Double Helix: A Journal of Critical Thinking and Writing

  • faculty development, online writing instruction, scientific writing, postsecondary education, writing studies, WAC, writing in the disciplines, Teaching strategies, Pedagogy

Double Helix: A Journal of Critical Thinking and Writing

Advisory Board

Editorial Team

Past Volumes

Submissions

About Double Helix

Current Volume:

Critical Thinking, Writing, and Artificial Intelligence

Cover Page

Ask AI. Double Helix: A Journal of Critical Thinking and Writing , 2024. Large Language Model.

Table of Contents

Research articles, reports from the field, book reviews.

Double Helix is a publication of the College of Arts and Sciences at Quinnipiac University. ISSN 2372-7497. Works published in Double Helix are released under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 international License.

OPINION article

Redefining critical thinking: teaching students to think like scientists.

\r\nRodney M. Schmaltz*

  • Department of Psychology, MacEwan University, Edmonton, AB, Canada

From primary to post-secondary school, critical thinking (CT) is an oft cited focus or key competency (e.g., DeAngelo et al., 2009 ; California Department of Education, 2014 ; Alberta Education, 2015 ; Australian Curriculum Assessment and Reporting Authority, n.d. ). Unfortunately, the definition of CT has become so broad that it can encompass nearly anything and everything (e.g., Hatcher, 2000 ; Johnson and Hamby, 2015 ). From discussion of Foucault, critique and the self ( Foucault, 1984 ) to Lawson's (1999) definition of CT as the ability to evaluate claims using psychological science, the term critical thinking has come to refer to an ever-widening range of skills and abilities. We propose that educators need to clearly define CT, and that in addition to teaching CT, a strong focus should be placed on teaching students how to think like scientists. Scientific thinking is the ability to generate, test, and evaluate claims, data, and theories (e.g., Bullock et al., 2009 ; Koerber et al., 2015 ). Simply stated, the basic tenets of scientific thinking provide students with the tools to distinguish good information from bad. Students have access to nearly limitless information, and the skills to understand what is misinformation or a questionable scientific claim is crucially important ( Smith, 2011 ), and these skills may not necessarily be included in the general teaching of critical thinking ( Wright, 2001 ).

This is an issue of more than semantics. While some definitions of CT include key elements of the scientific method (e.g., Lawson, 1999 ; Lawson et al., 2015 ), this emphasis is not consistent across all interpretations of CT ( Huber and Kuncel, 2016 ). In an attempt to provide a comprehensive, detailed definition of CT, the American Philosophical Association (APA), outlined six CT skills, 16 subskills, and 19 dispositions ( Facione, 1990 ). Skills include interpretation, analysis, and inference; dispositions include inquisitiveness and open-mindedness. 1 From our perspective, definitions of CT such as those provided by the APA or operationally defined by researchers in the context of a scholarly article (e.g., Forawi, 2016 ) are not problematic—the authors clearly define what they are referring to as CT. Potential problems arise when educators are using different definitions of CT, or when the banner of CT is applied to nearly any topic or pedagogical activity. Definitions such as those provided by the APA provide a comprehensive framework for understanding the multi-faceted nature of CT, however the definition is complex and may be difficult to work with at a policy level for educators, especially those who work primarily with younger students.

The need to develop scientific thinking skills is evident in studies showing that 55% of undergraduate students believe that a full moon causes people to behave oddly, and an estimated 67% of students believe creatures such as Bigfoot and Chupacabra exist, despite the lack of scientific evidence supporting these claims ( Lobato et al., 2014 ). Additionally, despite overwhelming evidence supporting the existence of anthropogenic climate change, and the dire need to mitigate its effects, many people still remain skeptical of climate change and its impact ( Feygina et al., 2010 ; Lewandowsky et al., 2013 ). One of the goals of education is to help students foster the skills necessary to be informed consumers of information ( DeAngelo et al., 2009 ), and providing students with the tools to think scientifically is a crucial component of reaching this goal. By focusing on scientific thinking in conjunction with CT, educators may be better able design specific policies that aim to facilitate the necessary skills students should have when they enter post-secondary training or the workforce. In other words, students should leave secondary school with the ability to rule out rival hypotheses, understand that correlation does not equal causation, the importance of falsifiability and replicability, the ability to recognize extraordinary claims, and use the principle of parsimony (e.g., Lett, 1990 ; Bartz, 2002 ).

Teaching scientific thinking is challenging, as people are vulnerable to trusting their intuitions and subjective observations and tend to prioritize them over objective scientific findings (e.g., Lilienfeld et al., 2012 ). Students and the public at large are prone to naïve realism, or the tendency to believe that our experiences and observations constitute objective reality ( Ross and Ward, 1996 ), when in fact our experiences and observations are subjective and prone to error (e.g., Kahneman, 2011 ). Educators at the post-secondary level tend to prioritize scientific thinking ( Lilienfeld, 2010 ), however many students do not continue on to a post-secondary program after they have completed high school. Further, students who are told they are learning critical thinking may believe they possess the skills to accurately assess the world around them. However, if they are not taught the specific skills needed to be scientifically literate, they may still fall prey to logical fallacies and biases. People tend to underestimate or not understand fallacies that can prevent them from making sound decisions ( Lilienfeld et al., 2001 ; Pronin et al., 2004 ; Lilienfeld, 2010 ). Thus, it is reasonable to think that a person who has not been adequately trained in scientific thinking would nonetheless consider themselves a strong critical thinker, and therefore would be even less likely consider his or her own personal biases. Another concern is that when teaching scientific thinking there is always the risk that students become overly critical or cynical (e.g., Mercier et al., 2017 ). By this, a student may be skeptical of nearly all findings, regardless of the supporting evidence. By incorporating and focusing on cognitive biases, instructors can help students understand their own biases, and demonstrate how the rigor of the scientific method can, at least partially, control for these biases.

Teaching CT remains controversial and confusing for many instructors ( Bensley and Murtagh, 2012 ). This is partly due to the lack of clarity in the definition of CT and the wide range of methods proposed to best teach CT ( Abrami et al., 2008 ; Bensley and Murtagh, 2012 ). For instance, Bensley and Spero (2014) found evidence for the effectiveness of direct approaches to teaching CT, a claim echoed in earlier research ( Abrami et al., 2008 ; Marin and Halpern, 2011 ). Despite their positive findings, some studies have failed to find support for measures of CT ( Burke et al., 2014 ) and others have found variable, yet positive, support for instructional methods ( Dochy et al., 2003 ). Unfortunately, there is a lack of research demonstrating the best pedagogical approaches to teaching scientific thinking at different grade levels. More research is needed to provide an empirically grounded approach to teach scientific thinking, and there is also a need to develop evidence based measures of scientific thinking that are grade and age appropriate. One approach to teaching scientific thinking may be to frame the topic in its simplest terms—the ability to “detect baloney” ( Sagan, 1995 ).

Sagan (1995) has promoted the tools necessary to recognize poor arguments, fallacies to avoid, and how to approach claims using the scientific method. The basic tenets of Sagan's argument apply to most claims, and have the potential to be an effective teaching tool across a range of abilities and ages. Sagan discusses the idea of a baloney detection kit, which contains the “tools” for skeptical thinking. The development of “baloney detection kits” which include age-appropriate scientific thinking skills may be an effective approach to teaching scientific thinking. These kits could include the style of exercises that are typically found under the banner of CT training (e.g., group discussions, evaluations of arguments) with a focus on teaching scientific thinking. An empirically validated kit does not yet exist, though there is much to draw from in the literature on pedagogical approaches to correcting cognitive biases, combatting pseudoscience, and teaching methodology (e.g., Smith, 2011 ). Further research is needed in this area to ensure that the correct, and age-appropriate, tools are part of any baloney detection kit.

Teaching Sagan's idea of baloney detection in conjunction with CT provides educators with a clear focus—to employ a pedagogical approach that helps students create sound and cogent arguments while avoiding falling prey to “baloney”. This is not to say that all of the information taught under the current banner of “critical thinking” is without value. In fact, many of the topics taught under the current approach of CT are important, even though they would not fit within the framework of some definitions of critical thinking. If educators want to ensure that students have the ability to be accurate consumers of information, a focus should be placed on including scientific thinking as a component of the science curriculum, as well as part of the broader teaching of CT.

Educators need to be provided with evidence-based approaches to teach the principles of scientific thinking. These principles should be taught in conjunction with evidence-based methods that mitigate the potential for fallacious reasoning and false beliefs. At a minimum, when students first learn about science, there should also be an introduction to the basics tenets of scientific thinking. Courses dedicated to promoting scientific thinking may also be effective. A course focused on cognitive biases, logical fallacies, and the hallmarks of scientific thinking adapted for each grade level may provide students with the foundation of solid scientific thinking skills to produce and evaluate arguments, and allow expansion of scientific thinking into other scholastic areas and classes. Evaluations of the efficacy of these courses would be essential, along with research to determine the best approach to incorporate scientific thinking into the curriculum.

If instructors know that students have at least some familiarity with the fundamental tenets of scientific thinking, the ability to expand and build upon these ideas in a variety of subject specific areas would further foster and promote these skills. For example, when discussing climate change, an instructor could add a brief discussion of why some people reject the science of climate change by relating this back to the information students will be familiar with from their scientific thinking courses. In terms of an issue like climate change, many students may have heard in political debates or popular culture that global warming trends are not real, or a “hoax” ( Lewandowsky et al., 2013 ). In this case, only teaching the data and facts may not be sufficient to change a student's mind about the reality of climate change ( Lewandowsky et al., 2012 ). Instructors would have more success by presenting students with the data on global warming trends as well as information on the biases that could lead some people reject the data ( Kowalski and Taylor, 2009 ; Lewandowsky et al., 2012 ). This type of instruction helps educators create informed citizens who are better able to guide future decision making and ensure that students enter the job market with the skills needed to be valuable members of the workforce and society as a whole.

By promoting scientific thinking, educators can ensure that students are at least exposed to the basic tenets of what makes a good argument, how to create their own arguments, recognize their own biases and those of others, and how to think like a scientist. There is still work to be done, as there is a need to put in place educational programs built on empirical evidence, as well as research investigating specific techniques to promote scientific thinking for children in earlier grade levels and develop measures to test if students have acquired the necessary scientific thinking skills. By using an evidence based approach to implement strategies to promote scientific thinking, and encouraging researchers to further explore the ideal methods for doing so, educators can better serve their students. When students are provided with the core ideas of how to detect baloney, and provided with examples of how baloney detection relates to the real world (e.g., Schmaltz and Lilienfeld, 2014 ), we are confident that they will be better able to navigate through the oceans of information available and choose the right path when deciding if information is valid.

Author Contribution

RS was the lead author and this paper, and both EJ and NW contributed equally.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

1. ^ There is some debate about the role of dispositional factors in the ability for a person to engage in critical thinking, specifically that dispositional factors may mitigate any attempt to learn CT. The general consensus is that while dispositional traits may play a role in the ability to think critically, the general skills to be a critical thinker can be taught ( Niu et al., 2013 ; Abrami et al., 2015 ).

Abrami, P. C., Bernard, R. M., Borokhovski, E., Waddington, D. I., Wade, C. A., and Persson, T. (2015). Strategies for teaching students to think critically a meta-analysis. Rev. Educ. Res. 85, 275–314. doi: 10.3102/0034654308326084

CrossRef Full Text | Google Scholar

Abrami, P. C., Bernard, R. M., Borokhovski, E., Wade, A., Surkes, M. A., Tamim, R., et al. (2008). Instructional interventions affecting critical thinking skills and dispositions: a stage 1 meta-analysis. Rev. Educ. Res. 78, 1102–1134. doi: 10.3102/0034654308326084

Alberta Education (2015). Ministerial Order on Student Learning . Available online at: https://education.alberta.ca/policies-and-standards/student-learning/everyone/ministerial-order-on-student-learning-pdf/

Australian Curriculum Assessment and Reporting Authority (n.d.). Available online at: http://www.australiancurriculum.edu.au

Bartz, W. R. (2002). Teaching skepticism via the CRITIC acronym and the skeptical inquirer. Skeptical Inquirer 17, 42–44.

Google Scholar

Bensley, D. A., and Murtagh, M. P. (2012). Guidelines for a scientific approach to critical thinking assessment. Teach. Psychol. 39, 5–16. doi: 10.1177/0098628311430642

Bensley, D. A., and Spero, R. A. (2014). Improving critical thinking skills and metacognitive monitoring through direct infusion. Think. Skills Creativ. 12, 55–68. doi: 10.1016/j.tsc.2014.02.001

Bullock, M., Sodian, B., and Koerber, S. (2009). “Doing experiments and understanding science: development of scientific reasoning from childhood to adulthood,” in Human Development from Early Childhood to Early Adulthood: Findings from a 20 Year Longitudinal Study , eds W. Schneider and M. Bullock (New York, NY: Psychology Press), 173–197.

Burke, B. L., Sears, S. R., Kraus, S., and Roberts-Cady, S. (2014). Critical analysis: a comparison of critical thinking changes in psychology and philosophy classes. Teach. Psychol. 41, 28–36. doi: 10.1177/0098628313514175

California Department of Education (2014). Standard for Career Ready Practice . Available online at: http://www.cde.ca.gov/nr/ne/yr14/yr14rel22.asp

DeAngelo, L., Hurtado, S., Pryor, J. H., Kelly, K. R., Santos, J. L., and Korn, W. S. (2009). The American College Teacher: National Norms for the 2007-2008 HERI Faculty Survey . Los Angeles, CA: Higher Education Research Institute.

Dochy, F., Segers, M., Van den Bossche, P., and Gijbels, D. (2003). Effects of problem-based learning: a meta-analysis. Learn. Instruct. 13, 533–568. doi: 10.1016/S0959-4752(02)00025-7

Facione, P. A. (1990). Critical thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction. Research Findings and Recommendations. Newark, DE: American Philosophical Association.

Feygina, I., Jost, J. T., and Goldsmith, R. E. (2010). System justification, the denial of global warming, and the possibility of ‘system-sanctioned change’. Pers. Soc. Psychol. Bull. 36, 326–338. doi: 10.1177/0146167209351435

PubMed Abstract | CrossRef Full Text | Google Scholar

Forawi, S. A. (2016). Standard-based science education and critical thinking. Think. Skills Creativ. 20, 52–62. doi: 10.1016/j.tsc.2016.02.005

Foucault, M. (1984). The Foucault Reader . New York, NY: Pantheon.

Hatcher, D. L. (2000). Arguments for another definition of critical thinking. Inquiry 20, 3–8. doi: 10.5840/inquiryctnews20002016

Huber, C. R., and Kuncel, N. R. (2016). Does college teach critical thinking? A meta-analysis. Rev. Educ. Res. 86, 431–468. doi: 10.3102/0034654315605917

Johnson, R. H., and Hamby, B. (2015). A meta-level approach to the problem of defining “Critical Thinking”. Argumentation 29, 417–430. doi: 10.1007/s10503-015-9356-4

Kahneman, D. (2011). Thinking, Fast and Slow . New York, NY: Farrar, Straus and Giroux.

Koerber, S., Mayer, D., Osterhaus, C., Schwippert, K., and Sodian, B. (2015). The development of scientific thinking in elementary school: a comprehensive inventory. Child Dev. 86, 327–336. doi: 10.1111/cdev.12298

Kowalski, P., and Taylor, A. K. (2009). The effect of refuting misconceptions in the introductory psychology class. Teach. Psychol. 36, 153–159. doi: 10.1080/00986280902959986

Lawson, T. J. (1999). Assessing psychological critical thinking as a learning outcome for psychology majors. Teach. Psychol. 26, 207–209. doi: 10.1207/S15328023TOP260311

CrossRef Full Text

Lawson, T. J., Jordan-Fleming, M. K., and Bodle, J. H. (2015). Measuring psychological critical thinking: an update. Teach. Psychol. 42, 248–253. doi: 10.1177/0098628315587624

Lett, J. (1990). A field guide to critical thinking. Skeptical Inquirer , 14, 153–160.

Lewandowsky, S., Ecker, U. H., Seifert, C. M., Schwarz, N., and Cook, J. (2012). Misinformation and its correction: continued influence and successful debiasing. Psychol. Sci. Public Interest 13, 106–131. doi: 10.1177/1529100612451018

Lewandowsky, S., Oberauer, K., and Gignac, G. E. (2013). NASA faked the moon landing—therefore, (climate) science is a hoax: an anatomy of the motivated rejection of science. Psychol. Sci. 24, 622–633. doi: 10.1177/0956797612457686

Lilienfeld, S. O. (2010). Can psychology become a science? Pers. Individ. Dif. 49, 281–288. doi: 10.1016/j.paid.2010.01.024

Lilienfeld, S. O., Ammirati, R., and David, M. (2012). Distinguishing science from pseudoscience in school psychology: science and scientific thinking as safeguards against human error. J. Sch. Psychol. 50, 7–36. doi: 10.1016/j.jsp.2011.09.006

Lilienfeld, S. O., Lohr, J. M., and Morier, D. (2001). The teaching of courses in the science and pseudoscience of psychology: useful resources. Teach. Psychol. 28, 182–191. doi: 10.1207/S15328023TOP2803_03

Lobato, E., Mendoza, J., Sims, V., and Chin, M. (2014). Examining the relationship between conspiracy theories, paranormal beliefs, and pseudoscience acceptance among a university population. Appl. Cogn. Psychol. 28, 617–625. doi: 10.1002/acp.3042

Marin, L. M., and Halpern, D. F. (2011). Pedagogy for developing critical thinking in adolescents: explicit instruction produces greatest gains. Think. Skills Creativ. 6, 1–13. doi: 10.1016/j.tsc.2010.08.002

Mercier, H., Boudry, M., Paglieri, F., and Trouche, E. (2017). Natural-born arguers: teaching how to make the best of our reasoning abilities. Educ. Psychol. 52, 1–16. doi: 10.1080/00461520.2016.1207537

Niu, L., Behar-Horenstein, L. S., and Garvan, C. W. (2013). Do instructional interventions influence college students' critical thinking skills? A meta-analysis. Educ. Res. Rev. 9, 114–128. doi: 10.1016/j.edurev.2012.12.002

Pronin, E., Gilovich, T., and Ross, L. (2004). Objectivity in the eye of the beholder: divergent perceptions of bias in self versus others. Psychol. Rev. 111, 781–799. doi: 10.1037/0033-295X.111.3.781

Ross, L., and Ward, A. (1996). “Naive realism in everyday life: implications for social conflict and misunderstanding,” in Values and Knowledge , eds E. S. Reed, E. Turiel, T. Brown, E. S. Reed, E. Turiel and T. Brown (Hillsdale, NJ: Lawrence Erlbaum Associates Inc.), 103–135.

Sagan, C. (1995). Demon-Haunted World: Science as a Candle in the Dark . New York, NY: Random House.

Schmaltz, R., and Lilienfeld, S. O. (2014). Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking. Front. Psychol. 5:336. doi: 10.3389/fpsyg.2014.00336

Smith, J. C. (2011). Pseudoscience and Extraordinary Claims of the Paranormal: A Critical Thinker's Toolkit . New York, NY: John Wiley and Sons.

Wright, I. (2001). Critical thinking in the schools: why doesn't much happen? Inform. Logic 22, 137–154. doi: 10.22329/il.v22i2.2579

Keywords: scientific thinking, critical thinking, teaching resources, skepticism, education policy

Citation: Schmaltz RM, Jansen E and Wenckowski N (2017) Redefining Critical Thinking: Teaching Students to Think like Scientists. Front. Psychol . 8:459. doi: 10.3389/fpsyg.2017.00459

Received: 13 December 2016; Accepted: 13 March 2017; Published: 29 March 2017.

Reviewed by:

Copyright © 2017 Schmaltz, Jansen and Wenckowski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Rodney M. Schmaltz, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Journal on Excellence in College Teaching Logo

Tools for Critical Thinking: A Message From the Editors

  • Laurie Richlin Author
  • Gregg W. Wentzell Miami University Author
  • Milton D. Cox Author

We understand critical thinking to be purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgment is based. Critical thinking is essential as a tool of inquiry. As such, critical thinking is a liberating force in education and a powerful resource in one's personal and civic life. (Facione, 1990)

Journal on Excellence in College Teaching Cover

  • Requires Subscription PDF

Access Agreement Journal on Excellence in College Teaching

Before proceeding you must agree to the terms and conditions of usage as outlined below by clicking on the Accept button and/or by both parties’ signatures below. You will have to do this only once. After agreement, you will be redirected back to the main Journal page. A pdf copy of the terms is available for download.

This Access Agreement (the "Agreement") is effective upon processing of payment ("Effective Date") and is entered into by and between the Journal on Excellence in College Teaching (“JECT”) and the Customer (“Customer").

This Agreement constitutes the entire agreement and supersedes and voids all prior communications, understandings, and agreements relating to the Product(s), including any terms of use displayed to Authorized Users via the online site of the Product(s). Alterations to the Agreement and to any Addendum to the Agreement are only valid and binding if they are recorded in writing and signed by both parties

. I. Definitions

"Authorized Users" shall mean individuals who are authorized by the Customer (which shall include those individuals authorized by the Institutions hereunder) to access the Customer's information services whether on-site or off-site via secure authentication and who are affiliated with the Customer as a student (undergraduates and postgraduates), employee (whether on a permanent or temporary basis), or a contractor of the Customer. Individuals who are not a current student, employee, or a contractor of the Customer, but who are permitted to access the Customer's information services from computer terminals within the physical premises of the Customer ("Walk-In Users"), are also deemed to be Authorized Users, but only for the time they are within the physical premises of the Customer. Walk-In Users may not be given means to access the Product(s) when they are not within the physical premises of the Customer.

"Commercial Use" shall mean use for the purpose of monetary reward (whether by or for the Customer or an Authorized User) by means of the sale, resale, loan, transfer, hire, or other form of exploitation of the Product(s). For the avoidance of doubt, neither recovery of direct cost by the Customer from Authorized Users, nor use by the Customer or Authorized Users of the Product(s) in the course of research funded by a commercial organization, shall be deemed to constitute Commercial Use.

"Educational Purposes" shall mean for the purpose of education, teaching, distance learning, private study and/or research as described in Section II below.

"Institutions" shall mean the Customer's participating institutions, if applicable.

"License" shall mean the non-exclusive, non-transferable right to access and use the Product(s) pursuant to the specific terms and conditions set forth in this Agreement.

"Product(s)" shall mean the products, materials and/or information contained therein that are subject to this Agreement. Product(s) include the Journal on Excellence in College Teaching and the archive of the Learning Communities Journal.

"Reasonable Amount" shall be determined based on guidelines set forth by 17 U.S. Code § 107 (Limitations on exclusive rights, Fair use).

"Secure Authentication" shall mean access to the Product(s) by Internet Protocol ("IP") ranges or by another means of authentication agreed between the Publisher and Customer or Institutions (if applicable) from time to time.

II. Authorized Use of Product(s)

Customer, the Institutions (if applicable), and Authorized Users may use the Product(s) for Educational Purposes as follows:

Analysis . Authorized Users shall be permitted to extract or use information contained in the Product(s) for Educational Purposes, including, but not limited to, text and data mining, extraction and manipulation of information for the purposes of illustration, explanation, example, comment, criticism, teaching, research, or analysis.

Course Packs . Customer, the Institutions, and Authorized Users may use a Reasonable Amount of the Product(s) in the preparation of course packs or other educational materials.

Digital Copy . Customer, the Institutions, and Authorized Users may download and digitally copy a Reasonable Amount of the Product(s).

Display . Customer, the Institutions, and Authorized Users shall have the right to electronically display the Product(s) to the extent necessary to further the intent and purpose of this Agreement.

Electronic Reserve . Customer, the Institutions, and Authorized Users may use a Reasonable Amount of each of the Product(s) in connection with specific courses of instruction offered by Customer.

Interlibrary Loan . The Customer and the Institutions shall be permitted to use Reasonable Amounts of the Content to fulfill occasional requests from other, non-participating institutions, a practice commonly called Interlibrary Loan ("ILL"). Customer and the Institutions shall fulfill such requests in compliance with Section 108 of the United States Copyright Law (17 USC S108, "Limitations on exclusive rights: Reproduction by libraries and archives") and the Guidelines for the Proviso of Subsection 108(2g)(2) prepared by the National Commission on New Technological Uses of Copyrighted Works (CONTU).

The electronic form of the Product(s) may be used as a source for ILL. Customer and the Institutions shall include copyright notices on all ILL transmissions. Notwithstanding anything herein to the contrary, in no event shall any non-secure electronic transmission of files be permitted.

Print Copy . Customer, the Institutions, and Authorized Users may print a Reasonable Amount of the Product(s).

Recover Copying Costs . Customer and the Institutions may charge a reasonable fee to cover costs of copying or printing portions of Product(s) for Authorized Users.

Scholarly Sharing . Authorized Users may transmit to a third party colleague in hard copy or electronically, Reasonable Amounts of the Product(s) for personal use, professional use, or Educational Purposes but in no event for Commercial Use. In addition, Authorized Users have the right to use, with appropriate credit, figures, tables, and brief excerpts from the Product(s) in the Authorized User's own scientific, scholarly, and educational works.

Text Mining . Authorized Users may use the licensed material to perform and engage in text mining/data mining activities for legitimate academic research and other Educational Purposes. Those uses beyond educational use shall require permission from the Publisher.

III. Restrictions

Except as provided herein, the institution shall make reasonable efforts to inform its authorized users not to use, alter, decompile, modify, display, or distribute the Product(s) as follows:

Alter Identification . Remove, obscure, or modify copyright notices, text acknowledging, attributions, or other means of identification or disclaimers as they appear. Alter Product(s).

Alter, decompile, adapt, or modify the Product(s), except to the extent necessary to make it perceptible on a computer screen, or as otherwise permitted in this Agreement. Alteration of words or their order is strictly prohibited.

Commercial Use . No Commercial Use of the Product(s) shall be permitted unless the Customer or an Authorized User has been granted prior written consent by an authorized representative of the Product(s). Use of all or any part of the Product(s) for any Commercial Use or for any purpose other than Educational Purposes.

Distribution . Display or distribute any part of the Product(s) on any electronic network, including without limitation, the Internet, and any other distribution medium now in existence or hereinafter created, other than by a Secure Authentication; print and distribute any portion(s) of the Product(s)s to persons or entities other than the Customer or Authorized Users, except as provided in Section II.

JECT acknowledges that the Customer cannot police or control the actions of its students, faculty, and other Authorized Users with respect to their use of the Product(s). In the event of abuse, the institution shall make prompt and reasonable efforts to heal the breach and notify the publisher.

IV. Term and Termination

This agreement shall commence on the Effective Date and shall remain in effect unless and until terminated as permitted herein (the "Term"). There is no perpetual electronic access to content made available during the term of the agreement.

JECT may terminate this Agreement if Customer violates any of the terms and conditions set forth herein. In the event of any termination of access, JECT will promptly notify the Customer of the basis for termination.

The Customer may terminate this Agreement if sufficient funds are not provided or allotted in future government-approved budgets of the Customer (or reasonably available or expected to become available from other sources at the time the Customer’s payment obligation attaches) to permit the Subscriber, in the exercise of its reasonable administrative discretion, to continue this Agreement.

In the event of any unauthorized use of the Product(s) by an Authorized User, Customer shall cooperate with JECT in the investigation of any unauthorized use of the Product(s) of which it is made aware and shall use reasonable efforts to remedy such unauthorized use and prevent its recurrence. JECT may terminate such Authorized User's access to the Product(s) after first providing reasonable notice to the Customer (in no event less than two (2) weeks) and cooperating with the Customer to avoid recurrence of any unauthorized use. In the event of any termination of access, JECT will promptly notify the Customer

. V. Refunds

In the event that a subscription is canceled by the Customer prior to the subscription end date, the following will be used as guidelines for refunds.

Electronic subscriptions . The Customer shall be entitled to a full refund within 14 days of the start of the most recent subscription term. Refunds requested after 14 days but no later than 60 days from the start of the most recent subscription term will be allowed, minus a 30% processing fee. Refunds will not be granted if requested more than 60 days after the start of the most recent subscription term.

Journal on Excellence in College Teaching Center for Teaching Excellence Miami University 317 Laws Hall Oxford, Ohio 45056

All rights reserved | Miami University | The Journal on Excellence in College Teaching

More information about the publishing system, Platform and Workflow by OJS/PKP.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Adv Med Educ Prof
  • v.2(3); 2014 Jul

The role of critical thinking skills and learning styles of university students in their academic performance

Zohre ghazivakili.

1 Emergency medical services department, Paramedical school, Alborz University of Medical Sciences, Karaj, Iran;

ROOHANGIZ NOROUZI NIA

2 Educational Development Center, Alborz University of Medical Sciences, Karaj, Iran;

FARIDE PANAHI

3 Nursing and midwifery school, Shahid Beheshti University of Medical Sciences, Tehran, Iran;

MEHRDAD KARIMI

4 Department of Epidemiology and Biostatistics, Public Health School, Tehran, Iran;

HAYEDE GHOLSORKHI

5 Medical school, Alborz University of Medical Sciences, Karaj, Iran;

ZARRIN AHMADI

6 Amirkabir University of Technology(Polytechnic), Tehran, Iran

Introduction: The Current world needs people who have a lot of different abilities such as cognition and application of different ways of thinking, research, problem solving, critical thinking skills and creativity. In addition to critical thinking, learning styles is another key factor which has an essential role in the process of problem solving. This study aimed to determine the relationship between learning styles and critical thinking of students and their academic performance in Alborz University of Medical Science.

Methods: This cross-correlation study was performed in 2012, on 216 students of Alborz University who were selected randomly by the stratified random sampling. The data was obtained via a three-part questionnaire included demographic data, Kolb standardized questionnaire of learning style and California critical thinking standardized questionnaire. The academic performance of the students was extracted by the school records. The validity of the instruments was determined in terms of content validity, and the reliability was gained through internal consistency methods. Cronbach's alpha coefficient was found to be 0.78 for the California critical thinking questionnaire. The Chi Square test, Independent t-test, one way ANOVA and Pearson correlation test were used to determine relationship between variables. The Package SPSS14 statistical software was used to analyze data with a significant level of p<0.05.

Results: Our findings indicated the significant difference of mean score in four learning style, suggesting university students with convergent learning style have better performance than other groups. Also learning style had a relationship with age, gender, field of study, semester and job. The results about the critical thinking of the students showed that the mean of deductive reasoning and evaluation skills were higher than that of other skills and analytical skills had the lowest mean and there was a positive significant relationship between the students’ performance with inferential skill and the total score of critical thinking skills (p<0.05). Furthermore, evaluation skills and deductive reasoning had significant relationship. On the other hand, the mean total score of critical thinking had significant difference between different learning styles.

Conclusion: The results of this study showed that the learning styles, critical thinking and academic performance are significantly associated with one another. Considering the growing importance of critical thinking in enhancing the professional competence of individuals, it's recommended to use teaching methods consistent with the learning style because it would be more effective in this context.

Introduction

The current world needs people with a lot of capabilities such as understanding and using different ways of thinking, research, problem solving, critical thinking and creativity. Critical thinking is one of the aspects of thinking that has been accepted as a way to overcome the difficulties and to facilitate the access to information in life ( 1 ).

To Watson and Glizer, critical thinking is a combination of knowledge, attitude, and performance of every individual. They also believe that there are some skills of critical thinking such as perception, assumption recognition deduction, interpretation and evaluation of logical reasoning. They argue that the ability of critical thinking, processing and evaluation of previous information with new information result from inductive and deductive reasoning of solving problems. Watson and Glizer definition of critical thinking has been the basis of critical thinking tests that are widely used to measure the critical thinking today ( 2 ).

World Federation for Medical Education has considered critical thinking one of the medical training standards so that in accredited colleges this subject is one of the key points. In fact, one of the criteria for the accreditation of a learning institute is the measurement of critical thinking in its students ( 3 ).

In addition to critical thinking, learning style, i.e. the information processing method, of the learners, is an important key factor that has a major role in problem solving. According to David Kolb’s theory, learning is a four-step process that includes concrete experience, reflective observation, abstract conceptualization and active experimentation. This position represents two dimensions: concrete experience versus abstract thinking, and reflective observation to active experimentation. These dimensions include four learning styles: divergent, convergent, assimilate, and accommodate. According to Kolb and Ferry, the learner needs four different abilities to function efficiently: Learning styles involve several variables such as academic performance of learner, higher education improvement; critical thinking and problem solving ( 4 ).

Due to the importance of learning styles and critical thinking in students' academic performance, a large volume of educational research has been devoted to these issues in different countries. Demirhan, Besoluk and Onder (2011) in their study on critical thinking and students’ academic performance from the first semester to two years later have found that contrary to expectations the students’ critical thinking level reduced but the total mean of students’ scores increased. This is due to the fact that the students are likely to increase adaptive behavior with environment and university and reduce the stress during their education ( 1 ).

In another study over 330 students in Turkey, the students who had divergent learning style, had lower scores in critical thinking in contrast with students who have accommodator learning style ( 5 ).

Also Mahmoud examined the relationship between critical thinking and learning styles of the Bachelor students with their academic performance in 2012. In this study all the nursing students of the university in the semesters four, six and eight were studied. The results did not show any significant relationship between critical thinking and learning styles of nursing students with their academic performance ( 6 ).

Another research by Nasrabadi in 2012 showed a positive relationship between critical thinking attitudes and student's academic achievement. The results showed that there was a significant difference between the levels of critical thinking of assimilating and converge styles. Also converging, diverging, assimilating and accommodating styles had the highest level of critical thinking, respectively ( 4 ). Among other studies we can refer to Sharma’s study in 2011 whose results suggested a relationship between the academic performance and learning styles ( 7 ).

Today university students should not only think but also should think differently and should not only remember the knowledge in their mind but also should research the best learning style among different learning styles. Therefore, the study on the topic of how the students think and how they learn has received great emphasis in recent years. In this regard, with the importance of the subject, researchers attempted to doa research in this area to determine the relationship between critical thinking and learning styles with academic performance of the students at Alborz University of Medical Sciences.

This study is a descriptive-analytic, cross sectional study and investigates the relationship between critical thinking and learning styles with students’ academic performance of Alborz University of Medical Science in 2012. After approval and permission from university’s authorities and in coordination with official faculties, the critical thinking and learning styles questionnaire was given to the undergraduate students in associate degree, bachelor, medicine (second semester and after that). The total number of participants in the study was 216 students with different majors such as medical, nursing and midwifery, and health and medical emergency students. The tool to collect the data was a two-part questionnaire of Kolb's learning styles and California's critical thinking skills test (form B). The Kolb's questionnaire has two parts. The first part asks for demographic information and the second part includes 12 multiple choice questions. The participants respond to the questions with regard to how they learn, and the scores of respondents are ranked from 1 to 4 in which 4 is most consistent with the participants’ learning style 3 to some extent, 2 poorly consistent and 1 not consistent To find the participants’ learning styles, the first choice of all 12 questions were added together and this was repeated for other choices. Thus, four total scores for the four learning styles were obtained, the first for concrete experience learning style, the second for reflective observation of learning style, the third for abstract conceptualization learning style and the forth for active experimentation learning style. The highest score determined the learning style of the participant. The California critical thinking skills test (form B) includes 34 multiple choice questions with one correct answer in five different areas of critical thinking skills, including evaluation, inference, analysis, inductive reasoning and deductive reasoning. The answering time was 45 minutes and the final score is 34 and the achieved score in each section of the test varies from 0 to 16. In the evaluation section, the maximum point is 14, in analysis section 9, in inference section 11, in inductive reasoning 16 and in deductive reasoning the maximum point was 14. So there were 6 scores for each participant, which included a critical thinking total score and 5 score for critical thinking skills. Dehghani, Jafari Sani, Pakmehr and Malekzadeh found that the reliability of the questionnaire was 78% in a research. In the study of Khalili et al., the confidence coefficient was 62% and construct validity of all subscales with positive and high correlation were reported between 60%-65%. So this test was reliable for the research. Collecting the information was conducted in two stages. In the first stage, the questionnaires were given to the students and the objectives and importance of the research were mentioned. In the next stage, the students' academic performance was reviewed. After data collection, the data were coded and analyzed, using the SPSS 14 ( SPSS Inc, Chicago, IL, USA) software. To describe the data, descriptive statistics were used such as mean and standard deviation for continues variables and frequency for qualitative variables. Chi Square test, Independent t-test, one way ANOVA and Pearson correlation test were used to determine the relationship between variables at a significant level of p<0.05.

Research hypothesis

  • There is a relationship between Alborz University of Medical Sciences students’ learning styles and their demographic information. 
  • There is a relationship between Alborz University of Medical Sciences students’ critical thinking and their demographic information. 
  • There is a relationship between Alborz University of Medical Sciences students’ academic performance and their demographic information. 
  • There is a relationship between Alborz University of Medical Sciences students’ learning styles and their academic performance. 
  • There is a relationship between Alborz University of Medical Sciences students’ learning styles and their critical thinking. 

225 questionnaires were distributed of which 216 were completely responded (96%). The age range of the participants was from 16 to 45 with the mean age of (22.44±3.7). 52.8% of participants (n=114) were female, 83.3% (n=180) were single, 30.1% of participants’ (n=65) major was pediatric anesthesiology of OR, 35.2% of participants (n=76) were in fourth semester, 74.5% (n=161) were unemployed and 48.6 % (n=105) had Persian ethnicity.

The range of participants’ average grade points, which were considered as their academic performance, were from 12.51 to 19.07 with a mean of (16.75±1.3). According to Kolbs' pattern, 42.7% (n=85) had the convergent learning style (the maximum percentage) followed by 33.2 % (n= 66) with the assimilating style and only 9.5%, (n= 19) with the accommodating style (the minimum percentage).

Among the 5 critical thinking skills, the maximum mean score belonged to deductive reasoning skill (3.38±1.58) and the minimum mean score belonged to analysis skill (1.67±1.08).

Table 1 shows the frequency distribution and demographic variables and the academic performance of the students. According to the Chi-square (Χ 2 ) p-value, there was a significant relationship between gender and learning style (p=0.032), so that nearly 50 percent of males had the assimilating learning style and nearly 52 percent of the females had the convergent learning style.

The relationship between demographic variable and student’s academic performance with learning styles

The relationship between employment, major and semester of studying with the learning style was significant at a p-value of 0.049, 0.006, 0.009 and 0.001, respectively. The mean and standard deviation of age and students' academic performance in the four learning styles are reported in Table 1 .

Using the one way analysis of variance (One way ANOVA) and comparing the mean age of four groups, we found a significant relation between age and academic performance with learning style (p=0.049).

The students with convergent learning style had a better academic performance than those with other learning styles and in the performance of those with the assimilating learning style the weakest.

Table 2 shows the relationship between the total score of critical thinking skills and each of the demographic variables and academic performance. The results of the t-test and one way ANOVA variance analysis are reported to investigate the relationship between each variable with skills below the mean standard deviation.

Relationships between CCT Skills and demographic variables Using t-test and ANOVA. Pearson Correlation coefficient between age and Student's performance with CCT Skills was reported

* Significant in surface 0.05 

** Significant in surface 0.01

Based on the t-test and ANOVA, p-value of t and F, the mean of total score of critical thinking skills had only significant relationship with students’ major (p=0.020). Also a significant relationship was found between the major of students and gender with inference skill; semester of study with deductive reasoning skill, and ethnicity with 2 skills of inference and deductive reasoning (p<0.05).

Also regarding the relationship between age and the student academic performance with each of the critical thinking skills, the Pearson correlation coefficient results indicated a significant positive relationship but a negative relationship between age and analysis skill, i.e. with the increase of age, the score of analysis skill was reduced (p<0.05). Academic performance of the students had a direct significant relationship with critical thinking total score and inference skill; the more the score, the better the academic performance of students (p<0.05).

Table 3 shows the mean and standard deviation of learning styles score in the 4 groups of learning style. Using ANOVA one way ANOVA, the relationship between learning style and critical thinking skills and the comparison of the mean score for each skill in four styles are reported in the last column of the Table 3 .

The Relationship between critical thinking styles with learning styles

Based on the p-value of ANOVA, the mean of evaluation skill and inductive reasoning skill had a significant difference and the relationship between these two skills with learning style was significant (p<0.05). Also the mean of critical thinking’s total score was significantly different in the four groups and the relationship between total score with learning style was significant, too (p<0.05).

An external file that holds a picture, illustration, etc.
Object name is jamp-2-95-g001.jpg

The mean and confidence interval of university students’ performance in four learning  styles

An external file that holds a picture, illustration, etc.
Object name is jamp-2-95-g002.jpg

The mean and confidene interval of critical thinking skills

The study findings showed that the popular learning style among the students was the convergent style followed by the assimilating style which is consistent with Kolb's theory stating that medical science students usually have this learning style ( 8 ). This result was consistent with the results of other studies ( 9 , 10 ). In Yenice's study in which the student of training teacher were the target of the project, the most frequent learning styles were divergent and assimilating styles and these differences originate from the different target group of study in 2012 ( 11 ).

This study showed a significant relationship between learning style and gender, age, semester and employment. Meyari et al. did not find any significant relationship between learning style, age and gender of the freshman but for the fifth semester students, a significant relationship with age and gender was found ( 10 ). Also in Yenice's study, no relationship with learning style, gender, semester and age was found.

Furthermore, in the first semester divergent style, in the second semester assimilating style and in the third and fourth semester divergent style were accounted for the highest percentage. Also in the group age of 17-20 years the assimilating style and the age of 21-24 years the divergent style were dominant styles ( 11 ).

In the present study, it was found a significant positive relationship between convergent learning style and academic performance. Also in the study of Pooladi et al. the majority of the students had convergent style and they also found a significant relationship between learning style, total mean score and the mean of practical courses ( 12 ). Nasrabadi et al. found that students with the highest achievement were those with convergent style with a significant difference with those with divergent style ( 4 ). But the results are inconsistent to Meyari et al.’s ( 10 ).

In this study, the obtained mean score from the critical thinking questionnaire was (7.15±2.41) that was compared with that in the study of Khalili and Hoseinzadeh which was to validate and make reliable the critical thinking skills questionnaire of California (form B) in the Iranian nursing students; the mean of total score was about the 11th percentile of this study ( 13 ).

In other words, the computed score for critical thinking of the students participating was lower than 11 score that is in the 50th percentile and of course is lower than normal range.

Hariri and Bagherinezhad had shown that the computed score for Bachelor and Master students of Health faculty was also lower than the norm in Iran ( 14 ). Also Mayer and Dayer came to a similar conclusion in critical thinking skill in the Agricultural university of Florida’s students in 2006 ( 15 ).

But in Gharib et al.’s study, the total score of critical thinking test among the freshman and senior of Health-care management was in normal range ( 16 ). Wangensteen et al., found that the critical thinking skills of the newest graduate nursing students were relatively high in Sweden in 2010 ( 17 ).

In this study, students of all levels (Associate, Bachelor and PhD) with various fields of study participated but other studies have been limited to certain graduate courses that may explain the differences in levels of special critical thinking skills score in this study. In this study we found a significant relationship between total score of critical thinking and major of the students. This result is consistent with Serin et al. ( 18 ).

It was found a significant relationship between major of participants, gender and inference skill, semester and deductive reasoning skill, ethnicity and both inference and deductive reasoning skills.

In the Yenice's study significant relationship between critical thinking, group of age, gender and semester was seen ( 11 ). In Wangensteen et al.’s ( 17 ) study in the older age group, the level of critical thinking score increased. In Serin et al.’s ( 18 ) study the level of communication skills in girls was better than that in boys. And also a significant relationship was found between critical thinking and academic semester, but in Mayer and Dayer’s study no significant relationship between critical thinking levels and gender was found ( 4 , 15 ).

The results also showed that the total score of critical thinking and analytical skills of students and their performance had a significant relationship. Nasrabady et al.’s study also showed that there was a positive relationship between critical thinking reflection attitude and academic achievement ( 4 ). This is contradictory with what Demirhan, Bosluk and Ander found ( 6 , 15 ).

The results of the relationship between learning style and critical thinking indicated that the relationship between evaluation and inductive reasoning was significant to learning style (p<0.05). The relationship of critical thinking total score with learning style was also significant (p<0.05). Thus the total score for those with the conforming style of critical skills was more than that with other styles. But in the subgroup of inference skills, those with the convergent style had a higher mean than those with other styles.

Yenice found a negative relationship between critical thinking score and divergent learning style and a positive relation between critical thinking score and accommodating style ( 11 ).

Siriopoulos and Pomonis in their study compared the learning style and critical thinking skills of students in two phases: at the beginning and end of education and came to this conclusion that the learning style of students changed in the second phase.

For example, the divergent, convergent and accommodating styles languished and the assimilating style (combination of abstract thinking and reflective observation) was noticeably strengthened. However, those with converging learning style had higher levels of critical thinking.

The level of students’ critical thinking was lower in all international standards styles. Perhaps it was because of widely used teacher-centered teaching methods (lectures) in that university ( 19 ).

The results in the study of Nasrabady et al. showed that there was a significant difference between the level of learners’ critical thinking and divergent and assimilating styles ( 4 ).

Those with converging, diverging, assimilating and accommodating styles had the highest level of critical thinking, respectively.

Also there was a positive significant relationship between the reflective observation method and critical thinking and also a negative significant relationship between the abstract conceptualization method and critical thinking ( 4 ). But in another study that Mahmud has done in 2012, he did not find any significant relationship between learning style, critical thinking and students’ performance ( 6 ).

The results of this study showed that the students’ critical thinking skills of this university aren't acceptable. Also learning styles, critical thinking and academic performance have significant relationship with each other. Due to the important role of critical thinking in enhancing professional competence, it is recommend using teaching methods which are consistent with the learning styles.

Acknowledgment

This study is based on a research project that was approved in Research Deputy of Alborz University of Medical sciences. We sincerely appreciate all in Research Deputy of Alborz University of Medical sciences who supported us financially and morally and all students and colleagues who participated in this study.

Conflict of Interest: None declared.

References:

Warren Berger

A Crash Course in Critical Thinking

What you need to know—and read—about one of the essential skills needed today..

Posted April 8, 2024 | Reviewed by Michelle Quirk

  • In research for "A More Beautiful Question," I did a deep dive into the current crisis in critical thinking.
  • Many people may think of themselves as critical thinkers, but they actually are not.
  • Here is a series of questions you can ask yourself to try to ensure that you are thinking critically.

Conspiracy theories. Inability to distinguish facts from falsehoods. Widespread confusion about who and what to believe.

These are some of the hallmarks of the current crisis in critical thinking—which just might be the issue of our times. Because if people aren’t willing or able to think critically as they choose potential leaders, they’re apt to choose bad ones. And if they can’t judge whether the information they’re receiving is sound, they may follow faulty advice while ignoring recommendations that are science-based and solid (and perhaps life-saving).

Moreover, as a society, if we can’t think critically about the many serious challenges we face, it becomes more difficult to agree on what those challenges are—much less solve them.

On a personal level, critical thinking can enable you to make better everyday decisions. It can help you make sense of an increasingly complex and confusing world.

In the new expanded edition of my book A More Beautiful Question ( AMBQ ), I took a deep dive into critical thinking. Here are a few key things I learned.

First off, before you can get better at critical thinking, you should understand what it is. It’s not just about being a skeptic. When thinking critically, we are thoughtfully reasoning, evaluating, and making decisions based on evidence and logic. And—perhaps most important—while doing this, a critical thinker always strives to be open-minded and fair-minded . That’s not easy: It demands that you constantly question your assumptions and biases and that you always remain open to considering opposing views.

In today’s polarized environment, many people think of themselves as critical thinkers simply because they ask skeptical questions—often directed at, say, certain government policies or ideas espoused by those on the “other side” of the political divide. The problem is, they may not be asking these questions with an open mind or a willingness to fairly consider opposing views.

When people do this, they’re engaging in “weak-sense critical thinking”—a term popularized by the late Richard Paul, a co-founder of The Foundation for Critical Thinking . “Weak-sense critical thinking” means applying the tools and practices of critical thinking—questioning, investigating, evaluating—but with the sole purpose of confirming one’s own bias or serving an agenda.

In AMBQ , I lay out a series of questions you can ask yourself to try to ensure that you’re thinking critically. Here are some of the questions to consider:

  • Why do I believe what I believe?
  • Are my views based on evidence?
  • Have I fairly and thoughtfully considered differing viewpoints?
  • Am I truly open to changing my mind?

Of course, becoming a better critical thinker is not as simple as just asking yourself a few questions. Critical thinking is a habit of mind that must be developed and strengthened over time. In effect, you must train yourself to think in a manner that is more effortful, aware, grounded, and balanced.

For those interested in giving themselves a crash course in critical thinking—something I did myself, as I was working on my book—I thought it might be helpful to share a list of some of the books that have shaped my own thinking on this subject. As a self-interested author, I naturally would suggest that you start with the new 10th-anniversary edition of A More Beautiful Question , but beyond that, here are the top eight critical-thinking books I’d recommend.

The Demon-Haunted World: Science as a Candle in the Dark , by Carl Sagan

This book simply must top the list, because the late scientist and author Carl Sagan continues to be such a bright shining light in the critical thinking universe. Chapter 12 includes the details on Sagan’s famous “baloney detection kit,” a collection of lessons and tips on how to deal with bogus arguments and logical fallacies.

critical thinking jurnal

Clear Thinking: Turning Ordinary Moments Into Extraordinary Results , by Shane Parrish

The creator of the Farnham Street website and host of the “Knowledge Project” podcast explains how to contend with biases and unconscious reactions so you can make better everyday decisions. It contains insights from many of the brilliant thinkers Shane has studied.

Good Thinking: Why Flawed Logic Puts Us All at Risk and How Critical Thinking Can Save the World , by David Robert Grimes

A brilliant, comprehensive 2021 book on critical thinking that, to my mind, hasn’t received nearly enough attention . The scientist Grimes dissects bad thinking, shows why it persists, and offers the tools to defeat it.

Think Again: The Power of Knowing What You Don't Know , by Adam Grant

Intellectual humility—being willing to admit that you might be wrong—is what this book is primarily about. But Adam, the renowned Wharton psychology professor and bestselling author, takes the reader on a mind-opening journey with colorful stories and characters.

Think Like a Detective: A Kid's Guide to Critical Thinking , by David Pakman

The popular YouTuber and podcast host Pakman—normally known for talking politics —has written a terrific primer on critical thinking for children. The illustrated book presents critical thinking as a “superpower” that enables kids to unlock mysteries and dig for truth. (I also recommend Pakman’s second kids’ book called Think Like a Scientist .)

Rationality: What It Is, Why It Seems Scarce, Why It Matters , by Steven Pinker

The Harvard psychology professor Pinker tackles conspiracy theories head-on but also explores concepts involving risk/reward, probability and randomness, and correlation/causation. And if that strikes you as daunting, be assured that Pinker makes it lively and accessible.

How Minds Change: The Surprising Science of Belief, Opinion and Persuasion , by David McRaney

David is a science writer who hosts the popular podcast “You Are Not So Smart” (and his ideas are featured in A More Beautiful Question ). His well-written book looks at ways you can actually get through to people who see the world very differently than you (hint: bludgeoning them with facts definitely won’t work).

A Healthy Democracy's Best Hope: Building the Critical Thinking Habit , by M Neil Browne and Chelsea Kulhanek

Neil Browne, author of the seminal Asking the Right Questions: A Guide to Critical Thinking, has been a pioneer in presenting critical thinking as a question-based approach to making sense of the world around us. His newest book, co-authored with Chelsea Kulhanek, breaks down critical thinking into “11 explosive questions”—including the “priors question” (which challenges us to question assumptions), the “evidence question” (focusing on how to evaluate and weigh evidence), and the “humility question” (which reminds us that a critical thinker must be humble enough to consider the possibility of being wrong).

Warren Berger

Warren Berger is a longtime journalist and author of A More Beautiful Question .

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. How to Write a Critical Thinking Essay: Examples, Topics, & Outline

    critical thinking jurnal

  2. TASK 3 Critical Thinking Student’s Book

    critical thinking jurnal

  3. (PDF) STUDENTS’ CRITICAL THINKING IN WRITING A THESIS USING THE

    critical thinking jurnal

  4. 6 Main Types of Critical Thinking Skills (With Examples)

    critical thinking jurnal

  5. Critical Thinking Definition, Skills, and Examples

    critical thinking jurnal

  6. Critical thinking

    critical thinking jurnal

VIDEO

  1. Jurnal Refleksi Design Thinking

  2. Jurnal Refleksi Computational Thinking

  3. Jurnal Dwi Mingguan 1.1

  4. Critical Thinking Skill Not So Common

  5. Critical review of a jurnal

  6. JURNAL REFLEKSI MODEL Six Thinking Hats MODUL 1.1 _NYI RENI_CGP_A.10

COMMENTS

  1. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  2. Critical Thinking: A Model of Intelligence for Solving Real-World

    4. Critical Thinking as an Applied Model for Intelligence. One definition of intelligence that directly addresses the question about intelligence and real-world problem solving comes from Nickerson (2020, p. 205): "the ability to learn, to reason well, to solve novel problems, and to deal effectively with novel problems—often unpredictable—that confront one in daily life."

  3. Understanding and teaching critical thinking—A new approach

    1. Introduction. Developing students' critical thinking skills is regarded as a highly important educational goal in many societies around the world, as it is seen as promoting such disparate qualities as democracy and personal development (Behar-Horenstein and Niu, 2011, Beyer, 1995, Facione, 2006, Martin, 2005, Tsui, 1998).Despite the importance of critical thinking as an educational goal ...

  4. PDF Jurnal Taman Cendekia Vol. 01 No. 02 Desember 2017 Critical Thinking

    JURNAL TAMAN CENDEKIA VOL. 01 NO. 02 DESEMBER 2017 CRITICAL THINKING SKILL: KONSEP DAN INIDIKATOR PENILAIAN Ratna Hidayah1, Moh. Salimi2, Tri Saptuti Susiani3 Universitas Sebelas Maret Email: [email protected] Abstract: The world development of the 21st century is marked by the progress and the demands of

  5. Trends and hotspots in critical thinking research over the past two

    Although WOS contains a large number of leading journals available and detailed information, data sources limited to WOS cannot collect all publications related to critical thinking [21], possibly leading to an incomplete picture of critical thinking research in education. In future, we hope to integrate Scopus and WOS, making good use of the ...

  6. Understanding and teaching critical thinking—A new approach

    Abstract. Developing students' critical thinking is a major educational goal in societies around the world. In spite of this, the research community has had serious problems handling this highly prized goal. In reference to these problems, several issues have been discussed, one being the theory issue, where the theoretical development has ...

  7. Full article: Fostering critical thinking skills in secondary education

    Our critical thinking skills framework. The focus on critical thinking skills has its roots in two approaches: the cognitive psychological approach and the educational approach (see for reviews, e.g. Sternberg Citation 1986; Ten Dam and Volman Citation 2004).From a cognitive psychological approach, critical thinking is defined by the types of behaviours and skills that a critical thinker can show.

  8. Double Helix: A Journal of Critical Thinking and Writing

    About Double Helix. Double Helix is an international, peer-reviewed journal of pedagogy. It publishes work addressing linkages between critical thinking and writing, in and across the disciplines, and it is especially interested in pieces that explore and report on connections between pedagogical theory and classroom practice. Current Volume:

  9. Revisiting the origin of critical thinking

    According to the Oxford English Dictionary, the term 'critical thinking' first appeared in 1815, in the British literary journal The Critical Review. The journal was founded in 1756, comprising mainly of lengthy book reviews, and contributors included Samuel Johnson and David Hume.

  10. Full article: Enabling critical thinking development in higher

    Teaching critical thinking. The Foundation for Critical Thinking (Citation 2019) claims that although thinking is a natural process, without intervention and structured support, it can often be biased, distorted, partial, uninformed and potentially prejudiced.Their assertion highlights the need for educators to be cognisant in their teaching approaches of cultivating good thinking habits in ...

  11. Critical Thinking: The Development of an Essential Skill for Nursing

    Critical thinking is applied by nurses in the process of solving problems of patients and decision-making process with creativity to enhance the effect. It is an essential process for a safe, efficient and skillful nursing intervention. Critical thinking according to Scriven and Paul is the mental active process and subtle perception, analysis ...

  12. Frontiers

    Scientific thinking is the ability to generate, test, and evaluate claims, data, and theories (e.g., Bullock et al., 2009; Koerber et al., 2015 ). Simply stated, the basic tenets of scientific thinking provide students with the tools to distinguish good information from bad. Students have access to nearly limitless information, and the skills ...

  13. (PDF) Defining Critical Thinking

    Critical thinking is defined by Scriven and Paul (2003) as the process to conceptualize, apply, analyze, synthesize, and/or evaluate information collected from observation, experience, feedback ...

  14. Revisiting creativity and critical thinking through content analysis

    Twenty-seven peer-reviewed journal articles were selected for a systematic review. The selection criteria include the utilization of psychometrically valid and reliable creativity and critical thinking measure and the report of either a correlation between measures of creativity and critical thinking or a report of effect size of intervention ...

  15. How Do Critical Thinking Ability and Critical Thinking Disposition

    Relationship Between Critical Thinking and Mental Health. Associating critical thinking with mental health is not without reason, since theories of psychotherapy have long stressed a linkage between mental problems and dysfunctional thinking (Gilbert, 2003; Gambrill, 2005; Cuijpers, 2019).Proponents of cognitive behavioral therapy suggest that the interpretation by people of a situation ...

  16. Meningkatkan Kemampuan Berpikir Kritis Melalui Problem Based ...

    Pre-test and post-test are employed to measure critical thinking skill based on cognitive levels from Bloom. In measuring students' attitudes in learning, questionnaires are applied. The findings show that there is an increase in critical thinking skill and students' attitudes towards the application of problem based learning

  17. An integrated critical thinking framework for the 21st century

    Critical thinking is often described as a metacognitive process, consisting of a number of sub-skills (e.g. analysis, evaluation and inference) that, when used appropriately, increases the chances of producing a logical conclusion to an argument or solution to a problem. ... Journal of Experimental Psychology: Learning, Memory, and Cognition ...

  18. Full article: Children's critical thinking skills: perceptions of

    Introduction. The importance of fostering and developing critical thinking (CT) in children from a young age (Lai Citation 2011) has been widely discussed and endorsed in scholarship (Facione Citation 2011; Lipman Citation 1991).Education policy often highlights CT skills as an essential component of twenty-first-century skills - the set of skills needed to solve the challenges of a rapidly ...

  19. Tools for Critical Thinking: A Message From the Editors

    We understand critical thinking to be purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgment is based. Critical thinking is essential as a tool of inquiry.

  20. The role of critical thinking skills and learning styles of university

    Critical thinking is one of the aspects of thinking that has been accepted as a way to overcome the difficulties and to facilitate the access to information in life . ... The influence of student learning style on critical thinking skill. Journal of Agricultural Education. 2006; 47 (1):43.

  21. A Crash Course in Critical Thinking

    Neil Browne, author of the seminal Asking the Right Questions: A Guide to Critical Thinking, has been a pioneer in presenting critical thinking as a question-based approach to making sense of the ...

  22. Exploring higher education students' critical thinking skills through

    1. Introduction. Critical thinking has been identified as one of the most important outcomes of higher education courses (Dunne, 2015; Facione, 1990).It is the "kind of thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions" (Halpern, 1999, pp. 70).Strong critical thinking skills are therefore considered essential if higher education ...

  23. Establishes the "Media Literacy and Critical Thinking Act"

    The bill requires the Department of Elementary and Secondary Education to establish a "Media Literacy and Critical Thinking" pilot program for the 2025-26 and 2026-27 school years. Between five and seven diverse schools shall be selected by DESE to participate in the Pilot Program as specified in the bill.

  24. Thinking Skills and Creativity

    About the journal. This leading international journal, launched in 2006, uniquely identifies and details critical issues in the future of learning and teaching of creativity, as well as innovations in teaching for thinking. As a peer-reviewed forum for interdisciplinary researchers and communities of researcher-practitioner-educators, the ...