• Prodigy Math
  • Prodigy English
  • Is a Premium Membership Worth It?
  • Promote a Growth Mindset
  • Help Your Child Who's Struggling with Math
  • Parent's Guide to Prodigy
  • Assessments
  • Math Curriculum Coverage
  • English Curriculum Coverage
  • Game Portal

5 Advantages and Disadvantages of Problem-Based Learning [+ Activity Design Steps]

no image

Written by Marcus Guido

Easily differentiate learning and engage your students with Prodigy Math.

  • Teaching Strategies

Advantages of Problem-Based Learning

Disadvantages of problem-based learning, steps to designing problem-based learning activities.

Used since the 1960s, many teachers express concerns about the effectiveness of problem-based learning (PBL) in certain classroom settings.

Whether you introduce the student-centred pedagogy as a one-time activity or mainstay exercise, grouping students together to solve open-ended problems can present pros and cons.

Below are five advantages and disadvantages of problem-based learning to help you determine if it can work in your classroom.

If you decide to introduce an activity, there are also design creation steps and a downloadable guide to keep at your desk for easy reference.

1. Development of Long-Term Knowledge Retention

Students who participate in problem-based learning activities can improve their abilities to retain and recall information, according to a literature review of studies about the pedagogy .

The literature review states “elaboration of knowledge at the time of learning” -- by sharing facts and ideas through discussion and answering questions -- “enhances subsequent retrieval.” This form of elaborating reinforces understanding of subject matter , making it easier to remember.

Small-group discussion can be especially beneficial -- ideally, each student will get chances to participate.

But regardless of group size, problem-based learning promotes long-term knowledge retention by encouraging students to discuss -- and answer questions about -- new concepts as they’re learning them.

2. Use of Diverse Instruction Types

what is advantages of using problem solving teaching method

You can use problem-based learning activities to the meet the diverse learning needs and styles of your students, effectively engaging a diverse classroom in the process. In general, grouping students together for problem-based learning will allow them to:

  • Address real-life issues that require real-life solutions, appealing to students who struggle to grasp abstract concepts
  • Participate in small-group and large-group learning, helping students who don’t excel during solo work grasp new material
  • Talk about their ideas and challenge each other in a constructive manner, giving participatory learners an avenue to excel
  • Tackle a problem using a range of content you provide -- such as videos, audio recordings, news articles and other applicable material -- allowing the lesson to appeal to distinct learning styles

Since running a problem-based learning scenario will give you a way to use these differentiated instruction approaches , it can be especially worthwhile if your students don’t have similar learning preferences.

3. Continuous Engagement

what is advantages of using problem solving teaching method

Providing a problem-based learning challenge can engage students by acting as a break from normal lessons and common exercises.

It’s not hard to see the potential for engagement, as kids collaborate to solve real-world problems that directly affect or heavily interest them.

Although conducted with post-secondary students, a study published by the Association for the Study of Medical Education reported increased student attendance to -- and better attitudes towards -- courses that feature problem-based learning.

These activities may lose some inherent engagement if you repeat them too often, but can certainly inject excitement into class.

4. Development of Transferable Skills

Problem-based learning can help students develop skills they can transfer to real-world scenarios, according to a 2015 book that outlines theories and characteristics of the pedagogy .

The tangible contexts and consequences presented in a problem-based learning activity “allow learning to become more profound and durable.” As you present lessons through these real-life scenarios, students should be able to apply learnings if they eventually face similar issues.

For example, if they work together to address a dispute within the school, they may develop lifelong skills related to negotiation and communicating their thoughts with others.

As long as the problem’s context applies to out-of-class scenarios, students should be able to build skills they can use again.

5. Improvement of Teamwork and Interpersonal Skills

what is advantages of using problem solving teaching method

Successful completion of a problem-based learning challenge hinges on interaction and communication, meaning students should also build transferable skills based on teamwork and collaboration . Instead of memorizing facts, they get chances to present their ideas to a group, defending and revising them when needed.

What’s more, this should help them understand a group dynamic. Depending on a given student, this can involve developing listening skills and a sense of responsibility when completing one’s tasks. Such skills and knowledge should serve your students well when they enter higher education levels and, eventually, the working world.

1. Potentially Poorer Performance on Tests

what is advantages of using problem solving teaching method

Devoting too much time to problem-based learning can cause issues when students take standardized tests, as they may not have the breadth of knowledge needed to achieve high scores. Whereas problem-based learners develop skills related to collaboration and justifying their reasoning, many tests reward fact-based learning with multiple choice and short answer questions. Despite offering many advantages, you could spot this problem develop if you run problem-based learning activities too regularly.

2. Student Unpreparedness

what is advantages of using problem solving teaching method

Problem-based learning exercises can engage many of your kids, but others may feel disengaged as a result of not being ready to handle this type of exercise for a number of reasons. On a class-by-class and activity-by-activity basis, participation may be hindered due to:

  • Immaturity  -- Some students may not display enough maturity to effectively work in a group, not fulfilling expectations and distracting other students.
  • Unfamiliarity  -- Some kids may struggle to grasp the concept of an open problem, since they can’t rely on you for answers.
  • Lack of Prerequisite Knowledge  -- Although the activity should address a relevant and tangible problem, students may require new or abstract information to create an effective solution.

You can partially mitigate these issues by actively monitoring the classroom and distributing helpful resources, such as guiding questions and articles to read. This should keep students focused and help them overcome knowledge gaps. But if you foresee facing these challenges too frequently, you may decide to avoid or seldom introduce problem-based learning exercises.

3. Teacher Unpreparedness

If supervising a problem-based learning activity is a new experience, you may have to prepare to adjust some teaching habits . For example, overtly correcting students who make flawed assumptions or statements can prevent them from thinking through difficult concepts and questions. Similarly, you shouldn’t teach to promote the fast recall of facts. Instead, you should concentrate on:

  • Giving hints to help fix improper reasoning
  • Questioning student logic and ideas in a constructive manner
  • Distributing content for research and to reinforce new concepts
  • Asking targeted questions to a group or the class, focusing their attention on a specific aspect of the problem

Depending on your teaching style, it may take time to prepare yourself to successfully run a problem-based learning lesson.

4. Time-Consuming Assessment

what is advantages of using problem solving teaching method

If you choose to give marks, assessing a student’s performance throughout a problem-based learning exercise demands constant monitoring and note-taking. You must take factors into account such as:

  • Completed tasks
  • The quality of those tasks
  • The group’s overall work and solution
  • Communication among team members
  • Anything you outlined on the activity’s rubric

Monitoring these criteria is required for each student, making it time-consuming to give and justify a mark for everyone.

5. Varying Degrees of Relevancy and Applicability

It can be difficult to identify a tangible problem that students can solve with content they’re studying and skills they’re mastering. This introduces two clear issues. First, if it is easy for students to divert from the challenge’s objectives, they may miss pertinent information. Second, you could veer off the problem’s focus and purpose as students run into unanticipated obstacles. Overcoming obstacles has benefits, but may compromise the planning you did. It can also make it hard to get back on track once the activity is complete. Because of the difficulty associated with keeping activities relevant and applicable, you may see problem-based learning as too taxing.

If the advantages outweigh the disadvantages -- or you just want to give problem-based learning a shot -- follow these steps:

1. Identify an Applicable Real-Life Problem

what is advantages of using problem solving teaching method

Find a tangible problem that’s relevant to your students, allowing them to easily contextualize it and hopefully apply it to future challenges. To identify an appropriate real-world problem, look at issues related to your:

  • Students’ shared interests

You must also ensure that students understand the problem and the information around it. So, not all problems are appropriate for all grade levels.

2. Determine the Overarching Purpose of the Activity

Depending on the problem you choose, determine what you want to accomplish by running the challenge. For example, you may intend to help your students improve skills related to:

  • Collaboration
  • Problem-solving
  • Curriculum-aligned topics
  • Processing diverse content

A more precise example, you may prioritize collaboration skills by assigning specific tasks to pairs of students within each team. In doing so, students will continuously develop communication and collaboration abilities by working as a couple and part of a small group. By defining a clear purpose, you’ll also have an easier time following the next step.

3. Create and Distribute Helpful Material

what is advantages of using problem solving teaching method

Handouts and other content not only act as a set of resources, but help students stay focused on the activity and its purpose. For example, if you want them to improve a certain math skill , you should make material that highlights the mathematical aspects of the problem. You may decide to provide items such as:

  • Data that helps quantify and add context to the problem
  • Videos, presentations and other audio-visual material
  • A list of preliminary questions to investigate

Providing a range of resources can be especially important for elementary students and struggling students in higher grades, who may not have self-direction skills to work without them.

4. Set Goals and Expectations for Your Students

Along with the aforementioned materials, give students a guide or rubric that details goals and expectations. It will allow you to further highlight the purpose of the problem-based learning exercise, as you can explain what you’re looking for in terms of collaboration, the final product and anything else. It should also help students stay on track by acting as a reference throughout the activity.

5. Participate

what is advantages of using problem solving teaching method

Although explicitly correcting students may be discouraged, you can still help them and ask questions to dig into their thought processes. When you see an opportunity, consider if it’s worthwhile to:

  • Fill gaps in knowledge
  • Provide hints, not answers
  • Question a student’s conclusion or logic regarding a certain point, helping them think through tough spots

By participating in these ways, you can provide insight when students need it most, encouraging them to effectively analyze the problem.

6. Have Students Present Ideas and Findings

If you divided them into small groups, requiring students to present their thoughts and results in front the class adds a large-group learning component to the lesson. Encourage other students to ask questions, allowing the presenting group to elaborate and provide evidence for their thoughts. This wraps up the activity and gives your class a final chance to find solutions to the problem.

Wrapping Up

The effectiveness of problem-based learning may differ between classrooms and individual students, depending on how significant specific advantages and disadvantages are to you. Evaluative research consistently shows value in giving students a question and letting them take control of their learning. But the extent of this value can depend on the difficulties you face.It may be wise to try a problem-based learning activity, and go forward based on results.

Create or log into your teacher account on Prodigy -- an adaptive math game that adjusts content to accommodate player trouble spots and learning speeds. Aligned to US and Canadian curricula, it’s used by more than 350,000 teachers and 10 million students. It may be wise to try a problem-based learning activity, and go forward based on results.

Center for Teaching Innovation

Resource library.

  • Establishing Community Agreements and Classroom Norms
  • Sample group work rubric
  • Problem-Based Learning Clearinghouse of Activities, University of Delaware

Problem-Based Learning

Problem-based learning  (PBL) is a student-centered approach in which students learn about a subject by working in groups to solve an open-ended problem. This problem is what drives the motivation and the learning. 

Why Use Problem-Based Learning?

Nilson (2010) lists the following learning outcomes that are associated with PBL. A well-designed PBL project provides students with the opportunity to develop skills related to:

  • Working in teams.
  • Managing projects and holding leadership roles.
  • Oral and written communication.
  • Self-awareness and evaluation of group processes.
  • Working independently.
  • Critical thinking and analysis.
  • Explaining concepts.
  • Self-directed learning.
  • Applying course content to real-world examples.
  • Researching and information literacy.
  • Problem solving across disciplines.

Considerations for Using Problem-Based Learning

Rather than teaching relevant material and subsequently having students apply the knowledge to solve problems, the problem is presented first. PBL assignments can be short, or they can be more involved and take a whole semester. PBL is often group-oriented, so it is beneficial to set aside classroom time to prepare students to   work in groups  and to allow them to engage in their PBL project.

Students generally must:

  • Examine and define the problem.
  • Explore what they already know about underlying issues related to it.
  • Determine what they need to learn and where they can acquire the information and tools necessary to solve the problem.
  • Evaluate possible ways to solve the problem.
  • Solve the problem.
  • Report on their findings.

Getting Started with Problem-Based Learning

  • Articulate the learning outcomes of the project. What do you want students to know or be able to do as a result of participating in the assignment?
  • Create the problem. Ideally, this will be a real-world situation that resembles something students may encounter in their future careers or lives. Cases are often the basis of PBL activities. Previously developed PBL activities can be found online through the University of Delaware’s PBL Clearinghouse of Activities .
  • Establish ground rules at the beginning to prepare students to work effectively in groups.
  • Introduce students to group processes and do some warm up exercises to allow them to practice assessing both their own work and that of their peers.
  • Consider having students take on different roles or divide up the work up amongst themselves. Alternatively, the project might require students to assume various perspectives, such as those of government officials, local business owners, etc.
  • Establish how you will evaluate and assess the assignment. Consider making the self and peer assessments a part of the assignment grade.

Nilson, L. B. (2010).  Teaching at its best: A research-based resource for college instructors  (2nd ed.).  San Francisco, CA: Jossey-Bass. 

TechBeamers

  • Python Multiline String
  • Python Multiline Comment
  • Python Iterate String
  • Python Dictionary
  • Python Lists
  • Python List Contains
  • Page Object Model
  • TestNG Annotations
  • Python Function Quiz
  • Python String Quiz
  • Python OOP Test
  • Java Spring Test
  • Java Collection Quiz
  • JavaScript Skill Test
  • Selenium Skill Test
  • Selenium Python Quiz
  • Shell Scripting Test
  • Latest Python Q&A
  • CSharp Coding Q&A
  • SQL Query Question
  • Top Selenium Q&A
  • Top QA Questions
  • Latest Testing Q&A
  • REST API Questions
  • Linux Interview Q&A
  • Shell Script Questions
  • Python Quizzes
  • Testing Quiz
  • Shell Script Quiz
  • WebDev Interview
  • Python Basic
  • Python Examples
  • Python Advanced
  • Python Selenium
  • General Tech

Problem-Solving Method of Teaching: All You Need to Know

What is Problem-Solving Method of Teaching?

Ever wondered about the problem-solving method of teaching? We’ve got you covered, from its core principles to practical tips, benefits, and real-world examples.

The problem-solving method of teaching is a student-centered approach to learning that focuses on developing students’ problem-solving skills. In this method, students are presented with real-world problems to solve, and they are encouraged to use their own knowledge and skills to come up with solutions. The teacher acts as a facilitator, providing guidance and support as needed, but ultimately the students are responsible for finding their own solutions.

Problem-Solving Method of Teaching Example

Must Read: How to Tell Me About Yourself in an Interview

5 Most Important Benefits of Problem-Solving Method of Teaching

The new way of teaching primarily helps students develop critical thinking skills and real-world application abilities. It also promotes independence and self-confidence in problem-solving.

The problem-solving method of teaching has a number of benefits. It helps students to:

1. Enhances critical thinking: By presenting students with real-world problems to solve, the problem-solving method of teaching forces them to think critically about the situation and to come up with their own solutions. This process helps students to develop their critical thinking skills, which are essential for success in school and in life.

2. Fosters creativity: The problem-solving method of teaching encourages students to be creative in their approach to solving problems. There is often no one right answer to a problem, so students are free to come up with their own unique solutions. This process helps students to develop their creativity, which is an important skill in all areas of life.

3. Encourages real-world application: The problem-solving method of teaching helps students learn how to apply their knowledge to real-world situations. By solving real-world problems, students are able to see how their knowledge is relevant to their lives and to the world around them. This helps students to become more motivated and engaged learners.

4. Builds student confidence: When students are able to successfully solve problems, they gain confidence in their abilities. This confidence is essential for success in all areas of life, both academic and personal.

5. Promotes collaborative learning: The problem-solving method of teaching often involves students working together to solve problems. This collaborative learning process helps students to develop their teamwork skills and to learn from each other.

Know 6 Steps in the Problem-Solving Method of Teaching

Know the 6 Steps

Also Read: Do You Know the Difference Between ChatGPT and GPT-4?

The problem-solving method of teaching typically involves the following steps:

  • Identifying the problem. The first step is to identify the problem that students will be working on. This can be done by presenting students with a real-world problem, or by asking them to come up with their own problems.
  • Understanding the problem. Once students have identified the problem, they need to understand it fully. This may involve breaking the problem down into smaller parts or gathering more information about the problem.
  • Generating solutions. Once students understand the problem, they need to generate possible solutions. This can be done by brainstorming, or by using problem-solving techniques such as root cause analysis or the decision matrix.
  • Evaluating solutions. Students need to evaluate the pros and cons of each solution before choosing one to implement.
  • Implementing the solution. Once students have chosen a solution, they need to implement it. This may involve taking action or developing a plan.
  • Evaluating the results. Once students have implemented the solution, they need to evaluate the results to see if it was successful. If the solution is not successful, students may need to go back to step 3 and generate new solutions.

Find Out Examples of the Problem-Solving Method of Teaching

Here are a few examples of how the problem-solving method of teaching can be used in different subjects:

  • Math: Students could be presented with a real-world problem such as budgeting for a family or designing a new product. Students would then need to use their math skills to solve the problem.
  • Science: Students could be presented with a science experiment, or asked to research a scientific topic and come up with a solution to a problem. Students would then need to use their science knowledge and skills to solve the problem.
  • Social studies: Students could be presented with a historical event or current social issue, and asked to come up with a solution. Students would then need to use their social studies knowledge and skills to solve the problem.

5 How Tos For Using The Problem-Solving Method Of Teaching

Here are a few tips for using the problem-solving method of teaching effectively:

  • Choose problems that are relevant to students’ lives and interests.
  • Make sure that the problems are challenging but achievable.
  • Provide students with the resources they need to solve the problems, such as books, websites, or experts.
  • Encourage students to work collaboratively and to share their ideas.
  • Be patient and supportive. Problem-solving can be a challenging process, but it is also a rewarding one.

Also Try: 1-10 Random Number Generator

How to Choose: Let’s Draw a Comparison

The following table compares the different problem-solving methods:

Which Method is the Most Suitable?

The most suitable method of teaching will depend on a number of factors, such as the subject matter, the student’s age and ability level, and the teacher’s own preferences. However, the problem-solving method of teaching is a valuable approach that can be used in any subject area and with students of all ages.

Here are some additional tips for using the problem-solving method of teaching effectively:

  • Differentiate instruction. Not all students learn at the same pace or in the same way. Teachers can differentiate instruction to meet the needs of all learners by providing different levels of support and scaffolding.
  • Use formative assessment. Formative assessment can be used to monitor students’ progress and to identify areas where they need additional support. Teachers can then use this information to provide students with targeted instruction.
  • Create a positive learning environment. Students need to feel safe and supported in order to learn effectively. Teachers can create a positive learning environment by providing students with opportunities for collaboration, celebrating their successes, and creating a classroom culture where mistakes are seen as learning opportunities.

Interested in New Tech: 7 IoT Trends to Watch in 2023

Some Unique Examples to Refer to Before We Conclude

Here are a few unique examples of how the problem-solving method of teaching can be used in different subjects:

  • English: Students could be presented with a challenging text, such as a poem or a short story, and asked to analyze the text and come up with their own interpretation.
  • Art: Students could be asked to design a new product or to create a piece of art that addresses a social issue.
  • Music: Students could be asked to write a song about a current event or to create a new piece of music that reflects their cultural heritage.

The problem-solving method of teaching is a powerful tool that can be used to help students develop the skills they need to succeed in school and in life. By creating a learning environment where students are encouraged to think critically and solve problems, teachers can help students to become lifelong learners.

You Might Also Like

How to fix load css asynchronously, how to fix accessibility issues with tables in wordpress, apache spark introduction and architecture, difference between spring and spring boot, langchain chatbot – let’s create a full-fledged app.

Harsh S. Avatar

Popular Tutorials

SQL Interview Questions List

Top 50 SQL Query Interview Questions for Practice

Demo Websites You Need to Practice Selenium

7 Demo Websites to Practice Selenium Automation Testing

SQL Exercises with Sample Table and Demo Data

SQL Exercises – Complex Queries

Java Coding Questions for Software Testers

15 Java Coding Questions for Testers

30 Quick Python Programming Questions On List, Tuple & Dictionary

30 Python Programming Questions On List, Tuple, and Dictionary

what is advantages of using problem solving teaching method

  • Illinois Online
  • Illinois Remote

teaching_learning_banner

  • TA Resources
  • Teaching Consultation
  • Teaching Portfolio Program
  • Grad Academy for College Teaching
  • Faculty Events
  • The Art of Teaching
  • 2022 Illinois Summer Teaching Institute
  • Large Classes
  • Leading Discussions
  • Laboratory Classes
  • Lecture-Based Classes
  • Planning a Class Session
  • Questioning Strategies
  • Classroom Assessment Techniques (CATs)
  • Problem-Based Learning (PBL)
  • The Case Method
  • Community-Based Learning: Service Learning
  • Group Learning
  • Just-in-Time Teaching
  • Creating a Syllabus
  • Motivating Students
  • Dealing With Cheating
  • Discouraging & Detecting Plagiarism
  • Diversity & Creating an Inclusive Classroom
  • Harassment & Discrimination
  • Professional Conduct
  • Foundations of Good Teaching
  • Student Engagement
  • Assessment Strategies
  • Course Design
  • Student Resources
  • Teaching Tips
  • Graduate Teacher Certificate
  • Certificate in Foundations of Teaching
  • Teacher Scholar Certificate
  • Certificate in Technology-Enhanced Teaching
  • Master Course in Online Teaching (MCOT)
  • 2022 Celebration of College Teaching
  • 2023 Celebration of College Teaching
  • Hybrid Teaching and Learning Certificate
  • 2024 Celebration of College Teaching
  • Classroom Observation Etiquette
  • Teaching Philosophy Statement
  • Pedagogical Literature Review
  • Scholarship of Teaching and Learning
  • Instructor Stories
  • Podcast: Teach Talk Listen Learn
  • Universal Design for Learning

Sign-Up to receive Teaching and Learning news and events

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001).

PBL can be incorporated into any learning situation. In the strictest definition of PBL, the approach is used over the entire semester as the primary method of teaching. However, broader definitions and uses range from including PBL in lab and design classes, to using it simply to start a single discussion. PBL can also be used to create assessment items. The main thread connecting these various uses is the real-world problem.

Any subject area can be adapted to PBL with a little creativity. While the core problems will vary among disciplines, there are some characteristics of good PBL problems that transcend fields (Duch, Groh, and Allen, 2001):

  • The problem must motivate students to seek out a deeper understanding of concepts.
  • The problem should require students to make reasoned decisions and to defend them.
  • The problem should incorporate the content objectives in such a way as to connect it to previous courses/knowledge.
  • If used for a group project, the problem needs a level of complexity to ensure that the students must work together to solve it.
  • If used for a multistage project, the initial steps of the problem should be open-ended and engaging to draw students into the problem.

The problems can come from a variety of sources: newspapers, magazines, journals, books, textbooks, and television/ movies. Some are in such form that they can be used with little editing; however, others need to be rewritten to be of use. The following guidelines from The Power of Problem-Based Learning (Duch et al, 2001) are written for creating PBL problems for a class centered around the method; however, the general ideas can be applied in simpler uses of PBL:

  • Choose a central idea, concept, or principle that is always taught in a given course, and then think of a typical end-of-chapter problem, assignment, or homework that is usually assigned to students to help them learn that concept. List the learning objectives that students should meet when they work through the problem.
  • Think of a real-world context for the concept under consideration. Develop a storytelling aspect to an end-of-chapter problem, or research an actual case that can be adapted, adding some motivation for students to solve the problem. More complex problems will challenge students to go beyond simple plug-and-chug to solve it. Look at magazines, newspapers, and articles for ideas on the story line. Some PBL practitioners talk to professionals in the field, searching for ideas of realistic applications of the concept being taught.
  • What will the first page (or stage) look like? What open-ended questions can be asked? What learning issues will be identified?
  • How will the problem be structured?
  • How long will the problem be? How many class periods will it take to complete?
  • Will students be given information in subsequent pages (or stages) as they work through the problem?
  • What resources will the students need?
  • What end product will the students produce at the completion of the problem?
  • Write a teacher's guide detailing the instructional plans on using the problem in the course. If the course is a medium- to large-size class, a combination of mini-lectures, whole-class discussions, and small group work with regular reporting may be necessary. The teacher's guide can indicate plans or options for cycling through the pages of the problem interspersing the various modes of learning.
  • The final step is to identify key resources for students. Students need to learn to identify and utilize learning resources on their own, but it can be helpful if the instructor indicates a few good sources to get them started. Many students will want to limit their research to the Internet, so it will be important to guide them toward the library as well.

The method for distributing a PBL problem falls under three closely related teaching techniques: case studies, role-plays, and simulations. Case studies are presented to students in written form. Role-plays have students improvise scenes based on character descriptions given. Today, simulations often involve computer-based programs. Regardless of which technique is used, the heart of the method remains the same: the real-world problem.

Where can I learn more?

  • PBL through the Institute for Transforming Undergraduate Education at the University of Delaware
  • Duch, B. J., Groh, S. E, & Allen, D. E. (Eds.). (2001). The power of problem-based learning . Sterling, VA: Stylus.
  • Grasha, A. F. (1996). Teaching with style: A practical guide to enhancing learning by understanding teaching and learning styles. Pittsburgh: Alliance Publishers.

Center for Innovation in Teaching & Learning

249 Armory Building 505 East Armory Avenue Champaign, IL 61820

217 333-1462

Email: [email protected]

Office of the Provost

  • Effective Teaching Strategies

Problem-Based Learning: Benefits and Risks

  • November 12, 2009
  • Maryellen Weimer, PhD

Problem-based learning, the instructional approach in which carefully constructed, open-ended problems are used by groups of students to work through content to a solution, has gained a foothold in many segments of higher education.

Originally PBL, as it’s usually called, was used in medical school and in some business curricula for majors. But now it is being used in a wide range of disciplines and with students at various educational levels. The article (reference below) from which material is about to be cited “makes a critical assessment” of how PBL is being used in the field of geography.

Much of the content is relevant to that discipline specifically, but the article does contain a useful table that summarizes the benefits and risks of PBL for students, instructors, and institutions. Material on the table is gleaned from an extensive review of the literature (all referenced in the article). Here’s some of the information contained in the table.

Benefits of Problem-Based Learning

For Students

  • It’s a student-centered approach.
  • Typically students find it more enjoyable and satisfying.
  • It encourages greater understanding.
  • Students with PBL experience rate their abilities higher.
  • PBL develops lifelong learning skills.

For Instructors

  • Class attendance increases.
  • The method affords more intrinsic reward.
  • It encourages students to spend more time studying.
  • It promotes interdisciplinarity.

For Institutions

  • It makes student learning a priority.
  • It may aid student retention.
  • It may be taken as evidence that an institution values teaching.

Risks of Problem-Based Learning

  • Prior learning experiences do not prepare students well for PBL.
  • PBL requires more time and takes away study time from other subjects.
  • It creates some anxiety because learning is messier.
  • Sometimes group dynamics issues compromise PBL effectiveness.
  • Less content knowledge may be learned.
  • Creating suitable problem scenarios is difficult.
  • It requires more prep time.
  • Students have queries about the process.
  • Group dynamics issues may require faculty intervention.
  • It raises new questions about what to assess and how.
  • It requires a change in educational philosophy for faculty who mostly lecture.
  • Faculty will need staff development and support.
  • It generally takes more instructors.
  • It works best with flexible classroom space.
  • It engenders resistance from faculty who question its efficacy.

Reference: Pawson, E., Fournier, E., Haight, M., Muniz, O., Trafford, J., and Vajoczki, S. 2006. Problem-based learning in geography: Towards a critical assessment of its purposes, benefits and risks. Journal of Geography in Higher Education 30 (1): 103–16.

Excerpted from The Teaching Professor , February 2007.

Stay Updated with Faculty Focus!

Get exclusive access to programs, reports, podcast episodes, articles, and more!

  • Opens in a new tab

Welcome Back

Username or Email

Remember Me

Already a subscriber? log in here.

Site's logo

Problem-Based Learning (PBL)

What is Problem-Based Learning (PBL)? PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and research skills, but they also sharpen their critical thinking and problem-solving abilities essential for life-long learning.

See also: Just-in-Time Teaching

Problem-Based Learning (PBL)

In implementing PBL, the teaching role shifts from that of the more traditional model that follows a linear, sequential pattern where the teacher presents relevant material, informs the class what needs to be done, and provides details and information for students to apply their knowledge to a given problem. With PBL, the teacher acts as a facilitator; the learning is student-driven with the aim of solving the given problem (note: the problem is established at the onset of learning opposed to being presented last in the traditional model). Also, the assignments vary in length from relatively short to an entire semester with daily instructional time structured for group work.

Pbl

By working with PBL, students will:

  • Become engaged with open-ended situations that assimilate the world of work
  • Participate in groups to pinpoint what is known/ not known and the methods of finding information to help solve the given problem.
  • Investigate a problem; through critical thinking and problem solving, brainstorm a list of unique solutions.
  • Analyze the situation to see if the real problem is framed or if there are other problems that need to be solved.

How to Begin PBL

  • Establish the learning outcomes (i.e., what is it that you want your students to really learn and to be able to do after completing the learning project).
  • Find a real-world problem that is relevant to the students; often the problems are ones that students may encounter in their own life or future career.
  • Discuss pertinent rules for working in groups to maximize learning success.
  • Practice group processes: listening, involving others, assessing their work/peers.
  • Explore different roles for students to accomplish the work that needs to be done and/or to see the problem from various perspectives depending on the problem (e.g., for a problem about pollution, different roles may be a mayor, business owner, parent, child, neighboring city government officials, etc.).
  • Determine how the project will be evaluated and assessed. Most likely, both self-assessment and peer-assessment will factor into the assignment grade.

Designing Classroom Instruction

See also: Inclusive Teaching Strategies

  • Take the curriculum and divide it into various units. Decide on the types of problems that your students will solve. These will be your objectives.
  • Determine the specific problems that most likely have several answers; consider student interest.
  • Arrange appropriate resources available to students; utilize other teaching personnel to support students where needed (e.g., media specialists to orientate students to electronic references).
  • Decide on presentation formats to communicate learning (e.g., individual paper, group PowerPoint, an online blog, etc.) and appropriate grading mechanisms (e.g., rubric).
  • Decide how to incorporate group participation (e.g., what percent, possible peer evaluation, etc.).

How to Orchestrate a PBL Activity

  • Explain Problem-Based Learning to students: its rationale, daily instruction, class expectations, grading.
  • Serve as a model and resource to the PBL process; work in-tandem through the first problem
  • Help students secure various resources when needed.
  • Supply ample class time for collaborative group work.
  • Give feedback to each group after they share via the established format; critique the solution in quality and thoroughness. Reinforce to the students that the prior thinking and reasoning process in addition to the solution are important as well.

Teacher’s Role in PBL

See also: Flipped teaching

As previously mentioned, the teacher determines a problem that is interesting, relevant, and novel for the students. It also must be multi-faceted enough to engage students in doing research and finding several solutions. The problems stem from the unit curriculum and reflect possible use in future work situations.

  • Determine a problem aligned with the course and your students. The problem needs to be demanding enough that the students most likely cannot solve it on their own. It also needs to teach them new skills. When sharing the problem with students, state it in a narrative complete with pertinent background information without excessive information. Allow the students to find out more details as they work on the problem.
  • Place students in groups, well-mixed in diversity and skill levels, to strengthen the groups. Help students work successfully. One way is to have the students take on various roles in the group process after they self-assess their strengths and weaknesses.
  • Support the students with understanding the content on a deeper level and in ways to best orchestrate the various stages of the problem-solving process.

The Role of the Students

See also: ADDIE model

The students work collaboratively on all facets of the problem to determine the best possible solution.

  • Analyze the problem and the issues it presents. Break the problem down into various parts. Continue to read, discuss, and think about the problem.
  • Construct a list of what is known about the problem. What do your fellow students know about the problem? Do they have any experiences related to the problem? Discuss the contributions expected from the team members. What are their strengths and weaknesses? Follow the rules of brainstorming (i.e., accept all answers without passing judgment) to generate possible solutions for the problem.
  • Get agreement from the team members regarding the problem statement.
  • Put the problem statement in written form.
  • Solicit feedback from the teacher.
  • Be open to changing the written statement based on any new learning that is found or feedback provided.
  • Generate a list of possible solutions. Include relevant thoughts, ideas, and educated guesses as well as causes and possible ways to solve it. Then rank the solutions and select the solution that your group is most likely to perceive as the best in terms of meeting success.
  • Include what needs to be known and done to solve the identified problems.
  • Prioritize the various action steps.
  • Consider how the steps impact the possible solutions.
  • See if the group is in agreement with the timeline; if not, decide how to reach agreement.
  • What resources are available to help (e.g., textbooks, primary/secondary sources, Internet).
  • Determine research assignments per team members.
  • Establish due dates.
  • Determine how your group will present the problem solution and also identify the audience. Usually, in PBL, each group presents their solutions via a team presentation either to the class of other students or to those who are related to the problem.
  • Both the process and the results of the learning activity need to be covered. Include the following: problem statement, questions, data gathered, data analysis, reasons for the solution(s) and/or any recommendations reflective of the data analysis.
  • A well-stated problem and conclusion.
  • The process undertaken by the group in solving the problem, the various options discussed, and the resources used.
  • Your solution’s supporting documents, guests, interviews and their purpose to be convincing to your audience.
  • In addition, be prepared for any audience comments and questions. Determine who will respond and if your team doesn’t know the answer, admit this and be open to looking into the question at a later date.
  • Reflective thinking and transfer of knowledge are important components of PBL. This helps the students be more cognizant of their own learning and teaches them how to ask appropriate questions to address problems that need to be solved. It is important to look at both the individual student and the group effort/delivery throughout the entire process. From here, you can better determine what was learned and how to improve. The students should be asked how they can apply what was learned to a different situation, to their own lives, and to other course projects.

See also: Kirkpatrick Model: Four Levels of Learning Evaluation

' src=

I am a professor of Educational Technology. I have worked at several elite universities. I hold a PhD degree from the University of Illinois and a master's degree from Purdue University.

Similar Posts

Definitions of the addie model.

What is the ADDIE Model? This article attempts to explain the ADDIE model by providing different definitions. Basically, ADDIE is a conceptual framework. ADDIE is the most commonly used instructional design framework and…

Robert Gagné’s Taxonomy of Learning

Gagne classified learning outcomes into five major categories: verbal information, intellectual skills, cognitive strategies, motor skills and attitudes. What is learning to Gagné? As outlined in his 9-events of instruction, Gagne believed that learning was…

Open Source Learning Management Systems (LMS)

Learning Management Systems (LMSs) are becoming a vital part of classrooms in the 21th Century. This is a list of open source learning management systems. By open source we mean that source code of…

Adaptive Learning: What is It, What are its Benefits and How Does it Work?

People learn in many different ways. Adaptive learning has sought to address differences in ability by targeting teaching practices. The use of adaptive models, ranging from technological programs to intelligent systems, can be…

Instructional Design

What is Instructional Design The Association for Educational Communications and Technology (AECT) defines instructional design as “the theory and practice of design, development, utilization, management, and evaluation of processes and resources for learning”…

Concept Maps and How To Use Them

Concept maps help our brains take in information, mostly when there is visual information. The maps help us to see the big picture along with the connected and related data. They also help…

Center for Teaching

Teaching problem solving.

Print Version

Tips and Techniques

Expert vs. novice problem solvers, communicate.

  • Have students  identify specific problems, difficulties, or confusions . Don’t waste time working through problems that students already understand.
  • If students are unable to articulate their concerns, determine where they are having trouble by  asking them to identify the specific concepts or principles associated with the problem.
  • In a one-on-one tutoring session, ask the student to  work his/her problem out loud . This slows down the thinking process, making it more accurate and allowing you to access understanding.
  • When working with larger groups you can ask students to provide a written “two-column solution.” Have students write up their solution to a problem by putting all their calculations in one column and all of their reasoning (in complete sentences) in the other column. This helps them to think critically about their own problem solving and helps you to more easily identify where they may be having problems. Two-Column Solution (Math) Two-Column Solution (Physics)

Encourage Independence

  • Model the problem solving process rather than just giving students the answer. As you work through the problem, consider how a novice might struggle with the concepts and make your thinking clear
  • Have students work through problems on their own. Ask directing questions or give helpful suggestions, but  provide only minimal assistance and only when needed to overcome obstacles.
  • Don’t fear  group work ! Students can frequently help each other, and talking about a problem helps them think more critically about the steps needed to solve the problem. Additionally, group work helps students realize that problems often have multiple solution strategies, some that might be more effective than others

Be sensitive

  • Frequently, when working problems, students are unsure of themselves. This lack of confidence may hamper their learning. It is important to recognize this when students come to us for help, and to give each student some feeling of mastery. Do this by providing  positive reinforcement to let students know when they have mastered a new concept or skill.

Encourage Thoroughness and Patience

  • Try to communicate that  the process is more important than the answer so that the student learns that it is OK to not have an instant solution. This is learned through your acceptance of his/her pace of doing things, through your refusal to let anxiety pressure you into giving the right answer, and through your example of problem solving through a step-by step process.

Experts (teachers) in a particular field are often so fluent in solving problems from that field that they can find it difficult to articulate the problem solving principles and strategies they use to novices (students) in their field because these principles and strategies are second nature to the expert. To teach students problem solving skills,  a teacher should be aware of principles and strategies of good problem solving in his or her discipline .

The mathematician George Polya captured the problem solving principles and strategies he used in his discipline in the book  How to Solve It: A New Aspect of Mathematical Method (Princeton University Press, 1957). The book includes  a summary of Polya’s problem solving heuristic as well as advice on the teaching of problem solving.

what is advantages of using problem solving teaching method

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Teaching Problem-Solving Skills

Many instructors design opportunities for students to solve “problems”. But are their students solving true problems or merely participating in practice exercises? The former stresses critical thinking and decision­ making skills whereas the latter requires only the application of previously learned procedures.

Problem solving is often broadly defined as "the ability to understand the environment, identify complex problems, review related information to develop, evaluate strategies and implement solutions to build the desired outcome" (Fissore, C. et al, 2021). True problem solving is the process of applying a method – not known in advance – to a problem that is subject to a specific set of conditions and that the problem solver has not seen before, in order to obtain a satisfactory solution.

Below you will find some basic principles for teaching problem solving and one model to implement in your classroom teaching.

Principles for teaching problem solving

  • Model a useful problem-solving method . Problem solving can be difficult and sometimes tedious. Show students how to be patient and persistent, and how to follow a structured method, such as Woods’ model described below. Articulate your method as you use it so students see the connections.
  • Teach within a specific context . Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an independent, abstract skill.
  • Help students understand the problem . In order to solve problems, students need to define the end goal. This step is crucial to successful learning of problem-solving skills. If you succeed at helping students answer the questions “what?” and “why?”, finding the answer to “how?” will be easier.
  • Take enough time . When planning a lecture/tutorial, budget enough time for: understanding the problem and defining the goal (both individually and as a class); dealing with questions from you and your students; making, finding, and fixing mistakes; and solving entire problems in a single session.
  • Ask questions and make suggestions . Ask students to predict “what would happen if …” or explain why something happened. This will help them to develop analytical and deductive thinking skills. Also, ask questions and make suggestions about strategies to encourage students to reflect on the problem-solving strategies that they use.
  • Link errors to misconceptions . Use errors as evidence of misconceptions, not carelessness or random guessing. Make an effort to isolate the misconception and correct it, then teach students to do this by themselves. We can all learn from mistakes.

Woods’ problem-solving model

Define the problem.

  • The system . Have students identify the system under study (e.g., a metal bridge subject to certain forces) by interpreting the information provided in the problem statement. Drawing a diagram is a great way to do this.
  • Known(s) and concepts . List what is known about the problem, and identify the knowledge needed to understand (and eventually) solve it.
  • Unknown(s) . Once you have a list of knowns, identifying the unknown(s) becomes simpler. One unknown is generally the answer to the problem, but there may be other unknowns. Be sure that students understand what they are expected to find.
  • Units and symbols . One key aspect in problem solving is teaching students how to select, interpret, and use units and symbols. Emphasize the use of units whenever applicable. Develop a habit of using appropriate units and symbols yourself at all times.
  • Constraints . All problems have some stated or implied constraints. Teach students to look for the words "only", "must", "neglect", or "assume" to help identify the constraints.
  • Criteria for success . Help students consider, from the beginning, what a logical type of answer would be. What characteristics will it possess? For example, a quantitative problem will require an answer in some form of numerical units (e.g., $/kg product, square cm, etc.) while an optimization problem requires an answer in the form of either a numerical maximum or minimum.

Think about it

  • “Let it simmer”.  Use this stage to ponder the problem. Ideally, students will develop a mental image of the problem at hand during this stage.
  • Identify specific pieces of knowledge . Students need to determine by themselves the required background knowledge from illustrations, examples and problems covered in the course.
  • Collect information . Encourage students to collect pertinent information such as conversion factors, constants, and tables needed to solve the problem.

Plan a solution

  • Consider possible strategies . Often, the type of solution will be determined by the type of problem. Some common problem-solving strategies are: compute; simplify; use an equation; make a model, diagram, table, or chart; or work backwards.
  • Choose the best strategy . Help students to choose the best strategy by reminding them again what they are required to find or calculate.

Carry out the plan

  • Be patient . Most problems are not solved quickly or on the first attempt. In other cases, executing the solution may be the easiest step.
  • Be persistent . If a plan does not work immediately, do not let students get discouraged. Encourage them to try a different strategy and keep trying.

Encourage students to reflect. Once a solution has been reached, students should ask themselves the following questions:

  • Does the answer make sense?
  • Does it fit with the criteria established in step 1?
  • Did I answer the question(s)?
  • What did I learn by doing this?
  • Could I have done the problem another way?

If you would like support applying these tips to your own teaching, CTE staff members are here to help.  View the  CTE Support  page to find the most relevant staff member to contact. 

  • Fissore, C., Marchisio, M., Roman, F., & Sacchet, M. (2021). Development of problem solving skills with Maple in higher education. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_15
  • Foshay, R., & Kirkley, J. (1998). Principles for Teaching Problem Solving. TRO Learning Inc., Edina MN.  (PDF) Principles for Teaching Problem Solving (researchgate.net)
  • Hayes, J.R. (1989). The Complete Problem Solver. 2nd Edition. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Woods, D.R., Wright, J.D., Hoffman, T.W., Swartman, R.K., Doig, I.D. (1975). Teaching Problem solving Skills.
  • Engineering Education. Vol 1, No. 1. p. 238. Washington, DC: The American Society for Engineering Education.

teaching tips

Catalog search

Teaching tip categories.

  • Assessment and feedback
  • Blended Learning and Educational Technologies
  • Career Development
  • Course Design
  • Course Implementation
  • Inclusive Teaching and Learning
  • Learning activities
  • Support for Student Learning
  • Support for TAs
  • Learning activities ,

Why Every Educator Needs to Teach Problem-Solving Skills

Strong problem-solving skills will help students be more resilient and will increase their academic and career success .

Want to learn more about how to measure and teach students’ higher-order skills, including problem solving, critical thinking, and written communication?

Problem-solving skills are essential in school, careers, and life.

Problem-solving skills are important for every student to master. They help individuals navigate everyday life and find solutions to complex issues and challenges. These skills are especially valuable in the workplace, where employees are often required to solve problems and make decisions quickly and effectively.

Problem-solving skills are also needed for students’ personal growth and development because they help individuals overcome obstacles and achieve their goals. By developing strong problem-solving skills, students can improve their overall quality of life and become more successful in their personal and professional endeavors.

what is advantages of using problem solving teaching method

Problem-Solving Skills Help Students…

   develop resilience.

Problem-solving skills are an integral part of resilience and the ability to persevere through challenges and adversity. To effectively work through and solve a problem, students must be able to think critically and creatively. Critical and creative thinking help students approach a problem objectively, analyze its components, and determine different ways to go about finding a solution.  

This process in turn helps students build self-efficacy . When students are able to analyze and solve a problem, this increases their confidence, and they begin to realize the power they have to advocate for themselves and make meaningful change.

When students gain confidence in their ability to work through problems and attain their goals, they also begin to build a growth mindset . According to leading resilience researcher, Carol Dweck, “in a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential for great accomplishment.”

icon-resilience

    Set and Achieve Goals

Students who possess strong problem-solving skills are better equipped to set and achieve their goals. By learning how to identify problems, think critically, and develop solutions, students can become more self-sufficient and confident in their ability to achieve their goals. Additionally, problem-solving skills are used in virtually all fields, disciplines, and career paths, which makes them important for everyone. Building strong problem-solving skills will help students enhance their academic and career performance and become more competitive as they begin to seek full-time employment after graduation or pursue additional education and training.

CAE Portal Icon 280

  Resolve Conflicts

In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes “thinking outside the box” and approaching a conflict by searching for different solutions. This is a very different (and more effective!) method than a more stagnant approach that focuses on placing blame or getting stuck on elements of a situation that can’t be changed.

While it’s natural to get frustrated or feel stuck when working through a conflict, students with strong problem-solving skills will be able to work through these obstacles, think more rationally, and address the situation with a more solution-oriented approach. These skills will be valuable for students in school, their careers, and throughout their lives.

Perspectives

    Achieve Success

We are all faced with problems every day. Problems arise in our personal lives, in school and in our jobs, and in our interactions with others. Employers especially are looking for candidates with strong problem-solving skills. In today’s job market, most jobs require the ability to analyze and effectively resolve complex issues. Students with strong problem-solving skills will stand out from other applicants and will have a more desirable skill set.

In a recent opinion piece published by The Hechinger Report , Virgel Hammonds, Chief Learning Officer at KnowledgeWorks, stated “Our world presents increasingly complex challenges. Education must adapt so that it nurtures problem solvers and critical thinkers.” Yet, the “traditional K–12 education system leaves little room for students to engage in real-world problem-solving scenarios.” This is the reason that a growing number of K–12 school districts and higher education institutions are transforming their instructional approach to personalized and competency-based learning, which encourage students to make decisions, problem solve and think critically as they take ownership of and direct their educational journey.

graduate-icon

Problem-Solving Skills Can Be Measured and Taught

Research shows that problem-solving skills can be measured and taught. One effective method is through performance-based assessments which require students to demonstrate or apply their knowledge and higher-order skills to create a response or product or do a task.

What Are Performance-Based Assessments?

what is advantages of using problem solving teaching method

With the No Child Left Behind Act (2002), the use of standardized testing became the primary way to measure student learning in the U.S. The legislative requirements of this act shifted the emphasis to standardized testing, and this led to a  decline in nontraditional testing methods .

But   many educators, policy makers, and parents have concerns with standardized tests. Some of the top issues include that they don’t provide feedback on how students can perform better, they don’t value creativity, they are not representative of diverse populations, and they can be disadvantageous to lower-income students.

While standardized tests are still the norm, U.S. Secretary of Education Miguel Cardona is encouraging states and districts to move away from traditional multiple choice and short response tests and instead use performance-based assessment, competency-based assessments, and other more authentic methods of measuring students abilities and skills rather than rote learning. 

Performance-based assessments  measure whether students can apply the skills and knowledge learned from a unit of study. Typically, a performance task challenges students to use their higher-order skills to complete a project or process. Tasks can range from an essay to a complex proposal or design.

Preview a Performance-Based Assessment

Want a closer look at how performance-based assessments work?  Preview CAE’s K–12 and Higher Education assessments and see how CAE’s tools help students develop critical thinking, problem-solving, and written communication skills.

Performance-Based Assessments Help Students Build and Practice Problem-Solving Skills

In addition to effectively measuring students’ higher-order skills, including their problem-solving skills, performance-based assessments can help students practice and build these skills. Through the assessment process, students are given opportunities to practically apply their knowledge in real-world situations. By demonstrating their understanding of a topic, students are required to put what they’ve learned into practice through activities such as presentations, experiments, and simulations. 

This type of problem-solving assessment tool requires students to analyze information and choose how to approach the presented problems. This process enhances their critical thinking skills and creativity, as well as their problem-solving skills. Unlike traditional assessments based on memorization or reciting facts, performance-based assessments focus on the students’ decisions and solutions, and through these tasks students learn to bridge the gap between theory and practice.

Performance-based assessments like CAE’s College and Career Readiness Assessment (CRA+) and Collegiate Learning Assessment (CLA+) provide students with in-depth reports that show them which higher-order skills they are strongest in and which they should continue to develop. This feedback helps students and their teachers plan instruction and supports to deepen their learning and improve their mastery of critical skills.

what is advantages of using problem solving teaching method

Explore CAE’s Problem-Solving Assessments

CAE offers performance-based assessments that measure student proficiency in higher-order skills including problem solving, critical thinking, and written communication.

  • College and Career Readiness Assessment (CCRA+) for secondary education and
  • Collegiate Learning Assessment (CLA+) for higher education.

Our solution also includes instructional materials, practice models, and professional development.

We can help you create a program to build students’ problem-solving skills that includes:

  • Measuring students’ problem-solving skills through a performance-based assessment    
  • Using the problem-solving assessment data to inform instruction and tailor interventions
  • Teaching students problem-solving skills and providing practice opportunities in real-life scenarios
  • Supporting educators with quality professional development

Get started with our problem-solving assessment tools to measure and build students’ problem-solving skills today! These skills will be invaluable to students now and in the future.

what is advantages of using problem solving teaching method

Ready to Get Started?

Learn more about cae’s suite of products and let’s get started measuring and teaching students important higher-order skills like problem solving..

Problem Solving Method Of Teaching

A woman stands beside an expansive screen, showing a map of different locations. She holds a clipboard in her hands as she looks intently at the map. A man in a black shirt and grey pants is pointing to something on the map. On the right-hand side of the map, there is a truck symbol with a pointer. On the left-hand side, there is a white airplane on a black and orange pin. Above the map is a yellow and black striped object, with a white object with black lines beside it. Below the map is a yellow and white logo and a yellow and grey sign with black text.

The problem-solving method of teaching is the learning method that allows children to learn by doing. This is because they are given examples and real-world situations so that the theory behind it can be understood better, as well as practice with each new concept or skill taught on top of what was previously learned in class before moving onto another topic at hand.

What is your preferred problem-solving technique?

Answers : - I like to brainstorm and see what works for me - I enjoy the trial and error method - I am a linear thinker

Share it with me by commenting.

For example, while solving a problem, the child may encounter terms he has not studied yet. These will further help him understand their use in context while developing his vocabulary. At the same time, being able to practice math concepts by tapping into daily activities helps an individual retain these skills better.

One way this type of teaching is applied for younger students particularly is through games played during lessons. By allowing them to become comfortable with the concepts taught through these games, they can put their knowledge into use later on. This is done by developing thinking processes that precede an action or behavior. These games can be used by teachers for different subjects including science and language.

For younger students still, the method of teaching using real-life examples helps them understand better. Through this, it becomes easier for them to relate what they learned in school with terms used outside of school settings so that the information sticks better than if all they were given were theoretical definitions. For instance, instead of just studying photosynthesis as part of biology lessons, children are asked to imagine plants growing inside a dark room because there is no sunlight present. When questioned about the plants, children will be able to recall photosynthesis more easily because they were able to see its importance in real life.

Despite being given specific examples, the act of solving problems helps students think for themselves. They learn how to approach situations and predict outcomes based on what they already know about concepts or ideas taught in class including the use of various skills they have acquired over time. These include problem-solving strategies like using drawings when describing a solution or asking advice if they are stuck to unlock solutions that would otherwise go beyond their reach.

Teachers need to point out in advance which method will be used for any particular lesson before having children engage with it. By doing this, individuals can prepare themselves mentally for what is to come. This is especially true for students who have difficulty with a particular subject. In these cases, the teacher can help them get started by providing a worked example for reference or breaking the problem down into manageable chunks that are easier to digest.

JIT (Just-in-Time): A Comprehensive Examination of its Strategic Impact

The Wisdom of Jefferson: Moving, Doing, Thinking

Root Cause Tree Analysis: Insights to Forensic Decision Making

Hazard Analysis: A Comprehensive Approach for Risk Evaluation

Ultimately, the goal of teaching using a problem-solving method is to give children the opportunity to think for themselves and to be able to do so in different contexts. Doing this helps foster independent learners who can utilize the skills they acquired in school for future endeavors.

The problem-solving method of teaching allows children to learn by doing. This is because they are given examples and real-world situations so that the theory behind it can be understood better, as practice with each new concept or skill taught on top of what was previously learned in class before moving onto another topic at hand.

One way this type of teaching is applied for younger students particularly is through games played during lessons. By allowing them to become comfortable with the concepts taught through these games, they are able to put their knowledge into use later on. This is done by developing thinking processes that precede an action or behavior. These games can be used by teachers for different subjects including science and language.

For instance, a teacher may ask students to imagine they are plants in a dark room because there is no sunlight present. When questioned about the plants, children will be able to recall photosynthesis more easily because they were able to see its importance in real life.

It is important for teachers to point out in advance which method will be used for any particular lesson before having children engage with it. By doing this, individuals can prepare themselves mentally for what is to come. This is especially true for students who have difficulty with a particular subject. In these cases, the teacher can help them get started by providing a worked example for reference or breaking the problem down into manageable chunks that are easier to digest.

lesson before having children engage with it. By doing this, individuals can prepare themselves mentally for what is to come. This is especially true for students who have difficulty with a particular subject. In these cases, the teacher can help them get started by providing a worked example for reference or breaking the problem down into manageable chunks that are easier to digest.

The teacher should have a few different ways to solve the problem.

For example, the teacher can provide a worked example for reference or break down the problem into chunks that are easier to digest.

The goal of teaching using a problem-solving method is to give children the opportunity to think for themselves and to be able to do so in different contexts. Successful problem solving allows children to become comfortable with concepts taught through games that develop thinking processes that precede an action or behavior.

Introduce the problem

The problem solving method of teaching is a popular approach to learning that allows students to understand new concepts by doing. This approach provides students with examples and real-world situations, so they can see how the theory behind a concept or skill works in practice. In addition, students are given practice with each new concept or skill taught, before moving on to the next topic. This helps them learn and retain the information better.

Explain why the problem solving method of teaching is effective.

The problem solving method of teaching is effective because it allows students to learn by doing. This means they can see how the theory behind a concept or skill works in practice, which helps them understand and remember the information better. This would not be possible if they are only told about the new concept or skill, or read a textbook to learn on their own. Since students can see how the theory works in practice through examples and real-world situations, the information is easier for them to understand.

List some advantages of using the problem solving method of teaching.

Some advantages of using the problem solving method of teaching are that it helps students retain information better since they are able to practice with each new concept or skill taught until they master it before moving on to another topic. This also allows them to learn by doing so they will have hands-on experience with facts which helps them remember important facts faster rather than just hearing about it or reading about it on their own. Furthermore, this teaching method is beneficial for students of all ages and can be adapted to different subjects making it an approach that is versatile and easily used in a classroom setting. Lastly, the problem solving method of teaching presents new information in a way that is easy to understand so students are not overwhelmed with complex material.

The problem solving method of teaching is an effective way for students to learn new concepts and skills. By providing them with examples and real-world situations, they can see how the theory behind a concept or skill works in practice. In addition, students are given practice with each new concept or skill taught, before moving on to the next topic. This them learn and retain the information better.

What has been your experience with adopting a problem-solving teaching method?

How do you feel the usefulness of your lesson plans changed since adopting this method?

What was one of your most successful attempts in using this technique to teach students, and why do you believe it was so successful?

Were there any obstacles when trying to incorporate this technique into your class? 

Did it take a while for all students to get used to the new type of teaching style before they felt comfortable enough to participate in discussions and ask questions about their newly acquired knowledge?

What are your thoughts on this method? 

“I have had the opportunity to work in several districts, including one where they used problem solving for all subjects. I never looked back after that experience--it was exciting and motivating for students and teachers alike." 

"The problem solving method of teaching is great because it makes my subject matter more interesting with hands-on activities."

Active Learning, Teaching through problem-solving allows for active learning, Children understand the theory better by getting involved in real-world situations, Practice, Continuous practice is integral to problem-solving teaching, Each new skill or concept is practiced after being learned in class, Relevance, Problem-solving techniques make learning more relevant, Real-world examples related to the topic are presented, Incremental Learning, Each new topic builds on previous lessons, Relating new problems to ones solved in previous sessions, Overcome Challenges, Enhances ability to overcome real-world situations, Children understand the application of skills learned, Variety, Problem-solving allows flexibility in teaching methods, Problems can be practical, conceptual, or theoretical, Critical Thinking, Improves children's critical thinking skills, Adding alternative paths to a solution, Confidence, Boosts children's confidence in handling problems, Children feel empowered after successfully solving a problem, Adaptability, Increases adaptability to new learning situations, Children can apply learned strategies to new problems, Engagement, Problem-solving increases engagement and interest, Children find solving real-world examples interesting

What is the role of educators in facilitating problem-solving method of teaching?

Role of Educators in Facilitating Problem-Solving Understanding the Problem-Solving Method The problem-solving method of teaching encourages students to actively engage their critical thinking skills to analyze and seek solutions to real-world problems. As such, educators play a crucial part in facilitating this learning style to ensure the effective attainment of desired skills. Encouraging Collaboration and Communication One of the ways educators can facilitate problem-solving is by promoting collaboration and communication among students. Working as a team allows students to share diverse perspectives while considering multiple solutions, thereby fostering an open-minded and inclusive environment that is crucial for effective problem-solving. Creating a Safe Space for Failure Educators must recognize that failure is an integral component of the learning process in a problem-solving method. By establishing a safe environment that allows students to fail without facing judgment or embarrassment, teachers enable students to develop perseverance, resilience, and an enhanced ability to learn from mistakes. Designing Relevant and Engaging Problems The selection and design of appropriate problems contribute significantly to the success of the problem-solving method of teaching. Educators should focus on presenting issues that are relevant, engaging, and age-appropriate, thereby sparking curiosity and interest amongst students, which further improves their problem-solving abilities. Scaffolding Learning Scaffolding is essential in the problem-solving method for providing adequate support when required. Teachers need to break down complex problems into smaller, manageable steps, and gradually remove support as students develop the necessary skills, thus promoting their self-reliance and independent thinking. Providing Constructive Feedback Constructive feedback from educators is invaluable in facilitating the problem-solving method of teaching, as it enables students to reflect on their progress, recognize areas for improvement, and actively develop their critical thinking and problem-solving abilities. In conclusion, the role of educators in facilitating the problem-solving method of teaching comprises promoting collaboration, creating a safe space for failure, designing relevant problems, scaffolding learning, and providing constructive feedback. By integrating these elements, educators can help students develop essential life-long skills and effectively navigate the complex world they will experience.

The problem-solving method of teaching is a dynamic and interactive instructional strategy that engages students directly with challenges that resemble those they might encounter outside of the classroom. Within this framework, educators are not just conveyors of knowledge, but rather facilitators of learning who empower their students to think critically and deeply. Below, we look into the nuanced role educators play in making the problem-solving method impactful.Firstly, educators must curate an atmosphere that is conducive to inquiry and exploration. They set the tone by modeling an inquisitive mindset, posing thought-provoking questions, and encouraging students to ask why, how, and what if without hesitation. This intellectual curiosity promotes the kind of deep thinking that underpins successful problem-solving.Another key responsibility is to scaffold the complexity of problems. Educators do so by assessing the readiness of their students and designing tasks that are at the appropriate level of difficulty. They must ensure challenges are neither too easy – risking boredom and disengagement – nor too difficult – potentially causing frustration and disheartenment. By striking this balance, educators help students to experience incremental success and build their problem-solving capacities over time.Educators must also provide students with relevant tools and methodologies. This might involve teaching specific problem-solving strategies such as the scientific method, design thinking, or computational thinking. Educators help students to become conversant in these approaches, allowing them to tackle problems methodically and effectively.Assessment is another pivotal area where educators play a vital role in the problem-solving method. The traditional means of assessment may not always capture the depth of understanding and learning that occurs in problem-solving scenarios. Therefore, educators develop alternative forms of assessment, such as reflective journals, portfolios, and presentations, to better gauge student learning and thinking processes.Finally, educators must be adept at facilitating group dynamics. Collaborative problem-solving can be powerful, but it also invites a range of interpersonal challenges. Thus, educators need to guide students in conflict resolution, equitable participation, and recognizing the contribution of each member to the collective effort.Educators facilitate the problem-solving method by fostering inquiry, balancing problem difficulty, equipping students with methodologies, rethinking assessment, and nurturing group cooperation. In doing so, they are not simply providing students with content knowledge but are equipping them with crucial life skills that transcend educational settings and prepare them for real-world challenges.

Can interdisciplinary approaches be incorporated into problem-solving teaching methods, and if so, how?

Interdisciplinary Approaches in Problem-Solving Teaching Methods Integration of Interdisciplinary Approaches Incorporating interdisciplinary approaches into problem-solving teaching methods can be achieved by integrating various subject areas when presenting complex problems that require students to draw from different fields of knowledge. By doing so, learners will develop a deeper understanding of the interconnectedness of various disciplines and improve their problem-solving skills. Project-Based Learning Activities Implementing project-based learning activities in the classroom allows students to work collaboratively on real-world problems. By involving learners in tasks that necessitate the integration of diverse subjects, they develop the ability to transfer skills acquired in one context to novel situations, thereby expanding their problem-solving abilities. Role of Teachers in Interdisciplinary Teaching Teachers play a crucial role in the successful incorporation of interdisciplinary methods in problem-solving teaching. They must be prepared to facilitate student-centered learning and engage in ongoing professional development tailored towards interdisciplinary education. In doing so, educators can create inclusive learning environments that encourage individualized discovery and the application of diverse perspectives to solve complex problems. Benefits of Interdisciplinary Teaching Methods Adopting interdisciplinary teaching methods in problem-solving education not only enhances students' problem-solving abilities but also fosters the development of critical thinking, creativity, and collaboration. These essential skills enable learners to navigate and adapt to an increasingly interconnected world and have been shown to contribute to students' academic and professional success. In conclusion, incorporating interdisciplinary approaches into problem-solving teaching methods can be achieved through the integration of various subject areas, implementing project-based learning activities, and the active role of teachers in interdisciplinary education. These methods benefit students by developing problem-solving skills, critical thinking, creativity, and collaboration, preparing them for future success in an interconnected world.

Interdisciplinary approaches in problem-solving teaching methods present a contemporary framework for preparing students to tackle the complexities of real-world issues. This approach can bridge the gap between various academic disciplines, offering students a more holistic and connected way of thinking.**Embracing Complexity through Interdisciplinary Problem-Solving**Problem-solving in education is no longer confined to single-subject exercises. Interdisciplinary problem-solving recognizes the multifaceted nature of real issues and encourages students to tackle them by drawing from multiple disciplines. For instance, when examining the impacts of urbanization, students might incorporate knowledge from sociology, economics, environmental science, and urban planning.**Strategies for Implementing an Interdisciplinary Approach**Various strategies can be employed to incorporate interdisciplinary methods effectively:1. **Cross-Curricular Projects**: These require students to apply knowledge and skills across different subject areas, fostering an understanding of each discipline’s unique contribution to the whole problem.2. **Thematic Units**: By designing units around broad themes, educators can seamlessly weave multiple subjects into the exploration of a single topic, prompting students to see connections between different areas of study.3. **Collaborative Teaching**: When educators from different disciplines co-teach, they can provide a combined perspective that enriches the learning experience and demonstrates the value of integrating knowledge.4. **Inquiry-Based Learning**: Encourages students to ask questions and conduct research across multiple disciplines, leading to comprehensive investigations and solutions.**Outcome-Benefits of Interdisciplinary Teaching**The merits of an interdisciplinary approach within problem-solving teaching methods are manifold:1. **Complex Problem Understanding**: It can elevate a student’s ability to deconstruct complicated issues by understanding various factors and viewpoints.2. **Adaptability**: Students learn to apply knowledge pragmatically, enabling them to adapt to new and unforeseen problems.3. **Enhanced Cognitive Abilities**: The process can promote cognitive growth, supporting the development of higher-order thinking skills like analysis and synthesis.4. **Real-World Relevance**: Students find meaning and motivation in their work when they see its relevance outside the classroom walls.In summary, integrating interdisciplinary approaches into problem-solving methods is a highly effective way to provide students with robust and adaptable skills for the future. By engaging in project-based learning activities, enjoying the support of proactive educators, and seeing the interconnectivity across subjects, students can foster critical thinking, creativity, and collaborative abilities that transcend traditional learning boundaries. As we navigate a rapidly evolving and interrelated global landscape, such approaches to education become not just advantageous but essential.

In what ways can technology be integrated into the problem-solving method of instruction?

**Role of Technology in Problem-Solving Instruction** Technology can be integrated into the problem-solving method of instruction by enhancing student engagement, promoting collaboration, and supporting personalized learning. **Enhancing Student Engagement** One way technology supports the problem-solving method is by increasing students' interest through interactive and dynamic tools. For instance, digital simulations and educational games can help students develop critical thinking and problem-solving skills in a fun, engaging manner. These tools provide real-world contexts and immediate feedback, allowing students to experiment, take risks, and learn from their mistakes. **Promoting Collaboration** Technology also promotes collaboration among students, as online platforms facilitate communication and cooperation. Utilizing tools like video conferencing and shared workspaces, students can collaborate on group projects, discuss ideas, and solve problems together. This collaborative approach fosters a sense of community, mutual support, and collective problem-solving. Moreover, it helps students develop essential interpersonal skills, such as teamwork and communication, which are crucial in today's workplaces. **Supporting Personalized Learning** Finally, technology can be used to provide personalized learning experiences tailored to individual learners' needs, interests, and abilities. With access to adaptive learning platforms or online resources, students can progress at their own pace, focus on areas where they need improvement, and explore topics that interest them. This kind of personalized approach allows instructors to identify areas where students struggle and offer targeted support, enhancing the problem-solving learning experience. In conclusion, integrating technology into the problem-solving method of instruction can improve the learning process in various ways. By fostering student engagement, promoting collaboration, and facilitating personalized learning experiences, technology can be employed as a valuable resource to develop students' problem-solving skills effectively.

The integration of technology into the problem-solving method of instruction can significantly enhance the educational process, as it offers diverse opportunities for students to engage with challenging concepts and develop practical skills. The deliberate use of technology can stimulate student interaction with course material and encourage a more dynamic approach to learning.**Interactive Problem-Solving Scenarios**Technology can simulate complex scenarios requiring students to apply their knowledge creatively to solve problems. Through interactive case studies and gamified learning environments, students can engage with these scenarios in a manner that is both compelling and educative. Such simulations often incorporate branching choices, offering an exploration of consequences which creates a deeper understanding of the material.**Data Analysis Tools**Incorporating data analysis tools into problem-solving instruction can offer students hands-on experience with real-world data sets. By learning to manipulate and analyze data through software, students can identify patterns, test hypotheses, and make evidence-based conclusions. These skills are particularly valuable in STEM fields, economics, and social sciences.**Global Connectivity & Resources**Through global connectivity, technology enables access to a vast array of resources that can be utilized to enrich problem-solving tasks. Platforms such as IIENSTITU offer courses that are designed to incorporate technology into pedagogical strategies effectively. Moreover, access to international databases, research materials, and expert lectures from around the world ensures that students are exposed to diverse perspectives and approaches to problem-solving.**Interactive Whiteboards and Projection**Interactive whiteboards and projection technology make it possible to visualize complex problems and work though them interactively in the classroom. This technology allows for collaborative diagramming and mapping of ideas, which can aid in visual learning and the synthesis of information in group settings.**Adaptive Learning Software**Educational technology that adapts to individual student performance and preferences enables personalized instruction. Adaptive learning software assesses students' skills and tailors the difficulty of problems accordingly, ensuring that each student is engaged at the appropriate level of challenge.**Formative Assessment through Technology**Technology-enabled formative assessments give teachers and students real-time feedback on understanding and performance. These tools can help identify areas of difficulty, track progress, and adjust teaching strategies to help students develop their problem-solving abilities more effectively.**Facilitating Research and Inquiry**The ability to conduct research and inquiry is central to problem solving. When students are provided with the tools to explore, research, and verify information on the internet securely, they are empowered to seek out answers to their questions and develop solutions based on evidence.**Closing Thoughts**In integrating technology into problem-solving instruction, it's important to ensure that the use of any tool or platform is pedagogically sound, enhances the learning objectives, and actually serves to improve students' problem-solving capabilities. As education evolves with the digital age, so too does the art and science of teaching problem solving, where technology becomes an indispensable ally in preparing students for the challenges of the future.

I graduated from the Family and Consumption Sciences Department at Hacettepe University. I hold certificates in blogging and personnel management. I have a Master's degree in English and have lived in the US for three years.

A rectangular puzzle piece with a light green background and a blue geometric pattern sits in the center of the image. The puzzle piece has a curved edge along the top, and straight edges along the bottom and sides. The pattern on the piece consists of a thin green line that wraps around the outside edge and a thick blue line that follows the contours of the shape. The inside of the piece is filled with various shapes of the same color, including circles, triangles, and squares. The overall effect of the piece is calming and serene. It could be part of a larger puzzle that has yet to be solved.

What are Problem Solving Skills?

A woman in a white shirt is looking down and holding her head in her hands. She has long blonde hair and blue eyes. Her lips are slightly pursed, and her eyebrows are slightly furrowed. She looks sad and contemplative, as if she is lost in thought. Her arms are crossed in front of her chest, and her head is slightly tilted to the side. Her expression is thoughtful and her posture is relaxed. She is standing in front of a plain white wall, and the light casts shadows on her face. She appears to be alone in the room, and her posture conveys a sense of loneliness and introspection.

How To Solve The Problems? Practical Problem Solving Skills

A group of people, including a man holding a laptop, a woman with her hands in her pockets, and another woman wearing a striped shirt, are standing together in a closeknit formation. One woman is holding a cup of coffee, and another has their butt partially visible in blue jeans. Everyone is smiling, and the man with the laptop appears to be engaged in conversation. The group is bathed in warm sunlight, creating a friendly atmosphere.

A Problem Solving Method: Brainstorming

A close-up of a group of people holding puzzle pieces in their hands. A man is looking at the piece he is holding, while two other people are carefully looking at the pieces they are holding in their hands. The pieces have a wooden texture, and each one is a different color. One person is holding a light blue piece, while another person is holding a red piece. All the pieces are shaped differently, and some are curved while others are straight. The pieces all fit together to form a larger puzzle.

How To Develop Problem Solving Skills?

Life-Skills-Advocate logo header

  • Meet Our Team
  • Discover The LSA Difference
  • Coaching Process
  • Core Values
  • What is Executive Functioning?
  • Understanding the EF Ripple Effect
  • For Daily Life
  • ND-Friendly Tools
  • Executive Functioning Assessment
  • Executive Functioning Meal Plan
  • Executive Functioning 101 Resource Hub
  • Executive Functioning IEP Goal Resource Hub
  • How To Make Stuff More EF Friendly

Teaching the IDEAL Problem-Solving Method to Diverse Learners

Written by:

  Amy Sippl

Filed under: EF 101 Series , Executive Functioning , Problem Solving

Published:  January 21, 2021

Last Reviewed: April 10, 2023

READING TIME:  ~ minutes

We may assume that teens and young adults come equipped with a strong sense of approaching difficult or uncertain situations. For many of the individuals we work with, problem-solving needs to be practiced and developed in the same way as academic and social skills. The IDEAL Problem Solving Method is one option to teach problem-solving to diverse learners.

What is problem-solving?

Problem-solving is the capacity to identify and describe a problem and generate solutions to fix it .

Problem-solving involves other executive functioning behaviors as well, including attentional control, planning , and task initiation . Individuals might use time management , emotional control, or organization skills to solve problems as well. Over time, learners can observe their behavior, use working memory , and self-monitor behaviors to influence how we solve future issues.

Why are problem-solving strategies important?

Not all diverse learners develop adequate problem-solving. Learners with a history of behavioral and learning challenges may not always use good problem-solving skills to manage stressful situations. Some students use challenging behaviors like talking back, arguing, property destruction, and aggression when presented with challenging tasks. Others might shut down, check out, or struggle to follow directions when encountering new or unknown situations.

Without a step-by-step model for problem-solving , including identifying a problem and choosing a replacement behavior to solve it, many of our children and students use challenging behaviors instead. The IDEAL Problem-Solving Method is one option to teach diverse learners to better approach difficult situations.

IDEAL Problem-Solving Method

In 1984, Bransford and Stein published one of the most popular and well-regarded problem-solving methods. It’s used both in industry and in education to help various learners establish a problem, generate solutions, and move forward quickly and efficiently. By teaching your learner each step of the IDEAL model, you can provide them with a set of steps to approach a problem with confidence.

The IDEAL Problem-Solving Method includes:

Word Image 2 Teaching The Ideal Problem-Solving Method To Diverse Learners

I – Identify the problem.

There’s no real way to create a solution to a problem unless you first know the scope of the problem. Encourage your learner to identify the issue in their own words. Outline the facts and the unknowns. Foster an environment where your learner is praised and supported for identifying and taking on new problems.

Examples of identifying problems:

  • “I have a math quiz next week and don’t know how to do the problems.”
  • “I can’t access my distance learning course website.”
  • “The trash needs to be taken out, and I can’t find any trash bags.”

D – Define an outcome

The second step in the IDEAL problem-solving process is to define an outcome or goal for problem-solving. Multiple people can agree that a problem exists but have very different ideas on goals or outcomes. By deciding on an outlined objective first, it can speed up the process of identifying solutions.

Defining outcomes and goals may be a difficult step for some diverse learners. The results don’t need to be complicated, but just clear for everyone involved.

Examples of defining outcomes:

  • “I want to do well on my math quiz.”
  • “I get access to the course website.”
  • “The trash gets taken out before the trash pickup day tomorrow.”

E – Explore possible strategies.

Once you have an outcome, encourage your learner to brainstorm possible strategies. All possible solutions should be on the table during this stage, so encourage learners to make lists, use sticky notes, or voice memos to record any ideas. If your learner struggles with creative idea generation, help them develop a plan of resources for who they might consult in the exploration stage.

Examples of possible strategies to solve a problem:

  • “I review the textbook; I ask for math help from a friend; I look up the problems online; I email my teacher.”
  • “I email my teacher for the course access; I ask for help from a classmate; I try to reset my password.”
  • “I use something else for a trash bag; I place an online order for bags; I take the trash out without a bag; I ask a neighbor for a bag; I go shopping for trash bags.”

A – Anticipate Outcomes & Act

Once we generate a list of strategies, the next step in the IDEAL problem-solving model recommends that you review the potential steps and decide which one is the best option to use first. Helping learners to evaluate the pros and cons of action steps can take practice. Ask questions like, “What might happen if you take this step?” or “Does that step make you feel good about moving forward or uncertain?”

After evaluating the outcomes, the next step is to take action. Encourage your learner to move forward even if they may not know the full result of taking action. Support doing something, even if it might not be the same strategy, you might take to solve a problem or the ‘best’ solution.

L – Look and Learn

The final step in the IDEAL problem-solving model is to look and learn from an attempt to solve a problem. Many parents and teachers forget this critical step in helping diverse learners to stop and reflect when problem-solving goes well and doesn’t go well. Helping our students and children learn from experience can make problem-solving more efficient and effective in the future. Ask questions like “How did that go?” and “What do you think you’ll do differently next time?”

Examples of Look and Learn statements:

  • “I didn’t learn the problems from looking at the textbook, but it did help to call a friend. I’ll start there next time.”
  • “When I didn’t have access to the course website, resetting my password worked.”
  • “I ran out of trash bags because I forgot to put them on the shopping list . I’ll buy an extra box of trash bags to have them on hand, so I don’t run out next time.”

Practice Problem-Solving

For ideas on common problems, download our deck of problem-solving practice cards. Set aside time to practice, role-play, give feedback, and rehearse again if needed.

How to teach the IDEAL problem-solving method

Top businesses and corporations spend thousands of dollars on training teams to implement problem-solving strategies like the IDEAL method. Employees practice and role-play common problems in the workplace . Coaches give supportive feedback until everyone feels confident in each of the steps.

Teachers and parents can use the same process to help students and children use the IDEAL problem-solving method. Set aside time to review common problems or social scenarios your learner might encounter. Practice using the IDEAL method when emotions and tensions aren’t running as high. Allow your learner to ask questions, work through problems, and receive feedback and praise for creating logical action plans.

Further Reading

  • Bransford, J., and Stein, B., “The Ideal Problem Solver” (1993). Centers for Teaching and Technology – Book Library . 46. https://digitalcommons.georgiasouthern.edu/ct2-library/4
  • Executive Functioning 101: Planning Skills
  • Executive Functioning: Task Initiation
  • Executive Functioning Skills by Age: What to Expect
  • Kern, L., George, M. P., & Weist, M. D. (2016). Supporting students with emotional and behavioral problems. Baltimore, MD: Paul H. Brookes.

About The Author

Amy Sippl is a Minnesota-based Board Certified Behavior Analyst (BCBA) and freelance content developer specializing in helping individuals with autism and their families reach their best possible outcomes. Amy earned her Master's Degree in Applied Behavior Analysis from St. Cloud State University and also holds undergraduate degrees in Psychology and Family Social Science from University of Minnesota – Twin Cities. Amy has worked with children with autism and related developmental disabilities for over a decade in both in-home and clinical settings. Her content focuses on parents, educators, and professionals in the world of autism—emphasizing simple strategies and tips to maximize success. To see more of her work visit amysippl.com .

Related Posts

Using the gtd (getting things done) system to help improve executive functioning, why gratitude journaling is so important when the world around you seems out of control, teaching unique learners about saving for long-term purchases, 23 ways building executive functioning can help your teen with daily living skills, 12 task initiation iep goals for real life, neurodivergent toolbox: spaced repetition method.

Life Skills Advocate is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com. Some of the links in this post may be Amazon.com affiliate links, which means if you make a purchase, Life Skills Advocate will earn a commission. However, we only promote products we actually use or those which have been vetted by the greater community of families and professionals who support individuals with diverse learning needs.

Session expired

Please log in again. The login page will open in a new tab. After logging in you can close it and return to this page.

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

what is advantages of using problem solving teaching method

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Monash University Logo

  • Help & FAQ

The advantages and disadvantages of problem-solving practice when learning basic addition facts

Research output : Chapter in Book/Report/Conference proceeding › Chapter (Book) › Research › peer-review

Access to Document

  • 10.4324/9780429400902-15

T1 - The advantages and disadvantages of problem-solving practice when learning basic addition facts

AU - Hopkins, Sarah

N2 - How children learn to retrieve answers to basic (single-digit) addition problems and how teachers can support children's learning of retrieval has captivated my attention as a researcher and teacher educator for the last 25 years. In this chapter, I describe this research and explain how I got started with the help of Professor Mike Lawson. I then present findings from a series of microgenetic studies to illustrate the different effects problem-solving practice has on children's development of retrieval.

AB - How children learn to retrieve answers to basic (single-digit) addition problems and how teachers can support children's learning of retrieval has captivated my attention as a researcher and teacher educator for the last 25 years. In this chapter, I describe this research and explain how I got started with the help of Professor Mike Lawson. I then present findings from a series of microgenetic studies to illustrate the different effects problem-solving practice has on children's development of retrieval.

U2 - 10.4324/9780429400902-15

DO - 10.4324/9780429400902-15

M3 - Chapter (Book)

SN - 9780367001834

BT - Problem Solving for Teaching and Learning

A2 - Askell-Williams, Helen

A2 - Orrell, Janice

PB - Routledge

CY - Abingdon UK

IMAGES

  1. advantages and disadvantages of problem solving method of teaching

    what is advantages of using problem solving teaching method

  2. advantages of using problem solving as a teaching method

    what is advantages of using problem solving teaching method

  3. Advantages of problem solving method in teaching mathematics

    what is advantages of using problem solving teaching method

  4. Problem-Solving Strategies: Definition and 5 Techniques to Try

    what is advantages of using problem solving teaching method

  5. what is problem solving approach in teaching

    what is advantages of using problem solving teaching method

  6. 7 Steps to Improve Your Problem Solving Skills

    what is advantages of using problem solving teaching method

VIDEO

  1. B ed

  2. Problem solving idea

  3. Strong Number : Problem solving

  4. Problem Solving

  5. Problem solving method of teaching Steps in problem Solving Method समस्या समाधान विधि के चरण #ctet

  6. USING PROBLEM SOLVING TEACHING STRATEGY| KILLEN CHAPTER 10

COMMENTS

  1. 5 Advantages and Disadvantages of Problem-Based Learning [+ Activity

    Used since the 1960s, many teachers express concerns about the effectiveness of problem-based learning (PBL) in certain classroom settings. Whether you introduce the student-centred pedagogy as a one-time activity or mainstay exercise, grouping students together to solve open-ended problems can present pros and cons.. Below are five advantages and disadvantages of problem-based learning to ...

  2. Problem-Solving Method In Teaching

    The problem-solving method is an effective teaching strategy that promotes critical thinking, creativity, and collaboration. It provides students with real-world problems that require them to apply their knowledge and skills to find solutions. By using the problem-solving method, teachers can help their students develop the skills they need to ...

  3. Problem-Based Learning

    Problem solving across disciplines. Considerations for Using Problem-Based Learning. Rather than teaching relevant material and subsequently having students apply the knowledge to solve problems, the problem is presented first. PBL assignments can be short, or they can be more involved and take a whole semester.

  4. Problem-Solving Method of Teaching: All You Need to Know

    The problem-solving method of teaching is a student-centered approach to learning that focuses on developing students' problem-solving skills. In this method, students are presented with real-world problems to solve, and they are encouraged to use their own knowledge and skills to come up with solutions. The teacher acts as a facilitator ...

  5. Problem-Based Learning (PBL)

    Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and ...

  6. Problem-Based Learning: Benefits and Risks

    Here's some of the information contained in the table. Benefits of Problem-Based Learning. For Students. It's a student-centered approach. Typically students find it more enjoyable and satisfying. It encourages greater understanding. Students with PBL experience rate their abilities higher. PBL develops lifelong learning skills.

  7. Problem-Based Learning (PBL)

    PBL is a student-centered approach to learning that involves groups of students working to solve a real-world problem, quite different from the direct teaching method of a teacher presenting facts and concepts about a specific subject to a classroom of students. Through PBL, students not only strengthen their teamwork, communication, and ...

  8. Teaching Problem Solving

    Make students articulate their problem solving process . In a one-on-one tutoring session, ask the student to work his/her problem out loud. This slows down the thinking process, making it more accurate and allowing you to access understanding. When working with larger groups you can ask students to provide a written "two-column solution.".

  9. Teaching Problem-Solving Skills

    Articulate your method as you use it so students see the connections. Teach within a specific context. Teach problem-solving skills in the context in which they will be used by students (e.g., mole fraction calculations in a chemistry course). Use real-life problems in explanations, examples, and exams. Do not teach problem solving as an ...

  10. Teaching Problem Solving

    Problem-Solving Fellows Program Undergraduate students who are currently or plan to be peer educators (e.g., UTAs, lab TAs, peer mentors, etc.) are encouraged to take the course, UNIV 1110: The Theory and Teaching of Problem Solving. Within this course, we focus on developing effective problem solvers through students' teaching practices.

  11. Why Every Educator Needs to Teach Problem-Solving Skills

    Resolve Conflicts. In addition to increased social and emotional skills like self-efficacy and goal-setting, problem-solving skills teach students how to cooperate with others and work through disagreements and conflicts. Problem-solving promotes "thinking outside the box" and approaching a conflict by searching for different solutions.

  12. PDF Problem Based Learning: A Student-Centered Approach

    Problem-based learning is a teaching method in which students' learn through the complex and open ended problems. These problems are real world problems and are used to encourage students' learning through principles and concept. PBL is both a teaching method and approach to the curriculum. It can develop critical

  13. Problem-Based Learning for Traditional and Interdisciplinary Classrooms

    This practice stands in stark contrast to professional problem solving, where the problem comes first, and is a catalyst for investigation and learning. Problem-based learning provides students with an opportunity to grapple with realistic, ill-structured problems using the same kinds of techniques and habits of mind professionals use.

  14. Full article: Understanding and explaining pedagogical problem solving

    1. Introduction. The focus of this paper is on understanding and explaining pedagogical problem solving. This theoretical paper builds on two previous studies (Riordan, Citation 2020; and Riordan, Hardman and Cumbers, Citation 2021) by introducing an 'extended Pedagogy Analysis Framework' and a 'Pedagogical Problem Typology' illustrating both with examples from video-based analysis of ...

  15. Problem Solving Method Of Teaching

    The problem-solving method of teaching is the learning method that allows children to learn by doing. This is because they are given examples and real-world situations so that the theory behind it can be understood better, as well as practice with each new concept or skill taught on top of what was previously learned in class before moving onto another topic at hand.

  16. (Pdf) Learning and Problem Solving: the Use of Problem Solving Method

    Abstract. Problem-based learning is a recognized teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to ...

  17. Teaching the IDEAL Problem-Solving Method to Diverse Learners

    Problem-solving is the capacity to identify and describe a problem and generate solutions to fix it. Problem-solving involves other executive functioning behaviors as well, including attentional control, planning, and task initiation. Individuals might use time management, emotional control, or organization skills to solve problems as well.

  18. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  19. The advantages and disadvantages of problem-solving practice when

    The advantages and disadvantages of problem-solving practice when learning basic addition facts. / Hopkins, Sarah. Problem Solving for Teaching and Learning: A Festschrift for Emeritus Professor Mike Lawson. ed. / Helen Askell-Williams; Janice Orrell. 1st. ed. Abingdon UK: Routledge, 2019. p. 209-227.

  20. PDF A critical look at

    Henry J. Hermanowicz. A critical look at. Problem Solving as Teaching Method. MANY curriculum theories for elemen tary as well as secondary education ex emplify a primacy of method within the proposed school program. This method usually consists of some form of prob lem solving procedure as the basis for most, if not all, teaching-learning ...

  21. Effects of Teaching Students through Problem-Solving on Students

    The problem-solving technique was used in conjunction with the whole class, cooperative, and think-pair-share teaching methods while teaching Groups 1, 2, and 3 (G1, G2, and G3).

  22. The advantages and disadvantages of problem-solving practice when

    Microgenetic methods are particularly valuable in illustrating this complex process and convincing people that solving a basic addition problem is indeed a problem-solving task for young children. This chapter describes how basic addition is taught in schools and explains the importance of problem-solving practice for student learning.

  23. What is the problem solving method of teaching?

    What is the problem solving method of teaching? Luther A. Mahan, Luther A. Mahan. Stout State University, Menomonie, Wisconsin. Search for more papers by this author. Luther A. Mahan, ... Use the link below to share a full-text version of this article with your friends and colleagues. Learn more. Copy URL. Share a link. Share on. Facebook;