How to analyze a problem

May 7, 2023 Companies that harness the power of data have the upper hand when it comes to problem solving. Rather than defaulting to solving problems by developing lengthy—sometimes multiyear—road maps, they’re empowered to ask how innovative data techniques could resolve challenges in hours, days or weeks, write  senior partner Kayvaun Rowshankish  and coauthors. But when organizations have more data than ever at their disposal, which data should they leverage to analyze a problem? Before jumping in, it’s crucial to plan the analysis, decide which analytical tools to use, and ensure rigor. Check out these insights to uncover ways data can take your problem-solving techniques to the next level, and stay tuned for an upcoming post on the potential power of generative AI in problem-solving.

The data-driven enterprise of 2025

How data can help tech companies thrive amid economic uncertainty

How to unlock the full value of data? Manage it like a product

Data ethics: What it means and what it takes

Author Talks: Think digital

Five insights about harnessing data and AI from leaders at the frontier

Real-world data quality: What are the opportunities and challenges?

How a tech company went from moving data to using data: An interview with Ericsson’s Sonia Boije

Harnessing the power of external data

A woman with dreads works at a laptop using her data analyst skills.

What Are The Key Skills Every Data Analyst Needs?

Tom Taylor

In the job, a wide range of data analytics skills are required on a daily basis; everything from in-depth analyses to data visualisation and storytelling. One minute you’ll be composing an SQL query to explore a data set, the next you’ll stand in front of a board of directors outlining how the business needs to adapt according to your findings.

Let’s take look at the key skills associated with being a data analyst. You probably already possess some of the skills, since they cover a broad range of skillsets touching on communication, analytics, and problem solving.

Want to pick up some data analytics skills from scratch, for free? Try out CareerFoundry’s 5-day data short course to see if it’s for you!

Here are the key data analyst skills you need:

  • Excellent problem-solving skills
  • Solid numerical skills
  • Excel proficiency and knowledge of querying languages
  • Expertise in data visualization
  • Great communication skills
  • Key takeways

1. Excellent problem-solving skills

Problem solving is one of the most important data analyst skills you should possess. Around 90% of analytics is about critical thinking, and knowing the right questions to ask.

If the questions you ask are grounded in knowledge of the business, the product and the industry, you’ll get the answers you need. Data analysis is about being presented with a problem (i.e., “why aren’t we selling more red bikes?”), and carrying out the necessary investigative tasks to find the answer.

Data analytics is a lot about thinking logically through the problems you encounter. You’ll come to the right conclusions quicker if you’re familiar with the challenges and nuances of the data. If red bikes aren’t selling well, why could this be? Is it because other colors have larger ranges? Are red bikes typically priced higher than other bikes? Are red bikes only available in mountain bike form, therefore discouraging city dwellers to purchase them? Data analysts draw conclusions quicker by using their logic to understand the data.

2. Solid numerical skills

Numbers displayed in a table

Many data analysts don’t come from the world of numbers—often, they come from a business or marketing background. It’s perfectly possible to grow your knowledge of this area as you go. While not necessarily a ‘skill’, an aptitude for numbers is certainly a good thing for any aspiring data analyst to have.

You’re going to need to bring a level of numerical expertise to the role, either from formal education or other experience. You can learn most of the numerical data analyst skills—such as regression analysis, which involves examining two or more variables and their relationships—without having to go back to school.

Having a thorough grounding in statistics is also beneficial—you can start by learning about descriptive and inferential statistics , and work up from there. You’re going to need an appreciation for queries, which are commands used by computers to perform tasks. In analytics, these commands are used to extract information from data sets. Brushing up on your knowledge of applied science and linear algebra is going to make things easier for you, although don’t be put off if this is all a mystery to you.

3. Excel proficiency and knowledge of querying languages

As we mentioned earlier, knowledge of Microsoft Excel is an essential data analyst skill for working effectively.

It’s a spreadsheet program used by millions of people around the world to store and share information, perform mathematical and statistical operations and create reports and visualizations that summarize important findings. For data analysts, it’s a powerful tool for quickly accessing, organizing, and manipulating data to derive and share insights.

Data analysts work with Excel every day, so you’re going to have to really know your VLOOKUP from your pivot tables . Want to find out where the red bikes sell the most? Curious as to whether the average price of red bikes is higher than blue bikes? Excel can help provide answers to these kinds of questions.

As well as Excel, analysts need to be familiar with at least one querying language. These languages are used to instruct computers to do specific tasks, including many related to the analysis of data. The most popular languages for data analysis are SQL and SAS. For a good introduction to SQL, try this cheatsheet . Programming languages such as Python and R also have a wide variety of powerful programs dedicated to analyzing data.

Many of the languages available perform different functions or are geared at one particular industry. SAS is primarily used in the medical industry, whereas SQL is often used for retrieving data from databases. If you have an idea of the industry you’d like to work in, it’s beneficial to do some research and find out what languages they use—tailoring your learning to the sector(s) you’re most interested in is a clever move.

4. Expertise in data visualization

Data analyst creating visualizations

It’s difficult to take a complicated topic and present findings in a simple way, but that’s precisely the job of the data analyst!

It’s all about turning your findings into easily digestible chunks of information. Telling a compelling story with your data is crucial, and so much of this involves the use of visual aids. Graphs and pie charts are a popular and extremely effective means of illustrating data findings.

Both Microsoft Excel and Tableau boast plenty of options for visualizing data, enabling you to present findings in an accurate way. This data analyst skill lies in knowing how best to present the data, so that your findings speak for themselves. There’s something of a tendency among tech professionals to speak in complex and esoteric terms, but to be a good data analyst is to communicate findings easily and effectively through simple visualizations.

5. Great communication skills

As well as being able to visualize your findings, accurately, data analysts must be able to communicate findings verbally. Data analysts work constantly with stakeholders, fellow colleagues and data suppliers, so good communication is an essential data analyst. How good are you at talking to people? Can you effectively break down technical information into simple words? This is a crucial skill that goes hand in hand with data visualization—it’s all in the delivery!

You’ll often need to present your findings in front of an audience, who might not be familiar with your analytical methods and processes. The job of the data analyst is to clearly translate their findings into non-technical terms. Your audience wants to hear your findings in ways which relate to their own roles. The bike designer is interested in hearing what designs of the red bike aren’t selling that well, and if customers are choosing not to buy a certain design in red.

The marketing manager wants to know if red bikes aren’t selling well in a certain country and whether sales have been affected by lack of marketing spend. The product manager wants to know if there is a general shift in popularity towards fixed gear bikes, and whether the drop in red bike sales is likely to last for a longer period of time. It’s crucial data analysts take their audience into consideration.

Key takeaways

  • Data analysts aren’t one trick ponies! They have a broad skillset incorporating a wide range of data analytics skills.
  • A head for math and statistics is core to the work of a data analyst.
  • As well as robust Excel knowledge, a good command of at least one programming language is required to carry out effective data analysis.
  • Having the ability to effectively ask “what does this mean?’” and “what impact could this have on something else?” is an essential part of analyzing data.
  • Similarly, possessing the ability to communicate your findings both visually and verbally is crucial to the role of the data analyst.
  • Data analytics is a hands-on field; get a taste of what it’s like in this free introductory short course .

So you’ve now learned about the main data analyst skills. If that’s made you curious to learn more, our data analytics blog contains more related articles about working in the field. And, if you’re keen to find out how to become a data analyst, check out this guide .

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

data and problem solving

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

4 Ways to Improve Your Analytical Skills

data analysis and notebook on desk

  • 07 Jan 2021

Data is ubiquitous. It’s collected at every purchase made, flight taken, ad clicked, and social media post liked—which means it’s never been more crucial to understand how to analyze it.

“Never before has so much data about so many different things been collected and stored every second of every day,” says Harvard Business School Professor Jan Hammond in the online course Business Analytics .

The volume of data you encounter can be overwhelming and raise several questions: Can I trust the data’s source? Is it structured in a way that makes sense? What story does it tell, and what actions does it prompt?

Data literacy and analytical skills can enable you to answer these questions and not only make sense of raw data, but use it to drive impactful change at your organization.

Here’s a look at what it means to be data literate and four ways to improve your analytical skills.

Access your free e-book today.

What Is Data Literacy?

Data literacy is the ability to analyze, interpret, and question data. A dataset is made up of numerous data points that, when viewed together, tell a story.

Before conducting an analysis, it’s important to ensure your data’s quality and structure is in accordance with your organization’s needs.

“In order to transform data into actionable information, you first need to evaluate its quality,” says Professor Dustin Tingley in the Harvard Online course Data Science Principles . “But evaluating the quality of your data is just the first step. You’ll also need to structure your data. Without structure, it’s nearly impossible to extract any information.”

When you’re able to look at quality data, structure it, and analyze it, trends emerge. The next step is to reflect on your analysis and take action.

Tingley shares several questions to ask yourself once you’ve analyzed your dataset: “Did all the steps I took make sense? If so, how should I respond to my analysis? If not, what should I go back and improve?”

For example, you may track users who click a button to download an e-book from your website.

After ensuring your data’s quality and structuring it in a way that makes sense, you begin your analysis and find that a user’s age is positively correlated with their likelihood to click. What story does this trend tell? What does it say about your users, product offering, and business strategy?

To answer these questions, you need strong analytical skills, which you can develop in several ways.

Related: Business Analytics: What It Is & Why It’s Important

How to Improve Your Analytical Skills

Analysis is an important skill to have in any industry because it enables you to support decisions with data, learn more about your customers, and predict future trends.

Key analytical skills for business include:

  • Visualizing data
  • Determining the relationship between two or more variables
  • Forming and testing hypotheses
  • Performing regressions using statistical programs, such as Microsoft Excel
  • Deriving actionable conclusions from data analysis

If you want to provide meaningful conclusions and data-based recommendations to your team, here are four ways to bolster your analytical skills.

Related: How to Learn Business Analytics Without A Business Background

1. Consider Opposing Viewpoints

While engaging with opposing viewpoints can help you expand your perspective, combat bias, and show your fellow employees their opinions are valued, it can also be a useful way to practice analytical skills.

When analyzing data, it’s crucial to consider all possible interpretations and avoid getting stuck in one way of thinking.

For instance, revisit the example of tracking users who click a button on your site to download an e-book. The data shows that the user’s age is positively correlated with their likelihood to click the button; as age increases, downloads increase, too. At first glance, you may interpret this trend to mean that a user chooses to download the e-book because of their age.

This conclusion, however, doesn’t take into consideration the vast number of variables that change with age. For instance, perhaps the real reason your older users are more likely to download the e-book is their higher level of responsibility at work, higher average income, or higher likelihood of being parents.

This example illustrates the need to consider multiple interpretations of data, and specifically shows the difference between correlation (the trending of two or more variables in the same direction) and causation (when a trend in one variable causes a trend to occur in one or more other variables).

“Data science is built on a foundation of critical thinking,” Tingley says in Data Science Principles . “From the first step of determining the quality of a data source to determining the accuracy of an algorithm, critical thinking is at the heart of every decision data scientists—and those who work with them—make.”

To practice this skill, challenge yourself to question your assumptions and ask others for their opinions. The more you actively engage with different viewpoints, the less likely you are to get stuck in a one-track mindset when analyzing data.

2. Play Games or Brain Teasers

If you’re looking to sharpen your skills on a daily basis, there are many simple, enjoyable ways to do so.

Games, puzzles, and stories that require visualizing relationships between variables, examining situations from multiple angles, and drawing conclusions from known data points can help you build the skills necessary to analyze data.

Some fun ways to practice analytical thinking include:

  • Crossword puzzles
  • Mystery novels
  • Logic puzzles
  • Strategic board games or card games

These options can supplement your analytics coursework and on-the-job experience. Some of them also allow you to spend time with friends or family. Try engaging with one each day to hone your analytical mindset.

Related: 3 Examples of Business Analytics in Action

3. Take an Online Analytics Course

Whether you want to learn the basics, brush up on your skills, or expand your knowledge, taking an analytics course is an effective way to improve. A course can enable you to focus on the content you want to learn, engage with the material presented by a professional in the field, and network and interact with others in the data analytics space.

For a beginner, courses like Harvard Online's Data Science Principles can provide a foundation in the language of data. A more advanced course, like Harvard Online's Data Science for Business , may be a fit if you’re looking to explore specific facets of analytics, such as forecasting and machine learning. If you’re interested in hands-on applications of analytical formulas, a course like HBS Online's Business Analytics could be right for you. The key is to understand what skills you hope to gain, then find a course that best fits your needs.

If you’re balancing a full-time job with your analytics education, an online format may be a good choice . It offers the flexibility to engage with course content whenever and wherever is most convenient for you.

An online course may also present the opportunity to network and build relationships with other professionals devoted to strengthening their analytical skills. A community of like-minded learners can prove to be an invaluable resource as you learn and advance your career.

Related: Is An Online Business Analytics Course Worth It?

4. Engage With Data

Once you have a solid understanding of data science concepts and formulas, the next step is to practice. Like any skill, analytical skills improve the more you use them.

Mock datasets—which you can find online or create yourself—present a low-risk option for putting your skills to the test. Import the data into Microsoft Excel, then explore: make mistakes, try that formula you’re unsure of, and ask big questions of your dataset. By testing out different analyses, you can gain confidence in your knowledge.

Once you’re comfortable, engage with your organization’s data. Because these datasets have inherent meaning to your business's financial health, growth, and strategic direction, analyzing them can produce evidence and insights that support your decisions and drive change at your organization.

A Beginner's Guide to Data and Analytics | Access Your Free E-Book | Download Now

Investing in Your Data Literacy

As data continues to be one of businesses’ most valuable resources, taking the time and effort to build and bolster your analytical skill set is vital.

“Much more data are going to be available; we’re only seeing the beginning now,” Hammond says in a previous article . “If you don’t use the data, you’re going to fall behind. People that have those capabilities—as well as an understanding of business contexts—are going to be the ones that will add the most value and have the greatest impact.”

Are you interested in furthering your data literacy? Download our Beginner’s Guide to Data & Analytics to learn how you can leverage the power of data for professional and organizational success.

data and problem solving

About the Author

LOGO ANALYTICS FOR DECISIONS

5 Reasons Why Data Analytics is Important in Problem Solving

Data analytics  is important in problem solving and it is a key sub-branch of data science. Even though there are endless data analytics applications in a business, one of the most crucial roles it plays is problem-solving. 

Using data analytics not only boosts your problem-solving skills, but it also makes them a whole lot faster and efficient, automating a majority of the long and repetitive processes.

Whether you’re fresh out of university graduate or a professional who works for an organization, having top-notch  problem-solving skills  is a necessity and always comes in handy. 

Everybody keeps facing new kinds of complex problems every day, and a lot of time is invested in overcoming these obstacles. Moreover, much valuable time is lost while trying to find solutions to unexpected problems, and your plans also get disrupted often.

This is where data analytics comes in. It lets you find and analyze the relevant data without too much of human-support. It’s a real time-saver and has become a necessity in problem-solving nowadays. So if you don’t already use data analytics in solving these problems, you’re probably missing out on a lot!

As the saying goes from the chief analytics officer of TIBCO, 

“Think analytically, rigorously, and systematically about a  business problem  and come up with a  solution that leverages the available data .”  

– Michael O’Connell.

In this article, I will explain the importance of data analytics in problem-solving and go through the top 5 reasons why it cannot be ignored. So, let’s dive into it right away.

Highly Recommended Articles:

13 Reasons Why Data Analytics is Important in Decision Making

This is Why Business Analytics is Vital in Every Business

Is Data Analysis Qualitative or Quantitative? (We find Out!)

Will Algorithms Erode our Decision-Making Skills?

What is Data Analytics?

Data analytics is the art of automating processes using algorithms to collect raw data from multiple sources and transform it. This results in achieving the data that’s ready to be studied and used for analytical purposes, such as finding the trends, patterns, and so forth.

Why is Data Analytics Important in Problem Solving?

Problem-solving and data analytics often proceed hand in hand. When a particular problem is faced, everybody’s first instinct is to look for supporting data. Data analytics plays a pivotal role in finding this data and analyzing it to be used for tackling that specific problem.

Although the analytical part sometimes adds further complexities, since it’s a whole different process that might get  challenging  sometimes, it eventually helps you get a better hold of the situation. 

Also, you come up with a more informed solution, not leaving anything out of the equation.

Having strong analytical skills help you dig deeper into the problem and get all the insights you need. Once you have extracted enough relevant knowledge, you can proceed with solving the problem. 

However, you need to make sure you’re using the  right, and complete  data, or using data analytics may even backfire for you. Misleading data can make you believe things that don’t exist, and that’s bound to take you off the track, making the problem appear more complex or simpler than it is.

Let’s see a very straightforward daily life example to examine the importance of data analytics in problem-solving; what would you do if a question appears on your exam, but it doesn’t have enough data provided for you to solve the question? 

Obviously, you won’t be able to solve that problem. You need a certain level of facts and figures about the situation first, or you’ll be wandering in the dark.

However, once you get the information you need, you can analyze the situation and quickly develop a solution. Moreover, getting more and more knowledge of the situation will further ease your ability to solve the given problem. This is precisely how data analytics assists you. It eases the process of collecting information and processing it to solve real-life problems.

Data analytics is important in problem-solving

5 Reasons Why Data Analytics Is Important in Problem Solving

Now that we’ve established a general idea of how strongly connected analytical skills and problem-solving are, let’s dig deeper into the top 5 reasons  why data analytics is important in problem-solving .

1. Uncover Hidden Details

Data analytics is great at putting the minor details out in the spotlight. Sometimes, even the most qualified data scientists might not be able to spot tiny details existing in the data used to solve a certain problem. However, computers don’t miss. This enhances your ability to solve problems, and you might be able to come up with solutions a lot quicker.

Data analytics tools have a wide variety of features that let you study the given data very thoroughly and catch any hidden or recurring trends using built-in features without needing any effort. These tools are entirely automated and require very little programming support to work. They’re great at excavating the depths of data, going back way into the past.

2. Automated Models

Automation is the future. Businesses don’t have enough time nor the budget to let manual workforces go through tons of data to solve business problems. 

Instead, what they do is hire a data analyst who automates problem-solving processes, and once that’s done, problem-solving becomes completely independent of any human intervention.

The tools can collect, combine, clean, and transform the relevant data all by themselves and finally using it to predict the solutions. Pretty impressive, right? 

However, there might be some complex problems appearing now and then, which cannot be handled by algorithms since they’re completely new and nothing similar has come up before. But a lot of the work is still done using the algorithms, and it’s only once in a blue moon that they face something that rare.

However, there’s one thing to note here; the process of automation by designing complex analytical and  ML algorithms  might initially be a bit challenging. Many factors need to be kept in mind, and a lot of different scenarios may occur. But once it goes up and running, you’ll be saving a significant amount of manpower as well as resources.

3. Explore Similar Problems

If you’re using a data analytics approach for solving your problems, you will have a lot of data available at your disposal. Most of the data would indirectly help you in the form of similar problems, and you only have to figure out how these problems are related. 

Once you’re there, the process gets a lot smoother because you get references to how such problems were tackled in the past.

Such data is available all over the internet and is automatically extracted by the data analytics tools according to the current problems. People run into difficulties all over the world, and there’s no harm if you follow the guidelines of someone who has gone through a similar situation before.

Even though exploring similar problems is also possible without the help of data analytics, we’re generating a lot of data  nowadays , and searching through tons of this data isn’t as easy as you might think. So, using analytical tools is the smart choice since they’re quite fast and will save a lot of your time.

4. Predict Future Problems

While we have already gone through the fact that data analytics tools let you analyze the data available from the past and use it to predict the solutions to the problems you’re facing in the present, it also goes the other way around.

Whenever you use data analytics to solve any present problem, the tools you’re using store the data related to the problem and saves it in the form of variables forever. This way, similar problems faced in the future don’t need to be analyzed again. Instead, you can reuse the previous solutions you have, or the algorithms can predict the solutions for you even if the problems have evolved a bit.

This way, you’re not wasting any time on the problems that are recurring in nature. You jump directly onto the solution whenever you face a situation, and this makes the job quite simple.

5. Faster Data Extraction

However, with the latest tools, the  data extraction  is greatly reduced, and everything is done automatically with no human intervention whatsoever. 

Moreover, once the appropriate data is mined and cleaned, there are not many hurdles that remain, and the rest of the processes are done without a lot of delays.

When businesses come across a problem, around  70%-80%  is their time is consumed while gathering the relevant data and transforming it into usable forms. So, you can estimate how quick the process could get if the data analytics tools automate all this process.

Even though many of the tools are open-source, if you’re a bigger organization that can spend a bit on paid tools, problem-solving could get even better. The paid  tools  are literal workhorses, and in addition to generating the data, they could also develop the models to your solutions, unless it’s a very complex one, without needing any support of data analysts.

What problems can data analytics solve? 3 Real-World Examples

Employee performance problems .

Imagine a Call Center with over 100 agents

By Analyzing data sets of employee attendance, productivity, and issues that tend to delay in resolution. Through that, preparing refresher training plans, and mentorship plans according to key weak areas identified.

Sales Efficiency Problems 

Imagine a Business that is spread out across multiple cities or regions

By analyzing the number of sales per area, the size of the sales reps’ team, the overall income and disposable income of potential customers, you can come up with interesting insights as to why some areas sell more or less than the others. Through that, prepping a recruitment and training plan or area expansion in order to boost sales could be a good move.

Business Investment Decisions Problems

Imagine an Investor with a portfolio of apps/software)

By analyzing the number of subscribers, sales, the trends in usage, the demographics, you can decide which peace of software has a better Return on Investment over the long term.

Throughout the article, we’ve seen various reasons why data analytics is very important for problem-solving. 

Many different problems that may seem very complex in the start are made seamless using data analytics, and there are hundreds of analytical tools that can help us solve problems in our everyday lives.

Emidio Amadebai

As an IT Engineer, who is passionate about learning and sharing. I have worked and learned quite a bit from Data Engineers, Data Analysts, Business Analysts, and Key Decision Makers almost for the past 5 years. Interested in learning more about Data Science and How to leverage it for better decision-making in my business and hopefully help you do the same in yours.

Recent Posts

Causal vs Evidential Decision-making (How to Make Businesses More Effective) 

In today’s fast-paced business landscape, it is crucial to make informed decisions to stay in the competition which makes it important to understand the concept of the different characteristics and...

Bootstrapping vs. Boosting

Over the past decade, the field of machine learning has witnessed remarkable advancements in predictive techniques and ensemble learning methods. Ensemble techniques are very popular in machine...

data and problem solving

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

data and problem solving

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

data and problem solving

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Problem Solving and Data Analysis

We have lots of free resources and videos to help you prepare for the SAT. These materials are for the redesigned SAT which is for you if you are taking the SAT in March 2016 and beyond.

Related Pages More Lessons for SAT Math More Resources for SAT

Problem Solving and Data Analysis includes questions that test your ability to

  • create a representation of the problem.
  • consider the units involved.
  • pay attention to the meaning of quantities.
  • know and use different properties of mathematical properties and representations.
  • apply key principles of statistics.
  • estimate the probability of a simple or compound event.

There are many ways that you can be tested and practicing different types of questions will help you to be prepared for the SAT.

The following video lessons will show you how to solve a variety of problem solving and data analysis questions in different situations.

Ratio, Proportion, Units and Percentages

There will be questions on ratios. A ratio represents the proportional relationship between quantities. Fractions can be used to represent ratios.

There will also be questions involving percentages. Percent is a type proportion that means “per 100”.

You will need to convert units when required by the question. One way to perform unit conversion is to write it out as a series of multiplication steps.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8

Charts, Graphs and Tables

The questions in Problem Solving and Data Analysis focus on linear, quadratic and exponential relationships which may be represented by charts, graphs or tables. A model is linear if the difference in quantity is constant. A model is exponential if the ratio in the quantity is constant.

A line of best fit is a straight line that best represents the data on a scatterplot. It is written in y = mx + c.

You need to know the formulas for simple and compound interest. Simple Interest: A = P(1 + rt) Compound Interest: A = P(1 + r/n) nt where A is the total amount, P is the principal, r is the interest rate, t is the time period and n is the number of times the interest is compounded per year.

Probability measures how likely an event is. The formula to calculate the probability of an event is: Probability = (number of favorable outcomes)/(total number of possible outcomes)

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10 Question 11 Question 12 Question 13 Question 14 Question 15

Data and Statistics

You need to know that mean, median, and mode are measures of center for a data set, while range and standard deviation are measures of spread. You will not be asked to calculate the standard deviation of a set of data, but you do need to understand that a larger standard deviation means that the values are more spread out from the mean. You may be asked to compare the standard deviation of two data sets by approximating the spread from the mean.

You do not need to calculate the margins of error or confidence level, but you do need to know what these concepts are and how to interpret them in context. Take note that the questions in the SAT will always use 95% confidence levels. Some questions may give you the confidence level and ask you to find the value for which the interval applies. When the confidence level is kept the same, the size of the margin of error is affected by the standard deviation and the sample size. The larger the standard deviation, the larger the margin of error. The larger the sample size, the smaller the margin of error. The margin of error and confidence interval are estimates for the entire population and do not apply to values of individual objects in the populations.

The results of a sample can be generalized to the entire population only if the subjects in the sample are selected randomly. Conclusions about cause and effect can appropriately be drawn only if the subjects are randomly assigned to treatment.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

data and problem solving

  • Runestone in social media: Follow @iRunestone Our Facebook Page
  • Table of Contents
  • Assignments
  • Peer Instruction (Instructor)
  • Peer Instruction (Student)
  • Change Course
  • Instructor's Page
  • Progress Page
  • Edit Profile
  • Change Password
  • Scratch ActiveCode
  • Scratch Activecode
  • Instructors Guide
  • About Runestone
  • Report A Problem
  • This Chapter
  • 1. Introduction' data-toggle="tooltip" >

Problem Solving with Algorithms and Data Structures using Python ¶

PythonDS Cover

By Brad Miller and David Ranum, Luther College

There is a wonderful collection of YouTube videos recorded by Gerry Jenkins to support all of the chapters in this text.

  • 1.1. Objectives
  • 1.2. Getting Started
  • 1.3. What Is Computer Science?
  • 1.4. What Is Programming?
  • 1.5. Why Study Data Structures and Abstract Data Types?
  • 1.6. Why Study Algorithms?
  • 1.7. Review of Basic Python
  • 1.8.1. Built-in Atomic Data Types
  • 1.8.2. Built-in Collection Data Types
  • 1.9.1. String Formatting
  • 1.10. Control Structures
  • 1.11. Exception Handling
  • 1.12. Defining Functions
  • 1.13.1. A Fraction Class
  • 1.13.2. Inheritance: Logic Gates and Circuits
  • 1.14. Summary
  • 1.15. Key Terms
  • 1.16. Discussion Questions
  • 1.17. Programming Exercises
  • 2.1.1. A Basic implementation of the MSDie class
  • 2.2. Making your Class Comparable
  • 3.1. Objectives
  • 3.2. What Is Algorithm Analysis?
  • 3.3. Big-O Notation
  • 3.4.1. Solution 1: Checking Off
  • 3.4.2. Solution 2: Sort and Compare
  • 3.4.3. Solution 3: Brute Force
  • 3.4.4. Solution 4: Count and Compare
  • 3.5. Performance of Python Data Structures
  • 3.7. Dictionaries
  • 3.8. Summary
  • 3.9. Key Terms
  • 3.10. Discussion Questions
  • 3.11. Programming Exercises
  • 4.1. Objectives
  • 4.2. What Are Linear Structures?
  • 4.3. What is a Stack?
  • 4.4. The Stack Abstract Data Type
  • 4.5. Implementing a Stack in Python
  • 4.6. Simple Balanced Parentheses
  • 4.7. Balanced Symbols (A General Case)
  • 4.8. Converting Decimal Numbers to Binary Numbers
  • 4.9.1. Conversion of Infix Expressions to Prefix and Postfix
  • 4.9.2. General Infix-to-Postfix Conversion
  • 4.9.3. Postfix Evaluation
  • 4.10. What Is a Queue?
  • 4.11. The Queue Abstract Data Type
  • 4.12. Implementing a Queue in Python
  • 4.13. Simulation: Hot Potato
  • 4.14.1. Main Simulation Steps
  • 4.14.2. Python Implementation
  • 4.14.3. Discussion
  • 4.15. What Is a Deque?
  • 4.16. The Deque Abstract Data Type
  • 4.17. Implementing a Deque in Python
  • 4.18. Palindrome-Checker
  • 4.19. Lists
  • 4.20. The Unordered List Abstract Data Type
  • 4.21.1. The Node Class
  • 4.21.2. The Unordered List Class
  • 4.22. The Ordered List Abstract Data Type
  • 4.23.1. Analysis of Linked Lists
  • 4.24. Summary
  • 4.25. Key Terms
  • 4.26. Discussion Questions
  • 4.27. Programming Exercises
  • 5.1. Objectives
  • 5.2. What Is Recursion?
  • 5.3. Calculating the Sum of a List of Numbers
  • 5.4. The Three Laws of Recursion
  • 5.5. Converting an Integer to a String in Any Base
  • 5.6. Stack Frames: Implementing Recursion
  • 5.7. Introduction: Visualizing Recursion
  • 5.8. Sierpinski Triangle
  • 5.9. Complex Recursive Problems
  • 5.10. Tower of Hanoi
  • 5.11. Exploring a Maze
  • 5.12. Dynamic Programming
  • 5.13. Summary
  • 5.14. Key Terms
  • 5.15. Discussion Questions
  • 5.16. Glossary
  • 5.17. Programming Exercises
  • 6.1. Objectives
  • 6.2. Searching
  • 6.3.1. Analysis of Sequential Search
  • 6.4.1. Analysis of Binary Search
  • 6.5.1. Hash Functions
  • 6.5.2. Collision Resolution
  • 6.5.3. Implementing the Map Abstract Data Type
  • 6.5.4. Analysis of Hashing
  • 6.6. Sorting
  • 6.7. The Bubble Sort
  • 6.8. The Selection Sort
  • 6.9. The Insertion Sort
  • 6.10. The Shell Sort
  • 6.11. The Merge Sort
  • 6.12. The Quick Sort
  • 6.13. Summary
  • 6.14. Key Terms
  • 6.15. Discussion Questions
  • 6.16. Programming Exercises
  • 7.1. Objectives
  • 7.2. Examples of Trees
  • 7.3. Vocabulary and Definitions
  • 7.4. List of Lists Representation
  • 7.5. Nodes and References
  • 7.6. Parse Tree
  • 7.7. Tree Traversals
  • 7.8. Priority Queues with Binary Heaps
  • 7.9. Binary Heap Operations
  • 7.10.1. The Structure Property
  • 7.10.2. The Heap Order Property
  • 7.10.3. Heap Operations
  • 7.11. Binary Search Trees
  • 7.12. Search Tree Operations
  • 7.13. Search Tree Implementation
  • 7.14. Search Tree Analysis
  • 7.15. Balanced Binary Search Trees
  • 7.16. AVL Tree Performance
  • 7.17. AVL Tree Implementation
  • 7.18. Summary of Map ADT Implementations
  • 7.19. Summary
  • 7.20. Key Terms
  • 7.21. Discussion Questions
  • 7.22. Programming Exercises
  • 8.1. Objectives
  • 8.2. Vocabulary and Definitions
  • 8.3. The Graph Abstract Data Type
  • 8.4. An Adjacency Matrix
  • 8.5. An Adjacency List
  • 8.6. Implementation
  • 8.7. The Word Ladder Problem
  • 8.8. Building the Word Ladder Graph
  • 8.9. Implementing Breadth First Search
  • 8.10. Breadth First Search Analysis
  • 8.11. The Knight’s Tour Problem
  • 8.12. Building the Knight’s Tour Graph
  • 8.13. Implementing Knight’s Tour
  • 8.14. Knight’s Tour Analysis
  • 8.15. General Depth First Search
  • 8.16. Depth First Search Analysis
  • 8.17. Topological Sorting
  • 8.18. Strongly Connected Components
  • 8.19. Shortest Path Problems
  • 8.20. Dijkstra’s Algorithm
  • 8.21. Analysis of Dijkstra’s Algorithm
  • 8.22. Prim’s Spanning Tree Algorithm
  • 8.23. Summary
  • 8.24. Key Terms
  • 8.25. Discussion Questions
  • 8.26. Programming Exercises

Acknowledgements ¶

We are very grateful to Franklin Beedle Publishers for allowing us to make this interactive textbook freely available. This online version is dedicated to the memory of our first editor, Jim Leisy, who wanted us to “change the world.”

Indices and tables ¶

Search Page

Creative Commons License

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

data and problem solving

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

data and problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

data and problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

data and problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Career Sidekick

26 Expert-Backed Problem Solving Examples – Interview Answers

Published: February 13, 2023

Interview Questions and Answers

Actionable advice from real experts:

picture of Biron Clark

Biron Clark

Former Recruiter

data and problem solving

Contributor

Dr. Kyle Elliott

Career Coach

data and problem solving

Hayley Jukes

Editor-in-Chief

Biron Clark

Biron Clark , Former Recruiter

Kyle Elliott , Career Coach

Image of Hayley Jukes

Hayley Jukes , Editor

As a recruiter , I know employers like to hire people who can solve problems and work well under pressure.

 A job rarely goes 100% according to plan, so hiring managers are more likely to hire you if you seem like you can handle unexpected challenges while staying calm and logical.

But how do they measure this?

Hiring managers will ask you interview questions about your problem-solving skills, and they might also look for examples of problem-solving on your resume and cover letter. 

In this article, I’m going to share a list of problem-solving examples and sample interview answers to questions like, “Give an example of a time you used logic to solve a problem?” and “Describe a time when you had to solve a problem without managerial input. How did you handle it, and what was the result?”

  • Problem-solving involves identifying, prioritizing, analyzing, and solving problems using a variety of skills like critical thinking, creativity, decision making, and communication.
  • Describe the Situation, Task, Action, and Result ( STAR method ) when discussing your problem-solving experiences.
  • Tailor your interview answer with the specific skills and qualifications outlined in the job description.
  • Provide numerical data or metrics to demonstrate the tangible impact of your problem-solving efforts.

What are Problem Solving Skills? 

Problem-solving is the ability to identify a problem, prioritize based on gravity and urgency, analyze the root cause, gather relevant information, develop and evaluate viable solutions, decide on the most effective and logical solution, and plan and execute implementation. 

Problem-solving encompasses other skills that can be showcased in an interview response and your resume. Problem-solving skills examples include:

  • Critical thinking
  • Analytical skills
  • Decision making
  • Research skills
  • Technical skills
  • Communication skills
  • Adaptability and flexibility

Why is Problem Solving Important in the Workplace?

Problem-solving is essential in the workplace because it directly impacts productivity and efficiency. Whenever you encounter a problem, tackling it head-on prevents minor issues from escalating into bigger ones that could disrupt the entire workflow. 

Beyond maintaining smooth operations, your ability to solve problems fosters innovation. It encourages you to think creatively, finding better ways to achieve goals, which keeps the business competitive and pushes the boundaries of what you can achieve. 

Effective problem-solving also contributes to a healthier work environment; it reduces stress by providing clear strategies for overcoming obstacles and builds confidence within teams. 

Examples of Problem-Solving in the Workplace

  • Correcting a mistake at work, whether it was made by you or someone else
  • Overcoming a delay at work through problem solving and communication
  • Resolving an issue with a difficult or upset customer
  • Overcoming issues related to a limited budget, and still delivering good work through the use of creative problem solving
  • Overcoming a scheduling/staffing shortage in the department to still deliver excellent work
  • Troubleshooting and resolving technical issues
  • Handling and resolving a conflict with a coworker
  • Solving any problems related to money, customer billing, accounting and bookkeeping, etc.
  • Taking initiative when another team member overlooked or missed something important
  • Taking initiative to meet with your superior to discuss a problem before it became potentially worse
  • Solving a safety issue at work or reporting the issue to those who could solve it
  • Using problem solving abilities to reduce/eliminate a company expense
  • Finding a way to make the company more profitable through new service or product offerings, new pricing ideas, promotion and sale ideas, etc.
  • Changing how a process, team, or task is organized to make it more efficient
  • Using creative thinking to come up with a solution that the company hasn’t used before
  • Performing research to collect data and information to find a new solution to a problem
  • Boosting a company or team’s performance by improving some aspect of communication among employees
  • Finding a new piece of data that can guide a company’s decisions or strategy better in a certain area

Problem-Solving Examples for Recent Grads/Entry-Level Job Seekers

  • Coordinating work between team members in a class project
  • Reassigning a missing team member’s work to other group members in a class project
  • Adjusting your workflow on a project to accommodate a tight deadline
  • Speaking to your professor to get help when you were struggling or unsure about a project
  • Asking classmates, peers, or professors for help in an area of struggle
  • Talking to your academic advisor to brainstorm solutions to a problem you were facing
  • Researching solutions to an academic problem online, via Google or other methods
  • Using problem solving and creative thinking to obtain an internship or other work opportunity during school after struggling at first

How To Answer “Tell Us About a Problem You Solved”

When you answer interview questions about problem-solving scenarios, or if you decide to demonstrate your problem-solving skills in a cover letter (which is a good idea any time the job description mentions problem-solving as a necessary skill), I recommend using the STAR method.

STAR stands for:

It’s a simple way of walking the listener or reader through the story in a way that will make sense to them. 

Start by briefly describing the general situation and the task at hand. After this, describe the course of action you chose and why. Ideally, show that you evaluated all the information you could given the time you had, and made a decision based on logic and fact. Finally, describe the positive result you achieved.

Note: Our sample answers below are structured following the STAR formula. Be sure to check them out!

EXPERT ADVICE

data and problem solving

Dr. Kyle Elliott , MPA, CHES Tech & Interview Career Coach caffeinatedkyle.com

How can I communicate complex problem-solving experiences clearly and succinctly?

Before answering any interview question, it’s important to understand why the interviewer is asking the question in the first place.

When it comes to questions about your complex problem-solving experiences, for example, the interviewer likely wants to know about your leadership acumen, collaboration abilities, and communication skills, not the problem itself.

Therefore, your answer should be focused on highlighting how you excelled in each of these areas, not diving into the weeds of the problem itself, which is a common mistake less-experienced interviewees often make.

Tailoring Your Answer Based on the Skills Mentioned in the Job Description

As a recruiter, one of the top tips I can give you when responding to the prompt “Tell us about a problem you solved,” is to tailor your answer to the specific skills and qualifications outlined in the job description. 

Once you’ve pinpointed the skills and key competencies the employer is seeking, craft your response to highlight experiences where you successfully utilized or developed those particular abilities. 

For instance, if the job requires strong leadership skills, focus on a problem-solving scenario where you took charge and effectively guided a team toward resolution. 

By aligning your answer with the desired skills outlined in the job description, you demonstrate your suitability for the role and show the employer that you understand their needs.

Amanda Augustine expands on this by saying:

“Showcase the specific skills you used to solve the problem. Did it require critical thinking, analytical abilities, or strong collaboration? Highlight the relevant skills the employer is seeking.”  

Interview Answers to “Tell Me About a Time You Solved a Problem”

Now, let’s look at some sample interview answers to, “Give me an example of a time you used logic to solve a problem,” or “Tell me about a time you solved a problem,” since you’re likely to hear different versions of this interview question in all sorts of industries.

The example interview responses are structured using the STAR method and are categorized into the top 5 key problem-solving skills recruiters look for in a candidate.

1. Analytical Thinking

data and problem solving

Situation: In my previous role as a data analyst , our team encountered a significant drop in website traffic.

Task: I was tasked with identifying the root cause of the decrease.

Action: I conducted a thorough analysis of website metrics, including traffic sources, user demographics, and page performance. Through my analysis, I discovered a technical issue with our website’s loading speed, causing users to bounce. 

Result: By optimizing server response time, compressing images, and minimizing redirects, we saw a 20% increase in traffic within two weeks.

2. Critical Thinking

data and problem solving

Situation: During a project deadline crunch, our team encountered a major technical issue that threatened to derail our progress.

Task: My task was to assess the situation and devise a solution quickly.

Action: I immediately convened a meeting with the team to brainstorm potential solutions. Instead of panicking, I encouraged everyone to think outside the box and consider unconventional approaches. We analyzed the problem from different angles and weighed the pros and cons of each solution.

Result: By devising a workaround solution, we were able to meet the project deadline, avoiding potential delays that could have cost the company $100,000 in penalties for missing contractual obligations.

3. Decision Making

data and problem solving

Situation: As a project manager , I was faced with a dilemma when two key team members had conflicting opinions on the project direction.

Task: My task was to make a decisive choice that would align with the project goals and maintain team cohesion.

Action: I scheduled a meeting with both team members to understand their perspectives in detail. I listened actively, asked probing questions, and encouraged open dialogue. After carefully weighing the pros and cons of each approach, I made a decision that incorporated elements from both viewpoints.

Result: The decision I made not only resolved the immediate conflict but also led to a stronger sense of collaboration within the team. By valuing input from all team members and making a well-informed decision, we were able to achieve our project objectives efficiently.

4. Communication (Teamwork)

data and problem solving

Situation: During a cross-functional project, miscommunication between departments was causing delays and misunderstandings.

Task: My task was to improve communication channels and foster better teamwork among team members.

Action: I initiated regular cross-departmental meetings to ensure that everyone was on the same page regarding project goals and timelines. I also implemented a centralized communication platform where team members could share updates, ask questions, and collaborate more effectively.

Result: Streamlining workflows and improving communication channels led to a 30% reduction in project completion time, saving the company $25,000 in operational costs.

5. Persistence 

Situation: During a challenging sales quarter, I encountered numerous rejections and setbacks while trying to close a major client deal.

Task: My task was to persistently pursue the client and overcome obstacles to secure the deal.

Action: I maintained regular communication with the client, addressing their concerns and demonstrating the value proposition of our product. Despite facing multiple rejections, I remained persistent and resilient, adjusting my approach based on feedback and market dynamics.

Result: After months of perseverance, I successfully closed the deal with the client. By closing the major client deal, I exceeded quarterly sales targets by 25%, resulting in a revenue increase of $250,000 for the company.

Tips to Improve Your Problem-Solving Skills

Throughout your career, being able to showcase and effectively communicate your problem-solving skills gives you more leverage in achieving better jobs and earning more money .

So to improve your problem-solving skills, I recommend always analyzing a problem and situation before acting.

 When discussing problem-solving with employers, you never want to sound like you rush or make impulsive decisions. They want to see fact-based or data-based decisions when you solve problems.

Don’t just say you’re good at solving problems. Show it with specifics. How much did you boost efficiency? Did you save the company money? Adding numbers can really make your achievements stand out.

To get better at solving problems, analyze the outcomes of past solutions you came up with. You can recognize what works and what doesn’t.

Think about how you can improve researching and analyzing a situation, how you can get better at communicating, and deciding on the right people in the organization to talk to and “pull in” to help you if needed, etc.

Finally, practice staying calm even in stressful situations. Take a few minutes to walk outside if needed. Step away from your phone and computer to clear your head. A work problem is rarely so urgent that you cannot take five minutes to think (with the possible exception of safety problems), and you’ll get better outcomes if you solve problems by acting logically instead of rushing to react in a panic.

You can use all of the ideas above to describe your problem-solving skills when asked interview questions about the topic. If you say that you do the things above, employers will be impressed when they assess your problem-solving ability.

More Interview Resources

  • 3 Answers to “How Do You Handle Stress?”
  • How to Answer “How Do You Handle Conflict?” (Interview Question)
  • Sample Answers to “Tell Me About a Time You Failed”

picture of Biron Clark

About the Author

Biron Clark is a former executive recruiter who has worked individually with hundreds of job seekers, reviewed thousands of resumes and LinkedIn profiles, and recruited for top venture-backed startups and Fortune 500 companies. He has been advising job seekers since 2012 to think differently in their job search and land high-paying, competitive positions. Follow on Twitter and LinkedIn .

Read more articles by Biron Clark

About the Contributor

Kyle Elliott , career coach and mental health advocate, transforms his side hustle into a notable practice, aiding Silicon Valley professionals in maximizing potential. Follow Kyle on LinkedIn .

Image of Hayley Jukes

About the Editor

Hayley Jukes is the Editor-in-Chief at CareerSidekick with five years of experience creating engaging articles, books, and transcripts for diverse platforms and audiences.

Continue Reading

12 Expert-Approved Responses to ‘What Makes You Unique?’ in Job Interviews

15 most common pharmacist interview questions and answers, 15 most common paralegal interview questions and answers, top 30+ funny interview questions and answers, 60 hardest interview questions and answers, 100+ best ice breaker questions to ask candidates, top 20 situational interview questions (& sample answers), 15 most common physical therapist interview questions and answers.

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Teens and Video Games Today

85% of u.s. teens say they play video games, and about four-in-ten do so daily. teens see both positive and negative sides of video games – from problem-solving and making friends to harassment and sleep loss, table of contents.

  • Who plays video games?
  • How often do teens play video games?
  • What devices do teens play video games on?
  • Social media use among gamers
  • Teen views on how much they play video games and efforts to cut back
  • Are teens social with others through video games?
  • Do teens think video games positively or negatively impact their lives?
  • Why do teens play video games?
  • Bullying and violence in video games
  • Appendix A: Detailed charts
  • Acknowledgments
  • Methodology

An image of teens competing in a video game tournament at the Portland Public Library in Maine in 2018. (Ben McCanna/Portland Press Herald via Getty Images)

Pew Research Center conducted this analysis to better understand teens’ use of and experiences with video games.

The Center conducted an online survey of 1,453 U.S. teens from Sept. 26 to Oct. 23, 2023, through Ipsos. Ipsos recruited the teens via their parents, who were part of its KnowledgePanel . The KnowledgePanel is a probability-based web panel recruited primarily through national, random sampling of residential addresses. The survey was weighted to be representative of U.S. teens ages 13 to 17 who live with their parents by age, gender, race and ethnicity, household income, and other categories.

This research was reviewed and approved by an external institutional review board (IRB), Advarra, an independent committee of experts specializing in helping to protect the rights of research participants.

Here are the questions used for this analysis , along with responses, and  its methodology .

There are long-standing debates about the impact of video games on youth. Some credit them for helping young people form friendships and teaching them about teamwork and problem-solving . Others say video games expose teenagers to violent content, negatively impact their sleep and can even lead to addiction.

With this in mind, Pew Research Center surveyed 1,423 U.S. teens ages 13 to 17 about their own video game habits – from how often they play to the friends they’ve made and whether it gets in the way of them doing well in school or getting a good night’s sleep. 1

Key findings from the survey

  • Video games as a part of daily teen life: 85% of U.S. teens report playing video games, and 41% say they play them at least once a day. Four-in-ten identify as a gamer.
  • Gaming as a social experience: 72% of teens who play video games say that a reason why they play them is to spend time with others. And some have even made a friend online from playing them – 47% of teen video game players say they’ve done this.
  • Helpful with problem-solving, less so for sleep: Over half of teens who play video games say it has helped their problem-solving skills, but 41% also say it has hurt their sleep.
  • Bullying is a problem: 80% of all teens think harassment over video games is a problem for people their age. And 41% of those who play them say they’ve been called an offensive name when playing.
  • Boys’ and girls’ experiences differ: Most teen boys and girls play video games, but larger shares of boys identify as gamers (62% vs. 17%) and play every day (61% vs. 22%). Boys who play them are also more likely to experience positive things from it, like making friends, and more troubling things like harassment.

Jump to read about: Who plays video games | Socializing over video games | Views about video games’ impact | Harassment and violence in video games      

A bar chart showing that 85% of teens play video games, and 4 in 10 identify as gamers

Playing video games is widespread among teens. The vast majority of U.S. teens (85%) say they play them. Just 15% say they never do, according to the survey conducted Sept. 26-Oct. 23, 2023.

In addition to asking whether teens play video games, we also wanted to learn whether they consider themselves gamers. Overall, four-in-ten U.S. teens think of themselves as gamers. Just under half of teens (45%) play video games but do not think of themselves as gamers.

A bar chart showing that Most teen boys and girls play video games, but boys are far more likely to identify as gamers

Nearly all boys (97%) say they play video games, compared with about three-quarters of teen girls. There is a substantial gap by gender in whether teens identify as gamers: 62% of teen boys do, compared with 17% of girls. 2

By gender and age

Younger teen girls are more likely than older girls to say they play video games: 81% of girls ages 13 to 14 compared with 67% of those ages 15 to 17. But among boys, nearly all play video games regardless of age. 

Similar shares of teens play video games across different racial and ethnic groups and among those who live in households with different annual incomes. Go to Appendix A for more detail on which teens play video games and which teens identify as gamers.

A flow chart showing How we asked teens in our survey if they play video games and identify as gamers by first asking who plays video games and then who identifies as a gamer

We also asked teens how often they play video games. About four-in-ten U.S. teens say they play video games daily, including 23% who do so several times a day.

A bar chart showing that About 6 in 10 teen boys play video games daily

Another 22% say they play several times a week, while 21% play them about once a week or less.

Teen boys are far more likely than girls to say they play video games daily (61% vs. 22%). They are also much more likely to say they play them several times a day (36% vs. 11%).

By whether someone identifies as a gamer

About seven-in-ten teens who identify as gamers (71%) say they play video games daily. This drops to 30% among those who play them but aren’t gamers.

By household income

Roughly half of teens living in households with an annual income of less than $30,000 (53%) say they play video games at least daily. This is higher than those in households with an annual income of $30,000 to $74,999 (42%) and $75,000 or more (39%).

Go to Appendix A to see more details about who plays video games and identifies as a gamer by gender, age, race and ethnicity, and household income.

A bar chart showing that Most teens play video games on a console or smartphone, 24% do so on a virtual reality headset

Most teens play video games on a gaming console or a smartphone. When asked about five devices, most teens report playing video games on a gaming console (73%), such as PlayStation, Switch or Xbox. And 70% do so on a smartphone. Fewer – though still sizable shares – play them on each of the following:

  • 49% say they play them on a desktop or laptop computer
  • 33% do so on a tablet  
  • 24% play them on a virtual reality (VR) headset such as Oculus, Meta Quest or PlayStation VR

Many teens play video games on multiple devices. About a quarter of teens (27%) do so on at least four of the five devices asked about, and about half (49%) play on two or three of them. Just 8% play video games on one device.

A dot plot showing that Teen boys are more likely than girls to play video games on all devices except tablets

Teen boys are more likely than girls to play video games on four of the five devices asked about – all expect tablets. For instance, roughly nine-in-ten teen boys say they ever play video games on a gaming console, compared with 57% of girls. Equal shares of teen boys and girls play them on tablets.  

Teens who consider themselves gamers are more likely than those who play video games but aren’t gamers to play on a gaming console (95% vs. 78%), desktop or laptop computer (72% vs. 45%) or a virtual reality (VR) headset (39% vs. 19%). Similar shares of both groups play them on smartphones and tablets.

A dot plot showing that Teen gamers are far more likely to use Discord and Twitch than other teens

One way that teens engage with others about video games is through online platforms. And our survey findings show that teen gamers stand out for their use of two online platforms that are known for their gaming communities – Discord and Twitch :

  • 44% of teen gamers say they use Discord, far higher than video game players who don’t identify as gamers or those who use the platform but do not play video games at all. About three-in-ten teens overall (28%) use Discord.
  • 30% of teens gamers say they use Twitch. About one-in-ten other teens or fewer say the same; 17% of teens overall use the platform.

Previous Center research shows that U.S. teens use online platforms at high rates .

A bar chart showing that Teens most commonly say they spend the right amount of time playing video games

Teens largely say they spend the right amount of time playing video games. When asked about how much time they spend playing them, the largest share of teens (58%) say they spend the right amount of time. Far fewer feel they spend too much (14%) or too little (13%) time playing them.

Teen boys are more likely than girls to say they spend too much time playing video games (22% vs. 6%).

By race and ethnicity

Black (17%) and Hispanic (18%) teens are about twice as likely than White teens (8%) to say they spend too little time playing video games. 3

A quarter of teens who consider themselves gamers say they spend too much time playing video games, compared with 9% of those who play video games but don’t identify as gamers. Teen gamers are also less likely to think they spend too little time playing them (19% vs. 10%).

A bar chart showing that About 4 in 10 teens have cut back on how much they play video games

Fewer than half of teens have reduced how much they play video games. About four-in-ten (38%) say they have ever chosen to cut back on the amount of time they spend playing them. A majority (61%) report that they have not cut back at all.

This share is on par with findings about whether teenagers have cut back with their screen time – on social media or their smartphone.

Although boys are more likely to say they play video games too much, boys and girls are on par for whether they have ever cut back. About four-in-ten teen boys (39%) and girls (38%) say that they have ever cut back.

And gamers are as likely to say they have cut back as those who play video games but don’t identify as gamers (39% and 41%).

A chart showing that 89% of teens who play video games do so with others; about half or 47% made a friend through them

A main goal of our survey was to ask teens about their own experiences playing video games. For this section of the report, we focus on teens who say they play video games.

Socializing with others is a key part of the video game experience. Most teens who play video games do so with others, and some have developed friendships through them.

About nine-in-ten teen video game players (89%) say they play them with other people, in person or online. Far fewer (11%) play them only on their own.

Additionally, about half (47%) report that they have ever made a friend online because of a video game they both play. This equals 40% of all U.S. teens who have made a friend online because of a video game.

These experiences vary by:  

A bar chart showing that Teen boys who play video games are more likely than girls to make friends over video games

  • Gender: Most teen boy and girl video game players play them with others, though it’s more common among boys (94% vs. 82%). Boys who play video games are much more likely to say they have made a friend online because of a video game (56% vs. 35%).
  • Race and ethnicity: Black (55%) and Hispanic (53%) teen video game players are more likely than White teen video game players (43%) to say they have made a friend online because of them.
  • Whether someone identifies as a gamer: Nearly all teen gamers report playing video games with others (98%). Fewer – though still most – of those who play video games but aren’t gamers (81%) also play them with others. And about seven-in-ten (68%) say they have made a friend online because of a video game, compared with 29% of those who play them but don’t identify as gamers.

A bar chart showing that More than half of teens who play video games say it helps their problem-solving skills, but many say it negatively impacts the amount of sleep they get

Teens who play video games are particularly likely to say video games help their problem-solving skills. More than half of teens who play video games (56%) say this.

Additionally, more think that video games help, rather than hurt, three other parts of their lives that the survey asked about. Among teens who play video games:

  • Roughly half (47%) say it has helped their friendships
  • 41% say it has helped how they work with others
  • 32% say it has helped their mental health

No more than 7% say playing video games has hurt any of these.

More teens who play video games say it hurts, rather than helps, their sleep. Among these teens, 41% say it has hurt how much sleep they get, while just 5% say it helps. And small shares say playing video games has impacted how well they do in school in either a positive or a negative way.

Still, many teens who play video games think playing them doesn’t have much an impact in any of these areas. For instance, at least six-in-ten teens who play video games say it has neither a positive nor a negative impact on their mental health (60%) or their school performance (72%). Fewer (41%) say this of their problem-solving skills.

A dot plot showing that Boys who play video games are more likely than girls to think it helps friendships, problem-solving, ability to work with others

Teen boys who play video games are more likely than girls to think playing them has helped their problem-solving skills, friendships and ability to work with others. For instance, 55% of teen boys who play video games say this has helped their friendships, compared with 35% of teen girls.

As for ways that it may hurt their lives, boys who play them are more likely than girls to say that it has hurt the amount of sleep they get (45% vs. 37%) and how well they do in school (21% vs. 11%). 

Teens who consider themselves gamers are more likely than those who aren’t gamers but play video games to say video games have helped their friendships (60% vs. 35%), ability to work with others (52% vs. 32%), problem-solving skills (66% vs. 47%) and mental health (41% vs. 24%).

Gamers, though, are somewhat more likely to say playing them hurt their sleep (48% vs. 36%) and how well they do in school (20% vs. 14%).

By whether teens play too much, too little or the right amount

Teens who report playing video games too much stand out for thinking video games have hurt their sleep and school performance. Two-thirds of these teens say it has hurt the amount of sleep they get, and 39% say it hurt their schoolwork. Far fewer of those who say they play the right amount (38%) or too little (32%) say it has hurt their sleep, or say it hurt their schoolwork (12% and 16%).

A bar chart showing that Most common reason teens play video games is entertainment

Teens who play video games say they largely do so to be entertained. And many also play them to be social with and interact with others. Teens who play video games were asked about four reasons why they play video games. Among those who play video games:

  • Nearly all say fun or entertainment is a major or minor reason why they play video games – with a large majority (87%) saying it’s a major reason.
  • Roughly three-quarters say spending time with others is a reason, and two-thirds say this of competing with others. Roughly three-in-ten say each is a major reason.
  • Fewer – 50% – see learning something as a reason, with just 13% saying it’s a major reason.

While entertainment is by far the most common reason given by teens who play video games, differences emerge across groups in why they play video games.

A bar chart showing that Teen gamers are especially likely to say spending time and competing with others are reasons why they play

Teens who identify as gamers are particularly likely to say each is major reason, especially when it comes to competing against others. About four-in-ten gamers (43%) say this is a major reason, compared with 13% of those who play video games but aren’t gamers.

Teen boys who play video games are more likely than girls to say competing (36% vs. 15%), spending time with others (36% vs. 27%) and entertainment (90% vs. 83%) are major reasons they play video games.

Black and Hispanic teens who play video games are more likely than White teens to say that learning new things and competing against others are major reasons they play them. For instance, 29% of Black teen video game players say learning something new is a major reason, higher than 17% of Hispanic teen video game players. Both are higher than the 7% of White teen video game players who say the same.

Teens who play video games and live in lower-income households are especially likely to say competing against others and learning new things are major reasons. For instance, four-in-ten teen video game players who live in households with an annual income of less than $30,000 say competing against others is a major reason they play. This is higher than among those in households with annual incomes of $30,000 to $74,999 (29%) and $75,000 or more (23%).

Cyberbullying can happen in many online environments, but many teens encounter this in the video game world.

Our survey finds that name-calling is a relatively common feature of video game life – especially for boys. Roughly four-in-ten teen video game players (43%) say they have been harassed or bullied while playing a video game in one of three ways: 

A bar chart showing that About half of teen boys who play video games say they have been called an offensive name while playing

  • 41% have been called an offensive name
  • 12% have been physically threatened
  • 8% have been sent unwanted sexually explicit things

Teen boys are particularly likely to say they have been called an offensive name. About half of teen boys who play video games (48%) say this has happened while playing them, compared with about a third of girls (32%). And they are somewhat more likely than girls to have been physically threatened (15% vs. 9%).

Teen gamers are more likely than those who play video games but aren’t gamers to say they been called and offensive name (53% vs. 30%), been physically threatened (17% vs. 8%) and sent unwanted sexually explicit things (10% vs. 6%).

A pie chart showing that Most teens say that bullying while playing video games is a problem for people their age

Teens – regardless of whether they’ve had these experiences – think bullying is a problem in gaming. Eight-in-ten U.S. teens say that when it comes to video games, harassment and bullying is a problem for people their age. This includes 29% who say it is a major problem.

It’s common for teens to think harassment while playing video games is a problem, but girls are somewhat more likely than boys to say it’s a major problem (33% vs. 25%).

There have also been decades-long debates about how violent video games can influence youth behavior , if at all – such as by encouraging or desensitizing them to violence. We wanted to get a sense of how commonly violence shows up in the video games teens are playing.

A bar chart showing that About 7 in 10 teen boys who play video games say there is violence in at least some of the games they play

Just over half of teens who play video games (56%) say at least some of the games they play contain violence. This includes 16% who say it’s in all or most of the games they play.

Teen boys who play video games are far more likely than girls to say that at least some of the games they play contain violence (69% vs. 37%).

About three-quarters of teen gamers (73%) say that at least some of the games they play contain violence, compared with 40% among video game players who aren’t gamers.   

  • Throughout this report, “teens” refers to those ages 13 to 17. ↩
  • Previous Center research of U.S. adults shows that men are more likely than women to identify as gamers – especially the youngest adults. ↩
  • There were not enough Asian American respondents in the sample to be broken out into a separate analysis. As always, their responses are incorporated into the general population figures throughout the report. ↩

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Friendships
  • Online Harassment & Bullying
  • Teens & Tech
  • Teens & Youth

How Teens and Parents Approach Screen Time

Teens and internet, device access fact sheet, teens and social media fact sheet, teens, social media and technology 2023, what the data says about americans’ views of artificial intelligence, most popular, report materials.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

Understanding Fire and Rescue Service Practices Through Problems and Problem-Solving Networks: An Analysis of a Critical Incident

  • Open access
  • Published: 10 May 2024

Cite this article

You have full access to this open access article

data and problem solving

  • Lotta Vylund   ORCID: orcid.org/0000-0002-7222-798X 1 , 2 ,
  • Tove Frykmer   ORCID: orcid.org/0000-0002-4122-8437 3 ,
  • Margaret McNamee 4 &
  • Kerstin Eriksson   ORCID: orcid.org/0000-0002-0494-0089 1  

31 Accesses

Explore all metrics

This study explores how the Fire and Rescue Service can better prepare for solving complex problems in emergencies by using the concept of problems and problem-solving networks. Primary and secondary data from an extensive fire incident were analysed, including semi-structured interviews and incident assessment reports. Complex problems that arise during emergencies can be challenging to define, and solutions can be difficult to identify. However, this study demonstrates that breaking down complex problems into sub-problems can facilitate the identification of what kind of problem-solving network is needed to be able to solve problems in emergencies. Overall, this study contributes to a deeper understanding of the rationale behind problem-solving network in emergency situations and highlights the importance of relationships in problem-solving network to address complex problems during emergencies.

Avoid common mistakes on your manuscript.

1 Introduction

Emergency situations are often complex and dynamic events that require quick and effective responses to mitigate potential harm to individuals and societies. While many definitions of emergency exist (see e.g. [ 1 , 2 , 3 , 4 , 5 ]) in this paper we define emergency as situations characterised by a high level of uncertainty, unpredictability, and ambiguity. Under such conditions societal response challenges the ability of the Fire and Rescue Services (FRS), and other stakeholders, to solve the myriad of problems that can occur, e.g., fires, explosions, vehicle accidents, shootings. Problems that arise in emergencies often center around complex, or wicked, problems, i.e. those that are ambiguous, open-ended and, in some way, require the flexible adaptation of existing routines as part of their response [ 6 , 7 ]. These problems are difficult to define, and solutions can be hard to identify [ 8 , 9 ].

Solving complex problems requires a diversity of perspectives, skills, and knowledge and, therefore, a need for different emergency actors to come together and work towards a common goal [ 10 , 11 , 12 ]. This collaboration between emergency actors can be seen as taking place through networks, which can be helpful to quickly identify and access resources, share information, and coordinate efforts [ 13 , 14 , 15 , 16 , 17 , 18 , 19 ]. A network of inter-organisational relationships with the primary purpose of solving problems in a coordinated fashion can be defined as a Problem-Solving Network (PSN) [ 20 ]. Although previous studies have mentioned PSN, their usefulness in emergencies has only been briefly touched upon, as was confirmed by a search in the database Scopus. General research on emergency management networks describes a lack of knowledge of what the driving forces are behind network formation and development [ 15 ]. Therefore, studying the rationale behind the network formation and development can be important to fully understand the importance of PSN in emergencies and what drives the networks to form.

In this paper, the aim is to explore how problems and sub-problems can be used as a means to understand the rationale behind PSNs. Although complex problems present challenges in understanding and analysis, Head and Alford [ 6 ] posit that it is possible in most cases to break the complex problems down into sub-problems that could be easier to understand. The analysis of an emergency in terms of problems and sub-problems, and their associated PSN fits well with the idea of problem-solving in emergencies [ 21 ]. Further, such understanding can help the FRS to better prepare for complex problems by understanding what kind of sub-problems could be encountered and which network could or should be mobilised to solve those problems. In other words, we maintain that it is possible for the FRS to improve their ability to solve problems during incident response, by analysing and understanding how PSN are formed during specific events and learning from such analysis. To this end, we have performed a case study of a major explosion in Gothenburg, Sweden in 2021 [ 22 ]. The study involved identifying problems and sub-problems encountered during emergency response, along with the PSN formed around these sub-problems. To evaluate the incident and why the PSN was formed we have used a conceptual framework based on complexity theory.

2 Conceptual Framework

Problem-solving in emergencies are dependent on collective efforts where organisations need to work together to solve the problems that appear [ 10 , 11 , 21 , 23 ]. Similarly, Moynihan [ 13 ] argues that to identify and apply effective problem-solving when faced with complex problems, such as in emergencies, networks of actors may be required. There are many different ways to describe how actors collectively respond to problems in emergencies, e.g. through teamwork [ 24 , 25 ], interteam work [ 26 ], or social networks [ 16 ]. While teamwork is often discussed in terms of how two or more people cooperate, coordinate and communicate towards a common goal, network formation and development is often studied in wider terms drawing on organisational, contextual, inter-organisational or structural factors [ 15 ]. Collaborating in networks is a well-known feature in emergency management literature (see e.g. [ 13 , 14 , 27 ]). Milward and Provan [ 20 ] denote networks created to facilitate collective problem-solving in emergencies as Problem Solving Networks (PSN), which is at the centre of this paper.

To further understand how networks are formed and developed in emergencies, this paper focuses on networks which arise in direct response to the problems that are identified. They will therefore specifically be identified as PSN to differentiate them from networks which could exist to foster connections without the immediate desire to find solutions to specific problems. Milward and Provan [ 20 ] define a PSN as a set of interorganisational relationships that are shaped by an imminent problem that requires immediate attention and response. This paper has adapted this definition by including the interpretation that the purpose of the PSN is to solve a particular problem, which could be extinguishing a fire or rescuing people from a flooded area, and include components and relationships needed to find solutions to the problem at hand without limiting the network to only interorganisational relationships. In other words, we adopt a view that networks are connected to general system theory [ 28 ], where networks that solve a particular problem are interpreted as a collection of interconnected nodes that allow for the exchange, transfer, or flow of information, resources, or entities between the nodes. Nodes in this sense is not limited to people or organisations, instead it includes anything that could be a part of solving the problem at hand. Such PSNs could leverage existing professional networks or develop entirely new connections.

To better understand the rationale behind PSN formation and development in emergencies, this paper explores the concepts of problems and sub-problems. In much of the problem-solving literature, there is considerable agreement that a problem means that there is an undesirable current state, a desired future state with no direct, obvious way to move from the given state to the goal state [ 29 , 30 , 31 ].

In emergencies, problems often centre around complex problems. Also called wicked [ 32 ], ill-defined [ 33 , 34 ] or unstructured-unbounded [ 35 ]. These types of problems are ambiguous, unconstrained and there are no objective solutions to be found. Current states and goal states are difficult to define, and, in fact, whether there is a problem or not is highly subjective [ 8 , 9 ], and how to reach the goal might not be agreed upon [ 36 ]. In addition, these types of problems cannot be separated from the environment, i.e., they are difficult to place boundaries around, and they appear to have an infinite number of solutions, where one often has to make to with a “good enough” solution.

How humans solve problems has been the subject of lively debate and there are many ways to present the diverse area of problem-solving. A related concept to problem-solving is decision-making and, frequently, the different terms are used interchangeably [ 37 , 38 , 39 ]. Theories related to decision making are important to understanding problem-solving. For example, the Recognition Primed Decision model [ 40 ] or the simplification of cognitive processes through the use of heuristics (see e.g. [ 41 , 42 , 43 ]) are used to understand problem-solving in the FRS. However, these theories are used to understand individual processes and actions whereas the focus in this paper is on collective problem-solving within a network context. In this paper, problem-solving is viewed as a search process using actions to reduce or eliminate the difference between the goal state and the undesired current state [ 30 , 44 ]. This search process can be illustrated through Newell and Simon [ 30 ] problem space , see Fig.  1 . Here, the nodes represent the current state, the goal state, and possible solution steps along the way. There may be several ways to reach the goal state and selecting a suitable strategy is crucial.

figure 1

The problem space with the current state, goal state, possible solution steps and the selected strategy. Based on Newell and Simon [ 30 ]

During an emergency, at a given moment in time, some problems are known, and some can be envisaged as possible future problems. New problems, foreseen or unforeseen, appear over time. The situation resembles a dynamic system of problems, similar to Ackoff [ 45 ] messes , i.e., situations consisting of complex systems of problems that are changing and interacting with each other and are difficult to define. These complex systems demonstrate characteristics such as non-linear interactions, openness to the surrounding and internal adaptiveness, and the system as a whole cannot be understood entirely by looking at its parts in isolation [ 46 , 47 ]. Despite this latter aspect, in emergencies where important values are at stake and there is a need for swift action, it can nevertheless be useful to analyse the present situation by help of the perspective of sub-problems [ 6 ]. Here, we acknowledge the risk of losing the holistic understanding of the situation, but we view the breakdown of complex problems into sub-problems as a necessary first step in dealing with a complex emergency situation.

Figure  2 illustrates the perspective of a complex system of problems in emergencies, using Newell and Simon’s problem space [ 30 ]. The emergency event represents the main problem, which is the reason for the responding actors to be active in the first place. Within the main problem are sub-problems, some of which are known, and some are future, potential problems that may appear. Sub-problems and future, potential problems must often be solved before progress can be made toward the main problem's goal state. Distinguishing one solution strategy from another is virtually impossible due to the non-linear interactions between problems and the dynamic properties of the system. This means that it is possible to identify numerous possible sub-problems, and the strategy for moving between them, as well as towards the main goal state, will vary depending on the participants in the process and the situation itself.

figure 2

Illustration of the problem space as containing main problem and sub-problems in emergencies (adapted from Newell & Simon [ 30 ])

Using the concepts of problem space explained above, we investigate the rationale behind PSN formation and development, by applying the Complexity Framework brought forward by Bergström et al. [ 48 ]. The framework facilitates an analysis of the complex combination of components needed to address problem-solving in emergency management by systematically exploring sub-problems, components and activities that are needed to find solutions to the problems at hand.

Originally brought forward for studying how emergency response systems achieve direction and coordination, the framework presents how a complex understanding of emergency response management can be generated. The framework is rooted in Cilliers’ approach to complexity [ 47 ] which implies the need to analyse multiple interpretations of complex systems, make transparent analytical choices, and be modest by making clear that additional interpretations will always be possible. The framework is based on constructing multiple system interpretations where each interpretation is based on analytical choices according to three system aspects: dimension, scope and resolution.

System dimension refers to the types of components the system comprises and the types of relationships that bind these components together. Components are, for example, humans, artefacts or functions. Relationships could be, e.g., a flow of information or resources, power, or trust. System scope represents the boundary around what components and relationships that are to be included in the interpretation. It usually represents a spatial or functional/organisational delineation, for example, humans present in a certain geographical area, or in a specific organisation. In this study, scope denotes relevant problems that the FRS is trying to solve during a response operation. This will be further described in the data analysis section. System resolution concerns the level of detail at which the components of the system are observed, e.g., at single, group or organisational level. A high degree of detail means high system resolution and vice versa.

3 Methodology

Identification of problems, sub-problems and PSN is based on analysis of a single case study [ 49 ] of a large-scale incident which occurred in Gothenburg, Sweden in 2021. This section presents the methodology in more detail as a backdrop for the later analysis of both primary and secondary data sources.

The primary data consisted of semi-structured interviews with nine interview participants, see Table  1 . The focus of the study was on the FRS and how they collaborate in a wider PSN to solve problems, i.e., the sample was chosen to get the FRS perspective. The single non-FRS participant was from the insurance industry, but this participant had extensive experience of the FRS having worked for over 20 years in the FRS.

The sampling procedure started with identifying persons in the FRS who were involved in the incident in a variety of ways based on a combination of the following:

Recommendations from the FRS accident investigators,

Recommendations from those involved in initial interviews, and

Availability to participate in the interviews.

The secondary data used in this study included the incident assessment report created on behalf of the Swedish Civil Contingencies Agency (MSB) [ 22 ], the local FRS assessment report [ 50 ], an educational video developed by MSB [ 51 ], and various media articles. See Table  1 for a summary of primary and secondary data used to develop the empirical data for analysis.

3.2 Data Collection

An interview guide was created for the semi-structured interviews, see supplementary material file 1. All individuals identified for interviews were contacted, received information about the study and, after informed consent, were given the opportunity to participate in an interview. Two researchers participated in each interview; the first author was present in all interviews while one of the other authors was an observer. The observer was specifically given the opportunity to ask follow-up questions that the primary interviewer may have missed at the end of each interview. All interviews were conducted in a hybrid setting where the person leading the interview was in-person and the observer was virtual. The interviews were all conducted over approximately 1 h. All interviews were transcribed. All interviews were confidential, and handling of personal details was in accordance with Lund University and RISE Research Institutes of Sweden policy for personal data handling.

3.3 Data Analysis

The primary and secondary data collected as part of this study were analysed using the perspective of the problem space, including identification of the main problem and sub-problems, and application of the complexity framework described in Sect. 2. A PSN was defined as a network that arose in direct response to identified problems [ 20 ]. Breaking the main problem into sub-problems was viewed as a first step in dealing with this complex system of problems. Therefore, when analysing the rationale behind PSN using the complexity framework, we defined the scope in terms of what sub-problems were to be solved during the response operation (main problem). Thereby, the analytic boundary was drawn around what components and relationships were involved in solving those sub-problems (defined as dimension in the complexity framework), and the corresponding level of analysis (defined as resolution in the complexity framework). Consequently, the data were entered into NVivo 12 and coded according to the sub-problems ( scope ) together with relationships ( dimensions ) and a chosen level of detail ( resolution ).

During this coding process, two of the authors coded a small number of interviews independently and then compared their coding to ensure that these were similar. After this comparison the first author conducted the remaining coding independently while the analysis involved all authors. To gain a deeper understanding of the selected case study, secondary data was identified and included in NVivo for coding in the same way as the interview material. The results of the coding were discussed between the authors until agreement concerning the interpretation of the data was reached. Illuminating quotes are presented to clarify how the empirical data supports the results. Note that all quotes have been translated from Swedish to English by the authors.

4 Case Description

In the early morning of September 28, 2021, an explosion occurred in an apartment building in central Gothenburg, resulting in a fire with extensive smoke spread [ 22 ]. Gothenburg is the second largest city in Sweden and their FRS is a local federation which, in 2021, included six municipalities over the region surrounding Gothenburg. The area encompassed around 850 000 residents and had a total area of 3300 square kilometres [ 52 ].

In the part of the city where the explosion occurred, most buildings contain private residences (apartments) in the upper floors, with different types of businesses in the lower floors. The explosion occurred in the basement and was so powerful that several fire cell boundaries were compromised, and entrance doors were pushed out by the pressure wave, which allowed the fire smoke to be dispersed throughout almost the whole building. The potential threat to building stability resulting from the explosion was quickly disregarded because the building was deemed capable of withstanding this type of explosions. Additionally, the risk of subsequent explosions was thought minimal, leading the FRS to immediately commence evacuation and firefighting efforts. An illustration of the affected building is given in Fig.  3 .

figure 3

Conceptual illustration of the affected building

A large number of units from the FRS were called to the scene Upon arrival the FRS observed smoke from windows and balcony doors of various apartments, and about fifty people calling for help. The initial evacuation of approximately 60 apartments was carried out from the courtyard side of the building, during the first two hours. In all, three stairwells and associated apartments were affected. One person died due to injuries resulting from the fire and several people had to be taken to hospital for observation. All injured were removed from the scene by ambulance or bus. Residents who were evacuated but not injured, were referred to the nearby church where additional practical help was available, e.g. insurance company contacts, social support and sustenance [ 22 ].

The smoke dispersing in the building lead to the initial assessment that multiple fires had broken out and fire identification and firefighting was carried out during the first two hours on both sides of the building, but after the initial evacuation was completed, these activities were intensified at the front side of the building. Almost four hours into the incident response, the FRS realised that the explosion had compromised the fire cell boundaries, and that smoke was crossing these boundaries causing them to initially overestimate the number of individual fires distributed throughout the building. The seat of the fire could ultimately be localised to the storage room in the basement, although the fire had also spread to an adjacent store on the same floor. In the afternoon, the fire was under control, and approximately 24h hours after the explosion, the rescue operation was ended [ 22 ]. The approximate timeline of the event is shown in Fig.  4 , focusing on the first hours of the incident. Apart from evacuation, identification of the fire and fighting the fire, other problems of a more indirect nature included, e.g. traffic congestion due to the building's central location in the city and anxiety among the public, resulting in an inflow of media requests to the FRS [ 22 ].

figure 4

Approximate timeline of event from start of the incident at approximately 5 am day 1 to end of operations at approximately 11 am day 2. The start and close are from the FRS perspective

5 Results and Analysis

To understand the rationale behind PSN from an FRS perspective, the conceptual framework described above, including the concept of problem space and the complexity framework, was applied to the case. Relevant sub-problems were identified for analysis (see Sect. 5.1). Thereafter, the resulting PSN were developed for each selected sub-problem.

5.1 Sub-Problems Used to Analyse PSN

Upon arrival, the FRS identified the current state of the main problem as a burning building with residents in danger, and the goal state as having extinguished the fire and ensured the safety of the residents [ 22 ].

Beyond the main problem, the data revealed a complex system of problems that could be further defined through different sub-problems. Respondents described the situation as complex due to the building construction and location in the central city. They further described the situation as chaotic and dramatic due to the large number of residents in need of evacuation and expressed that this incident was different from other incidents that they had encountered due to its chaotic nature and complexity. Due to the extensive resource demand, the respondents described problems of handling the personnel management both on site and in terms of being prepared for other incidents. The chaotic situation also created problems in understanding the situation, both on site and in the command centre. Handling documentation was also described as a problem, along with concerns regarding building stability, informing other actors and taking care of residents after the evacuation. These aspects were described by several respondents as well as in incident reports [ 22 , 50 ]. The main problem and examples of sub-problems from the FRS perspective is illustrated in Fig.  5 using the concept of problem space previously presented. Potential dependencies between the difference sub-problems have not been investigated in this paper.

figure 5

The main problem and example of sub-problems as revealed in the data

Despite the complexity of the situation, data indicated that the focus of the FRS was initially on the evacuation of residents and locating the seat of the fire. Therefore, these two sub-problems were chosen for further analysis in terms of which PSN were formed to solve these problems. Connected to the complexity framework, these sub-problems make up the scope of the two analytic interpretations. These scopes, together with relevant dimension and resolution (see Sect. 5.2 and 5.3), are summarised in Table  2 .

5.2 The PSN for Initial Evacuation of Residents

The FRS prioritised the initial evacuation of approximately 60 apartments across three stairwells during the first two hours of the incident. All injured residents were taken from the scene by ambulance or bus, while uninjured residents were directed to a nearby church where their needs were addressed [ 22 ]. The PSN which formed to deal with the initial evacuation is illustrated in Fig.  6 . Applying the complexity framework, this PSN consists of humans connected by relationships of coordination and different kinds of support (dimension). The resolution is on group level to illustrate that actions from the FRS, police, ambulance, and residents were executed in teams.

figure 6

SN for the initial evacuation of residents. Red colour symbolizes the groups from FRS

The evacuation activities were mainly performed by four fire teams, as shown in the middle of Fig.  6 . The relationship between these fire teams concerns coordination of activities. In terms of relationships of support, the Incident Command relieved the fire teams by undertaking tasks of a more comprehensive nature, such as overall organisation and information to other actors [ 22 ]. At the same time, however, one respondent from a fire team mentioned that “ [The Incident Command] became very absent in relation to what we are used to [in this type of incident]. Therefore, there was some form of self-organisation at the scene .” Thus, in a sense, the four fire teams acted as one unit, which is why they are depicted with a dashed circle surrounding them.

The relationship of support between the fire teams and the other groups is demonstrated by the ambulance teams taking care of first aid and transportation of injured residents to local hospitals; police teams registering and redirecting residents after evacuation, provided they did not need medical assistance. These types of support allowed the fire teams to focus on searching the apartments rather than taking care of residents after evacuation. This means that the skill sets of the various organisations could be applied to solving problems for their particular skill sets. The fire teams were further supported by support personnel from FRS responsible for logistical matters such as equipment and water [ 22 ]. In addition to professional first responders, especially in the start-up phase, two residents offered support by providing their knowledge of the building, including familiarity with the building layout and keys to unlock gates blocking the passage to the building entrance. One of these residents (an off-duty firefighter) also spoke to residents on balconies to prevent them from jumping [ 53 ].

The FRS and the other first responders (police and ambulance) encountered a, for them, clear and known problem (apartment fires are common incidents). In some respect, the FRS fell into habitual patterns [ 22 ] as exemplified by one respondent: “ … what experience do we have? So, references around past events are a big part of my thinking ”. The fact that the residents were standing on their balconies surrounded by smoke made it clear to the FRS that the most urgent problem was evacuation, and it was also clear which resources were needed to solve this problem. As one respondent stated “ It was quite obvious. It's so clear that lifesaving is our priority ”. Similarly, one respondent identified the most important supporting partners by stating “ I want the police's support here with parts of evacuation and registration of it. And ambulance is very important here…[taking care of injured residents] ”. Previous experiences between the FRS, police and ambulance teams enabled the team members to comprehend each other's roles and responsibilities, facilitating the formation of the PSN. This is also described by one respondent as a capability of the PSN members to identify the right context for each actor in a particular moment.

On the other hand, while evacuation is something the FRS train for and are experienced with, the situation was nevertheless perceived as different from what they typically deal with, as exemplified by one of the respondents “ In this case, the conditions for self-evacuation were eliminated and the situation was overwhelming for both the residents and for us at the same time ”. Therefore, the outcome was a shift towards a PSN with self-organisation among the fire teams, as opposed to the traditional hierarchical command structure with the Incident Command at the top. One team member experienced that they had to establish a more comprehensive level of communication between themselves compared to in other incidents. In other words, they needed to work as a team of teams rather than as individual teams. This resulted in fire team members experiencing a PSN that was larger than usual and required more collaboration on the part of team leaders. The respondent described that the team leaders needed to take control of on-site activities without waiting for instructions from the Incident Commander. It was also mentioned that this self-organisation between the fire teams was a result of previous training with the police. One firefighter involved in the incident, who was not interviewed in this study, expressed this in an educational video that was developed after the fire [ 51 ]: “ … education has given us the ability to work independently, you understand that you need to make many decisions yourself [and not wait for instructions from a higher Incident Commander] ”.

Despite the unique scale of the incident, as described both in primary and secondary data, it could be noted that the Incident Command had confidence in the fire teams’ abilities to autonomously manage the on-site operations and that detailed management was neither necessary nor desirable. This assessment is reinforced by another respondent who noted that " In this context, if there had been detailed management, top management, central management, then it would have been very unfortunate. Here, it is important to have control over the right things further up”. The MSB incident report [ 22 ] established that there was an insufficient number of firefighters involved in the initial evacuation. Despite the Fire Chief's communication to the on-site Incident Commander that additional resources were available to assist the teams, it was not perceived that additional resources were needed, leading to a shared perception among the fire teams on-site in the courtyard that no further assistance could be expected. Therefore, the PSN was not developed further even if there was a need for it.

5.3 PSN for Locating the Fire

Locating the seat of the fire is a crucial prerequisite for effective suppression by the FRS. In this case, the fire was caused by an explosion in the basement and during the whole incident the fire was mainly contained within the basement and an adjacent store. However, the process of locating the fire was problematic due to two reasons, leading to a delay of almost four hours before the FRS could understand where the fire was and how it was developing. Firstly, FRS needed to prioritise evacuation of residents in the initial stages of the response and could not focus on locating the fire. Secondly, the explosion that caused the fire breached multiple fire cell boundaries which resulted in the dispersion of smoke throughout almost the entire building. This ultimately lead to the perception of multiple fires and, therefore, the FRS searched for several fires in different locations in the building [ 22 ]. Figure  7 present a visual representation of the proposed PSN that emerged to solve the problem of locating the fire. This PSN consists of both artefacts, i.e., floorplans and smoke emerging from the building, and humans, i.e., fire teams, residents, representatives from businesses and the building owner as components, connected by relationships of information flow. The resolution is both at single and group level as the actions needed to solve the problem involve both single components and groups of components.

figure 7

PSN for locating the fire. Red colour symbolizes components connected to the FRS

Locating the fire was centred around the Incident Command which was responsible for the overall situation understanding and for coordinating the FRS overall response [ 22 ]. The figure indicates two important processes where the Incident Command needed to create a flow of information between different components (both artefacts and humans) in order to solve the problem of locating the fire. The two processes were to locate the fire by dispatching fire teams to report on potential fire locations and contacting different actors to gather information about the building [ 22 ].

Finding information about the building is one process which is shown in the upper part of Fig.  7 . This included different components e.g., the FRS command centre, with help from the municipality, provided information about the building layout by finding technical drawings. The property owner, found through the insurance representative, was able to provide further insights regarding the building layout. Moreover, since the building had undergone renovation, it was imperative to contact the relevant parties involved in the renovation process for input on changes relative to the technical drawings [ 22 ].

The lower part in Fig.  7 shows the other process, where the information flow included evaluating each presumed location of the fire within the building. First, smoke was observed emanating from multiple apartments in the courtyard side of the building. Although the primary focus for the fire teams was on initial evacuation, they also attempted to locate the source of the fire in the apartments. The dashed line in Fig.  7 illustrates the lack of information between Incident Command on the front side and the fire teams in the courtyard as exemplified by one respondent “ We had no idea there was a fire on the front side…We wondered why our extinction efforts didn’t have expected effect…It was the lack of this information [that it was a fire in the basement] that would have been of value to us .”

Early in the incident, a crackling sound was identified from the basement by a person walking by (named individual in the figure), and a fire team was sent to evaluate the sound. The fire team found a fire in the basement but was unable to extinguish it. Later, a person in the Incident Command observed smoke from a store located next to the basement. Subsequently, a fire team was dispatched to the location, whereupon they successfully located that the fire in the basement had spread to this location. After a couple of hours into the incident, the Incident Commander discovered smoke from the roof which prompted the FRS to prepare for a possible attic fire, but this risk was soon dismissed due to effective communication between the UAV (Unmanned Aerial Vehicle), fire teams and Incident Command [ 22 ].

The PSN developed to locate the assumed fires was formed because of the need to obtain a better understanding of the unusual smoke dispersion and the complicated building layout. Although the incident was atypical and did not conform to previously encountered scenarios [ 22 ], the Incident Command handled the incident as usual and predicted that where there is smoke, there should be a fire. Two respondents sum this up well: “ it seemed that there were several apartment fires going on together with maybe some type of fire in the basement so that you are very focused on finding these apartment fires at the beginning then. But then after a while you realise that you are inside these apartments and there is no fire but just smoke from somewhere else… ” and, “ the whole house was leaking smoke in a way that it normally shouldn't ”. The complicated building layout is exemplified by the following quote: “ It's a tricky building… If it had been a normal Swedish apartment building with three staircases and four floors, that we could have run around with ease, then we would have understood the incident almost immediately ”.

This PSN indicates that artifacts can be integral components and can have an impact on the problem-solving process. It seems especially important to obtain an understanding of the building through visual observations, which include on-site inspections and the examination of the building layout and UAV images. Furthermore, the visual dispersion of smoke played a critical role in shaping the network, as shown by the network's formation.

The rationale behind this PSN could be a case of how the FRS try to solve problems by focusing on different sub-problems in both time and space. One respondent describes this way of working through: “ I fly with a drone in my head, I zoom in to the firefighter to think about whether they have the right conditions at the sharp end, then I zoom back and zoom in on Incident Command if they have the capacity, then I zoom out further to see which other actors we have. Then I jump forward in time and think about what it looks like if we continue with the same tactics and what it looks like if we were to do nothing ”.

6 Discussion

This section discusses how the conceptual framework can be used to understand the rationale behind PSN and how the use of evaluating FRS practice from the perspective of problems and PSN better can help FRS to prepare for solving complex problems in emergencies.

6.1 Using the Concept of Problem Space to Understand the Rationale Behind PSN

The purpose of a PSN is to solve a particular problem. In this paper, we have shown that the FRS develop PSN by breaking down complex problems into manageable sub-problems. In these sub-problems, components and relationships within the PSN can be found more easily. Dividing complex problems into sub-problems is a way to match the situation to previous experience and to more easily identify which actions to take. Actions in this context can be interpreted as the FRS searching for which resources (or components in the network) are needed to solve the problem. Our results indicate that the matching with previous experience [ 54 ] will affect the formation and development of PSN, e.g. in the context of locating the fire where the layout of the building and the dispersion of smoke presented a challenge. The Incident Command created a PSN by dividing the problem into several known sub-problem, finding resources that could assist in understanding the building layout and sending resources to investigate each location emitting smoke. This is consistent with previous studies where it is argued that it is possible to divide complex problems into more manageable sub-problems [ 6 ] and manage the sub-problems through sub-networks that operate within the larger response network [ 13 , 16 , 55 ]. Even though the initial interpretation of the fire location was incorrect, the use of sub-problems allowed the ultimate outcome of the fire location.

6.2 The Rationale for PSN Formation and Development Exists in Relationships Between Components

The results indicate that the rationale behind the PSN could not be found in the main problem itself, nor the sub-problems per se, but rather in the relationships which contribute to the process of using actions to reduce or eliminate the difference between the current state and goal state. For instance, in the context of the initial evacuation, a clear problem for those directly involved, and the corresponding PSN, was developed based on previous experience. The fire team knew which support they needed and the PSN was formed around the relationships associated with this support. Similarly, the need for coordinated actions between the fire team and the lack of support from the Incident Command shaped the PSN, with the relationship of coordination between the fire teams and surrounding support functions at the heart of the PSN formation. In the context of locating the fire, the incident command function needed different types of information to understand the fire behaviour within the building. This in turn led to the creation of the PSN for the purpose of gathering information, thereby establishing relationships of information flows between different components. An understanding of network relationships can be beneficial to FRS organisations, as it enables them to identify the key actors to approach for information, personnel support, and collaboration on tasks [ 15 ].

6.3 The Practical Contributions of this Study

The main practical contribution of the present study is the application of the conceptual framework in the context of learning from incidents.

When it comes to learning from incidents, Frykmer [ 23 ] has noted that emergency evaluations often lead to conclusions that are too broad or general to be readily operationalised. Conversely, by applying the conceptual framework in this study and zooming in on different sub-problems in an incident, organisations can identify important components and types of relationships needed to solve the problems and use this as an input to their learning process. The learning outcome from this incident can be summarized in four main lessons learned:

Breaking down a complex problem into more manageable sub-problems makes the problem clear and easier to identify which resources are needed to solve the problem in hand. A downside of this approach is potentially the risk of losing the overall holistic understanding of the situation, as illustrated by the initial inability of the FRS to locate the fire. The perception of multiple fires was a result of incorrectly decomposing the main problem into (incorrect) sub-problems. This identifies the value of experienced FRS personnel with the ability to quickly reanalyse and redraft their understanding of a given situation .

Informal contacts are important to be able to solve problems at the scene of an accident. This is exemplified by the support provided by the local resident with firefighting experience and local knowledge of the building and the building owner providing timely structural drawings of the building. Not all buildings have a resident firefighter but building owners can provide detailed building specific information on short notice. Establishing contacts between the FRS and such stakeholders provides significant support as part of a PSN.

Comprehension of different roles and responsibilities facilitates rapid problem-solving. This is illustrated in the initial evacuation where established routines and contacts between the FRS, police and ambulance personnel facilitated rapid deployment of the PSN and effective evacuation of all residents. This emphasizes the importance of continuous networking and common professional terminology.

Problem solving is not only affected by the people and organisations involved in the incident, but artifacts are also an integral component of the PSN.

This is illustrated in the case of locating the fire where artifacts such as building drawings affected how the problems was ultimately identified and solved. This emphasizes the need to train FRS to include such artifacts in their PSN.

By identifying relationships and components needed to solve problems, the FRS could plan and exercise for important components for problem-solving during emergencies [ 13 ]. Using the relevant sub-problems to determine related parameters based on the chosen scope, dimension and resolution [ 48 ] can improve the learning potential in an exercise [ 56 ]. This approach could also assist the FRS in managing relationships as vital resources, and better comprehending the efficacy of different relationships in addressing emergency challenges [ 15 ].

6.4 The Theoretical Contributions of this Study

This study contains several theoretical contributions. First, we have addressed the call for more knowledge of what lies in the relationships within a network (as presented in Hu, Yeo [ 15 ]). We see the relationships within a PSN as tools for reducing or eliminating the difference between the current state and goal state [ 30 , 44 ]. For example, this study has illustrated that the relationships can consist of different types of support, information flow and coordination, that are used to solve the specific problems.

Second, we have contributed to the literature on PSN, as exemplified with Milward and Provan [ 20 ]. We argue that it is not only inter-organisational relationships that could explain the rationale behind PSN (as in the current definition by Milward and Provan [ 20 ]) instead we should include all components and relationships that affect the process of finding a solution to the sub-problem. To obtain a better understanding of the purpose of a PSN in emergencies, we suggest that the definition of a PSN is expanded to include not only organisations and humans within organisations, but also different artifacts relevant for reducing the difference between the current state and the goal state.

Third, the study contributes to developing the complexity framework by Bergström et al. [ 48 ] We believe that the framework can be expanded to incorporate multiple levels of resolution within the same scope, such as components on single and group level. For example, the resolution needed for analysing the PSN in the case of locating the fire contained system components at both single and group level to ensure that interactions between the Incident Command and various components could be captured. The study has also introduced an additional view on scope that can be applied in the framework; that of problems and sub-problems.

6.5 Reflecting on the Research Quality

The perception of a given situation or circumstance can vary widely between individuals due to their unique experiences, biases or role in a specific emergency situation. This implies that what one individual considers to be a problem, another may not [ 8 , 9 ]. Therefore, the problems identified in this study would most likely have been impacted if more or other respondents had been interviewed.

Moreover, it should be noted that the PSN depicted in this study constitutes a condensed representation. The dynamic nature of a PSN implies that its configuration is in a constant state of change, and a particular representation of the PSN is only applicable within specific temporal and spatial limitations [ 48 ], which is a limitation in our study.

In our work, we used two different interpretations of sub-problems. We acknowledge that there will always be additional interpretations. We however maintain that these interpretations captured the most important sub-problems perceived by the respondents and were thus the main problems to cover.

Last, our findings are based on a single case. While the findings may not be directly generalisable, they have contributed valuable insight into how the conceptual framework can be used to gain a more comprehensive understanding of FRS practices through problems and problem-solving networks.

6.6 Further Research

Collaboration in networks has been widely investigated by numerous researchers (e.g., [ 13 , 14 , 15 , 16 , 17 , 18 ]. In this paper, we have taken a first step of going beyond collaboration relationships in networks. Our study can be seen as a first step towards developing a better understanding of what network relationships actually mean in problem solving networks. This is relevant for other kinds of network research as previously stated by Hu et al. [ 15 ]. Further research could focus on the deeper understanding of the constituents of the relationships, to gain a more profound understanding of the rationale behind the PSN.

In this paper, we have seen how PSN are formed by both formal and informal relationships between the components. Examples are formal relationships between the FRS and other first responders and informal relationships between the fire teams and the off-duty firefighter in the case of initial evacuation. Further research could be conducted to examine whether PSN exhibit formal or informal characteristics. Such research would serve to evaluate the significance of formal organisational structures or prior experience in shaping effective incident management practices.

Finally, investigating the dynamic nature of PSN can provide important insight into how these networks develop over time. Such insight can, for example, be useful for understanding which components and relationships might be valuable at what time during an emergency, to further improve the solving of complex problems in this context.

7 Conclusions

This study has explored the rationale behind problem-solving networks (PSN) in emergency management and how these networks are developed in relation to complex problems that arise in an emergency. It has focused on the FRS and their role in a PSN relative to other actors. The findings indicate that the FRS practice could be understood as breaking down complex problems into manageable sub-problems, which facilitate the identification of components and relationships needed within the PSN. Components includes both people, organisations and artifacts and both formal and informal relationships is important to be able to solve problems at the scene of an accident. Accordingly, the rationale behind PSN in emergencies lies in the relationships that contribute to solve the sub-problems. The conceptual framework used in this paper can assist the FRS in effectively preparing for future complex problems in emergencies by identifying the essential components and relationships required in the PSN to transition from the current state to the goal state of the present complex system of problems.

Quarantelli EL, Boin A, Lagadec P (2018) Studying future disasters and crises: a heuristic approach. In: Rodriquez H, Donner W, Trainor E (eds) Handbooks of sociology and social research. Springer, Cham, pp 61–83

Google Scholar  

Quarantelli EL, Lagadec P, Boin A (2007) A Heuristic Approach to Future Disasters and Crises: New, Old, and In-Between Types. In: Rodriquez H, Quarantelli EL, Dynes RR (eds) Handbooks of Sociology and Social Research. Springer, New York, New York, pp 16–41

Lagadec P (2007) Crisis management in the Twenty-First Century: “unthinkable” events in “inconceivable” contexts. In: Rodríguez H, Quarantelli EL, Dynes RR (eds) Handbook of disaster research. Edward Elgar, Cheltenham, pp 489–507

Chapter   Google Scholar  

Quarantelli EL, Ten, (1997) criteria for evaluating the management of community disasters. Disasters 21(1):39–56

Article   Google Scholar  

Quarantelli EL (1988) Disaster crisis management: a summary of research findings. J Manag Stud 25(4):373–385

Head BW, Alford J (2015) Wicked problems: implications for public policy and management. Adm Society 47(6):711–739

Gustavsson J, Carlsson G, McNamee MS (2021) Barriers and facilitators for implementation of individualized fire safety (IFS) in Sweden. Fire Technol 57(5):2707–2736

Hart P, Boin A (2001) Between crisis and normalcy: The long shadow of post-crisis politics. In: Rosenthal U, Boin A, Comfort LK (eds) Managing crises: Threats, dilemmas, opportunities. Charles C Thomas Publisher, Springfield, pp 28–46

Smith GF (1992) Towards a theory of managerial problem solving. Decis Support Syst 8(1):29–40

Waugh WL Jr, Streib G (2006) Collaboration and leadership for effective emergency management. Public Adm Rev 66:131–140

Nohrstedt D (2016) Explaining mobilization and performance of collaborations in routine emergency management. Adm Soc 48(2):135–162

Ford JK, Schmidt AM (2000) Emergency response training: strategies for enhancing real-world performance. J Hazard Mater 75(2–3):195–215

Moynihan DP (2009) The network governance of crisis response: Case studies of incident command systems. J Public Adm Res Theory 19(4):895–915

Kapucu N, Arslan T, Collins ML (2010) Examining intergovernmental and interorganizational response to catastrophic disasters: toward a network-centered approach. Adm Soc 42(2):222–247

Hu Q, Yeo J, Kapucu N (2022) A systematic review of empirical emergency management network research: formation and development, properties, and performance. Am Rev Public Adm 52(4):280–297

Bodin Ö, Nohrstedt D (2016) Formation and performance of collaborative disaster management networks: evidence from a Swedish wildfire response. Glob Environ Chang 41:183–194

Provan KG, Kenis P (2008) Modes of network governance: structure, management, and effectiveness. J Public Adm Res Theory 18(2):229–252

Hu Q, Kapucu N (2016) Information communication technology utilization for effective emergency management networks. Public Manag Rev 18(3):323–348

Sparf J, Petridou E (2018) Collaborations in routine emergency management: lessons from Sweden. Procedia Eng 212:302–308

Milward HB, Provan KG (2006) A manager’s guide to choosing and using collaborative networks. vol. 8, IBM Center for the Business of Government Washington, DC

Frykmer T (2021) Improving emergency and disaster response management performance: a problem-solving perspective. Lund University, Lund

MSB (2022) Olycksutredning - Explosion och brand i flerbostadshus Göteborg, 28 Sept 2021

Frykmer T (2020) “ What’s the problem?”-Toward a framework for collective problem representation in emergency response management. J Emerg Manag 18(6):511–524

Schraagen JM, Veld MHIT, de Koning L (2010) Information sharing during crisis management in hierarchical vs. network teams. J Contingencies Crisis Manag 18(2):117–127

Jouanne E et al (2017) Correlates of team effectiveness: an exploratory study of firefighter’s operations during emergency situations. Appl Ergon 61:69–77

Power N (2018) Extreme teams: toward a greater understanding of multiagency teamwork during major emergencies and disasters. Am Psychol 73(4):478

Kapucu N, Garayev V (2016) Structure and network performance: horizontal and vertical networks in emergency management. Administration & Society 48(8):931–961

Skyttner L (1996) General systems theory: origin and hallmarks. Kybernetes 25(6):16–22

Duncker K, Lees LS (1945) On problem-solving. Psychol Monogr 58(5):i

Newell A, Simon HA (1972) Human problem solving, vol 104. Prentice Hall Englewood Cliffs, New Jersey

Mayer RE (1992) Thinking, problem solving, cognition. WH Freeman/Times Books/Henry Holt & Co, New York

Rittel HW, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4(2):155–169

Reitman WR (1964) Heuristic decision procedures, open constraints, and the structure of ill-defined problems. Human Judgm Optim 282:283–315

Simon HA (1973) The structure of ill structured problems. Artif Intell 4(3–4):181–201

Mitroff I, Linstone H (1992) The unbounded mind. Oxford University Press, New York

Klein GA (1998) Sources of power: How people make decisions. MIT press, Cambridge

Smith GF (2008) Teaching decision making

Dery D (1983) Decision-making, problem-solving and organizational learning. Omega 11(4):321–328

Greiff S, Wüstenberg S, Funke J (2012) Dynamic problem solving: a new assessment perspective. Appl Psychol Meas 36(3):189–213

Klein GA (1993) A recognition-primed decision (RPD) model of rapid decision making. Decis Mak Action: Models Methods 5(4):138–147

Kahneman D (2011) Thinking, Fast and Slow, (ed) SAG. Farrar. New York: Farrar, Strauss and Giroux

Kahneman D (2021) Noise. Harper Collins Publishers, London

Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision under risk. Econometrica 47(2):363–391

Article   MathSciNet   Google Scholar  

Simon HA (1997) The sciences of the artificial, (third edition): By Herbert A. Simon. MIT Press, Cambridge, MA (1996), 231 pages, $14.50. Comput Math Appl 33(5):130

Ackoff RL (1979) Resurrecting the future of operational research. J Oper Res Soc 30(3):189–199

Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

Book   Google Scholar  

Cilliers P (2005) Complexity, deconstruction and relativism. Theory Cult Soc 22(5):255–267

Bergström J, Uhr C, Frykmer T (2016) A complexity framework for studying disaster response management. J Contingencies Crisis Manag 24(3):124–135

Yin RK (2003) Design and methods. Case Study Res 3(92):84

RSG Olycksutredning: Brand och explosion i byggnad, flerfamiljshus Övre Husargatan, Göteborg 2021–09–28. 2022, Räddningstjänsten Storgöteborg (RSG).

MSB Explosin-Brand Göteborg, in 90 sekunder play. 2022: Sweden. p. 14:25.

RSG Handlingsprogram 2020–2023 enligt lag (2003:778) om skydd mot olyckor . 2020, Räddningstjänstförbundet Storgöteborg

Ivarsson K (2021) Explosionen på Övre husargatan. Sveriges Radio: https://sverigesradio.se/artikel/ny-podd-om-explosionen-pa-ovre-husargatan

Klein G (2008) Naturalistic decision making. Hum Factors 50(3):456–460

Kapucu N, Arslan T, Demiroz F (2010) Collaborative emergency management and national emergency management network. Disaster Prev Manag Int J 19(4):452–468

Borell J, Eriksson K (2013) Learning effectiveness of discussion-based crisis management exercises. Int J Disaster Risk Reduct 5:28–37

Download references

Acknowledgements

The research for this paper was financially supported by NordForsk within the project Nordic Fire and Rescue Services in the Twenty First Century, No. 97830.

Open access funding provided by RISE Research Institutes of Sweden.

Author information

Authors and affiliations.

Division of Safety and Transport, RISE Research Institute of Sweden, Brinellgatan 4, Box 857, 501 15, Borås, Sweden

Lotta Vylund & Kerstin Eriksson

Greater Gothenburg Fire and Rescue Service, Goteburg, Sweden

Lotta Vylund

Division of Risk Management and Societal Safety, Lund University, Lund, Sweden

Tove Frykmer

Division of Fire Safety Engineering, Lund University, Lund, Sweden

Margaret McNamee

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the study conception and design. LV was responsible for the data collection and coding of the data. TF was responsible for the conceptual framework. The analysis was performed by LV, TF, MM and KE. LV wrote the first draft and all authors contributed to the development of the final manuscript for submission.

Corresponding author

Correspondence to Lotta Vylund .

Ethics declarations

Conflict of interest.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Interview guide

The interview guide that was created for the semi-structured interviews is presented below. Note that the questions have been translated from Swedish to English by the authors.

Could you describe the response to the explosion in Gothenburg in 2021

In what way were you involved in the incident?

What needs could you identify in the accident?

How did you identify the needs?

What did you need to understand what had happened and what was about to happen?

How did you identify what actions were needed to meet the identified needs?

Are there any aids that were most important to you in dealing with this accident? What would happen if you didn't have access to these?

How has your organization prepared for this type of event? For example. emergency plans/instructions/practices/resources/materials etc.?

With the experiences from the accident that you have today, would you have done anything differently? Would you have prepared differently?

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Vylund, L., Frykmer, T., McNamee, M. et al. Understanding Fire and Rescue Service Practices Through Problems and Problem-Solving Networks: An Analysis of a Critical Incident. Fire Technol (2024). https://doi.org/10.1007/s10694-024-01582-0

Download citation

Received : 18 June 2023

Accepted : 02 April 2024

Published : 10 May 2024

DOI : https://doi.org/10.1007/s10694-024-01582-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Problem-solving network
  • Complex problem
  • Complexity framework
  • Sub-problems
  • Problem space
  • Fire and rescue service
  • Find a journal
  • Publish with us
  • Track your research

University of Utah Logo

  • About Utah Asia Campus
  • Accounting (BS)
  • Communication (BA/BS)
  • Computer Engineering (BS)
  • Electrical Engineering (BS)
  • Film & Media Arts (BA)
  • Information Systems (BS)
  • Psychology (BS)
  • Urban Ecology (BS)
  • Information Systems (in Italy and Spain)
  • Writing & Rhetoric Studies
  • Leadership Studies
  • Master of Communication
  • Meet Your Advisors
  • Peer Advisor Program
  • Academic Standards
  • Catalog, Schedules & Calendar
  • Salt Lake City Students to Asia Campus
  • Admitted Student
  • New Student Programs
  • New Student Orientation
  • International Student Orientation
  • Tuition Information
  • Residence Life
  • Life in Korea
  • Scholarships & Financial Aid
  • Cost of Attendance
  • Student Life Overview
  • Student Resources
  • Dormitories
  • Career and Internship Development Center (CIDC)
  • Student Council (UACSC)
  • Join a Club
  • Student Life Policies
  • Transition to Salt Lake City
  • Campus Traditions
  • Campus Safety
  • Faculty & Staff Resources
  • Event Calendar
  • Asia Campus Event Submission
  • Asia Campus News

Powered By Google Search

U Asia Campus

Spring commencement 2024 – meet seoin kim.

data and problem solving

“My internship as a Data Visualization Developer at Raytheon was a pivotal experience, enhancing my technical skills and problem-solving abilities in computer engineering. This role prepared me for a future in software engineering and data visualization. As I consider my post-graduation plans, I am weighing the options of further education against jumping straight into the tech industry. The university has equipped me with a solid foundation for either path.

Growing up in South Korea, my curiosity about the world led me to connect with pen pals globally and to host international friends. These experiences have shaped my perspective and fueled my aspirations to make a significant impact on global communication and understanding. The COVID-19 pandemic prompted a shift from my initial dream of becoming a pilot to pursuing computer engineering, a decision that aligned with the university’s launch of a new department.

The mentorship from professors and the collaboration with peers have been invaluable throughout my college journey. Engaging in extracurricular activities and networking events has not only enriched my university experience but also helped me build lasting relationships.

To my fellow graduates, I say: Embrace every opportunity with resilience and an open mind. View challenges as opportunities for growth, seek help when needed, and strive to maintain a balance between academic pursuits and personal well-being.

As we graduate, let us carry forward the lessons of resilience, community, and diverse perspectives. Let’s continue to learn, question, and connect as we embark on our individual journeys. Congratulations to us all!”

Help | Advanced Search

Quantum Physics

Title: solving the turbine balancing problem using quantum annealing.

Abstract: Quantum computing has the potential for disruptive change in many sectors of industry, especially in materials science and optimization. In this paper, we describe how the Turbine Balancing Problem can be solved with quantum computing, which is the NP-hard optimization problem of analytically balancing rotor blades in a single plane as found in turbine assembly. Small yet relevant instances occur in industry, which makes the problem interesting for early quantum computing benchmarks. We model it as a Quadratic Unconstrained Binary Optimization problem and compare the performance of a classical rule-based heuristic and D-Wave Systems' Quantum Annealer Advantage_system4.1. In this case study, we use real-world as well as synthetic datasets and observe that the quantum hardware significantly improves an actively used heuristic's solution for small-scale problem instances with bare disk imbalance in terms of solution quality. Motivated by this performance gain, we subsequently design a quantum-inspired classical heuristic based on simulated annealing that achieves extremely good results on all given problem instances, essentially solving the optimization problem sufficiently well for all considered datasets, according to industrial requirements.

Submission history

Access paper:.

  • Other Formats

license icon

References & Citations

  • INSPIRE HEP
  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. Problem solving infographic 10 steps concept Vector Image

    data and problem solving

  2. Problem solving and data analysis concept Vector Image

    data and problem solving

  3. 5 step problem solving method

    data and problem solving

  4. 8 Steps For Effective Problem Solving

    data and problem solving

  5. Making Your Best Business: How to Approach ANY Problem

    data and problem solving

  6. 39 Best Problem-Solving Examples (2024)

    data and problem solving

VIDEO

  1. MEAN AND MEDIAN CALCULATION

  2. Dean's Leaders Forum

  3. Solving the Data Problem Understanding Digital Twin and AI for Built Environment

  4. Samagra's Problem Solving Approach

  5. Learn SQL to become a Data Analyst/ Data scientist in IT Industry

  6. Problem Solving and Data Analysis: Free SAT Prep

COMMENTS

  1. Solving data problems: A beginner's guide

    Break down problems into small steps. One of the essential strategies for problem-solving is to break down the problem into the smallest steps possible — atomic steps. Try to describe every single step. Don't write any code or start your search for the magic formula. Make notes in plain language.

  2. How to analyze a problem

    Before jumping in, it's crucial to plan the analysis, decide which analytical tools to use, and ensure rigor. Check out these insights to uncover ways data can take your problem-solving techniques to the next level, and stay tuned for an upcoming post on the potential power of generative AI in problem-solving. The data-driven enterprise of 2025.

  3. What Is Analytical Thinking and How Can You Improve Your ...

    Skills that benefit a business analyst include analytical skills, communication, problem-solving, and time management. Tasks and responsibilities: As a business analyst, you'll gather information about a company by observing business practices and procedures, examining financial data, and conducting employee interviews. Then, you'll study and ...

  4. Problem-Solving Skills for Data Analysts: A Guide

    Problem-solving skills are essential for data analysts because they enable you to handle the various stages and aspects of a data analysis project, such as defining the problem, collecting and ...

  5. The Essential Data Analyst Skills You'll Need [2024 Guide]

    Expertise in data visualization. Great communication skills. Key takeways. 1. Excellent problem-solving skills. Problem solving is one of the most important data analyst skills you should possess. Around 90% of analytics is about critical thinking, and knowing the right questions to ask.

  6. What's your data-driven process for problem-solving?

    Learn a simple and effective process for problem-solving using data, based on five steps: define, collect, analyze, generate, and communicate. Improve your data-driven skills and solutions.

  7. Problem-Solving with Data: Tips and Tools

    Ask questions. 5. Test hypotheses. 6. Communicate results. 7. Here's what else to consider. Data is everywhere, and it can help you solve problems, improve decisions, and advance your career.

  8. How to Improve Your Analytical Skills

    4. Engage With Data. Once you have a solid understanding of data science concepts and formulas, the next step is to practice. Like any skill, analytical skills improve the more you use them. Mock datasets—which you can find online or create yourself—present a low-risk option for putting your skills to the test.

  9. 5 Reasons Why Data Analytics Is Important In Problem Solving

    Now that we've established a general idea of how strongly connected analytical skills and problem-solving are, let's dig deeper into the top 5 reasons why data analytics is important in problem-solving. 1. Uncover Hidden Details. Data analytics is great at putting the minor details out in the spotlight.

  10. Effective Problem-Solving and Decision-Making

    Problem-solving is an essential skill in today's fast-paced and ever-changing workplace. It requires a systematic approach that incorporates effective decision-making. Throughout this course, we will learn an overarching process of identifying problems to generate potential solutions, then apply decision-making styles in order to implement and ...

  11. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  12. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  13. Problem Solving and Data Analysis (Examples, solutions)

    The questions in Problem Solving and Data Analysis focus on linear, quadratic and exponential relationships which may be represented by charts, graphs or tables. A model is linear if the difference in quantity is constant. A model is exponential if the ratio in the quantity is constant. A line of best fit is a straight line that best represents ...

  14. Medium: Problem solving and data analysis

    Unit test. Level up on all the skills in this unit and collect up to 1,000 Mastery points! This unit tackles the medium-difficulty problem solving and data analysis questions on the SAT Math test. Work through each skill, taking quizzes and the unit test to level up your mastery progress.

  15. How to improve your problem solving skills and strategies

    6. Solution implementation. This is what we were waiting for! All problem solving strategies have the end goal of implementing a solution and solving a problem in mind. Remember that in order for any solution to be successful, you need to help your group through all of the previous problem solving steps thoughtfully.

  16. Problem Solving with Algorithms and Data Structures using Python

    Problem Solving with Algorithms and Data Structures using Python¶. By Brad Miller and David Ranum, Luther College. Assignments; There is a wonderful collection of YouTube videos recorded by Gerry Jenkins to support all of the chapters in this text.

  17. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. ... Irrelevant information is a specification or data presented in a problem that is ...

  18. Problem-solving for problem-solving: Data analytics to identify

    The problem-solving assertions of data analytics companies about powerful insights and innovations, efficiencies of time and economy, but retaining humanity, carry great weight, especially in a context of local authority responsibilities for problematised families and constrained budgets.

  19. 35 problem-solving techniques and methods for solving complex problems

    6. Discovery & Action Dialogue (DAD) One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions. With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so.

  20. Gartner Says Data & Analytics Leaders Must Use Collective Intelligence

    Data & analytics (D&A) leaders should focus on collective intelligence to drive business value and D&A maturity, according to Gartner, Inc. Collective intelligence, driven by generative AI (GenAI), combines the problem-solving skills of humans and machines to create value.. During the opening keynote at the Gartner Data & Analytics Summit taking place this week in London, Adam M. Ronthal, VP ...

  21. 26 Expert-Backed Problem Solving Examples

    The example interview responses are structured using the STAR method and are categorized into the top 5 key problem-solving skills recruiters look for in a candidate. 1. Analytical Thinking. Situation: In my previous role as a data analyst, our team encountered a significant drop in website traffic.

  22. Exploring the effect of problem-solving laboratory on computational

    Computational thinking skill is a new framework that belongs to the hybrid modes of thinking. This study aims to explore the effect of the problem-solving laboratory and gender in practicing computational thinking skills. Learning media is pursued by designing experimental-based learning using smartphone sensors. A smartphone sensor was used to facilitate students to measure physical ...

  23. Teens and Video Games Today

    There are long-standing debates about the impact of video games on youth. Some credit them for helping young people form friendships and teaching them about teamwork and problem-solving.Others say video games expose teenagers to violent content, negatively impact their sleep and can even lead to addiction.. With this in mind, Pew Research Center surveyed 1,423 U.S. teens ages 13 to 17 about ...

  24. Understanding Fire and Rescue Service Practices Through Problems and

    This study explores how the Fire and Rescue Service can better prepare for solving complex problems in emergencies by using the concept of problems and problem-solving networks. Primary and secondary data from an extensive fire incident were analysed, including semi-structured interviews and incident assessment reports. Complex problems that arise during emergencies can be challenging to ...

  25. SPRING COMMENCEMENT 2024

    SPRING COMMENCEMENT 2024 - Meet Seoin Kim. "My internship as a Data Visualization Developer at Raytheon was a pivotal experience, enhancing my technical skills and problem-solving abilities in computer engineering. This role prepared me for a future in software engineering and data visualization. As I consider my post-graduation plans, I am ...

  26. Solving the Turbine Balancing Problem using Quantum Annealing

    Quantum computing has the potential for disruptive change in many sectors of industry, especially in materials science and optimization. In this paper, we describe how the Turbine Balancing Problem can be solved with quantum computing, which is the NP-hard optimization problem of analytically balancing rotor blades in a single plane as found in turbine assembly. Small yet relevant instances ...