE VIA ATOMIC FORCE MICROSCOPY , Chelsea Nikula

Fluorescent Probe Development for Fructose Specific Transporters in Cancer , Joseph Fedie

GLYCOBIOLOGICAL STUDIES THAT CAN HELP THYROID CANCER DETECTION AND THERAPY , Ni Fan

Heterologous Expression and Purification of Full-Length Human Polybromo-1 Protein , Sarah Hopson

NOVEL BIOCOMPOSITES AND NANOFIBERS BASED ON MODIFIED BIOMASS MATERIALS TO FACILITATE GREENER APPLICATIONS , Soha Albukhari

Theses/Dissertations/Reports from 2016 2016

Effect of disulfide bond scrambling on protein stability, aggregation, and cytotoxicity , Colina Dutta

FORMATION AND DEACTIVATION OF TRIMETHYLALUMINUM IN AIR CONDITIONER SIMULATOR AND MCM-41 SUPPORTED SILVER NANOPARTICLES FOR OXIDATION OF OLEFINS , Zhichao Chen

NEAR-INFRARED WATER-SOLUBLE FLUORESCENT PROBES FOR THE DETECTION OF LYSOSOMAL pH AND Zn (II) IONS , Cong Li

Novel Carbohydrate-Dependent Biological Properties of Human Health Related Lectins and Glycoconjugates , Melanie Talaga

SENSING AND MAPPING OF SURFACE HYDROPHOBICITY OF PROTEINS BY FLUORESCENT PROBES , Nethaniah Dorh

THE EFFECT OF POSTTRANSLATIONAL MODIFICATIONS ON PROTEIN AGGREGATION, MORPHOLOGY, AND TOXICITY , Mu Yang

Reports/Theses/Dissertations from 2015 2015

BIOLOGICAL MATERIALS: PART A. TEMPERATURE-RESPONSIVE POLYMERS AND DRUG DELIVERY AND PART B. POLYMER MODIFICATION OF FISH SCALE AND THEIR NANO-MECHANICAL PROPERTIES , Xu Xiang

DESIGN AND DEVELOPMENT OF BODIPY-BASED FLUORESCENT PROBES FOR SENSING AND IMAGING OF CYANIDE, Zn (II) IONS, LYSOSOMAL pH AND CANCER CELLS , Jingtuo Zhang

Extracellular expression of alkaline phytase in Pichia pastoris and Development of Nuclear Magnetic Resonance spectroscopy methods for structural investigation of inositol polyphosphates , Sasha Teymorian

ON THE PROTECTIVE PROPERTIES OF GLYCINE BASED OSMOLYTES IN A THIOL REDUCING ENVIRONMENT , John Michael Hausman

SYNTHETIC OLIGODEOXYNUCLEOTIDE PURIFICATION VIA CATCHING BY POLYMERIZATION , Suntara Fueangfung

Reports/Theses/Dissertations from 2014 2014

DESIGN, SYNTHESIS AND APPLICATIONS OF FLUORESCENT AND ELECTROCHEMICAL PROBES , Giri K. Vegesna

EVOLUTION OF SELECTED ISOPRENE OXIDATION PRODUCTS IN DARK AQUEOUS AMMONIUM SULFATE , D.M. Ashraf Ul Habib

MOLECULAR CHARACTERIZATION OF ATMOSPHERIC ORGANIC MATTER IN BIOGENIC SECONDARY ORGANIC AEROSOL, AMBIENT AEROSOL AND CLOUDS , Yunzhu Zhao

NON-CHROMATOGRAPHIC PURIFICATION OF SYNTHETIC BIO-OLIGOMERS , Durga Prasad Pokharel

PURIFICATION AND CARBOHYDRATE BINDING PROPERTIES OF TWO NEW PLANT PROTEINS , Robert K. Brown

Reports/Theses/Dissertations from 2013 2013

ACETYL RADICAL IN TOBACCO SMOKE: DETECTION, QUANTIFICATION AND SIMULATION , Na Hu

CHARACTERIZATION OF TWO NOVEL MONOCOT MANNOSE BINDING LECTINS PURIFIED BY ‘CAPTURE AND RELEASE’ METHOD , Ashli L. Fueri

Development and characterization of fluorescent pH sensors based on porous silica and hydrogel support matrices , Qili Hu

Enhancement of heterologous expression of alkaline phytase in Pichia pastors , Mimi Yang

Modern Computational Chemistry Methods for Prediction of Ground- and Excited-State Properties in Open-Shell Systems , Nina Tyminska

Oligodeoxynucleotide synthesis using protecting groups and a linker cleavable under non-nucleophilic conditions , Xi Lin

STUDIES OF FUNCTIONALIZED NANOPARTICLES FOR SMART SELF-ASSEMBLY AND AS CONTROLLED DRUG DELIVERY , Xiaochu Ding

THERMORESPONSIVE PROPERTIES OF GOLD HYBRID NANOPARTICLES OF POLY(DI(ETHYLENE GLYCOL) METHYL ETHER METHACRYLATE) (PDEGMA) AND ITS BLOCK COPOLYMERS WITH DIFFERENT ANCHORING REGIMES , Martha Juliana Barajas Meneses

TUNING FLUORESCENT PROBES FOR BIOMEDICAL APPLICATIONS , Nazmiye Bihter Yapici

Reports/Theses/Dissertations from 2012 2012

Biological materials : Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. biobased nanomaterials , Ning Chen

Characterization of water-soluble organic compounds in ambient aerosol using ultrahigh-resolution elctrospray ionization fourier transform ion cyclotron resonance mass spectrometry. , Parichehr Saranjampour

COORDINATION CHEMISTRY OF BIS(BENZYL)PHOSPHINATE , John S. Maass

DESIGN AND SYNTHESIS OF NOVEL SYNTHETIC ANTIOXIDANTS FOR THE TREATMENT OF OXIDATIVE STRESS RELATED DISEASES , Srinivas Rao Mandalapu

Indole based antioxidants for the treatment of ischemia reperfusion injury , Andrew Chapp

Performance evaluation and characterization of symmetric capacitors with carbon black, and asymmetric capacitors using a carbon foam supported nickel electrode , JinJin Wang

Soft Lewis acid catalyzed cycloisomerization of oxo-alkynes and enynes , Zezhou Wang

Reports/Theses/Dissertations from 2011 2011

Multimetallic complexes based on phosphine- and phosphine oxide- appended p -hydroquinones , Louis R. Pignotti

Performance evaluation of a novel asymmetric capacitor using a light-weight, carbon foam supported nickel electrode , Padmanaban Sasthan Kuttipillai

Structural characterization of water-soluble atmospheric organic matter by ultrahigh-resolution mass spectrometry , Jeffrey P. LeClair

Syntheses and structures of molybdenum and tungsten complexes capable of epoxidaton and copper coordination polymers and dendrimers , Linsheng Feng

Synthesis of chiral ferrosalen ligands and their applications in asymmetric catalysis , Xiang Zhang

Reports/Theses/Dissertations from 2010 2010

Syntheses and characterization of monomeric Mo(VI) complexes with bidentate phosphine oxide ligands and dimeric and tetrameric Mo(V) clusters with benzoic acid and phosphinic acid derivatives, containing MoO 2 , Mo 2 O 2 ( μ -O) 2 and Mo 4 O 4 ( μ 3 -O) 4 , Soumyashree Sreehari

Reports/Theses/Dissertations from 2009 2009

Molecular interaction between perthiolated [beta]-cyclodextrin (CD) and the guests molecules adamantaneacetic acid (AD) and ferroceneacetic acid (FC); and the effect of the interaction on the electron transition of CD anchored particles , Ming Ning

Reports/Theses/Dissertations from 2005 2005

Sulfoxides as an intramolecular sulfenylating agent for indoles and diverse applications of the sulfide-sulfoxide redox cycle in organic chemistry , Parag V. Jog

  • The Van Pelt and Opie Library
  • About Digital Commons @ Michigan Tech
  • Collections
  • Disciplines

Advanced Search

  • Notify me via email or RSS

Author Corner

  • Content Policy
  • Department of Chemistry

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation

Take our Science Teaching Survey (15 minutes) and shape the future of education! Your insights matter.

possible thesis topics in chemistry

  • Back to parent navigation item
  • Primary teacher
  • Secondary/FE teacher
  • Early career or student teacher
  • Higher education
  • Curriculum support
  • Literacy in science teaching
  • Periodic table
  • Interactive periodic table
  • Climate change and sustainability
  • Resources shop
  • Collections
  • Post-lockdown teaching support
  • Remote teaching support
  • Starters for ten
  • Screen experiments
  • Assessment for learning
  • Microscale chemistry
  • Faces of chemistry
  • Classic chemistry experiments
  • Nuffield practical collection
  • Anecdotes for chemistry teachers
  • On this day in chemistry
  • Global experiments
  • PhET interactive simulations
  • Chemistry vignettes
  • Context and problem based learning
  • Journal of the month
  • Chemistry and art
  • Art analysis
  • Pigments and colours
  • Ancient art: today's technology
  • Psychology and art theory
  • Art and archaeology
  • Artists as chemists
  • The physics of restoration and conservation
  • Ancient Egyptian art
  • Ancient Greek art
  • Ancient Roman art
  • Classic chemistry demonstrations
  • In search of solutions
  • In search of more solutions
  • Creative problem-solving in chemistry
  • Solar spark
  • Chemistry for non-specialists
  • Health and safety in higher education
  • Analytical chemistry introductions
  • Exhibition chemistry
  • Introductory maths for higher education
  • Commercial skills for chemists
  • Kitchen chemistry
  • Journals how to guides
  • Chemistry in health
  • Chemistry in sport
  • Chemistry in your cupboard
  • Chocolate chemistry
  • Adnoddau addysgu cemeg Cymraeg
  • The chemistry of fireworks
  • Festive chemistry
  • Education in Chemistry
  • Teach Chemistry
  • On-demand online
  • Live online
  • Selected PD articles
  • PD for primary teachers
  • PD for secondary teachers
  • What we offer
  • Chartered Science Teacher (CSciTeach)
  • Teacher mentoring
  • UK Chemistry Olympiad
  • Who can enter?
  • How does it work?
  • Resources and past papers
  • Top of the Bench
  • Schools' Analyst
  • Regional support
  • Education coordinators
  • RSC Yusuf Hamied Inspirational Science Programme
  • RSC Education News
  • Supporting teacher training
  • Interest groups

A primary school child raises their hand in a classroom

  • More from navigation items

Take our Science Teaching Survey (15 mins) and shape the future of education!

A guide to writing up your chemical science thesis

  • No comments

This guide aims to give you guidance on how to write your thesis so that your research is showcased at its best. It includes suggestions on how to prepare for writing up and things to consider during the final stages. 

  • Higher-order thinking and metacognition
  • Investigation
  • Manipulating data
  • Working independently
  • Communication skills

Related articles

Image

A guide to a successful viva

This guide aims to give you guidance on how to prepare for your viva, some suggestions of what to do beforehand and on the day, and a few pointers to consider during the viva itself. 

Tiny people looking at giant models of ammonium and sulfur dichloride trying to figure out the inter molecular forces

Understanding how students untangle intermolecular forces

2024-03-14T05:10:00Z By Fraser Scott

Discover how learners use electronegativity to predict the location of dipole−dipole interactions 

Composite image showing tubes of flourescent spheres and organic molcules and previews of the Chromatography challenge student worksheet and teacher notes, all on a blue background

Chromatography challenge | 16–18 years

By Andy Markwick

Explore analytical techniques and their applications with a chromatography investigation and research activity

No comments yet

Only registered users can comment on this article., more from resources.

Metallic

Metallic bonding | Structure strip | 14–16

By Kristy Turner

Describe the metallic bonding model and explain how this leads to particular properties in metals, with this scaffolded writing activity 

Ionic

Ionic bonding | Structure strip | 14–16

Understand the models and diagrams used to represent ionic bonding and their limitations, with this scaffolded writing activity

Covalent

Covalent bonding | Structure strip | 14–16

Understand covalent bonding diagrams and their limitations, with this scaffolded writing activity

  • Contributors
  • Email alerts

Site powered by Webvision Cloud

Students & Educators  —Menu

  • Educational Resources
  • Educators & Faculty
  • College Planning
  • ACS ChemClub
  • Project SEED
  • U.S. National Chemistry Olympiad
  • Student Chapters
  • ACS Meeting Information
  • Undergraduate Research
  • Internships, Summer Jobs & Coops
  • Study Abroad Programs
  • Finding a Mentor
  • Two Year/Community College Students
  • Social Distancing Socials

Planning for Graduate School

  • Grants & Fellowships
  • Career Planning
  • International Students
  • Planning for Graduate Work in Chemistry
  • ACS Bridge Project
  • Graduate Student Organizations (GSOs)
  • Schedule-at-a-Glance
  • Standards & Guidelines
  • Explore Chemistry
  • Science Outreach
  • Publications
  • ACS Student Communities
  • You are here:
  • American Chemical Society
  • Students & Educators
  • Undergraduate
  • Undergraduate Research Guide

Undergraduate Research in Chemistry Guide

Research is the pursuit of new knowledge through the process of discovery. Scientific research involves diligent inquiry and systematic observation of phenomena. Most scientific research projects involve experimentation, often requiring testing the effect of changing conditions on the results. The conditions under which specific observations are made must be carefully controlled, and records must be meticulously maintained. This ensures that observations and results can be are reproduced. Scientific research can be basic (fundamental) or applied. What is the difference? The National Science Foundation uses the following definitions in its resource surveys:

  • Basic research The objective of basic research is to gain more comprehensive knowledge or understanding of the subject under study, without specific applications in mind. In industry, basic research is defined as research that advances scientific knowledge but does not have specific immediate commercial objectives, although it may be in fields of present or potential commercial interest.
  • Applied research Applied research is aimed at gaining knowledge or understanding to determine the means by which a specific, recognized need may be met. In industry, applied research includes investigations oriented to discovering new scientific knowledge that has specific commercial objectives with respect to products, processes, or services.

Planning for Graduate Work

Get on the path to graduate school with our comprehensive guide to selecting an institution and preparing for graduate studies.

What is research at the undergraduate level?

At the undergraduate level, research is self-directed work under the guidance and supervision of a mentor/advisor ― usually a university professor. A gradual transition towards independence is encouraged as a student gains confidence and is able to work with minor supervision. Students normally participate in an ongoing research project and investigate phenomena of interest to them and their advisor. In the chemical sciences, the range of research areas is quite broad. A few groups maintain their research area within a single classical field of analytical, inorganic, organic, physical, chemical education or theoretical chemistry. More commonly, research groups today are interdisciplinary, crossing boundaries across fields and across other disciplines, such as physics, biology, materials science, engineering and medicine.

What are the benefits of being involved in undergraduate research?

There are many benefits to undergraduate research, but the most important are:

  • Learning, learning, learning. Most chemists learn by working in a laboratory setting. Information learned in the classroom is more clearly understood and it is more easily remembered once it has been put into practice. This knowledge expands through experience and further reading. From the learning standpoint, research is an extremely productive cycle.
  • Experiencing chemistry in a real world setting. The equipment, instrumentation and materials used in research labs are generally more sophisticated, advanced, and of far better quality than those used in lab courses
  • Getting the excitement of discovery. If science is truly your vocation, regardless of any negative results, the moment of discovery will be truly exhilarating. Your results are exclusive. No one has ever seen them before.
  • Preparing for graduate school. A graduate degree in a chemistry-related science is mostly a research degree. Undergraduate research will not only give you an excellent foundation, but working alongside graduate students and post-doctorates will provide you with a unique opportunity to learn what it will be like.

Is undergraduate research required for graduation?

Many chemistry programs now require undergraduate research for graduation. There are plenty of opportunities for undergraduate students to get involved in research, either during the academic year, summer, or both. If your home institution is not research intensive, you may find opportunities at other institutions, government labs, and industries.

What will I learn by participating in an undergraduate research program?

Conducting a research project involves a series of steps that start at the inquiry level and end in a report. In the process, you learn to:

  • Conduct scientific literature searches
  • Read, interpret and extract information from journal articles relevant to the project
  • Design experimental procedures to obtain data and/or products of interest
  • Operate instruments and implement laboratory techniques not usually available in laboratories associated with course work
  • Interpret results, reach conclusions, and generate new ideas based on results
  • Interact professionally (and socially) with students and professors within the research group, department and school as well as others from different schools, countries, cultures and backgrounds
  • Communicate results orally and in writing to other peers, mentors, faculty advisors, and members of the scientific community at large via the following informal group meeting presentations, reports to mentor/advisor, poster presentations at college-wide, regional, national or international meetings; formal oral presentations at scientific meetings; or journal articles prepared for publication

When should I get involved in undergraduate research?

Chemistry is an experimental science. We recommended that you get involved in research as early in your college life as possible. Ample undergraduate research experience gives you an edge in the eyes of potential employers and graduate programs.

While most mentors prefer to accept students in their research labs once they have developed some basic lab skills through general and organic lab courses, some institutions have programs that involve students in research projects the summer prior to their freshman year. Others even involve senior high school students in summer research programs. Ask your academic/departmental advisor about the options available to you.

How much time should I allocate to research?

The quick answer is as much as possible without jeopardizing your course work. The rule of thumb is to spend 3 to 4 hours working in the lab for every credit hour in which you enroll. However, depending on the project, some progress can be achieved in just 3-4 hours of research/week. Most advisors would recommend 8-10 hours/week.

Depending on your project, a few of those hours may be of intense work and the rest may be spent simply monitoring the progress of a reaction or an instrumental analysis. Many research groups work on weekends. Saturdays are excellent days for long, uninterrupted periods of lab work.

How do I select an advisor?

This is probably the most important step in getting involved in undergraduate research. The best approach is multifaceted. Get informed about research areas and projects available in your department, which are usually posted on your departmental website under each professor’s name.

Talk to other students who are already involved in research. If your school has an ACS Student Chapter , make a point to talk to the chapter’s members. Ask your current chemistry professor and lab instructor for advice. They can usually guide you in the right direction. If a particular research area catches your interest, make an appointment with the corresponding professor.

Let the professor know that you are considering getting involved in research, you have read a bit about her/his research program, and that you would like to find out more. Professors understand that students are not experts in the field, and they will explain their research at a level that you will be able to follow. Here are some recommended questions to ask when you meet with this advisor:

  • Is there a project(s) within her/his research program suitable for an undergraduate student?
  • Does she/he have a position/space in the lab for you?
  • If you were to work in her/his lab, would you be supervised directly by her/him or by a graduate student? If it is a graduate student, make a point of meeting with the student and other members of the research group. Determine if their schedule matches yours. A night owl may not be able to work effectively with a morning person.
  • Does she/he have funding to support the project? Unfunded projects may indicate that there may not be enough resources in the lab to carry out the project to completion. It may also be an indication that funding agencies/peers do not consider this work sufficiently important enough for funding support. Of course there are exceptions. For example, a newly hired assistant professor may not have external funding yet, but he/she may have received “start-up funds” from the university and certainly has the vote of confidence of the rest of the faculty. Otherwise he/she would not have been hired. Another classical exception is computational chemistry research, for which mostly fast computers are necessary and therefore external funding is needed to support research assistants and computer equipment only. No chemicals, glassware, or instrumentation will be found in a computational chemistry lab.
  • How many of his/her articles got published in the last two or three years? When prior work has been published, it is a good indicator that the research is considered worthwhile by the scientific community that reviews articles for publication. Ask for printed references. Number of publications in reputable refereed journals (for example ACS journals) is an excellent indicator of the reputation of the researcher and the quality of his/her work.

Here is one last piece of advice: If the project really excites you and you get satisfactory answers to all your questions, make sure that you and the advisor will get along and that you will enjoy working with him/her and other members of the research group.

Remember that this advisor may be writing recommendation letters on your behalf to future employers, graduate schools, etc., so you want to leave a good impression. To do this, you should understand that the research must move forward and that if you become part of a research team, you should do your best to achieve this goal. At the same time, your advisor should understand your obligations to your course work and provide you with a degree of flexibility.

Ultimately, it is your responsibility to do your best on both course work and research. Make sure that the advisor is committed to supervising you as much as you are committed to doing the required work and putting in the necessary/agreed upon hours.

What are some potential challenges?

  • Time management . Each project is unique, and it will be up to you and your supervisor to decide when to be in the lab and how to best utilize the time available to move the project forward.
  • Different approaches and styles . Not everyone is as clean and respectful of the equipment of others as you are. Not everyone is as punctual as you are. Not everyone follows safety procedures as diligently as you do. Some groups have established protocols for keeping the lab and equipment clean, for borrowing equipment from other members, for handling common equipment, for research meetings, for specific safety procedures, etc. Part of learning to work in a team is to avoid unnecessary conflict while establishing your ground to doing your work efficiently.
  • “The project does not work.” This is a statement that advisors commonly hear from students. Although projects are generally very well conceived, and it is people that make projects work, the nature of research is such that it requires patience, perseverance, critical thinking, and on many occasions, a change in direction. Thoroughness, attention to detail, and comprehensive notes are crucial when reporting the progress of a project.

Be informed, attentive, analytical, and objective. Read all the background information. Read user manuals for instruments and equipment. In many instances the reason for failure may be related to dirty equipment, contaminated reagents, improperly set instruments, poorly chosen conditions, lack of thoroughness, and/or lack of resourcefulness. Repeating a procedure while changing one parameter may work sometimes, while repeating the procedure multiple times without systematic changes and observations probably will not.

When reporting failures or problems, make sure that you have all details at hand. Be thorough in you assessment. Then ask questions. Advisors usually have sufficient experience to detect errors in procedures and are able to lead you in the right direction when the student is able to provide all the necessary details. They also have enough experience to know when to change directions. Many times one result may be unexpected, but it may be interesting enough to lead the investigation into a totally different avenue. Communicate with your advisor/mentor often.

Are there places other than my institution where I can conduct research?

Absolutely! Your school may be close to other universities, government labs and/or industries that offer part-time research opportunities during the academic year. There may also be summer opportunities in these institutions as well as in REU sites (see next question).

Contact your chemistry department advisor first. He/she may have some information readily available for you. You can also contact nearby universities, local industries and government labs directly or through the career center at your school. You can also find listings through ACS resources:

  • Research Opportunities (US only)
  • International Research Opportunities
  • Internships and Summer Jobs

What are Research Experiences for Undergraduates (REU) sites? When should I apply for a position in one of them?

REU is a program established by the National Science Foundation (NSF) to support active research participation by undergraduate students at host institutions in the United States or abroad. An REU site may offer projects within a single department/discipline or it may have projects that are inter-departmental and interdisciplinary. There are currently over 70 domestic and approximately 5 international REU sites with a chemistry theme. Sites consist of 10-12 students each, although there are larger sites that supplement NSF funding with other sources. Students receive stipends and, in most cases, assistance with housing and travel.

Most REU sites invite rising juniors and rising seniors to participate in research during the summer. Experience in research is not required to apply, except for international sites where at least one semester or summer of prior research experience is recommended. Applications usually open around November or December for participation during the following summer. Undergraduate students supported with NSF funds must be citizens or permanent residents of the United States or its possessions. Some REU sites with supplementary funds from other sources may accept international students that are enrolled at US institutions.

  • Get more information about REU sites

How do I prepare a scientific research poster?

Here are some links to sites with very useful information and samples.

  • How to Prepare a Proper Scientific Paper or Poster
  • Creating Effective Poster Presentations
  • Designing Effective Poster Presentations

Research and Internship Opportunities

  • Internships and Fellowships Find internships, fellowships, and cooperative education opportunities.
  • SCI Scholars Internship Program Industrial internships for chemistry and chemical engineering undergraduates.
  • ACS International Center Fellowships, scholarships, and research opportunities around the globe

Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy .

1155 Sixteenth Street, NW, Washington, DC 20036, USA |  service@acs.org  | 1-800-333-9511 (US and Canada) | 614-447-3776 (outside North America)

  • Terms of Use
  • Accessibility

Copyright © 2024 American Chemical Society

StatAnalytica

201+ Chemistry Project Topics [Updated]

chemistry project topics

Chemistry, often hailed as the “central science,” plays a pivotal role in understanding the world around us. From the composition of substances to the reactions that transform them, chemistry influences nearly every aspect of our lives. One fascinating way to delve deeper into this field is through chemistry projects. These projects offer a hands-on approach to learning, allowing students and enthusiasts alike to explore various concepts and phenomena. In this blog, we’ll journey through a diverse array of chemistry project topics, offering insights into each area’s significance and potential for exploration.

How To Select Relevant Chemistry Project Topics?

Table of Contents

Selecting relevant chemistry project topics requires careful consideration of several factors to ensure that the chosen topic aligns with your interests, goals, and resources. Here’s a step-by-step guide to help you select the most suitable chemistry project topic:

  • Identify Your Interests: Consider your interests within the broad field of chemistry. Are you fascinated by organic synthesis, environmental chemistry, biochemistry, or another sub-discipline? Choosing a topic that aligns with your interests will keep you motivated throughout the project.
  • Assess Your Knowledge and Skills: Evaluate your current knowledge and skills in chemistry. Choose a topic that challenges you without being too overwhelming. If you’re a beginner, opt for a project that allows you to build upon your existing knowledge while learning new concepts.
  • Consider Available Resources: Take stock of the resources available to you, including laboratory equipment, chemicals, reference materials, and access to mentors or experts. Select a project that can be feasibly completed with the resources at your disposal.
  • Review Literature and Current Trends: Conduct a literature review to explore recent advancements, emerging trends, and unresolved questions in your chosen area of interest. This will help you identify gaps in knowledge or areas where further research is needed, guiding your selection of a relevant project topic.
  • Define Your Objectives and Goals: Clearly define your objectives and goals for the project. Determine what you aim to accomplish and what outcomes you hope to achieve. Your project topic should align with these objectives and contribute to fulfilling your academic or personal goals.
  • Consult with Mentors or Advisors: Seek guidance from mentors, advisors, or faculty members who can provide insights and suggestions based on their expertise. Discuss potential project topics with them and solicit their feedback to ensure that your chosen topic is relevant and feasible.
  • Brainstorm and Narrow Down Options: Brainstorm a list of potential project topics based on your interests, knowledge, resources, and goals. Narrow down your options by considering factors such as feasibility, novelty, and potential impact. Choose a topic that excites you and has the potential to make a meaningful contribution to the field of chemistry.
  • Refine Your Topic and Formulate a Research Plan: Once you’ve selected a topic, refine it further by clearly defining your research question or hypothesis. Develop a research plan outlining the specific objectives, methods, and timeline for your project. Be prepared to adapt and refine your plan as you progress with your research.

By following these steps, you can select relevant chemistry project topics that align with your interests, goals, and resources, setting the stage for a successful and rewarding research experience.

201+ Chemistry Project Topics: Beginners To Advanced

Organic chemistry projects.

  • Synthesis and characterization of aspirin.
  • Extraction and analysis of caffeine from tea leaves.
  • Isolation and identification of natural dyes from plants.
  • Synthesis of biodiesel from vegetable oil.
  • Investigating the acidity of fruit juices using titration.
  • Synthesis of esters for fragrance applications.
  • Preparation of soap from vegetable oils.
  • Studying the effect of catalysts on organic reactions.
  • Analysis of essential oils from aromatic plants.
  • Synthesis and purification of acetaminophen.
  • Investigating the properties of polymers.
  • Extraction of DNA from fruits or vegetables.
  • Synthesis of nylon-6,6.
  • Investigating the effects of different solvents on crystallization.
  • Studying the reactions of carbohydrates.
  • Synthesis of biodegradable plastics.
  • Analysis of food additives using chromatography.
  • Investigating the process of fermentation.
  • Synthesis and characterization of bioderived materials.
  • Studying the properties of antioxidants in foods.

Inorganic Chemistry Projects

  • Synthesis and characterization of metal oxides.
  • Investigating the properties of transition metal complexes.
  • Preparation of metal nanoparticles and their applications.
  • Studying the formation and properties of zeolites.
  • Synthesis of coordination compounds.
  • Investigating the redox properties of metal ions.
  • Preparation and characterization of metal alloys.
  • Studying the properties of rare earth elements.
  • Synthesis of metal-organic frameworks (MOFs).
  • Investigating the catalytic properties of metal nanoparticles.
  • Preparation and properties of superconductors.
  • Synthesis of semiconductor materials.
  • Investigating the properties of carbon allotropes (e.g., graphite, diamond).
  • Preparation and characterization of magnetic materials.
  • Studying the properties of chalcogenides.
  • Synthesis of nanocomposites for catalytic applications.
  • Investigating the properties of perovskite materials.
  • Preparation and characterization of phosphors.
  • Studying the properties of metal halides.
  • Synthesis of metal carbonyl complexes.

Analytical Chemistry Projects

  • Development of a method for heavy metal detection in water samples.
  • Analysis of food preservatives using spectroscopic techniques.
  • Determination of vitamin C content in fruit juices.
  • Quantification of caffeine in beverages using chromatography.
  • Development of a method for pesticide analysis in fruits and vegetables.
  • Analysis of air pollutants using gas chromatography.
  • Determination of pH in household products.
  • Quantitative analysis of alcohol content in beverages.
  • Development of a method for drug analysis in pharmaceutical formulations.
  • Analysis of mineral content in water samples.
  • Determination of total dissolved solids (TDS) in water samples.
  • Quantification of sugar content in soft drinks.
  • Development of a method for forensic analysis of trace evidence.
  • Analysis of heavy metals in soil samples.
  • Determination of acidity in vinegar samples.
  • Quantitative analysis of proteins in biological samples.
  • Development of a method for antioxidant analysis in food samples.
  • Analysis of volatile organic compounds (VOCs) in indoor air.
  • Determination of chlorophyll content in plant samples.
  • Quantification of nicotine in tobacco products.

Physical Chemistry Projects

  • Investigation of reaction kinetics using spectrophotometry.
  • Study of gas laws through Boyle’s and Charles’s experiments.
  • Determination of the heat of neutralization using calorimetry.
  • Investigation of solubility equilibria using conductivity measurements.
  • Study of colligative properties through freezing point depression.
  • Determination of molecular weight using vapor pressure measurements.
  • Investigation of electrochemical cells and their applications.
  • Study of phase transitions using differential scanning calorimetry (DSC).
  • Determination of rate constants using the method of initial rates.
  • Investigation of adsorption phenomena using surface area measurements.
  • Study of the behavior of ideal and non-ideal gases.
  • Determination of activation energy using the Arrhenius equation.
  • Investigation of chemical equilibria using Le Chatelier’s principle.
  • Study of reaction mechanisms using isotopic labeling techniques.
  • Determination of the heat capacity of solids using calorimetry.
  • Investigation of diffusion and osmosis phenomena.
  • Study of molecular spectroscopy using UV-Vis spectroscopy.
  • Determination of reaction enthalpy using Hess’s law.
  • Investigation of acid-base titrations and pH indicators.
  • Study of reaction rates using temperature-dependent kinetics.

Biochemistry Projects

  • Isolation and characterization of enzymes from biological sources.
  • Study of enzyme kinetics using spectrophotometry.
  • Investigation of metabolic pathways using biochemical assays.
  • Study of protein structure and function using SDS-PAGE.
  • Analysis of nucleic acids using gel electrophoresis.
  • Investigation of cellular respiration using respirometry.
  • Study of photosynthesis using chlorophyll fluorescence.
  • Analysis of biomolecules using mass spectrometry.
  • Investigation of DNA replication using PCR.
  • Study of gene expression using reporter assays.
  • Analysis of protein-protein interactions using co-immunoprecipitation.
  • Investigation of membrane transport using permeability assays.
  • Study of signal transduction pathways using ELISA.
  • Analysis of enzyme inhibition using kinetic assays.
  • Investigation of DNA damage using comet assays.
  • Study of protein folding using circular dichroism spectroscopy.
  • Analysis of cell viability using MTT assays.
  • Investigation of apoptosis using flow cytometry.
  • Study of protein purification using chromatography techniques.
  • Analysis of lipid metabolism using TLC.

Environmental Chemistry Projects

  • Analysis of heavy metal contamination in urban soils.
  • Study of water quality parameters in local streams.
  • Investigation of air pollution sources using atmospheric sampling.
  • Study of the effects of acid rain on aquatic ecosystems.
  • Analysis of microplastics in marine environments.
  • Investigation of nutrient pollution in freshwater systems.
  • Study of pesticide residues in agricultural soils.
  • Analysis of landfill leachate contaminants.
  • Investigation of emerging contaminants in drinking water.
  • Study of oil spill remediation techniques.
  • Analysis of pharmaceuticals in wastewater treatment plants.
  • Investigation of the effects of climate change on soil microbiota.
  • Study of ozone depletion in the stratosphere.
  • Analysis of indoor air pollutants in residential homes.
  • Investigation of eutrophication in freshwater lakes.
  • Study of bioaccumulation and biomagnification in food chains.
  • Analysis of heavy metal uptake in aquatic plants.
  • Investigation of the effects of deforestation on soil erosion.
  • Study of greenhouse gas emissions from agricultural activities.
  • Analysis of pollutants in urban stormwater runoff.

Interdisciplinary Chemistry Projects

  • Development of nanomaterials for drug delivery applications.
  • Study of the chemistry of art conservation and restoration.
  • Investigation of the role of chemistry in renewable energy technologies.
  • Study of the chemistry of food preservation techniques.
  • Analysis of chemical communication in ecological systems.
  • Investigation of the chemistry of brewing and fermentation.
  • Study of the chemistry of cosmetics and personal care products.
  • Analysis of the chemistry of natural and synthetic dyes.
  • Investigation of the chemistry of perfume formulation.
  • Study of the chemistry of materials science and engineering.
  • Analysis of the chemistry of medicinal plants and herbal remedies.
  • Investigation of the chemistry of wine production and aging.
  • Study of the chemistry of biodegradable plastics.
  • Analysis of the chemistry of flavor compounds in foods.
  • Investigation of the chemistry of natural products and pharmaceuticals.
  • Study of the chemistry of soil fertility and nutrient cycling.
  • Analysis of the chemistry of water treatment technologies.
  • Investigation of the chemistry of alternative fuels.
  • Study of the chemistry of insecticides and pest control.
  • Analysis of the chemistry of nanotechnology applications.

Advanced Chemistry Projects

  • Synthesis and characterization of novel organic frameworks.
  • Investigation of reaction mechanisms using computational chemistry.
  • Study of advanced spectroscopic techniques for molecular analysis.
  • Analysis of chemical kinetics using ultrafast laser spectroscopy.
  • Investigation of catalytic reactions using surface science techniques.
  • Study of quantum chemistry principles and applications.
  • Analysis of supramolecular assemblies and host-guest interactions.
  • Investigation of molecular modeling and simulation methods.
  • Study of advanced materials for energy storage and conversion.
  • Analysis of chemical dynamics and reaction kinetics.
  • Investigation of organometallic catalysis for organic synthesis.
  • Study of advanced techniques in NMR spectroscopy.
  • Analysis of photochemical reactions and photophysics.
  • Investigation of electron transfer processes in biological systems .
  • Study of theoretical approaches to chemical bonding.
  • Analysis of advanced electrochemical techniques.
  • Investigation of non-covalent interactions in molecular recognition.
  • Study of advanced techniques in mass spectrometry.
  • Analysis of quantum dots and their applications in nanotechnology.
  • Investigation of chemical sensors and biosensors.

Chemistry Education Projects

  • Development of interactive chemistry teaching modules.
  • Investigation of inquiry-based learning approaches in chemistry education.
  • Study of the use of multimedia resources in chemistry instruction.
  • Analysis of student misconceptions in chemistry learning.
  • Investigation of the effectiveness of laboratory experiments in teaching chemistry concepts.
  • Study of collaborative learning strategies in chemistry education.
  • Analysis of the integration of technology in chemistry classrooms.
  • Investigation of the role of assessment in promoting conceptual understanding in chemistry.
  • Study of the impact of hands-on activities on student engagement in chemistry.
  • Analysis of the use of real-world applications to enhance chemistry learning.
  • Investigation of the implementation of flipped classroom models in chemistry education.
  • Study of the development of critical thinking skills in chemistry students.
  • Analysis of the role of feedback in improving student performance in chemistry.
  • Investigation of the use of peer teaching and tutoring in chemistry education.
  • Study of the incorporation of environmental chemistry concepts in the curriculum.
  • Analysis of the influence of classroom climate on student motivation in chemistry.
  • Investigation of the role of metacognition in chemistry problem-solving.
  • Study of the use of concept maps and graphic organizers in chemistry instruction.
  • Analysis of the impact of teacher professional development on student achievement in chemistry.
  • Investigation of the use of authentic assessments in chemistry education.

Chemistry Outreach Projects

  • Development of chemistry demonstration shows for public outreach events.
  • Investigation of community-based science education programs in chemistry.
  • Study of chemistry-themed science fairs and competitions.
  • Analysis of chemistry outreach activities in underserved communities.
  • Investigation of the role of science communication in promoting chemistry awareness.
  • Study of chemistry-themed podcasts and educational videos.
  • Analysis of chemistry outreach efforts in museums and science centers.
  • Investigation of chemistry-themed summer camps and workshops.
  • Study of chemistry outreach initiatives in schools and universities.
  • Analysis of chemistry outreach efforts on social media platforms.
  • Investigation of the impact of chemistry outreach on public perception of science.
  • Study of chemistry-themed citizen science projects.
  • Analysis of chemistry outreach programs for adults and lifelong learners.
  • Investigation of the use of storytelling in chemistry outreach.
  • Study of chemistry-themed art and literature projects.
  • Analysis of chemistry outreach collaborations with industry partners.
  • Investigation of the role of role models and mentors in chemistry outreach.
  • Study of chemistry-themed escape rooms and puzzle games.
  • Analysis of chemistry outreach efforts during national science weeks.
  • Investigation of the use of virtual reality and augmented reality in chemistry outreach.
  • Study of chemistry-themed science cafés and public lectures.
  • Analysis of the impact of chemistry outreach on career aspirations in STEM fields.

Chemistry projects offer a dynamic and engaging way to explore the diverse facets of chemical science. Whether synthesizing new compounds, analyzing environmental samples, or unraveling biochemical processes, these projects foster curiosity, critical thinking, and innovation.

By delving into various chemistry project topics, students and enthusiasts can deepen their understanding of the world’s chemical complexity while contributing to scientific knowledge and societal progress.

So, let’s embark on this exciting journey of discovery and uncover the wonders of chemistry together!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation
  • hot-topics Extras
  • Newsletters
  • Reading room

Tell us what you think. Take part in our reader survey

Celebrating twenty years

  • Back to parent navigation item
  • Collections
  • Water and the environment
  • Chemical bonding
  • Antimicrobial resistance
  • Energy storage and batteries
  • AI and automation
  • Sustainability
  • Research culture
  • Nobel prize
  • Food science and cookery
  • Plastics and polymers
  • Periodic table
  • Coronavirus

Quarts

  • More from navigation items

Woman writing up

Source: © Justin Lewis/Getty Images

How to write a PhD thesis

Zahra Khan

  • No comments

Five tips for communicating your research

Writing a thesis is an inevitable part of a chemistry PhD. Yet it can be a daunting task. While everyone’s personal circumstances vary – university rules, the chemistry discipline and supervisor relationships – the most difficult part is actually starting to write. Adam Clancy of University College London, UK; Chiara Giorio of the University of Cambridge, UK; and I (a recent PhD graduate) reflect on our experiences to offer some advice and tips.

Start writing early

Ideally, if you receive funding you want to finish before the money stops coming in. ‘It’s such an appealing thing to think one more experiment will pull everything together,’ says Clancy. ‘It’s better to just draw a line in the sand in advance.’ This was a goal I set myself, and it proved to be a catalyst to my productivity. Clancy’s experience was different: ‘I got a postdoc and then wrote in the evenings, which was a terrible, terrible idea.’ Sometimes though, a promising job offer or unforeseeable circumstances means this is your only option for completion. Whatever your circumstances, Giorio advises ‘to write as much as you can, every day,’ even if it’s just experimental procedures or summaries.

For me, getting started was the hardest part. Thinking of a thesis as a series of small, manageable chapters rather than a whole book helped me compartmentalise. Once you start writing, you build up momentum. Having something that you can look back at as a starting point is better than staring at a blank page.

Make a plan

Devise a workplan with your supervisor before you start writing. ‘It should be a discussion with them about where they think the good results are – how you can split up all your work into manageable, multiple sections,’ explains Clancy. Spend time ‘understanding what are the key messages that you want to get across,’ says Griorio. During writing, send chapters to your supervisor for revision and go over them together. ‘The first draft doesn’t need to be perfect’ – and it won’t be – but this will give you a better idea of what your supervisor expects. ‘The first time you write something, it’s very difficult,’ Griorio explains, so it’s good to solicit feedback early on. But it’s not just your supervisor you can ask – peers, friends and family can contribute ‘even if only catching typos’, she adds.

No need to work sequentially

Start with the chapter you’re most comfortable working on – you don’t need to write the thesis in order. I found switching between chapters helped. Some days I had brain fog when writing up my results so I would work on the literature review and come back to writing up the results when I had the mental capacity. The structure of the thesis also does not have to be chronological: Clancy used what he did towards the end of his PhD to form his first results chapter. ‘You’re not recounting what you did for three years,’ he explains. ‘It shouldn’t be a biography of your research.’

Figures are your friends

Images can reveal a lot about your work. ‘I’m a fan of basically never really needing words,’ reveals Clancy. ‘It’s worth taking the time to make your graphs look highly presentable and really clear.’ Graphs and images are not only useful in breaking up large bodies of text, but they also provide context and meaningful data for your discussion. ‘You can start with just putting some figures together and some bullet points,’ says Giorio, noting that graphs assist with the initial hurdle of getting something written down. Clancy suggests you ‘go to the papers you like and see how they present data and be inspired by that’. Don’t take shortcuts with figures – a lesson I learned. I had to do corrections on my graphs after my viva that could have easily been avoided if I had been more diligent when producing the figures in the first place.

Don’t worry

You are an expert in your research so be confident about your writing. ‘If you’ve got to this point, you’re probably good enough to pass a PhD,’ Clancy says. You have put in years of work and all you must do now is communicate it. But don’t let writing consume your life – take regular breaks, keep active and balance your time with hobbies and friends. By taking care of your physical and mental health, you will be in a better position to deliver your best work.

I found the writing process unexpectedly fun and therapeutic. There were days when nothing would come to me, but I would say ‘tomorrow is a new day’. Try not to put too much pressure on yourself. At the end of it, you will hopefully look at your thesis with pride and a sense of accomplishment.

Zahra Khan

More from Zahra Khan

Fractal

First regular molecular fractal in nature

A layer of a wooden material is peeled back to reveal a woven material underneath

Intelligent ionotronic wood device can keep an eye on people’s health

Diatomic molecules

New ‘supermolecule’ demonstrated for the first time at record-breaking ultracold temperature

  • communication

Related articles

Pay rise

National Institutes for Health boosts pay for PhD students and postdocs in the US

2024-04-30T13:46:00Z

By Rebecca Trager

Cartoon of a three-leaved plant shoot growing out of a large crack in the ground. Black and pink hills stretch across the background; a black sun is in the sky

The untapped power of emotional intelligence for PhDs

2024-04-26T12:00:00Z

By Matteo Tardelli

Canada budget

Canada pledges dramatic pay rise for PhDs, postdocs – but many will not benefit

2024-04-19T14:58:00Z

A cartoon showing a man in blue clothing leading a protest. He holds a sign saying exams, where the x of exams is in red and crosses out the rest of the word to show that he is against them

Breaking the cycle of teach, test, forget

2024-04-19T08:45:00Z

By Dean Thomas

A man stands at the front of a lecture theatre in front of several rows of students sat with papers on the benches in front of them. On the blackboard behind him is a chemical structure

How to teach university-level chemistry well

2024-04-18T08:30:00Z

By Dinsa Sachan

A person with long dark hair wearing a yellow top transforms a tangled coil of white rope into a neat spiral

How to troubleshoot experiments

2024-04-10T08:43:00Z

By Victoria Atkinson

No comments yet

Only registered users can comment on this article., more from careers.

A person with short orange hair in a red-and-white patterned blouse makes notes on a large notepad; above them, their thoughts are represented by coloured shapes

Troubleshooting your career

2024-04-10T13:30:00Z

By Emma Pewsey

A woman working in a lab

A sustainable career in sustainability

2024-03-28T14:28:00Z

By Julia Robinson

A cartoon of man speaking to a woman through a loudspeaker in technical language she finds overwhelming

Making science communication persuasive and engaging

2024-03-21T09:30:00Z

By Philipp Gramlich

Anonymous woman

Losing a job can make you question who you are

2024-03-07T14:30:00Z

Group shot

The community of colleagues supporting each other through redundancy

2024-03-07T09:31:00Z

ID card

How to deal with being made redundant

2024-03-07T09:30:00Z

  • Contributors
  • Terms of use
  • Accessibility
  • Permissions
  • This website collects cookies to deliver a better user experience. See how this site uses cookies .
  • This website collects cookies to deliver a better user experience. Do not sell my personal data .
  • Este site coleta cookies para oferecer uma melhor experiência ao usuário. Veja como este site usa cookies .

Site powered by Webvision Cloud

KU

KU ScholarWorks

  • Enroll & Pay
  • KU Directory
  •   KU ScholarWorks
  • Pharmaceutical Chemistry

Pharmaceutical Chemistry Dissertations and Theses

Search within this collection:

Recent Submissions

Thumbnail

The synthesis of intermediates for conversion to cortisone analogues 

Thumbnail

Chemotherapeutic agents in the quinolinol series 

Thumbnail

Design of Intratumoral Immunostimulant Formulations 

Thumbnail

Brain delivery of BDNF and a monoclonal antibody for the treatment of neurodegenerative animal models 

Thumbnail

Physicochemical stability and effector function of IgG4-Fc: impact of photo-induced chemical modification and glycosylation 

Thumbnail

Analysis of Spa33 and its Role in T3SS Cytoplasmic Sorting Platform of Shigella 

Thumbnail

Preservation of Human T Cell Membrane Integrity after Drying and Rehydration 

Thumbnail

Method for Simultaneous Quantitation of Free Carrier Protein and Free Polysaccharide in Glycoconjugate Vaccines by High Performance Liquid Chromatography 

Thumbnail

Development and biophysical characterization of a hyaluronic acid – vitamin E conjugate as a subcutaneous delivery platform 

Thumbnail

The Application of Machine Learning Algorithms in Understanding the Effect of Core/Shell Technique on Improving Powder Compactability 

Thumbnail

Design of Antigen-Specific Immunotherapies Through Modulation of Peripheral Tolerance Pathways 

Thumbnail

Analytical characterization and formulation development of a trivalent subunit rotavirus vaccine for the developing world 

Thumbnail

Chemical and Physical Instability of Monoclonal Antibodies Induced by Metal-catalyzed Carbonylation 

Thumbnail

Utilizing IgG1 Fc As An Immunomodulator 

Thumbnail

The Degradation of 4-Morpholinoaniline in Aqueous Solution 

Thumbnail

Characterization, Stabilization and Formulation Design of IgG and Secretory IgA Monoclonal Antibody Candidates during Storage and Administration 

Thumbnail

Targeted Proteomics for Exosome Analysis and Its Application to Develop Blood Markers of Liver Drug-Metabolizing Enzymes 

Thumbnail

Strategies to improve the immunogenicity of subunit vaccine candidates 

Thumbnail

Understanding the metabolic processes and degradation of therapeutic proteins after subcutaneous administration 

Thumbnail

Impact of Fill-Finish Process on Protein Formulation in the Absence of Stabilizing Agents 

feed

The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, [email protected] , 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.

PhD Theses (Chemistry)

Recent submissions.

  • No Thumbnail Available Item Synthesis of Furan, Pyran, Pyrrolidine, and Piperidine Scaffolds via Tandem Prins Cyclization Reactions ( 2023 ) Shit, Sudip Show more The content of this thesis has been divided into five chapters on the basis of results of experimental work performed during the complete course of the PhD tenure. The chapter 1 describes the tandem Prins cyclization reactions and their mechanisms to construct Furan, Pyran, pyrrolidine and piperidine scafolds in brief. The chapter 2 deals with the stereoselective synthesis of hexahydrofuro[3,4-b] furan-4-ol and its dimer via tandem Prins and pinacol rearrangement. The dimer was conveniently converted into its corresponding monomer using aqueous zinc(II) chloride in THF in quantitative yields. Chapter 3 describes synthesis of spiro[furan-2,1′-isoindolin]-3′-ones from 2‑(4- hydroxybut-1-yn-1-yl)benzonitriles and aryl aldehydes under the action of triflic acid. The plausible mechanism of the reactipon has been drawn on the basis of control experiments and literature evidence. The synthetic utility of the reaction was performed using Sonogashira reaction and click reaction conditions. In chapter 4, nitrile stabilized synthesis of pyrrolidine and piperidine derivatives via tandem alkynyl aza-Prins-Ritter reactions is described. In chapter 5, regio- and chemoselective synthesis of 3-(dihydrofuran-3(2H)-ylidene)isobenzofuran-1(3H)-imines via tandem alkynyl Prins- and intramolecular oxycyclization reaction is disclosed. The methodology was extended towards synthesis of its pyran derivatives. The post synthetic applications of the reaction were extended towards synthesis of furanylidene-isobenzofuranones in excellent yields. The mechanistic investigation of the reaction was performed on the basis of controlled experiment. Show more
  • No Thumbnail Available Item Design, Synthesis and Investigations of Liquid Crystalline Organic Semiconductors ( 2023 ) Vishwakarma, Vinod Kumar Show more This thesis entitled “Design, Synthesis and Investigations of Liquid Crystalline Organic Semiconductors” describes simple and straightforward synthetic pathways, characterizations and applications of new LC/non-LC organic materials, with their potential applications in acid sensing, optoelectronic devices mainly OLEDs and OFETs applications. A brief overview of the chapters is given. Chapter 1, gives a general introduction to liquid crystals, characterization techniques and their applications. Chapter 2a addresses the synthesis and characterization of pyrazino[2,3-g]quinoxaline (PQ) derivatives where the central pyrazino[2,3-g]quinoxaline central core is substituted with eight peripheral flexible tails of varying lengths. The compounds with very short/branched peripheral chains did not stabilize any liquid crystalline phase, while the medium to long-chain homologs exhibited columnar phases. All the compounds exhibited a high molar extinction coefficient and bright greenish-yellow emission behavior in solution and solid state. One of the columnar liquid crystalline materials was used in the fabrication of host-guest OLED exhibited higher efficiency and bright green emission. Chapter 2b describes the sensing ability of the pyrazino[2,3-g]quinoxaline derivative to volatile trifluoroacetic acid in trace amounts (in parts per billion levels). The reversible detection of acid-sensing behavior was visually perceivable in both solutions as well as in the drop-casted film on a TLC paper-based strip. Chapter 3 explains new design strategies for the synthesis of donor-acceptor-donor pyrazino[2,3-g]quinoxaline carbazole derivatives with straight chain and branched alkyl peripheral chains. The electron-donating carbazole moieties that have been placed in the periphery showed a strong electron-donating ability, high molar extinction coefficients and lower band-gap, bright emission behavior in solution and solid-state, along with positive solvatochromism. One of the branched chain compounds was used in yellow and white OLEDs device fabrications. Chapter 4 describes the detailed synthesis of naphthalene and perylene-based imidazole derivatives with a new donor-π-acceptor-π-donor architecture containing ten flexible chains for solution-processable organic field effect transistor (OFETs) applications. These compounds showed a wide range of columnar LC behavior. One of these naphthalene and perylene bisimide derivatives were evaluated for their application in OFET devices exhibited high hole mobility values. Show more
  • No Thumbnail Available Item Stimuli-responsive Turn-on Fluorogenic Donors of Hydrogen Sulfide (H2S) and the Prodrugs of Anti-cancer Compounds ( 2023 ) Mahato, Sulendar K Show more The dissertation entitled “Stimuli-responsive Turn-on Fluorogenic Donors of Hydrogen Sulfide (H2S) and Prodrugs of Anti-Cancer Compounds” consists of four chapters based on the results of experimental works performed during the complete course of Ph.D. research tenure. Show more
  • No Thumbnail Available Item Stereospecific Opening and Cyclization of the Strained Ring Systems for the Synthesis of Six-Membered Heterocycles ( 2022 ) Das, Bijay Ketan Show more The thesis is divided into four chapters. The first chapter describes the general introduction to the opening and cyclization of the strained ring system for the synthesis of six-membered heterocycles. The second chapter focuses on the synthesis of piperazines and tetrahydropyrazines through stereospecific ring-opening and cycloisomerization of aziridines with N-propargylamines. Third chapter covers stereospecific synthesis of substituted 1,4-oxazine via Zn/Ag Relay catalyzed ring opening/hydroalkoxylation of oxiranes with N-propargylamines. Chapter four deals with the stereospecific assembly of tetrahydroquinolines via tandem ring-opening/oxidative cyclization of donor-acceptor cyclopropanes with N-alkyl anilines. Show more
  • No Thumbnail Available Item Application of Modified Smooth Exterior Scaling Method to Study Auger and Shape Resonances in Different Atomic and Molecular Systems ( 2024 ) Banuary, Mwdansar Show more This thesis focuses on the application of modified smooth exterior scaling (MSES) as an efficient method to impose outgoing boundary conditions in e-atom and e-molecule scattering resonances. This is the first time that the MSES method has been applied to calculate energies and widths of Auger and shape resonances in three-dimensional many-body electron systems. MSES converts the divergent resonance wave functions into square integrable ones thereby making the study of temporary bound states (resonance states) amenable to bound state electronic structure methods. The main objective of this thesis is to formulate the MSES method in bivariational SCF and electron propagator methods. Show more
  • No Thumbnail Available Item N- and O- Donor Ligands for Fluorometric and Colorimetric Detection of Metal Ions ( 2024 ) Bhattacharya, Araghini Show more This Thesis contains five chapters. Chapter 1 is the introduction which describes the contribution of metals in our daily lives and their adverse effects on human beings when exposed to excess amounts along with a brief elaboration of different detection techniques. Some recent developments in devising fluorescent and colorimetric probes are also discussed. In Chapter 2 the 2,4,5-tris(2-pyridyl)imidazole (L1H) molecule has been evaluated as a probe for dual sensing of Hg2+ and Cu2+ ions in EtOH/HEPES buffer medium (5 mM, pH = 7.34, 1:1, v/v). Probe L1H shows a good sensitive and selective turn off response in the presence of both Hg2+ and Cu2+ ions, which is comprehensible under long UV light. Its sensitivity was evaluated in different pH medium and in presence of other metal ions. Paper strip experiments and in-vitro cell imaging was done to know the sensitivity of the probe towards the metal ions in different environment. Chapter 3 describes the probe 2,6-di(2-pyridyl)-1,5-dihydroimidazo[4,5-f]benzimidazole (L2H2) and its sensing application towards metal ions. This probe could detect Zn2+ and Cd2+ ions in three different aqueous systems viz., water, DMSO/HEPES buffer (1:1, pH = 7.34, rt), and DMSO/water (1:1, rt). In water a “turn-on” response was observed for both metal ions, whereas in the latter two solvent systems, a ratiometric change in fluorescence maximum was observed. The detection limit of this probe was as low as 0.3 μM and 0.62 μM (in water) for Zn2+ and Cd2+ ions, respectively. In Chapter 4 synthesis and evaluation of a novel probe N'-(pyren-1-ylmethylene)benzo[d]imidazo[2,1-b]thiazole-2-carbohydrazide (L3H) as metal ion sensor was explored. It was found to be able to nanomolar detection of Pd2+ and Ni2+ ions by colorimetric change. This probe was also able to detect the presence of Pd2+ ions in drug samples and APIs without any major interference. LOD values were calculated to be 46.1 to 93.9 nM (4.9 to 6.0 ppb) for PdCl2 and 10.6 to 19.6 nM (1.1 to 2.1 ppb) for Pd(PPh3)2Cl2 and 9.301 nM for NiCl2 solutions. It also showed extremely good recovery of Pd2+ in presence of all the drug molecules. In Chapter 5 another novel ligand L4H based on 2,7-dichlorofluorescein was synthesized and evaluated for sensing applications. It was found to be able to detect Co2+ and Cu2+ ions differentially by different colouration of the solution in presence of these two metal ions. In situ Cu-complex of the ligand was utilised for quantification of amino acids like BSA and HSA proteins. Its differential selectivity paved the for molecular logic gate application. Show more
  • No Thumbnail Available Item Computational investigation of excited state processes in ESIPT-based systems and vinylene-linked thiophene pyrrole ( 2024 ) Mawa, Ibanrishisha Show more The thesis focuses on understanding the mechanistic pathway in systems undergoing excited state intramolecular proton transfer and cis-trans isomerization. Unveiling the mechanism of these processes at an atomistic scale is of utmost importance as it would add to our understanding and assist in designing materials with better performance. These kinds of processes are observed in our everyday life such as the vision process in retinal chromophores, vitamin D production in humans on exposure to sunlight and mutation during DNA replication, etc. The application part of systems undergoing photoinduced processes are realized in the design and development of certain materials such as optoelectronic devices. The thesis has three working chapters. The first work is based on 1-hydroxy-2-acetonaphthone (HAN) due to the unsettled issues regarding the proton transfer process. In addition, the process of full photocycle including the non-radiative relaxation pathways is proposed. The second work highlights the effect of implicit solvents on the photoinduced processes in nitrile-substituted 2-(oxazolinyl)-phenols. Additionally, the mechanisms behind these two regiomers’ weakly emissive properties in the solvent phases are investigated. My last work involves the exploration of photoisomerization pathways in vinylene-linked thiophene-pyrrole system. Considering the computational cost for the dynamics study in the excited state, we have employed single-reference method such as time-dependent density functional theory (TDDFT) and algebraic diagrammatic construction scheme of second order (ADC(2)). However, multi-reference studies are also incorporated in our study wherever the single-reference methods fail. Show more
  • No Thumbnail Available Item Properties and Potential Applications of Biomimetic and Bio-derived Nanofluidic Systems ( 2021 ) Konch, Tukhar Jyoti Show more The branch of fluid dynamic that explore the flow of liquid in structure constrained to nanometer size regime (1-100nm) is defined as nanofluidic. Fluidic transport in and around nanofluidic structures is dominated by interactions of otherwise weak effects such as the formation of electrical double layers (EDL), attractive or repulsive forces of charged species, and entropic barriers. Typically, transport of charged species through nanometer-sized channels are dominated by the overlapping electrical double layers. One of the major difficulties in designing nanofluidic devices is the inherent complexity. The overall transport characteristics are determined by the interplay of various nanoscale or even molecular level physical, geometric, and chemical factors. Biological ion channels, however, are known for their capability of elaborately manipulating these factors to regulate the transmembrane ionic flow, which plays a crucial role in a number of physiological processes. Mimicking the biological systems researchers has tried to demonstrate its artificial counterparts. In light of this feature, various ion-channel-mimetic smart 1D nanofluidic systems have been developed that can reproduce functions analogous to its parent biological systems. Although systematic research in single-pore devices makes the physical picture of this nanofluidic process much clear, it is still far from competent for practical applications. Toward practical applications, one major challenge is to extrapolate individual nanofluidic devices to macroscopic platform in a cost-efficient way. Interestingly solution to the above mentioned dilemma was also resolved from natural inspirations in the form of lamellar microstructure of nacre, in which soft materials (polysaccharides and proteins) are sandwiched between hard inorganic layers (aragonite platelets), forming an alternatively arranged layered structure. This novel method of material designing and large-scale integration of individual artificial nanofluidic channels into a macroscopic platform give birth a new research filed known as the 2D nanofluidics. Via a simple vacuum filtration process, colloidal dispersions of individual 2D nanosheets can be reassembled into a densely stacked multi-layered structure. The interstitial space between opposite 2D nanosheets can be treated as lamellar channels for mass and charge transport. Show more
  • No Thumbnail Available Item Transition-Metal Catalyzed Regioselective C-C/C-Heteroatom Bond Formations: Access to Functionalized Arenes and Heterocycles ( 2022 ) Sarkar, Tanumay Show more The thesis is divided into four chapters. The first chapter illustrates a Ru(II)-catalyzed siteselective C-H acyloxylation of N-aryl-2-pyrimidines with carboxylic acids as the acyl source. The second chapter describes a Ni(II)-catalyzed oxidative C-H heteroarylation of arenes with azoles utilizing a removable oxazoline-based directing auxiliary. The third chapter deals with the Bi(III)- catalyzed annulation of 2-naphthols with N-sulfonylaziridines. The fourth chapter demonstrates (3+3)-cycloaddition of aziridines with diaziridines for the stereospecific synthesis of triazines under Fe(III)-catalysis. Show more
  • No Thumbnail Available Item Ipso Nucleophilic Substitution on Electron Deficient Arene Systems ( 2024 ) Mondal, Sandip Show more The thesis entitled, “Ipso Nucleophilic Substitution on Electron Deficient Arene Systems” mainly focused on the development of greener and transition metal free methodologies for various alkylation reactions. The contents of the thesis have been divided into five chapters based on the results of experimental works performed during the research period. Show more
  • No Thumbnail Available Item Design of Coatings Embedded with Tolerant, Tailored and Responsive Underwater Oil Wettability and Oil Adhesion ( 2023 ) Borbora, Angana Show more The anti-oil wettability of various naturally existing underwater creatures has inspired researchers to develop artificial super oil repellent interfaces for multiple applications in engineering, healthcare, and environmental remediation. In the past, several approaches were adopted to artificially fabricate underwater oil-repellent surfaces, formally known as underwater superoleophobicity, by co-optimizing hydrophilic chemical composition and rough micro/nano-structures on their surface. However, the earlier reported approaches in deriving underwater superoleophobicity were unable to associate some other essential properties, such as, physical and chemical durability, adaptive tuning of oil adhesion, and transparency in the prepared surfaces. Here, a facile 1, 4-conjugate addition reaction is exploited to derive covalently crosslinked chemically reactive coatings on various surfaces loaded with residual chemical functionalities that provide the opportunity to embed underwater superoleophobicity through appropriate post-covalent modifications. While the covalent crosslinking tailored mechanical property, the adequate chemical post-modification customized oil adhesion and optical transparency. The thesis entitled “Design of Coatings Embedded with Tolerant, Tailored and Responsive Underwater Oil Wettability and Oil Adhesion” is presented in six chapters. Chapter 1 introduces bio-mimicked underwater superoleophobic surfaces, the existing challenges associated with conventional artificial fabrication approaches, and the objectives of the thesis work. Chapter 2 demonstrates the fabrication of a dually reactive multilayer coating following the 1, 4-conjugate addition reaction and the post-covalent modification of the multilayer coating to immobilize highly sensitive bare micro-meter sized nematic liquid crystal (LC) droplets underwater for single LC droplet based repetitive sensing application. Chapter 3 accounts for the utilization of the dually reactive multilayer coating to develop various responsive underwater superoleophobic surfaces via post-modifications and their adaptive oil adhesion for sensing different amphiphilic (cationic, anionic and facial) molecules. Chapter 4 demonstrates the rational functionalization of the dual reactive multilayer coating to depict the highly selective raising of the oil contact angle (OCA) and rolling of a beaded oil droplet underwater in the presence of targeted and relevant toxic chemicals. Chapter 5 introduces a covalently crosslinked and chemically reactive sol-gel conversion process through the 1, 4-conjugate addition reaction to achieve a substrate-independent, mechanically durable, and optical transparent coating embedded with underwater superoleophobicity. Moreover, this approach allows to modulate mechanical property of highly deformable objects. Chapter 6 provides a brief summary and the future outlook of the work presented here. Show more
  • No Thumbnail Available Item (A) Computational Study of human Islet Amyloid Polypeptide Aggregation and its Inhibition ( 2023 ) Roy, Rituparna Show more The aggregation of human islet amyloid polypeptide (hIAPP) stands at the nexus of Type II Diabetes (T2D) pathogenesis. In order to counteract the advancement of this disease, a possible therapeutic avenue is to curb the misfolding and aggregation of hIAPP. Within this thesis, we embark on the intricate journey of hIAPP aggregation, coupled with the myriad classes of compounds harboring the potential to impede this process. In Chapter I, a foundation is laid through the introduction of hIAPP and an array of different categories of inhibitors, each contributing to the modulation of hIAPP aggregation. A brief discussion of the molecular dynamics simulation methodology, which is a vital framework underpinning our study is followed. Thereafter, Chapter II takes the helm into venturing the different conformational states of an amyloid prone fragment of hIAPP, hIAPP20-29, via Markov State Modelling. Here, the transition pathway between the metastable states is analysed, which are crucial for the misfolding of hIAPP. Chapter III explores the influence of two small biological molecules on hIAPP aggregation. In Part (a), we have explored the effect of norepinephrine, which is a common neurotransmitter, on the amyloidogenesis of hIAPP. In Part (b), a new aspect of adenosine triphosphate (ATP), other than being the energy source for biochemical processes, is inquired. This chapter, thus, enlighten us about the diversity of the molecular structures that can modulate the aggregation of hIAPP and the effect of these structures on the activity of the inhibitors. Chapter IV turns the discourse towards peptides and peptidomimetics, probing their roles in shaping the aggregation narrative. Two such inhibitors are investigated, both of which are extracted from the amyloid core region of hIAPP, i.e., N22FGAIL27. In Part (a), this hIAPP fragment is replaced with all D-amino acids, and is used to prohibit the self-assembly of full-length hIAPP. In Part (b), a conformationally restricted element, aminobenzoic acid is incorporated into NFGAIL, by replacing Ile26 and/or Gly24 residues. Here, three different isomers of aminobenzoic acid is used, i.e., (β, γ, δ). β- and γ- containing peptidomimetics successfully prevent the aggregation of hIAPP, but δ- peptidomimetics promote it, highlighting the contrasting behaviour of the isomers. Hence, in this chapter, we have conveyed the effect of stereochemistry of the amino acid residues or modified organic moieties on the inhibitory potential of peptides or peptidomimetics. A novel dimension unfurls in Chapter V, where the alliance between boron nitride nanomaterials and hIAPP aggregation is explored. The curvature of the nanomaterials is observed to have an impact on their interaction site with hIAPP. Finally, Chapter VI unfurls a tapestry of conclusions, weaving together the diverse threads from our journey. In unity, this thesis stands as an ardent exploration, deciphering the aggregation pathway of hIAPP and unveiling a constellation of agents poised to intervene. The information regarding the structure and activity of the various inhibitors provides a holistic comprehension of the crucial molecular scaffolds and properties required to design drugs for combatting T2D's relentless advance. Show more
  • No Thumbnail Available Item Effect of the Position of Geminal Di-Substitution of g Amino Acid Residues on their Conformational Preference ( 2023 ) Debnath, Swapna Show more This thesis investigated the role germinal di-substitution at various backbone positions of the gamma amino acid residue on their conformational preferences. The thesis consists of 5 chapters. The first chapter describes the gamma amino acids and their conformations reported in the literature. Chapters 2-5 describe the investigations carried out in this thesis, which includes the incorporation of gamma amino acid residues (g2,2,g3,3 and g4,4) in the peptides. Chapter 2, describes the structures and assemblies in the solid and solution state of different derivatives of gamma amino acid residue. The structures and assemblies in the solid state are reported to be different for the three amino acid residues. The position of the backbone di-substitution is shown to drive the assembly in the solid state but not in solution. In the Chapter 3, three gamma amino acid residues were incorporated in all 􀀀 amino acid containing model helical peptide sequences (tri, hexa and nona petides) and compared their relative helical propensity. The C12 helical conformation diminished as: g4,4 g3,3 g2,2. Helices with a central 􀀀 amino acid residue was shown to adopt mixed 10/12 helices of both handedness (left and right) in both solid and in solution state. Nona peptides containing g3,3 and g2,2 amino acid residues adopted an unusual ambidextrous helical conformation in the solid and in solution state. The ambidextrous conformation was stabilized by a water mediated hydrogen bonding. Ambidexterity was not observed in the nona-peptide containing g4,4 amino acid residues, likely due to the absence of the key water molecule in the structures. Chapter 4 describes the propensity of these three amino acid residues in being able to nucleate an isolated expanded C12 B-turn motif. Chapter 5 studies the ability of these amino acid residues in nucleating 􀀀 hairpin conformation. Both C12 􀀀-turn and 􀀀-hairpin conformation was favoured by g3,3 and g4,4 favoured, whereas g2,2 failed to nucleate either of them due to unfavourable steric contacts. This thesis reported conformational preference of the three differently di-substituted 􀀀 amino acid residues, in the solution and in solid states by primarily using NMR, CD and X ray crystallography. In collaboration with the computational lab, ab initio calculations have also been done to understand the energetics of conformational preference. The conclusions are very well supported by experiments and computations. The thesis showed how a position of disubstitution (in the g amino acid backbone) determines its conformational preference by fine-tuning the energetics. The results are useful for peptidomimetics and rational design of peptides with various architectures. Show more
  • No Thumbnail Available Item Creating Life-like Transience in Synthetic Vesicles ( 2022 ) Das, Saurav Show more The thesis "Creating Life-like Transience in Synthetic Vesicles" explores several techniques and approaches for imbuing life-like non-equilibrium features in synthetic vesicular systems and their potential biomimetic applications in laboratory settings. Show more
  • No Thumbnail Available Item Effect of Pyridine and Imidazole Functionality on Chiral Resolution, Solution Spin State and Electrochemistry within Ni (II) and Fe (II) Complexes ( 2022 ) Bhattacharya, Sounak Show more This thesis work stems from our quest to find a simple way to recognize an enantiomer from a racemic mixture using coordination bond. To do that, we choose to use Ni (II)(high-spin) and Fe (II) (low-spin) complexes of chiral bidentate Schiff-base ligands. Observations on Fe (II) complexes led to finding complexes that show high- spin <--> low-spin transitions in solution. Digging deeper with more complexes along with a host of electrochemical and spectrometric tools, we ended up finding an intimate relationship between donor groups, redox potential, and spin-state. The effect of replacing pyridine with imidazole on redox and the spin-state properties discussed in the thesis is relevant to biomimetic chemistry. Imidazole group is a part of L- histidine amino acid, ubiquitous in metalloenzyme active sites. On the other hand, pyridine donor is typical in ligands related to biomimetic chemistry. Show more
  • No Thumbnail Available Item Selective C-H and C-C Bond Functionalization of Benzo-Fused N-Heteroaromatic Compounds ( 2022 ) Sarmah, Bikash Kumar Show more The present thesis, entitled “Selective C-H and C-C Bond Functionalization of Benzo-Fused N-Heteroaromatic Compounds” is divided into five chapters based on the results obtained from the experimental works during the course of PhD research period. Show more
  • No Thumbnail Available Item Exploring the Potential of Homogeneous Ru-SNS/NNS Complexes and Heterogeneous Ru-Hydrotalcite in De(hydrogenative) Transformations ( 2023 ) Sardar, Bitan Show more The contents of the present thesis entitled as “Exploring the Potential of Homogeneous Ru-SNS/NNS Complexes and Heterogeneous Ru-Hydrotalcite in De(hydrogenative) Transformations” have been divided into five chapters. The first chapter contains a brief literature study related to various de (hydrogenative transformations) and the last four chapters were based on the results achieved from the experimental works performed during the entire course of the PhD research program. Chapter 1 contains a brief introduction to the literature review of acceptorless dehydrogenation and borrowing hydrogen reaction of alcohols via homogeneous catalysis and heterogeneous catalysis. In 21st century, the rapid depletion of fossil fuels and growing environmental concerns urges chemists and chemical industries to search for alternative raw materials and to develop new methodologies to produce sustainable chemicals and important building blocks. In this regard, biomass-derived alcohols was found to be best candidate, as they are non-toxic in nature. Moreover, alcohols are considered renewable starting materials that can be used in organic synthesis for various organic transformations and the preparation of commodity chemicals. In this context, “acceptorless dehydrogenation (AD)” and “borrowing hydrogen (BH)” catalysis plays a key role. These approaches are sustainable because this process liberates water and in some cases (i.e., AD) molecular hydrogen as clean by-products. And, these types of reactions could be successfully performed by various types of homogeneous and heterogeneous catalysts. Show more
  • No Thumbnail Available Item Interaction and Synchronization of Spiral Waves in a Reaction-Diffusion System ( 2023 ) Kalita, Hrishikesh Show more Over the past few decades, spirals have attracted a lot of interest. From a spinning galaxy to a swarm of honeybees, rotating spirals are widespread in nature. Their widespread presence in nature has made the study of spiral waves relevant across various disciplines. In physical systems like fluid flows, liquid crystals, galactic formations, etc., in biological systems like the heart, chicken retina, neocortex, slime mould, etc., in chemical systems like the Belousov-Zhabotinsky (BZ) reaction system, the Briggs-Rauscher reaction, some simple precipitation processes, the oxidation of CO on platinum surfaces, etc., scientists have observed and studied spiral waves. Despite these studies, the ambiguity of spiral waves has prevented scientists from developing a comprehensive hypothesis Show more
  • No Thumbnail Available Item Aggregation Aptitude in Rigid and Flexible Molecular Systems: Comparative Photophysical and Analytical Studies ( 2023 ) De, Sagnik Show more This thesis elucidates the important consequences in comprehension of aggregation outlook of flexible and rigid frameworks and their response towards environmentally and biologically relevant analytes. L1-L3 is designed which shows a comparative aggregation aptitude with chain length variation in amphiphiles. The entire photophysical study on aggregation process is dealt with. Then, these synthesized amphiphiles are used in creating hydrophobic surfaces due to their inherent property of hydrophobicity. Additionally, the concept of Photoinduced Electron Transfer or PET is applied in the detection of nitro antibiotics via fluorescence quenching. This chemo sensing is probed in biofluids viz; simulated gastric and body fluid. Next, a layout is provided where a comparative study between an amphiphile and a non-amphiphile is presented. The compounds designed and synthesized were substituted urea and amide (L4 & L5). Studies on aggregation-induced emission are shown by a binary solvent system DMF-Water. Morphological change is depicted on solvent switching by electronic microscopy imaging. Both solid and solution state emissive property is described. A unique photophysical prospect is shown in this piece of work i.e., light harvesting. Förster resonance energy transfer or FRET mechanism delivers the basis for this light-harvesting phenomenon between the amphiphile and a commercial dye; Rhodamine. Again, PET is applied to detect nitro explosives in water is demonstrated. This detection proceeds via disaggregation of the aggregated state. In the allied chapter, functionalization of amphiphile was done: a comparative outline on substituted urea and thiourea (L4 & L6). Apart from describing aggregational features through spectroscopy and microscopy, an edge on the chemo-sensing property is done. The thiourea selectively recognizes Hg (II) ions in an aqueous solution due to the soft-soft interaction between the sulfur atom and the heavy metal. Turn-On or fluorescence emission enhancement is achieved even in the presence of heavy metal during the chemosensing process. The toxic metal ion interaction causes disaggregation of the aggregated amphiphile confirmed through DLS and FESEM experiments. The chemo-sensing experiments are done in various real samples. Moreover, The Hg(II)-amphiphile ensemble detects sulfide ions in the water among all other sulfur-containing anions and amino acids. Show more
  • No Thumbnail Available Item Reactivity Studies of 4-Hydroxydithiocoumarin: Design & Synthesis of Novel Bioactive Molecules ( 2022 ) Mondal, Santa Show more The thesis entitled “Reactivity Studies of 4-Hydroxydithiocoumarin: Design & Synthesis of Novel Bioactive Molecules” has been compiled into six chapters based on the experimental results and findings carried out by me during the entire research period. Chapter 1 provides a brief overview of organosulfur compounds and their importance. In addition, the reason for choosing 4-hydroxydithiocoumarin as the key starting material for the synthesis of novel bioactive molecules. Chapter 2 elaborates on the synthesis of 3-sulfenyl derivatives. Chapter 3 describes the synthesis of α-thiocarbonyl compounds. Chapter 4 illustrates the synthesis of vinyl sulfides and thioethers. Chapter 5 demonstrates the synthesis of 1,4-oxathiin derivatives. Chapter 6 elucidates the synthesis of β-hydroxysulfides and β-aminosulfides by ring-opening reactions. Show more
  • 1 (current)

Search form

Five things to know about… the three-minute thesis competition.

3-minute thesis participants and judges with Dean Lynn Cooley.

Left to right, Lihao Yan, Arya Ökten, Yanyu Zhao, Jenna Andrews, Ethan A.Lerner, Graduate School of Arts and Sciences Dean Lynn Cooley, Alicia E. Ellis, Laura Stevens, Meera Choi, Alev Baysoy, Theodoros Trochatos, and Leonardo de Siqueira Lima. (Photo by Stephanie Anestis)

Every year, Yale’s Three-Minute Thesis Competition provides Ph.D. students with an opportunity to step away from the fog of their dissertation research and tell the world exactly what it is they are trying to achieve.

In three minutes.

The competition, known as 3MT, requires students to present their theses in a succinct, clear, and compelling way before a panel of judges. Winners receive a cash prize and bragging rights. But everyone who competes likely comes away understanding their research better and feeling more confident about public speaking, said Suzanne Young, the assistant dean for graduate student professional development in the Yale Graduate School of Arts and Sciences (GSAS), which sponsors the competition.

“ This is really going back to the roots of public speaking, where it’s about you, your voice, your intelligence, and your quickness on your feet while presenting to people who might be reacting to you in the moment,” she said.

Yale News caught up with Young just before this year’s event on April 12. (See this year’s winners in accompanying box.) Here are five takeaways.

Yale’s 3MT competition is modeled after one founded by the University of Queensland (UQ) in Australia.

The original 3MT was held at UQ in 2008. The concept gradually spread throughout Australia and then abroad. Competitions are now held at more than 900 universities in more than 85 countries, according to UQ’s 3MT website.

For Yale’s competition, which debuted in 2017, registration opens in January. Most years, about 35 to 40 students sign up. A first-round competition is held in late February. The 10 winners chosen during that round go on to the April finals.

The competition is not just for students in the STEM fields.

Students compete in one of five categories: biology, engineering, humanities, physical science, and social science. Not surprisingly, perhaps, the entrants tend to be weighted toward the sciences.

“ In biology, contestants are talking about different ways to attack cancer, and in astronomy, different ways to understand dark matter,” Young said. “The stakes of those questions are pretty straightforward and obvious. I think that helps STEM candidates come to this competition more eagerly.”

But humanities students stand to gain a lot from the preparation required for the competition, and Young encourages them to give it a try. She knows from her own experience writing an English dissertation that the long process involved in shaping a thesis — including questioning, researching, and reading — can at times make the project feel “a bit amorphous.”

“ Having to say, ‘here’s why this matters, here are the key central ideas, here’s what I hope to change about the field, here are the stakes of what I’m doing’ — that clarity can be really welcome and helpful,” she said.

Presentations must include a single PowerPoint slide, but the use of any other technology or prop is prohibited.

In such a technology-dependent culture, this rule might seem outdated. But prohibiting technological enhancements and other distractions keeps the focus on the speaker, Young said. The single slide is intended to be an adjunct to what the speaker is saying and not a focus itself.

“ We’ve all been to talks where you have to decide whether you’re going to listen to the speaker or read the slides,” she said. “We want this to be a live moment of public speaking and all the challenges that come with that.”

Coaching is available to all competitors.

All participants are encouraged to prepare for their presentations by pursuing the Certificate for Public Communication , through the Poorvu Center for Teaching and Learning. As soon as they sign up for the 3MT, they receive an email link to the certificate page. They also have access to coaching and advice from Young, as well as staff in the Office of Career Strategy and the Graduate Writing Lab.

“ We really emphasize the power of preparation and feedback,” Young said.

The judges in the competition are Yale alumni.

The final round takes place before a panel of judges comprised of accomplished Yale GSAS alumni representing a mix of disciplines and Lynn Cooley, dean of the graduate school. After the presentations, the judges leave the auditorium to confer. The audience — both those in the auditorium and those watching via the live stream — is then invited to vote for two entrants to receive the “People’s Choice” award. And there is entertainment — this year, the graduate and professional school a cappella group, the Citations, performed.

Eventually, the judges troop back in and announce the first-, second- and third-place winners. Each poses with an oversized cardboard check (prizes range from $300 to $1,000 for first place).

“ We try to make it fun, and a bit of a spectacle,” Young said.

Arts & Humanities

Health & Medicine

Science & Technology

possible thesis topics in chemistry

James Forbes and Barbara Brown Taylor to speak at Yale ISM hymn festival

Understanding youth nicotine use to prevent initiation and escalation.

In a new study, Yale researchers uncover factors that are associated with multiple nicotine product use in adolescents.

Zemenu presenting his research at the American Physical Society division of nuclear physics meeting in New Orleans in 2022

One Yale student’s love languages: Mandarin, Greek, and particle physics

possible thesis topics in chemistry

Creating bird-friendly buildings — on campus and beyond

  • Show More Articles

ScienceDaily

Research on RNA editing illuminates possible lifesaving treatments for genetic diseases

A team at Montana State University published research that shows how RNA, the close chemical cousin to DNA, can be edited using CRISPRs. The work reveals a new process in human cells that has potential for treating a wide variety of genetic diseases.

Postdoctoral researchers Artem Nemudryi and Anna Nemudraia conducted the research alongside Blake Wiedenheft, professor in the Department of Microbiology and Cell Biology in MSU's College of Agriculture. The paper, titled "Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells," was published online in the journal Science and constitutes the latest advance in the team's ongoing exploration of CRISPR applications for programmable genetic engineering.

CRISPR, which stands for Clustered Regularly Interspaced Short Palindromic Repeats, is a type of immune system that bacteria use to recognize and fight off viruses. Wiedenheft, one of the nation's leading CRISPR researchers, said that the system has been used for years to cut and edit DNA, but that applying similar technology to RNA is unprecedented. DNA editing uses a CRISPR-associated protein called Cas9, while editing RNA requires the use of a different CRISPR system, called type-III.

"In our previous work, we used type-III CRISPRs to edit viral RNA in a test tube," said Nemudryi. "But we wondered, can we program manipulation of RNA in a living human cell?"

To explore that question, the team programmed type-III CRISPR proteins to cut RNA containing a mutation that causes cystic fibrosis, restoring cell function.

"We were confident that we could use these CRISPR systems to cut RNA in a programmable manner, but we were all surprised when we sequenced the RNA and realized that the cell had stitched the RNA back together in a way that removed the mutation," said Wiedenheft.

Nemudryi noted that RNA is transient within the cell; it is constantly being destroyed and replaced.

"The general belief is that there's not much point in repairing RNA," he said. "We speculated that RNA would be repaired in living human cells, and it turned out to be true."

Wiedenheft has mentored the two postdoctoral researchers since their arrival at MSU nearly six years ago, and said that the impact of their scientific contributions will lead to significant and continued advancements.

"The work done by Artem and Anna suggests that RNA repair might be a fundamental aspect of biology and that harnessing this activity may lead to new lifesaving cures," said Wiedenheft. "Artem and Anna are two of the most brilliant scientists I have ever encountered, and I'm confident that their work is going to have a lasting impact on humanity."

RNA editing has important applications in the search for treatments of genetic diseases, Nemudryi said. RNA is a temporary copy of a cell's DNA, which serves as a template. Manipulating the template by editing DNA could cause unwanted and potentially irreversible collateral changes, but because RNA is a temporary copy, he said, edits made are essentially reversible and carry far less risk.

"People used Cas9 to break DNA and study how cells repair these breaks. Then, based on these patterns, they improved Cas9 editors," said Nemudraia. "Here, we hope the same will happen with RNA editing. We created a tool that allows us to study how the cells repair their RNA, and we hope to use this knowledge to make RNA editors more efficient."

In the new publication, the team shows that a mutation causing cystic fibrosis can be successfully removed from the RNA. But this is only one of thousands of known mutations that cause disease. The question of how many of them could be addressed with this new RNA editing technology will guide future work for Nemudryi and Nemudraia as they finish their postdoctoral training at MSU and prepare for faculty positions at the University of Florida this fall. Both credited Wiedenheft as a life-changing mentor.

"Blake taught us not to be afraid of testing any ideas," said Nemudraia. "As a scientist, you should be brave and not be afraid to fail. RNA editing and repair is the terra incognita. It's scary but also exciting. You feel you're working on the edge of science, pushing the limits to where nobody has been before."

  • Human Biology
  • Cystic Fibrosis
  • CRISPR Gene Editing
  • Biochemistry Research
  • Organic Chemistry
  • Biochemistry
  • Forensic Research
  • Double blind
  • Origin of life
  • Genetic code
  • Molecular biology
  • Human parainfluenza viruses

Story Source:

Materials provided by Montana State University . Original written by Reagan Cotton. Note: Content may be edited for style and length.

Journal Reference :

  • Anna Nemudraia, Artem Nemudryi, Blake Wiedenheft. Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells . Science , 2024; DOI: 10.1126/science.adk5518

Cite This Page :

Explore More

  • Sustainable Jet Fuel from Landfill Emissions
  • Bacterial Spores in Bioplastic Make It 'Green'
  • Genetic Signals Linked to Blood Pressure
  • Double-Fangs of Adolescence Saber-Toothed Cats
  • Microarray Patches for Vaccinating Children
  • Virus to Save Billions of Gallons of Wastewater
  • Weather Report On Planet 280 Light-Years Away
  • Trotting Robots and Animal Gait Transitions
  • Where Have All the Fireflies Gone?
  • Cardio-Fitness Cuts Death and Disease by 20%

Trending Topics

Strange & offbeat.

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

https://www.nist.gov/blogs/blogrige/whats-happening-now-communities-excellence-2026

The Official Baldrige Blog

What's Happening Now with Communities of Excellence 2026?

Collage of photos depicting groups of people posing together at various COE 2026 events.

It started with a big idea—about improving the quality of life in the United States. Cross-sector collaboration was a central part of it. Essentially, the vision was to use the Baldrige Excellence Framework® to help communities and entire regions of the United States not only boost their economies but also their health and education outcomes. 

Not surprisingly, the 11-year-old nonprofit Communities of Excellence 2026 (COE) emerged as the brainchild of two former senior leaders of Baldrige Award-winning organizations. As shared in a 2015 blog , Lowell Kruse and Richard Norling, former chief executives of high-performing health care and business organizations, respectively, conceived the idea during a conversation at a backyard social event.

Communities of Excellence 2026 has come a long way since then. It now offers a community-adapted version of the Baldrige Criteria for Performance Excellence, as well as virtual and in-person educational initiatives involving diverse communities from across the country. And it continues to grow. Today the nonprofit can boast of having served 26 communities since 2017, reaching 450 organizations and 12.5 million U.S. residents.

Benefits and Tips for Getting Started 

According to Stephanie Norling, who has served as executive director of the small nonprofit since it was established, “I think the key reason that communities can benefit from adopting the Communities of Excellence Framework is that nothing we do happens in a vacuum, and too often we address our community challenges in a way that looks more at the individual parts of a community than the whole.” 

Norling has noted that a fundamental Baldrige-based practice for many participants in COE is community-based strategic planning. “Looking at the needs of residents across the entire system and leveraging the people, plans, and resources of multiple sectors and organizations reveals opportunities for alignment and synergy, addresses duplication of efforts, and increases overall impact,” she said.

“For example, in San Diego’s South Region, a Community of Excellence 2026 site, this process resulted in collaborative efforts to address smoking cessation and workforce readiness. Another example is the Toledo community’s combined efforts in workforce development,” she added. “Other communities are focusing their efforts to advance key priorities such as broadband access, affordable housing, and transportation.” 

Norling has given several presentations introducing the COE approach and offerings at Baldrige events, including BPEP’s annual Quest for Excellence® Conference. Here are a few tips she shared for introducing or sustaining use of the COE/Baldrige framework:

  • Agree on and stay true to your purpose (why you exist) as a community excellence group . Having a shared understanding of why you are all around the table builds trust and engagement, and it helps communicate to others what you’re doing and how they can be a part of the journey. When challenges present themselves, your purpose will re-ground you in why you are coming together.   
  • Distribute the leadership and the responsibilities for the work across the community as much as possible . A community of excellence can’t be led by a single sector or a single organization. As we’ve seen during the pandemic, when disasters occur, we have to adjust and be able to respond rapidly. A situation that affects an entire system such as a community cannot be addressed by a single sector or a single entity.   
  • Reinforce that this is a journey of continuous improvement, not a single project . Including leaders in your effort who understand this and will work with this mindset will set you up for success.   
  • Celebrate your successes , no matter how small (or big)!

Latest Offerings and Events

On the path to excellence: insights from saratoga county's communities of excellence journey.

Tuesday, May 7, 2024 | 9 :00 am - 10:00 am Pacific Time/12:00 pm - 1:00 pm Eastern Time

COE 2026’s National Learning Collaborative, launched in October 2017, continues to thrive in 2024. A complimentary webinar to be held on May 7 (at 12 pm Eastern Time) will share the experience of a National Learning Collaborative participant—Saratoga County, New York—in addressing challenges and opportunities, as well as in cultivating a culture of collaboration and growth. According to Norling, the webinar aims to provide practical insights and actionable tips to kickstart other communities’ journey toward success through the National Learning Collaborative. Those interested in this webinar can register online. 

On the Path to Excellence: Insights from Greater Fremont, Ohio's Communities of Excellence Journey

Thursday, June 13, 2024 | 1 pm Eastern Time

A second complimentary webinar will be held on June 13 (at 1 pm Eastern Time) featuring another National Learning Collaborative participant—Greater Fremont, Ohio—that started its improvement journey more recently than others. Online registration is also available for this webinar. 

Would your community be interested in joining the National Learning Collaborative? The next cohort will be launched in October 2024. Read more about the initiative and register online. 

Member of the Alliance for Performance Excellence 

COE is also now a member program of the nonprofit  Alliance for Performance Excellence , a key partner of BPEP comprising a network of regional and state-level Baldrige-based award programs that offer assistance to business, nonprofit, education, and health care organizations in all areas of the United States. 

Like other Alliance programs, COE offers annual award-related evaluations, in its case based on its community-adapted Baldrige framework. In fact, the nonprofit is currently recruiting reviewers for its new Community Assessment and Recognition Panel. It seeks “individuals from all sectors and backgrounds who are dedicated to enhancing community outcomes,” offering them the opportunity to “delve into the interconnected systems that shape communities, gaining valuable insights for your career growth while aiding communities in achieving higher levels of performance.” Those interested can learn more by reading about the reviewer role before applying online . 

About the author

Picture of Christine Schaefer

Christine Schaefer

Christine Schaefer is a longtime staff member of the Baldrige Performance Excellence Program (BPEP). Her work has focused on producing BPEP publications and communications. She also has been highly involved in the Baldrige Award process, Baldrige examiner training, and other offerings of the program.

She is a Phi Beta Kappa graduate of the University of Virginia, where she was an Echols Scholar and a double major, receiving highest distinction for her thesis in the interdisciplinary Political & Social Thought Program. She also has a master's degree from Georgetown University, where her studies and thesis focused on social and public policy issues. 

When not working, she sits in traffic in one of the most congested regions of the country, receives consolation from her rescued beagles, writes poetry, practices hot yoga, and tries to cultivate a foundation for three kids to direct their own lifelong learning (and to PLEASE STOP YELLING at each other—after all, we'll never end wars if we can't even make peace at home!).

Related posts

Insights on the road to performance excellence by Dr. Harry Hertz, Director Emeritus Baldrige Performance Excellence Program. Shows him driving in a car looking at road signs for Results at next exit.

Senior Leadership Succession Planning: Who Cares?

CORE staff celebrates National Blue & Green Day at their headquarters in Pittsburgh, PA by holding up signs spelling Donate Life.

A Baldrige Award-Winning Nonprofit Highlights Organizational Resilience

Build Resilience in the Age of AI showing a man standing with a graduation cap and suite on with cyber icons around him.

Cyber Expert to Highlight Risks, Opportunities, and How to Build Resilience in the Age of AI

Add new comment.

  • No HTML tags allowed.
  • Web page addresses and email addresses turn into links automatically.
  • Lines and paragraphs break automatically.

Image CAPTCHA

IMAGES

  1. 177 Best Chemistry Topics For Research Papers

    possible thesis topics in chemistry

  2. 240 Best Chemistry Research Topics and Ideas to Get Started

    possible thesis topics in chemistry

  3. Chemistry Research Topics: A List of 150 Winning Ideas

    possible thesis topics in chemistry

  4. Chemistry Thesis Topics l Chemistry Research Topics l Research Topics

    possible thesis topics in chemistry

  5. Chemistry Extended Essay Topics: 30+ Ideas to Get You Started

    possible thesis topics in chemistry

  6. The 10 Best Chemistry Topics Ideas For Research Papers and

    possible thesis topics in chemistry

VIDEO

  1. 김대현 THESIS

  2. Three Minute Thesis Finalist

  3. Three Minute Thesis Finalist

  4. Final_Thesis_Satish_Madhavrao_Gadge

  5. Three Minute Thesis Finalist

  6. Chemistry 9th Paper|Topper paper Chemistry|Best paper presentation|How to get full Mark in chemistry

COMMENTS

  1. 110 Great Chemistry Research Topics [2024]

    If you are looking for essential biomolecular chemistry research topics, here are some ideas to get you started: The structure and function of DNA. The structure and function of proteins. The role of carbohydrates in the body. The role of lipids in the body. How enzymes work. The role of biochemistry in heart disease.

  2. 177 Best Chemistry Topics For Research Papers

    Physical Chemistry Topics. The role of sulfur-based emissions in contributing to air pollution. Discuss the evolution of the atomic structure over time. How to use mass number to find the number of fundamental particles in ions and atoms. Discuss the existence of isotopes in various reactions.

  3. 300+ Chemistry Research Topics

    Organic Chemistry Research Topics. Organic Chemistry Research Topics are as follows: Development of novel synthetic routes for the production of biologically active natural products. Investigation of reaction mechanisms and kinetics for organic transformations. Design and synthesis of new catalysts for asymmetric organic reactions.

  4. 200+ Chemistry Research Topics & Ideas for Your Study

    Below is a list of chemistry research topics for papers: Latest developments in DNA technology. Negative effects of using pesticides in food production. Importance and potential drawbacks of using fertilizer in commercial agriculture. Acids and bases: composition, properties, and applications.

  5. Chemistry Dissertation Topics & Ideas

    100s of Free Chemistry Dissertation Topics & Ideas. Published by Owen Ingram at January 2nd, 2023 , Revised On August 18, 2023. It is not easy to come up with intriguing and compelling chemistry dissertation topic ideas, especially if one is juggling multiple subjects or looking at adjacent fields simultaneously.

  6. 28 Must-Read Topics in Chemistry

    Browse 28 of the most important, engaging topics in chemists with Virtual Collections released by ACS Publications journals in Q4 2020: Crystalline Molecular Materials: From Structure to Function. This Virtual Special Issue focuses on the design and study of materials wherein the target properties arise from, or are enhanced by, the three ...

  7. Chemistry Research Topics: A List of 150 Winning Ideas

    1. Organic chemistry includes organic compounds which are made up of hydrocarbons. These composed are made up of living organisms and synthetic chemicals that contain chains of carbon in them. In- organic chemistry deals with in-organic compounds which consist of ionic base into them. 2.

  8. 232 Chemistry Research Topics To Write in 2022

    Physical chemistry research topics. Laws of Thermodynamics. Energy Balance. Gases: Gas Law. harles and Gay Lussac's law. General Ideal Gas Law. The mass of a chemical compound. The moles of an atomic species. The flow of Fluids in Closed Ducts.

  9. Chemistry Theses and Dissertations

    Theses/Dissertations from 2021. PDF. Design, Synthesis and Testing of Bioactive Peptidomimetics, Sami Abdulkadir. PDF. Synthesis of Small Molecules for the Treatment of Infectious Diseases, Elena Bray. PDF. Social Constructivism in Chemistry Peer Leaders and Organic Chemistry Students, Aaron M. Clark.

  10. A guide to research question writing for undergraduate chemistry

    The task is to identify particular topics in chemistry or particular approaches of teaching that emerge, and use those as a basis for narrowing your interest to a specific theme. ... your task is to become as familiar as possible with your chosen topic as you can in advance, so that you are making as informed a decision as possible about your ...

  11. 100 Best Chemistry Topics For Your Academic Research

    Here are some of the best topics that high school students can choose for their research papers and essays. Analyze the effect of PH on planets. Explain the creation of pearls. Explain the growth of artificial diamonds. Explain how tea brewing can be optimized. Explain how heavy metals are detected in plants.

  12. Frontiers in Chemistry

    Advanced Self-assembled Materials with Programmable Functions-Volume II. Advances our understanding of how atoms, ions, and molecules come together and come apart. It explores the role of chemistry in our everyday lives - from electronic devices to health and wellbeing.

  13. Thesis Preparation

    Thesis Title Deadline:July 19, 2024 ($85 late fee if submitted after this date. If your thesis title is not finalized by this date, please enter your current working title and the final title can be updated later) Thesis Submission Deadline: August 16, 2024. Last day of work in the lab: on or before August 31, 2024.

  14. 50+ Chemistry Research Topics To Help You With Studies

    If possible, addition of visual materials or appendix data with similar case studies can make even mediocre chemistry research paper topics original and successful. ... From excellent chemistry research topic choice and thesis statement, our paper writers online can be chosen based on subject, credentials, and work type required. With ...

  15. Chemistry Masters Theses Collection

    Chemistry Masters Theses Collection. This collection contains open access and campus access Masters theses, made possible through Graduate Studies at the University of Massachusetts Boston. The full content of open access theses is available to all, although some files may have embargoes placed on them and will be made available as soon as ...

  16. Dept. of Chemistry Dissertations and Master's Theses

    exploring turn-on probes for gluts targeting and advancing safety education in the chemical sciences: a two-part dissertation, monica mame soma nyansa. pdf. multilevel computational investigation into the catalytic mechanisms of matrix metalloproteinase-1 and fat mass and obesity-associated enzyme, ann varghese. pdf

  17. A guide to writing up your chemical science thesis

    A guide to writing up your chemical science thesis. Bookmark. This guide aims to give you guidance on how to write your thesis so that your research is showcased at its best. It includes suggestions on how to prepare for writing up and things to consider during the final stages.

  18. PDF The Senior Thesis Guide

    well as in the writing of the thesis, regardless of whether your novel contribution results from experimental or computational research in chemistry, or, as is more common in the humanities, analysis of existing works. The senior thesis in chemistry is a report on the independent research carried out by the student,

  19. Undergraduate Research in Chemistry Guide

    Undergraduate Research in Chemistry Guide. Research is the pursuit of new knowledge through the process of discovery. Scientific research involves diligent inquiry and systematic observation of phenomena. Most scientific research projects involve experimentation, often requiring testing the effect of changing conditions on the results.

  20. 201+ Chemistry Project Topics [Updated]

    201+ Chemistry Project Topics [Updated] General / By Stat Analytica / 6th March 2024. Chemistry, often hailed as the "central science," plays a pivotal role in understanding the world around us. From the composition of substances to the reactions that transform them, chemistry influences nearly every aspect of our lives.

  21. How to write a PhD thesis

    Make a plan. Devise a workplan with your supervisor before you start writing. 'It should be a discussion with them about where they think the good results are - how you can split up all your work into ...

  22. Pharmaceutical Chemistry Dissertations and Theses

    The Application of Machine Learning Algorithms in Understanding the Effect of Core/Shell Technique on Improving Powder Compactability . Lou, Hao (University of Kansas, 2019-08-31) The study in this thesis systemically investigated the application of core/shell technique to improve powder compactability. A 28-run Design-of-Experiment (DoE ...

  23. PhD Theses (Chemistry)

    The thesis entitled "Reactivity Studies of 4-Hydroxydithiocoumarin: Design & Synthesis of Novel Bioactive Molecules" has been compiled into six chapters based on the experimental results and findings carried out by me during the entire research period. Chapter 1 provides a brief overview of organosulfur compounds and their importance.

  24. Five Things to Know About… the Three-Minute Thesis Competition

    Every year, Yale's Three-Minute Thesis Competition provides Ph.D. students with an opportunity to step away from the fog of their dissertation research and tell the world exactly what it is they are trying to achieve.. In three minutes. The competition, known as 3MT, requires students to present their theses in a succinct, clear, and compelling way before a panel of judges.

  25. Research on RNA editing illuminates possible lifesaving treatments for

    "Research on RNA editing illuminates possible lifesaving treatments for genetic diseases." ScienceDaily. www.sciencedaily.com / releases / 2024 / 04 / 240429201914.htm (accessed April 30, 2024).

  26. What's Happening Now with Communities of Excellence 2026?

    It started with a big idea—about improving the quality of life in the United States. Cross-sector collaboration was a central part of it. Essentially, the vision was to use the Baldrige Excellence Framework® to help communities and entire regions of the United States not only boost their economies but also their health and education outcomes.. Not surprisingly, the 11-year-old nonprofit ...