Harvard Education Press

On The Site

Harvard educational review.

Edited by Maya Alkateb-Chami, Jane Choi, Jeannette Garcia Coppersmith, Ron Grady, Phoebe A. Grant-Robinson, Pennie M. Gregory, Jennifer Ha, Woohee Kim, Catherine E. Pitcher, Elizabeth Salinas, Caroline Tucker, Kemeyawi Q. Wahpepah

HER logo displays the letters "H", "E", and "R" in a geometric configuration within a hexagon.

Individuals

Institutions.

  • Read the journal here

Journal Information

  • ISSN: 0017-8055
  • eISSN: 1943-5045
  • Keywords: scholarly journal, education research
  • First Issue: 1930
  • Frequency: Quarterly

Description

The Harvard Educational Review (HER) is a scholarly journal of opinion and research in education. The Editorial Board aims to publish pieces from interdisciplinary and wide-ranging fields that advance our understanding of educational theory, equity, and practice. HER encourages submissions from established and emerging scholars, as well as from practitioners working in the field of education. Since its founding in 1930, HER has been central to elevating pieces and debates that tackle various dimensions of educational justice, with circulation to researchers, policymakers, teachers, and administrators.

Our Editorial Board is composed entirely of doctoral students from the Harvard Graduate School of Education who review all manuscripts considered for publication. For more information on the current Editorial Board, please see here.

A subscription to the Review includes access to the full-text electronic archives at our Subscribers-Only-Website .

Editorial Board

2023-2024 Harvard Educational Review Editorial Board Members

Maya Alkateb-Chami Development and Partnerships Editor, 2023-2024 Editor, 2022-2024 [email protected]

Maya Alkateb-Chami is a PhD student at the Harvard Graduate School of Education. Her research focuses on the role of schooling in fostering just futures—specifically in relation to language of instruction policies in multilingual contexts and with a focus on epistemic injustice. Prior to starting doctoral studies, she was the Managing Director of Columbia University’s Human Rights Institute, where she supported and co-led a team of lawyers working to advance human rights through research, education, and advocacy. Prior to that, she was the Executive Director of Jusoor, a nonprofit organization that helps conflict-affected Syrian youth and children pursue their education in four countries. Alkateb-Chami is a Fulbright Scholar and UNESCO cultural heritage expert. She holds an MEd in Language and Literacy from Harvard University; an MSc in Education from Indiana University, Bloomington; and a BA in Political Science from Damascus University, and her research on arts-based youth empowerment won the annual Master’s Thesis Award of the U.S. Society for Education Through Art.

Jane Choi Editor, 2023-2025

Jane Choi is a second-year PhD student in Sociology with broad interests in culture, education, and inequality. Her research examines intra-racial and interracial boundaries in US educational contexts. She has researched legacy and first-generation students at Ivy League colleges, families served by Head Start and Early Head Start programs, and parents of pre-K and kindergarten-age children in the New York City School District. Previously, Jane worked as a Research Assistant in the Family Well-Being and Children’s Development policy area at MDRC and received a BA in Sociology from Columbia University.

Jeannette Garcia Coppersmith Content Editor, 2023-2024 Editor, 2022-2024 [email protected]

Jeannette Garcia Coppersmith is a fourth-year Education PhD student in the Human Development, Learning and Teaching concentration at the Harvard Graduate School of Education. A former public middle and high school mathematics teacher and department chair, she is interested in understanding the mechanisms that contribute to disparities in secondary mathematics education, particularly how teacher beliefs and biases intersect with the social-psychological processes and pedagogical choices involved in math teaching. Jeannette holds an EdM in Learning and Teaching from the Harvard Graduate School of Education where she studied as an Urban Scholar and a BA in Environmental Sciences from the University of California, Berkeley.

Ron Grady Editor, 2023-2025

Ron Grady is a second-year doctoral student in the Human Development, Learning, and Teaching concentration at the Harvard Graduate School of Education. His central curiosities involve the social worlds and peer cultures of young children, wondering how lived experience is both constructed within and revealed throughout play, the creation of art and narrative, and through interaction with/production of visual artifacts such as photography and film. Ron also works extensively with educators interested in developing and deepening practices rooted in reflection on, inquiry into, and translation of the social, emotional, and aesthetic aspects of their classroom ecosystems. Prior to his doctoral studies, Ron worked as a preschool teacher in New Orleans. He holds a MS in Early Childhood Education from the Erikson Institute and a BA in Psychology with Honors in Education from Stanford University.

Phoebe A. Grant-Robinson Editor, 2023-2024

Phoebe A. Grant-Robinson is a first year student in the Doctor of Education Leadership(EdLD) program at the Harvard Graduate School of Education. Her ultimate quest is to position all students as drivers of their destiny. Phoebe is passionate about early learning and literacy. She is committed to ensuring that districts and school leaders, have the necessary tools to create equitable learning organizations that facilitate the academic and social well-being of all students. Phoebe is particularly interested in the intersection of homeless students and literacy. Prior to her doctoral studies, Phoebe was a Special Education Instructional Specialist. Supporting a portfolio of more than thirty schools, she facilitated the rollout of New York City’s Special Education Reform. Phoebe also served as an elementary school principal. She holds a BS in Inclusive Education from Syracuse University, and an MS in Curriculum and Instruction from Pace University.

Pennie M. Gregory Editor, 2023-2024

Pennie M. Gregory is a second-year student in the Doctor of Education Leadership (EdLD) program at the Harvard Graduate School of Education. Pennie was born in Incheon, South Korea and raised in Gary, Indiana. She has decades of experience leading efforts to improve outcomes for students with disabilities first as a special education teacher and then as a school district special education administrator. Prior to her doctoral studies, Pennie helped to create Indiana’s first Aspiring Special Education Leadership Institute (ASELI) and served as its Director. She was also the Capacity Events Director for MelanatED Leaders, an organization created to support educational leaders of color in Indianapolis. Pennie has a unique perspective, having worked with members of the school community, with advocacy organizations, and supporting state special education leaders. Pennie holds an EdM in Education Leadership from Marian University.

Jennifer Ha Editor, 2023-2025

Jen Ha is a second-year PhD student in the Culture, Institutions, and Society concentration at the Harvard Graduate School of Education. Her research explores how high school students learn to write personal narratives for school applications, scholarships, and professional opportunities amidst changing landscapes in college access and admissions. Prior to doctoral studies, Jen served as the Coordinator of Public Humanities at Bard Graduate Center and worked in several roles organizing academic enrichment opportunities and supporting postsecondary planning for students in New Haven and New York City. Jen holds a BA in Humanities from Yale University, where she was an Education Studies Scholar.

Woohee Kim Editor, 2023-2025

Woohee Kim is a PhD student studying youth activists’ civic and pedagogical practices. She is a scholar-activist dedicated to creating spaces for pedagogies of resistance and transformative possibilities. Shaped by her activism and research across South Korea, the US, and the UK, Woohee seeks to interrogate how educational spaces are shaped as cultural and political sites and reshaped by activists as sites of struggle. She hopes to continue exploring the intersections of education, knowledge, power, and resistance.

Catherine E. Pitcher Editor, 2023-2025

Catherine is a second-year doctoral student at Harvard Graduate School of Education in the Culture, Institutions, and Society program. She has over 10 years of experience in education in the US in roles that range from special education teacher to instructional coach to department head to educational game designer. She started working in Palestine in 2017, first teaching, and then designing and implementing educational programming. Currently, she is working on research to understand how Palestinian youth think about and build their futures and continues to lead programming in the West Bank, Gaza, and East Jerusalem. She holds an EdM from Harvard in International Education Policy.

Elizabeth Salinas Editor, 2023-2025

Elizabeth Salinas is a doctoral student in the Education Policy and Program Evaluation concentration at HGSE. She is interested in the intersection of higher education and the social safety net and hopes to examine policies that address basic needs insecurity among college students. Before her doctoral studies, Liz was a research director at a public policy consulting firm. There, she supported government, education, and philanthropy leaders by conducting and translating research into clear and actionable information. Previously, Liz served as a high school physics teacher in her hometown in Texas and as a STEM outreach program director at her alma mater. She currently sits on the Board of Directors at Leadership Enterprise for a Diverse America, a nonprofit organization working to diversify the leadership pipeline in the United States. Liz holds a bachelor’s degree in civil engineering from the Massachusetts Institute of Technology and a master’s degree in higher education from the Harvard Graduate School of Education.

Caroline Tucker Co-Chair, 2023-2024 Editor, 2022-2024 [email protected]

Caroline Tucker is a fourth-year doctoral student in the Culture, Institutions, and Society concentration at the Harvard Graduate School of Education. Her research focuses on the history and organizational dynamics of women’s colleges as women gained entry into the professions and coeducation took root in the United States. She is also a research assistant for the Harvard and the Legacy of Slavery Initiative’s Subcommittee on Curriculum and the editorial assistant for Into Practice, the pedagogy newsletter distributed by Harvard University’s Office of the Vice Provost for Advances in Learning. Prior to her doctoral studies, Caroline served as an American politics and English teaching fellow in London and worked in college advising. Caroline holds a BA in History from Princeton University, an MA in the Social Sciences from the University of Chicago, and an EdM in Higher Education from the Harvard Graduate School of Education.

Kemeyawi Q. Wahpepah Co-Chair, 2023-2024 Editor, 2022-2024 [email protected]

Kemeyawi Q. Wahpepah (Kickapoo, Sac & Fox) is a fourth-year doctoral student in the Culture, Institutions, and Society concentration at the Harvard Graduate School of Education. Their research explores how settler colonialism is addressed in K-12 history and social studies classrooms in the United States. Prior to their doctoral studies, Kemeyawi taught middle and high school English and history for eleven years in Boston and New York City. They hold an MS in Middle Childhood Education from Hunter College and an AB in Social Studies from Harvard University.

Submission Information

Click here to view submission guidelines .

Contact Information

Click here to view contact information for the editorial board and customer service .

Subscriber Support

Individual subscriptions must have an individual name in the given address for shipment. Individual copies are not for multiple readers or libraries. Individual accounts come with a personal username and password for access to online archives. Online access instructions will be attached to your order confirmation e-mail.

Institutional rates apply to libraries and organizations with multiple readers. Institutions receive digital access to content on Meridian from IP addresses via theIPregistry.org (by sending HER your PSI Org ID).

Online access instructions will be attached to your order confirmation e-mail. If you have questions about using theIPregistry.org you may find the answers in their FAQs. Otherwise please let us know at [email protected] .

How to Subscribe

To order online via credit card, please use the subscribe button at the top of this page.

To order by phone, please call 888-437-1437.

Checks can be mailed to Harvard Educational Review C/O Fulco, 30 Broad Street, Suite 6, Denville, NJ 07834. (Please include reference to your subscriber number if you are renewing. Institutions must include their PSI Org ID or follow up with this information via email to [email protected] .)

Permissions

Click here to view permissions information.

Article Submission FAQ

Closing the open call, question: “i have already submitted an article to her and i am awaiting a decision, what can i expect”.

Answer: First, any manuscripts already submitted through the open call and acknowledged by HER, as well as all invited manuscripts, R&R’d manuscripts, and manuscripts currently in production are NOT affected in any way by our pause in open calls. Editors are working to move through all current submissions and you can expect to receive any updates or decisions as we move through each step of our production process. If you have any questions, please contact the Co-Chairs, Caroline Tucker and Kemeyawi Wahpepah at [email protected] .

Question: “Can you share more about why you are closing the open call?”

Answer: As a graduate student run journal, we perform our editorial tasks in addition to our daily lives as doctoral students. We have been (and continue to be) incredibly grateful for the authors who share their work with us. In closing the open call, we hope to give ourselves time to review each manuscript in the best manner possible.

Submissions

Question: “what manuscripts are a good fit for her ”.

Answer: As a generalist scholarly journal, HER publishes on a wide range of topics within the field of education and related disciplines. We receive many articles that deserve publication, but due to the restrictions of print publication, we are only able to publish very few in the journal. The originality and import of the findings, as well as the accessibility of a piece to HER’s interdisciplinary, international audience which includes education practitioners, are key criteria in determining if an article will be selected for publication.

We strongly recommend that prospective authors review the current and past issues of HER to see the types of articles we have published recently. If you are unsure whether your manuscript is a good fit, please reach out to the Content Editor at [email protected] .

Question: “What makes HER a developmental journal?”

Answer: Supporting the development of high-quality education research is a key tenet of HER’s mission. HER promotes this development through offering comprehensive feedback to authors. All manuscripts that pass the first stage of our review process (see below) receive detailed feedback. For accepted manuscripts, HER also has a unique feedback process called casting whereby two editors carefully read a manuscript and offer overarching suggestions to strengthen and clarify the argument.

Question: “What is a Voices piece and how does it differ from an essay?”

Answer: Voices pieces are first-person reflections about an education-related topic rather than empirical or theoretical essays. Our strongest pieces have often come from educators and policy makers who draw on their personal experiences in the education field. Although they may not present data or generate theory, Voices pieces should still advance a cogent argument, drawing on appropriate literature to support any claims asserted. For examples of Voices pieces, please see Alvarez et al. (2021) and Snow (2021).

Question: “Does HER accept Book Note or book review submissions?”

Answer: No, all Book Notes are written internally by members of the Editorial Board.

Question: “If I want to submit a book for review consideration, who do I contact?”

Answer: Please send details about your book to the Content Editor at [email protected].

Manuscript Formatting

Question: “the submission guidelines state that manuscripts should be a maximum of 9,000 words – including abstract, appendices, and references. is this applicable only for research articles, or should the word count limit be followed for other manuscripts, such as essays”.

Answer: The 9,000-word limit is the same for all categories of manuscripts.

Question: “We are trying to figure out the best way to mask our names in the references. Is it OK if we do not cite any of our references in the reference list? Our names have been removed in the in-text citations. We just cite Author (date).”

Answer: Any references that identify the author/s in the text must be masked or made anonymous (e.g., instead of citing “Field & Bloom, 2007,” cite “Author/s, 2007”). For the reference list, place the citations alphabetically as “Author/s. (2007)” You can also indicate that details are omitted for blind review. Articles can also be blinded effectively by use of the third person in the manuscript. For example, rather than “in an earlier article, we showed that” substitute something like “as has been shown in Field & Bloom, 2007.” In this case, there is no need to mask the reference in the list. Please do not submit a title page as part of your manuscript. We will capture the contact information and any author statement about the fit and scope of the work in the submission form. Finally, please save the uploaded manuscript as the title of the manuscript and do not include the author/s name/s.

Invitations

Question: “can i be invited to submit a manuscript how”.

Answer: If you think your manuscript is a strong fit for HER, we welcome your request for invitation. Invited manuscripts receive one round of feedback from Editors before the piece enters the formal review process. To submit information about your manuscript for the Board to consider for invitation, please fill out the Invitation Request Form. Please provide as many details as possible. Whether we could invite your manuscript depends on the interest and availability of the current Board. Once you submit the form, we will give you an update in about 2–3 weeks on whether there are Editors who are interested in inviting your manuscript.

Review Timeline

Question: “who reviews manuscripts”.

Answer: All manuscripts are reviewed by the Editorial Board composed of doctoral students at Harvard University.

Question: “What is the HER evaluation process as a student-run journal?”

Answer: HER does not utilize the traditional external peer review process and instead has an internal, two-stage review procedure.

Upon submission, every manuscript receives a preliminary assessment by the Content Editor to confirm that the formatting requirements have been carefully followed in preparation of the manuscript, and that the manuscript is in accord with the scope and aim of the journal. The manuscript then formally enters the review process.

In the first stage of review, all manuscripts are read by a minimum of two Editorial Board members. During the second stage of review, manuscripts are read by the full Editorial Board at a weekly meeting.

Question: “How long after submission can I expect a decision on my manuscript?”

Answer: It usually takes 6 to 10 weeks for a manuscript to complete the first stage of review and an additional 12 weeks for a manuscript to complete the second stage. Due to time constraints and the large volume of manuscripts received, HER only provides detailed comments on manuscripts that complete the second stage of review.

Question: “How soon are accepted pieces published?”

Answer: The date of publication depends entirely on how many manuscripts are already in the queue for an issue. Typically, however, it takes about 6 months post-acceptance for a piece to be published.

Submission Process

Question: “how do i submit a manuscript for publication in her”.

Answer: Manuscripts are submitted through HER’s Submittable platform, accessible here. All first-time submitters must create an account to access the platform. You can find details on our submission guidelines on our Submissions page.

education research studies

  • AERA Leadership
  • AERA Past Presidents
  • AERA By The Numbers
  • What is Education Research?
  • Division Descriptions
  • Resources for Division Officers
  • SIG Directory
  • Resources for SIG Officers
  • Consortium of University and Research Institutions (CURI)
  • GSC Welcome Message
  • GSC Annual Meeting
  • GSC Campus Representatives
  • GSC Newsletters
  • AERA GSC Online Library of Resources
  • GSC Officers & Representatives
  • GSC Elections
  • GSC Paper Submission Tips & Examples
  • GSC Meeting Minutes and Announcements
  • Communications
  • Education Research & Research Policy
  • Government Relations
  • Professional Development and Training
  • Social Justice
  • Committee on Scholars of Color in Education Awards
  • Distinguished Contributions to Gender Equity in Education Research Award
  • Distinguished Contributions to Research in Education Award
  • Distinguished Public Service Award
  • Early Career Award
  • E. F. Lindquist Award
  • Excellence In Media Reporting On Education Research Award
  • Exemplary Contributions to Practice-Engaged Research Award
  • Outstanding Book Award
  • Outstanding Public Communication of Education Research Award
  • Palmer O. Johnson Memorial Award
  • Review of Research Award
  • Social Justice in Education Award
  • Presidential Citation
  • 2022-Division-Awards
  • AERA Council & Executive Board
  • Standing Committees
  • Awards Committees
  • Professional Ethics
  • Association Policies
  • Position Statements
  • AERA Centennial

education research studies

Share 

  • Browse All Articles
  • Newsletter Sign-Up

Education →

education research studies

  • 26 Mar 2024
  • Research & Ideas

How Humans Outshine AI in Adapting to Change

Could artificial intelligence systems eventually perform surgeries or fly planes? First, AI will have to learn to navigate shifting conditions as well as people do. Julian De Freitas and colleagues pit humans against machines in a video game to study AI's current limits and mine insights for the real world.

education research studies

  • 12 Mar 2024

Publish or Perish: What the Research Says About Productivity in Academia

Universities tend to evaluate professors based on their research output, but does that measure reflect the realities of higher ed? A study of 4,300 professors by Kyle Myers, Karim Lakhani, and colleagues probes the time demands, risk appetite, and compensation of faculty.

education research studies

  • 25 Jan 2024

Being a Team Player: Why College Athletes Succeed in Business

Forget rocks for jocks. A study by Paul Gompers of more than 400,000 Ivy League athletes probes how the rigors of college sports can help people climb the corporate ladder faster and into higher-paying positions.

education research studies

  • 19 Dec 2023

$15 Billion in Five Years: What Data Tells Us About MacKenzie Scott’s Philanthropy

Scott's hands-off approach and unparalleled pace—helping almost 2,000 organizations and counting—has upended the status quo in philanthropy. While her donations might seem scattershot, an analysis of five years of data by Matthew Lee, Brian Trelstad, and Ethan Tran highlights clear trends and an emerging strategy.

education research studies

  • 21 Nov 2023
  • Cold Call Podcast

Cold Call: Building a More Equitable Culture at Delta Air Lines

In December 2020 Delta Air Lines CEO Ed Bastian and his leadership team were reviewing the decision to join the OneTen coalition, where he and 36 other CEOs committed to recruiting, hiring, training, and advancing one million Black Americans over the next ten years into family-sustaining jobs. But, how do you ensure everyone has equal access to opportunity within an organization? Professor Linda Hill discusses Delta’s decision and its progress in embedding a culture of diversity, equity, and inclusion in her case, “OneTen at Delta Air Lines: Catalyzing Family-Sustaining Careers for Black Talent.”

education research studies

  • 16 Oct 2023

Advancing Black Talent: From the Flight Ramp to 'Family-Sustaining' Careers at Delta

By emphasizing skills and expanding professional development opportunities, the airline is making strides toward recruiting and advancing Black employees. Case studies by Linda Hill offer an inside look at how Delta CEO Ed Bastian is creating a more equitable company and a stronger talent pipeline.

education research studies

  • 26 Jul 2023

STEM Needs More Women. Recruiters Often Keep Them Out

Tech companies and programs turn to recruiters to find top-notch candidates, but gender bias can creep in long before women even apply, according to research by Jacqueline Ng Lane and colleagues. She highlights several tactics to make the process more equitable.

education research studies

  • 14 Jun 2023

Four Steps to Building the Psychological Safety That High-Performing Teams Need

Struggling to spark strategic risk-taking and creative thinking? In the post-pandemic workplace, teams need psychological safety more than ever, and a new analysis by Amy Edmondson highlights the best ways to nurture it.

education research studies

  • 23 May 2023

The Entrepreneurial Journey of China’s First Private Mental Health Hospital

The city of Wenzhou in southeastern China is home to the country’s largest privately owned mental health hospital group, the Wenzhou Kangning Hospital Co, Ltd. It’s an example of the extraordinary entrepreneurship happening in China’s healthcare space. But after its successful initial public offering (IPO), how will the hospital grow in the future? Harvard Professor of China Studies William C. Kirby highlights the challenges of China’s mental health sector and the means company founder Guan Weili employed to address them in his case, Wenzhou Kangning Hospital: Changing Mental Healthcare in China.

education research studies

  • 28 Feb 2023

Can Apprenticeships Work in the US? Employers Seeking New Talent Pipelines Take Note

What if the conventional college-and-internship route doesn't give future employees the skills they need to build tomorrow's companies? Research by Joseph Fuller and colleagues illustrates the advantages that apprenticeships can provide to employees and young talent.

education research studies

  • 15 Aug 2022

University of the Future: Finding the Next World Leaders in Higher Ed

Which universities will step into the void as American colleges decline? In the book Empires of Ideas, William Kirby explores how the history of higher education in the US, China, and Germany might shape its future.

education research studies

  • 11 Aug 2022

When Parents Tell Kids to ‘Work Hard,’ Do They Send the Wrong Message?

It takes more than grit to succeed in a world rife with systemic inequity. So why don't we tell children that? Research by Ashley Whillans and colleagues shows how honest talk about social barriers could empower kids to break them down.

education research studies

  • 02 May 2022
  • What Do You Think?

Can the Case Method Survive Another Hundred Years?

The case method pioneered by Harvard Business School has weathered a hundred years of controversy and criticism. However, is the approach the best way to teach people to lead in a world that demands more agility and adaptability? James Heskett asks. Open for comment; 0 Comments.

education research studies

  • 18 Nov 2021

5 Principles for Scaling Change from IBM’s High School Innovation

P-TECH has bolstered graduation rates for students of color while creating a new tech hiring pipeline. Rosabeth Moss Kanter and program architect Stanley Litow discuss the social impact lessons for other organizations. Open for comment; 0 Comments.

education research studies

  • 09 Aug 2021

OneTen: Creating a New Pathway for Black Talent

A new organization aims to help 1 million Black Americans launch careers in the next decade, expanding the talent pool. Rawi E. Abdelal, Katherine Connolly Baden, and Boris Groysberg explain how. Open for comment; 0 Comments.

education research studies

  • 19 May 2021

Why America Needs a Better Bridge Between School and Career

As the COVID-19 pandemic wanes, America faces a critical opportunity to close gaps that leave many workers behind, say Joseph Fuller and Rachel Lipson. What will it take? Open for comment; 0 Comments.

education research studies

  • 18 May 2021

How Georgia State University Increased Graduation Rates

Georgia State University was facing a growing "summer melt" problem, where nearly 20 percent of incoming students never actually enrolled. The university used a data-based approach to retain students of all racial, ethnic, and socioeconomic backgrounds and help them graduate. Professor Mike Toffel> and Harvard Advanced Leadership Initiative fellow Robin Mendelson discuss what the university learned about improving student success, while scaling its efforts to help other universities, in their case, “Student Success at Georgia State University.” Open for comment; 0 Comments.

education research studies

  • 13 Apr 2021
  • Working Paper Summaries

Population Interference in Panel Experiments

In panel experiments, units are exposed to different interventions over time. This article introduces a unifying framework for studying panel experiments with population interference, in which a treatment assigned to one experimental unit affects another experimental unit's outcome. Findings have implications for fields as diverse as education, economics, and public health.

education research studies

  • 23 Mar 2021

Managing Future Growth at an Innovative Workforce Education Startup

Guild Education is an education marketplace that connects employers and universities to provide employees with “education as a benefit.” Now CEO and co-founder Rachel Carlson must decide how to manage the company’s future growth. Professor Bill Sahlman discusses this unique startup and Carlson’s plans for its growth in his case, “Guild Education: Unlocking Opportunity for America's Workforce.” Open for comment; 0 Comments.

education research studies

  • 02 Feb 2021

Using Empathy and Curiosity to Overcome Differences

Bill Riddick, an African-American community leader and counselor, must find a way to bridge the divide between Black and white community leaders, who are on opposing sides of school integration in Durham, North Carolina, in 1971. Harvard Business School professor Francesca Gino and Jeffrey Huizinga explain how empathy and curiosity can foster understanding in divisive situations in their case, “Bill Riddick and the Durham S.O.S. Charrette.” Open for comment; 0 Comments.

Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

What Are the Most Important Education Research Findings in the Past 10 Years?

education research studies

  • Share article

(This is the first post in a two-part series.)

The new question-of-the-week is:

What do you think have been the most important education research findings from the past 10 years, and what areas are you hoping researchers focus on in the next 10 years?

There is so much education research out there, and much of it is inaccessible to K-12 teachers either because it’s written in arcane academic language or because it’s locked behind paywalls.

This series will try to highlight some of the most important findings that we teachers—and our students—can use.

Today, Beth M. Miller, Ph.D., and Jana Echevarria, Ph.D., share their reflections.

You might also be interested in many curated resources on ed. research at “Best” Lists o f the Week: Education Research .

Two ‘Streams’

Beth M. Miller, Ph.D., serves as the chief knowledge officer at EL Education. She leads the research, communications, and publications teams while mostly being in complete awe of the mad skills of her brilliant, compassionate, committed colleagues:

What happens in the learning process? Why do some students thrive at school and learn more than others, and why does this variation often reflect socially constructed racial and ethnic categories? In the last 10 years, two streams of research have vastly expanded our understanding of the answers to these complex but never-more-important questions.

Stream One: Research on How Students Learn

We now know, with greater clarity and evidence than ever, that learning is a social, emotional, and cognitive process. While early “brain research” findings were beginning to emerge 10 years ago (e.g., plasticity of the brain), in the past decade, this knowledge has converged in a growing science of learning and development (SoLD) with many important implications for instructional practices, school climate, and district policy.

Social-emotional learning (SEL) is deeply connected to academic achievement. We are increasingly learning that SEL can be developed in schools and that an integrated educational approach that deeply intertwines strands of social-emotional and academic development (versus teaching character as a siloed class on Tuesday mornings, for example) will be most effective.

Another key concept that has been developed through a body of evidence is the idea of mindset—how the student thinks of themself in relation to an idea or content will mediate their learning process and achievement. This insight from psychology, first developed by Carol Dweck, has resulted in a whole field of social psychology. Some of the short-term interventions have what seem like astounding results, because shifts in student mindset create a domino effect on motivation, self-efficacy, behavior, performance, and achievement.

For example, in several studies by David Yeager and his colleagues , teacher responses on a homework assignment communicating high expectations—and a belief that a student could reach these expectations—resulted in striking shifts in student academic performance over the course of a year. Teacher mindset also matters: When teachers who were trained on brain plasticity as it related to mathematics shifted their approach to teaching accordingly, doing so resulted in higher student achievement.

Stream Two: Research on the Impact of Racism in Education

Science of learning and development research can help to shift the dynamics of student experience and outcomes, but it is not enough to reach the goal we must attain: equitable learning opportunities and outcomes for all students. Another stream of research, less developed but equally imperative, is helping to uncover the ways that racism and other forms of marginalization create roadblocks to learning for millions of students and have throughout our history.

We can see this in the unequal financing of education between communities, the differences in teacher quality and facilities, and in the school experiences of millions of students. Despite the existence of brilliant students in every classroom and community, only some students will get the opportunity to develop to their full potential. In the last decade, research has highlighted how racism operates at every level of our education systems and, therefore, how to change it.

This body of research, often rooted in the theoretical work of scholars such as Gloria Ladson-Billings’ cconcept of “culturally relevant pedagogy” that she developed in the 1990s, includes ethnographic studies, correlational research, and quantitative large-scale studies, building a powerful body of evidence that racism and other forms of marginalization deeply and powerfully affect student achievement. Flipping the deficit-focused narrative of the “achievement gap” on its head, these researchers examine the resource gaps, opportunity gaps, racism, bias, and other processes and structures that drive differential experiences in school.

What we’ve learned might be a surprise to white people like me, but it only serves to expose the truth of what many people of color have experienced throughout their educational journey: Racism is deeply embedded in schools—by design, albeit often without conscious intention. Schools are a microcosm of our larger society. Without deep-seated, ongoing changes at multiple levels to shift that reality, racism remains a potent driver of school experiences and outcomes.

From research on the disproportionality of disciplinary practices to the impact on Black students of having even one Black teacher , we see racism—and other forms of marginalization—showing up anywhere we bring a lens to this study. We’ve learned a lot about the ways in which education policies, systems, and structures embed racism over the past decade. But that doesn’t mean individual teachers are off the hook: Multiple studies demonstrate the presence of negative perceptions and lower expectations of Black students on the part of many white teachers.

While deeply embedded policies and unconscious bias aren’t easy to shift, we are seeing evidence that it is not only possible to change these destructive dynamics, but also that this work significantly impacts student growth and learning. For example, a carefully designed training aimed at increasing teachers’ empathy for their students’ perspective by Jason Okonofua and colleagues shifted teachers from responding to behavior issues with punitive disciplinary practice to greater understanding and connection, leading to a 50 percent reduction in disciplinary actions. Other promising approaches, many rooted in culturally responsive education, from a community-center mathematics curriculum to the impact of ethnic - studies programs .

Where Do We Go From Here?

For the next 10 years, the most important work in education—whether in research studies or classrooms—will be in expanding the knowledge base where these two streams converge, i.e., combining what we know about how people learn, grow, and change with research that foregrounds the experiences and outcomes of historically marginalized students. After decades of education reforms that had little or no impact on the “stubborn” inequities in education, we have finally begun large-scale efforts to shift from measuring gaps to understanding why they exist and how we—not students—are the key to changing the dynamics. Some researchers, as well as organizations such as CASEL and the National Equity Project , are making progress, but we are in the early stages of this work. One thing we do know is that individual, incremental change will not create the equitable education system that our students deserve: Systemic changes in districts and charter networks will be needed, and we are only beginning the journey of creating the conditions at scale for all students to thrive.

One last note: We need to build on the current research base that demonstrates how disrupting racism benefits all students, including white students who will grow up in a diverse society. All students need the opportunity to experience what Rudine Sims Bishop coined “windows” as well as “mirrors” and deeply understand the multitude of experiences, histories, and perspectives we share in this country and around the world. Evidence that this learning matters—for all students—will help us create classrooms that enable us to build a better world.

researchhashighlightedmiller

English-Language Learners

Jana Echevarria, Ph.D., is professor emerita at California State University, Long Beach, where she was selected as Outstanding Professor. She is the co-developer of the SIOP Model of instruction for English-learners and the co-author of Making Content Comprehensible for English Learners: The SIOP Model and 99 Ideas and Activities for Teaching English Learners among other publications. Her blog is found at janaechevarria.com :

There are innumerable books, articles, and blogs written about what works with English-learners (ELs), but these resources don’t always reflect research-validated approaches and interventions. Empirical studies provide guidance for achieving desired outcomes that go beyond what intuitively seems like a good idea for teaching students in this population. The following areas of research are of particular importance in informing practice, especially for EL students.

Academic language . Cummins (1979) introduced the distinction between conversational language and academic language, and others more recently have discussed specific ways that academic language is challenging ( Scheppegrell, 2020 ), particularly for English - learners . Academic language is more formal and abstract than conversational language and uses complex sentence structure (e.g., embedded clauses and conjunctions), highly sophisticated, abstract vocabulary (e.g., representational democracy in social studies), and rhetorical forms (e.g., figurative language), and it is encountered almost exclusively in school.

Research has identified the critical relationship of academic language to reading comprehension, a cognitive and linguistic process needed to acquire and use knowledge in every academic-content area. As EL students become more proficient in English, they become more efficient readers and more similar to their English-speaking peers in their reading ability. Conversely, if EL students don’t become sufficiently proficient in English, they expend more cognitive effort, and their reading remains inefficient, which negatively affects achievement and motivation.

The importance of advancing academic-language development is clear. Findings verify that ELs don’t “pick up” academic language nor will the achievement gap close without explicit instruction in English-language development (ELD). A separate ELD time each day focusing on English-language instruction is critical but may not be sufficient for expediting English-language growth. In every content lesson, teaching key content vocabulary and exploiting teachable academic language-learning opportunities likely will enhance English proficiency.

Student assets . The idea that students come to school as empty vessels in need of filling has been dispelled. Indeed, students begin school with a minimum of five years of lived experiences, accumulated knowledge, and language development in their home language, and these continue to grow with each subsequent year. This treasure trove should be acknowledged and built upon as students learn academic content in school.

For English-learners, some lived experiences are culturally influenced, such as attending quinceañeras or receiving red envelopes as gifts, and others are common to their age group such as popular social media sites, video games, and sports. Linguistic knowledge in their home language can be used to bootstrap learning in English. Studies suggest that instructional routines that draw on students’ home language, their knowledge, and cultural assets support literacy development in English. Some examples of practices used in studies include previewing and reviewing materials in children’s home language, providing opportunities for students to engage in conversations around text with peers using their home language when needed, giving definitions for key vocabulary terms in both English and their home language, and introducing key concepts by connecting them to students’ knowledge or experience in the home and community.

Teachers who don’t speak the language of their students shouldn’t be apprehensive about using these types of practices. Many technologies assist in translating words and definitions, and peers can be used as supports by grouping students with a common home language together for discussions, then asking each group to summarize their discussion in English. Further, as teachers practice a dynamic interaction style with students, they will learn about students’ lived experiences which, in turn, can be used to connect lesson content to what students know and have experienced.

Capitalizing on students’ linguistic and experiential assets by linking them to content, materials, and activities has motivational and engagement benefits and contributes to EL students’ sense of belonging and well-being.

Reading foundations. Much has been written recently about the science of reading , a discussion that spans decades. However, little research specifically addresses English-learners and how teaching reading may or may not differ for this population. Goldenberg (2020) conducted a review of research on reading and English-learners. He summarizes the findings and draws several conclusions. First, learning to read is similar for English-learners and English-speaking students. EL students must learn the same foundational skills as English-proficient students. As Goldenberg says, “Full-fledged literacy certainly requires more, but there is a reason this group of skills is called foundational: It is required for the literacy edifice under construction. As with any building, if all you have is a foundation, you do not have much. Yet, a solid foundation is still essential” (p.133).

Secondly, along with foundational skills, additional supports are required for EL students so that instruction in English is made comprehensible to them. They need additional instruction in the vocabulary found in text, especially for beginning speakers who are learning to recognize new words as they are read. Also beneficial is additional repetition and rehearsal as well as opportunities to practice. Specifically, beginning readers need practice in developing oral language, primarily in the form of effective ELD instruction to boost English proficiency.

Lastly, as EL students advance through the grades, the academic language required to navigate grade-level texts and the disciplinary knowledge students need to comprehend texts become increasingly complex and demanding. Oral English-language instruction and support needs to match the level of challenge for these students, particularly in language-intensive subjects.

Future research

Developing English proficiency arguably has the greatest impact on success in school. Understanding and responding to the specific ways that academic language is most efficiently developed might offer ways for teaching ELD most effectively and result in accelerated English acquisition. Current studies show the importance of oral language for ELs to improve early literacy, but which components of the interventions were most impactful remain unknown.

Secondly, the effects of different instructional arrangements on EL students’ achievement should be explored. Debate continues around issues such as whether pullout or push-in services are more effective, the optimal amount of time devoted to ELD instruction, and whether to group ELs together or with English-speaking peers. These are areas of practice that warrant investigation.

theideathatstudentsjana

Thanks to Beth and Jana for contributing their thoughts.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones are not yet available). And if you missed any of the highlights from the first 10 years of this blog, you can see a categorized list below.

  • The 11 Most Popular Classroom Q&A Posts of the Year
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Challenging Normative Gender Culture in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech With Students
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Screen Shot 2024 03 12 at 6.45.38 AM

Sign Up & Sign In

module image 9

  • Open access
  • Published: 10 March 2020

Research and trends in STEM education: a systematic review of journal publications

  • Yeping Li 1 ,
  • Ke Wang 2 ,
  • Yu Xiao 1 &
  • Jeffrey E. Froyd 3  

International Journal of STEM Education volume  7 , Article number:  11 ( 2020 ) Cite this article

164k Accesses

149 Citations

5 Altmetric

Metrics details

With the rapid increase in the number of scholarly publications on STEM education in recent years, reviews of the status and trends in STEM education research internationally support the development of the field. For this review, we conducted a systematic analysis of 798 articles in STEM education published between 2000 and the end of 2018 in 36 journals to get an overview about developments in STEM education scholarship. We examined those selected journal publications both quantitatively and qualitatively, including the number of articles published, journals in which the articles were published, authorship nationality, and research topic and methods over the years. The results show that research in STEM education is increasing in importance internationally and that the identity of STEM education journals is becoming clearer over time.

Introduction

A recent review of 144 publications in the International Journal of STEM Education ( IJ - STEM ) showed how scholarship in science, technology, engineering, and mathematics (STEM) education developed between August 2014 and the end of 2018 through the lens of one journal (Li, Froyd, & Wang, 2019 ). The review of articles published in only one journal over a short period of time prompted the need to review the status and trends in STEM education research internationally by analyzing articles published in a wider range of journals over a longer period of time.

With global recognition of the growing importance of STEM education, we have witnessed the urgent need to support research and scholarship in STEM education (Li, 2014 , 2018a ). Researchers and educators have responded to this on-going call and published their scholarly work through many different publication outlets including journals, books, and conference proceedings. A simple Google search with the term “STEM,” “STEM education,” or “STEM education research” all returned more than 450,000,000 items. Such voluminous information shows the rapidly evolving and vibrant field of STEM education and sheds light on the volume of STEM education research. In any field, it is important to know and understand the status and trends in scholarship for the field to develop and be appropriately supported. This applies to STEM education.

Conducting systematic reviews to explore the status and trends in specific disciplines is common in educational research. For example, researchers surveyed the historical development of research in mathematics education (Kilpatrick, 1992 ) and studied patterns in technology usage in mathematics education (Bray & Tangney, 2017 ; Sokolowski, Li, & Willson, 2015 ). In science education, Tsai and his colleagues have conducted a sequence of reviews of journal articles to synthesize research trends in every 5 years since 1998 (i.e., 1998–2002, 2003–2007, 2008–2012, and 2013–2017), based on publications in three main science education journals including, Science Education , the International Journal of Science Education , and the Journal of Research in Science Teaching (e.g., Lin, Lin, Potvin, & Tsai, 2019 ; Tsai & Wen, 2005 ). Erduran, Ozdem, and Park ( 2015 ) reviewed argumentation in science education research from 1998 to 2014 and Minner, Levy, and Century ( 2010 ) reviewed inquiry-based science instruction between 1984 and 2002. There are also many literature reviews and syntheses in engineering and technology education (e.g., Borrego, Foster, & Froyd, 2015 ; Xu, Williams, Gu, & Zhang, 2019 ). All of these reviews have been well received in different fields of traditional disciplinary education as they critically appraise and summarize the state-of-art of relevant research in a field in general or with a specific focus. Both types of reviews have been conducted with different methods for identifying, collecting, and analyzing relevant publications, and they differ in terms of review aim and topic scope, time period, and ways of literature selection. In this review, we systematically analyze journal publications in STEM education research to overview STEM education scholarship development broadly and globally.

The complexity and ambiguity of examining the status and trends in STEM education research

A review of research development in a field is relatively straight forward, when the field is mature and its scope can be well defined. Unlike discipline-based education research (DBER, National Research Council, 2012 ), STEM education is not a well-defined field. Conducting a comprehensive literature review of STEM education research require careful thought and clearly specified scope to tackle the complexity naturally associated with STEM education. In the following sub-sections, we provide some further discussion.

Diverse perspectives about STEM and STEM education

STEM education as explicated by the term does not have a long history. The interest in helping students learn across STEM fields can be traced back to the 1990s when the US National Science Foundation (NSF) formally included engineering and technology with science and mathematics in undergraduate and K-12 school education (e.g., National Science Foundation, 1998 ). It coined the acronym SMET (science, mathematics, engineering, and technology) that was subsequently used by other agencies including the US Congress (e.g., United States Congress House Committee on Science, 1998 ). NSF also coined the acronym STEM to replace SMET (e.g., Christenson, 2011 ; Chute, 2009 ) and it has become the acronym of choice. However, a consensus has not been reached on the disciplines included within STEM.

To clarify its intent, NSF published a list of approved fields it considered under the umbrella of STEM (see http://bit.ly/2Bk1Yp5 ). The list not only includes disciplines widely considered under the STEM tent (called “core” disciplines, such as physics, chemistry, and materials research), but also includes disciplines in psychology and social sciences (e.g., political science, economics). However, NSF’s list of STEM fields is inconsistent with other federal agencies. Gonzalez and Kuenzi ( 2012 ) noted that at least two US agencies, the Department of Homeland Security and Immigration and Customs Enforcement, use a narrower definition that excludes social sciences. Researchers also view integration across different disciplines of STEM differently using various terms such as, multidisciplinary, interdisciplinary, and transdisciplinary (Vasquez, Sneider, & Comer, 2013 ). These are only two examples of the ambiguity and complexity in describing and specifying what constitutes STEM.

Multiple perspectives about the meaning of STEM education adds further complexity to determining the extent to which scholarly activity can be categorized as STEM education. For example, STEM education can be viewed with a broad and inclusive perspective to include education in the individual disciplines of STEM, i.e., science education, technology education, engineering education, and mathematics education, as well as interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (English, 2016 ; Li, 2014 ). On the other hand, STEM education can be viewed by others as referring only to interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines (Honey, Pearson, & Schweingruber, 2014 ; Johnson, Peters-Burton, & Moore, 2015 ; Kelley & Knowles, 2016 ; Li, 2018a ). These multiple perspectives allow scholars to publish articles in a vast array and diverse journals, as long as journals are willing to take the position as connected with STEM education. At the same time, however, the situation presents considerable challenges for researchers intending to locate, identify, and classify publications as STEM education research. To tackle such challenges, we tried to find out what we can learn from prior reviews related to STEM education.

Guidance from prior reviews related to STEM education

A search for reviews of STEM education research found multiple reviews that could suggest approaches for identifying publications (e.g., Brown, 2012 ; Henderson, Beach, & Finkelstein, 2011 ; Kim, Sinatra, & Seyranian, 2018 ; Margot & Kettler, 2019 ; Minichiello, Hood, & Harkness, 2018 ; Mizell & Brown, 2016 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). The review conducted by Brown ( 2012 ) examined the research base of STEM education. He addressed the complexity and ambiguity by confining the review with publications in eight journals, two in each individual discipline, one academic research journal (e.g., the Journal of Research in Science Teaching ) and one practitioner journal (e.g., Science Teacher ). Journals were selected based on suggestions from some faculty members and K-12 teachers. Out of 1100 articles published in these eight journals from January 1, 2007, to October 1, 2010, Brown located 60 articles that authors self-identified as connected to STEM education. He found that the vast majority of these 60 articles focused on issues beyond an individual discipline and there was a research base forming for STEM education. In a follow-up study, Mizell and Brown ( 2016 ) reviewed articles published from January 2013 to October 2015 in the same eight journals plus two additional journals. Mizell and Brown used the same criteria to identify and include articles that authors self-identified as connected to STEM education, i.e., if the authors included STEM in the title or author-supplied keywords. In comparison to Brown’s findings, they found that many more STEM articles were published in a shorter time period and by scholars from many more different academic institutions. Taking together, both Brown ( 2012 ) and Mizell and Brown ( 2016 ) tended to suggest that STEM education mainly consists of interdisciplinary or cross-disciplinary combinations of the individual STEM disciplines, but their approach consisted of selecting a limited number of individual discipline-based journals and then selecting articles that authors self-identified as connected to STEM education.

In contrast to reviews on STEM education, in general, other reviews focused on specific issues in STEM education (e.g., Henderson et al., 2011 ; Kim et al., 2018 ; Margot & Kettler, 2019 ; Minichiello et al., 2018 ; Schreffler, Vasquez III, Chini, & James, 2019 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ). For example, the review by Henderson et al. ( 2011 ) focused on instructional change in undergraduate STEM courses based on 191 conceptual and empirical journal articles published between 1995 and 2008. Margot and Kettler ( 2019 ) focused on what is known about teachers’ values, beliefs, perceived barriers, and needed support related to STEM education based on 25 empirical journal articles published between 2000 and 2016. The focus of these reviews allowed the researchers to limit the number of articles considered, and they typically used keyword searches of selected databases to identify articles on STEM education. Some researchers used this approach to identify publications from journals only (e.g., Henderson et al., 2011 ; Margot & Kettler, 2019 ; Schreffler et al., 2019 ), and others selected and reviewed publications beyond journals (e.g., Minichiello et al., 2018 ; Thibaut et al., 2018 ; Wu & Rau, 2019 ).

The discussion in this section suggests possible reasons contributing to the absence of a general literature review of STEM education research and development: (1) diverse perspectives in existence about STEM and STEM education that contribute to the difficulty of specifying a scope of literature review, (2) its short but rapid development history in comparison to other discipline-based education (e.g., science education), and (3) difficulties in deciding how to establish the scope of the literature review. With respect to the third reason, prior reviews have used one of two approaches to identify and select articles: (a) identifying specific journals first and then searching and selecting specific articles from these journals (e.g., Brown, 2012 ; Erduran et al., 2015 ; Mizell & Brown, 2016 ) and (b) conducting selected database searches with keywords based on a specific focus (e.g., Margot & Kettler, 2019 ; Thibaut et al., 2018 ). However, neither the first approach of selecting a limited number of individual discipline-based journals nor the second approach of selecting a specific focus for the review leads to an approach that provides a general overview of STEM education scholarship development based on existing journal publications.

Current review

Two issues were identified in setting the scope for this review.

What time period should be considered?

What publications will be selected for review?

Time period

We start with the easy one first. As discussed above, the acronym STEM did exist until the early 2000s. Although the existence of the acronym does not generate scholarship on student learning in STEM disciplines, it is symbolic and helps focus attention to efforts in STEM education. Since we want to examine the status and trends in STEM education, it is reasonable to start with the year 2000. Then, we can use the acronym of STEM as an identifier in locating specific research articles in a way as done by others (e.g., Brown, 2012 ; Mizell & Brown, 2016 ). We chose the end of 2018 as the end of the time period for our review that began during 2019.

Focusing on publications beyond individual discipline-based journals

As mentioned before, scholars responded to the call for scholarship development in STEM education with publications that appeared in various outlets and diverse languages, including journals, books, and conference proceedings. However, journal publications are typically credited and valued as one of the most important outlets for research exchange (e.g., Erduran et al., 2015 ; Henderson et al., 2011 ; Lin et al., 2019 ; Xu et al., 2019 ). Thus, in this review, we will also focus on articles published in journals in English.

The discourse above on the complexity and ambiguity regarding STEM education suggests that scholars may publish their research in a wide range of journals beyond individual discipline-based journals. To search and select articles from a wide range of journals, we thought about the approach of searching selected databases with keywords as other scholars used in reviewing STEM education with a specific focus. However, existing journals in STEM education do not have a long history. In fact, IJ-STEM is the first journal in STEM education that has just been accepted into the Social Sciences Citation Index (SSCI) (Li, 2019a ). Publications in many STEM education journals are practically not available in several important and popular databases, such as the Web of Science and Scopus. Moreover, some journals in STEM education were not normalized due to a journal’s name change or irregular publication schedule. For example, the Journal of STEM Education was named as Journal of SMET Education when it started in 2000 in a print format, and the journal’s name was not changed until 2003, Vol 4 (3 and 4), and also went fully on-line starting 2004 (Raju & Sankar, 2003 ). A simple Google Scholar search with keywords will not be able to provide accurate information, unless you visit the journal’s website to check all publications over the years. Those added complexities prevented us from taking the database search as a viable approach. Thus, we decided to identify journals first and then search and select articles from these journals. Further details about the approach are provided in the “ Method ” section.

Research questions

Given a broader range of journals and a longer period of time to be covered in this review, we can examine some of the same questions as the IJ-STEM review (Li, Froyd, & Wang, 2019 ), but we do not have access to data on readership, articles accessed, or articles cited for the other journals selected for this review. Specifically, we are interested in addressing the following six research questions:

What were the status and trends in STEM education research from 2000 to the end of 2018 based on journal publications?

What were the patterns of publications in STEM education research across different journals?

Which countries or regions, based on the countries or regions in which authors were located, contributed to journal publications in STEM education?

What were the patterns of single-author and multiple-author publications in STEM education?

What main topics had emerged in STEM education research based on the journal publications?

What research methods did authors tend to use in conducting STEM education research?

Based on the above discussion, we developed the methods for this literature review to follow careful sequential steps to identify journals first and then identify and select STEM education research articles published in these journals from January 2000 to the end of 2018. The methods should allow us to obtain a comprehensive overview about the status and trends of STEM education research based on a systematic analysis of related publications from a broad range of journals and over a longer period of time.

Identifying journals

We used the following three steps to search and identify journals for inclusion:

We assumed articles on research in STEM education have been published in journals that involve more than one traditional discipline. Thus, we used Google to search and identify all education journals with their titles containing either two, three, or all four disciplines of STEM. For example, we did Google search of all the different combinations of three areas of science, mathematics, technology Footnote 1 , and engineering as contained in a journal’s title. In addition, we also searched possible journals containing the word STEAM in the title.

Since STEM education may be viewed as encompassing discipline-based education research, articles on STEM education research may have been published in traditional discipline-based education journals, such as the Journal of Research in Science Teaching . However, there are too many such journals. Yale’s Poorvu Center for Teaching and Learning has listed 16 journals that publish articles spanning across undergraduate STEM education disciplines (see https://poorvucenter.yale.edu/FacultyResources/STEMjournals ). Thus, we selected from the list some individual discipline-based education research journals, and also added a few more common ones such as the Journal of Engineering Education .

Since articles on research in STEM education have appeared in some general education research journals, especially those well-established ones. Thus, we identified and selected a few of those journals that we noticed some publications in STEM education research.

Following the above three steps, we identified 45 journals (see Table  1 ).

Identifying articles

In this review, we will not discuss or define the meaning of STEM education. We used the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) as a term in our search of publication titles and/or abstracts. To identify and select articles for review, we searched all items published in those 45 journals and selected only those articles that author(s) self-identified with the acronym STEM (or STEAM, or written as the phrase of “science, technology, engineering, and mathematics”) in the title and/or abstract. We excluded publications in the sections of practices, letters to editors, corrections, and (guest) editorials. Our search found 798 publications that authors self-identified as in STEM education, identified from 36 journals. The remaining 9 journals either did not have publications that met our search terms or published in another language other than English (see the two separate lists in Table 1 ).

Data analysis

To address research question 3, we analyzed authorship to examine which countries/regions contributed to STEM education research over the years. Because each publication may have either one or multiple authors, we used two different methods to analyze authorship nationality that have been recognized as valuable from our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). The first method considers only the corresponding author’s (or the first author, if no specific indication is given about the corresponding author) nationality and his/her first institution affiliation, if multiple institution affiliations are listed. Method 2 considers every author of a publication, using the following formula (Howard, Cole, & Maxwell, 1987 ) to quantitatively assign and estimate each author’s contribution to a publication (and thus associated institution’s productivity), when multiple authors are included in a publication. As an example, each publication is given one credit point. For the publication co-authored by two, the first author would be given 0.6 and the second author 0.4 credit point. For an article contributed jointly by three authors, the three authors would be credited with scores of 0.47, 0.32, and 0.21, respectively.

After calculating all the scores for each author of each paper, we added all the credit scores together in terms of each author’s country/region. For brevity, we present only the top 10 countries/regions in terms of their total credit scores calculated using these two different methods, respectively.

To address research question 5, we used the same seven topic categories identified and used in our review of IJ-STEM publications (Li, Froyd, & Wang, 2019 ). We tested coding 100 articles first to ensure the feasibility. Through test-coding and discussions, we found seven topic categories could be used to examine and classify all 798 items.

K-12 teaching, teacher, and teacher education in STEM (including both pre-service and in-service teacher education)

Post-secondary teacher and teaching in STEM (including faculty development, etc.)

K-12 STEM learner, learning, and learning environment

Post-secondary STEM learner, learning, and learning environments (excluding pre-service teacher education)

Policy, curriculum, evaluation, and assessment in STEM (including literature review about a field in general)

Culture and social and gender issues in STEM education

History, epistemology, and perspectives about STEM and STEM education

To address research question 6, we coded all 798 publications in terms of (1) qualitative methods, (2) quantitative methods, (3) mixed methods, and (4) non-empirical studies (including theoretical or conceptual papers, and literature reviews). We assigned each publication to only one research topic and one method, following the process used in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). When there was more than one topic or method that could have been used for a publication, a decision was made in choosing and assigning a topic or a method. The agreement between two coders for all 798 publications was 89.5%. When topic and method coding discrepancies occurred, a final decision was reached after discussion.

Results and discussion

In the following sections, we report findings as corresponding to each of the six research questions.

The status and trends of journal publications in STEM education research from 2000 to 2018

Figure  1 shows the number of publications per year. As Fig.  1 shows, the number of publications increased each year beginning in 2010. There are noticeable jumps from 2015 to 2016 and from 2017 to 2018. The result shows that research in STEM education had grown significantly since 2010, and the most recent large number of STEM education publications also suggests that STEM education research gained its own recognition by many different journals for publication as a hot and important topic area.

figure 1

The distribution of STEM education publications over the years

Among the 798 articles, there were 549 articles with the word “STEM” (or STEAM, or written with the phrase of “science, technology, engineering, and mathematics”) included in the article’s title or both title and abstract and 249 articles without such identifiers included in the title but abstract only. The results suggest that many scholars tended to include STEM in the publications’ titles to highlight their research in or about STEM education. Figure  2 shows the number of publications per year where publications are distinguished depending on whether they used the term STEM in the title or only in the abstract. The number of publications in both categories had significant increases since 2010. Use of the acronym STEM in the title was growing at a faster rate than using the acronym only in the abstract.

figure 2

The trends of STEM education publications with vs. without STEM included in the title

Not all the publications that used the acronym STEM in the title and/or abstract reported on a study involving all four STEM areas. For each publication, we further examined the number of the four areas involved in the reported study.

Figure  3 presents the number of publications categorized by the number of the four areas involved in the study, breaking down the distribution of these 798 publications in terms of the content scope being focused on. Studies involving all four STEM areas are the most numerous with 488 (61.2%) publications, followed by involving one area (141, 17.7%), then studies involving both STEM and non-STEM (84, 10.5%), and finally studies involving two or three areas of STEM (72, 9%; 13, 1.6%; respectively). Publications that used the acronym STEAM in either the title or abstract were classified as involving both STEM and non-STEM. For example, both of the following publications were included in this category.

Dika and D’Amico ( 2016 ). “Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors.” Journal of Research in Science Teaching , 53 (3), 368–383. (Note: this article focused on early experience in both STEM and Non-STEM majors.)

Sochacka, Guyotte, and Walther ( 2016 ). “Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education.” Journal of Engineering Education , 105 (1), 15–42. (Note: this article focused on STEAM (both STEM and Arts).)

figure 3

Publication distribution in terms of content scope being focused on. (Note: 1=single subject of STEM, 2=two subjects of STEM, 3=three subjects of STEM, 4=four subjects of STEM, 5=topics related to both STEM and non-STEM)

Figure  4 presents the number of publications per year in each of the five categories described earlier (category 1, one area of STEM; category 2, two areas of STEM; category 3, three areas of STEM; category 4, four areas of STEM; category 5, STEM and non-STEM). The category that had grown most rapidly since 2010 is the one involving all four areas. Recent growth in the number of publications in category 1 likely reflected growing interest of traditional individual disciplinary based educators in developing and sharing multidisciplinary and interdisciplinary scholarship in STEM education, as what was noted recently by Li and Schoenfeld ( 2019 ) with publications in IJ-STEM.

figure 4

Publication distribution in terms of content scope being focused on over the years

Patterns of publications across different journals

Among the 36 journals that published STEM education articles, two are general education research journals (referred to as “subject-0”), 12 with their titles containing one discipline of STEM (“subject-1”), eight with journal’s titles covering two disciplines of STEM (“subject-2”), six covering three disciplines of STEM (“subject-3”), seven containing the word STEM (“subject-4”), and one in STEAM education (“subject-5”).

Table  2 shows that both subject-0 and subject-1 journals were usually mature journals with a long history, and they were all traditional subscription-based journals, except the Journal of Pre - College Engineering Education Research , a subject-1 journal established in 2011 that provided open access (OA). In comparison to subject-0 and subject-1 journals, subject-2 and subject-3 journals were relatively newer but still had quite many years of history on average. There are also some more journals in these two categories that provided OA. Subject-4 and subject-5 journals had a short history, and most provided OA. The results show that well-established journals had tended to focus on individual disciplines or education research in general. Multidisciplinary and interdisciplinary education journals were started some years later, followed by the recent establishment of several STEM or STEAM journals.

Table 2 also shows that subject-1, subject-2, and subject-4 journals published approximately a quarter each of the publications. The number of publications in subject-1 journals is interested, because we selected a relatively limited number of journals in this category. There are many other journals in the subject-1 category (as well as subject-0 journals) that we did not select, and thus it is very likely that we did not include some STEM education articles published in subject-0 or subject-1 journals that we did not include in our study.

Figure  5 shows the number of publications per year in each of the five categories described earlier (subject-0 through subject-5). The number of publications per year in subject-5 and subject-0 journals did not change much over the time period of the study. On the other hand, the number of publications per year in subject-4 (all 4 areas), subject-1 (single area), and subject-2 journals were all over 40 by the end of the study period. The number of publications per year in subject-3 journals increased but remained less than 30. At first sight, it may be a bit surprising that the number of publications in STEM education per year in subject-1 journals increased much faster than those in subject-2 journals over the past few years. However, as Table 2 indicates these journals had long been established with great reputations, and scholars would like to publish their research in such journals. In contrast to the trend in subject-1 journals, the trend in subject-4 journals suggests that STEM education journals collectively started to gain its own identity for publishing and sharing STEM education research.

figure 5

STEM education publication distribution across different journal categories over the years. (Note: 0=subject-0; 1=subject-1; 2=subject-2; 3=subject-3; 4=subject-4; 5=subject-5)

Figure  6 shows the number of STEM education publications in each journal where the bars are color-coded (yellow, subject-0; light blue, subject-1; green, subject-2; purple, subject-3; dark blue, subject-4; and black, subject-5). There is no clear pattern shown in terms of the overall number of STEM education publications across categories or journals, but very much individual journal-based performance. The result indicates that the number of STEM education publications might heavily rely on the individual journal’s willingness and capability of attracting STEM education research work and thus suggests the potential value of examining individual journal’s performance.

figure 6

Publication distribution across all 36 individual journals across different categories with the same color-coded for journals in the same subject category

The top five journals in terms of the number of STEM education publications are Journal of Science Education and Technology (80 publications, journal number 25 in Fig.  6 ), Journal of STEM Education (65 publications, journal number 26), International Journal of STEM Education (64 publications, journal number 17), International Journal of Engineering Education (54 publications, journal number 12), and School Science and Mathematics (41 publications, journal number 31). Among these five journals, two journals are specifically on STEM education (J26, J17), two on two subjects of STEM (J25, J31), and one on one subject of STEM (J12).

Figure  7 shows the number of STEM education publications per year in each of these top five journals. As expected, based on earlier trends, the number of publications per year increased over the study period. The largest increase was in the International Journal of STEM Education (J17) that was established in 2014. As the other four journals were all established in or before 2000, J17’s short history further suggests its outstanding performance in attracting and publishing STEM education articles since 2014 (Li, 2018b ; Li, Froyd, & Wang, 2019 ). The increase was consistent with the journal’s recognition as the first STEM education journal for inclusion in SSCI starting in 2019 (Li, 2019a ).

figure 7

Publication distribution of selected five journals over the years. (Note: J12: International Journal of Engineering Education; J17: International Journal of STEM Education; J25: Journal of Science Education and Technology; J26: Journal of STEM Education; J31: School Science and Mathematics)

Top 10 countries/regions where scholars contributed journal publications in STEM education

Table  3 shows top countries/regions in terms of the number of publications, where the country/region was established by the authorship using the two different methods presented above. About 75% (depending on the method) of contributions were made by authors from the USA, followed by Australia, Canada, Taiwan, and UK. Only Africa as a continent was not represented among the top 10 countries/regions. The results are relatively consistent with patterns reported in the IJ-STEM study (Li, Froyd, & Wang, 2019 )

Further examination of Table 3 reveals that the two methods provide not only fairly consistent results but also yield some differences. For example, Israel and Germany had more publication credit if only the corresponding author was considered, but South Korea and Turkey had more publication credit when co-authors were considered. The results in Table 3 show that each method has value when analyzing and comparing publications by country/region or institution based on authorship.

Recognizing that, as shown in Fig. 1 , the number of publications per year increased rapidly since 2010, Table  4 shows the number of publications by country/region over a 10-year period (2009–2018) and Table 5 shows the number of publications by country/region over a 5-year period (2014–2018). The ranks in Tables  3 , 4 , and 5 are fairly consistent, but that would be expected since the larger numbers of publications in STEM education had occurred in recent years. At the same time, it is interesting to note in Table 5 some changes over the recent several years with Malaysia, but not Israel, entering the top 10 list when either method was used to calculate author's credit.

Patterns of single-author and multiple-author publications in STEM education

Since STEM education differs from traditional individual disciplinary education, we are interested in determining how common joint co-authorship with collaborations was in STEM education articles. Figure  8 shows that joint co-authorship was very common among these 798 STEM education publications, with 83.7% publications with two or more co-authors. Publications with two, three, or at least five co-authors were highest, with 204, 181, and 157 publications, respectively.

figure 8

Number of publications with single or different joint authorship. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Figure  9 shows the number of publications per year using the joint authorship categories in Fig.  8 . Each category shows an increase consistent with the increase shown in Fig. 1 for all 798 publications. By the end of the time period, the number of publications with two, three, or at least five co-authors was the largest, which might suggest an increase in collaborations in STEM education research.

figure 9

Publication distribution with single or different joint authorship over the years. (Note: 1=single author; 2=two co-authors; 3=three co-authors; 4=four co-authors; 5=five or more co-authors)

Co-authors can be from the same or different countries/regions. Figure  10 shows the number of publications per year by single authors (no collaboration), co-authors from the same country (collaboration in a country/region), and co-authors from different countries (collaboration across countries/regions). Each year the largest number of publications was by co-authors from the same country, and the number increased dramatically during the period of the study. Although the number of publications in the other two categories increased, the numbers of publications were noticeably fewer than the number of publications by co-authors from the same country.

figure 10

Publication distribution in authorship across different categories in terms of collaboration over the years

Published articles by research topics

Figure  11 shows the number of publications in each of the seven topic categories. The topic category of goals, policy, curriculum, evaluation, and assessment had almost half of publications (375, 47%). Literature reviews were included in this topic category, as providing an overview assessment of education and research development in a topic area or a field. Sample publications included in this category are listed as follows:

DeCoito ( 2016 ). “STEM education in Canada: A knowledge synthesis.” Canadian Journal of Science , Mathematics and Technology Education , 16 (2), 114–128. (Note: this article provides a national overview of STEM initiatives and programs, including success, criteria for effective programs and current research in STEM education.)

Ring-Whalen, Dare, Roehrig, Titu, and Crotty ( 2018 ). “From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units.” International Journal of Education in Mathematics Science and Technology , 6 (4), 343–362. (Note: this article investigates the conceptions of integrated STEM education held by in-service science teachers through the use of photo-elicitation interviews and examines how those conceptions were reflected in teacher-created integrated STEM curricula.)

Schwab et al. ( 2018 ). “A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation.” Journal of Research in STEM Education , 4 (2), 117–129. (Note: the article details the organization and scope of the Foundation in Science and Mathematics Program and evaluates this program.)

figure 11

Frequencies of publications’ research topic distributions. (Note: 1=K-12 teaching, teacher and teacher education; 2=Post-secondary teacher and teaching; 3=K-12 STEM learner, learning, and learning environment; 4=Post-secondary STEM learner, learning, and learning environments; 5=Goals and policy, curriculum, evaluation, and assessment (including literature review); 6=Culture, social, and gender issues; 7=History, philosophy, Epistemology, and nature of STEM and STEM education)

The topic with the second most publications was “K-12 teaching, teacher and teacher education” (103, 12.9%), followed closely by “K-12 learner, learning, and learning environment” (97, 12.2%). The results likely suggest the research community had a broad interest in both teaching and learning in K-12 STEM education. The top three topics were the same in the IJ-STEM review (Li, Froyd, & Wang, 2019 ).

Figure  11 also shows there was a virtual tie between two topics with the fourth most cumulative publications, “post-secondary STEM learner & learning” (76, 9.5%) and “culture, social, and gender issues in STEM” (78, 9.8%), such as STEM identity, students’ career choices in STEM, and inclusion. This result is different from the IJ-STEM review (Li, Froyd, & Wang, 2019 ), where “post-secondary STEM teacher & teaching” and “post-secondary STEM learner & learning” were tied as the fourth most common topics. This difference is likely due to the scope of journals and the length of the time period being reviewed.

Figure  12 shows the number of publications per year in each topic category. As expected from the results in Fig.  11 the number of publications in topic category 5 (goals, policy, curriculum, evaluation, and assessment) was the largest each year. The numbers of publications in topic category 3 (K-12 learner, learning, and learning environment), 1 (K-12 teaching, teacher, and teacher education), 6 (culture, social, and gender issues in STEM), and 4 (post-secondary STEM learner and learning) were also increasing. Although Fig.  11 shows the number of publications in topic category 1 was slightly more than the number of publications in topic category 3 (see Fig.  11 ), the number of publications in topic category 3 was increasing more rapidly in recent years than its counterpart in topic category 1. This may suggest a more rapidly growing interest in K-12 STEM learner, learning, and learning environment. The numbers of publications in topic categories 2 and 7 were not increasing, but the number of publications in IJ-STEM in topic category 2 was notable (Li, Froyd, & Wang, 2019 ). It will be interesting to follow trends in the seven topic categories in the future.

figure 12

Publication distributions in terms of research topics over the years

Published articles by research methods

Figure  13 shows the number of publications per year by research methods in empirical studies. Publications with non-empirical studies are shown in a separate category. Although the number of publications in each of the four categories increased during the study period, there were many more publications presenting empirical studies than those without. For those with empirical studies, the number of publications using quantitative methods increased most rapidly in recent years, followed by qualitative and then mixed methods. Although there were quite many publications with non-empirical studies (e.g., theoretical or conceptual papers, literature reviews) during the study period, the increase of the number of publications in this category was noticeably less than empirical studies.

figure 13

Publication distributions in terms of research methods over the years. (Note: 1=qualitative, 2=quantitative, 3=mixed, 4=Non-empirical)

Concluding remarks

The systematic analysis of publications that were considered to be in STEM education in 36 selected journals shows tremendous growth in scholarship in this field from 2000 to 2018, especially over the past 10 years. Our analysis indicates that STEM education research has been increasingly recognized as an important topic area and studies were being published across many different journals. Scholars still hold diverse perspectives about how research is designated as STEM education; however, authors have been increasingly distinguishing their articles with STEM, STEAM, or related words in the titles, abstracts, and lists of keywords during the past 10 years. Moreover, our systematic analysis shows a dramatic increase in the number of publications in STEM education journals in recent years, which indicates that these journals have been collectively developing their own professional identity. In addition, the International Journal of STEM Education has become the first STEM education journal to be accepted in SSCI in 2019 (Li, 2019a ). The achievement may mark an important milestone as STEM education journals develop their own identity for publishing and sharing STEM education research.

Consistent with our previous reviews (Li, Froyd, & Wang, 2019 ; Li, Wang, & Xiao, 2019 ), the vast majority of publications in STEM education research were contributed by authors from the USA, where STEM and STEAM education originated, followed by Australia, Canada, and Taiwan. At the same time, authors in some countries/regions in Asia were becoming very active in the field over the past several years. This trend is consistent with findings from the IJ-STEM review (Li, Froyd, & Wang, 2019 ). We certainly hope that STEM education scholarship continues its development across all five continents to support educational initiatives and programs in STEM worldwide.

Our analysis has shown that collaboration, as indicated by publications with multiple authors, has been very common among STEM education scholars, as that is often how STEM education distinguishes itself from the traditional individual disciplinary based education. Currently, most collaborations occurred among authors from the same country/region, although collaborations across cross-countries/regions were slowly increasing.

With the rapid changes in STEM education internationally (Li, 2019b ), it is often difficult for researchers to get an overall sense about possible hot topics in STEM education especially when STEM education publications appeared in a vast array of journals across different fields. Our systematic analysis of publications has shown that studies in the topic category of goals, policy, curriculum, evaluation, and assessment have been the most prevalent, by far. Our analysis also suggests that the research community had a broad interest in both teaching and learning in K-12 STEM education. These top three topic categories are the same as in the IJ-STEM review (Li, Froyd, & Wang, 2019 ). Work in STEM education will continue to evolve and it will be interesting to review the trends in another 5 years.

Encouraged by our recent IJ-STEM review, we began this review with an ambitious goal to provide an overview of the status and trends of STEM education research. In a way, this systematic review allowed us to achieve our initial goal with a larger scope of journal selection over a much longer period of publication time. At the same time, there are still limitations, such as the decision to limit the number of journals from which we would identify publications for analysis. We understand that there are many publications on STEM education research that were not included in our review. Also, we only identified publications in journals. Although this is one of the most important outlets for scholars to share their research work, future reviews could examine publications on STEM education research in other venues such as books, conference proceedings, and grant proposals.

Availability of data and materials

The data and materials used and analyzed for the report are publicly available at the various journal websites.

Journals containing the word "computers" or "ICT" appeared automatically when searching with the word "technology". Thus, the word of "computers" or "ICT" was taken as equivalent to "technology" if appeared in a journal's name.

Abbreviations

Information and Communications Technology

International Journal of STEM Education

Kindergarten–Grade 12

Science, Mathematics, Engineering, and Technology

Science, Technology, Engineering, Arts, and Mathematics

Science, Technology, Engineering, and Mathematics

Borrego, M., Foster, M. J., & Froyd, J. E. (2015). What is the state of the art of systematic review in engineering education? Journal of Engineering Education, 104 (2), 212–242. https://doi.org/10.1002/jee.20069 .

Article   Google Scholar  

Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research – a systematic review of recent trends. Computers & Education, 114 , 255–273.

Brown, J. (2012). The current status of STEM education research. Journal of STEM Education: Innovations & Research, 13 (5), 7–11.

Google Scholar  

Christenson, J. (2011). Ramaley coined STEM term now used nationwide . Winona Daily News Retrieved from http://www.winonadailynews.com/news/local/article_457afe3e-0db3-11e1-abe0-001cc4c03286.html Accessed on 16 Jan 2018.

Chute, E. (2009). STEM education is branching out . Pittsburgh Post-Gazette Feb 9, 2009. https://www.post-gazette.com/news/education/2009/02/10/STEM-education-is-branching-out/stories/200902100165 Accessed on 2 Jan 2020.

DeCoito, I. (2016). STEM education in Canada: A knowledge synthesis. Canadian Journal of Science, Mathematics and Technology Education, 16 (2), 114–128.

Dika, S. L., & D'Amico, M. M. (2016). Early experiences and integration in the persistence of first-generation college students in STEM and non-STEM majors. Journal of Research in Science Teaching, 53 (3), 368–383.

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3 , 3. https://doi.org/10.1186/s4059%204-016-0036-1 .

Erduran, S., Ozdem, Y., & Park, J.-Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998-2014. International Journal of STEM Education, 2 , 5. https://doi.org/10.1186/s40594-015-0020-1 .

Gonzalez, H. B. & Kuenzi, J. J. (2012). Science, technology, engineering, and mathematics (STEM) education: A primer. CRS report for congress, R42642, https://fas.org/sgp/crs/misc/R42642.pdf Accessed on 2 Jan 2020.

Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48 (8), 952–984.

Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research . Washington: National Academies Press.

Howard, G. S., Cole, D. A., & Maxwell, S. E. (1987). Research productivity in psychology based on publication in the journals of the American Psychological Association. American Psychologist, 42 (11), 975–986.

Johnson, C. C., Peters-Burton, E. E., & Moore, T. J. (2015). STEM roadmap: A framework for integration . London: Taylor & Francis.

Book   Google Scholar  

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3 , 11. https://doi.org/10.1186/s40594-016-0046-z .

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 3–38). New York: Macmillan.

Kim, A. Y., Sinatra, G. M., & Seyranian, V. (2018). Developing a STEM identity among young women: A social identity perspective. Review of Educational Research, 88 (4), 589–625.

Li, Y. (2014). International journal of STEM education – a platform to promote STEM education and research worldwide. International Journal of STEM Education, 1 , 1. https://doi.org/10.1186/2196-7822-1-1 .

Li, Y. (2018a). Journal for STEM education research – promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, 1 (1–2), 1–6. https://doi.org/10.1007/s41979-018-0009-z .

Li, Y. (2018b). Four years of development as a gathering place for international researchers and readers in STEM education. International Journal of STEM Education, 5 , 54. https://doi.org/10.1186/s40594-018-0153-0 .

Li, Y. (2019a). Five years of development in pursuing excellence in quality and global impact to become the first journal in STEM education covered in SSCI. International Journal of STEM Education, 6 , 42. https://doi.org/10.1186/s40594-019-0198-8 .

Li, Y. (2019b). STEM education research and development as a rapidly evolving and international field. 数学教育学报(Journal of Mathematics Education), 28 (3), 42–44.

Li, Y., Froyd, J. E., & Wang, K. (2019). Learning about research and readership development in STEM education: A systematic analysis of the journal’s publications from 2014 to 2018. International Journal of STEM Education, 6 , 19. https://doi.org/10.1186/s40594-019-0176-1 .

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as ‘given’ in STEM education. International Journal of STEM Education, 6 , 44. https://doi.org/10.1186/s40594-019-0197-9 .

Li, Y., Wang, K., & Xiao, Y. (2019). Exploring the status and development trends of STEM education research: A review of research articles in selected journals published between 2000 and 2018. 数学教育学报(Journal of Mathematics Education), 28 (3), 45–52.

Lin, T.-J., Lin, T.-C., Potvin, P., & Tsai, C.-C. (2019). Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. International Journal of Science Education, 41 (3), 367–387.

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, 6 , 2. https://doi.org/10.1186/s40594-018-0151-2 .

Minichiello, A., Hood, J. R., & Harkness, D. S. (2018). Bring user experience design to bear on STEM education: A narrative literature review. Journal for STEM Education Research, 1 (1–2), 7–33.

Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction – what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47 (4), 474–496.

Mizell, S., & Brown, S. (2016). The current status of STEM education research 2013-2015. Journal of STEM Education: Innovations & Research, 17 (4), 52–56.

National Research Council. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington DC: National Academies Press.

National Science Foundation (1998). Information technology: Its impact on undergraduate education in science, mathematics, engineering, and technology. (NSF 98–82), April 18–20, 1996. http://www.nsf.gov/cgi-bin/getpub?nsf9882 Accessed 16 Jan 2018.

Raju, P. K., & Sankar, C. S. (2003). Editorial. Journal of STEM Education: Innovations & Research, 4 (3&4), 2.

Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6 (4), 343–362.

Schreffler, J., Vasquez III, E., Chini, J., & James, W. (2019). Universal design for learning in postsecondary STEM education for students with disabilities: A systematic literature review. International Journal of STEM Education, 6 , 8. https://doi.org/10.1186/s40594-019-0161-8 .

Schwab, D. B., Cole, L. W., Desai, K. M., Hemann, J., Hummels, K. R., & Maltese, A. V. (2018). A summer STEM outreach program run by graduate students: Successes, challenges, and recommendations for implementation. Journal of Research in STEM Education, 4 (2), 117–129.

Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the Arts) education. Journal of Engineering Education, 105 (1), 15–42.

Sokolowski, A., Li, Y., & Willson, V. (2015). The effects of using exploratory computerized environments in grades 1 to 8 mathematics: A meta-analysis of research. International Journal of STEM Education, 2 , 8. https://doi.org/10.1186/s40594-015-0022-z .

Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Pauw, J. B., Dehaene, W., Deprez, J., De Cock, M., Hellinckx, L., Knipprath, H., Langie, G., Struyven, K., Van de Velde, D., Van Petegem, P., & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3 (1), 2.

Tsai, C. C., & Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27 (1), 3–14.

United States Congress House Committee on Science. (1998). The state of science, math, engineering, and technology (SMET) education in America, parts I-IV, including the results of the Third International Mathematics and Science Study (TIMSS): hearings before the Committee on Science, U.S. House of Representatives, One Hundred Fifth Congress, first session, July 23, September 24, October 8 and 29, 1997. Washington: U.S. G.P.O.

Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics . Portsmouth, NH: Heinemann.

Wu, S. P. W., & Rau, M. A. (2019). How students learn content in science, technology, engineering, and mathematics (STEM) through drawing activities. Educational Psychology Review . https://doi.org/10.1007/s10648-019-09467-3 .

Xu, M., Williams, P. J., Gu, J., & Zhang, H. (2019). Hotspots and trends of technology education in the International Journal of Technology and Design Education: 2000-2018. International Journal of Technology and Design Education . https://doi.org/10.1007/s10798-019-09508-6 .

Download references

Not applicable

Author information

Authors and affiliations.

Texas A&M University, College Station, TX, 77843-4232, USA

Yeping Li & Yu Xiao

Nicholls State University, Thibodaux, LA, 70310, USA

Ohio State University, Columbus, OH, 43210, USA

Jeffrey E. Froyd

You can also search for this author in PubMed   Google Scholar

Contributions

YL conceptualized the study and drafted the manuscript. KW and YX contributed with data collection, coding, and analyses. JEF reviewed drafts and contributed to manuscript revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yeping Li .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Li, Y., Wang, K., Xiao, Y. et al. Research and trends in STEM education: a systematic review of journal publications. IJ STEM Ed 7 , 11 (2020). https://doi.org/10.1186/s40594-020-00207-6

Download citation

Received : 10 February 2020

Accepted : 12 February 2020

Published : 10 March 2020

DOI : https://doi.org/10.1186/s40594-020-00207-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Journal publication
  • Literature review
  • STEM education research

education research studies

Read our research on: Abortion | Podcasts | Election 2024

Regions & Countries

Race and lgbtq issues in k-12 schools.

We asked public K-12 teachers, teens and U.S. adults how they see topics related to race and LGBTQ issues playing out in the classroom.

From Businesses and Banks to Colleges and Churches: Americans’ Views of U.S. Institutions

Americans overwhelmingly see small businesses as having a positive effect on the way things are going in the country. By contrast, their views of large corporations are broadly negative. And most people – including identical shares in both parties – are critical of the impact of banks and financial institutions.

Fewer young men are in college, especially at 4-year schools

College enrollment among young Americans has been declining over the past decade, and it's mostly due to fewer young men pursuing degrees.

9 facts about bullying in the U.S.

35% of U.S. parents with children younger than 18 say they are extremely or very worried that their children might be bullied at some point.

About 1 in 5 U.S. teens who’ve heard of ChatGPT have used it for schoolwork

Roughly one-in-five teenagers who have heard of ChatGPT say they have used it to help them do their schoolwork.

Key facts about U.S. Latinos with graduate degrees

In 2021, nearly 2.5 million Latinos in the United States held advanced degrees such as master’s degrees or doctorates.

Americans are more pessimistic than optimistic about many aspects of the country’s future

63% of Americans are pessimistic about the country’s moral and ethical standards, and 59% are pessimistic about its education system.

In the U.S., 180 days of school is most common, but length of school day varies by state

School has started in most of the United States. On average, K-12 public schools will be in session close to 180 days this year.

‘Back to school’ means anytime from late July to after Labor Day, depending on where in the U.S. you live

Most K-12 students at U.S. public schools have a school year of about 180 days, but when that year starts and ends varies substantially by region.

What federal education data shows about students with disabilities in the U.S.

Public K-12 schools in the United States educate about 7.3 million students with disabilities – a number that has grown over the last few decades.

Refine Your Results

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

Trends and Topics in Educational Technology, 2024 Edition

  • Column: Editorial
  • Published: 21 March 2024

Cite this article

  • Bohdana Allman 1 ,
  • Royce Kimmons 1 ,
  • Wei Wang 2 ,
  • Hanhui Bao 2 ,
  • Joshua M. Rosenberg 2 &
  • Matthew J. Koehler 3  

205 Accesses

Explore all metrics

Avoid common mistakes on your manuscript.

Introduction

This editorial continues to landscape the trends and popular educational technology topics for 2023. We used the public internet data mining approach from previous years (Allman et al., 2023b ; Kimmons, 2020 ; Kimmons & Rosenberg, 2022 ; Kimmons et al., 2021 ). This year, we extracted and analyzed data from the Scopus research article database, K-12 school and district Facebook pages, and the open publishing platform EdTech Books. We also looked closer at two key terms—“artificial intelligence” and “OER”—using Google Custom Search API to examine patterns in the higher education context and the description of resources from the Teachers Pay Teachers (TPT) website for insights in the K-12 context. This year, we no longer utilized the X (formerly Twitter) #EdTech affinity group as a data source because of the changes to the platform/accessibility of the data. Our analysis represents snapshots of 2023 trends in educational technology from these dataset angles, furthering our understanding of current EdTech community’s attitudes, behaviors, and leanings and underpinning a predictive vision of future trends in the field.

What Were Trends in EdTech Journals in 2023?

For insight into which research topics were trending in the field in 2023, we analyzed article titles published in the top educational technology journals during the year. We utilized a similar methodology as in previous years (Kimmons et al., 2021 ; Kimmons & Rosenberg, 2022 ; Allman et al., 2023b ) and compiled a list of 3,355 articles published in 2023 from the top educational technology journals (n = 18) as identified by Google Scholar and retrieved via the Scopus API. See Table  1 for the list of journals included in the analysis. Following this, we looked at the frequencies of each keyword and n-gram (multi-word phrase) appearing in the titles to identify potential trends.

We then manually categorized top keywords and n-grams into three information types suggested by the data: “Contexts,” “Methods,” and a broader category of “Topics, Tools, and Modalities” (see Table  2 ). Contexts included terms related to the research settings, such as “high school” or “university.” Methods included descriptors of the research methods, such as “systematic review” or “case study.” Topics, Tools, and Modalities included a more comprehensive array of terms, such as “online,” “learning analytics,” and “virtual reality.” Notably, in previous years, we had separated modalities into their own section, but this separation seemed to become increasingly arbitrary and unnecessary (e.g., is VR a topic or a modality?). So, we combined modalities and topics into a common category. We included all relevant n-grams above 0.5% and their comparatively ranked keywords in the table.

Table 2 suggests several noteworthy findings. Regarding contexts, higher education was far more common as a setting for educational technology studies than K-12, and secondary schools were more represented than elementary schools. This suggests an inverted pyramid representation of EdTech research being done at different educational levels, a trend that we saw in previous analyses (Allman et al., 2023b ). Referenced physical locations also focused on school settings, suggesting an emphasis on formal (rather than informal or non-formal) learning. As expected, references to COVID-19 declined from the previous year (3.6% to 2.4%). Relatively high on the list were also references to language learning. Specifically, search terms “language” (n = 169, 5.0%) and “EFL” (n = 95; 2.8%) and related n-grams “language learning” (n = 54; 1.6%), “EFL learner” (n = 37; 1.1%), and “foreign language” (n = 28, 0.8%). Additionally, references to “support” (n = 124, 3.7%), “professional,” and “preservice” (both n = 64; 1.9%) and n-grams “preservice teacher” (n = 49, 1.9%) and “professional development” (n = 22, 0.7%) might be worth noticing as important context keywords for studies carried out in 2023.

The most commonly referenced n-grams related to research methods mentioned in 2023 titles were secondary data analysis methods, specifically “systematic OR scoping OR literature reviews” (n = 194, 5.8%) and “meta-analyses” (n = 49, 1.9%). The most common primary data analysis method n-grams included “machine learning” (n = 43, 1.3%), “case study” (n = 43, 1.3%), “network analysis” (n = 23, 0.7%), and “mixed methods” (n = 24, 0.7%). Additionally, several keywords related to measuring educational success in the titles of 2023 journal articles are noteworthy. Specifically, search terms “effect” (n = 202, 6.0%), “performance” (n = 193, 5.8%), “impact” (n = 148, 4.4%), “evaluation” (n = 82, 2.4%), “effectiveness” and “achievement” (both n = 77, 2.3%), and “outcome” (n = 68, 2.0%).

Regarding modality, the dominant term continues to be “online” (n = 469, 14%) and the n-gram “online teaching OR online learning” (n = 150, 4.5%), outnumbering the next-highest n-gram, “blended learning” (n = 31, 0.9%), at a rate of 5-to-1. Although, from closer investigation of the titles, it appears that “online,” “distance,” “blended,” “remote,” and a variety of other terms are sometimes used interchangeably to describe a broad spectrum of internet-mediated synchronous or asynchronous learning situations. Immersive environments, in the form of “virtual,” “augmented,” and “mixed reality,” in that order, were also of interest. Specifically, the search term “virtual” appeared 188 times (5.6%), and n-grams “virtual reality” were seen 110 times (3.3%), “augmented reality” 63 times (1.9%), and “immersive virtual” 22 times (0.7%). Notably, references to “artificial intelligence” more than doubled from the previous year (n = 91, increase from 1.4% to 2.7%), and “learning analytics” also saw increased attention (n = 72, 1.6% to 2.1%).

What Was Trending among School and School District Facebook Groups in 2023?

The comprehensive analysis of hyperlinks shared on school and district Facebook pages revealed significant trends in technology adoption and usage within K-12 educational settings. Table 3 showcases the top fifteen domains by their prevalence and highlights the evolving landscape of digital tools in education from 2021 to 2023.

To identify the technologies shared on school and district Facebook pages, we scrutinized the domain names of all hyperlinks posted across 16,309 publicly accessible pages, totaling 10,597,076 posts. Executing this analysis involved exploring the homepages of all schools and school districts in the U.S. for links to Facebook pages. Subsequently, we uploaded the identified links to Facebook pages onto the CrowdTangle platform to access publicly available posts for the years 2021–2023 and identified the domains of websites linked within schools' and districts' posts. Additional details on the data collection approach can be found in Rosenberg et al. ( 2022 ). The top fifteen most-shared domains, delineated by year (2021, 2022, and 2023), are presented in Table  3 . The following explanation may help the reader interpret the table. For instance, in 2023, 7049, or 43% of schools or districts with publicly accessible Facebook pages, shared one or more links to docs.google.com , and the domain was shared on average 5.3 times.

Upon reviewing the years 2021 to 2023, we observed the continued dominance of Google services, with Google Docs maintaining its position as the most shared domain for three consecutive years, as highlighted in prior research (Allman et al., 2023b ). YouTube follows closely behind, indicating the sustained prevalence of Google services in the mainstream usage of schools and school districts, underscoring the stability of these technologies within educational institutions. Simultaneously, we noted a significant decline in the percentage of YouTube links from 44% in 2021 and 41% in 2022 to 33% in 2023. This shift might reflect a broader trend towards prioritizing the digital privacy and security of students within the educational community, influencing how schools and districts curate and share content on social media platforms. The trend in Zoom links continues to decline, with the proportion of districts sharing Zoom links decreasing from 21% in 2021 to 11% in 2022 and further dropping to 7% in 2023. This decline aligns with the reduced engagement in remote activities across various schools and school districts. Additionally, tools facilitating event sign-ups, exemplified by SignUpGenius and gofan.co , experienced steady increases, indicating a surge in posts promoting event registrations post-COVID-19 pandemic. Other domains, such as bookfairs.scholastic.com , smore.com , eventbrite.com , and surveymonkey.com , have consistently maintained their presence in the top ten over the past three years. Their similar frequency suggests the sustained importance of tools for school-parent communication, book sales, event management, and survey services within K-12 schools and districts.

What Were Trends in EdTech Open Educational Resources (OER) in 2023?

In addition to Scopus and social media trends, we also examined an EdTech-focused Open Educational Resource (OER) platform EdTech Books ( https://edtechbooks.org ). OER are “teaching, learning, and research materials that reside in the public domain or have been released under an open license that permits their free use and re-purposing by others” (Creative Commons, 2020 ). OER can take various forms and sizes, including textbooks, lessons, courses, learning activities, assessments, technologies, syllabi, images, presentations, videos, and graphics. Being ‘open’ means that OER is freely accessible to anyone with internet access and can be retained, reused, redistributed, revised, and remixed as needed (Wiley, n.d. ), providing significant opportunities for improving “the quality and affordability of education for learners everywhere” (Wiley & Hilton, 2018 , p. 144). Research has repeatedly shown that OER quality is comparable to commercial resources (Clinton & Khan, 2019 ; Kimmons, 2015 ), and their adoption does not negatively impact student learning (Hilton, 2016 , 2019 ) while saving students money (Clinton, 2018 ; Hilton, 2016 ; Ikahihifo et al., 2017 ) and providing a variety of other benefits (Kimmons, 2016 ). In 2023, almost two-thirds (64%) of U.S. higher education faculty are aware of OER, and 29% of faculty require OER in their courses (Seaman & Seaman, 2023b ).

For this year’s OER analysis, we again selected EdTech Books as the authors are most familiar with this platform and have ready access to data. In 2023, ETB provided free OER to more than 1.5 million users worldwide. We believe that as an EdTech-focused platform, EdTech Books analytics may provide valuable insights into user behavior and how OER are developed, adopted, and used in our field.

A perusal of the most popular books (Table  4 ) and chapters (Table  5 ) revealed that readers seemed to be drawn to these resources when they were seeking information on broad theoretical aspects of educational technology (e.g., behaviorism, constructivism, socioculturalism), technology-specific guidance (e.g., how to use a specific tool), or research and evaluation guidelines (e.g., mixed methods or sampling procedures). This is consistent with our findings from last year (Allman et al., 2023b ).

A closer analysis of the most popular books and chapters suggested that the top trending chapters are most influenced by organic traffic via search engines rather than direct links (such as from a course). This underscores the importance of indexing and optimizing OER resources to increase exposure and impact. On the other hand, EdTech books that were most accessed may have been influenced by OER adoption behaviors and instructors’ pedagogical decisions as part of formal access to instructional resources. For example, students might have been instructed to read carefully, which could mean accessing longer chapters several times or downloading them as PDF for annotation or later retrieval. Another instructor may encourage the use of social annotation tools, such as Hypothesis, to complete collaborative classroom assignments, encouraging students to return to a chapter several times and thus increasing overall book views. Additionally, ease of access or anticipation of fees to access may also explain why some books have higher PDF downloads than expected. For example, West’s Foundations of Learning and Instructional Design Technology (highest PDF downloads) is often sought out with search terms like “instructional design pdf,” which suggests that learners are intentionally seeking local copies of these particular resources.

We found that the United States (29.7%), the Philippines (14.1%), and India (6.2%) were again the heaviest users of the platform, with overall use of the platform becoming less centralized to the U.S. We also found an increase in overall mobile device access to the platform, with 39.7% of users accessing on a phone as opposed to 59% on a desktop or laptop. This reveals an increasing trend of globalization of educational-technology-related OER and the need to be attentive to their accessibility with various device configurations and bandwidth limitations.

References to Artificial Intelligence and OER on University Websites and Teachers Pay Teachers

Further exploring how large public data sources might help us identify patterns in the field, we used the Google Custom Search API to scrape data from university websites (cf., such as Kimmons & Veletsianos, 2021 and Veletsianos et al., 2023 ) and descriptions of resources uploaded to the popular curricular sharing site Teachers Pay Teachers (TPT) to understand the frequencies and nature of references to two key terms of particular interest to the authors: “artificial intelligence” and “OER”.

In considering Google indexing results of university websites, it is necessary to limit analyses to a few sets of interesting a priori terms. So, for this analysis, we limited our considerations to AI, given its current interest in the larger social context, and OER, given its attention in educational technology and the topic’s relationship to university missions as public caretakers of knowledge. Results showed that 66.4% of universities mentioned “generative artificial intelligence,” “generative AI,” or “ChatGPT,” and 47.7% referenced “open educational resource” or “open textbook,” with references to generative AI outnumbering references to OER at a rate of nearly 5-to-1 (see Table  6 ). In both cases, politically blue states (Democratic according to the most recent U.S. presidential election) were more likely to reference these technologies than were politically red (Republican) states. However, urban states were more likely to reference “AI,” and rural states were more likely to reference “OER.” Rhode Island, Utah, and Idaho were among the most likely to mention both, and Wyoming was the least likely to mention either. Interestingly, Hawaii was the most likely to mention artificial intelligence but was among the least likely to mention OER. This pattern suggests sociopolitical and economic differences in how educators pay attention to these technologies. Also, it suggests that universities may be more actively playing into the hype of new technologies (e.g., “AI”) in their communication efforts than serving as public distributors of valuable knowledge to their communities (e.g., “OER”).

In a similar vein, data extracted from the TPT website spanning from 2021 to 2023, encompassing 3,936,779 entries, were explored. Specific details regarding the data collection method can be found in (Shelton et al., 2022 ). The analysis revealed a total of 3,303 instances referencing AI-related keywords, including "generative artificial intelligence," "generative AI," "artificial intelligence," "DALL-E," and "ChatGPT." In contrast, mentions of "open educational resource" or "open textbook" numbered 4,285 (see Table  7 for details).

The analysis of the data suggested a growing trend of references to AI-related educational resources on the TPT platform from 2021 to 2023. Notably, despite the proportion of AI-related resources being low before 2023, there has been a remarkable uptick in interest. The number of AI-related resources in 2021 and 2022 were less than 0.05%. Specifically, in 2021, only 521 out of 1,060,241 or 0.049% of total resources and 528 out of 1,268,771 (0.042%) resources in 2022 were related to AI. In 2023, the mentions of AI surged to 2,254 out of 1,607,767 or 0.14% resources, representing almost a threefold increase from the 2022 figures, indicating a burgeoning interest in AI within K-12 educational resources. This surge aligns with the rising interest and integration of AI in educational settings, particularly following the release of generative artificial intelligence tools like ChatGPT in November 2022, reflecting educators' growing curiosity and the pressing need to incorporate AI into their teaching resources.

Compared to the mentions of Open Educational Resources (OER), AI references are fewer in number. However, the ratio of nearly 1-to-1.3 (AI to OER) suggests that AI is also becoming a topic of significant interest within educational resources in the K-12 setting. This is particularly noteworthy given that OERs have been a mainstay in educational discussions for a longer period, emphasizing the rapid ascension of AI as a key area of focus. The increasing mention of specific AI tools like "DALL-E" and "ChatGPT" possibly indicates a shift in the educational resource landscape, where innovative AI tools are starting to play a central role in creating and disseminating educational content. This shift could be attributed to the capabilities of generative AI, offering novel approaches to personalized learning, automated content generation, and interactive learning experiences. The disparity between the growth of AI vs. OER references could also reflect the evolving nature of educational technology, where there is a move from traditional open resources to more dynamic, adaptive, and personalized learning experiences AI offers. Integrating AI in educational resources can represent a transformative step in educational technology, potentially reshaping how educational content is created, distributed, and consumed. However, as AI online educational resources rapidly expand, concerns like academic fraud, information bias, and ethical dilemmas arise and deserve closer attention. Recommendations from educational technology experts are especially relevant and needed since markets often lack the motivation to regulate content under platform capitalism (Rodríguez et al., 2020 ).

Discussion and Conclusion

The analyses of the data from Scopus, Facebook, and EdTech Books, as well as the examination of AI and OER-related terms using Google Custom Search API and Teachers Pay Teachers, represent snapshots from different angles and offer valuable insights into the current state of the educational technology field. Moreover, by comparing some of the 2023 results to previous years, we observed several developmental directions and trends that may guide educational researchers and practitioners for future work.

The Scopus data suggested that studies published in the top EdTech journals in 2023 were predominantly conducted in higher education contexts, and among K-12 studies, secondary contexts were more common than elementary. Not surprisingly, references to COVID-19 declined from previous years. Interestingly, although COVID-19 was less referenced, the terms “online teaching” and “online learning” were frequently mentioned, remaining a dominant learning modality. Secondary data analysis methods, such as literature reviews and meta-analyses, were the most common research methods. However, it is important to mention that this year’s analysis included only titles, not abstracts, as was done in previous years, which may typically include fewer references to primary research methods. Keywords related to emerging technologies, including virtual reality, augmented reality, artificial intelligence, and learning analytics, were also frequently mentioned in the titles.

Through analyzing the hyperlinks on school and school district Facebook pages, we observed that Google-provided services, such as Google Docs, YouTube, and Google search engine, were the most included external links, which seems to be consistent with our findings from previous years (Allman et al., 2023b ; Kimmons et al., 2021 ; Kimmons & Rosenberg, 2022 ). A trend worth mentioning is the consistent decline of Zoom links and increased links to school event planning and registration sites between 2021 and 2023. This suggests a return to in-person learning and an increased school social event activity post-COVID-19.

The analysis of EdTechBooks data as a proxy for OER behavior in the field of educational technology revealed that, similar to last year’s findings, readers continue seeking resources related to theory, educational technology topics, and research and evaluation methods. Closer analysis suggested that chapter access might be more influenced by the organic traffic from search engines. In contrast, book access may be more tied to OER adoption and formal educational setting behaviors, such as course instructional material choices and instructor pedagogical decisions. The increase in global and mobile OER access further emphasizes the importance of technical and design decisions related to accessibility, flexibility, and social justice issues during OER design and development (Allman et al., 2023a ).

Finally, the results of further examining AI and OER-related terms on university websites and Teachers Pay Teachers were intriguing. One interesting finding was that universities in politically blue states were more likely to refer to both technologies than universities in politically red states. Additionally, universities in urban states typically referenced AI more often, while rural state universities more likely referenced OER. This suggests that EdTech attention may be associated with social, political, and economic factors, such as available capital and resources. The analysis of resources on the Teachers Pay Teachers platform emphasized a rising interest in AI in K-12 educational resources while the interest in OER resources remained steady. Among the AI tools, references to generative AI tools such as ChatGPT increased the most, suggesting interest in applying these tools in education and educational content creation.

This year’s analyses indicated that the field of educational technology continues to be influenced by the past pandemic as well as emerging technologies. Even though COVID-19 has gradually faded out in people’s lives, online learning has become a widely accepted way of learning, and technology-mediated instruction has become a norm in all educational settings. Digital educational resources replaced, for the most part, traditional print materials both in higher education and K-12 settings (Seaman & Seaman, 2023a , 2023b ). Mobile and digital learning platforms make learning more accessible and facilitate collaboration through cloud-based services across modalities. OER remain an interest in K-12 and higher ed, particularly in rural states. Immersive technologies continue transforming the EdTech landscape, integrating VR, AR, and gamification elements into learning environments for more engaging experiences. We found that AI and generative AI, in particular, are topics that are notably raising interest in the educational technology field. Utilizing generative AI to produce content and instructional resources, provide adaptive and personalized learning experiences, and automate assessment and evaluation are only a few potential applications that could transform the field of educational technology in the near future. Although the inclusion of AI is relevant at the university and K-12 level, social, political, and economic influences and implications need to be considered. Recognizing that many across educational sectors feel unprepared for AI-related changes (Cengage, 2023 ), we should embrace these new technologies with optimistic caution, carefully considering potentials balanced against security, privacy, and other concerns.

Data Availability

Data is available upon request.

Allman, B., Bozkurt, A., Dickson-Deane, C., Kimmons, R., Stefaniak, J., & Warr, M. C. (2023a, October 15–19). EdTechnica: Open educational resource and open educational practice [Panel discussion]. AECT International Convention. Retrieved January 15, 2024, from https://www.youtube.com/watch?v=8GB0V1CGvZY

Allman, B., Kimmons, R., Rosenberg, J., & Dash, M. (2023b). Trends and topics in educational technology, 2023 edition. TechTrends, 67 , 583–591. https://doi.org/10.1007/s11528-023-00840-2

Article   Google Scholar  

Cengage. (2023). Examining higher ed’s digital future: Infographic of 2023–2024 digital learning pulse survey. Retrieved February 8, 2024, from https://www.bayviewanalytics.com/reports/pulse/infographic-fall2023.pdf

Clinton, V. (2018). Savings without sacrifices: A case study of open-source textbook adoption. Open Learning: The Journal of Distance and Open Learning, 33 (3), 177–189. https://doi.org/10.1080/02680513.2018.1486184

Clinton, V., & Khan, S. (2019). Efficacy of open textbook adoption on learning performance and course withdrawal rates: A meta-analysis. AERA Open, 5 (3), 1–20. https://doi.org/10.1177/2332858419872212

Creative Commons. (2020). Open education. Retrieved December 6, 2023, from https://creativecommons.org/about/program-areas/education-oer

Hilton, J. (2016). Open educational resources and college textbook choices: A review of research on efficacy and perceptions. Educational Technology Research and Development, 64 (4), 573–590. https://doi.org/10.1007/s11423-016-9434-9

Hilton, J. (2019). Open educational resources, student efficacy, and user perceptions: A synthesis of research published between 2015–2018. Educational Technology Research and Development, 68 (3), 853–876. https://doi.org/10.1007/s11423-019-09700-4

Ikahihifo, T. K., Spring, K. J., Rosecrans, J., & Watson, J. (2017). Assessing the savings from open educational resources on student academic goals. The International Review of Research in Open and Distance Learning, 18 (7). https://doi.org/10.19173/irrodl.v18i7.2754

Kimmons, R. (2020). Current trends (and missing links) in educational technology research and practice. TechTrends, 64 (6), 803–809. https://doi.org/10.1007/s11528-020-00549-6

Kimmons, R., & Rosenberg, J. M. (2022). Trends and topics in educational technology, 2022 edition. TechTrends, 66 (2), 134–140. https://doi.org/10.1007/s11528-022-00713-0

Kimmons, R., Rosenberg, J., & Allman, B. (2021). Trends in educational technology: What Facebook, twitter, and Scopus can tell us about current research and practice. TechTrends, 65 (2), 125–136. https://doi.org/10.1007/s11528-021-00589-6

Kimmons, R., & Veletsianos, G. (2021). Proctoring software in higher ed: Prevalence and patterns. Educause Review . Retrieved December 8, 2023, from https://er.educause.edu/articles/2021/2/proctoring-software-in-higher-ed-prevalence-and-patterns

Kimmons, R. (2015). OER quality and adaptation in K-12: Comparing teacher evaluations of copyright-restricted, open, and open/adapted textbooks. The International Review of Research in Open and Distributed Learning, 16 (5). https://doi.org/10.19173/irrodl.v16i5.2341

Kimmons, R. (2016). Expansive openness in teacher practice. Teachers College Record, 118 (9). https://doi.org/10.1177/016146811611800901

Rodríguez, N., Brown, M., & Vickery, A. (2020). Pinning for profit? Examining elementary preservice teachers’ critical analysis of online social studies resources about Black history. Contemporary Issues in Technology and Teacher Education, 20 (3), 497–528. Retrieved January 5, 2024, from https://www.learntechlib.org/primary/p/216743/

Rosenberg, J. M., Borchers, C., Stegenga, S. M., Burchfield, M. A., Anderson, D., & Fischer, C. (2022). How educational institutions reveal students’ personally identifiable information on Facebook. Learning, Media and Technology, 1–17. https://doi.org/10.1080/17439884.2022.2140672

Seaman, J.E., & Seaman J. (2023a). Curricula of many sources: Educational resources in U.S. K-12 education, 2023 . Bay View Analytics. Retrieved February 8, 2024, from https://www.bayviewanalytics.com/reports/curricula-of-many-sources-2023.pdf

Seaman, J.E., & Seaman, J. (2023b). Digitally established: Educational resources in U.S. higher education, 2023 . Bay View Analytics. Retrieved February 8, 2024, from https://www.bayviewanalytics.com/reports/digitallyestablished-2023.pdf

Shelton, C. C., Koehler, M. J., Greenhalgh, S. P., & Carpenter, J. P. (2022). Lifting the veil on TeachersPayTeachers.com: an investigation of educational marketplace offerings and downloads. Learning, Media and Technology , 22(2), 268–287. https://doi.org/10.1080/17439884.2021.1961148

Veletsianos, G., Kimmons, R., & Bondah, F. (2023). ChatGPT and higher education: Initial prevalence and areas of interest. Educause Review . Retrieved February 12, 2024, from https://er.educause.edu/articles/2023/3/chatgpt-and-higher-education-initial-prevalence-and-areas-of-interest

Wiley, D. (n.d.). Defining the “open” in open content and open educational resources. Retrieved February 10, 2024, from https://opencontent.org/definition/

Wiley, D., & Hilton, J. L., III. (2018). Defining OER-enabled pedagogy. The International Review of Research in Open and Distributed Learning, 19 (4). https://doi.org/10.19173/irrodl.v19i4.3601

Download references

Author information

Authors and affiliations.

Brigham Young University, Provo, UT, USA

Bohdana Allman & Royce Kimmons

University of Tennessee, Knoxville, TN, USA

Wei Wang, Hanhui Bao & Joshua M. Rosenberg

Michigan State University, East Lansing, MI, USA

Matthew J. Koehler

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Bohdana Allman .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Allman, B., Kimmons, R., Wang, W. et al. Trends and Topics in Educational Technology, 2024 Edition. TechTrends (2024). https://doi.org/10.1007/s11528-024-00950-5

Download citation

Published : 21 March 2024

DOI : https://doi.org/10.1007/s11528-024-00950-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Study Tracks Shifts in Student Mental Health During College

Dartmouth study followed 200 students all four years, including through the pandemic.

Andrew Campbell seated by a window in a blue t-shirt and glasses

Phone App Uses AI to Detect Depression From Facial Cues

A four-year study by Dartmouth researchers captures the most in-depth data yet on how college students’ self-esteem and mental health fluctuates during their four years in academia, identifying key populations and stressors that the researchers say administrators could target to improve student well-being. 

The study also provides among the first real-time accounts of how the coronavirus pandemic affected students’ behavior and mental health. The stress and uncertainty of COVID-19 resulted in long-lasting behavioral changes that persisted as a “new normal” even as the pandemic diminished, including students feeling more stressed, less socially engaged, and sleeping more.

The researchers tracked more than 200 Dartmouth undergraduates in the classes of 2021 and 2022 for all four years of college. Students volunteered to let a specially developed app called StudentLife tap into the sensors that are built into smartphones. The app cataloged their daily physical and social activity, how long they slept, their location and travel, the time they spent on their phone, and how often they listened to music or watched videos. Students also filled out weekly behavioral surveys, and selected students gave post-study interviews. 

The study—which is the longest mobile-sensing study ever conducted—is published in the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies .

The researchers will present it at the Association of Computing Machinery’s UbiComp/ISWC 2024 conference in Melbourne, Australia, in October. 

These sorts of tools will have a tremendous impact on projecting forward and developing much more data-driven ways to intervene and respond exactly when students need it most.

The team made their anonymized data set publicly available —including self-reports, surveys, and phone-sensing and brain-imaging data—to help advance research into the mental health of students during their college years. 

Andrew Campbell , the paper’s senior author and Dartmouth’s Albert Bradley 1915 Third Century Professor of Computer Science, says that the study’s extensive data reinforces the importance of college and university administrators across the country being more attuned to how and when students’ mental well-being changes during the school year.

“For the first time, we’ve produced granular data about the ebb and flow of student mental health. It’s incredibly dynamic—there’s nothing that’s steady state through the term, let alone through the year,” he says. “These sorts of tools will have a tremendous impact on projecting forward and developing much more data-driven ways to intervene and respond exactly when students need it most.”

First-year and female students are especially at risk for high anxiety and low self-esteem, the study finds. Among first-year students, self-esteem dropped to its lowest point in the first weeks of their transition from high school to college but rose steadily every semester until it was about 10% higher by graduation.

“We can see that students came out of high school with a certain level of self-esteem that dropped off to the lowest point of the four years. Some said they started to experience ‘imposter syndrome’ from being around other high-performing students,” Campbell says. “As the years progress, though, we can draw a straight line from low to high as their self-esteem improves. I think we would see a similar trend class over class. To me, that’s a very positive thing.”

Female students—who made up 60% of study participants—experienced on average 5% greater stress levels and 10% lower self-esteem than male students. More significantly, the data show that female students tended to be less active, with male students walking 37% more often.

Sophomores were 40% more socially active compared to their first year, the researchers report. But these students also reported feeling 13% more stressed during their second year than during their first year as their workload increased, they felt pressure to socialize, or as first-year social groups dispersed.

One student in a sorority recalled that having pre-arranged activities “kind of adds stress as I feel like I should be having fun because everyone tells me that it is fun.” Another student noted that after the first year, “students have more access to the whole campus and that is when you start feeling excluded from things.” 

In a novel finding, the researchers identify an “anticipatory stress spike” of 17% experienced in the last two weeks of summer break. While still lower than mid-academic year stress, the spike was consistent across different summers.

In post-study interviews, some students pointed to returning to campus early for team sports as a source of stress. Others specified reconnecting with family and high school friends during their first summer home, saying they felt “a sense of leaving behind the comfort and familiarity of these long-standing friendships” as the break ended, the researchers report. 

“This is a foundational study,” says Subigya Nepal , first author of the study and a PhD candidate in Campbell’s research group. “It has more real-time granular data than anything we or anyone else has provided before. We don’t know yet how it will translate to campuses nationwide, but it can be a template for getting the conversation going.”

The depth and accuracy of the study data suggest that mobile-sensing software could eventually give universities the ability to create proactive mental-health policies specific to certain student populations and times of year, Campbell says.

For example, a paper Campbell’s research group published in 2022 based on StudentLife data showed that first-generation students experienced lower self-esteem and higher levels of depression than other students throughout their four years of college.

“We will be able to look at campus in much more nuanced ways than waiting for the results of an annual mental health study and then developing policy,” Campbell says. “We know that Dartmouth is a small and very tight-knit campus community. But if we applied these same methods to a college with similar attributes, I believe we would find very similar trends.”

Weathering the pandemic

When students returned home at the start of the coronavirus pandemic, the researchers found that self-esteem actually increased during the pandemic by 5% overall and by another 6% afterward when life returned closer to what it was before. One student suggested in their interview that getting older came with more confidence. Others indicated that being home led to them spending more time with friends talking on the phone, on social media, or streaming movies together. 

The data show that phone usage—measured by the duration a phone was unlocked—indeed increased by nearly 33 minutes, or 19%, during the pandemic, while time spent in physical activity dropped by 52 minutes, or 27%. By 2022, phone usage fell from its pandemic peak to just above pre-pandemic levels, while engagement in physical activity had recovered to exceed the pre-pandemic period by three minutes. 

Despite reporting higher self-esteem, students’ feelings of stress increased by more than 10% during the pandemic. By the end of the study in June 2022, stress had fallen by less than 2% of its pandemic peak, indicating that the experience had a lasting impact on student well-being, the researchers report. 

In early 2021, as students returned to campus, their reunion with friends and community was tempered by an overwhelming concern about the still-rampant coronavirus. “There was the first outbreak in winter 2021 and that was terrifying,” one student recalls. Another student adds: “You could be put into isolation for a long time even if you did not have COVID. Everyone was afraid to contact-trace anyone else in case they got mad at each other.”

Female students were especially concerned about the coronavirus, on average 13% more than male students. “Even though the girls might have been hanging out with each other more, they are more aware of the impact,” one female student reported. “I actually had COVID and exposed some friends of mine. All the girls that I told tested as they were worried. They were continually checking up to make sure that they did not have it and take it home to their family.”

Students still learning remotely had social levels 16% higher than students on campus, who engaged in activity an average of 10% less often than when they were learning from home. However, on-campus students used their phones 47% more often. When interviewed after the study, these students reported spending extended periods of time video-calling or streaming movies with friends and family.

Social activity and engagement had not yet returned to pre-pandemic levels by the end of the study in June 2022, recovering by a little less than 3% after a nearly 10% drop during the pandemic. Similarly, the pandemic correlates with students sticking closer to home, with their distance traveled nearly cut in half during the pandemic and holding at that level since then.

Campbell and several of his fellow researchers are now developing a smartphone app known as MoodCapture that uses artificial intelligence paired with facial-image processing software to reliably detect the onset of depression before the user even knows something is wrong.

Morgan Kelly can be reached at [email protected] .

  • Mental Health and Wellness
  • Innovation and Impact
  • Arts and Sciences
  • Class of 2021
  • Class of 2022
  • Department of Computer Science
  • Guarini School of Graduate and Advanced Studies
  • Mental Health

There’s so much to confront here in Japan’s position vis-à-vis nuclear weapons.

Dartmouth Event to Explore the Promise—and Pitfalls—of AI in Medicine

Vanderbilt launches AUD Research and Education Center with prestigious $8.9 million NIH grant

neurons

Media Inquiries

  • 615-322-6397 Email

Latest Stories

  • Israeli ambassador to U.S., former Palestinian Authority prime minister visit Vanderbilt classroom
  • Campus Dining celebrates Earth Month
  • Faculty Senate Meeting is Thursday, April 4

Mar 21, 2024, 1:00 PM

A five-year, $8.9 million grant from the National Institutes of Health will help establish the Vanderbilt AUD Research and Education Center and bolster Vanderbilt University’s leadership in neuroscience, addiction research and innovative approaches to the study of alcohol use disorder.

This grant provides support for collaborative efforts among diverse researchers at Vanderbilt and from across the country, enhancing Vanderbilt’s role in alcohol and addiction research locally and nationally.

“This milestone underscores our unwavering commitment to solving society’s most pressing problems, like understanding the complexities of the brain and addiction, epitomizing the spirit of Discovery Vanderbilt,” Provost C. Cybele Raver said. “Through interdisciplinary collaboration, we aim to drive impactful change in understanding and treating alcohol use disorder, advancing health outcomes nationwide.”

VAREC’s innovative “precision neuroscience” approach will leverage human and animal models to identify the causes of AUD and potential treatments, as well as providing public education on the disorder. This newly established center will facilitate collaboration with the Vanderbilt Center for Addiction Research, which has similar goals.

The grant’s principal investigators are Erin Calipari, director of VCAR and assistant director of VAREC, and Danny Winder, chair of the Department of Neurobiology at UMass Chan Medical School, along with Jennifer Blackford, VAREC’s associate director and director of research at the Munroe-Meyer Institute at the University of Nebraska Medical Center. They and Cody Siciliano, assistant professor of pharmacology, are the four project leads.

Erin Calipari

“By focusing on precise circuits within the brain that control specific aspects of alcohol-associated behavior … we can understand exactly how repeated alcohol use changes the brain,” Calipari said. “Understanding these aspects of the disorder can lead to developing more targeted treatment strategies to ease symptoms of the disorder and improve treatment outcomes in individuals who are suffering.”

Another primary objective for VAREC will be education and outreach, which will be achieved by translating complex scientific findings into accessible information for the public. The center plans to engage the community and spark interest in addiction science through podcasts, webinars and a unique near-peer mentoring program.

With its dual focus on research and dissemination, VAREC aims to not only bolster Vanderbilt’s research capabilities but also enhance its standing as a hub for scientific discovery and public education on AUD.

The center plans to establish a course and provide scholarships for researchers from across the country to learn innovative neuroscience technologies at Vanderbilt, according to Calipari. “Through this course,” she said, “we are hoping to enrich the science community and give people access to the amazing resources at Vanderbilt.”

Also in the plans is a summer student program with stipends for students from underrepresented communities to work in addiction labs on campus. “The hope,” Calipari said, “is that we can get the next generation excited about doing addiction work.”

“Addiction is a disease. Promoting a deeper understanding of addiction fosters compassion and paves the way for solutions that can bring healing and hope to those affected by it,” said John Kuriyan, dean of the School of Medicine Basic Sciences. “The Vanderbilt Center for Addiction Research is an established leader in the field of addiction research. Its mission to unravel the causes of substance use disorders and bridge the gap between research and public awareness empowers individuals, communities and health care professionals alike.”

With the launch of VAREC, the center’s leaders anticipate making great strides in AUD research, educating the public and making a tangible difference in the community. “The great thing about this project (grant) is that it’s renewable at the end of the funding period,” Calipari said. “This work will continue at Vanderbilt far into the future.”

For more information on Vanderbilt’s addiction work, visit the VCAR website .

Keep Reading

Vanderbilt Center for Addiction Research joins Discovery Vanderbilt; Calipari appointed director  

Vanderbilt Center for Addiction Research joins Discovery Vanderbilt; Calipari appointed director  

Erin Calipari receives $2M to study how alcohol use disorder develops in the brain

Erin Calipari receives $2M to study how alcohol use disorder develops in the brain

Watch now: Lab-to-Table Conversation: Beyond Addiction: Therapeutic Developments and Societal Impact

Watch now: Lab-to-Table Conversation: Beyond Addiction: Therapeutic Developments and Societal Impact

Explore story topics.

  • Health and Medicine
  • Alcohol Use Disorder
  • C. Cybele Raver
  • Danny Winder
  • Discovery Vanderbilt
  • Erin Calipari
  • featured myvu
  • featured-home
  • jennifer blackford
  • John Kuriyan
  • National Institutes of Health
  • neuroscience
  • Padma Raghavan
  • Vanderbilt AUD Research and Education Center
  • Vanderbilt Center for Addiction Research
  • vuhome-highlight

Office of the Provost

Academic innovation & student success.

Student Development & Engagement

  • Academic Coaching
  • College Readiness: TSI
  • First Gen & Mentor Tech
  • Parent & Family Relations
  • Raider Success Hub
  • Student Engagement

Support & Success

  • Academic Testing Services
  • Dream Resource Center
  • Learning Center
  • Raider Relief
  • Supplemental Instruction
  • Writing Centers

Academic & Career Advising

  • University Advising
  • Academic Advisor Professional Development
  • University Career Center

Contact TTU

Winners of national penmanship contest crowned as handwriting is 'having a moment'

Namuun Baasanbol poses for a photo with her handwriting.

It’s regarded, hands down, as the Super Bowl of penmanship tournaments.

The Zaner-Bloser National Handwriting Contest, now in its 33rd year, crowned its 2024 grand champions on Monday, rewarding nine students from six states for their picture-perfect letters.

Ten-year old Zita Miller of White Bear Lake, Minnesota, took top honors in the fifth grade category. Her winning submission was one of the contest’s 80,000 entries.

“I like handwriting because it’s like art, drawing swirls and vines and curls,” Miller said, adding that she enjoys penning original mystery stories by hand.

Zita Miller poses for a photograph.

Namuun Baasanbold, from Carmel, Indiana, was named grand champion in the first grade category, and said she likes to give handwritten “love notes” to family and friends.

“Writing by hand makes me feel special,” she said.

The contest celebrates a centuries-old practice, but the victories come as handwriting is experiencing a kind of renaissance in the U.S. In January, California became the 22nd state to require cursive to be taught in schools — a significant jump from 2016, when just 12 states mandated it.

At the same time, various studies published over the past decade have detailed how writing with pencil and paper can benefit memory, cognitive development, reading comprehension and fine motor skills.

“Handwriting is definitely having a moment,” said Sharon Quirk-Silva, a member of the California state Assembly who sponsored the bill. She said she heard from people from all over the country who penned “beautifully handwritten notes” of support for the new law.

“We live in a very polarized nation. So many issues are contentious. But with this handwriting bill, we had full bipartisan support and goodwill. The importance of handwriting is something people seem to agree on,” she said.

Quirk-Silva said she backed the bill, in large part, because of her own experience — before becoming a lawmaker, she taught elementary school for 25 years.

“For years, technology has been taking over the curriculum in schools, with many kids being dormant in front of the screen, using two or three screens a day. Now, there’s a feeling of, ‘Let’s get pens and pencils back in kids’ hands,’” she said.

Although the California law mandates that first through sixth graders in the state receive cursive instruction, Quirk-Silva said she believes that writing by hand — in print or cursive — is an important language arts tool.

“It’s a way of slowing down a little bit, taking your thoughts from your brain to your hand and physically doing the writing,” she said.

Sophia Vinci-Booher, an assistant professor of psychology and human development at Vanderbilt University, said her research found that writing by hand enabled preschool students to form connections in the brain that likely support early letter recognition.

For that study , published in 2016, 20 children were asked to practice certain letters by writing them over and over, and practice others by pressing a button.

“Then we asked the children to go into an MRI scanner and look at those letters they’d been practicing,” Vinci-Booher explained. Her team analyzed the children’s brain activity to assess the functional connectivity between different areas of their brains.

“We found that the connection was stronger with letters they wrote by hand than those they tapped,” she said.

The research underscores the importance of the physical act of forming symbols, Vinci-Booher added.

“Writing by hand is a good thing for kids because it supports early reading development and it engages the fine motor system, which is developmentally important,” she said.

A 2021 study measured people’s brain activity during a memory task, this time finding that University of Tokyo students exhibited stronger activity and better recall after they had written information down on paper than when they did on a smartphone or even with a stylus on a tablet. The researchers suggested that the physical act of writing on paper provides the brain more details that trigger memory, and concluded that using paper notebooks can help students retain information in part because of their “tangible permanence.”

A similar study published in January compared the brain activity of students at the Norwegian University of Science and Technology who took notes by hand to the activity of those who typed their notes. The findings suggested that the students who wrote by hand had higher levels of electrical activity across a wide range of brain regions responsible for sensory processing and memory.

The results come as little surprise to many educators.

“I’ve seen firsthand that the kids learn more when they write by hand,” said Geeta Kadakia, who teaches second through fifth grade at the DAV Montessori School in Houston. “The lightbulb goes off through those achievements in handwriting, and handwriting leads to achievements in other areas, even math. When students make their numbers more neatly, their math scores improve.”

Laura Gajderowicz taught elementary school for 33 years in Indiana before retiring in 2022. She said she worried as she watched handwriting take a back seat to technology in U.S. classrooms in the early 2000s.

“Writing by hand does so much to help with the development of a student’s eye-hand coordination,” Gajderowicz said, adding: “I’m not against technology — I just think there’s a place at the table for both technology and handwriting when it comes to learning.”

This year, Gajderowicz served as a regional judge in the Zaner-Bloser contest.

“I was pleasantly surprised to see how many entries we had, especially from children in the upper grades,” she said.

Gajderowicz selected winners using criteria that analyzed the mechanics and precision of the letters students wrote, including their shapes, sizes, slant and spacing.

Contestants were asked to write the sentence, “The quick brown fox jumps over the lazy dog,” because it includes the entire alphabet, as well as a sentence explaining why handwriting makes them a better reader and writer.

Namuun Baasanbold’s entry.

Baasanbold said she was “over the moon” to find out she won: “I screamed and celebrated with friends at a restaurant with pizza and an appetizer and a sundae for dessert,” she said.

Her prizes include a trophy and $500 — plus bragging rights.

“I like to use my handwriting to impress people,” she said.

Mary Pflum is a national field producer for NBC News, based in New York.

  • Share full article

Advertisement

Supported by

In One Key A.I. Metric, China Pulls Ahead of the U.S.: Talent

China has produced a huge number of top A.I. engineers in recent years. New research shows that, by some measures, it has already eclipsed the United States.

Several men in suits sit on a stage at a conference.

By Paul Mozur and Cade Metz

Paul Mozur reported from Taipei, Taiwan, and Cade Metz from San Francisco.

When it comes to the artificial intelligence that powers chatbots like ChatGPT, China lags behind the United States . But when it comes to producing the scientists behind a new generation of humanoid technologies, China is pulling ahead.

New research shows that China has by some metrics eclipsed the United States as the biggest producer of A.I. talent, with the country generating almost half the world’s top A.I. researchers. By contrast, about 18 percent come from U.S. undergraduate institutions, according to the study , from MacroPolo, a think tank run by the Paulson Institute, which promotes constructive ties between the United States and China.

The findings show a jump for China, which produced about one-third of the world’s top talent three years earlier. The United States, by contrast, remained mostly the same. The research is based on the backgrounds of researchers whose papers were published at 2022’s Conference on Neural Information Processing Systems. NeurIPS, as it is known, is focused on advances in neural networks , which have anchored recent developments in generative A.I.

The talent imbalance has been building for the better part of a decade. During much of the 2010s, the United States benefited as large numbers of China’s top minds moved to American universities to complete doctoral degrees. A majority of them stayed in the United States. But the research shows that trend has also begun to turn, with growing numbers of Chinese researchers staying in China.

What happens in the next few years could be critical as China and the United States jockey for primacy in A.I. — a technology that can potentially increase productivity, strengthen industries and drive innovation — turning the researchers into one of the most geopolitically important groups in the world.

Generative A.I. has captured the tech industry in Silicon Valley and in China, causing a frenzy in funding and investment. The boom has been led by U.S. tech giants such as Google and start-ups like OpenAI. That could attract China’s researchers, though rising tensions between Beijing and Washington could also deter some, experts said.

(The New York Times has sued OpenAI and Microsoft for copyright infringement of news content related to A.I. systems.)

China has nurtured so much A.I. talent partly because it invested heavily in A.I. education. Since 2018, the country has added more than 2,000 undergraduate A.I. programs, with more than 300 at its most elite universities, said Damien Ma, the managing director of MacroPolo, though he noted the programs were not heavily focused on the technology that had driven breakthroughs by chatbots like ChatGPT.

“A lot of the programs are about A.I. applications in industry and manufacturing, not so much the generative A.I. stuff that’s come to dominate the American A.I. industry at the moment,” he said.

While the United States has pioneered breakthroughs in A.I., most recently with the uncanny humanlike abilities of chatbots , a significant portion of that work was done by researchers educated in China.

Researchers originally from China now make up 38 percent of the top A.I. researchers working in the United States, with Americans making up 37 percent, according to the research. Three years earlier, those from China made up 27 percent of top talent working in the United States, compared with 31 percent from the United States.

“The data shows just how critical Chinese-born researchers are to the United States for A.I. competitiveness,” said Matt Sheehan, a fellow at the Carnegie Endowment for International Peace who studies Chinese A.I.

He added that the data seemed to show the United States was still attractive. “We’re the world leader in A.I. because we continue to attract and retain talent from all over the world, but especially China,” he said.

Pieter Abbeel, a professor at the University of California, Berkeley, and a founder of Covariant , an A.I. and robotics start-up, said working alongside large numbers of Chinese researchers was taken for granted inside the leading American companies and universities.

“It’s just a natural state of affairs,” he said.

In the past, U.S. defense officials were not too concerned about A.I. talent flows from China, partly because many of the biggest A.I. projects did not deal with classified data and partly because they reasoned that it was better to have the best minds available. That so much of the leading research in A.I. is published openly also held back worries.

Despite bans introduced by the Trump administration that prohibit entry to the United States for students from some military-linked universities in China and a relative slowdown in the flow of Chinese students into the country during Covid, the research showed large numbers of the most promising A.I. minds continued coming to the United States to study.

But this month, a Chinese citizen who was an engineer at Google was charged with trying to transfer A.I. technology — including critical microchip architecture — to a Beijing-based company that paid him in secret , according to a federal indictment.

The substantial numbers of Chinese A.I. researchers working in the United States now present a conundrum for policymakers, who want to counter Chinese espionage while not discouraging the continued flow of top Chinese computer engineers into the United States, according to experts focused on American competitiveness.

“Chinese scholars are almost leading the way in the A.I. field,” said Subbarao Kambhampati, a professor and researcher of A.I. at Arizona State University. If policymakers try to bar Chinese nationals from research in the United States, he said, they are “shooting themselves in the foot.”

The track record of U.S. policymakers is mixed. A policy by the Trump administration aimed at curbing Chinese industrial espionage and intellectual property theft has since been criticized for errantly prosecuting a number of professors. Such programs, Chinese immigrants said, have encouraged some to stay in China.

For now, the research showed, most Chinese who complete doctorates in the United States stay in the country, helping to make it the global center of the A.I. world. Even so, the U.S. lead has begun to slip, to hosting about 42 percent of the world’s top talent, down from about 59 percent three years ago, according to the research.

Paul Mozur is the global technology correspondent for The Times, based in Taipei. Previously he wrote about technology and politics in Asia from Hong Kong, Shanghai and Seoul. More about Paul Mozur

Cade Metz writes about artificial intelligence, driverless cars, robotics, virtual reality and other emerging areas of technology. More about Cade Metz

  • Our Mission

An illustration of a team conducting research concept

2019 Education Research Highlights

Does doodling boost learning? Do attendance awards work? Do boys and girls process math the same way? Here’s a look at the big questions that researchers tackled this year.

Every year brings new insights—and cautionary tales—about what works in education. 2019 is no different, as we learned that doodling may do more harm than good when it comes to remembering information. Attendance awards don’t work and can actually increase absences. And while we’ve known that school discipline tends to disproportionately harm students of color, a new study reveals a key reason why: Compared with their peers, black students tend to receive fewer warnings for misbehavior before being punished.

To Remember Something, Draw It (but Be Careful With Doodling)

A 2019 study found that students remember less of what they’re learning if they’re doodling at the same time. But the study also addresses a big misconception: Doodling is not the same as drawing. Earlier research concludes that drawing easily beats reading, writing, or listening when it comes to learning and retention.

So what’s the difference? Free-form doodling is often a distraction from what's being learned. At least six decades of studies show that divided attention impairs learning. But drawing that reinforces what’s being studied—for example, sketching out and labeling the solar system—taps into visual, kinesthetic, and linguistic areas of the brain at the same time, encoding the information more deeply.

Awards Don’t Boost Attendance—Teachers Do

It’s common to see awards being handed out to reward students for good attendance, but a 2019 study found that these awards can backfire spectacularly, giving students a “license to miss more school” and actually driving absentee rates up. 

Students are more likely to attend school when their teachers notice absences and make efforts to reach out to them and their families, according to a 2017 report from Attendance Works. And a  2019 study found that highly engaging teachers can decrease absences by 49 percent, making it clear that a teacher’s impact extends well beyond test scores and grades.

Math Circuitry Looks the Same in Boys and Girls

Advanced imaging technology like fMRI continues to push at the frontiers of our understanding of the human brain. After analyzing the brain circuitry of 104 children ages 3 to 10 while they watched math problems being solved, neuroscientists discovered that neural activity in areas of the parietal lobe associated with numerical cognition was nearly identical across genders. 

The findings tend to confirm that gender differences in math performance are socially constructed, an argument that’s bolstered by past research showing that the gender gap in math is not as pronounced in other cultures—and in some countries, like Finland and Korea , it often reverses to favor girls. 

The “Summer Slide” Study Fails to Replicate

While the idea of a “summer slide” is widely accepted and influential, much of what we know about it is based on a 1980s study that concluded that kids who spent their summers playing fell further and further behind those who studied. But a recent attempt to replicate the study failed, and an in-depth analysis revealed that the original testing methods distorted the gap between student scores.

When applying modern scoring methods to the old data, researchers discovered that the hypothetical, ever-expanding gap actually shrank as students got older. Students can still benefit from enriching summer activities, of course, just as they would at any time of the year, but the idea that the gap widens over the summer is almost certainly overblown—and there’s an abundance of evidence that play has significant emotional and cognitive benefits. 

Cut the Arts at Your Own Risk, Researchers Warn

As arts programs continue to face the budget ax , a handful of new studies suggest that’s a grave mistake. The arts provide cognitive, academic, behavioral, and social benefits that go far beyond simply learning how to play music or perform scenes in a play.

In a major new study from Rice University involving 10,000 students in third through eighth grades, researchers determined that expanding a school’s arts programs improved writing scores, increased the students’ compassion for others, and reduced disciplinary infractions. The benefits of such programs may be especially pronounced for students who come from low-income families, according to a 10-year study of 30,000 students released in 2019. 

Unexpectedly, another recent study found that artistic commitment—think of a budding violinist or passionate young thespian—can boost executive function skills like focus and working memory, linking the arts to a set of overlooked skills that are highly correlated to success in both academics and life. 

Studies on Disability Emphasize Early Intervention—and Teacher Training

Failing to identify and support students with learning disabilities early can have dire, long-term consequences. In a comprehensive 2019 analysis , researchers highlighted the need to provide interventions that align with critical phases of early brain development. In one startling example, reading interventions for children with learning disabilities were found to be twice as effective if delivered by the second grade instead of third grade.

But only 17 percent of teachers say they feel adequately trained by their certification programs, according to a new report from leading experts—and in the absence of good information, misconceptions take root. For example, the researchers found that one-third of teachers believe that learning disabilities reflect a lack of motivation, not a difference in brain development. To support students with learning disabilities, then, we also need to tackle the pervasive myths that can stymie their potential.

More Z’s May Yield More A’s

When the Seattle School District delayed high school start times by an hour, students caught an extra 34 minutes of sleep per day, and their grades improved by about 5 percent while absences decreased by 7 percent. The new research highlights the ways in which traditional high school start times—which aren’t aligned to teenagers’ natural circadian rhythms—can cause physical, mental, and cognitive health problems.

While previous studies relied on anecdotal or self-reported evidence to establish a link between sleep, academic performance, and school start times, the new research is the first high-quality, scientific study to quantify the real-world benefits of delaying start times for high school students.

Fewer Warnings for Black Students

Compared with their white peers, black middle school students were given fewer chances to correct their misbehavior before being sent to the principal’s office or being suspended, according to a 2019 study from the University of Illinois. 

The finding is the latest in a long line of similarly disturbing conclusions about race and discipline in schools, with most research agreeing that black students are disproportionately suspended or expelled compared with their peers. Last year, for example, a study found that while an astonishing 40 percent of black boys were suspended or expelled by third grade, only 8 percent of boys who were non-Hispanic white or other races were.

Paper Beats Screens, Says a New Study—but Read the Fine Print

Virginia Clinton, an education professor at the University of North Dakota, analyzed 33 studies published since 2008 and found that children and adults tend to remember more of what they’ve read on paper compared with digital devices such as e-readers, tablets, and computers.

But there’s a catch: Many of the inherent advantages of digital devices—such as hyperlinking, commenting, and multimedia—were eliminated to allow for “direct comparisons of the media.” In addition, the actual advantages of paper were “rather small,” the study conceded. The newest digital reading tools can enhance note taking , encourage students to read collaboratively , and incorporate pop quizzes —all of which can clearly tilt the benefits in digital’s favor.

Growth Mindset Falters, Then Recovers

One of the most popular theories in education was put to the test last year when a large meta-analysis found that growth mindset interventions had “weak” benefits—although at-risk students did see bigger gains. But a new national study , this one encompassing more than 12,000 ninth-grade students, gives new life to the theory.

Unlike previous studies, the new one employed a multipronged approach. Students were taught a powerful metaphor: “The brain is like a muscle that grows stronger and smarter when it undergoes rigorous learning experiences.” They also reflected on their own learning and gave advice to future students who were struggling. The result? Students saw modest gains of 0.1 of a grade point and were also 9 percent more likely to take advanced math courses the following year. Students who were academically at-risk saw major gains, however: 11 percent were prevented from being off-track to graduate.

IMAGES

  1. 40+ Reasons Why Research Is Important in Education

    education research studies

  2. Why research? Exploring the reasons for The Education Hub’s raison d

    education research studies

  3. Education Research for Beginners

    education research studies

  4. 100+ Education Research Topics & Ideas with Tips

    education research studies

  5. Introduction to Research in Education, 9th Edition

    education research studies

  6. Types of Research

    education research studies

VIDEO

  1. MANAGEMENT EDUCATION & RESEARCH INSTITUTE

  2. Research, Educational research

  3. 3 Types of Educational Research

COMMENTS

  1. National Center for Education Research (NCER) Home Page, a part of the

    The National Center for Education Research (NCER) supports rigorous, scientifically based research that addresses the nation's most pressing education needs, from early childhood to postgraduate studies. NCER supports research through competitive grants to research and development centers, candidates for doctoral training in the education sciences and small businesses.

  2. The 10 Most Significant Education Studies of 2021

    The 10 Most Significant Education Studies of 2021. From reframing our notion of "good" schools to mining the magic of expert teachers, here's a curated list of must-read research from 2021. By Youki Terada, Stephen Merrill, Sarah Gonser. December 9, 2021. It was a year of unprecedented hardship for teachers and school leaders.

  3. The 10 Most Significant Education Studies of 2022

    10. An Authoritative Study of Two High-Impact Learning Strategies. Spacing and retrieval practices are two of the most effective ways to drive long-term retention, confirms an authoritative 2022 review spanning hundreds of studies on the topic—and students should know how and why the strategies are effective. In the review, researchers ...

  4. The 10 Most Significant Education Studies of 2023

    The 10 Most Significant Education Studies of 2023. Following our annual tussle with hundreds of studies of merit, we've pared them down to 10 you shouldn't miss—from what AI can (and can't) do to the neuroscience of brain synchrony. For those of us hoping for a quiet, back-to-normal kind of year, the research coming out of 2023 might ...

  5. Harvard Educational Review

    The Harvard Educational Review (HER) is a scholarly journal of opinion and research in education. The Editorial Board aims to publish pieces from interdisciplinary and wide-ranging fields that advance our understanding of educational theory, equity, and practice. ... where she was an Education Studies Scholar. Woohee Kim Editor, 2023-2025.

  6. American Educational Research Journal: Sage Journals

    The American Educational Research Journal (AERJ) is the flagship journal of AERA, with articles that advance the empirical, theoretical, and methodological understanding of education and learning. It publishes original peer-reviewed analyses spanning the field of education research across all subfields and disciplines and all levels of analysis, all levels of education throughout the life span ...

  7. Research in Education: Sage Journals

    Research in Education provides a space for fully peer-reviewed, critical, trans-disciplinary, debates on theory, policy and practice in relation to Education. International in scope, we publish challenging, well-written and theoretically innovative contributions that question and explore the concept, practice and institution of Education as an object of study.

  8. Review of Educational Research: Sage Journals

    The Review of Educational Research (RER) publishes critical, integrative reviews of research literature bearing on education, including conceptualizations, interpretations, and syntheses of literature and scholarly work in a field broadly relevant to education and educational research. View full journal description

  9. ERIC

    ERIC is an online library of education research and information, sponsored by the Institute of Education Sciences (IES) of the U.S. Department of Education.

  10. What is Education Research?

    Education research is the scientific field of study that examines education and learning processes and the human attributes, interactions, organizations, and institutions that shape educational outcomes. Scholarship in the field seeks to describe, understand, and explain how learning takes place throughout a person's life and how formal and ...

  11. Education: Articles, Research, & Case Studies on Education

    New research on education from Harvard Business School faculty on issues including higher education, business school curriculums, and job training. ... Harvard Professor of China Studies William C. Kirby highlights the challenges of China's mental health sector and the means company founder Guan Weili employed to address them in his case ...

  12. What Are the Most Important Education Research Findings in the Past 10

    We now know, with greater clarity and evidence than ever, that learning is a social, emotional, and cognitive process. While early "brain research" findings were beginning to emerge 10 years ...

  13. Educational Studies

    Educational Studies aims to provide a forum for original investigations and theoretical studies in education. The journal publishes fully refereed papers which cover applied and theoretical approaches to the study of education. Papers should constitute original research, and should be methodologically sound, theoretically informed, and of relevance to an international audience.

  14. Research and trends in STEM education: a systematic review of journal

    A review of research development in a field is relatively straight forward, when the field is mature and its scope can be well defined. Unlike discipline-based education research (DBER, National Research Council, 2012), STEM education is not a well-defined field.Conducting a comprehensive literature review of STEM education research require careful thought and clearly specified scope to tackle ...

  15. International Journal of Educational Research

    The International Journal of Educational Research Open (IJEDRO) is a companion title of the International Journal of Educational Research (IJER). IJEDRO is an open access, peer-reviewed journal which draws contributions from a wide community of international and interdisciplinary researchers …. View full aims & scope.

  16. Education

    About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions.

  17. Trends and Topics in Educational Technology, 2024 Edition

    Regarding contexts, higher education was far more common as a setting for educational technology studies than K-12, and secondary schools were more represented than elementary schools. This suggests an inverted pyramid representation of EdTech research being done at different educational levels, a trend that we saw in previous analyses (Allman ...

  18. The 10 Most Significant Education Studies of 2020

    The study builds on a growing body of research that reminds us that questions of educational equity do not begin and end at the schoolhouse door. What we call an achievement gap is often an equity gap, one that "takes root in the earliest years of children's lives," according to a 2017 study. We won't have equal opportunity in our ...

  19. Student Engagement and Class Satisfaction in An Undergraduate Marketing

    Student engagement consisted of three dimensions in this study, namely physical engagement, emotional engagement, and cognitive engagement. Flow theory was used to examine the potential impact of the disruption of student learning flow on student engagement and student learning outcomes (i.e. student class satisfaction) using longitudinal data ...

  20. Study Tracks Shifts in Student Mental Health During College

    The team made their anonymized data set publicly available—including self-reports, surveys, and phone-sensing and brain-imaging data—to help advance research into the mental health of students during their college years.. Andrew Campbell, the paper's senior author and Dartmouth's Albert Bradley 1915 Third Century Professor of Computer Science, says that the study's extensive data ...

  21. Educational Researcher: Sage Journals

    Educational Researcher (ER) publishes scholarly articles that are of general significance to the education research community and that come from a wide range of areas of education research and related disciplines. Published nine times a year, ER aims to make major programmatic research and new findings of broad importance widely accessible.

  22. Vanderbilt launches AUD Research and Education Center with prestigious

    An $8.9 million grant from the NIH will establish the Vanderbilt AUD Research and Education Center, enhancing Vanderbilt University's national leadership in neuroscience and addiction research.

  23. PDF Past and Present in Mind of Nizhniy Novgorod Citizens: Socioanthropic Study

    space inevitably arises in a person a sense of instability and disorder (Sikevich, 2016). The study of perception of the past and present of our history by representatives of different age cohorts, gender, status and education will allow reveal the extent of mutual understanding, presence or absence of intergenerational language of communication.

  24. Internship Toolkit

    Object Moved This document may be found here

  25. Nine students win national handwriting contest

    Nine students won this year's national handwriting contest. A growing number of states are requiring cursive instruction, and research supports the benefits of writing on paper.

  26. Brain Mechanism Found to Determine Which Memories Last

    While past studies had linked ripples with memory formation during sleep, the new study, published online March 28 in the journal Science, found that daytime events followed immediately by 5 to 20 sharp wave-ripples are replayed more during sleep and so consolidated into permanent memories. Events followed by very few or no sharp wave-ripples ...

  27. Aleksandr KOLESNIKOV

    Education. October 2015 - September 2018. Nizhny Novgorod State University. Field of study. English Literature; September 2013 - August 2015 ... Join ResearchGate to find the people and research ...

  28. In One Key A.I. Metric, China Pulls Ahead of the U.S.: Talent

    China has produced a huge number of top A.I. engineers in recent years. New research shows that, by some measures, it has already eclipsed the United States. By Paul Mozur and Cade Metz Paul Mozur ...

  29. 2019 Education Research Highlights

    To Remember Something, Draw It (but Be Careful With Doodling) A 2019 study found that students remember less of what they're learning if they're doodling at the same time. But the study also addresses a big misconception: Doodling is not the same as drawing. Earlier research concludes that drawing easily beats reading, writing, or listening ...

  30. Iosif MEYEROV

    PhD in Applied Mathematics and Computer Science from the Lobachevsky State University of Nizhny Novgorod (2005), deputy head of the department of Mathematical software and supercomputing ...