loading

How it works

For Business

Join Mind Tools

Article • 8 min read

Critical Thinking

Developing the right mindset and skills.

By the Mind Tools Content Team

We make hundreds of decisions every day and, whether we realize it or not, we're all critical thinkers.

We use critical thinking each time we weigh up our options, prioritize our responsibilities, or think about the likely effects of our actions. It's a crucial skill that helps us to cut out misinformation and make wise decisions. The trouble is, we're not always very good at it!

In this article, we'll explore the key skills that you need to develop your critical thinking skills, and how to adopt a critical thinking mindset, so that you can make well-informed decisions.

What Is Critical Thinking?

Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well.

Collecting, analyzing and evaluating information is an important skill in life, and a highly valued asset in the workplace. People who score highly in critical thinking assessments are also rated by their managers as having good problem-solving skills, creativity, strong decision-making skills, and good overall performance. [1]

Key Critical Thinking Skills

Critical thinkers possess a set of key characteristics which help them to question information and their own thinking. Focus on the following areas to develop your critical thinking skills:

Being willing and able to explore alternative approaches and experimental ideas is crucial. Can you think through "what if" scenarios, create plausible options, and test out your theories? If not, you'll tend to write off ideas and options too soon, so you may miss the best answer to your situation.

To nurture your curiosity, stay up to date with facts and trends. You'll overlook important information if you allow yourself to become "blinkered," so always be open to new information.

But don't stop there! Look for opposing views or evidence to challenge your information, and seek clarification when things are unclear. This will help you to reassess your beliefs and make a well-informed decision later. Read our article, Opening Closed Minds , for more ways to stay receptive.

Logical Thinking

You must be skilled at reasoning and extending logic to come up with plausible options or outcomes.

It's also important to emphasize logic over emotion. Emotion can be motivating but it can also lead you to take hasty and unwise action, so control your emotions and be cautious in your judgments. Know when a conclusion is "fact" and when it is not. "Could-be-true" conclusions are based on assumptions and must be tested further. Read our article, Logical Fallacies , for help with this.

Use creative problem solving to balance cold logic. By thinking outside of the box you can identify new possible outcomes by using pieces of information that you already have.

Self-Awareness

Many of the decisions we make in life are subtly informed by our values and beliefs. These influences are called cognitive biases and it can be difficult to identify them in ourselves because they're often subconscious.

Practicing self-awareness will allow you to reflect on the beliefs you have and the choices you make. You'll then be better equipped to challenge your own thinking and make improved, unbiased decisions.

One particularly useful tool for critical thinking is the Ladder of Inference . It allows you to test and validate your thinking process, rather than jumping to poorly supported conclusions.

Developing a Critical Thinking Mindset

Combine the above skills with the right mindset so that you can make better decisions and adopt more effective courses of action. You can develop your critical thinking mindset by following this process:

Gather Information

First, collect data, opinions and facts on the issue that you need to solve. Draw on what you already know, and turn to new sources of information to help inform your understanding. Consider what gaps there are in your knowledge and seek to fill them. And look for information that challenges your assumptions and beliefs.

Be sure to verify the authority and authenticity of your sources. Not everything you read is true! Use this checklist to ensure that your information is valid:

  • Are your information sources trustworthy ? (For example, well-respected authors, trusted colleagues or peers, recognized industry publications, websites, blogs, etc.)
  • Is the information you have gathered up to date ?
  • Has the information received any direct criticism ?
  • Does the information have any errors or inaccuracies ?
  • Is there any evidence to support or corroborate the information you have gathered?
  • Is the information you have gathered subjective or biased in any way? (For example, is it based on opinion, rather than fact? Is any of the information you have gathered designed to promote a particular service or organization?)

If any information appears to be irrelevant or invalid, don't include it in your decision making. But don't omit information just because you disagree with it, or your final decision will be flawed and bias.

Now observe the information you have gathered, and interpret it. What are the key findings and main takeaways? What does the evidence point to? Start to build one or two possible arguments based on what you have found.

You'll need to look for the details within the mass of information, so use your powers of observation to identify any patterns or similarities. You can then analyze and extend these trends to make sensible predictions about the future.

To help you to sift through the multiple ideas and theories, it can be useful to group and order items according to their characteristics. From here, you can compare and contrast the different items. And once you've determined how similar or different things are from one another, Paired Comparison Analysis can help you to analyze them.

The final step involves challenging the information and rationalizing its arguments.

Apply the laws of reason (induction, deduction, analogy) to judge an argument and determine its merits. To do this, it's essential that you can determine the significance and validity of an argument to put it in the correct perspective. Take a look at our article, Rational Thinking , for more information about how to do this.

Once you have considered all of the arguments and options rationally, you can finally make an informed decision.

Afterward, take time to reflect on what you have learned and what you found challenging. Step back from the detail of your decision or problem, and look at the bigger picture. Record what you've learned from your observations and experience.

Critical thinking involves rigorously and skilfully using information, experience, observation, and reasoning to guide your decisions, actions and beliefs. It's a useful skill in the workplace and in life.

You'll need to be curious and creative to explore alternative possibilities, but rational to apply logic, and self-aware to identify when your beliefs could affect your decisions or actions.

You can demonstrate a high level of critical thinking by validating your information, analyzing its meaning, and finally evaluating the argument.

Critical Thinking Infographic

See Critical Thinking represented in our infographic: An Elementary Guide to Critical Thinking .

advanced critical thinking skills

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Book Insights

Credibility: How Leaders Gain and Lose It, Why People Demand It

James Kouzes and Barry Posner

Project Team Development

Understanding Phases of Team Development Can Help Them Attain Peak Performance Quickly

Add comment

Comments (1)

priyanka ghogare

advanced critical thinking skills

Get 30% off your first year of Mind Tools

Great teams begin with empowered leaders. Our tools and resources offer the support to let you flourish into leadership. Join today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article a8yivbd

Starting a New Job

Article am6050u

The Role of a Facilitator

Mind Tools Store

About Mind Tools Content

Discover something new today

Decision-making mistakes and how to avoid them.

Explore some common decision-making mistakes and how to avoid them with this Skillbook

Using Decision Trees

What decision trees are, and how to use them to weigh up your options

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

The program management team.

How a Program Management Organization is Formed and What is Involved in the Key Roles

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Education Corner

Critical Thinking Skills Guide

Photo of author

Critical thinking is important. Generally speaking, critical thinking refers to the ability to understand the logical connections between ideas. When a person understands these connections, it makes it easier to construct logical arguments based on those ideas. It also becomes easier to evaluate the arguments that other people make to see if those arguments are based on sound reasoning.

Since critical thinking involves connecting important concepts and ideas, critical thinkers often find it easier to solve problems in a systematic fashion. Critical thinkers can also prioritize which ideas are most relevant to their own arguments.

From this general idea of what critical thinking involves, it should be easy to see why critical thinking would be important to students. Students who become critical thinkers are better equipped to deal with a wide range of problems that they encounter in school.

These students are better able to build new concepts upon previous ideas that they’ve learned. This is a useful skill throughout school. Advanced mathematics are built upon simpler math ideas. Science experiments require basic understanding of various substances used in the lab. Advanced argumentation is rooted in the simple ability to identify information that supports the argument’s basic premise.

Despite all the potential advantages that may come with possessing critical skills, these skills are not themselves taught directly in school. Such skills may be inadvertently taught during the course of various lessons and school work but, for the most part, critical thinking skills aren’t typically directly addressed.

There are no classes committed to teaching critical thinking skills alone, leading teachers across multiple subjects to have to find ways of integrating critical thinking into their lessons independently.

Some critical thinking skills

Critical Thinking by the End of High School

Entering college, students have hopefully learned several advanced critical thinking skills that will support them through their college work. Specifically, there are six critical thinking skills that will support upper high school students and college students. These skills can help students to perform better in a range of subjects.

Identification

Identification is important to critical thinking because it refers to the ability for a student to identify the existing problem and what factors impact that problem. This first critical thinking skill is what gives students the ability to see the scope of the problem and start thinking about how to solve the issue.

In a new situation, learners ask what the problem is, why it might be happening, and what the outcome is. From this initial set of questions, they come to an understanding of the problem’s scope and potential solutions.

Research of a problem cannot begin until identification has taken place. Once identification occurs, a learner can start researching that problem. How much research is necessary will depend on the scope of the problem. Mathematical problems, for instance, may rely on researching examples of the problem and reviewing more fundamental formulas.

More complex problems, such as addressing large social issues, still rely on the same process of understanding the scope of the issue and identifying what materials need to be referenced to address the problem. Research is also important when it comes to understanding claims.

Students should be able to hear a statement, question it, and verify that statement using objective evidence discovered through research. This is in contrast to the uncritical response of simply accepting the statement.

Identifying Biases

Identifying bias is one of the more difficult skills for students to grasp. Everyone has bias, including students themselves. A learner needs to be able to identify bias in the materials that they’re looking at that might impact what’s being written. Authors may write things that favor a certain point of view, which would impact how much a reader could trust the material.

On the other hand, students should also be able to examine their own biases. It’s important not to write in favor of one’s own view, which becomes increasingly important as a person progresses upward in their studies through higher education. It’s important for students to challenge their own perspectives but also to challenge the evidence that they read.

Making Inferences

The ability to make inferences is a critical skill for students to learn as they learn how to analyze data and piece together information. During the course of putting together information, it’s always important to learn how to draw conclusions based on that information.

Students need to be able to look at a body of evidence and make a determination of what that data might mean. Not all inferences will be correct, so students also need to be able to reassess their inferences as new data comes up or as existing evidence is reassessed.

Determining Relevance

To make correct inferences and formulate arguments, students need to be able to determine the relevance of the information that they receive. This is not an issue of examining bias so much as being able to identify the information that’s appropriate to solving a problem or making an argument.

This is particularly important as students get into more advanced areas of research. For instance, as students start getting asked to write papers, they need to be able to search through primary and secondary documents that can support their argument.

The more skilled that a student becomes at being able to determine the relevance of these documents, the less time students will have to spend sorting through irrelevant documents that don’t support their research.

Perhaps counterintuitively, it’s also important for people to learn how to curb their curiosity. Curiosity is important in that it drives research and exploration of a topic. However, consistent with the need to determine relevance is the need to identify where to end a line of inquiry.

Curiosity can send people exploring any number of topics during research that only burns time instead of informing a student’s research. The more skilled a student becomes at learning how to end certain paths of research the more they can focus on supporting their studies and finding evidence that will work in their research.

Teaching Critical Thinking Skills

Actually teaching critical thinking skills is something that teachers have instincts about and teach inadvertently without actually understanding how their lessons actually impact those skills. In truth, teachers should try to make critical thinking integral to their instructional design.

Almost any instructor can begin teaching critical thinking by simply modeling the behavior for their students. They can assess information, its sources, and its biases. But to get in-depth critical thinking skills, teachers also need to present broad problems and scenarios that students need to explore for themselves.

By presenting a problem or scenario that needs to be addressed and allowing students time to debate the issue, they can be guided to see the value of other arguments while learning how to construct their own arguments.

This is also a process through which students can learn how to identify information that will help them present those arguments. Teachers can also provide feedback on these arguments to help students improve their research and argumentation process in the future.

Another important part of teaching critical thinking skills includes asking questions. The questioning approach helps students to reassess their own perspectives and the evidence of others. When bringing up a topic or problem, instructors should ask some of the following:

  • What do you think about this issue and why do you think that?
  • Where did you get your information on this issue and why do you believe it?
  • What is the implication of what you’ve learned and what conclusions can be reached?
  • How do you view the problem and your information, and what other view could you take on it?

The importance in these lines of questions is to make students consider their own perspectives as well as contrary evidence. By asking these questions, students get to reevaluate what they believe and questions whether they actually should believe it. Sometimes people hold certain beliefs without truly understanding why they believe it.

By asking questions about one’s own knowledge, it becomes possible to understand one’s own knowledge base more deeply and discard information that may be inaccurate or too heavily biased.

There are also writing activities that teachers can use as well. During writing, students can be asked to write freely about any number of topics. The point of this free writing session is to let students arrive at a conclusion about what they believe about a topic. This isn’t a critical thinking phase of writing but is instead simply meant to allow student freedom to reach a conclusion about what they believe.

After the student has freely explored the topic, they move onto the critical thinking phase of their writing project. At this stage, the student begins to examine what sort of biases impacted the position they took on the topic and review their conclusions. The student determines whether their inferences were accurate.

This is essentially a reflective period in which students need to refine their writing and attack their own work to make it better while continually asking themselves whether their evidence is sound and whether their biases impacted the final work.

Critical Thinking Barriers

There are often several barriers that keep students from fully developing critical thinking skills. Ironically, one of the biggest problems to critical thinking is the existing curriculum a school is using. Particularly when curriculum is heavily standardized, it makes it difficult for teachers to find opportunities to teach critical thinking.

Too heavy of a focus on teaching standardized tests, including curriculum oriented toward making sure that students hit certain test scores, often means heavily fact based teaching that expects rote memorization. This leads to few chances to actually ask open questions in which students can question their knowledge base and critically assess a given situation.

There are, of course, other barriers to critical thinking. Sometimes, the problem lies with the fact that teachers are simply unused to teaching these skills. Partly as a result of feeling pressured to achieve highly standardized test scores, teachers often focus too much on fact teaching and rarely get into asking the sort of open ended questions that can help to cultivate critical thinking.

However, even when they have the opportunity to do so, teachers sometimes lack the training necessary to encourage critical thinking among students. Teachers may know many activities to teach students with without a concrete idea of how each contributes to the development of such skills. Teachers tend to be trained in how to pass along content rather than encouraging critical thinking.

One of the major problems that teachers face is an issue of time. Teaching content knowledge or teaching to the test involves passing along content that can help teachers teach the information that will help students pass their exams. Passing along vast quantities of information for rote memorization can be done efficiently by simply giving students lots of information to learn.

A significant amount of information can be passed along within a class when teaching an exam, but it’s much harder to teach critical thinking skills. Teaching critical thinking, on the other hand, requires instructors to set aside extensive periods of time to question and debate. Considering that teachers already struggle sometimes to fit in all of their activities, it’s difficult to ask them to accommodate large periods of time for passing along critical thinking skills.

Creatively finding solutions to this problem requires teachers finding small periods in which to fit in critical thinking discussions, perhaps through the use of smaller question and answer activities during lectures. Or, teachers can try to change the format of their classes completely to make them more hands on, engaging environments in which critical thinking is ongoing.

Similar Posts:

  • 35 of the BEST Educational Apps for Teachers (Updated 2024)
  • Guide on College and University Admissions
  • 25 Tips For Improving Student’s Performance Via Private Conversations

Leave a Comment Cancel reply

Save my name and email in this browser for the next time I comment.

.css-s5s6ko{margin-right:42px;color:#F5F4F3;}@media (max-width: 1120px){.css-s5s6ko{margin-right:12px;}} AI that works. Coming June 5, Asana redefines work management—again. .css-1ixh9fn{display:inline-block;}@media (max-width: 480px){.css-1ixh9fn{display:block;margin-top:12px;}} .css-1uaoevr-heading-6{font-size:14px;line-height:24px;font-weight:500;-webkit-text-decoration:underline;text-decoration:underline;color:#F5F4F3;}.css-1uaoevr-heading-6:hover{color:#F5F4F3;} .css-ora5nu-heading-6{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:start;-ms-flex-pack:start;-webkit-justify-content:flex-start;justify-content:flex-start;color:#0D0E10;-webkit-transition:all 0.3s;transition:all 0.3s;position:relative;font-size:16px;line-height:28px;padding:0;font-size:14px;line-height:24px;font-weight:500;-webkit-text-decoration:underline;text-decoration:underline;color:#F5F4F3;}.css-ora5nu-heading-6:hover{border-bottom:0;color:#CD4848;}.css-ora5nu-heading-6:hover path{fill:#CD4848;}.css-ora5nu-heading-6:hover div{border-color:#CD4848;}.css-ora5nu-heading-6:hover div:before{border-left-color:#CD4848;}.css-ora5nu-heading-6:active{border-bottom:0;background-color:#EBE8E8;color:#0D0E10;}.css-ora5nu-heading-6:active path{fill:#0D0E10;}.css-ora5nu-heading-6:active div{border-color:#0D0E10;}.css-ora5nu-heading-6:active div:before{border-left-color:#0D0E10;}.css-ora5nu-heading-6:hover{color:#F5F4F3;} Get early access .css-1k6cidy{width:11px;height:11px;margin-left:8px;}.css-1k6cidy path{fill:currentColor;}

  • Product overview
  • All features
  • App integrations

CAPABILITIES

  • project icon Project management
  • Project views
  • Custom fields
  • Status updates
  • goal icon Goals and reporting
  • Reporting dashboards
  • workflow icon Workflows and automation
  • portfolio icon Resource management
  • Time tracking
  • my-task icon Admin and security
  • Admin console
  • asana-intelligence icon Asana Intelligence
  • list icon Personal
  • premium icon Starter
  • briefcase icon Advanced
  • Goal management
  • Organizational planning
  • Campaign management
  • Creative production
  • Marketing strategic planning
  • Request tracking
  • Resource planning
  • Project intake
  • View all uses arrow-right icon
  • Project plans
  • Team goals & objectives
  • Team continuity
  • Meeting agenda
  • View all templates arrow-right icon
  • Work management resources Discover best practices, watch webinars, get insights
  • What's new Learn about the latest and greatest from Asana
  • Customer stories See how the world's best organizations drive work innovation with Asana
  • Help Center Get lots of tips, tricks, and advice to get the most from Asana
  • Asana Academy Sign up for interactive courses and webinars to learn Asana
  • Developers Learn more about building apps on the Asana platform
  • Community programs Connect with and learn from Asana customers around the world
  • Events Find out about upcoming events near you
  • Partners Learn more about our partner programs
  • Support Need help? Contact the Asana support team
  • Asana for nonprofits Get more information on our nonprofit discount program, and apply.

Featured Reads

advanced critical thinking skills

  • Collaboration |
  • How to build your critical thinking ski ...

How to build your critical thinking skills in 7 steps (with examples)

Julia Martins contributor headshot

Critical thinking is, well, critical. By building these skills, you improve your ability to analyze information and come to the best decision possible. In this article, we cover the basics of critical thinking, as well as the seven steps you can use to implement the full critical thinking process. 

Critical thinking comes from asking the right questions to come to the best conclusion possible. Strong critical thinkers analyze information from a variety of viewpoints in order to identify the best course of action.

Don’t worry if you don’t think you have strong critical thinking abilities. In this article, we’ll help you build a foundation for critical thinking so you can absorb, analyze, and make informed decisions. 

What is critical thinking? 

Critical thinking is the ability to collect and analyze information to come to a conclusion. Being able to think critically is important in virtually every industry and applicable across a wide range of positions. That’s because critical thinking isn’t subject-specific—rather, it’s your ability to parse through information, data, statistics, and other details in order to identify a satisfactory solution. 

Decision-making tools for agile businesses

In this ebook, learn how to equip employees to make better decisions—so your business can pivot, adapt, and tackle challenges more effectively than your competition.

Make good choices, fast: How decision-making processes can help businesses stay agile ebook banner image

Top 8 critical thinking skills

Like most soft skills, critical thinking isn’t something you can take a class to learn. Rather, this skill consists of a variety of interpersonal and analytical skills. Developing critical thinking is more about learning to embrace open-mindedness and bringing analytical thinking to your problem framing process. 

In no particular order, the eight most important critical thinking skills are:

Analytical thinking: Part of critical thinking is evaluating data from multiple sources in order to come to the best conclusions. Analytical thinking allows people to reject bias and strive to gather and consume information to come to the best conclusion. 

Open-mindedness: This critical thinking skill helps you analyze and process information to come to an unbiased conclusion. Part of the critical thinking process is letting your personal biases go and coming to a conclusion based on all of the information. 

Problem solving : Because critical thinking emphasizes coming to the best conclusion based on all of the available information, it’s a key part of problem solving. When used correctly, critical thinking helps you solve any problem—from a workplace challenge to difficulties in everyday life. 

Self-regulation: Self-regulation refers to the ability to regulate your thoughts and set aside any personal biases to come to the best conclusion. In order to be an effective critical thinker, you need to question the information you have and the decisions you favor—only then can you come to the best conclusion. 

Observation: Observation skills help critical thinkers look for things beyond face value. To be a critical thinker you need to embrace multiple points of view, and you can use observation skills to identify potential problems.

Interpretation: Not all data is made equal—and critical thinkers know this. In addition to gathering information, it’s important to evaluate which information is important and relevant to your situation. That way, you can draw the best conclusions from the data you’ve collected. 

Evaluation: When you attempt to answer a hard question, there is rarely an obvious answer. Even though critical thinking emphasizes putting your biases aside, you need to be able to confidently make a decision based on the data you have available. 

Communication: Once a decision has been made, you also need to share this decision with other stakeholders. Effective workplace communication includes presenting evidence and supporting your conclusion—especially if there are a variety of different possible solutions. 

7 steps to critical thinking

Critical thinking is a skill that you can build by following these seven steps. The seven steps to critical thinking help you ensure you’re approaching a problem from the right angle, considering every alternative, and coming to an unbiased conclusion.

 First things first: When to use the 7 step critical thinking process

There’s a lot that goes into the full critical thinking process, and not every decision needs to be this thought out. Sometimes, it’s enough to put aside bias and approach a process logically. In other, more complex cases, the best way to identify the ideal outcome is to go through the entire critical thinking process. 

The seven-step critical thinking process is useful for complex decisions in areas you are less familiar with. Alternatively, the seven critical thinking steps can help you look at a problem you’re familiar with from a different angle, without any bias. 

If you need to make a less complex decision, consider another problem solving strategy instead. Decision matrices are a great way to identify the best option between different choices. Check out our article on 7 steps to creating a decision matrix .

1. Identify the problem

Before you put those critical thinking skills to work, you first need to identify the problem you’re solving. This step includes taking a look at the problem from a few different perspectives and asking questions like: 

What’s happening? 

Why is this happening? 

What assumptions am I making? 

At first glance, how do I think we can solve this problem? 

A big part of developing your critical thinking skills is learning how to come to unbiased conclusions. In order to do that, you first need to acknowledge the biases that you currently have. Does someone on your team think they know the answer? Are you making assumptions that aren’t necessarily true? Identifying these details helps you later on in the process. 

2. Research

At this point, you likely have a general idea of the problem—but in order to come up with the best solution, you need to dig deeper. 

During the research process, collect information relating to the problem, including data, statistics, historical project information, team input, and more. Make sure you gather information from a variety of sources, especially if those sources go against your personal ideas about what the problem is or how to solve it.

Gathering varied information is essential for your ability to apply the critical thinking process. If you don’t get enough information, your ability to make a final decision will be skewed. Remember that critical thinking is about helping you identify the objective best conclusion. You aren’t going with your gut—you’re doing research to find the best option

3. Determine data relevance

Just as it’s important to gather a variety of information, it is also important to determine how relevant the different information sources are. After all, just because there is data doesn’t mean it’s relevant. 

Once you’ve gathered all of the information, sift through the noise and identify what information is relevant and what information isn’t. Synthesizing all of this information and establishing significance helps you weigh different data sources and come to the best conclusion later on in the critical thinking process. 

To determine data relevance, ask yourself:

How reliable is this information? 

How significant is this information? 

Is this information outdated? Is it specialized in a specific field? 

4. Ask questions

One of the most useful parts of the critical thinking process is coming to a decision without bias. In order to do so, you need to take a step back from the process and challenge the assumptions you’re making. 

We all have bias—and that isn’t necessarily a bad thing. Unconscious biases (also known as cognitive biases) often serve as mental shortcuts to simplify problem solving and aid decision making. But even when biases aren’t inherently bad, you must be aware of your biases in order to put them aside when necessary. 

Before coming to a solution, ask yourself:

Am I making any assumptions about this information? 

Are there additional variables I haven’t considered? 

Have I evaluated the information from every perspective? 

Are there any viewpoints I missed? 

5. Identify the best solution

Finally, you’re ready to come to a conclusion. To identify the best solution, draw connections between causes and effects. Use the facts you’ve gathered to evaluate the most objective conclusion. 

Keep in mind that there may be more than one solution. Often, the problems you’re facing are complex and intricate. The critical thinking process doesn’t necessarily lead to a cut-and-dry solution—instead, the process helps you understand the different variables at play so you can make an informed decision. 

6. Present your solution

Communication is a key skill for critical thinkers. It isn’t enough to think for yourself—you also need to share your conclusion with other project stakeholders. If there are multiple solutions, present them all. There may be a case where you implement one solution, then test to see if it works before implementing another solution. 

7. Analyze your decision

The seven-step critical thinking process yields a result—and you then need to put that solution into place. After you’ve implemented your decision, evaluate whether or not it was effective. Did it solve the initial problem? What lessons—whether positive or negative—can you learn from this experience to improve your critical thinking for next time? 

Depending on how your team shares information, consider documenting lessons learned in a central source of truth. That way, team members that are making similar or related decisions in the future can understand why you made the decision you made and what the outcome was. 

Example of critical thinking in the workplace

Imagine you work in user experience design (UX). Your team is focused on pricing and packaging and ensuring customers have a clear understanding of the different services your company offers. Here’s how to apply the critical thinking process in the workplace in seven steps: 

Start by identifying the problem

Your current pricing page isn’t performing as well as you want. You’ve heard from customers that your services aren’t clear, and that the page doesn’t answer the questions they have. This page is really important for your company, since it’s where your customers sign up for your service. You and your team have a few theories about why your current page isn’t performing well, but you decide to apply the critical thinking process to ensure you come to the best decision for the page. 

Gather information about how the problem started

Part of identifying the problem includes understanding how the problem started. The pricing and packaging page is important—so when your team initially designed the page, they certainly put a lot of thought into it. Before you begin researching how to improve the page, ask yourself: 

Why did you design the pricing page the way you did? 

Which stakeholders need to be involved in the decision making process? 

Where are users getting stuck on the page?

Are any features currently working?

Then, you research

In addition to understanding the history of the pricing and packaging page, it’s important to understand what works well. Part of this research means taking a look at what your competitor’s pricing pages look like. 

Ask yourself: 

How have our competitors set up their pricing pages?

Are there any pricing page best practices? 

How does color, positioning, and animation impact navigation? 

Are there any standard page layouts customers expect to see? 

Organize and analyze information

You’ve gathered all of the information you need—now you need to organize and analyze it. What trends, if any, are you noticing? Is there any particularly relevant or important information that you have to consider? 

Ask open-ended questions to reduce bias

In the case of critical thinking, it’s important to address and set bias aside as much as possible. Ask yourself: 

Is there anything I’m missing? 

Have I connected with the right stakeholders? 

Are there any other viewpoints I should consider? 

Determine the best solution for your team

You now have all of the information you need to design the best pricing page. Depending on the complexity of the design, you may want to design a few options to present to a small group of customers or A/B test on the live website.

Present your solution to stakeholders

Critical thinking can help you in every element of your life, but in the workplace, you must also involve key project stakeholders . Stakeholders help you determine next steps, like whether you’ll A/B test the page first. Depending on the complexity of the issue, consider hosting a meeting or sharing a status report to get everyone on the same page. 

Analyze the results

No process is complete without evaluating the results. Once the new page has been live for some time, evaluate whether it did better than the previous page. What worked? What didn’t? This also helps you make better critical decisions later on.

Critically successful 

Critical thinking takes time to build, but with effort and patience you can apply an unbiased, analytical mind to any situation. Critical thinking makes up one of many soft skills that makes you an effective team member, manager, and worker. If you’re looking to hone your skills further, read our article on the 25 project management skills you need to succeed . 

Related resources

advanced critical thinking skills

How to scale your creative and content production with Asana

advanced critical thinking skills

Smooth product launches are simpler than you think

advanced critical thinking skills

Fix these common onboarding challenges to boost productivity

advanced critical thinking skills

Roy Van Den Brink-Budgen

Advanced critical thinking skills.

advanced critical thinking skills

  • Download Image

How To Books

Write Review

Prose: non-fiction , Philosophy: logic , Study & learning skills: general , Educational material

  • e-Book Nov 20, 2006 | 9781848034129 | RRP $19.99 Buy Now

This book takes the skills introduced in Roy van den Brink-Budgen's bestselling book Critical Thinking for Students and extends and builds on them. As a result, it will be especially useful for students on advanced level courses, whether in schools, colleges, or universities. It shows how complex arguments can be built up, analysed, and evaluated. It also shows how the use of various types of claim can be approached in argument, by stressing the need to ask a series of questions about their possible significance. The frequent role of explanation in the drawing of inference is also detailed. In addition, it applies Critical Thinking skills to decision-making, showing how these skills can clarify the choices available, their possible consequences, and the criteria needed to make decisions. In short, this book shows how to become an even more active and effective Critical Thinker.

More books by Roy Van Den Brink-Budgen

Critical Thinking for Students 4th Edition: Learn the Skills for Analysing, Evaluating and Producing Arguments

Critical Thinking for Students 4th Edition: Learn the Skills for Analysing, Evaluating and Producing Arguments

Readers also viewed

The Hairy Bikers' Chicken & Egg

The Hairy Bikers' Chicken & Egg

White Mountain

White Mountain

A Brief History of Everyone Who Ever Lived: The Stories in Our Genes

A Brief History of Everyone Who Ever Lived: The Stories in Our Genes

Evelyn Waugh: A Life Revisited

Evelyn Waugh: A Life Revisited

The Hairy Dieters: Fast Food

The Hairy Dieters: Fast Food

Sam Phillips: The Man Who Invented Rock 'n' Roll

Sam Phillips: The Man Who Invented Rock 'n' Roll

My Life with Wagner

My Life with Wagner

The Mistakes You Make At Bridge

The Mistakes You Make At Bridge

The Dumpling Sisters Cookbook: Over 100 Favourite Recipes From A Chinese Family Kitchen

The Dumpling Sisters Cookbook: Over 100 Favourite Recipes From A Chinese Family Kitchen

The Diet Myth: The Real Science Behind What We Eat

The Diet Myth: The Real Science Behind What We Eat

The Second World War: The Gathering Storm: Volume I

The Second World War: The Gathering Storm: Volume I

Guide To Better Acol Bridge

Guide To Better Acol Bridge

Judi: Behind the Scenes: With an Introduction by John Miller

Judi: Behind the Scenes: With an Introduction by John Miller

The Hairy Dieters: Good Eating

The Hairy Dieters: Good Eating

The Beatles Lyrics: The Unseen Story Behind Their Music

The Beatles Lyrics: The Unseen Story Behind Their Music

Engineering in the Ancient World

Engineering in the Ancient World

Carl Rogers: A Critical Biography

Carl Rogers: A Critical Biography

Manufacturing Victims: What the Psychology Industry is Doing to People

Manufacturing Victims: What the Psychology Industry is Doing to People

The Birth Of Ulster

The Birth Of Ulster

Beyond Carl Rogers

Beyond Carl Rogers

The Carl Rogers Reader

The Carl Rogers Reader

Find a book you’ll love, get our Word Up newsletter

  • Privacy Policy
  • Submissions
  • Getting Published
  • Events and Tours
  • Reading Groups
  • Competitions
  • Australia Reads
  • Our Networks
  • Our Policies
  • Improving Representation
  • Sustainability Goals
  • Professional Behaviour

Maximum Sentence

Hachette Australia acknowledges and pays our respects to the past, present and future Traditional Owners and Custodians of Country throughout Australia and recognises the continuation of cultural, spiritual and educational practices of Aboriginal and Torres Strait Islander peoples. Our head office is located on the lands of the Gadigal people of the Eora Nation.

Hachette Australia

© Hachette Australia, All Rights Reserved · Site by Chook

  • Our Mission

Helping Students Hone Their Critical Thinking Skills

Used consistently, these strategies can help middle and high school teachers guide students to improve much-needed skills.

Middle school students involved in a classroom discussion

Critical thinking skills are important in every discipline, at and beyond school. From managing money to choosing which candidates to vote for in elections to making difficult career choices, students need to be prepared to take in, synthesize, and act on new information in a world that is constantly changing.

While critical thinking might seem like an abstract idea that is tough to directly instruct, there are many engaging ways to help students strengthen these skills through active learning.

Make Time for Metacognitive Reflection

Create space for students to both reflect on their ideas and discuss the power of doing so. Show students how they can push back on their own thinking to analyze and question their assumptions. Students might ask themselves, “Why is this the best answer? What information supports my answer? What might someone with a counterargument say?”

Through this reflection, students and teachers (who can model reflecting on their own thinking) gain deeper understandings of their ideas and do a better job articulating their beliefs. In a world that is go-go-go, it is important to help students understand that it is OK to take a breath and think about their ideas before putting them out into the world. And taking time for reflection helps us more thoughtfully consider others’ ideas, too.

Teach Reasoning Skills 

Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems. 

One way to teach reasoning is to use problem-solving activities that require students to apply their skills to practical contexts. For example, give students a real problem to solve, and ask them to use reasoning skills to develop a solution. They can then present their solution and defend their reasoning to the class and engage in discussion about whether and how their thinking changed when listening to peers’ perspectives. 

A great example I have seen involved students identifying an underutilized part of their school and creating a presentation about one way to redesign it. This project allowed students to feel a sense of connection to the problem and come up with creative solutions that could help others at school. For more examples, you might visit PBS’s Design Squad , a resource that brings to life real-world problem-solving.

Ask Open-Ended Questions 

Moving beyond the repetition of facts, critical thinking requires students to take positions and explain their beliefs through research, evidence, and explanations of credibility. 

When we pose open-ended questions, we create space for classroom discourse inclusive of diverse, perhaps opposing, ideas—grounds for rich exchanges that support deep thinking and analysis. 

For example, “How would you approach the problem?” and “Where might you look to find resources to address this issue?” are two open-ended questions that position students to think less about the “right” answer and more about the variety of solutions that might already exist. 

Journaling, whether digitally or physically in a notebook, is another great way to have students answer these open-ended prompts—giving them time to think and organize their thoughts before contributing to a conversation, which can ensure that more voices are heard. 

Once students process in their journal, small group or whole class conversations help bring their ideas to life. Discovering similarities between answers helps reveal to students that they are not alone, which can encourage future participation in constructive civil discourse.

Teach Information Literacy 

Education has moved far past the idea of “Be careful of what is on Wikipedia, because it might not be true.” With AI innovations making their way into classrooms, teachers know that informed readers must question everything. 

Understanding what is and is not a reliable source and knowing how to vet information are important skills for students to build and utilize when making informed decisions. You might start by introducing the idea of bias: Articles, ads, memes, videos, and every other form of media can push an agenda that students may not see on the surface. Discuss credibility, subjectivity, and objectivity, and look at examples and nonexamples of trusted information to prepare students to be well-informed members of a democracy.

One of my favorite lessons is about the Pacific Northwest tree octopus . This project asks students to explore what appears to be a very real website that provides information on this supposedly endangered animal. It is a wonderful, albeit over-the-top, example of how something might look official even when untrue, revealing that we need critical thinking to break down “facts” and determine the validity of the information we consume. 

A fun extension is to have students come up with their own website or newsletter about something going on in school that is untrue. Perhaps a change in dress code that requires everyone to wear their clothes inside out or a change to the lunch menu that will require students to eat brussels sprouts every day. 

Giving students the ability to create their own falsified information can help them better identify it in other contexts. Understanding that information can be “too good to be true” can help them identify future falsehoods. 

Provide Diverse Perspectives 

Consider how to keep the classroom from becoming an echo chamber. If students come from the same community, they may have similar perspectives. And those who have differing perspectives may not feel comfortable sharing them in the face of an opposing majority. 

To support varying viewpoints, bring diverse voices into the classroom as much as possible, especially when discussing current events. Use primary sources: videos from YouTube, essays and articles written by people who experienced current events firsthand, documentaries that dive deeply into topics that require some nuance, and any other resources that provide a varied look at topics. 

I like to use the Smithsonian “OurStory” page , which shares a wide variety of stories from people in the United States. The page on Japanese American internment camps is very powerful because of its first-person perspectives. 

Practice Makes Perfect 

To make the above strategies and thinking routines a consistent part of your classroom, spread them out—and build upon them—over the course of the school year. You might challenge students with information and/or examples that require them to use their critical thinking skills; work these skills explicitly into lessons, projects, rubrics, and self-assessments; or have students practice identifying misinformation or unsupported arguments.

Critical thinking is not learned in isolation. It needs to be explored in English language arts, social studies, science, physical education, math. Every discipline requires students to take a careful look at something and find the best solution. Often, these skills are taken for granted, viewed as a by-product of a good education, but true critical thinking doesn’t just happen. It requires consistency and commitment.

In a moment when information and misinformation abound, and students must parse reams of information, it is imperative that we support and model critical thinking in the classroom to support the development of well-informed citizens.

We will keep fighting for all libraries - stand with us!

Internet Archive Audio

advanced critical thinking skills

  • This Just In
  • Grateful Dead
  • Old Time Radio
  • 78 RPMs and Cylinder Recordings
  • Audio Books & Poetry
  • Computers, Technology and Science
  • Music, Arts & Culture
  • News & Public Affairs
  • Spirituality & Religion
  • Radio News Archive

advanced critical thinking skills

  • Flickr Commons
  • Occupy Wall Street Flickr
  • NASA Images
  • Solar System Collection
  • Ames Research Center

advanced critical thinking skills

  • All Software
  • Old School Emulation
  • MS-DOS Games
  • Historical Software
  • Classic PC Games
  • Software Library
  • Kodi Archive and Support File
  • Vintage Software
  • CD-ROM Software
  • CD-ROM Software Library
  • Software Sites
  • Tucows Software Library
  • Shareware CD-ROMs
  • Software Capsules Compilation
  • CD-ROM Images
  • ZX Spectrum
  • DOOM Level CD

advanced critical thinking skills

  • Smithsonian Libraries
  • FEDLINK (US)
  • Lincoln Collection
  • American Libraries
  • Canadian Libraries
  • Universal Library
  • Project Gutenberg
  • Children's Library
  • Biodiversity Heritage Library
  • Books by Language
  • Additional Collections

advanced critical thinking skills

  • Prelinger Archives
  • Democracy Now!
  • Occupy Wall Street
  • TV NSA Clip Library
  • Animation & Cartoons
  • Arts & Music
  • Computers & Technology
  • Cultural & Academic Films
  • Ephemeral Films
  • Sports Videos
  • Videogame Videos
  • Youth Media

Search the history of over 866 billion web pages on the Internet.

Mobile Apps

  • Wayback Machine (iOS)
  • Wayback Machine (Android)

Browser Extensions

Archive-it subscription.

  • Explore the Collections
  • Build Collections

Save Page Now

Capture a web page as it appears now for use as a trusted citation in the future.

Please enter a valid web address

  • Donate Donate icon An illustration of a heart shape

Advanced critical thinking skills

Bookreader item preview, share or embed this item, flag this item for.

  • Graphic Violence
  • Explicit Sexual Content
  • Hate Speech
  • Misinformation/Disinformation
  • Marketing/Phishing/Advertising
  • Misleading/Inaccurate/Missing Metadata

Obscured text on front cover due to sticker attached.

[WorldCat (this item)]

plus-circle Add Review comment Reviews

133 Previews

16 Favorites

DOWNLOAD OPTIONS

No suitable files to display here.

PDF access not available for this item.

IN COLLECTIONS

Uploaded by station17.cebu on June 29, 2021

SIMILAR ITEMS (based on metadata)

advanced critical thinking skills

  • Education & Teaching
  • Studying & Workbooks

Amazon prime logo

Enjoy fast, free delivery, exclusive deals, and award-winning movies & TV shows with Prime Try Prime and start saving today with fast, free delivery

Amazon Prime includes:

Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.

  • Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
  • Unlimited Free Two-Day Delivery
  • Streaming of thousands of movies and TV shows with limited ads on Prime Video.
  • A Kindle book to borrow for free each month - with no due dates
  • Listen to over 2 million songs and hundreds of playlists
  • Unlimited photo storage with anywhere access

Important:  Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.

Buy new: .savingPriceOverride { color:#CC0C39!important; font-weight: 300!important; } .reinventMobileHeaderPrice { font-weight: 400; } #apex_offerDisplay_mobile_feature_div .reinventPriceSavingsPercentageMargin, #apex_offerDisplay_mobile_feature_div .reinventPricePriceToPayMargin { margin-right: 4px; } $19.99 $ 19 . 99 FREE delivery Tuesday, May 21 on orders shipped by Amazon over $35 Ships from: Amazon.com Sold by: Amazon.com

Return this item for free.

Free returns are available for the shipping address you chose. You can return the item for any reason in new and unused condition: no shipping charges

  • Go to your orders and start the return
  • Select the return method

Save with Used - Good .savingPriceOverride { color:#CC0C39!important; font-weight: 300!important; } .reinventMobileHeaderPrice { font-weight: 400; } #apex_offerDisplay_mobile_feature_div .reinventPriceSavingsPercentageMargin, #apex_offerDisplay_mobile_feature_div .reinventPricePriceToPayMargin { margin-right: 4px; } $17.49 $ 17 . 49 $13.66 delivery May 30 - June 14 Ships from: anybookCom Sold by: anybookCom

Kindle app logo image

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Image Unavailable

Advanced Critical Thinking Skills

  • To view this video download Flash Player

advanced critical thinking skills

Advanced Critical Thinking Skills Paperback – August 18, 2010

Purchase options and add-ons.

  • Print length 160 pages
  • Language English
  • Publisher HowToBooks
  • Publication date August 18, 2010
  • Dimensions 6.73 x 0.37 x 9.68 inches
  • ISBN-10 184528433X
  • ISBN-13 978-1845284336
  • See all details

Amazon First Reads | Editors' picks at exclusive prices

Customers who bought this item also bought

Critical Thinking for Students: 4th edition

Editorial Reviews

About the author, product details.

  • Publisher ‏ : ‎ HowToBooks (August 18, 2010)
  • Language ‏ : ‎ English
  • Paperback ‏ : ‎ 160 pages
  • ISBN-10 ‏ : ‎ 184528433X
  • ISBN-13 ‏ : ‎ 978-1845284336
  • Item Weight ‏ : ‎ 12.6 ounces
  • Dimensions ‏ : ‎ 6.73 x 0.37 x 9.68 inches
  • #13,749 in Study Guides (Books)

Customer reviews

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

  • Sort reviews by Top reviews Most recent Top reviews

Top review from the United States

There was a problem filtering reviews right now. please try again later..

advanced critical thinking skills

Top reviews from other countries

advanced critical thinking skills

  • Amazon Newsletter
  • About Amazon
  • Accessibility
  • Sustainability
  • Press Center
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell on Amazon
  • Sell apps on Amazon
  • Supply to Amazon
  • Protect & Build Your Brand
  • Become an Affiliate
  • Become a Delivery Driver
  • Start a Package Delivery Business
  • Advertise Your Products
  • Self-Publish with Us
  • Become an Amazon Hub Partner
  • › See More Ways to Make Money
  • Amazon Visa
  • Amazon Store Card
  • Amazon Secured Card
  • Amazon Business Card
  • Shop with Points
  • Credit Card Marketplace
  • Reload Your Balance
  • Amazon Currency Converter
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Amazon Prime
  • Returns & Replacements
  • Manage Your Content and Devices
  • Recalls and Product Safety Alerts
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices
  • Strategic Planning
  • Meet the Dean
  • Stats and Strengths
  • Faculty and Staff Directory
  • Diversity, Equity and Inclusion
  • Advisory Board
  • Undergraduate Degrees
  • Graduate Degrees
  • Add or Change Majors and Minors
  • Departments
  • What Can I Do With My Degree?
  • Student Resources
  • Scholarships
  • Career Services
  • Internships, Study Abroad and More
  • Campus Life
  • Undergraduate Advising
  • Humanities Extension Program
  • Research Office
  • Faculty and Staff Resources
  • Academic Resources
  • Research Resources
  • Communication Resources
  • Edit Your Profile Page
  • Financial Services
  • Human Resources Services
  • CHASS IT (site)
  • Ways to Give
  • Accolades Magazine

Advanced Critical and Creative Thinking Certificate

Through a series of engaging courses, you’ll gain versatile skills to stand out in the job market — all while fulfilling general education requirements.

Certificate Overview

Today’s employers want professionals who can think critically, and that demand is expected to grow massively during the next decade. Our certificate program will help students in all majors hone their critical and creative thinking abilities to stand out in the job search, now and in the future. 

Through our 12-credit-hour program, you’ll not only gain skills you can transfer to any field or industry. You’ll also fulfill NC State general education requirements through a cohesive theme of your choice. 

How it Works

The certificate includes a gateway course that applies critical thinking to major themes in American life. Then, you’ll choose one of three professionally useful, thematic general education tracks with courses designed to complement any academic major on NC State’s campus:

  • Environment, Health and Wellness
  • Justice, Law and Social Change
  • Science, Business and Innovation

Gain a Competitive Edge

By earning this certificate, you’ll stand out in the job market.

Fulfill GEP Requirements

Explore intriguing topics while earning general education credits.

Pick Your Own Theme

No matter your major, align courses to your interests.

Info Session

Join us at 3:30 p.m. on April 3 in Talley Student Union (Room 4280) for light refreshments and to learn about NC State’s newest undergraduate offering. Learn why employers want critical and creative thinking skills in the age of artificial intelligence, how the new program promotes professional readiness and civil discourse in a multicultural world, and how students can complete the certificate without adding extra time or money toward a degree.

Students make their way to class early in the 2022 fall semester across the Court of North Carolina, with the 1911 Building as a backdrop.

Requirements

The Certificate in Advanced Critical and Creative Thinking consists of 12 credit hours. Upon completion, the certificate will be listed on your official transcript.

Required Course (3 credits)

  • Satisfies GEP requirements for Humanities or US Diversity, Equity and Inclusion

Elective Courses (9 credits)

Only one 200-level elective course can be counted toward the certificate, and at least two elective courses must be in the same thematic track.

Environment, Health and Wellness Track

200-Level Courses

  • ENG 232 – Literature and Medicine
  • IDS 201 – Environmental Ethics
  • IDS 203 – Humans and the Environment
  • IDS 211 – Eating through American History
  • IDS 220 – Science and Art of Happiness
  • SOC 211 – Community and Health
  • SOC 241 – Sociology of Agriculture and Rural Society

300-Level Courses

  • AFS/PSY 345 – Psychology and the African American Experience
  • ANT 370 – Intro to Forensic Anthropology
  • HI 318 – Environmental History of Cuba (study abroad)
  • HI 340 – History of Agriculture
  • HI 342 – Global Environmental History
  • HI 360 – US Agricultural History
  • HI 381 – NGO Nonprofits in a Global Context
  • PHI 325 – Bio-Medical Ethics
  • PHI 347 – Neuroscience and Philosophy
  • SOC 350 – Food and Society
  • SOC 381 – Sociology of Medicine
  • STS 322 – Technological Catastrophes
  • STS 323 – World Population and Food Prospects
  • WGS 330 – Women and Health

Justice, Law and Social Change Track

  • ENG 248 – Survey of African-American Literature
  • ENG 267 – LGBTQI Literature in the US
  • FL 218 – The Harlem Renaissance in Paris
  • PS 231 – Introduction to International Relations
  • SOC 203 – Current Social Problems
  • SOC 212 – Race in America
  • AFS/SOC 305 – Racial and Ethnic Relations
  • AFS/REL 343 – African American Religions
  • AFS/ENG 375 – African American Cinema
  • AFS/WGS 380 – Black Feminist Theory
  • ENG 378 – Women and Film
  • HI 324 – History of Common Law and Constitution
  • HI 380 – History of Nonprofits, Philanthropy, and Social Change
  • HI 383 – Law in the American Story
  • PHI 309 – Political Philosophy
  • PHI 312 – Philosophy of Law
  • PHI 313 – Ethical Problems in the Law
  • PHI 319 – Black Political Philosophy
  • PS/WGS 306 – Gender and Politics in the US
  • REL 383 – Religion, Globalism, and Justice
  • SOC/WGS 304 – Gender and Society

Science, Business and Innovation Track

  • ANT/SOC 261 – Technology in Society and Culture
  • ARS/STS 257 – Technology in the Arts
  • COM 200 – Communication Media in a Changing World
  • COM 289 – Science Communication and Public Engagement
  • ID 244 – History of Industrial Design
  • PHI 214 – Issues in Business Ethics
  • PHI 227 – Data Ethics
  • SOC 205 – Jobs and Work
  • STS 210 – Women and Gender in Science and Technology
  • STS 214 – Introduction to Science, Technology, and Society
  • COM/ENG 364 – History of Film to 1940
  • COM/ENG 374 – History of Film from 1940
  • ENG 339 – Literature and Technology
  • ENG 376 – Science Fiction
  • HI 321 – Scientific Revolution and European Society
  • HI 322 – Rise of Modern Science
  • HI 323 – Science, American Style
  • HI 341 – Technology in History
  • HI 344 – Dinomania: Dinosaurs in Culture and Science
  • HI 375 – Global History of Travel and Tourism
  • HI 382 – History of Capitalism in America
  • PHI 340 – Philosophy of Science
  • PS 314 – Science, Technology, and Public Policy
  • PS 339 – Politics of the World Economy
  • STS 302 – Contemporary Science, Technology, and Human Values
  • STS 304 – Ethical Dimensions of Progress

Admission Info

Our certificate is open to any undergraduate student at NC State.

While there’s no formal application process, students must declare their intent to enroll in and complete the program via our Google Form. Once you submit the form, the certificate coordinator and your academic advisor will be notified.

Frequently Asked Questions

Do the courses require prerequisites.

Yes, some of the elective courses require prerequisites.

Are elective course exceptions possible?

Elective course exceptions are possible, including special topics courses and transfer credits, depending on course content.

Must I earn a certain grade in the courses to satisfy the certificate requirements?

A grade of C- or better is required in all courses used to satisfy the certificate requirements. S/U courses cannot count toward the certificate.

Have questions?

Contact the certificate coordinator, Noah Strote.

  • WhatsApp: +971 50 985 0174
  • Dubai office: +971 4 589 6164

Oxford Management Centre - logo

  • Testimonials

Subscribe to our Newsletter

Subscribe to our newsletter

Get the latest information delivered directly to you

Type here to search

An intensive 5-day training course, masterclass in advanced critical thinking skills, how to think effectively in the workplace and beyond, course introduction.

The critical thinking process will help you re-examine what you think you know and approach a problem from a new perspective. Enhance your critical thinking skills with this "Masterclass in Advanced Critical Thinking Skills".

By attending this "Masterclass in Advanced Critical Thinking Skills," you will develop advanced critical thinking skills and learn to ask the right questions.

You will learn to make better judgments about the information presented before you in any format, enabling you to make more informed decisions about what to do with that information.

Participants will develop the following competencies:

  • How to frame problems using a systematic, repeatable process
  • How to create and test solutions using the 80/20 rule
  • How to identify user needs and develop solutions to meet them
  • How to use design thinking to generate ideas and discover creative solutions
  • How to plan and execute primary and secondary research
  • How to design and build effective surveys

This Masterclass in Advanced Critical Thinking Skills training course aims to enable participants to achieve a high level of confidence in their ability to solve problems and think critically. Objectives for the week include:

  • Identify the theories that support critical thinking
  • Employ a methodology for the application of critical thinking
  • Relate the elements that make up the stages of critical thinking
  • Analyse the standards of critical thinking practice
  • Assess the responsibility of perpetuating the intellectual values of the resolution analysis
  • Distinguish the vices of thought in decision making
  • Apply critical thinking to groups

Training Methodology

This Masterclass in Advanced Critical Thinking Skills course uses self-assessment questionnaires, models, practical exercises, case studies, presentations and group discussions to develop creative thinking and innovative decision-making skills.

Using participants' real work situations adds reality and enhances the transference of learning. This non-threatening environment will allow participants to practice safe techniques they will transfer to the workplace.

Organisational Impact

By attending this Masterclass in Advanced Critical Thinking Skills, participants will learn:

  • How to perform strategic analysis and assessment
  • How to perceive and assess a critical need and design a tailored solution
  • How to identify key stakeholders and ensure their needs are met
  • How to employ adaptive problem-solving
  • How to work through obstacles collaboratively
  • How to analyse failure to improve future performance

Personal Impact

The most successful professionals can assess the environment, analyse a situation, design a solution, and ultimately win in a competitive scenario.

By attending this Masterclass in Advanced Critical Thinking Skills, delegates will:

  • Consolidate the tools and techniques for thinking creatively
  • Make better decisions for solving problems innovatively and successfully
  • Learn a process for ensuring that your team contribute effectively
  • Enhance creative thinking in the workplace
  • Display the confidence to tackle complex issues courageously
  • Employ a comprehensive toolkit of methods and techniques to ensure success in any situation

Who Should Attend?

This Oxford Management Centre Masterclass in Advanced Critical Thinking Skills training course is designed for all leaders - supervisors, professionals, executives, and future leaders who must handle various issues and challenges.

This training course has been specifically designed for:

  • General Manager, CEO, COO, CFO
  • Directors, senior managers and leaders
  • HR and Training Managers and Directors
  • Members of strategy units
  • Members of innovation hubs

Course Outline

Understanding basics of critical thinking.

  • Intuitive vs Deliberate Thinking
  • Definition of Critical Thinking
  • Differentiation between Critical, Creative and Analytical Thinking
  • Strategic benefits and importance of Critical Thinking
  • Characteristics of Critical Thinkers (Archetypes)
  • Methods to collaborate with various archetypes at work

Cognitive Process of Processing Information

  • 7-Up Phase Thinking Model
  • Application of the 7-Up Phase Thinking Model
  • Questioning techniques and short-circuiting thinking
  • Applying the 7-Up Phase Thinking Model in role play

Assessment Framework for Critical Thinking

  • Defining RED Model
  • Reviewing and understanding assessment results
  • Significance of the RED Model to Critical Thinking
  • Determine standards to manage practical Critical Thinking
  • Effective questions to control the use of standards
  • Applying standards in role play

Thinking and reasoning errors

  • Types of thinking and reasoning errors – Assumptions & Fallacies
  • Ways to overcome and apply an appropriate response to reasoning errors
  • The logic of our decisions and the behaviour derived from them
  • How to improve our critical thinking skills
  • How to become a fair-minded thinker

Critical Thinking Applications at Work

  • Identify and enhance suboptimal outcomes in daily activities
  • Enhance positive effects of the decision-making process with Critical Thinking
  • Ways to value-add and provide enablers, including resources for intervention
  • Action plan for improvement

Certificate

Oxford Management Centre Certificate will be provided to delegates who successfully completed the training course.

In association with

GLOMACS Training & Consultancy

GLOMACS Training & Consultancy

Visit website

KC Academy

  • LinkedIn LinkedIn LinkedIn
  • Facebook Facebook Facebook
  • Twitter Twitter Twitter
  • WhatsApp WhatsApp WhatsApp
  • Print Print Print
  • Favorites Add to favorites Add to favorites
  • Pinterest Pinterest Pinterest
  • Email App Email App Email App
  • Gmail Gmail Gmail
  • Reddit Reddit Reddit
  • Adfty Adfty Adfty
  • Amazon Amazon Amazon
  • Atavi Atavi Atavi
  • Bit.ly Bit.ly Bit.ly
  • BizSugar BizSugar BizSugar
  • Blogger Blogger Blogger
  • Buffer Buffer Buffer
  • Diigo Diigo Diigo
  • Evernote Evernote Evernote
  • Flipboard Flipboard Flipboard
  • Google Classroom Google Classroom Google Classroom
  • LINE LINE LINE
  • MIX MIX MIX
  • Myspace Myspace Myspace
  • QRSrc.com QRSrc.com QRSrc.com
  • Skype Skype Skype
  • Telegram Telegram Telegram
  • Trello Trello Trello
  • Tumblr Tumblr Tumblr
  • Yahoo Mail Yahoo Mail Yahoo Mail

advanced critical thinking skills

Oxford Management Centre Typically replies within an hour

Course Registration Form

Enquiry for a course, request form, request for a different format, download brochure, accept cookies & privacy policy.

We use cookies to provide necessary website functionality, improve your experience and analyze our traffic. By using our website, you agree to our Privacy Policy and our cookies usage. More information

Select cookies to accept

  • Site Preferences

Accept Cookies Customise Cookies -->

This website is intended for healthcare professionals

British Journal of Nursing

  • { $refs.search.focus(); })" aria-controls="searchpanel" :aria-expanded="open" class="hidden lg:inline-flex justify-end text-gray-800 hover:text-primary py-2 px-4 lg:px-0 items-center text-base font-medium"> Search

Search menu

Critical thinking: what it is and why it counts. 2020. https://tinyurl.com/ybz73bnx (accessed 27 April 2021)

Faculty of Intensive Care Medicine. Curriculum for training for advanced critical care practitioners: syllabus (part III). version 1.1. 2018. https://www.ficm.ac.uk/accps/curriculum (accessed 27 April 2021)

Guerrero AP. Mechanistic case diagramming: a tool for problem-based learning. Acad Med.. 2001; 76:(4)385-9 https://doi.org/10.1097/00001888-200104000-00020

Harasym PH, Tsai TC, Hemmati P. Current trends in developing medical students' critical thinking abilities. Kaohsiung J Med Sci.. 2008; 24:(7)341-55 https://doi.org/10.1016/S1607-551X(08)70131-1

Hayes MM, Chatterjee S, Schwartzstein RM. Critical thinking in critical care: five strategies to improve teaching and learning in the intensive care unit. Ann Am Thorac Soc.. 2017; 14:(4)569-575 https://doi.org/10.1513/AnnalsATS.201612-1009AS

Health Education England. Multi-professional framework for advanced clinical practice in England. 2017. https://www.hee.nhs.uk/sites/default/files/documents/multi-professionalframeworkforadvancedclinicalpracticeinengland.pdf (accessed 27 April 2021)

Health Education England, NHS England/NHS Improvement, Skills for Health. Core capabilities framework for advanced clinical practice (nurses) working in general practice/primary care in England. 2020. https://www.skillsforhealth.org.uk/images/services/cstf/ACP%20Primary%20Care%20Nurse%20Fwk%202020.pdf (accessed 27 April 2021)

Health Education England. Advanced practice mental health curriculum and capabilities framework. 2020. https://www.hee.nhs.uk/sites/default/files/documents/AP-MH%20Curriculum%20and%20Capabilities%20Framework%201.2.pdf (accessed 27 April 2021)

Jacob E, Duffield C, Jacob D. A protocol for the development of a critical thinking assessment tool for nurses using a Delphi technique. J Adv Nurs.. 2017; 73:(8)1982-1988 https://doi.org/10.1111/jan.13306

Kohn MA. Understanding evidence-based diagnosis. Diagnosis (Berl).. 2014; 1:(1)39-42 https://doi.org/10.1515/dx-2013-0003

Clinical reasoning—a guide to improving teaching and practice. 2012. https://www.racgp.org.au/afp/201201/45593

McGee S. Evidence-based physical diagnosis, 4th edn. Philadelphia PA: Elsevier; 2018

Norman GR, Monteiro SD, Sherbino J, Ilgen JS, Schmidt HG, Mamede S. The causes of errors in clinical reasoning: cognitive biases, knowledge deficits, and dual process thinking. Acad Med.. 2017; 92:(1)23-30 https://doi.org/10.1097/ACM.0000000000001421

Papp KK, Huang GC, Lauzon Clabo LM Milestones of critical thinking: a developmental model for medicine and nursing. Acad Med.. 2014; 89:(5)715-20 https://doi.org/10.1097/acm.0000000000000220

Rencic J, Lambert WT, Schuwirth L., Durning SJ. Clinical reasoning performance assessment: using situated cognition theory as a conceptual framework. Diagnosis.. 2020; 7:(3)177-179 https://doi.org/10.1515/dx-2019-0051

Examining critical thinking skills in family medicine residents. 2016. https://www.stfm.org/FamilyMedicine/Vol48Issue2/Ross121

Royal College of Emergency Medicine. Emergency care advanced clinical practitioner—curriculum and assessment, adult and paediatric. version 2.0. 2019. https://tinyurl.com/eps3p37r (accessed 27 April 2021)

Young ME, Thomas A, Lubarsky S. Mapping clinical reasoning literature across the health professions: a scoping review. BMC Med Educ.. 2020; 20 https://doi.org/10.1186/s12909-020-02012-9

Advanced practice: critical thinking and clinical reasoning

Sadie Diamond-Fox

Senior Lecturer in Advanced Critical Care Practice, Northumbria University, Advanced Critical Care Practitioner, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Co-Lead, Advanced Critical/Clinical Care Practitioners Academic Network (ACCPAN)

View articles

Advanced Critical Care Practitioner, South Tees Hospitals NHS Foundation Trust

advanced critical thinking skills

Clinical reasoning is a multi-faceted and complex construct, the understanding of which has emerged from multiple fields outside of healthcare literature, primarily the psychological and behavioural sciences. The application of clinical reasoning is central to the advanced non-medical practitioner (ANMP) role, as complex patient caseloads with undifferentiated and undiagnosed diseases are now a regular feature in healthcare practice. This article explores some of the key concepts and terminology that have evolved over the last four decades and have led to our modern day understanding of this topic. It also considers how clinical reasoning is vital for improving evidence-based diagnosis and subsequent effective care planning. A comprehensive guide to applying diagnostic reasoning on a body systems basis will be explored later in this series.

The Multi-professional Framework for Advanced Clinical Practice highlights clinical reasoning as one of the core clinical capabilities for advanced clinical practice in England ( Health Education England (HEE), 2017 ). This is also identified in other specialist core capability frameworks and training syllabuses for advanced clinical practitioner (ACP) roles ( Faculty of Intensive Care Medicine, 2018 ; Royal College of Emergency Medicine, 2019 ; HEE, 2020 ; HEE et al, 2020 ).

Rencic et al (2020) defined clinical reasoning as ‘a complex ability, requiring both declarative and procedural knowledge, such as physical examination and communication skills’. A plethora of literature exists surrounding this topic, with a recent systematic review identifying 625 papers, spanning 47 years, across the health professions ( Young et al, 2020 ). A diverse range of terms are used to refer to clinical reasoning within the healthcare literature ( Table 1 ), which can make defining their influence on their use within the clinical practice and educational arenas somewhat challenging.

The concept of clinical reasoning has changed dramatically over the past four decades. What was once thought to be a process-dependent task is now considered to present a more dynamic state of practice, which is affected by ‘complex, non-linear interactions between the clinician, patient, and the environment’ ( Rencic et al, 2020 ).

Cognitive and meta-cognitive processes

As detailed in the table, multiple themes surrounding the cognitive and meta-cognitive processes that underpin clinical reasoning have been identified. Central to these processes is the practice of critical thinking. Much like the definition of clinical reasoning, there is also diversity with regard to definitions and conceptualisation of critical thinking in the healthcare setting. Facione (2020) described critical thinking as ‘purposeful reflective judgement’ that consists of six discrete cognitive skills: analysis, inference, interpretation, explanation, synthesis and self–regulation. Ross et al (2016) identified that critical thinking positively correlates with academic success, professionalism, clinical decision-making, wider reasoning and problem-solving capabilities. Jacob et al (2017) also identified that patient outcomes and safety are directly linked to critical thinking skills.

Harasym et al (2008) listed nine discrete cognitive steps that may be applied to the process of critical thinking, which integrates both cognitive and meta-cognitive processes:

  • Gather relevant information
  • Formulate clearly defined questions and problems
  • Evaluate relevant information
  • Utilise and interpret abstract ideas effectively
  • Infer well-reasoned conclusions and solutions
  • Pilot outcomes against relevant criteria and standards
  • Use alternative thought processes if needed
  • Consider all assumptions, implications, and practical consequences
  • Communicate effectively with others to solve complex problems.

There are a number of widely used strategies to develop critical thinking and evidence-based diagnosis. These include simulated problem-based learning platforms, high-fidelity simulation scenarios, case-based discussion forums, reflective journals as part of continuing professional development (CPD) portfolios and journal clubs.

Dual process theory and cognitive bias in diagnostic reasoning

A lack of understanding of the interrelationship between critical thinking and clinical reasoning can result in cognitive bias, which can in turn lead to diagnostic errors ( Hayes et al, 2017 ). Embedded within our understanding of how diagnostic errors occur is dual process theory—system 1 and system 2 thinking. The characteristics of these are described in Table 2 . Although much of the literature in this area regards dual process theory as a valid representation of clinical reasoning, the exact causes of diagnostic errors remain unclear and require further research ( Norman et al, 2017 ). The most effective way in which to teach critical thinking skills in healthcare education also remains unclear; however, Hayes et al (2017) proposed five strategies, based on well-known educational theory and principles, that they have found to be effective for teaching and learning critical thinking within the ‘high-octane’ and ‘high-stakes’ environment of the intensive care unit ( Table 3 ). This is arguably a setting that does not always present an ideal environment for learning given its fast pace and constant sensory stimulation. However, it may be argued that if a model has proven to be effective in this setting, it could be extrapolated to other busy clinical environments and may even provide a useful aide memoire for self-assessment and reflective practices.

Integrating the clinical reasoning process into the clinical consultation

Linn et al (2012) described the clinical consultation as ‘the practical embodiment of the clinical reasoning process by which data are gathered, considered, challenged and integrated to form a diagnosis that can lead to appropriate management’. The application of the previously mentioned psychological and behavioural science theories is intertwined throughout the clinical consultation via the following discrete processes:

  • The clinical history generates an initial hypothesis regarding diagnosis, and said hypothesis is then tested through skilled and specific questioning
  • The clinician formulates a primary diagnosis and differential diagnoses in order of likelihood
  • Physical examination is carried out, aimed at gathering further data necessary to confirm or refute the hypotheses
  • A selection of appropriate investigations, using an evidence-based approach, may be ordered to gather additional data
  • The clinician (in partnership with the patient) then implements a targeted and rationalised management plan, based on best-available clinical evidence.

Linn et al (2012) also provided a very useful framework of how the above methods can be applied when teaching consultation with a focus on clinical reasoning (see Table 4 ). This framework may also prove useful to those new to the process of undertaking the clinical consultation process.

Evidence-based diagnosis and diagnostic accuracy

The principles of clinical reasoning are embedded within the practices of formulating an evidence-based diagnosis (EBD). According to Kohn (2014) EBD quantifies the probability of the presence of a disease through the use of diagnostic tests. He described three pertinent questions to consider in this respect:

  • ‘How likely is the patient to have a particular disease?’
  • ‘How good is this test for the disease in question?’
  • ‘Is the test worth performing to guide treatment?’

EBD gives a statistical discriminatory weighting to update the probability of a disease to either support or refute the working and differential diagnoses, which can then determine the appropriate course of further diagnostic testing and treatments.

Diagnostic accuracy refers to how positive or negative findings change the probability of the presence of disease. In order to understand diagnostic accuracy, we must begin to understand the underlying principles and related statistical calculations concerning sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and likelihood ratios.

The construction of a two-by-two square (2 x 2) table ( Figure 1 ) allows the calculation of several statistical weightings for pertinent points of the history-taking exercise, a finding/sign on physical examination, or a test result. From this construct we can then determine the aforementioned statistical calculations as follows ( McGee, 2018 ):

  • Sensitivity , the proportion of patients with the diagnosis who have the physical sign or a positive test result = A ÷ (A + C)
  • Specificity , the proportion of patients without the diagnosis who lack the physical sign or have a negative test result = D ÷ (B + D)
  • Positive predictive value , the proportion of patients with disease who have a physical sign divided by the proportion of patients without disease who also have the same sign = A ÷ (A + B)
  • Negative predictive value , proportion of patients with disease lacking a physical sign divided by the proportion of patients without disease also lacking the sign = D ÷ (C + D)
  • Likelihood ratio , a finding/sign/test results sensitivity divided by the false-positive rate. A test of no value has an LR of 1. Therefore the test would have no impact upon the patient's odds of disease
  • Positive likelihood ratio = proportion of patients with disease who have a positive finding/sign/test, divided by proportion of patients without disease who have a positive finding/sign/test OR (A ÷ N1) ÷ (B÷ N2), or sensitivity ÷ (1 – specificity) The more positive an LR (the further above 1), the more the finding/sign/test result raises a patient's probability of disease. Thresholds of ≥ 4 are often considered to be significant when focusing a clinician's interest on the most pertinent positive findings, clinical signs or tests
  • Negative likelihood ratio = proportion of patients with disease who have a negative finding/sign/test result, divided by the proportion of patients without disease who have a positive finding/sign/test OR (C ÷ N1) ÷ (D÷N1) or (1 – sensitivity) ÷ specificity The more negative an LR (the closer to 0), the more the finding/sign/test result lowers a patient's probability of disease. Thresholds <0.4 are often considered to be significant when focusing clinician's interest on the most pertinent negative findings, clinical signs or tests.

advanced critical thinking skills

There are various online statistical calculators that can aid in the above calculations, such as the BMJ Best Practice statistical calculators, which may used as a guide (https://bestpractice.bmj.com/info/toolkit/ebm-toolbox/statistics-calculators/).

Clinical scoring systems

Evidence-based literature supports the practice of determining clinical pretest probability of certain diseases prior to proceeding with a diagnostic test. There are numerous validated pretest clinical scoring systems and clinical prediction tools that can be used in this context and accessed via various online platforms such as MDCalc (https://www.mdcalc.com/#all). Such clinical prediction tools include:

  • 4Ts score for heparin-induced thrombocytopenia
  • ABCD² score for transient ischaemic attack (TIA)
  • CHADS₂ score for atrial fibrillation stroke risk
  • Aortic Dissection Detection Risk Score (ADD-RS).

Conclusions

Critical thinking and clinical reasoning are fundamental skills of the advanced non-medical practitioner (ANMP) role. They are complex processes and require an array of underpinning knowledge of not only the clinical sciences, but also psychological and behavioural science theories. There are multiple constructs to guide these processes, not all of which will be suitable for the vast array of specialist areas in which ANMPs practice. There are multiple opportunities throughout the clinical consultation process in which ANMPs can employ the principles of critical thinking and clinical reasoning in order to improve patient outcomes. There are also multiple online toolkits that may be used to guide the ANMP in this complex process.

  • Much like consultation and clinical assessment, the process of the application of clinical reasoning was once seen as solely the duty of a doctor, however the advanced non-medical practitioner (ANMP) role crosses those traditional boundaries
  • Critical thinking and clinical reasoning are fundamental skills of the ANMP role
  • The processes underlying clinical reasoning are complex and require an array of underpinning knowledge of not only the clinical sciences, but also psychological and behavioural science theories
  • Through the use of the principles underlying critical thinking and clinical reasoning, there is potential to make a significant contribution to diagnostic accuracy, treatment options and overall patient outcomes

CPD reflective questions

  • What assessment instruments exist for the measurement of cognitive bias?
  • Think of an example of when cognitive bias may have impacted on your own clinical reasoning and decision making
  • What resources exist to aid you in developing into the ‘advanced critical thinker’?
  • What resources exist to aid you in understanding the statistical terminology surrounding evidence-based diagnosis?

Disruptive Leadership Institute

  • Our CEO Master Executive Coach
  • Our Consulting Team & Coaches
  • Our Advisory Board
  • Our Strategic Partners
  • Client Testimonials
  • Abstract of Second Edition Book
  • Second Edition Book
  • First Edition Book
  • NextGen Book
  • Second Edition Book (2023)
  • First Edition Book (2020)
  • NextGen Book (2019)
  • Board & CEO Advisory Services
  • Organizational Transformation Framework
  • Culture Development
  • Talent Management & Succession Planning
  • Digital Transformation
  • Post-Pandemic Recovery
  • Crisis Management
  • Cognitive Readiness
  • Leadership 360 Assessments
  • L.E.A.D.E.R. Framework
  • C.R.I.S.I.S. Model
  • R.B.L. Framework
  • Disruptive Digital Leadership Framework
  • Goleman’s Leadership Framework
  • Goleman’s ESI Framework
  • SCORE™ Framework
  • Paragon⁷ Framework
  • R.E.D. Model
  • A.D.A.M. Model
  • G.R.O.W. Model
  • A.R.T. Framework
  • HPLD Framework
  • Keynote Presentation
  • CEO & C-Suite Executive Coaching
  • Disruptive Leadership Masterclass
  • Crisis Leadership Masterclass
  • Critical Thinking Bootcamp
  • Prophetic Leadership Masterclass
  • HiPO Development Program
  • Program for Advanced Leadership & Management (PALM)
  • Master in Disruptive Leadership (MDL)
  • Master in Digital Transformation (MDT)
  • Udemy Online Training
  • Skillsoft E-learning
  • White Papers
  • Research Reports
  • Online Resources
  • IPMA Journal
  • LinkedIn Posts
  • Singapore Business Review
  • The Straits Times Forum

Importance Of Cognitive Readiness Competencies (Advanced Critical Thinking Skills) In Today's Disruptive And Digital-Driven Workplace

We at the  Centre for Executive Education (CEE)  through our ongoing longitudinal research with various  strategic partners globally , believes that for leaders to succeed in  Fourth Industrial Revolution  (IR 4.0), which is termed by World Economic Forum (WEF) founder, Dr Klaus Schwab; they would need to demonstrate effectively the cluster of cognitive readiness competencies which would enable leaders to recognize patterns in chaotic situations, adapt or change problem solutions based on the patterns identified, and then effectively take action to implement the new solutions.

In today’s highly disruptive and digital-driven world, organizations continue to be impacted by a multitude of changes, influencing the way they operate. With increasing volatility in the markets, ever-changing customer needs, and continuous technology-led disruptions to business models, it is an organization’s agility and resilience that can help it weather the storm of changes that hit it every day.

On the other hand, the complexity and disruptions in the business environment today continuously decrease the visibility of businesses beyond a quarter, impeding organizations’ ability to build long-term plans and requiring them to reinvent continually.

The four elements of VUCA (see Figure 1) describe the “fog of war”—the chaotic conditions that are encountered on a modern battlefield. Its relevance to leaders in business is clear because these conditions are highly descriptive of the environment in which business is conducted every day  (Bawany 2020) .

Figure 1: The Four Elements Of V.U.C.A.

advanced critical thinking skills

EDA Paragon7 Cognitive Readiness Competencies

Figure 2: The Paragon7 Cognitive Readiness Competencies

advanced critical thinking skills

CEE’s global strategic partner, the Executive Development Associates (EDA) has identified the following 7 key cognitive readiness skills collectively known as  Paragon7  (see Figure 2), which develop, enhance or sustain a leader’s ability to navigate successfully in this ‘new normal’:  (Bawany, 2017)

  • Mental Cognition:  Recognise and regulate your thoughts and emotions
  • Attentional Control:  Manage and focus your attention
  • Sensemaking:  Connect the dots and see the bigger picture
  • Intuition:  Check your gut, but don’t let it rule your mind
  • Problem Solving:  Use analytical and creative methods to resolve a challenge
  • Adaptability:  Be willing and able to change, with shifting conditions
  • Communication : Inspire others to action; Create fluid communication pathways

Leveraging On Cognitive Readiness For A Mentally Prepared Culture @ Google

advanced critical thinking skills

Making this shift is only the beginning. You must then shift the culture to be empowered and mentally prepared. Using a simple definition, if culture is “the way we do things around here,” then the idea of “thinking employees”—where each person from the CEO to the janitor is expected to exhibit superior decision-making skills—becomes a part of the culture. The importance of culture cannot be emphasized enough.

According to the National Association of Corporate Directors, “the oversight of culture must be a key board responsibility, as it is inextricably linked with strategy, CEO selection, and risk oversight.”  (Hagemann & Schatz 2019)

Given that, what does a mentally prepared culture look like? Google is a great example of a company with a mentally prepared culture, and the results speak for themselves. In  Fast Company ‘s 2014 list of the Most Innovative Companies, Google earned the top spot. Since then, it was number 4 in 2015 and number 2 in 2017.

Google’s culture fosters cognitive readiness in that it insists on every employee taking time to think and act on ideas. The company gives employees a voice—encourages them to share it with others, try it on, collaborate, and potentially bring new things to the marketplace. Does it work? Some of the company’s game-changing innovations include Google Fiber, the driverless automobile, wearable computers, autocomplete, Google translate, and universal search.

“L.E.A.P.” Through The Fog Of A Disruptive & VUCA World

Figure 3: The L.E.A.P. Framework For Managing Leadership Challenges Of A Disruptive & VUCA World

advanced critical thinking skills

Liberal:  A leader needs to exhibit liberal thinking (disruptive mental agility) with a breakthrough mindset that requires openness to developing new behaviours, skills, or opinions and the willingness to adapt or discard existing values if necessary to survive in the new normal. Leading in a disruptive environment means getting used to incredible levels of uncertainty. A leader will never know how something will work until they try it. Modifying their assumptions and adapting or revising their plans in accordance with the desired results is the standard practice of the most highly effective disruptive leaders.

Exuberant:  Leaders that thrive in a disruptive environment are energized and demonstrate a sense of passion and optimism while being grounded in reality and in engaging the team and other stakeholders. They are optimistic and consistently look for the good in all successes, failures, and challenges. Passion is a sense of energy for something. A leader’s passion and purpose are their internal energy source, the fire or determination they have to reach their destination.

Agility:  Leaders need to be change agents by demonstrating resilience with mental and learning agility. Learning agility is the ability and willingness to learn from every situation a leader goes through in life—including the ones where they have no idea what to do—and to find solutions by leveraging on cognitive readiness and critical thinking skills. The inability to adapt proficiently has often been cited as the reason for leadership derailers.

Partnership:  Building and sustaining a trust-based partnership with employees, team members, and external stakeholders, including customers and suppliers, is crucial, especially during disruptive times. When people trust a leader, they have confidence in that leader’s decisions. Even in times of uncertainty, they will be influenced and supportive of the leaders. That is because they expect their leaders to do what the leaders say they will do.

The “R.E.D.” Model of Critical Thinking

Figure 4: the “r.e.d.” model of critical thinking.

advanced critical thinking skills

Reference: Bawany, S, (2023) “ Leadership in Disruptive Times: Negotiating the New Balance ” (Business Expert Press LLC, New York, NY)

Pearson has developed the following RED Model – Recognize assumptions, Evaluate arguments, Draw conclusions – as a way to view and apply Critical Thinking principles when faced with a decision. This model is particularly helpful in Critical Thinking training programs.

R ecognize Assumptions. This is the ability to separate fact from opinion. It is deceptively easy to listen to a comment or presentation and assume the information presented is true even though no evidence was given to back it up. Perhaps the speaker is particularly credible or trustworthy, or the information makes sense or matches our own view. We just don’t question it. Noticing and questioning assumptions helps to reveal information gaps or unfounded logic. Taking it a step further, when we examine assumptions through the eyes of different people (e.g., the viewpoint of different stakeholders), the end result is a richer perspective on a topic.

E valuate Arguments. It is difficult to suspend judgment systematically and walk through various arguments and information with the impartiality of Sherlock Holmes. The art of evaluating arguments entails analyzing information objectively and accurately, questioning the quality of supporting evidence, and understanding how emotion influences the situation. Common barriers include confirmation bias, which is the tendency to seek out and agree with the information that is consistent with your own point of view or allow emotions – yours or others’ – to get in the way of objective evaluation. People may quickly conclude simply to avoid conflict. Being able to remain objective and sort through the validity of different positions helps people draw more accurate conclusions.

D raw Conclusions. People who possess these skills can bring diverse information together to arrive at conclusions that logically follow from the available evidence, and they do not inappropriately generalize beyond the evidence. Furthermore, they will change their position when the evidence warrants doing so. They are often characterized as having “good judgment” because they typically arrive at a quality decision.

Each of these Critical Thinking skills fits together in a process that is both fluid and sequential.

When presented with information, people typically alternate between recognizing assumptions and evaluating arguments. Critical Thinking is sequential in that recognizing faulty assumptions or weak arguments improves the likelihood of reaching an appropriate conclusion. It is helpful to focus on each of the RED skills individually when practicing skill development. With concentrated practice over time, typically several months, Critical Thinking skills can be significantly increased.

Programs On Developing Cognitive Readiness And Critical Thinking Skills For Leaders At All Levels

We may not be able to increase IQ, but leaders can learn skills to enhance their overall critical thinking capabilities. Much like an athlete, critical thinkers can improve and be developed, but it requires effort, practise, and dedication.

Overview Of Critical Thinking Programs

Paragon7: critical thinking transcended.

The  Paragon7 Program  has never before been available to the corporate sector, but now business leaders can hone their decision-making skills, learn to take more rapid action, anticipate, adapt and be ready to expertly address whatever novel challenges they may face in the future. This training goes beyond traditional critical thinking training—it exponentially multiplies elite leaders’ mental potential so they can successfully confront ill-defined, high-intensity challenges in the complex, dynamic, and often-ambiguous modern business world.

Acuity follows readiness. Once leaders are ready for any challenge or situation, then they are open to new insights that will propel them forward by leveraging innovation, intuition, and creativity to shape reality.

Impact occurs when leaders cascade learning throughout their organizations. Paragon7 teaches leaders how to foster their teams’ cognitive capital, as well as implement processes for long-term sustainment.

Critical Thinking Boot Camp (CTBC)

The Critical Thinking Boot Camp  (CTBC)  is an intensive, 3-phase development process focused on learning practical skills that will have an  IMMEDIATE  impact on your bottom line. While there won’t be any push-ups or sprints, each attendee will be immersed in masters level, vigorous training on critical thinking. They will be assessed, will work on their real work-related issues and be kept accountable by a coach as well as your management team. Seventy-four per cent of participants say they applied new skills on the job!

Think RED Workshop

The Think RED Program  introduces participants to critical thinking skills development through the presentation and application of the Pearson TalentLens RED Model: recognize assumptions, evaluate arguments, and draw conclusions based on an objective, clear-eyed appraisal of the available evidence. Multiple real-world examples and activities will be interwoven with content, enabling participants to immediately apply RED Model thinking skills to actual business challenges in problem-solving and decision making. This one day program is designed to serve as a stand-alone critical thinking tool, or as the foundation for further skills development through follow-up participation in our advanced critical thinking workshops.

Critical Thinking for Business Growth (CTBG)

The Critical Thinking for Business Growth  (CTBG)  is an interactive, results-focused program that teaches how to think logically and comprehensively about a situation and identify an appropriate course of action while preventing additional problems. Over fifty per cent of this workshop involves participants in experiential activities and on-the-job applications. The course utilizes a dynamic blend of instructor presentation and individual skill practice in each of the concepts presented, using personal work concerns brought by participants.

Applied Critical Thinking

Time is a valuable asset in today’s business world. The  Applied Critical Thinking (ACT)  workshop delivers powerful short-cut thinking tools in less time. The conceptual framework of this one-day workshop is built around critical thinking skills which provide more effective solutions to important business concerns.

The ACT processes give participants increased confidence to create and/or seize opportunities for improvement. Whether they are solving problems, creating new opportunities, making decisions with limited time and information or implementing plans, this action orientation will result in more profitable business results as participants confidently demonstrate a bias for action.

Problem Solving & Decision Making (PDSM)

Problem Solving & Decision Making (PSDM)  is an interactive, outcome-focused workshop that blends team development with rational and creative critical thinking processes to create a comprehensive approach to problem-solving, decision making, and planning. Over sixty per cent of this program involves participants in learner-driven activities and on-the-job applications. The course offers a dynamic blend of instructor presentation, on-the-job application, and skill practice in each of the PSDM processes using work-related concerns brought by participants. Principles of teamwork and effective meeting management are practised by participants throughout the workshop.

For more information about these programs, please  contact us  today.

SELECTED VIDEOS ON CRITICAL THINKING PROGRAMS

Certified Facilitators For Delivery Of Programs

advanced critical thinking skills

Privacy Overview

Click one of our representatives below to chat on WhatsApp or send us an email to [email protected]

Disruptive Leadership

Need help? Please contact +65 9002 3848

IMAGES

  1. Critical Thinking Skills

    advanced critical thinking skills

  2. Critical Thinking: A real life skill to master

    advanced critical thinking skills

  3. Critical_Thinking_Skills_Diagram_svg

    advanced critical thinking skills

  4. Guide to improve critical thinking skills

    advanced critical thinking skills

  5. Advanced Critical Thinking Skills (ebook), Roy Van Den Brink-Budgen

    advanced critical thinking skills

  6. Critical Thinking Definition, Skills, and Examples

    advanced critical thinking skills

VIDEO

  1. "🤓 Critical Minds: Analyzing Everything Smart Kids!"

  2. Strong vs Weak Evidence ✏️

  3. Top Critical Thinking Skills

  4. The Hidden Secret to Developing Critical Thinking

  5. 10 steps to develop critical thinking skills #smritipandey #ytshorts #thinking

  6. Immersive Critical Thinking Activities: Think Like A Scientist

COMMENTS

  1. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  2. How to think effectively: Six stages of critical thinking

    Key Takeaways. Researchers propose six levels of critical thinkers: Unreflective thinkers, Challenged thinkers, Beginning thinkers, Practicing thinkers, Advanced thinkers, and Master thinkers. The ...

  3. 5 Top Critical Thinking Skills (And How To Improve Them)

    Top 5 critical thinking skills. Here are five common and impactful critical thinking skills you might consider highlighting on your resume or in an interview: 1. Observation. Observational skills are the starting point for critical thinking. People who are observant can quickly sense and identify a new problem.

  4. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  5. 7 Essential Critical Thinking Skills You Should Master

    Skill 5: Effective Communication. Effective communication is integral to critical thinking. It involves articulating thoughts and arguments clearly, coherently, and logically. This skill is essential not just in presenting one's own ideas but also in understanding and evaluating the arguments of others.

  6. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  7. Critical Thinking Skills Guide

    Entering college, students have hopefully learned several advanced critical thinking skills that will support them through their college work. Specifically, there are six critical thinking skills that will support upper high school students and college students. These skills can help students to perform better in a range of subjects. Identification

  8. Build Critical Thinking Skills in 7 Steps w/ Examples [2024] • Asana

    Decision matrices are a great way to identify the best option between different choices. Check out our article on 7 steps to creating a decision matrix. 1. Identify the problem. Before you put those critical thinking skills to work, you first need to identify the problem you're solving.

  9. Advanced Critical Thinking Skills

    This book takes the skills introduced in Roy van den Brink-Budgen's bestselling book Critical Thinking for Students and extends and builds on them. As a result, it will be especially useful for students on advanced level courses, whether in schools, colleges, or universities. It shows how complex arguments can be built up, analysed, and evaluated.

  10. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  11. Advanced Critical Thinking Skills

    This book takes the skills introduced in Roy van den Brink-Budgen's bestselling book Critical Thinking for Students and extends and builds on them. As a result, it will be especially useful for students on advanced level courses, whether in schools, colleges, or universities. It shows how complex arguments can be built up, analysed, and evaluated.

  12. What are critical thinking skills?

    Critical thinking skills help you make effective decisions and quickly understand a situation or problem using all available facts. In the workplace, you can use critical thinking skills to define a problem, determine the consequences of choices, identify solutions and lead a team in the right direction or decide to change the way something is done.

  13. Teaching Critical Thinking Skills in Middle and High School

    Teach Reasoning Skills. Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems.

  14. Advanced critical thinking skills : Brink-Budgen, Roy van den, 1947

    Advanced critical thinking skills by Brink-Budgen, Roy van den, 1947-Publication date 2010 Topics Critical thinking, Reasoning ... Language English. viii, 152 pages ; 25 cm This title takes the skills introduced in the book 'Critical Thinking For Students' and extends and builds on them. As a result, it will be especially useful for students on ...

  15. Advanced Critical Thinking Skills: van den Brink-Budgen, Roy

    Advanced Critical Thinking Skills. Paperback - August 18, 2010. This book takes the skills introduced in Roy van den Brink-Budgen's bestselling book Critical Thinking for Students and extends and builds on them. As a result, it will be especially useful for students on advanced level courses, whether in schools, colleges, or universities.

  16. What are the top 10 critical thinking skills you should master to

    1. Ask insightful questions. Asking questions is a key way to improve your critical thinking skills. When you are presented with information, be curious, and ask open-ended questions that can help you expand your understanding of an issue and increase your industry or workplace knowledge. 2. Be aware of your biases.

  17. Developing Students' Critical Thinking Skills and Argumentation

    All six dimensions of critical thinking skills were included in students' dialogs or when there was a decrease in the number of categories of critical thinking skills. The codes, subcategories, and categories of critical thinking skills that occurred on the first day (dated 11.05) are given in Table Table3 3.

  18. Advanced Critical and Creative Thinking Certificate

    Info Session. Join us at 3:30 p.m. on April 3 in Talley Student Union (Room 4280) for light refreshments and to learn about NC State's newest undergraduate offering. Learn why employers want critical and creative thinking skills in the age of artificial intelligence, how the new program promotes professional readiness and civil discourse in a multicultural world, and how students can ...

  19. Masterclass in Advanced Critical Thinking Skills

    This Masterclass in Advanced Critical Thinking Skills course uses self-assessment questionnaires, models, practical exercises, case studies, presentations and group discussions to develop creative thinking and innovative decision-making skills. Using participants' real work situations adds reality and enhances the transference of learning.

  20. Advanced Critical Thinking Skills

    This book takes the skills introduced in Roy van den Brink-Budgen's bestselling book Critical Thinking for Students and extends and builds on them. As a result, it will be especially useful for students on advanced level courses, whether in schools, colleges, or universities. It shows how complex arguments can be built up, analysed, and evaluated.

  21. Advanced practice: critical thinking and clinical reasoning

    As detailed in the table, multiple themes surrounding the cognitive and meta-cognitive processes that underpin clinical reasoning have been identified. Central to these processes is the practice of critical thinking. Much like the definition of clinical reasoning, there is also diversity with regard to definitions and conceptualisation of critical thinking in the healthcare setting.

  22. Cognitive Readiness

    Critical Thinking is the combination of creative thinking, strategic thinking, problem-solving, and decision-making. Critical Thinking can be learned. Applying critical thinking skills will help one better recognize assumptions, evaluate arguments, and draw conclusions throughout the course of everyday interactions and business dealings.