KIIT School of Biotechnology

Prof. Achyuta Samanta Founder – KIIT & KISS achyutasamanta.com

Training and Placement

Training and placement constitute an important aspect of our school and we give utmost importance to this. we employ best of the practices to empower our students to become industry ready. some glimpses:.

phd in biotechnology in kiit university

Training Activities

phd in biotechnology in kiit university

  • Communication skill and personality development modules
  • Periodic domain and cognitive testes
  • Pre-placements assessments and corrective measures
  • Mock interviews
  • Specialty modules as per requirement
  • Biotechnology Industry conclave: an annual feature spanning over two days where big wigs of biotech industry are invited to deliver talk, panel discussion, interaction with students.
  • Kuora: the alumni talk series of School of Biotechnology
  • Kaizen: the industry talk series of School of Biotechnology

phd in biotechnology in kiit university

Delegates at Panel discussion at Biotech Industry conclave

phd in biotechnology in kiit university

Inauguration ceremony at Biotech Industry conclave

phd in biotechnology in kiit university

Delegates addressing the gathering of students at Biotech Industry conclave

phd in biotechnology in kiit university

Since its inception School of Biotechnology has a proven track record for placement. Being a technically demanding education, we encourage placements strictly in core biotechnology companies. The School has a strong bent towards research and development, with over ca. 40% students opting and achieving higher studies in the form of PhD either in India or abroad. The state of art academic and research facilities are at the helm of affairs when it comes to training and placements.

2020-21  placement highlights, 2019-20  placement highlights, 2018-19  placement highlights, 2017-18  placement highlights, placement statistics.

phd in biotechnology in kiit university

Placement Contact

Email : [email protected]

phd in biotechnology in kiit university

Dr. Gopal Chowdhary

Fic t & p.

phd in biotechnology in kiit university

Ms. Srinita Das

Placement officer.

  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Main Question Paper
  • JEE Main Cutoff
  • JEE Main Advanced Admit Card
  • AP EAPCET Hall Ticket
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • KCET Result
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2023
  • CAT 2023 College Predictor
  • CMAT 2024 Admit Card
  • TS ICET 2024 Hall Ticket
  • CMAT Result 2024
  • MAH MBA CET Cutoff 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Admit Card 2024
  • NEET PG Application Form 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Sample Papers
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • Free Ebooks
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET Exam City Intimation Slip 2024
  • IGNOU Date Sheet
  • CUET Mock Test 2024
  • CUET Admit card 2024
  • CUET PG Syllabus 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Syllabus 2024
  • IGNOU Exam Form 2024
  • IGNOU Result
  • CUET 2024 Admit Card

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Ph.D Biotechnology at KIIT University Offline Course

Quick facts, course details.

Doctor of Philosophy (Ph.D.) is an offered Full-time Doctoral program and it is offered by Kalinga Institute of Industrial Technology, Bhubaneswar. Ph.D. program shall be for a minimum duration of three years, including course work and a maximum of six years. Extension beyond the above limits will be governed by the relevant clauses as stipulated in the Statute/Ordinance of the individual Institution concerned.

Important dates

Eligibility criteria.

M.Tech. / ME /MCA /MBA / or an equivalent degree with minimum 60% marks or an equivalent Cumulative Grade Point Average (CGPA) Or M.Sc. / MA / M.Com./ LLM/ or an equivalent degree with minimum 55% marks or an equivalent Cumulative Grade Point Average (CGPA).

Admission Details

The selection will be made on the basis of performance in the written examination and interview as per the UGC guidelines.

Top Exams Accepted by KIIT University

( kiitee ) - kalinga institute of industrial technology entrance examination.

Counselling Date - Online mode

Other Popular Courses in this College

Other popular universities offering this course, indian institute of technology bhubaneswar.

  • Courses & Fees

National Institute of Technology Rourkela

Veer surendra sai university of technology, sambalpur, giet university, gunupur, cv raman global university, bhubaneswar, popular certification, detailed polymerase chain reaction concepts, biotechnology basics of gene cloning and gene therapy, industrial biotechnology, know more about this college, applications for admissions are open..

UPES B.Tech Admissions 2024

UPES B.Tech Admissions 2024

Ranked #52 among universities in India by NIRF | Highest CTC 50 LPA | 100% Placements | Last Date to Apply: 31st May

Pimpri Chinchwad University B.Tech Admissions

Pimpri Chinchwad University B.Tech Admissions

1000+ Recruiters | 450+ Patents | 50000+ Alumni network

Amity University, Noida B.Tech Admissions 2024

Amity University, Noida B.Tech Admissions 2024

Asia's Only University with the Highest US & UK Accreditation

Graphic Era (Deemed to be University) Admissions 2024

Graphic Era (Deemed to be University) Admissions 2024

NAAC A+ Grade | Highest Package (2024)-49.18 LPA

Hindusthan College of Engineering & Tech Admissions 2024

Hindusthan College of Engineering & Tech Admissions 2024

Ranked #31 by Education World

Alard University Admissions 2024

Alard University Admissions 2024

100% Placement in Top MNCs

JEE Main 2024 session 2 result live news

KIITEE 2024 phase 2 application process started

KIITEE 2024 phase 1 counselling choice filling started

Explore on Careers360

  • Colleges by States
  • Colleges by City
  • Best Engineering Colleges in Odisha
  • Top Commerce Colleges in Odisha
  • Best MBA Colleges in Odisha
  • Top BCA-MCA Colleges in Odisha
  • Best Design Colleges in Odisha
  • Best Medical Colleges in Odisha
  • Top Media & Journalism Colleges in Odisha
  • Top B.E /B.Tech Colleges in Odisha
  • Top M.E /M.Tech. Colleges in Odisha
  • Top M.A. Colleges in Odisha 2024
  • Top Ph.D Colleges in Odisha 2024
  • Top M.Sc. Colleges in Odisha 2024
  • Top B.A.(Hons) Colleges in Odisha 2024
  • Top M.Com Colleges in Odisha
  • Best Colleges in Odisha Accepting NATA
  • Best Colleges in Odisha Accepting KIITEE
  • Best Colleges in Odisha Accepting GATE
  • Best Colleges in Odisha Accepting JEE Main

By specialization

  • Top Information Technology Colleges in Bhubaneswar
  • Top Civil Engineering Colleges in Bhubaneswar
  • Top Electrical Engineering Colleges in Bhubaneswar
  • Top Mechanical Engineering Colleges in Bhubaneswar
  • Top Computer Science Engineering Colleges in Bhubaneswar
  • Top Aerospace Engineering Colleges in Bhubaneswar
  • Top Chemical Engineering Colleges in Bhubaneswar
  • Best Engineering Colleges in Bhubaneswar
  • Top Commerce Colleges in Bhubaneswar
  • Best MBA Colleges in Bhubaneswar
  • Top BCA-MCA Colleges in Bhubaneswar
  • Best Design Colleges in Bhubaneswar
  • Best Medical Colleges in Bhubaneswar
  • Top Media & Journalism Colleges in Bhubaneswar
  • Top B.E /B.Tech Colleges in Bhubaneswar
  • Top M.E /M.Tech. Colleges in Bhubaneswar
  • Top M.A. Colleges in Bhubaneswar 2024
  • Top Ph.D Colleges in Bhubaneswar 2024
  • Top M.Sc. Colleges in Bhubaneswar 2024
  • Top M.Com Colleges in Bhubaneswar
  • Top M.C.A. Colleges in Bhubaneswar
  • Best Colleges in Bhubaneswar Accepting GATE
  • Best Colleges in Bhubaneswar Accepting JEE Main
  • Best M.E /M.Tech. Universities in Odisha
  • Best M.A. Universities in Odisha
  • Best Ph.D Universities in Odisha
  • Best B.A.(Hons) Universities in Odisha
  • Best M.Com Universities in Odisha
  • Best B.B.A Universities in Odisha
  • Best MBA Universities in Odisha

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

  • Subscribers

KIIT University News & Events

School of Biotechnology (Jun – Jul 2022)

Dr. Tanmay Nayak

Student’s Name: Dr. Tanmay Nayak

Supervisor’s Name: Dr. Vishakha Raina, School of Biotechnology

Thesis Title:  Bioremediation of Chlorpyrifos Using Paddy Field Bacterial Isolates: Genomic Insights and Combinatorial Approach towards Field Application

Dr. Ananya Banerjee

Student’s Name: Dr. Ananya Banerjee

Supervisor’s Name: Dr. Srinivas Patnaik, School of Biotechnology

Thesis Title: Targeting Cancer Stem Cells to Eradicate Ovarian Cancer

Abstract: Ovarian cancer is one of the most lethal forms of malignancies and is the fifth leading cause of cancer related deaths in women. Most women are diagnosed with the ovarian cancer at an advanced stage and despite complete response with surgery and platinum-based chemotherapy, the majority of the cases relapse, and the recurrent tumors become resistant to the initial drug regimen. The primary reason behind tumor recurrence and chemo resistance has been elucidated to be the existence of a sub-population within the tumor cells, referred to as the cancer stem like cells or ‘Cancer stem cells’ (CSCs). This subgroup of cells has been characterized with inherent properties of self-renewal, invasion, cell migration and differentiation, and is found in leukemias and most solid tumors. The challenge lies in identifying these CSCs and establishing a universal method to isolate them as cancers of different epithelial origin are seen to display a differential expression of CSC biomarkers. The variation in the expression of CSC biomarkers were observed between tumors of same epithelial origin from different patients and also within the same tumor in a single patient. Owing to this diverse range of intra-tumoral and inter-tumoral heterogeneity and constantly evolving mechanisms of the CSCs to evade the host’s immune response and potentially toxic effects of chemotherapy, it has become increasingly important to understand the survival strategy of the CSCs. In the current study, we focused on the ovarian cancer stem cells, and their surviving mechanisms. A major part of this study shows the high expression of miR-328 in ovarian CSCs and elucidates the underlying mechanism of how this phenomenon contributes to stem cell survival and favors disease progression. The other part of the study highlights the importance of Estrogen Receptor Beta (ERß) and its therapeutic implications in depleting ovarian cancer stem cells.

Dr. Parej Nath

Student’s Name: Dr. Parej Nath

Co-Supervisor’s Name: Dr. Srinivas Patnaik, School of Biotechnology

Thesis Title:  Understanding the Role of IRGM in Regulating Innate Immunity

Activation of the type I interferon response is extensively connected to the pathogenesis of autoimmune diseases. Loss of function of Immunity Related GTPase M (IRGM) has also been associated with several autoimmune diseases, but its mechanism of action is unknown. In this study, we found that IRGM is a master negative regulator of the interferon response. Several nucleic acid-sensing pathways leading to interferon-stimulated gene expression are highly activated in IRGM knockout mice and human cells. In this study, we show that IRGM interacts with nucleic acid sensor proteins, including cGAS and RIG-I, and mediates their p62-dependent autophagic degradation to restrain interferon signaling. Further, IRGM deficiency results in defective mitophagy leading to the accumulation of defunct leaky mitochondria that release cytosolic DAMPs and mtROS. Hence, IRGM deficiency increases not only the levels of the sensors but also those of the stimuli that trigger the activation of the cGAS-STING and RIG-I-MAVS signaling axes, leading to robust induction of IFN responses. The flipside effect of high type I interferon response is protection against invading viruses. However, the role of human IRGM during viral infection has remained unclear. We have shown here that IRGM expression is increased upon viral infection. IFN responses induced by viral PAMPs are negatively regulated by IRGM. Conversely, IRGM depletion results in robust induction of key viral restriction factors including IFITMs, APOBECs, SAMHD1, tetherin, viperin, and HERC5/6. Additionally, antiviral processes such as MHC-I antigen presentation and stress granule signaling are enhanced in IRGM-deficient cells, indicating a robust cell-intrinsic antiviral immune state. Consistently, IRGM-depleted cells are resistant to the infection with seven viruses from five different families, including Togaviridae, Herpesviridae, Flaviviridae, Rhabdoviridae, and Coronaviridae. Moreover, we show that Irgm1 knockout mice are highly resistant to chikungunya virus (CHIKV) infection. Taken together, this study defines the molecular mechanisms by which IRGM maintains interferon homeostasis and protects from autoimmune diseases. Also, it highlights IRGM as a broad therapeutic target to promote defense against a large number of human viruses, including SARS-CoV-2, CHIKV, and Zika virus.

Journal Papers

1. Bhattacharjee, R., Ghosh, S., Nath, A., Basu, A., Biswas, O., Patil, C. R., & Kundu, C. N. (2022). Theragnostic strategies harnessing the self-renewal pathways of stem-like cells in the acute myeloid leukemia. Critical reviews in oncology/hematology , 177, 103753. https://doi.org/10.1016/j.critrevonc.2022.103753 (IF:  6.312)

Acute myelogenous leukemia (AML) is a genetically heterogeneous and aggressive cancer of the Hematopoietic Stem/progenitor cells. It is distinguished by the uncontrollable clonal growth of malignant myeloid stem cells in the bone marrow, venous blood, and other body tissues. AML is the most predominant of leukemias occurring in adults (25%) and children (15-20%). The relapse after chemotherapy is a major concern in the treatment of AML. The overall 5-year survival rate in young AML patients is about 40-45% whereas in the elderly patients it is less than 10%. Leukemia stem-like cells (LSCs) having the ability to self-renew indefinitely, repopulate and persist longer in the G0/G1 phase play a crucial role in the AML relapse and refractoriness to chemotherapy. Hence, novel treatment strategies and diagnostic biomarkers targeting LSCs are being increasingly investigated. Through this review, we have explored the signaling modulations in the LSCs as the theragnostic targets. The significance of the self-renewal pathways in overcoming the treatment challenges in AML has been highlighted.

2. Surve, C., Banerjee, A. S. A., Chakraborty, R., Kumar, D., Butti, R., Gorain, M., Parida, S., Kundu, G. C., Shidhaye, S., & Patnaik, S. (2022). Antiproliferative and apoptotic potential of methotrexate lipid nanoparticles in a murine breast cancer model.  Nanomedicine (London), 17(11), 753-764. https://doi.org/10.2217/nnm-2021-0446 (IF: 6.096 )

Aim: To evaluate the efficacy of novel methotrexate-loaded nanoparticles (MTX-NPs) in vitro and in vivo in the treatment of breast cancer. Materials & methods: MTX-NPs were tested for cellular uptake, cell viability, cell cycle, cellular wound migration and changes in tumor volume using characterized NPs.

Results: The solid lipid NPs (SLNPs) showed strong cellular uptake, increased apoptosis, controlled cytotoxicity at lower IC50 of methotrexate and a sizable reduction in tumor burden.

Conclusion: MTX-NP oral formulation can be a promising candidate in breast cancer treatment with improved cellular uptake and in vivo efficacy.

3. Mohanty, S., Patel, P., Jha, E., Panda, P. K., Kumari, P., Singh, S., Sinha, A., Saha, A. K., Kaushik, N. K., Raina, V., Verma, S. K., & Suar, M. (2022). In vivo intrinsic atomic interaction infer molecular eco-toxicity of industrial TiO 2  nanoparticles via oxidative stress channelized steatosis and apoptosis in Paramecium caudatum . Ecotoxicology and Environmental Safety , 241, 113708. https://doi.org/10.1016/j.ecoenv.2022.113708 (IF: 6.291)

The ecotoxicological effect of after-usage released TiO2 nanoparticles in aquatic resources has been a major concern owing to their production and utilization in different applications. Addressing the issue, this study investigates the detailed in vivo molecular toxicity of TiO2 nanoparticles with Paramecium caudatum. TiO2 nanoparticles were synthesized at a lab scale using high energy ball milling technique; characterized for their physicochemical properties and investigated for their ecotoxicological impact on oxidative stress, steatosis, and apoptosis of cells through different biochemical analysis, flow cytometry, and fluorescent microscopy. TiO2 nanoparticles; TiO2 (N15); of size 36 ± 12 nm were synthesized with a zeta potential of – 20.2 ± 8.8 mV and bandgap of 4.6 ± 0.3 eV and exhibited a blue shift in UV-spectrum. Compared to the Bulk TiO2, the TiO2 (N15) exhibited higher cytotoxicity with a 24 h LC50 of 202.4 µg/ml with P. Caudatum. The mechanism was elucidated as the size and charge-dependent internalization of nanoparticles leading to abnormal physiological metabolism in oxidative stress, steatosis, and apoptosis because of their influential effect on the activity of metabolic proteins like SOD, GSH, MDA, and catalase. The study emphasized the controlled usage TiO2 nanoparticles in daily activity with a concern for ecological and biomedical aspects.

4. Devi, T. B., Raina, V. & Rajashekar, Y. (2022). A novel biofumigant from Tithonia diversifolia (Hemsl.) A. Gray for control of stored grain insect pests. Pesticide Biochemistry and Physiology , 184, 105116. https://doi.org/10.1016/j.pestbp.2022.105116   (IF:  3.963)

 For the well-being of human health as well as ecological concerns and the development of insect resistance to conventional chemical insecticides, efforts have increased worldwide, to find eco-friendly, effective and safer insect control agents which are of natural origin. A bioactive biofumigant molecule named dihydro-p-coumaric acid was isolated and characterized from the leaves of Tithonia diversifolia Hemsl. A. Gray following laboratory bioassays against the rice weevil, Sitophilus oryzae L (Coleoptera: Curculionidae); the lesser grain borer, Rhyzopertha dominica F (Coleoptera: Bostrichidae) and the rust-red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). The isolated compound acted as a fumigant, toxic to adults of stored grain insect pests with LC50 values of 17.86, and 11.49 μg/L (S. oryzae), 19.80 and 10.29 μg/L (R. dominica) and 24.41 and 17.80 μg/L air (T. casatneum) respectively. Further, in vivo data reveal that the percentage of inhibition of acetyl cholinesterase (AChE) was dose-dependent and in vitro results showed potent AChE inhibitor. The isolated compound acts as an efficient biofumigant against the stored grain insect pests and has no adverse effect on seed germination. From this study, we assume that the isolated biofumigant molecule has the ability for used in IPM programs for stored-grain pests because of its biofumigant activity.

5. Jena, B. C., Das, C. K., Banerjee, I., Bharadwaj, D., Majumder, R., Das, S., Biswas, A., Kundu, M., Roy, P. K., Kundu, C. N., & Mandal, M. (2022). TGF-β1 induced autophagy in cancer associated fibroblasts during hypoxia contributes EMT and glycolysis via MCT4 upregulation. Experimental cell research , 417(1), 113195. https://doi.org/10.1016/j.yexcr.2022.113195 (IF: 3.905)

The Transforming growth factor-β1 (TGF- β1) in the tumor microenvironment (TME) is the major cytokine that acts as a mediator of tumor-stroma crosstalk, which in fact has a dual role in either promoting or suppressing tumor development. The cancer-associated fibroblasts (CAFs) are the major cell types in the TME, and the interaction with most of the epithelial cancers is the prime reason for cancer survival. However, the molecular mechanisms, associated with the TGF- β1 induced tumor promotion through tumor-CAF crosstalk are not well understood. In the Reverse Warburg effect, CAFs feed the adjacent cancer cells by lactate produced during the aerobic glycolysis. We hypothesized that the monocarboxylate transporter, MCT4 which is implicated in lactate efflux from the CAFs, must be overexpressed in the CAFs. Contextually, to explore the role of TGF- β1 in the hypoxia-induced autophagy in CAFs, we treated CoCl2 and external TGF- β1 to the human dermal fibroblasts and L929 murine fibroblasts. We demonstrated that hypoxia accelerated the TGF- β1 signaling and subsequent transformation of normal fibroblasts to CAFs. Moreover, we elucidated that synergistic induction of autophagy by hypoxia and TGF- β1 upregulate the aerobic glycolysis and MCT4 expression in CAFs. Furthermore, we showed a positive correlation between glucose consumption and MCT4 expression in the CAFs. Autophagy was also found to be involved in the EMT in hypoxic CAFs. Collectively, these findings reveal the unappreciated role of autophagy in TME, which enhances the CAF transformation and that promotes tumor migration and metastasis via the reverse Warburg effect.

6. Santos, F. H., Panda, S, Ferreira, D. C. M., Dey, G, Molina, G., & Pelissari, F.M. (2022). Targeting infections and inflammation through micro and nano-nutraceuticals. Food Bioscience , 49, 101891. https://doi.org/10.1016/j.fbio.2022.101891 (IF: 4.24)

Nowadays, the pharma and food industries have been gearing up to meet the urgent need for anti-infective and anti-inflammatory nutritional formulations. In this way, several nutraceutical compounds are being re–evaluated due to their established bioactivities. Few compounds have been or may be efficiently targeted against infections, inflammatory conditions and for immune modulation. However, for successful management of these metabolic conditions, the nutraceuticals need to be designed into effective nutritional formulations. Over recent years there have been tremendous progress in the re-engineering of structurally delivery vehicles which provide stability, enhance bioaccessibility and bioavailability of these compounds. In this perspective, this review focuses on the structural and functional aspects of several such bio-based delivery vehicles like the micro and nano particles, nano-emulsions and liposome-based models. The aim is to bring forth recent information on the efficacious nutraceuticals and the suitable delivery vehicles which would be useful against infections and inflammatory conditions.

7. Singh, K., Verma, S. K., Patel, P., Panda, P. K., Sinha, A., Das, B., Raina, V., Suar, M., & Ray, L. (2022). Hydoxylated β- and δ-Hexacholorocyclohexane metabolites infer influential intrinsic atomic pathways interaction to elicit oxidative stress-induced apoptosis for bio- toxicity. Environmental Research , 212 (Pt D):113496. https://doi.org/10.1016/j.envres.2022.113496 (IF: 6.498)

Hexachlorocyclohexane (HCH) has been recognized as an effective insecticide to protect crops against grasshoppers, cohort insects, rice insects, wireworms, and other agricultural pests and; for the control of vector-borne diseases such as malaria. It is a cyclic, saturated hydrocarbon, which primarily exists as five different stable isomers in the environment. Though the use of HCH is banned in most countries owing to its adverse effects on the environment, its metabolites still exist in soil and groundwater, because of its indiscriminate applications. In this study, a dose-dependent toxicity assay of the HCH isomers isolated from soil and water samples of different regions of Odisha, India was performed to assess the in vivo developmental effects and oxidative stress in zebrafish embryos. Toxicity analysis revealed a significant reduction in hatching and survivability rate along with morphological deformities (edema, tail malformations, spinal curvature) upon an increase in the concentration of HCH isomers; beta isomer exhibiting maximum toxicity (p < 0.05). Oxidative stress assay showed that ROS and apoptosis were highest in the fish exposed to β-2 and δ-2 isomers of HCH in comparison to the untreated one. Zebrafish proved to be a useful biological model to assess the biological effects of HCH isomers. In addition, the results suggest the implementation of precautionary measures to control the use of organochlorine compounds that can lead to a decrease in the HCH isomers in the field for a healthier environment.

8. Tarafdar, S., & Chowdhary, G.  (2022). Translating the Arabidopsis thaliana Peroxisome Proteome insights to Solanum lycopersium : Consensus versus Diversity.  Frontiers in cell and Developmental Biology , 10, 909604. https://doi.org/10.3389/fcell.2022.909604 (IF: 5.69)

Peroxisomes are small, single-membrane specialized organelles present in all eukaryotic organisms. The peroxisome is one of the nodal centers of reactive oxygen species homeostasis in plants, which are generated in a high amount due to various stress conditions. Over the past decade, there has been extensive study on peroxisomal proteins and their signaling pathways in the model plant Arabidopsis thaliana, and a lot has been deciphered. However, not much impetus has been given to studying the peroxisome proteome of economically important crops. Owing to the significance of peroxisomes in the physiology of plants during normal and stress conditions, understating its proteome is of much importance. Hence, in this paper, we have made a snapshot of putative peroxisomal matrix proteins in the economically important vegetable crop tomato (Solanum lycopersicum, (L.) family Solanaceae). First, a reference peroxisomal matrix proteome map was generated for Arabidopsis thaliana using the available proteomic and localization studies, and proteins were categorized into various groups as per their annotations. This was used to create the putative peroxisomal matrix proteome map for S. lycopersicum. The putative peroxisome proteome in S. lycopersicum retains the basic framework: the bulk of proteins had peroxisomal targeting signal (PTS) type 1, a minor group had PTS2, and the catalase family retained its characteristic internal PTS. Apart from these, a considerable number of S. lycopersicum orthologs did not contain any “obvious” PTS. The number of PTS2 isoforms was found to be reduced in S. lycopersicum. We further investigated the PTS1s in the case of both the plant species and generated a pattern for canonical and non-canonical PTS1s. The number of canonical PTS1 proteins was comparatively lesser in S. lycopersicum. The non-canonical PTS1s were found to be comparable in both the plant species; however, S. lycopersicum showed greater diversity in the composition of the signal tripeptide. Finally, we have tried to address the lacunas and probable strategies to fill those gaps.

9. Kumar, G., Das, C., Acharya, A., Bhal, S., Joshi, M., Kundu, C. N., Choudhury, A. R., & Guchhait, S. K. (2022). Organocatalyzed umpolung addition for synthesis of heterocyclic-fused arylidene-imidazolones as anticancer agents. Bioorganic & medicinal chemistry , 67, 116835. https://doi.org/10.1016/j.bmc.2022.116835 (IF: 3.641)

A strategy of “Nature-to-new” with iterative scaffold-hopping was considered for investigation of privileged ring/functional motif-elaborated analogs of natural aurones. An organocatalyzed umpolung chemistry based method was established for molecular-diversity feasible synthesis of title class of chemotypes i.e. (Z)-2-Arylideneimidazo[1,2-a]pyridinones and (Z)-2-Arylidenebenzo[d]imidazo[2,1-b]thiazol-3-ones. Various biophysical experiments indicated their important biological properties. The analogs showed characteristic anticancer activities with efficiency more than an anticancer drug. The compounds induced apoptosis with arrest in the S phase of the cell cycle regulation. The compounds’ significant effect in up/down-regulation of various apoptotic proteins, an apoptosis cascade, and the inhibition of topoisomerases-mediated DNA relaxation process was identified. The analysis of the structure-activity relationship, interference with biological events and the drug-likeness physicochemical properties of the compounds in the acceptable window indicated distinctive medicinal molecule-to-properties of the investigated chemotypes.

10. Lin, S-C., Li Y., Hu F-Y., Wang C-L., Kuang Y-H., Sung C-L., Tsai S-F., Yang Z-W., Li C. P., Huang S-H., Liao C-T., Hechanova S.L., Jena K.K., & Chuang W-P. (2022). Effect of nitrogen fertilizer on the resistance of rice near-isogenic lines with BPH resistance genes. Botanical Studies , 63, 16. https://doi.org/10.1186/s40529-022-00347-8 (IF: 2.7)

Background: Nitrogen is an essential macronutrient for plant growth and development. Crops with a high nitrogen input usually have high yields. However, outbreaks of brown planthoppers (Nilaparvata lugens; BPH) frequently occur on rice farms with excessive nitrogen inputs. Rice plants carrying BPH resistance genes are used for integrated pest management. Thus, the impact of nitrogen on the resistance of rice near-isogenic lines (NILs) with BPH resistance genes was investigated. Results: We tested these NILs using a standard seedbox screening test and a modified bulk seedling test under different nitrogen treatments. The amount of nitrogen applied had an impact on the resistance of some lines with BPH resistance genes. In addition, three NILs (NIL-BPH9, NIL-BPH17, and NIL-BPH32) were further examined for antibiosis and antixenosis under varying nitrogen regimes. The N. lugens nymph population growth rate, honeydew excretion, female fecundity, and nymph survival rate on the three NILs were not affected by different nitrogen treatments except the nymph survival rate on NIL-BPH9 and the nymph population growth rate on NIL-BPH17. Furthermore, in the settlement preference test, the preference of N. lugens nymphs for IR24 over NIL-BPH9 or NIL-BPH17 increased under the high-nitrogen regime, whereas the preference of N. lugens nymphs for IR24 over NIL-BPH32 was not affected by the nitrogen treatments. Conclusions: Our results indicated that the resistance of three tested NILs did not respond to different nitrogen regimes and that NIL-BPH17 exerted the most substantial inhibitory effect on N. lugens growth and development.

11. Dhal, A. K., Young, G. M., Yun, S., & Mahapatra, R. K.  (2022). Computational analysis of Elongation Factor-2 (EF-2) protein of Cryptosporidium parvum for identification of therapeutics. Biologia , 77(5), 1447–1457. https://dx.doi.org/10.1007/s11756-022-01030-w (IF: 1.35)

Cryptosporidium parvum (Cp) is an obligate intracellular apicomplexan parasite that infects the intestinal tract of mammals. C. parvum oocysts are transmitted mainly through contact with contaminated water and then reproduce sexually and asexually in the intestinal lining cells, resulting in diarrhea. Elongation Factor 2 (EF-2) of C. parvum is a ubiquitous eukaryotic protein that is essential for protein synthesis and is regarded as a drug target for therapeutic intervention. EF-2 catalyses the translocation of peptidyl-tRNA from the amino-acyl site to the peptidyl site of the ribosome during the elongation phase of protein synthesis. In this study, the sequence similarity between the template structures and the EF-2 protein of C. parvum was considered for the determination of the three-dimensional structure of the target protein through the homology modelling approach by MODELLER v9.21 software. By using different computer-aided drug designing techniques such as structure and ligand-based studies, the potential inhibitor molecules were enlisted. Compounds like CHEMBL1784973 and ZINC_03830706 are reported as the best inhibitors against the CpEF-2 protein. Furthermore, the reliability of the binding mode of the hit molecule ZINC_03830706 is validated through a complex MD simulation study for a time frame of 100 ns in an aqueous environment. The compound identified from the computational approach can be considered through experimental studies in the future.

12. Arega, A. M., Dhal, A. K., Nayak, S., & Mahapatra, R. K. (2022). In silico and in vitro study of Mycobacterium tuberculosis H37Rv uncharacterized protein (RipD): an insight on tuberculosis therapeutics. Journal of Molecular Modeling, 28(6), 171. https://doi.org/10.1007/s00894-022-05148-1 (IF:  1.81)

Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is responsible for the highest global health problem, with the deaths of millions of people. With prevalence of multiple drug resistance (MDR) strains and extended therapeutic times, it is important to discover small molecule inhibitors against novel hypothetical proteins of the pathogen. In this study, a virtual screening protocol was carried out against MtbH37Rv hypothetical protein RipD (Rv1566c) for the identification of potential small molecule inhibitors. The 3D model of the protein structure binding site was used for virtual screening (VS) of inhibitors from the Pathogen Box, followed by its validation through a molecular docking study. The stability of the protein-ligand complex was assessed using a 150 ns molecular dynamics simulation. MM-PBSA and MM-GBSA are the two approaches that were used to perform the trajectory analysis and determine the binding free energies, respectively. The ligand binding was observed to be stable across the entire time frame with an approximate binding free energy of -22.9916 kcal/mol. The drug-likeness of the inhibitors along with a potential anti-tuberculosis compound was validated by ADMET prediction software. Furthermore, a CFU inhibition assay was used to validate the best hit compound’s in vitro inhibitory efficacy against a non-pathogenic Mycobacterium smegmatis MC2155 under low nutrient culture conditions. The study reported that the compound proposed in our study (Pathogen Box ID: MMV687700) will be useful for the identification of potential inhibitors against Mtb in future.

Patent Filed/Published/Granted

  • Dr. Sung-Ryul Kim, Dr. Prahalada G.D, Dr. Kshirod K. Jena. Patent title: Methods of increasing outcrossing rates in gramineae (USA patent publication No. WO/2022/038536 A1)

A method of producing a Gramineae plant, the method comprising (a) expressing in a Gramineae plant or plant cell expression of a polynucleotide encoding OLLS1 as set forth in SEQ ID NO: 12 or 13 or a homolog thereof capable of increasing stigma length of the Gramineae plant, wherein when the expressing is by crossing the plant with another plant expressing the polypeptide, selecting for stigma length is performed using markers located between ST87 to ST99; and (b) growing or regenerating the plant.

2. Mr. Rahul Chatterjee, Dr. Rahul Modak, Dr. Vishakha Raina, Dr. Mrutyunjay Suar Ms. Ritu Ghosh, Dr. Gurmeet Singh. Patent Name: An enzyme and formulation thereof for reducing formation of acrylamide in food processing (Indian patent filed).

An enzyme and formulation thereof for reducing formation of acrylamide in food processing.

KIIT Research & Development Newsletter (Jan – Mar 2023)

School of Biotechnology (Jan – Mar 2023)

School of Applied Sciences (Jan – Mar 2023)

School of Languages (Jan – Mar 2023)

  • KIIT REVIEW

Rusmania

  • Yekaterinburg
  • Novosibirsk
  • Vladivostok

phd in biotechnology in kiit university

  • Tours to Russia
  • Practicalities
  • Russia in Lists
Rusmania • Deep into Russia

Out of the Centre

Savvino-storozhevsky monastery and museum.

Savvino-Storozhevsky Monastery and Museum

Zvenigorod's most famous sight is the Savvino-Storozhevsky Monastery, which was founded in 1398 by the monk Savva from the Troitse-Sergieva Lavra, at the invitation and with the support of Prince Yury Dmitrievich of Zvenigorod. Savva was later canonised as St Sabbas (Savva) of Storozhev. The monastery late flourished under the reign of Tsar Alexis, who chose the monastery as his family church and often went on pilgrimage there and made lots of donations to it. Most of the monastery’s buildings date from this time. The monastery is heavily fortified with thick walls and six towers, the most impressive of which is the Krasny Tower which also serves as the eastern entrance. The monastery was closed in 1918 and only reopened in 1995. In 1998 Patriarch Alexius II took part in a service to return the relics of St Sabbas to the monastery. Today the monastery has the status of a stauropegic monastery, which is second in status to a lavra. In addition to being a working monastery, it also holds the Zvenigorod Historical, Architectural and Art Museum.

Belfry and Neighbouring Churches

phd in biotechnology in kiit university

Located near the main entrance is the monastery's belfry which is perhaps the calling card of the monastery due to its uniqueness. It was built in the 1650s and the St Sergius of Radonezh’s Church was opened on the middle tier in the mid-17th century, although it was originally dedicated to the Trinity. The belfry's 35-tonne Great Bladgovestny Bell fell in 1941 and was only restored and returned in 2003. Attached to the belfry is a large refectory and the Transfiguration Church, both of which were built on the orders of Tsar Alexis in the 1650s.  

phd in biotechnology in kiit university

To the left of the belfry is another, smaller, refectory which is attached to the Trinity Gate-Church, which was also constructed in the 1650s on the orders of Tsar Alexis who made it his own family church. The church is elaborately decorated with colourful trims and underneath the archway is a beautiful 19th century fresco.

Nativity of Virgin Mary Cathedral

phd in biotechnology in kiit university

The Nativity of Virgin Mary Cathedral is the oldest building in the monastery and among the oldest buildings in the Moscow Region. It was built between 1404 and 1405 during the lifetime of St Sabbas and using the funds of Prince Yury of Zvenigorod. The white-stone cathedral is a standard four-pillar design with a single golden dome. After the death of St Sabbas he was interred in the cathedral and a new altar dedicated to him was added.

phd in biotechnology in kiit university

Under the reign of Tsar Alexis the cathedral was decorated with frescoes by Stepan Ryazanets, some of which remain today. Tsar Alexis also presented the cathedral with a five-tier iconostasis, the top row of icons have been preserved.

Tsaritsa's Chambers

phd in biotechnology in kiit university

The Nativity of Virgin Mary Cathedral is located between the Tsaritsa's Chambers of the left and the Palace of Tsar Alexis on the right. The Tsaritsa's Chambers were built in the mid-17th century for the wife of Tsar Alexey - Tsaritsa Maria Ilinichna Miloskavskaya. The design of the building is influenced by the ancient Russian architectural style. Is prettier than the Tsar's chambers opposite, being red in colour with elaborately decorated window frames and entrance.

phd in biotechnology in kiit university

At present the Tsaritsa's Chambers houses the Zvenigorod Historical, Architectural and Art Museum. Among its displays is an accurate recreation of the interior of a noble lady's chambers including furniture, decorations and a decorated tiled oven, and an exhibition on the history of Zvenigorod and the monastery.

Palace of Tsar Alexis

phd in biotechnology in kiit university

The Palace of Tsar Alexis was built in the 1650s and is now one of the best surviving examples of non-religious architecture of that era. It was built especially for Tsar Alexis who often visited the monastery on religious pilgrimages. Its most striking feature is its pretty row of nine chimney spouts which resemble towers.

phd in biotechnology in kiit university

Plan your next trip to Russia

Ready-to-book tours.

Your holiday in Russia starts here. Choose and book your tour to Russia.

REQUEST A CUSTOMISED TRIP

Looking for something unique? Create the trip of your dreams with the help of our experts.

IMAGES

  1. School of Biotechnology (August 2021)

    phd in biotechnology in kiit university

  2. Research Scholars

    phd in biotechnology in kiit university

  3. Biotech Campus Visit || KIIT University || KIIT Campus-11 Visit #

    phd in biotechnology in kiit university

  4. Programme

    phd in biotechnology in kiit university

  5. Subarno PAUL

    phd in biotechnology in kiit university

  6. About Us

    phd in biotechnology in kiit university

VIDEO

  1. KIIT 19th Convocation 2023 Highlights

  2. PhD Admission 2024 PhD Entrance Exam Updates Shivaji University Kolhapur

  3. KIIT University Campus Tour 2022

  4. TEDxKIIT University 2023 Glimpses

  5. Life After PhD in Biotech

  6. PhD Biotechnology Testimonial By Harleen Walia

COMMENTS

  1. School of Biotechnology

    School of Biotechnology at KIIT (KSBT) was established in 2007 with highlevel intellectual inputs from Prof. Richard R Ernst (Nobel Laureate, 1991), who laid the Foundation stone and Prof. Rolf M Zinkernagel (Nobel Laureate in Physiology or Medicine, 1996), who inaugurated the facility. Within a very short span of time, it has become a ...

  2. Ph.D. (Biotechnology) From KIIT, Bhubaneswar

    Kalinga Institute of Industrial Technology - [KIIT],Bhubaneswar, Odisha has 165 Courses with Average Fees 350000 per year. ... Ph.D. (Biotechnology) From KIIT, Bhubaneswar. Bhubaneswar, Odisha DCI, ... KIIT University: Latest News, Events, Photos & Campus Reports. Apr 23, 2024. KIITEE 2024 Phase 2 & Phase 3 Exam Dates Revised; Check New Dates Here.

  3. Placement

    School of Biotechnology KIIT Deemed to be University Campus-11 Patia, Bhubaneswar 751024. Odisha, INDIA. Odisha, INDIA. Email : institute@kiitbiotech. ac.in Ph : +91 674 2725732, 2725466

  4. Ph.D Biotechnology at KIIT University Offline Course

    72 Months. Doctor of Philosophy (Ph.D.) is an offered Full-time Doctoral program and it is offered by Kalinga Institute of Industrial Technology, Bhubaneswar. Ph.D. program shall be for a minimum duration of three years, including course work and a maximum of six years. Extension beyond the above limits will be governed by the relevant clauses ...

  5. KIIT Courses

    The KIIT University offers a wide range of Master's degree programmes. ... (Biotechnology / Applied Microbiology) (2 Years) M.Sc. (Biotechnology / Applied Microbiology) (2 Years) ... PhD: Post Doctorate Fellowship: 4: School of Electrical Engineering: Bachelor of Technology (B. Tech) in Electrical Engineering ...

  6. Biswajit DAS

    Hi, I am a Cancer Biologist, working in Cancer Biology Lab at School of Biotechnology, KIIT - Deemed to be University, Bhubaneswar, Odisha, India. My research work is focussed on specifically ...

  7. School of Biotechnology (Jun

    PhD Awards Student's Name: Dr. Tanmay Nayak Supervisor's Name: Dr. Vishakha Raina, School of Biotechnology Thesis Title: Bioremediation of Chlorpyrifos Using Paddy Field Bacterial Isolates: Genomic Insights and Combinatorial Approach towards Field Application Abstract: The study highlights the potential of a bacterial isolate Ochrobactrum sp. CPD-03, in the degradation of Chloropyrifos, an ...

  8. M.Sc Biotechnology From KIIT : Fees, Cutoff, Placements, Admission

    I was done MSc Biotechnology course from KIIT University in 2017. Biotechnology is very good course in medical line. After MSc Biotechnology course you will get job in biopharmaceutical companies and you can to PhD in India and abroad also. faculty: 9/10. placement: 7/10. social life: 9/10. course: 8/10. hostel: 8/10. campus life: 9/10. 0 1 ...

  9. Soumya BISWAS

    KIIT University; School of Biotechnology; Soumya Biswas; Soumya Biswas. ... PhD Student; Nano-Infection/Zebrafish Biotechnology Lab, KSBT. Citations since 2017. 6 Research Items. 1 Citation.

  10. Ph.D. at KIIT University

    Value for Money 3. MR. Megha Roy. Ph.D. in Civil Engineering - Batch of 2018. 3.8. 3Placements 5Infrastructure 4Faculty 4Crowd & Campus Life 3Value for Money. KIIT is an experience to cherish for a lifetime. Placements: B.Tech placements are a matter of concern in civil engineering in any college throughout the nation.

  11. Dr. Gayatri NAHAK

    I am working as Junior Research Fellow in KIIT University, KIIT School of Biotechnology, Bhubaneswar, Orissa, India and my job is to study the phytochemical, antioxidant, Antimicrobial and ...

  12. KIIT School of Biotechnology

    Read More. KIIT School of Biotechnology - [KSBT],Bhubaneswar, Odisha has 4 Courses with Average Fees 350000 per year. Top Courses at KIIT School of Biotechnology - [KSBT] Bhubaneswar, Odisha are BE/B.Tech, M.Sc, M.Phil/Ph.D in Science.

  13. Definition of The Strategic Directions for Regional Economic

    Dmitriy V. Mikheev, Karina A. Telyants, Elena N. Klochkova, Olga V. Ledneva; Affiliations Dmitriy V. Mikheev

  14. Category:Landwart localities in Moscow Oblast

    Main page; Commonty Yett; Mercat Cross; Recent chynges; Wale page allevolie; Help; Pages for logged out editors learn more

  15. Savvino-Storozhevsky Monastery and Museum

    Zvenigorod's most famous sight is the Savvino-Storozhevsky Monastery, which was founded in 1398 by the monk Savva from the Troitse-Sergieva Lavra, at the invitation and with the support of Prince Yury Dmitrievich of Zvenigorod. Savva was later canonised as St Sabbas (Savva) of Storozhev. The monastery late flourished under the reign of Tsar ...

  16. Russia: Gazprom Appoints Pavel Oderov as Head of International Business

    March 17, 2011. Pavel Oderov was appointed as Head of the International Business Department pursuant to a Gazprom order. Pavel Oderov was born in June 1979 in the town of Elektrostal, Moscow Oblast. He graduated from Gubkin Russian State University of Oil and Gas with an Economics degree in 2000 and a Management degree in 2002.