• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is research study all about

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods.

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

event feedback software

Event Feedback Software: Top 11 Best in 2024

Apr 9, 2024

free market research tools

Top 10 Free Market Research Tools to Boost Your Business

Behavior analytics tools

Best 15 Behavior Analytics Tools to Explore Your User Actions

Apr 8, 2024

concept testing tools

Top 7 Concept Testing Tools to Elevate Your Ideas in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process

A Beginner's Guide to Starting the Research Process

Research process steps

When you have to write a thesis or dissertation , it can be hard to know where to begin, but there are some clear steps you can follow.

The research process often begins with a very broad idea for a topic you’d like to know more about. You do some preliminary research to identify a  problem . After refining your research questions , you can lay out the foundations of your research design , leading to a proposal that outlines your ideas and plans.

This article takes you through the first steps of the research process, helping you narrow down your ideas and build up a strong foundation for your research project.

Table of contents

Step 1: choose your topic, step 2: identify a problem, step 3: formulate research questions, step 4: create a research design, step 5: write a research proposal, other interesting articles.

First you have to come up with some ideas. Your thesis or dissertation topic can start out very broad. Think about the general area or field you’re interested in—maybe you already have specific research interests based on classes you’ve taken, or maybe you had to consider your topic when applying to graduate school and writing a statement of purpose .

Even if you already have a good sense of your topic, you’ll need to read widely to build background knowledge and begin narrowing down your ideas. Conduct an initial literature review to begin gathering relevant sources. As you read, take notes and try to identify problems, questions, debates, contradictions and gaps. Your aim is to narrow down from a broad area of interest to a specific niche.

Make sure to consider the practicalities: the requirements of your programme, the amount of time you have to complete the research, and how difficult it will be to access sources and data on the topic. Before moving onto the next stage, it’s a good idea to discuss the topic with your thesis supervisor.

>>Read more about narrowing down a research topic

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what is research study all about

So you’ve settled on a topic and found a niche—but what exactly will your research investigate, and why does it matter? To give your project focus and purpose, you have to define a research problem .

The problem might be a practical issue—for example, a process or practice that isn’t working well, an area of concern in an organization’s performance, or a difficulty faced by a specific group of people in society.

Alternatively, you might choose to investigate a theoretical problem—for example, an underexplored phenomenon or relationship, a contradiction between different models or theories, or an unresolved debate among scholars.

To put the problem in context and set your objectives, you can write a problem statement . This describes who the problem affects, why research is needed, and how your research project will contribute to solving it.

>>Read more about defining a research problem

Next, based on the problem statement, you need to write one or more research questions . These target exactly what you want to find out. They might focus on describing, comparing, evaluating, or explaining the research problem.

A strong research question should be specific enough that you can answer it thoroughly using appropriate qualitative or quantitative research methods. It should also be complex enough to require in-depth investigation, analysis, and argument. Questions that can be answered with “yes/no” or with easily available facts are not complex enough for a thesis or dissertation.

In some types of research, at this stage you might also have to develop a conceptual framework and testable hypotheses .

>>See research question examples

The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you’ll use to collect and analyze it, and the location and timescale of your research.

There are often many possible paths you can take to answering your questions. The decisions you make will partly be based on your priorities. For example, do you want to determine causes and effects, draw generalizable conclusions, or understand the details of a specific context?

You need to decide whether you will use primary or secondary data and qualitative or quantitative methods . You also need to determine the specific tools, procedures, and materials you’ll use to collect and analyze your data, as well as your criteria for selecting participants or sources.

>>Read more about creating a research design

Prevent plagiarism. Run a free check.

Finally, after completing these steps, you are ready to complete a research proposal . The proposal outlines the context, relevance, purpose, and plan of your research.

As well as outlining the background, problem statement, and research questions, the proposal should also include a literature review that shows how your project will fit into existing work on the topic. The research design section describes your approach and explains exactly what you will do.

You might have to get the proposal approved by your supervisor before you get started, and it will guide the process of writing your thesis or dissertation.

>>Read more about writing a research proposal

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Is this article helpful?

Other students also liked.

  • Writing Strong Research Questions | Criteria & Examples

What Is a Research Design | Types, Guide & Examples

  • How to Write a Research Proposal | Examples & Templates

More interesting articles

  • 10 Research Question Examples to Guide Your Research Project
  • How to Choose a Dissertation Topic | 8 Steps to Follow
  • How to Define a Research Problem | Ideas & Examples
  • How to Write a Problem Statement | Guide & Examples
  • Relevance of Your Dissertation Topic | Criteria & Tips
  • Research Objectives | Definition & Examples
  • What Is a Fishbone Diagram? | Templates & Examples
  • What Is Root Cause Analysis? | Definition & Examples

What is your plagiarism score?

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Science, health, and public trust.

September 8, 2021

Explaining How Research Works

Understanding Research infographic

We’ve heard “follow the science” a lot during the pandemic. But it seems science has taken us on a long and winding road filled with twists and turns, even changing directions at times. That’s led some people to feel they can’t trust science. But when what we know changes, it often means science is working.

Expaling How Research Works Infographic en español

Explaining the scientific process may be one way that science communicators can help maintain public trust in science. Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle.

Questions about how the world works are often investigated on many different levels. For example, scientists can look at the different atoms in a molecule, cells in a tissue, or how different tissues or systems affect each other. Researchers often must choose one or a finite number of ways to investigate a question. It can take many different studies using different approaches to start piecing the whole picture together.

Sometimes it might seem like research results contradict each other. But often, studies are just looking at different aspects of the same problem. Researchers can also investigate a question using different techniques or timeframes. That may lead them to arrive at different conclusions from the same data.

Using the data available at the time of their study, scientists develop different explanations, or models. New information may mean that a novel model needs to be developed to account for it. The models that prevail are those that can withstand the test of time and incorporate new information. Science is a constantly evolving and self-correcting process.

Scientists gain more confidence about a model through the scientific process. They replicate each other’s work. They present at conferences. And papers undergo peer review, in which experts in the field review the work before it can be published in scientific journals. This helps ensure that the study is up to current scientific standards and maintains a level of integrity. Peer reviewers may find problems with the experiments or think different experiments are needed to justify the conclusions. They might even offer new ways to interpret the data.

It’s important for science communicators to consider which stage a study is at in the scientific process when deciding whether to cover it. Some studies are posted on preprint servers for other scientists to start weighing in on and haven’t yet been fully vetted. Results that haven't yet been subjected to scientific scrutiny should be reported on with care and context to avoid confusion or frustration from readers.

We’ve developed a one-page guide, "How Research Works: Understanding the Process of Science" to help communicators put the process of science into perspective. We hope it can serve as a useful resource to help explain why science changes—and why it’s important to expect that change. Please take a look and share your thoughts with us by sending an email to  [email protected].

Below are some additional resources:

  • Discoveries in Basic Science: A Perfectly Imperfect Process
  • When Clinical Research Is in the News
  • What is Basic Science and Why is it Important?
  • ​ What is a Research Organism?
  • What Are Clinical Trials and Studies?
  • Basic Research – Digital Media Kit
  • Decoding Science: How Does Science Know What It Knows? (NAS)
  • Can Science Help People Make Decisions ? (NAS)

Connect with Us

  • More Social Media from NIH

News alert: UC Berkeley has announced its next university librarian

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Research methods--quantitative, qualitative, and more: overview.

  • Quantitative Research
  • Qualitative Research
  • Data Science Methods (Machine Learning, AI, Big Data)
  • Text Mining and Computational Text Analysis
  • Evidence Synthesis/Systematic Reviews
  • Get Data, Get Help!

About Research Methods

This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. 

As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."

The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more.  This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question. 

Suggestions for changes and additions to this guide are welcome! 

START HERE: SAGE Research Methods

Without question, the most comprehensive resource available from the library is SAGE Research Methods.  HERE IS THE ONLINE GUIDE  to this one-stop shopping collection, and some helpful links are below:

  • SAGE Research Methods
  • Little Green Books  (Quantitative Methods)
  • Little Blue Books  (Qualitative Methods)
  • Dictionaries and Encyclopedias  
  • Case studies of real research projects
  • Sample datasets for hands-on practice
  • Streaming video--see methods come to life
  • Methodspace- -a community for researchers
  • SAGE Research Methods Course Mapping

Library Data Services at UC Berkeley

Library Data Services Program and Digital Scholarship Services

The LDSP offers a variety of services and tools !  From this link, check out pages for each of the following topics:  discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.

Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!

Library GIS Services

Other Data Services at Berkeley

D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues

General Research Methods Resources

Here are some general resources for assistance:

  • Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
  • Wiley Stats Ref for background information on statistics topics
  • Survey Documentation and Analysis (SDA) .  Program for easy web-based analysis of survey data.

Consultants

  • D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
  • Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
  • Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.

Related Resourcex

  • IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
  • OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
  • Sponsored Projects Sponsored projects works with researchers applying for major external grants.
  • Next: Quantitative Research >>
  • Last Updated: Apr 3, 2023 3:14 PM
  • URL: https://guides.lib.berkeley.edu/researchmethods

Banner

Research Basics

  • What Is Research?
  • Types of Research
  • Secondary Research | Literature Review
  • Developing Your Topic
  • Primary vs. Secondary Sources
  • Evaluating Sources
  • Responsible Conduct of Research
  • Additional Help

Research is formalized curiosity. It is poking and prying with a purpose. - Zora Neale Hurston

A good working definition of research might be:

Research is the deliberate, purposeful, and systematic gathering of data, information, facts, and/or opinions for the advancement of personal, societal, or overall human knowledge.

Based on this definition, we all do research all the time. Most of this research is casual research. Asking friends what they think of different restaurants, looking up reviews of various products online, learning more about celebrities; these are all research.

Formal research includes the type of research most people think of when they hear the term “research”: scientists in white coats working in a fully equipped laboratory. But formal research is a much broader category that just this. Most people will never do laboratory research after graduating from college, but almost everybody will have to do some sort of formal research at some point in their careers.

So What Do We Mean By “Formal Research?”

Casual research is inward facing: it’s done to satisfy our own curiosity or meet our own needs, whether that’s choosing a reliable car or figuring out what to watch on TV. Formal research is outward facing. While it may satisfy our own curiosity, it’s primarily intended to be shared in order to achieve some purpose. That purpose could be anything: finding a cure for cancer, securing funding for a new business, improving some process at your workplace, proving the latest theory in quantum physics, or even just getting a good grade in your Humanities 200 class.

What sets formal research apart from casual research is the documentation of where you gathered your information from. This is done in the form of “citations” and “bibliographies.” Citing sources is covered in the section "Citing Your Sources."

Formal research also follows certain common patterns depending on what the research is trying to show or prove. These are covered in the section “Types of Research.”

Creative Commons License

  • Next: Types of Research >>
  • Last Updated: Dec 21, 2023 3:49 PM
  • URL: https://guides.library.iit.edu/research_basics

what is research study all about

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is Research? – Purpose of Research

DiscoverPhDs

  • By DiscoverPhDs
  • September 10, 2020

Purpose of Research - What is Research

The purpose of research is to enhance society by advancing knowledge through the development of scientific theories, concepts and ideas. A research purpose is met through forming hypotheses, collecting data, analysing results, forming conclusions, implementing findings into real-life applications and forming new research questions.

What is Research

Simply put, research is the process of discovering new knowledge. This knowledge can be either the development of new concepts or the advancement of existing knowledge and theories, leading to a new understanding that was not previously known.

As a more formal definition of research, the following has been extracted from the Code of Federal Regulations :

what is research study all about

While research can be carried out by anyone and in any field, most research is usually done to broaden knowledge in the physical, biological, and social worlds. This can range from learning why certain materials behave the way they do, to asking why certain people are more resilient than others when faced with the same challenges.

The use of ‘systematic investigation’ in the formal definition represents how research is normally conducted – a hypothesis is formed, appropriate research methods are designed, data is collected and analysed, and research results are summarised into one or more ‘research conclusions’. These research conclusions are then shared with the rest of the scientific community to add to the existing knowledge and serve as evidence to form additional questions that can be investigated. It is this cyclical process that enables scientific research to make continuous progress over the years; the true purpose of research.

What is the Purpose of Research

From weather forecasts to the discovery of antibiotics, researchers are constantly trying to find new ways to understand the world and how things work – with the ultimate goal of improving our lives.

The purpose of research is therefore to find out what is known, what is not and what we can develop further. In this way, scientists can develop new theories, ideas and products that shape our society and our everyday lives.

Although research can take many forms, there are three main purposes of research:

  • Exploratory: Exploratory research is the first research to be conducted around a problem that has not yet been clearly defined. Exploration research therefore aims to gain a better understanding of the exact nature of the problem and not to provide a conclusive answer to the problem itself. This enables us to conduct more in-depth research later on.
  • Descriptive: Descriptive research expands knowledge of a research problem or phenomenon by describing it according to its characteristics and population. Descriptive research focuses on the ‘how’ and ‘what’, but not on the ‘why’.
  • Explanatory: Explanatory research, also referred to as casual research, is conducted to determine how variables interact, i.e. to identify cause-and-effect relationships. Explanatory research deals with the ‘why’ of research questions and is therefore often based on experiments.

Characteristics of Research

There are 8 core characteristics that all research projects should have. These are:

  • Empirical  – based on proven scientific methods derived from real-life observations and experiments.
  • Logical  – follows sequential procedures based on valid principles.
  • Cyclic  – research begins with a question and ends with a question, i.e. research should lead to a new line of questioning.
  • Controlled  – vigorous measures put into place to keep all variables constant, except those under investigation.
  • Hypothesis-based  – the research design generates data that sufficiently meets the research objectives and can prove or disprove the hypothesis. It makes the research study repeatable and gives credibility to the results.
  • Analytical  – data is generated, recorded and analysed using proven techniques to ensure high accuracy and repeatability while minimising potential errors and anomalies.
  • Objective  – sound judgement is used by the researcher to ensure that the research findings are valid.
  • Statistical treatment  – statistical treatment is used to transform the available data into something more meaningful from which knowledge can be gained.

Finding a PhD has never been this easy – search for a PhD by keyword, location or academic area of interest.

Types of Research

Research can be divided into two main types: basic research (also known as pure research) and applied research.

Basic Research

Basic research, also known as pure research, is an original investigation into the reasons behind a process, phenomenon or particular event. It focuses on generating knowledge around existing basic principles.

Basic research is generally considered ‘non-commercial research’ because it does not focus on solving practical problems, and has no immediate benefit or ways it can be applied.

While basic research may not have direct applications, it usually provides new insights that can later be used in applied research.

Applied Research

Applied research investigates well-known theories and principles in order to enhance knowledge around a practical aim. Because of this, applied research focuses on solving real-life problems by deriving knowledge which has an immediate application.

Methods of Research

Research methods for data collection fall into one of two categories: inductive methods or deductive methods.

Inductive research methods focus on the analysis of an observation and are usually associated with qualitative research. Deductive research methods focus on the verification of an observation and are typically associated with quantitative research.

Research definition

Qualitative Research

Qualitative research is a method that enables non-numerical data collection through open-ended methods such as interviews, case studies and focus groups .

It enables researchers to collect data on personal experiences, feelings or behaviours, as well as the reasons behind them. Because of this, qualitative research is often used in fields such as social science, psychology and philosophy and other areas where it is useful to know the connection between what has occurred and why it has occurred.

Quantitative Research

Quantitative research is a method that collects and analyses numerical data through statistical analysis.

It allows us to quantify variables, uncover relationships, and make generalisations across a larger population. As a result, quantitative research is often used in the natural and physical sciences such as engineering, biology, chemistry, physics, computer science, finance, and medical research, etc.

What does Research Involve?

Research often follows a systematic approach known as a Scientific Method, which is carried out using an hourglass model.

A research project first starts with a problem statement, or rather, the research purpose for engaging in the study. This can take the form of the ‘ scope of the study ’ or ‘ aims and objectives ’ of your research topic.

Subsequently, a literature review is carried out and a hypothesis is formed. The researcher then creates a research methodology and collects the data.

The data is then analysed using various statistical methods and the null hypothesis is either accepted or rejected.

In both cases, the study and its conclusion are officially written up as a report or research paper, and the researcher may also recommend lines of further questioning. The report or research paper is then shared with the wider research community, and the cycle begins all over again.

Although these steps outline the overall research process, keep in mind that research projects are highly dynamic and are therefore considered an iterative process with continued refinements and not a series of fixed stages.

What do you call a professor?

You’ll come across many academics with PhD, some using the title of Doctor and others using Professor. This blog post helps you understand the differences.

A Guide to Your First Week as a PhD Student

How should you spend your first week as a PhD student? Here’s are 7 steps to help you get started on your journey.

What is Tenure Track?

Tenure is a permanent position awarded to professors showing excellence in research and teaching. Find out more about the competitive position!

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

what is research study all about

Browse PhDs Now

what is research study all about

An abstract and introduction are the first two sections of your paper or thesis. This guide explains the differences between them and how to write them.

Statistical Treatment of Data in Research

Statistical treatment of data is essential for all researchers, regardless of whether you’re a biologist, computer scientist or psychologist, but what exactly is it?

what is research study all about

Dr Easey has a PhD from the University of East Anglia where she genetically modified viral ligase enzymes for industry. She is now a biomedical scientist working in the Haematopathology and Oncology Diagnostic Service at Addenbrookes hospital.

DiscoverPhDs-Gareth-Raynes_Interview

Gareth is getting ready for his PhD viva at Aberystwyth University and has been researching bacteria living inside coastal plants that can help other plants grow in salt contaminated soils.

Join Thousands of Students

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Turk J Anaesthesiol Reanim
  • v.44(4); 2016 Aug

Logo of tjar

What is Scientific Research and How Can it be Done?

Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained.

Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new information is revealed with respect to diagnosis, treatment and reliability of applications. The purpose of this review is to provide information about the definition, classification and methodology of scientific research.

Before beginning the scientific research, the researcher should determine the subject, do planning and specify the methodology. In the Declaration of Helsinki, it is stated that ‘the primary purpose of medical researches on volunteers is to understand the reasons, development and effects of diseases and develop protective, diagnostic and therapeutic interventions (method, operation and therapies). Even the best proven interventions should be evaluated continuously by investigations with regard to reliability, effectiveness, efficiency, accessibility and quality’ ( 1 ).

The questions, methods of response to questions and difficulties in scientific research may vary, but the design and structure are generally the same ( 2 ).

Classification of Scientific Research

Scientific research can be classified in several ways. Classification can be made according to the data collection techniques based on causality, relationship with time and the medium through which they are applied.

  • Observational
  • Experimental
  • Descriptive
  • Retrospective
  • Prospective
  • Cross-sectional
  • Social descriptive research ( 3 )

Another method is to classify the research according to its descriptive or analytical features. This review is written according to this classification method.

I. Descriptive research

  • Case series
  • Surveillance studies

II. Analytical research

  • Observational studies: cohort, case control and cross- sectional research
  • Interventional research: quasi-experimental and clinical research
  • Case Report: it is the most common type of descriptive study. It is the examination of a single case having a different quality in the society, e.g. conducting general anaesthesia in a pregnant patient with mucopolysaccharidosis.
  • Case Series: it is the description of repetitive cases having common features. For instance; case series involving interscapular pain related to neuraxial labour analgesia. Interestingly, malignant hyperthermia cases are not accepted as case series since they are rarely seen during historical development.
  • Surveillance Studies: these are the results obtained from the databases that follow and record a health problem for a certain time, e.g. the surveillance of cross-infections during anaesthesia in the intensive care unit.

Moreover, some studies may be experimental. After the researcher intervenes, the researcher waits for the result, observes and obtains data. Experimental studies are, more often, in the form of clinical trials or laboratory animal trials ( 2 ).

Analytical observational research can be classified as cohort, case-control and cross-sectional studies.

Firstly, the participants are controlled with regard to the disease under investigation. Patients are excluded from the study. Healthy participants are evaluated with regard to the exposure to the effect. Then, the group (cohort) is followed-up for a sufficient period of time with respect to the occurrence of disease, and the progress of disease is studied. The risk of the healthy participants getting sick is considered an incident. In cohort studies, the risk of disease between the groups exposed and not exposed to the effect is calculated and rated. This rate is called relative risk. Relative risk indicates the strength of exposure to the effect on the disease.

Cohort research may be observational and experimental. The follow-up of patients prospectively is called a prospective cohort study . The results are obtained after the research starts. The researcher’s following-up of cohort subjects from a certain point towards the past is called a retrospective cohort study . Prospective cohort studies are more valuable than retrospective cohort studies: this is because in the former, the researcher observes and records the data. The researcher plans the study before the research and determines what data will be used. On the other hand, in retrospective studies, the research is made on recorded data: no new data can be added.

In fact, retrospective and prospective studies are not observational. They determine the relationship between the date on which the researcher has begun the study and the disease development period. The most critical disadvantage of this type of research is that if the follow-up period is long, participants may leave the study at their own behest or due to physical conditions. Cohort studies that begin after exposure and before disease development are called ambidirectional studies . Public healthcare studies generally fall within this group, e.g. lung cancer development in smokers.

  • Case-Control Studies: these studies are retrospective cohort studies. They examine the cause and effect relationship from the effect to the cause. The detection or determination of data depends on the information recorded in the past. The researcher has no control over the data ( 2 ).

Cross-sectional studies are advantageous since they can be concluded relatively quickly. It may be difficult to obtain a reliable result from such studies for rare diseases ( 2 ).

Cross-sectional studies are characterised by timing. In such studies, the exposure and result are simultaneously evaluated. While cross-sectional studies are restrictedly used in studies involving anaesthesia (since the process of exposure is limited), they can be used in studies conducted in intensive care units.

  • Quasi-Experimental Research: they are conducted in cases in which a quick result is requested and the participants or research areas cannot be randomised, e.g. giving hand-wash training and comparing the frequency of nosocomial infections before and after hand wash.
  • Clinical Research: they are prospective studies carried out with a control group for the purpose of comparing the effect and value of an intervention in a clinical case. Clinical study and research have the same meaning. Drugs, invasive interventions, medical devices and operations, diets, physical therapy and diagnostic tools are relevant in this context ( 6 ).

Clinical studies are conducted by a responsible researcher, generally a physician. In the research team, there may be other healthcare staff besides physicians. Clinical studies may be financed by healthcare institutes, drug companies, academic medical centres, volunteer groups, physicians, healthcare service providers and other individuals. They may be conducted in several places including hospitals, universities, physicians’ offices and community clinics based on the researcher’s requirements. The participants are made aware of the duration of the study before their inclusion. Clinical studies should include the evaluation of recommendations (drug, device and surgical) for the treatment of a disease, syndrome or a comparison of one or more applications; finding different ways for recognition of a disease or case and prevention of their recurrence ( 7 ).

Clinical Research

In this review, clinical research is explained in more detail since it is the most valuable study in scientific research.

Clinical research starts with forming a hypothesis. A hypothesis can be defined as a claim put forward about the value of a population parameter based on sampling. There are two types of hypotheses in statistics.

  • H 0 hypothesis is called a control or null hypothesis. It is the hypothesis put forward in research, which implies that there is no difference between the groups under consideration. If this hypothesis is rejected at the end of the study, it indicates that a difference exists between the two treatments under consideration.
  • H 1 hypothesis is called an alternative hypothesis. It is hypothesised against a null hypothesis, which implies that a difference exists between the groups under consideration. For example, consider the following hypothesis: drug A has an analgesic effect. Control or null hypothesis (H 0 ): there is no difference between drug A and placebo with regard to the analgesic effect. The alternative hypothesis (H 1 ) is applicable if a difference exists between drug A and placebo with regard to the analgesic effect.

The planning phase comes after the determination of a hypothesis. A clinical research plan is called a protocol . In a protocol, the reasons for research, number and qualities of participants, tests to be applied, study duration and what information to be gathered from the participants should be found and conformity criteria should be developed.

The selection of participant groups to be included in the study is important. Inclusion and exclusion criteria of the study for the participants should be determined. Inclusion criteria should be defined in the form of demographic characteristics (age, gender, etc.) of the participant group and the exclusion criteria as the diseases that may influence the study, age ranges, cases involving pregnancy and lactation, continuously used drugs and participants’ cooperation.

The next stage is methodology. Methodology can be grouped under subheadings, namely, the calculation of number of subjects, blinding (masking), randomisation, selection of operation to be applied, use of placebo and criteria for stopping and changing the treatment.

I. Calculation of the Number of Subjects

The entire source from which the data are obtained is called a universe or population . A small group selected from a certain universe based on certain rules and which is accepted to highly represent the universe from which it is selected is called a sample and the characteristics of the population from which the data are collected are called variables. If data is collected from the entire population, such an instance is called a parameter . Conducting a study on the sample rather than the entire population is easier and less costly. Many factors influence the determination of the sample size. Firstly, the type of variable should be determined. Variables are classified as categorical (qualitative, non-numerical) or numerical (quantitative). Individuals in categorical variables are classified according to their characteristics. Categorical variables are indicated as nominal and ordinal (ordered). In nominal variables, the application of a category depends on the researcher’s preference. For instance, a female participant can be considered first and then the male participant, or vice versa. An ordinal (ordered) variable is ordered from small to large or vice versa (e.g. ordering obese patients based on their weights-from the lightest to the heaviest or vice versa). A categorical variable may have more than one characteristic: such variables are called binary or dichotomous (e.g. a participant may be both female and obese).

If the variable has numerical (quantitative) characteristics and these characteristics cannot be categorised, then it is called a numerical variable. Numerical variables are either discrete or continuous. For example, the number of operations with spinal anaesthesia represents a discrete variable. The haemoglobin value or height represents a continuous variable.

Statistical analyses that need to be employed depend on the type of variable. The determination of variables is necessary for selecting the statistical method as well as software in SPSS. While categorical variables are presented as numbers and percentages, numerical variables are represented using measures such as mean and standard deviation. It may be necessary to use mean in categorising some cases such as the following: even though the variable is categorical (qualitative, non-numerical) when Visual Analogue Scale (VAS) is used (since a numerical value is obtained), it is classified as a numerical variable: such variables are averaged.

Clinical research is carried out on the sample and generalised to the population. Accordingly, the number of samples should be correctly determined. Different sample size formulas are used on the basis of the statistical method to be used. When the sample size increases, error probability decreases. The sample size is calculated based on the primary hypothesis. The determination of a sample size before beginning the research specifies the power of the study. Power analysis enables the acquisition of realistic results in the research, and it is used for comparing two or more clinical research methods.

Because of the difference in the formulas used in calculating power analysis and number of samples for clinical research, it facilitates the use of computer programs for making calculations.

It is necessary to know certain parameters in order to calculate the number of samples by power analysis.

  • Type-I (α) and type-II (β) error levels
  • Difference between groups (d-difference) and effect size (ES)
  • Distribution ratio of groups
  • Direction of research hypothesis (H1)

a. Type-I (α) and Type-II (β) Error (β) Levels

Two types of errors can be made while accepting or rejecting H 0 hypothesis in a hypothesis test. Type-I error (α) level is the probability of finding a difference at the end of the research when there is no difference between the two applications. In other words, it is the rejection of the hypothesis when H 0 is actually correct and it is known as α error or p value. For instance, when the size is determined, type-I error level is accepted as 0.05 or 0.01.

Another error that can be made during a hypothesis test is a type-II error. It is the acceptance of a wrongly hypothesised H 0 hypothesis. In fact, it is the probability of failing to find a difference when there is a difference between the two applications. The power of a test is the ability of that test to find a difference that actually exists. Therefore, it is related to the type-II error level.

Since the type-II error risk is expressed as β, the power of the test is defined as 1–β. When a type-II error is 0.20, the power of the test is 0.80. Type-I (α) and type-II (β) errors can be intentional. The reason to intentionally make such an error is the necessity to look at the events from the opposite perspective.

b. Difference between Groups and ES

ES is defined as the state in which statistical difference also has clinically significance: ES≥0.5 is desirable. The difference between groups is the absolute difference between the groups compared in clinical research.

c. Allocation Ratio of Groups

The allocation ratio of groups is effective in determining the number of samples. If the number of samples is desired to be determined at the lowest level, the rate should be kept as 1/1.

d. Direction of Hypothesis (H1)

The direction of hypothesis in clinical research may be one-sided or two-sided. While one-sided hypotheses hypothesis test differences in the direction of size, two-sided hypotheses hypothesis test differences without direction. The power of the test in two-sided hypotheses is lower than one-sided hypotheses.

After these four variables are determined, they are entered in the appropriate computer program and the number of samples is calculated. Statistical packaged software programs such as Statistica, NCSS and G-Power may be used for power analysis and calculating the number of samples. When the samples size is calculated, if there is a decrease in α, difference between groups, ES and number of samples, then the standard deviation increases and power decreases. The power in two-sided hypothesis is lower. It is ethically appropriate to consider the determination of sample size, particularly in animal experiments, at the beginning of the study. The phase of the study is also important in the determination of number of subjects to be included in drug studies. Usually, phase-I studies are used to determine the safety profile of a drug or product, and they are generally conducted on a few healthy volunteers. If no unacceptable toxicity is detected during phase-I studies, phase-II studies may be carried out. Phase-II studies are proof-of-concept studies conducted on a larger number (100–500) of volunteer patients. When the effectiveness of the drug or product is evident in phase-II studies, phase-III studies can be initiated. These are randomised, double-blinded, placebo or standard treatment-controlled studies. Volunteer patients are periodically followed-up with respect to the effectiveness and side effects of the drug. It can generally last 1–4 years and is valuable during licensing and releasing the drug to the general market. Then, phase-IV studies begin in which long-term safety is investigated (indication, dose, mode of application, safety, effectiveness, etc.) on thousands of volunteer patients.

II. Blinding (Masking) and Randomisation Methods

When the methodology of clinical research is prepared, precautions should be taken to prevent taking sides. For this reason, techniques such as randomisation and blinding (masking) are used. Comparative studies are the most ideal ones in clinical research.

Blinding Method

A case in which the treatments applied to participants of clinical research should be kept unknown is called the blinding method . If the participant does not know what it receives, it is called a single-blind study; if even the researcher does not know, it is called a double-blind study. When there is a probability of knowing which drug is given in the order of application, when uninformed staff administers the drug, it is called in-house blinding. In case the study drug is known in its pharmaceutical form, a double-dummy blinding test is conducted. Intravenous drug is given to one group and a placebo tablet is given to the comparison group; then, the placebo tablet is given to the group that received the intravenous drug and intravenous drug in addition to placebo tablet is given to the comparison group. In this manner, each group receives both the intravenous and tablet forms of the drug. In case a third party interested in the study is involved and it also does not know about the drug (along with the statistician), it is called third-party blinding.

Randomisation Method

The selection of patients for the study groups should be random. Randomisation methods are used for such selection, which prevent conscious or unconscious manipulations in the selection of patients ( 8 ).

No factor pertaining to the patient should provide preference of one treatment to the other during randomisation. This characteristic is the most important difference separating randomised clinical studies from prospective and synchronous studies with experimental groups. Randomisation strengthens the study design and enables the determination of reliable scientific knowledge ( 2 ).

The easiest method is simple randomisation, e.g. determination of the type of anaesthesia to be administered to a patient by tossing a coin. In this method, when the number of samples is kept high, a balanced distribution is created. When the number of samples is low, there will be an imbalance between the groups. In this case, stratification and blocking have to be added to randomisation. Stratification is the classification of patients one or more times according to prognostic features determined by the researcher and blocking is the selection of a certain number of patients for each stratification process. The number of stratification processes should be determined at the beginning of the study.

As the number of stratification processes increases, performing the study and balancing the groups become difficult. For this reason, stratification characteristics and limitations should be effectively determined at the beginning of the study. It is not mandatory for the stratifications to have equal intervals. Despite all the precautions, an imbalance might occur between the groups before beginning the research. In such circumstances, post-stratification or restandardisation may be conducted according to the prognostic factors.

The main characteristic of applying blinding (masking) and randomisation is the prevention of bias. Therefore, it is worthwhile to comprehensively examine bias at this stage.

Bias and Chicanery

While conducting clinical research, errors can be introduced voluntarily or involuntarily at a number of stages, such as design, population selection, calculating the number of samples, non-compliance with study protocol, data entry and selection of statistical method. Bias is taking sides of individuals in line with their own decisions, views and ideological preferences ( 9 ). In order for an error to lead to bias, it has to be a systematic error. Systematic errors in controlled studies generally cause the results of one group to move in a different direction as compared to the other. It has to be understood that scientific research is generally prone to errors. However, random errors (or, in other words, ‘the luck factor’-in which bias is unintended-do not lead to bias ( 10 ).

Another issue, which is different from bias, is chicanery. It is defined as voluntarily changing the interventions, results and data of patients in an unethical manner or copying data from other studies. Comparatively, bias may not be done consciously.

In case unexpected results or outliers are found while the study is analysed, if possible, such data should be re-included into the study since the complete exclusion of data from a study endangers its reliability. In such a case, evaluation needs to be made with and without outliers. It is insignificant if no difference is found. However, if there is a difference, the results with outliers are re-evaluated. If there is no error, then the outlier is included in the study (as the outlier may be a result). It should be noted that re-evaluation of data in anaesthesiology is not possible.

Statistical evaluation methods should be determined at the design stage so as not to encounter unexpected results in clinical research. The data should be evaluated before the end of the study and without entering into details in research that are time-consuming and involve several samples. This is called an interim analysis . The date of interim analysis should be determined at the beginning of the study. The purpose of making interim analysis is to prevent unnecessary cost and effort since it may be necessary to conclude the research after the interim analysis, e.g. studies in which there is no possibility to validate the hypothesis at the end or the occurrence of different side effects of the drug to be used. The accuracy of the hypothesis and number of samples are compared. Statistical significance levels in interim analysis are very important. If the data level is significant, the hypothesis is validated even if the result turns out to be insignificant after the date of the analysis.

Another important point to be considered is the necessity to conclude the participants’ treatment within the period specified in the study protocol. When the result of the study is achieved earlier and unexpected situations develop, the treatment is concluded earlier. Moreover, the participant may quit the study at its own behest, may die or unpredictable situations (e.g. pregnancy) may develop. The participant can also quit the study whenever it wants, even if the study has not ended ( 7 ).

In case the results of a study are contrary to already known or expected results, the expected quality level of the study suggesting the contradiction may be higher than the studies supporting what is known in that subject. This type of bias is called confirmation bias. The presence of well-known mechanisms and logical inference from them may create problems in the evaluation of data. This is called plausibility bias.

Another type of bias is expectation bias. If a result different from the known results has been achieved and it is against the editor’s will, it can be challenged. Bias may be introduced during the publication of studies, such as publishing only positive results, selection of study results in a way to support a view or prevention of their publication. Some editors may only publish research that extols only the positive results or results that they desire.

Bias may be introduced for advertisement or economic reasons. Economic pressure may be applied on the editor, particularly in the cases of studies involving drugs and new medical devices. This is called commercial bias.

In recent years, before beginning a study, it has been recommended to record it on the Web site www.clinicaltrials.gov for the purpose of facilitating systematic interpretation and analysis in scientific research, informing other researchers, preventing bias, provision of writing in a standard format, enhancing contribution of research results to the general literature and enabling early intervention of an institution for support. This Web site is a service of the US National Institutes of Health.

The last stage in the methodology of clinical studies is the selection of intervention to be conducted. Placebo use assumes an important place in interventions. In Latin, placebo means ‘I will be fine’. In medical literature, it refers to substances that are not curative, do not have active ingredients and have various pharmaceutical forms. Although placebos do not have active drug characteristic, they have shown effective analgesic characteristics, particularly in algology applications; further, its use prevents bias in comparative studies. If a placebo has a positive impact on a participant, it is called the placebo effect ; on the contrary, if it has a negative impact, it is called the nocebo effect . Another type of therapy that can be used in clinical research is sham application. Although a researcher does not cure the patient, the researcher may compare those who receive therapy and undergo sham. It has been seen that sham therapies also exhibit a placebo effect. In particular, sham therapies are used in acupuncture applications ( 11 ). While placebo is a substance, sham is a type of clinical application.

Ethically, the patient has to receive appropriate therapy. For this reason, if its use prevents effective treatment, it causes great problem with regard to patient health and legalities.

Before medical research is conducted with human subjects, predictable risks, drawbacks and benefits must be evaluated for individuals or groups participating in the study. Precautions must be taken for reducing the risk to a minimum level. The risks during the study should be followed, evaluated and recorded by the researcher ( 1 ).

After the methodology for a clinical study is determined, dealing with the ‘Ethics Committee’ forms the next stage. The purpose of the ethics committee is to protect the rights, safety and well-being of volunteers taking part in the clinical research, considering the scientific method and concerns of society. The ethics committee examines the studies presented in time, comprehensively and independently, with regard to ethics and science; in line with the Declaration of Helsinki and following national and international standards concerning ‘Good Clinical Practice’. The method to be followed in the formation of the ethics committee should be developed without any kind of prejudice and to examine the applications with regard to ethics and science within the framework of the ethics committee, Regulation on Clinical Trials and Good Clinical Practice ( www.iku.com ). The necessary documents to be presented to the ethics committee are research protocol, volunteer consent form, budget contract, Declaration of Helsinki, curriculum vitae of researchers, similar or explanatory literature samples, supporting institution approval certificate and patient follow-up form.

Only one sister/brother, mother, father, son/daughter and wife/husband can take charge in the same ethics committee. A rector, vice rector, dean, deputy dean, provincial healthcare director and chief physician cannot be members of the ethics committee.

Members of the ethics committee can work as researchers or coordinators in clinical research. However, during research meetings in which members of the ethics committee are researchers or coordinators, they must leave the session and they cannot sign-off on decisions. If the number of members in the ethics committee for a particular research is so high that it is impossible to take a decision, the clinical research is presented to another ethics committee in the same province. If there is no ethics committee in the same province, an ethics committee in the closest settlement is found.

Thereafter, researchers need to inform the participants using an informed consent form. This form should explain the content of clinical study, potential benefits of the study, alternatives and risks (if any). It should be easy, comprehensible, conforming to spelling rules and written in plain language understandable by the participant.

This form assists the participants in taking a decision regarding participation in the study. It should aim to protect the participants. The participant should be included in the study only after it signs the informed consent form; the participant can quit the study whenever required, even when the study has not ended ( 7 ).

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - C.Ö.Ç., A.D.; Design - C.Ö.Ç.; Supervision - A.D.; Resource - C.Ö.Ç., A.D.; Materials - C.Ö.Ç., A.D.; Analysis and/or Interpretation - C.Ö.Ç., A.D.; Literature Search - C.Ö.Ç.; Writing Manuscript - C.Ö.Ç.; Critical Review - A.D.; Other - C.Ö.Ç., A.D.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

Grad Coach

What Is Research Methodology? A Plain-Language Explanation & Definition (With Examples)

By Derek Jansen (MBA)  and Kerryn Warren (PhD) | June 2020 (Last updated April 2023)

If you’re new to formal academic research, it’s quite likely that you’re feeling a little overwhelmed by all the technical lingo that gets thrown around. And who could blame you – “research methodology”, “research methods”, “sampling strategies”… it all seems never-ending!

In this post, we’ll demystify the landscape with plain-language explanations and loads of examples (including easy-to-follow videos), so that you can approach your dissertation, thesis or research project with confidence. Let’s get started.

Research Methodology 101

  • What exactly research methodology means
  • What qualitative , quantitative and mixed methods are
  • What sampling strategy is
  • What data collection methods are
  • What data analysis methods are
  • How to choose your research methodology
  • Example of a research methodology

Free Webinar: Research Methodology 101

What is research methodology?

Research methodology simply refers to the practical “how” of a research study. More specifically, it’s about how  a researcher  systematically designs a study  to ensure valid and reliable results that address the research aims, objectives and research questions . Specifically, how the researcher went about deciding:

  • What type of data to collect (e.g., qualitative or quantitative data )
  • Who  to collect it from (i.e., the sampling strategy )
  • How to  collect  it (i.e., the data collection method )
  • How to  analyse  it (i.e., the data analysis methods )

Within any formal piece of academic research (be it a dissertation, thesis or journal article), you’ll find a research methodology chapter or section which covers the aspects mentioned above. Importantly, a good methodology chapter explains not just   what methodological choices were made, but also explains  why they were made. In other words, the methodology chapter should justify  the design choices, by showing that the chosen methods and techniques are the best fit for the research aims, objectives and research questions. 

So, it’s the same as research design?

Not quite. As we mentioned, research methodology refers to the collection of practical decisions regarding what data you’ll collect, from who, how you’ll collect it and how you’ll analyse it. Research design, on the other hand, is more about the overall strategy you’ll adopt in your study. For example, whether you’ll use an experimental design in which you manipulate one variable while controlling others. You can learn more about research design and the various design types here .

Need a helping hand?

what is research study all about

What are qualitative, quantitative and mixed-methods?

Qualitative, quantitative and mixed-methods are different types of methodological approaches, distinguished by their focus on words , numbers or both . This is a bit of an oversimplification, but its a good starting point for understanding.

Let’s take a closer look.

Qualitative research refers to research which focuses on collecting and analysing words (written or spoken) and textual or visual data, whereas quantitative research focuses on measurement and testing using numerical data . Qualitative analysis can also focus on other “softer” data points, such as body language or visual elements.

It’s quite common for a qualitative methodology to be used when the research aims and research questions are exploratory  in nature. For example, a qualitative methodology might be used to understand peoples’ perceptions about an event that took place, or a political candidate running for president. 

Contrasted to this, a quantitative methodology is typically used when the research aims and research questions are confirmatory  in nature. For example, a quantitative methodology might be used to measure the relationship between two variables (e.g. personality type and likelihood to commit a crime) or to test a set of hypotheses .

As you’ve probably guessed, the mixed-method methodology attempts to combine the best of both qualitative and quantitative methodologies to integrate perspectives and create a rich picture. If you’d like to learn more about these three methodological approaches, be sure to watch our explainer video below.

What is sampling strategy?

Simply put, sampling is about deciding who (or where) you’re going to collect your data from . Why does this matter? Well, generally it’s not possible to collect data from every single person in your group of interest (this is called the “population”), so you’ll need to engage a smaller portion of that group that’s accessible and manageable (this is called the “sample”).

How you go about selecting the sample (i.e., your sampling strategy) will have a major impact on your study.  There are many different sampling methods  you can choose from, but the two overarching categories are probability   sampling and  non-probability   sampling .

Probability sampling  involves using a completely random sample from the group of people you’re interested in. This is comparable to throwing the names all potential participants into a hat, shaking it up, and picking out the “winners”. By using a completely random sample, you’ll minimise the risk of selection bias and the results of your study will be more generalisable  to the entire population. 

Non-probability sampling , on the other hand,  doesn’t use a random sample . For example, it might involve using a convenience sample, which means you’d only interview or survey people that you have access to (perhaps your friends, family or work colleagues), rather than a truly random sample. With non-probability sampling, the results are typically not generalisable .

To learn more about sampling methods, be sure to check out the video below.

What are data collection methods?

As the name suggests, data collection methods simply refers to the way in which you go about collecting the data for your study. Some of the most common data collection methods include:

  • Interviews (which can be unstructured, semi-structured or structured)
  • Focus groups and group interviews
  • Surveys (online or physical surveys)
  • Observations (watching and recording activities)
  • Biophysical measurements (e.g., blood pressure, heart rate, etc.)
  • Documents and records (e.g., financial reports, court records, etc.)

The choice of which data collection method to use depends on your overall research aims and research questions , as well as practicalities and resource constraints. For example, if your research is exploratory in nature, qualitative methods such as interviews and focus groups would likely be a good fit. Conversely, if your research aims to measure specific variables or test hypotheses, large-scale surveys that produce large volumes of numerical data would likely be a better fit.

What are data analysis methods?

Data analysis methods refer to the methods and techniques that you’ll use to make sense of your data. These can be grouped according to whether the research is qualitative  (words-based) or quantitative (numbers-based).

Popular data analysis methods in qualitative research include:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Interpretative phenomenological analysis (IPA)
  • Visual analysis (of photographs, videos, art, etc.)

Qualitative data analysis all begins with data coding , after which an analysis method is applied. In some cases, more than one analysis method is used, depending on the research aims and research questions . In the video below, we explore some  common qualitative analysis methods, along with practical examples.  

Moving on to the quantitative side of things, popular data analysis methods in this type of research include:

  • Descriptive statistics (e.g. means, medians, modes )
  • Inferential statistics (e.g. correlation, regression, structural equation modelling)

Again, the choice of which data collection method to use depends on your overall research aims and objectives , as well as practicalities and resource constraints. In the video below, we explain some core concepts central to quantitative analysis.

How do I choose a research methodology?

As you’ve probably picked up by now, your research aims and objectives have a major influence on the research methodology . So, the starting point for developing your research methodology is to take a step back and look at the big picture of your research, before you make methodology decisions. The first question you need to ask yourself is whether your research is exploratory or confirmatory in nature.

If your research aims and objectives are primarily exploratory in nature, your research will likely be qualitative and therefore you might consider qualitative data collection methods (e.g. interviews) and analysis methods (e.g. qualitative content analysis). 

Conversely, if your research aims and objective are looking to measure or test something (i.e. they’re confirmatory), then your research will quite likely be quantitative in nature, and you might consider quantitative data collection methods (e.g. surveys) and analyses (e.g. statistical analysis).

Designing your research and working out your methodology is a large topic, which we cover extensively on the blog . For now, however, the key takeaway is that you should always start with your research aims, objectives and research questions (the golden thread). Every methodological choice you make needs align with those three components. 

Example of a research methodology chapter

In the video below, we provide a detailed walkthrough of a research methodology from an actual dissertation, as well as an overview of our free methodology template .

what is research study all about

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

What is descriptive statistics?

199 Comments

Leo Balanlay

Thank you for this simple yet comprehensive and easy to digest presentation. God Bless!

Derek Jansen

You’re most welcome, Leo. Best of luck with your research!

Asaf

I found it very useful. many thanks

Solomon F. Joel

This is really directional. A make-easy research knowledge.

Upendo Mmbaga

Thank you for this, I think will help my research proposal

vicky

Thanks for good interpretation,well understood.

Alhaji Alie Kanu

Good morning sorry I want to the search topic

Baraka Gombela

Thank u more

Boyd

Thank you, your explanation is simple and very helpful.

Suleiman Abubakar

Very educative a.nd exciting platform. A bigger thank you and I’ll like to always be with you

Daniel Mondela

That’s the best analysis

Okwuchukwu

So simple yet so insightful. Thank you.

Wendy Lushaba

This really easy to read as it is self-explanatory. Very much appreciated…

Lilian

Thanks for this. It’s so helpful and explicit. For those elements highlighted in orange, they were good sources of referrals for concepts I didn’t understand. A million thanks for this.

Tabe Solomon Matebesi

Good morning, I have been reading your research lessons through out a period of times. They are important, impressive and clear. Want to subscribe and be and be active with you.

Hafiz Tahir

Thankyou So much Sir Derek…

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on it so that we’ll continue to understand more.sorry that’s a suggestion.

James Olukoya

Beautiful presentation. I love it.

ATUL KUMAR

please provide a research mehodology example for zoology

Ogar , Praise

It’s very educative and well explained

Joseph Chan

Thanks for the concise and informative data.

Goja Terhemba John

This is really good for students to be safe and well understand that research is all about

Prakash thapa

Thank you so much Derek sir🖤🙏🤗

Abraham

Very simple and reliable

Chizor Adisa

This is really helpful. Thanks alot. God bless you.

Danushika

very useful, Thank you very much..

nakato justine

thanks a lot its really useful

karolina

in a nutshell..thank you!

Bitrus

Thanks for updating my understanding on this aspect of my Thesis writing.

VEDASTO DATIVA MATUNDA

thank you so much my through this video am competently going to do a good job my thesis

Jimmy

Thanks a lot. Very simple to understand. I appreciate 🙏

Mfumukazi

Very simple but yet insightful Thank you

Adegboyega ADaeBAYO

This has been an eye opening experience. Thank you grad coach team.

SHANTHi

Very useful message for research scholars

Teijili

Really very helpful thank you

sandokhan

yes you are right and i’m left

MAHAMUDUL HASSAN

Research methodology with a simplest way i have never seen before this article.

wogayehu tuji

wow thank u so much

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on is so that we will continue to understand more.sorry that’s a suggestion.

Gebregergish

Very precise and informative.

Javangwe Nyeketa

Thanks for simplifying these terms for us, really appreciate it.

Mary Benard Mwanganya

Thanks this has really helped me. It is very easy to understand.

mandla

I found the notes and the presentation assisting and opening my understanding on research methodology

Godfrey Martin Assenga

Good presentation

Nhubu Tawanda

Im so glad you clarified my misconceptions. Im now ready to fry my onions. Thank you so much. God bless

Odirile

Thank you a lot.

prathap

thanks for the easy way of learning and desirable presentation.

Ajala Tajudeen

Thanks a lot. I am inspired

Visor Likali

Well written

Pondris Patrick

I am writing a APA Format paper . I using questionnaire with 120 STDs teacher for my participant. Can you write me mthology for this research. Send it through email sent. Just need a sample as an example please. My topic is ” impacts of overcrowding on students learning

Thanks for your comment.

We can’t write your methodology for you. If you’re looking for samples, you should be able to find some sample methodologies on Google. Alternatively, you can download some previous dissertations from a dissertation directory and have a look at the methodology chapters therein.

All the best with your research.

Anon

Thank you so much for this!! God Bless

Keke

Thank you. Explicit explanation

Sophy

Thank you, Derek and Kerryn, for making this simple to understand. I’m currently at the inception stage of my research.

Luyanda

Thnks a lot , this was very usefull on my assignment

Beulah Emmanuel

excellent explanation

Gino Raz

I’m currently working on my master’s thesis, thanks for this! I’m certain that I will use Qualitative methodology.

Abigail

Thanks a lot for this concise piece, it was quite relieving and helpful. God bless you BIG…

Yonas Tesheme

I am currently doing my dissertation proposal and I am sure that I will do quantitative research. Thank you very much it was extremely helpful.

zahid t ahmad

Very interesting and informative yet I would like to know about examples of Research Questions as well, if possible.

Maisnam loyalakla

I’m about to submit a research presentation, I have come to understand from your simplification on understanding research methodology. My research will be mixed methodology, qualitative as well as quantitative. So aim and objective of mixed method would be both exploratory and confirmatory. Thanks you very much for your guidance.

Mila Milano

OMG thanks for that, you’re a life saver. You covered all the points I needed. Thank you so much ❤️ ❤️ ❤️

Christabel

Thank you immensely for this simple, easy to comprehend explanation of data collection methods. I have been stuck here for months 😩. Glad I found your piece. Super insightful.

Lika

I’m going to write synopsis which will be quantitative research method and I don’t know how to frame my topic, can I kindly get some ideas..

Arlene

Thanks for this, I was really struggling.

This was really informative I was struggling but this helped me.

Modie Maria Neswiswi

Thanks a lot for this information, simple and straightforward. I’m a last year student from the University of South Africa UNISA South Africa.

Mursel Amin

its very much informative and understandable. I have enlightened.

Mustapha Abubakar

An interesting nice exploration of a topic.

Sarah

Thank you. Accurate and simple🥰

Sikandar Ali Shah

This article was really helpful, it helped me understanding the basic concepts of the topic Research Methodology. The examples were very clear, and easy to understand. I would like to visit this website again. Thank you so much for such a great explanation of the subject.

Debbie

Thanks dude

Deborah

Thank you Doctor Derek for this wonderful piece, please help to provide your details for reference purpose. God bless.

Michael

Many compliments to you

Dana

Great work , thank you very much for the simple explanation

Aryan

Thank you. I had to give a presentation on this topic. I have looked everywhere on the internet but this is the best and simple explanation.

omodara beatrice

thank you, its very informative.

WALLACE

Well explained. Now I know my research methodology will be qualitative and exploratory. Thank you so much, keep up the good work

GEORGE REUBEN MSHEGAME

Well explained, thank you very much.

Ainembabazi Rose

This is good explanation, I have understood the different methods of research. Thanks a lot.

Kamran Saeed

Great work…very well explanation

Hyacinth Chebe Ukwuani

Thanks Derek. Kerryn was just fantastic!

Great to hear that, Hyacinth. Best of luck with your research!

Matobela Joel Marabi

Its a good templates very attractive and important to PhD students and lectuter

Thanks for the feedback, Matobela. Good luck with your research methodology.

Elie

Thank you. This is really helpful.

You’re very welcome, Elie. Good luck with your research methodology.

Sakina Dalal

Well explained thanks

Edward

This is a very helpful site especially for young researchers at college. It provides sufficient information to guide students and equip them with the necessary foundation to ask any other questions aimed at deepening their understanding.

Thanks for the kind words, Edward. Good luck with your research!

Ngwisa Marie-claire NJOTU

Thank you. I have learned a lot.

Great to hear that, Ngwisa. Good luck with your research methodology!

Claudine

Thank you for keeping your presentation simples and short and covering key information for research methodology. My key takeaway: Start with defining your research objective the other will depend on the aims of your research question.

Zanele

My name is Zanele I would like to be assisted with my research , and the topic is shortage of nursing staff globally want are the causes , effects on health, patients and community and also globally

Oluwafemi Taiwo

Thanks for making it simple and clear. It greatly helped in understanding research methodology. Regards.

Francis

This is well simplified and straight to the point

Gabriel mugangavari

Thank you Dr

Dina Haj Ibrahim

I was given an assignment to research 2 publications and describe their research methodology? I don’t know how to start this task can someone help me?

Sure. You’re welcome to book an initial consultation with one of our Research Coaches to discuss how we can assist – https://gradcoach.com/book/new/ .

BENSON ROSEMARY

Thanks a lot I am relieved of a heavy burden.keep up with the good work

Ngaka Mokoena

I’m very much grateful Dr Derek. I’m planning to pursue one of the careers that really needs one to be very much eager to know. There’s a lot of research to do and everything, but since I’ve gotten this information I will use it to the best of my potential.

Pritam Pal

Thank you so much, words are not enough to explain how helpful this session has been for me!

faith

Thanks this has thought me alot.

kenechukwu ambrose

Very concise and helpful. Thanks a lot

Eunice Shatila Sinyemu 32070

Thank Derek. This is very helpful. Your step by step explanation has made it easier for me to understand different concepts. Now i can get on with my research.

Michelle

I wish i had come across this sooner. So simple but yet insightful

yugine the

really nice explanation thank you so much

Goodness

I’m so grateful finding this site, it’s really helpful…….every term well explained and provide accurate understanding especially to student going into an in-depth research for the very first time, even though my lecturer already explained this topic to the class, I think I got the clear and efficient explanation here, much thanks to the author.

lavenda

It is very helpful material

Lubabalo Ntshebe

I would like to be assisted with my research topic : Literature Review and research methodologies. My topic is : what is the relationship between unemployment and economic growth?

Buddhi

Its really nice and good for us.

Ekokobe Aloysius

THANKS SO MUCH FOR EXPLANATION, ITS VERY CLEAR TO ME WHAT I WILL BE DOING FROM NOW .GREAT READS.

Asanka

Short but sweet.Thank you

Shishir Pokharel

Informative article. Thanks for your detailed information.

Badr Alharbi

I’m currently working on my Ph.D. thesis. Thanks a lot, Derek and Kerryn, Well-organized sequences, facilitate the readers’ following.

Tejal

great article for someone who does not have any background can even understand

Hasan Chowdhury

I am a bit confused about research design and methodology. Are they the same? If not, what are the differences and how are they related?

Thanks in advance.

Ndileka Myoli

concise and informative.

Sureka Batagoda

Thank you very much

More Smith

How can we site this article is Harvard style?

Anne

Very well written piece that afforded better understanding of the concept. Thank you!

Denis Eken Lomoro

Am a new researcher trying to learn how best to write a research proposal. I find your article spot on and want to download the free template but finding difficulties. Can u kindly send it to my email, the free download entitled, “Free Download: Research Proposal Template (with Examples)”.

fatima sani

Thank too much

Khamis

Thank you very much for your comprehensive explanation about research methodology so I like to thank you again for giving us such great things.

Aqsa Iftijhar

Good very well explained.Thanks for sharing it.

Krishna Dhakal

Thank u sir, it is really a good guideline.

Vimbainashe

so helpful thank you very much.

Joelma M Monteiro

Thanks for the video it was very explanatory and detailed, easy to comprehend and follow up. please, keep it up the good work

AVINASH KUMAR NIRALA

It was very helpful, a well-written document with precise information.

orebotswe morokane

how do i reference this?

Roy

MLA Jansen, Derek, and Kerryn Warren. “What (Exactly) Is Research Methodology?” Grad Coach, June 2021, gradcoach.com/what-is-research-methodology/.

APA Jansen, D., & Warren, K. (2021, June). What (Exactly) Is Research Methodology? Grad Coach. https://gradcoach.com/what-is-research-methodology/

sheryl

Your explanation is easily understood. Thank you

Dr Christie

Very help article. Now I can go my methodology chapter in my thesis with ease

Alice W. Mbuthia

I feel guided ,Thank you

Joseph B. Smith

This simplification is very helpful. It is simple but very educative, thanks ever so much

Dr. Ukpai Ukpai Eni

The write up is informative and educative. It is an academic intellectual representation that every good researcher can find useful. Thanks

chimbini Joseph

Wow, this is wonderful long live.

Tahir

Nice initiative

Thembsie

thank you the video was helpful to me.

JesusMalick

Thank you very much for your simple and clear explanations I’m really satisfied by the way you did it By now, I think I can realize a very good article by following your fastidious indications May God bless you

G.Horizon

Thanks very much, it was very concise and informational for a beginner like me to gain an insight into what i am about to undertake. I really appreciate.

Adv Asad Ali

very informative sir, it is amazing to understand the meaning of question hidden behind that, and simple language is used other than legislature to understand easily. stay happy.

Jonas Tan

This one is really amazing. All content in your youtube channel is a very helpful guide for doing research. Thanks, GradCoach.

mahmoud ali

research methodologies

Lucas Sinyangwe

Please send me more information concerning dissertation research.

Amamten Jr.

Nice piece of knowledge shared….. #Thump_UP

Hajara Salihu

This is amazing, it has said it all. Thanks to Gradcoach

Gerald Andrew Babu

This is wonderful,very elaborate and clear.I hope to reach out for your assistance in my research very soon.

Safaa

This is the answer I am searching about…

realy thanks a lot

Ahmed Saeed

Thank you very much for this awesome, to the point and inclusive article.

Soraya Kolli

Thank you very much I need validity and reliability explanation I have exams

KuzivaKwenda

Thank you for a well explained piece. This will help me going forward.

Emmanuel Chukwuma

Very simple and well detailed Many thanks

Zeeshan Ali Khan

This is so very simple yet so very effective and comprehensive. An Excellent piece of work.

Molly Wasonga

I wish I saw this earlier on! Great insights for a beginner(researcher) like me. Thanks a mil!

Blessings Chigodo

Thank you very much, for such a simplified, clear and practical step by step both for academic students and general research work. Holistic, effective to use and easy to read step by step. One can easily apply the steps in practical terms and produce a quality document/up-to standard

Thanks for simplifying these terms for us, really appreciated.

Joseph Kyereme

Thanks for a great work. well understood .

Julien

This was very helpful. It was simple but profound and very easy to understand. Thank you so much!

Kishimbo

Great and amazing research guidelines. Best site for learning research

ankita bhatt

hello sir/ma’am, i didn’t find yet that what type of research methodology i am using. because i am writing my report on CSR and collect all my data from websites and articles so which type of methodology i should write in dissertation report. please help me. i am from India.

memory

how does this really work?

princelow presley

perfect content, thanks a lot

George Nangpaak Duut

As a researcher, I commend you for the detailed and simplified information on the topic in question. I would like to remain in touch for the sharing of research ideas on other topics. Thank you

EPHRAIM MWANSA MULENGA

Impressive. Thank you, Grad Coach 😍

Thank you Grad Coach for this piece of information. I have at least learned about the different types of research methodologies.

Varinder singh Rana

Very useful content with easy way

Mbangu Jones Kashweeka

Thank you very much for the presentation. I am an MPH student with the Adventist University of Africa. I have successfully completed my theory and starting on my research this July. My topic is “Factors associated with Dental Caries in (one District) in Botswana. I need help on how to go about this quantitative research

Carolyn Russell

I am so grateful to run across something that was sooo helpful. I have been on my doctorate journey for quite some time. Your breakdown on methodology helped me to refresh my intent. Thank you.

Indabawa Musbahu

thanks so much for this good lecture. student from university of science and technology, Wudil. Kano Nigeria.

Limpho Mphutlane

It’s profound easy to understand I appreciate

Mustafa Salimi

Thanks a lot for sharing superb information in a detailed but concise manner. It was really helpful and helped a lot in getting into my own research methodology.

Rabilu yau

Comment * thanks very much

Ari M. Hussein

This was sooo helpful for me thank you so much i didn’t even know what i had to write thank you!

You’re most welcome 🙂

Varsha Patnaik

Simple and good. Very much helpful. Thank you so much.

STARNISLUS HAAMBOKOMA

This is very good work. I have benefited.

Dr Md Asraul Hoque

Thank you so much for sharing

Nkasa lizwi

This is powerful thank you so much guys

I am nkasa lizwi doing my research proposal on honors with the university of Walter Sisulu Komani I m on part 3 now can you assist me.my topic is: transitional challenges faced by educators in intermediate phase in the Alfred Nzo District.

Atonisah Jonathan

Appreciate the presentation. Very useful step-by-step guidelines to follow.

Bello Suleiman

I appreciate sir

Titilayo

wow! This is super insightful for me. Thank you!

Emerita Guzman

Indeed this material is very helpful! Kudos writers/authors.

TSEDEKE JOHN

I want to say thank you very much, I got a lot of info and knowledge. Be blessed.

Akanji wasiu

I want present a seminar paper on Optimisation of Deep learning-based models on vulnerability detection in digital transactions.

Need assistance

Clement Lokwar

Dear Sir, I want to be assisted on my research on Sanitation and Water management in emergencies areas.

Peter Sone Kome

I am deeply grateful for the knowledge gained. I will be getting in touch shortly as I want to be assisted in my ongoing research.

Nirmala

The information shared is informative, crisp and clear. Kudos Team! And thanks a lot!

Bipin pokhrel

hello i want to study

Kassahun

Hello!! Grad coach teams. I am extremely happy in your tutorial or consultation. i am really benefited all material and briefing. Thank you very much for your generous helps. Please keep it up. If you add in your briefing, references for further reading, it will be very nice.

Ezra

All I have to say is, thank u gyz.

Work

Good, l thanks

Artak Ghonyan

thank you, it is very useful

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] the literature review is to inform the choice of methodology for your own research. As we’ve discussed on the Grad Coach blog,…
  • Free Download: Research Proposal Template (With Examples) - Grad Coach - […] Research design (methodology) […]
  • Dissertation vs Thesis: What's the difference? - Grad Coach - […] and thesis writing on a daily basis – everything from how to find a good research topic to which…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Department of Health & Human Services

Module 1: Introduction: What is Research?

Module 1

Learning Objectives

By the end of this module, you will be able to:

  • Explain how the scientific method is used to develop new knowledge
  • Describe why it is important to follow a research plan

Text Box: The Scientific Method

The Scientific Method consists of observing the world around you and creating a  hypothesis  about relationships in the world. A hypothesis is an informed and educated prediction or explanation about something. Part of the research process involves testing the  hypothesis , and then examining the results of these tests as they relate to both the hypothesis and the world around you. When a researcher forms a hypothesis, this acts like a map through the research study. It tells the researcher which factors are important to study and how they might be related to each other or caused by a  manipulation  that the researcher introduces (e.g. a program, treatment or change in the environment). With this map, the researcher can interpret the information he/she collects and can make sound conclusions about the results.

Research can be done with human beings, animals, plants, other organisms and inorganic matter. When research is done with human beings and animals, it must follow specific rules about the treatment of humans and animals that have been created by the U.S. Federal Government. This ensures that humans and animals are treated with dignity and respect, and that the research causes minimal harm.

No matter what topic is being studied, the value of the research depends on how well it is designed and done. Therefore, one of the most important considerations in doing good research is to follow the design or plan that is developed by an experienced researcher who is called the  Principal Investigator  (PI). The PI is in charge of all aspects of the research and creates what is called a  protocol  (the research plan) that all people doing the research must follow. By doing so, the PI and the public can be sure that the results of the research are real and useful to other scientists.

Module 1: Discussion Questions

  • How is a hypothesis like a road map?
  • Who is ultimately responsible for the design and conduct of a research study?
  • How does following the research protocol contribute to informing public health practices?

PDF

Email Updates

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

Book cover

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

15k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

what is research study all about

What is Research?: The Truth about Research

  • The Truth about Research
  • Research Steps
  • Evaluating Sources
  • Parts of a Research Article

Research isn't what you think it is.  It's not just dusty books written by men long since gone from this world.  No...research is something we all do almost every day of our lives.  You do it when you ask your friend if the movie they saw was any good.  You do it when you go on Yelp to find a place to eat.  You even do it when you read the comments section of an article on your favorite site.  The key is knowing how to do it well.  Doing it well doesn't mean putting the same amount of research into every problem--it means knowing the level of research needed, as well as how to reach that level.

Different Topics (and Different Needs) Require Different Expertise

For example, Wikipedia is fine if I want to know what happened on my favorite tv show last season, but I can't cite Wikipedia on my term paper.  I also wouldn't go to a lawyer to see if I need to have my appendix taken out.  So when doing research, it is always important to take the author's experience and credentials into consideration.  Just because I trust Rachael Ray to provide good recipes for game day doesn't mean I should take financial advice from her.  So always consider the source.

All Information is Created for a Reason

The person creating the information you're reading, hearing, watching, etc., is doing it for a reason.  Maybe it's to inform or educate you; maybe it's to entertain or persuade you; maybe it's to get back at his roommate for not washing the dishes.  The point is that every piece of information you read was created with a specific purpose.

Knowledge is Power

All information has value.  The amount of that value depends on the person who created that information and on the person who is receiving it.  For instance, if your 8 year old nephew tells you that a meteorite is about to hit New Orleans, you are not going to value that information the same way you would if Neil deGrasse Tyson said it.  Likewise, you probably wouldn't value details of the latest kids movie as much as your nephew would.

Research is Answering a Question

Any time you do research, you are simply trying to answer a question.  In the process of answering that question, you may find that even more questions pop up.  For instance, you may wonder why the sky is blue.  You learn that it has to do with the way light refracts.  You may wonder why light refracts, which would lead you to discover that light acts like a wave and a particle.  And it goes on and on.

Articles and Books are Just Really Public Conversations

Most scholarly articles and books started as questions that the author had about a topic.  From there, the author either agreed or disagreed with what he/she read.  Tons of research later, the author publishes their opinion.  Think of it as a really public, really slow, really long conversation between scholars on a topic.

Searching for Information is an Exploration You Should Plan for

It's easy to get lost in the din of information.  Have a plan.  It's okay to venture from the plan from time to time.  But having a plan makes it easier to find your way back to what you're trying to find out.  As you go along, you may decide that you'd prefer to go a slightly (or totally) different direction with your research.  That's fine.  That's normal.  Just don't go off in a direction because you got distracted.  Think Wikipedia--you start out looking up the plot of Game of Thrones and end up reading about cheetahs in the Serengeti.

  • Next: Research Steps >>
  • Last Updated: Jul 20, 2017 9:23 PM
  • URL: https://libguides.uno.edu/whatisresearch

Local News | Framingham Heart Study recognizes 75 years,…

Share this:.

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to print (Opens in new window)
  • Your Tax Dollars
  • Massachusetts

Local News | Framingham Heart Study recognizes 75 years, three generations of groundbreaking cardiovascular research

The study is now the longest running cohort study in the history of biomedical research.

Speakers recognized the participants of the Framingham Heart Study during a celebration recognizing 75 years of research. (Chris Christo/Boston Herald)

The Framingham Heart Study has now spent 75 years radically transforming how the field of medicine understands heart disease, researchers and participants recognized Monday — with three generations of participants in the small city saving and improving countless lives across the globe.

“Much of what we’ve learned specifically from this study has become common knowledge,” said Monica Bertagnolli, director of the National Institutes of Health.

“Americans, not just their doctors now understand the risk factors for heart disease, among them high blood pressure, high cholesterol, smoking, physical inactivity, unhealthy diets, unhealthy weight,” the NIH director added. “And just as important, we’ve also learned that we can change these risk factors, and if we do it saves lives.”

Researchers, doctors and participants gathered in Framingham on Monday to celebrate the 75th anniversary of the monumental research study, now the longest running cohort study in the history of biomedical research.

The study began in 1948 with just over 5,200 men and women from Framingham participating and is now on its third generation of over 15,400 participants, many of them descendants from original participants.

It has reshaped how the medical field understands heart health and cardiovascular disease, notably giving rise to the understanding of risk factors and preventative treatment.

The Framingham Heart study has become a “must read” for students in the medical field, speakers said, and is only continuing to grow and give researchers robust data to understand brain, lung, liver, kidneys, lungs and more. Public officials applauded the participants for their enormous contribution to the field.

“It’s just huge to be a part of it, to be part of history, to be part of something so worldwide,” said Philip Ottaviani, a third generation participant and City Council chair. “It put us on the map.”

Ottaviani noted that his daughter will be a part of the fourth generation, carrying on a long legacy of the study.

The study has become an integral part of the Framingham community and the local history and culture, participants said.

“My parents thought it was so important and were so dedicated to it,” said Richard Tirrell, who was recruited into the second generation of the study as a 21-year-old and has participated for nearly 60 years. “And we knew neighbors, other people who were also members and the children of members who thought it was important.”

The original generation of the study really cut a cross section of the town — “doctors and lawyers and factory workers, milk men and housewives and nuns from schools” — and so many children in his generation were sold because of the experiences and the belief of their parents, Tirrell said. It all brought together a wide ranging group in a common mission.

“It was not just us, it was a group of interrelated people who all were dedicated to the proposition that we’re doing good,” Tirrell explained.

“It’s a good thing to do,” said Anne Nicholson, an original member of the Omni Cohort of the study, which expanded the research to better study participants of minority races in 1994. “I really do love it.”

The work of the study is far from over, speakers said. Though the risk of cardiovascular disease and death rates dropped by about 75% between the 1950s and 2010, the reduction hasn’t kept up since, said Dr. David Goff, NIH director at the Division of Cardiovascular Sciences and National Heart, Lung, and Blood Institute.

The trend is “quite troubling,” Goff said, with rates of heart disease going up, including for young and middle age adults. Some attribute the trend to the obesity and diabetes epidemics in the country.

“New times and new challenges call for new science,” said Goff. “The important work that’s going on here in Framingham, I would say has never been more important than it is today.”

More in Local News

Mayor Michelle Wu’s administration is working to formalize the creation of a rat czar position in Boston, a rodent-killing job that would be handled by a current city employee already considered to be the lead on municipal pest-control operations. 

Politics | Boston Mayor Wu working to formalize rat czar position, administration official says

Red Sox home opener filled with optimism for youth, nostalgia for 2004 champions

Boston Red Sox | Red Sox home opener filled with optimism for youth, nostalgia for 2004 champions

MCAS testing plans went up in flames at one Uxbridge school Tuesday, after a smoking laptop burned a student and caused an evacuation during the exam.

Local News | Uxbridge student burned after laptop smoking malfunction during MCAS testing

A city attorney is arguing that North End restaurateurs have no basis for claiming the mayor has targeted their businesses by imposing heavy restrictions on outdoor dining due to anti-Italian bias.

Boston Mayor Michelle Wu fires back on North End restaurateurs over outdoor dining

blurred figure in a tunnel moving towards a light

The new science of death: ‘There’s something happening in the brain that makes no sense’

New research into the dying brain suggests the line between life and death may be less distinct than previously thought

P atient One was 24 years old and pregnant with her third child when she was taken off life support. It was 2014. A couple of years earlier, she had been diagnosed with a disorder that caused an irregular heartbeat, and during her two previous pregnancies she had suffered seizures and faintings. Four weeks into her third pregnancy, she collapsed on the floor of her home. Her mother, who was with her, called 911. By the time an ambulance arrived, Patient One had been unconscious for more than 10 minutes. Paramedics found that her heart had stopped.

After being driven to a hospital where she couldn’t be treated, Patient One was taken to the emergency department at the University of Michigan. There, medical staff had to shock her chest three times with a defibrillator before they could restart her heart. She was placed on an external ventilator and pacemaker, and transferred to the neurointensive care unit, where doctors monitored her brain activity. She was unresponsive to external stimuli, and had a massive swelling in her brain. After she lay in a deep coma for three days, her family decided it was best to take her off life support. It was at that point – after her oxygen was turned off and nurses pulled the breathing tube from her throat – that Patient One became one of the most intriguing scientific subjects in recent history.

For several years, Jimo Borjigin, a professor of neurology at the University of Michigan, had been troubled by the question of what happens to us when we die. She had read about the near-death experiences of certain cardiac-arrest survivors who had undergone extraordinary psychic journeys before being resuscitated. Sometimes, these people reported travelling outside of their bodies towards overwhelming sources of light where they were greeted by dead relatives. Others spoke of coming to a new understanding of their lives, or encountering beings of profound goodness. Borjigin didn’t believe the content of those stories was true – she didn’t think the souls of dying people actually travelled to an afterworld – but she suspected something very real was happening in those patients’ brains. In her own laboratory, she had discovered that rats undergo a dramatic storm of many neurotransmitters, including serotonin and dopamine, after their hearts stop and their brains lose oxygen. She wondered if humans’ near-death experiences might spring from a similar phenomenon, and if it was occurring even in people who couldn’t be revived.

Dying seemed like such an important area of research – we all do it, after all – that Borjigin assumed other scientists had already developed a thorough understanding of what happens to the brain in the process of death. But when she looked at the scientific literature, she found little enlightenment. “To die is such an essential part of life,” she told me recently. “But we knew almost nothing about the dying brain.” So she decided to go back and figure out what had happened inside the brains of people who died at the University of Michigan neurointensive care unit. Among them was Patient One.

At the time Borjigin began her research into Patient One, the scientific understanding of death had reached an impasse. Since the 1960s, advances in resuscitation had helped to revive thousands of people who might otherwise have died. About 10% or 20% of those people brought with them stories of near-death experiences in which they felt their souls or selves departing from their bodies. A handful of those patients even claimed to witness, from above, doctors’ attempts to resuscitate them. According to several international surveys and studies, one in 10 people claims to have had a near-death experience involving cardiac arrest, or a similar experience in circumstances where they may have come close to death. That’s roughly 800 million souls worldwide who may have dipped a toe in the afterlife.

As remarkable as these near-death experiences sounded, they were consistent enough that some scientists began to believe there was truth to them: maybe people really did have minds or souls that existed separately from their living bodies. In the 1970s, a small network of cardiologists, psychiatrists, medical sociologists and social psychologists in North America and Europe began investigating whether near-death experiences proved that dying is not the end of being, and that consciousness can exist independently of the brain. The field of near-death studies was born.

Over the next 30 years, researchers collected thousands of case reports of people who had had near-death experiences. Meanwhile, new technologies and techniques were helping doctors revive more and more people who, in earlier periods of history, would have almost certainly been permanently deceased. “We are now at the point where we have both the tools and the means to scientifically answer the age-old question: What happens when we die?” wrote Sam Parnia, an accomplished resuscitation specialist and one of the world’s leading experts on near-death experiences, in 2006. Parnia himself was devising an international study to test whether patients could have conscious awareness even after they were found clinically dead.

But by 2015, experiments such as Parnia’s had yielded ambiguous results, and the field of near-death studies was not much closer to understanding death than it had been when it was founded four decades earlier. That’s when Borjigin, together with several colleagues, took the first close look at the record of electrical activity in the brain of Patient One after she was taken off life support. What they discovered – in results reported for the first time last year – was almost entirely unexpected, and has the potential to rewrite our understanding of death.

“I believe what we found is only the tip of a vast iceberg,” Borjigin told me. “What’s still beneath the surface is a full account of how dying actually takes place. Because there’s something happening in there, in the brain, that makes no sense.”

F or all that science has learned about the workings of life, death remains among the most intractable of mysteries. “At times I have been tempted to believe that the creator has eternally intended this department of nature to remain baffling, to prompt our curiosities and hopes and suspicions all in equal measure,” the philosopher William James wrote in 1909.

The first time that the question Borjigin began asking in 2015 was posed – about what happens to the brain during death – was a quarter of a millennium earlier. Around 1740, a French military physician reviewed the case of a famous apothecary who, after a “malign fever” and several blood-lettings, fell unconscious and thought he had travelled to the Kingdom of the Blessed . The physician speculated that the apothecary’s experience had been caused by a surge of blood to the brain. But between that early report and the mid-20th century, scientific interest in near-death experiences remained sporadic.

In 1892, the Swiss climber and geologist Albert Heim collected the first systematic accounts of near-death experiences from 30 fellow climbers who had suffered near-fatal falls. In many cases, the climbers underwent a sudden review of their entire past, heard beautiful music, and “fell in a superbly blue heaven containing roseate cloudlets”, Heim wrote. “Then consciousness was painlessly extinguished, usually at the moment of impact.” There were a few more attempts to do research in the early 20th century, but little progress was made in understanding near-death experiences scientifically. Then, in 1975, an American medical student named Raymond Moody published a book called Life After Life.

Sunbeams behind clouds in vivid sunset sky reflecting in ocean water

In his book, Moody distilled the reports of 150 people who had had intense, life-altering experiences in the moments surrounding a cardiac arrest. Although the reports varied, he found that they often shared one or more common features or themes. The narrative arc of the most detailed of those reports – departing the body and travelling through a long tunnel, having an out-of-body experience, encountering spirits and a being of light, one’s whole life flashing before one’s eyes, and returning to the body from some outer limit – became so canonical that the art critic Robert Hughes could refer to it years later as “the familiar kitsch of near-death experience”. Moody’s book became an international bestseller.

In 1976, the New York Times reported on the burgeoning scientific interest in “life after death” and the “emerging field of thanatology”. The following year, Moody and several fellow thanatologists founded an organisation that became the International Association for Near-Death Studies. In 1981, they printed the inaugural issue of Vital Signs , a magazine for the general reader that was largely devoted to stories of near-death experiences. The following year they began producing the field’s first peer-reviewed journal, which became the Journal of Near-Death Studies . The field was growing, and taking on the trappings of scientific respectability. Reviewing its rise in 1988, the British Journal of Psychiatry captured the field’s animating spirit: “A grand hope has been expressed that, through NDE research, new insights can be gained into the ageless mystery of human mortality and its ultimate significance, and that, for the first time, empirical perspectives on the nature of death may be achieved.”

But near-death studies was already splitting into several schools of belief, whose tensions continue to this day. One influential camp was made up of spiritualists, some of them evangelical Christians, who were convinced that near-death experiences were genuine sojourns in the land of the dead and divine. As researchers, the spiritualists’ aim was to collect as many reports of near-death experience as possible, and to proselytise society about the reality of life after death. Moody was their most important spokesman; he eventually claimed to have had multiple past lives and built a “psychomanteum” in rural Alabama where people could attempt to summon the spirits of the dead by gazing into a dimly lit mirror.

The second, and largest, faction of near-death researchers were the parapsychologists, those interested in phenomena that seemed to undermine the scientific orthodoxy that the mind could not exist independently of the brain. These researchers, who were by and large trained scientists following well established research methods, tended to believe that near-death experiences offered evidence that consciousness could persist after the death of the individual. Many of them were physicians and psychiatrists who had been deeply affected after hearing the near-death stories of patients they had treated in the ICU. Their aim was to find ways to test their theories of consciousness empirically, and to turn near-death studies into a legitimate scientific endeavour.

Finally, there emerged the smallest contingent of near-death researchers, who could be labelled the physicalists. These were scientists, many of whom studied the brain, who were committed to a strictly biological account of near-death experiences. Like dreams, the physicalists argued, near-death experiences might reveal psychological truths, but they did so through hallucinatory fictions that emerged from the workings of the body and the brain. (Indeed, many of the states reported by near-death experiencers can apparently be achieved by taking a hero’s dose of ketamine.) Their basic premise was: no functioning brain means no consciousness, and certainly no life after death. Their task, which Borjigin took up in 2015, was to discover what was happening during near-death experiences on a fundamentally physical level.

Slowly, the spiritualists left the field of research for the loftier domains of Christian talk radio, and the parapsychologists and physicalists started bringing near-death studies closer to the scientific mainstream. Between 1975, when Moody published Life After Life, and 1984, only 17 articles in the PubMed database of scientific publications mentioned near-death experiences. In the following decade, there were 62. In the most recent 10-year span, there were 221. Those articles have appeared everywhere from the Canadian Urological Association Journal to the esteemed pages of The Lancet.

Today, there is a widespread sense throughout the community of near-death researchers that we are on the verge of great discoveries. Charlotte Martial, a neuroscientist at the University of Liège in Belgium who has done some of the best physicalist work on near-death experiences, hopes we will soon develop a new understanding of the relationship between the internal experience of consciousness and its outward manifestations, for example in coma patients. “We really are in a crucial moment where we have to disentangle consciousness from responsiveness, and maybe question every state that we consider unconscious,” she told me. Parnia, the resuscitation specialist, who studies the physical processes of dying but is also sympathetic to a parapsychological theory of consciousness, has a radically different take on what we are poised to find out. “I think in 50 or 100 years time we will have discovered the entity that is consciousness,” he told me. “It will be taken for granted that it wasn’t produced by the brain, and it doesn’t die when you die.”

I f the field of near-death studies is at the threshold of new discoveries about consciousness and death, it is in large part because of a revolution in our ability to resuscitate people who have suffered cardiac arrest. Lance Becker has been a leader in resuscitation science for more than 30 years. As a young doctor attempting to revive people through CPR in the mid-1980s, senior physicians would often step in to declare patients dead. “At a certain point, they would just say, ‘OK, that’s enough. Let’s stop. This is unsuccessful. Time of death: 1.37pm,’” he recalled recently. “And that would be the last thing. And one of the things running through my head as a young doctor was, ‘Well, what really happened at 1.37?’”

In a medical setting, “clinical death” is said to occur at the moment the heart stops pumping blood, and the pulse stops. This is widely known as cardiac arrest. (It is different from a heart attack, in which there is a blockage in a heart that’s still pumping.) Loss of oxygen to the brain and other organs generally follows within seconds or minutes, although the complete cessation of activity in the heart and brain – which is often called “flatlining” or, in the case of the latter, “brain death” – may not occur for many minutes or even hours.

For almost all people at all times in history, cardiac arrest was basically the end of the line. That began to change in 1960, when the combination of mouth-to-mouth ventilation, chest compressions and external defibrillation known as cardiopulmonary resuscitation, or CPR, was formalised. Shortly thereafter, a massive campaign was launched to educate clinicians and the public on CPR’s basic techniques , and soon people were being revived in previously unthinkable, if still modest, numbers.

As more and more people were resuscitated, scientists learned that, even in its acute final stages, death is not a point, but a process. After cardiac arrest, blood and oxygen stop circulating through the body, cells begin to break down, and normal electrical activity in the brain gets disrupted. But the organs don’t fail irreversibly right away, and the brain doesn’t necessarily cease functioning altogether. There is often still the possibility of a return to life. In some cases, cell death can be stopped or significantly slowed, the heart can be restarted, and brain function can be restored. In other words, the process of death can be reversed.

It is no longer unheard of for people to be revived even six hours after being declared clinically dead. In 2011, Japanese doctors reported the case of a young woman who was found in a forest one morning after an overdose stopped her heart the previous night; using advanced technology to circulate blood and oxygen through her body, the doctors were able to revive her more than six hours later, and she was able to walk out of the hospital after three weeks of care. In 2019, a British woman named Audrey Schoeman who was caught in a snowstorm spent six hours in cardiac arrest before doctors brought her back to life with no evident brain damage.

“I don’t think there’s ever been a more exciting time for the field,” Becker told me. “We’re discovering new drugs, we’re discovering new devices, and we’re discovering new things about the brain.”

T he brain – that’s the tricky part. In January 2021, as the Covid-19 pandemic was surging toward what would become its deadliest week on record, Netflix released a documentary series called Surviving Death . In the first episode, some of near-death studies’ most prominent parapsychologists presented the core of their arguments for why they believe near-death experiences show that consciousness exists independently of the brain. “When the heart stops, within 20 seconds or so, you get flatlining, which means no brain activity,” Bruce Greyson, an emeritus professor of psychiatry at the University of Virginia and one of the founding members of the International Association for Near-Death Studies, says in the documentary. “And yet,” he goes on to claim, “people have near-death experiences when they’ve been (quote) ‘flatlined’ for longer than that.”

That is a key tenet of the parapsychologists’ arguments: if there is consciousness without brain activity, then consciousness must dwell somewhere beyond the brain. Some of the parapsychologists speculate that it is a “non-local” force that pervades the universe, like electromagnetism. This force is received by the brain, but is not generated by it, the way a television receives a broadcast.

In order for this argument to hold, something else has to be true: near-death experiences have to happen during death, after the brain shuts down. To prove this, parapsychologists point to a number of rare but astounding cases known as “veridical” near-death experiences, in which patients seem to report details from the operating room that they might have known only if they had conscious awareness during the time that they were clinically dead. Dozens of such reports exist. One of the most famous is about a woman who apparently travelled so far outside her body that she was able to spot a shoe on a window ledge in another part of the hospital where she went into cardiac arrest; the shoe was later reportedly found by a nurse.

an antique illustration of an ‘out of body experience’

At the very least, Parnia and his colleagues have written, such phenomena are “inexplicable through current neuroscientific models”. Unfortunately for the parapsychologists, however, none of the reports of post-death awareness holds up to strict scientific scrutiny. “There are many claims of this kind, but in my long decades of research into out-of-body and near-death experiences I never met any convincing evidence that this is true,” Sue Blackmore, a well-known researcher into parapsychology who had her own near-death experience as a young woman in 1970, has written .

The case of the shoe, Blackmore pointed out, relied solely on the report of the nurse who claimed to have found it. That’s far from the standard of proof the scientific community would require to accept a result as radical as that consciousness can travel beyond the body and exist after death. In other cases, there’s not enough evidence to prove that the experiences reported by cardiac arrest survivors happened when their brains were shut down, as opposed to in the period before or after they supposedly “flatlined”. “So far, there is no sufficiently rigorous, convincing empirical evidence that people can observe their surroundings during a near-death experience,” Charlotte Martial, the University of Liège neuroscientist, told me.

The parapsychologists tend to push back by arguing that even if each of the cases of veridical near-death experiences leaves room for scientific doubt, surely the accumulation of dozens of these reports must count for something. But that argument can be turned on its head: if there are so many genuine instances of consciousness surviving death, then why should it have so far proven impossible to catch one empirically?

P erhaps the story to be written about near-death experiences is not that they prove consciousness is radically different from what we thought it was. Instead, it is that the process of dying is far stranger than scientists ever suspected. The spiritualists and parapsychologists are right to insist that something deeply weird is happening to people when they die, but they are wrong to assume it is happening in the next life rather than this one. At least, that is the implication of what Jimo Borjigin found when she investigated the case of Patient One.

In the moments after Patient One was taken off oxygen, there was a surge of activity in her dying brain. Areas that had been nearly silent while she was on life support suddenly thrummed with high-frequency electrical signals called gamma waves. In particular, the parts of the brain that scientists consider a “hot zone” for consciousness became dramatically alive. In one section, the signals remained detectable for more than six minutes. In another, they were 11 to 12 times higher than they had been before Patient One’s ventilator was removed.

“As she died, Patient One’s brain was functioning in a kind of hyperdrive,” Borjigin told me. For about two minutes after her oxygen was cut off, there was an intense synchronisation of her brain waves, a state associated with many cognitive functions, including heightened attention and memory. The synchronisation dampened for about 18 seconds, then intensified again for more than four minutes. It faded for a minute, then came back for a third time.

In those same periods of dying, different parts of Patient One’s brain were suddenly in close communication with each other. The most intense connections started immediately after her oxygen stopped, and lasted for nearly four minutes. There was another burst of connectivity more than five minutes and 20 seconds after she was taken off life support. In particular, areas of her brain associated with processing conscious experience – areas that are active when we move through the waking world, and when we have vivid dreams – were communicating with those involved in memory formation. So were parts of the brain associated with empathy. Even as she slipped irrevocably deeper into death, something that looked astonishingly like life was taking place over several minutes in Patient One’s brain.

The shadows of anonymous people are seen on a wall

Those glimmers and flashes of something like life contradict the expectations of almost everyone working in the field of resuscitation science and near-death studies. The predominant belief – expressed by Greyson, the psychiatrist and co-founder of the International Association of Near Death Studies, in the Netflix series Surviving Death – was that as soon as oxygen stops going to the brain, neurological activity falls precipitously. Although a few earlier instances of brain waves had been reported in dying human brains, nothing as detailed and complex as what occurred in Patient One had ever been detected.

Given the levels of activity and connectivity in particular regions of her dying brain, Borjigin believes it’s likely that Patient One had a profound near-death experience with many of its major features: out-of-body sensations, visions of light, feelings of joy or serenity, and moral re-evaluations of one’s life. Of course, Patient One did not recover, so no one can prove that the extraordinary happenings in her dying brain had experiential counterparts. Greyson and one of the other grandees of near-death studies, a Dutch cardiologist named Pim van Lommel, have asserted that Patient One’s brain activity can shed no light on near-death experiences because her heart hadn’t fully flatlined, but that is a self-defeating argument: there is no rigorous empirical evidence that near-death experiences occur in people whose hearts have completely stopped.

At the very least, Patient One’s brain activity – and the activity in the dying brain of another patient Borjigin studied, a 77-year-old woman known as Patient Three – seems to close the door on the argument that the brain always and nearly immediately ceases to function in a coherent manner in the moments after clinical death. “The brain, contrary to everybody’s belief, is actually super active during cardiac arrest,” Borjigin said. Death may be far more alive than we ever thought possible.

B orjigin believes that understanding the dying brain is one of the “holy grails” of neuroscience. “The brain is so resilient, the heart is so resilient, that it takes years of abuse to kill them,” she pointed out. “Why then, without oxygen, can a perfectly healthy person die within 30 minutes, irreversibly?” Although most people would take that result for granted, Borjigin thinks that, on a physical level, it actually makes little sense.

Borjigin hopes that understanding the neurophysiology of death can help us to reverse it. She already has brain activity data from dozens of deceased patients that she is waiting to analyse. But because of the paranormal stigma associated with near-death studies, she says, few research agencies want to grant her funding. “Consciousness is almost a dirty word amongst funders,” she added. “Hardcore scientists think research into it should belong to maybe theology, philosophy, but not in hardcore science. Other people ask, ‘What’s the use? The patients are gonna die anyway, so why study that process? There’s nothing you can do about it.’”

Evidence is already emerging that even total brain death may someday be reversible. In 2019, scientists at Yale University harvested the brains of pigs that had been decapitated in a commercial slaughterhouse four hours earlier. Then they perfused the brains for six hours with a special cocktail of drugs and synthetic blood. Astoundingly, some of the cells in the brains began to show metabolic activity again, and some of the synapses even began firing. The pigs’ brain scans didn’t show the widespread electrical activity that we typically associate with sentience or consciousness. But the fact that there was any activity at all suggests the frontiers of life may one day extend much, much farther into the realms of death than most scientists currently imagine.

Other serious avenues of research into near-death experience are ongoing. Martial and her colleagues at the University of Liège are working on many issues relating to near-death experiences. One is whether people with a history of trauma, or with more creative minds, tend to have such experiences at higher rates than the general population. Another is on the evolutionary biology of near-death experiences. Why, evolutionarily speaking, should we have such experiences at all? Martial and her colleagues speculate that it may be a form of the phenomenon known as thanatosis, in which creatures throughout the animal kingdom feign death to escape mortal dangers. Other researchers have proposed that the surge of electrical activity in the moments after cardiac arrest is just the final seizure of a dying brain, or have hypothesised that it’s a last-ditch attempt by the brain to restart itself, like jump-starting the engine on a car.

Meanwhile, in parts of the culture where enthusiasm is reserved not for scientific discovery in this world, but for absolution or benediction in the next, the spiritualists, along with sundry other kooks and grifters, are busily peddling their tales of the afterlife. Forget the proverbial tunnel of light: in America in particular, a pipeline of money has been discovered from death’s door, through Christian media, to the New York Times bestseller list and thence to the fawning, gullible armchairs of the nation’s daytime talk shows. First stop, paradise; next stop, Dr Oz.

But there is something that binds many of these people – the physicalists, the parapsychologists, the spiritualists – together. It is the hope that by transcending the current limits of science and of our bodies, we will achieve not a deeper understanding of death, but a longer and more profound experience of life. That, perhaps, is the real attraction of the near-death experience: it shows us what is possible not in the next world, but in this one.

  • The long read
  • Death and dying
  • Consciousness
  • Neuroscience

Most viewed

This paper is in the following e-collection/theme issue:

Published on 9.4.2024 in Vol 26 (2024)

Moderating Effect of Coping Strategies on the Association Between the Infodemic-Driven Overuse of Health Care Services and Cyberchondria and Anxiety: Partial Least Squares Structural Equation Modeling Study

Authors of this article:

Author Orcid Image

Original Paper

  • Richard Huan Xu 1 , PhD   ; 
  • Caiyun Chen 2 , PhD  

1 Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, China (Hong Kong)

2 Nanjing Academy of Administration, Nanjing, China

Corresponding Author:

Richard Huan Xu, PhD

Department of Rehabilitation Sciences

Faculty of Health and Social Sciences

Hong Kong Polytechnic University

11 Yuk Choi Rd

China (Hong Kong)

Phone: 852 27664199

Email: [email protected]

Background: The COVID-19 pandemic has led to a substantial increase in health information, which has, in turn, caused a significant rise in cyberchondria and anxiety among individuals who search for web-based medical information. To cope with this information overload and safeguard their mental well-being, individuals may adopt various strategies. However, the effectiveness of these strategies in mitigating the negative effects of information overload and promoting overall well-being remains uncertain.

Objective: This study aimed to investigate the moderating effect of coping strategies on the relationship between the infodemic-driven misuse of health care and depression and cyberchondria. The findings could add a new dimension to our understanding of the psychological impacts of the infodemic, especially in the context of a global health crisis, and the moderating effect of different coping strategies on the relationship between the overuse of health care and cyberchondria and anxiety.

Methods: The data used in this study were obtained from a cross-sectional web-based survey. A professional survey company was contracted to collect the data using its web-based panel. The survey was completed by Chinese individuals aged 18 years or older without cognitive problems. Model parameters of the relationships between infodemic-driven overuse of health care, cyberchondria, and anxiety were analyzed using bootstrapped partial least squares structural equation modeling. Additionally, the moderating effects of coping strategies on the aforementioned relationships were also examined.

Results: A total of 986 respondents completed the web-based survey. The mean scores of the Generalized Anxiety Disorder-7 and Cyberchondria Severity Scale-12 were 8.4 (SD 3.8) and 39.7 (SD 7.5), respectively. The mean score of problem-focused coping was higher than those of emotion- and avoidant-focused coping. There was a significantly positive relationship between a high level of infodemic and increased overuse of health care (bootstrapped mean 0.21, SD 0.03; 95% CI 0.1581-0.271). The overuse of health care resulted in more severe cyberchondria (bootstrapped mean 0.107, SD 0.032) and higher anxiety levels (bootstrapped mean 0.282, SD 0.032) in all the models. Emotion (bootstrapped mean 0.02, SD 0.008 and 0.037, SD 0.015)- and avoidant (bootstrapped mean 0.026, SD 0.009 and 0.049, SD 0.016)-focused coping strategies significantly moderated the relationship between the overuse of health care and cyberchondria and that between the overuse of health care and anxiety, respectively. Regarding the problem-based model, the moderating effect was significant for the relationship between the overuse of health care and anxiety (bootstrapped mean 0.007, SD 0.011; 95% CI 0.005-0.027).

Conclusions: This study provides empirical evidence about the impact of coping strategies on the relationship between infodemic-related overuse of health care services and cyberchondria and anxiety. Future research can build on the findings of this study to further explore these relationships and develop and test interventions aimed at mitigating the negative impact of the infodemic on mental health.

Introduction

Covid-19–related mental health problems.

In today’s technologically advancing society, widespread and rapid digitization has led to a substantial increase in the use of social media and the internet. This, in turn, has facilitated the rapid dissemination of all types of information. Although this can be beneficial in filling information gaps quickly, it has its drawbacks. A prominent drawback is the amplification of harmful messages, which can have negative effects on individuals [ 1 , 2 ]. The World Health Organization (WHO) acknowledged the presence of an infodemic during the COVID-19 pandemic and subsequent responses. WHO defines an infodemic as an excessive amount of information, including both accurate and inaccurate content [ 3 ]. This abundance of information makes it difficult for individuals to distinguish reliable sources from unreliable sources and to find trustworthy guidance when they need it.

Excessive use of health care services can have adverse effects on individuals and the overall sustainability of health care systems. Although challenges associated with the overuse of health care services were evident before the COVID-19 pandemic [ 4 , 5 ], the urgent need for sustainable health care systems was exacerbated by the pandemic. Because large portions of the population were instructed to self-isolate at home and had limited access to health care professionals during the pandemic, the internet became the primary source of information for numerous individuals seeking answers to health-related questions. However, the abundance of web-based information, including both true and false content, can leave individuals feeling overwhelmed and struggling to make informed choices. This information overload can lead to depression because individuals bombarded with conflicting messages may feel unsure of what to believe [ 6 - 10 ].

Besides depression, cyberchondria has also emerged as a significant public health challenge since the onset of the COVID-19 pandemic. This refers to the repeated and excessive search for health-related information on the internet, leading to a significant increase in distress or anxiety [ 11 ]. Although the global emergency caused by the COVID-19 pandemic is over, telehealth remains a growing trend. An increasing number of studies have indicated that telehealth can improve health care access, outcomes, and affordability by offering a bridge to care and an opportunity to reinvent web-based care models [ 12 ]. However, increasing internet exposure increases the risk of cyberchondria, especially under conditions of uncertainty and increased risk, due to the large volume of information it contains. Thus, it is crucial to understand how to provide support and guidance to help people adopt appropriate strategies for using web-based resources safely in the context of an infodemic.

Current Research on the COVID-19–Related Infodemic

The harms of infodemic are well documented. An Italian study suggested developing early warning signals for an infodemic, which can provide important cues for implementing effective communication strategies to mitigate misinformation [ 13 ]. Other studies have shown that successful use of coping strategies can help individuals manage stressful events and reduce negative emotions during a pandemic. For example, Yang [ 14 ] found a positive correlation between emotion-focused coping and cyberbullying and depression during the COVID-19 pandemic. A large-scale UK study indicated that supportive coping was associated with a faster decrease in depression and anxiety symptoms [ 15 ]. Shigeto et al [ 16 ] emphasized the importance of training young adults to develop resilience, flexibility, and specific coping skills to offset the psychological effects of significant lifestyle changes resulting from pandemics or other health crises in the future. A recent study used machine learning technology to enhance the accuracy and efficiency of automated fact-checking and infodemic risk management at a strategic level [ 17 ]. However, the impact of coping strategies on the relationship among the infodemic, cyberchondria, and anxiety at an individual level during the COVID-19 pandemic is still unknown.

Importance of Coping Strategies

The ability of individuals to discern and adopt appropriate coping strategies can have a profound impact on their mental health, particularly in relation to conditions such as depression and anxiety. The ability to select and implement coping strategies is not uniform across all individuals, and these differences can significantly influence the trajectory of their mental health outcomes. For some, the ability to effectively choose and implement coping strategies can serve as a protective factor, mitigating the severity of the symptoms of depression or anxiety and promoting overall health and well-being. Conversely, for others, inability or difficulty in selecting and implementing effective coping strategies can exacerbate mental health conditions, leading to increased severity of depression and anxiety. This, in turn, can have detrimental effects on individuals’ overall health and well-being. Therefore, understanding the factors that influence individuals’ ability to select and implement effective coping strategies is of paramount importance in the field of mental health research and intervention [ 18 ].

Research has demonstrated the importance of appropriate coping mechanisms in managing mental health problems. Coping strategies, which are essential for dealing with stress or challenging situations, can be categorized into 3 primary types: emotion focused, problem focused, and avoidant focused [ 19 ]. Emotion-focused strategies are centered around managing and regulating emotions. They serve as a means to cope with stress or difficult situations. These strategies might involve seeking emotional support from others, using relaxation techniques, or practicing mindfulness. In contrast, problem-focused strategies actively address the problem or stressor. These strategies might encompass problem-solving, devising a plan of action, or seeking information and resources to effectively tackle the situation. Avoidant-focused strategies involve evading or distancing oneself from the stressor or problem. These strategies might include denial, distraction, or engaging in activities to escape or avoid contemplating the issue [ 18 ]. The effectiveness of different coping strategies can vary depending on the situation. Individuals often use different or a combination of strategies, tailoring their approach to their circumstances.

Coping Strategies in the COVID-19–Related Infodemic

From a social perspective, this study underscores the importance of mental health in the context of public health emergencies such as the COVID-19 pandemic. It highlights the need for society to recognize and address the mental health burden that such emergencies can place on individuals, particularly in relation to the phenomenon of cyberchondria, which is the unfounded escalation of concerns about common symptoms based on reviews of web-based literature and resources.

Practically, this study provides valuable insights for policy makers and practitioners. It emphasizes the need for the development of effective coping strategies and programs to manage the negative impact of an overload of misinformation and disinformation on mental health. This is particularly relevant in the digital age, where individuals have access to a plethora of information, not all of which is accurate or reliable. Policy makers and practitioners can use the findings of this study to design interventions that not only provide accurate information but also equip individuals with the skills to distinguish reliable sources from unreliable sources and to cope with the anxiety that misinformation can cause. From a research standpoint, this study fills a gap in the literature by assessing the impact of the infodemic on cyberchondria and the moderating effect of coping strategies in this relationship. It opens up new avenues of research into the complex interplay among public health emergencies, infodemic, cyberchondria, and coping strategies. Future research could build on the findings of this study to further explore these relationships and develop and test interventions aimed at mitigating the negative impact of infodemic on mental health.

Objective of the Study

Currently, the association between the overuse of health care services and mental health problems in the context of an infodemic remains unclear, as is the moderating effect of different coping strategies on this association. Thus, this study investigated the moderating effect of coping strategies on the relationship between the infodemic-driven misuse of health care and depression and cyberchondria.

Hypotheses of the Study

The study used a hypothesis-driven format. Specifically, there are five hypotheses: (1) a positive relationship exists between infodemic and the misuse of health care, (2) a positive relationship exists between the misuse of health care and depressive disorders, (3) a positive relationship exists between the misuse of health care and cyberchondria, (4) coping strategies mitigate the negative effect of the misuse of health care on depression, and (5) coping strategies mitigate the negative effect of the misuse of health care on cyberchondria. Hypotheses 2-5 are separately evaluated for the three types of coping strategies: problem focused (H2.1), emotion focused (H2.2), and avoidant focused (H2.3).

Study Design and Sample Size

The data used in this study were obtained from a cross-sectional and web-based survey conducted between April and May 2023 in China.

There is no gold standard for sample estimation in partial least squares structural equation modeling (PLS-SEM). Following Hair et al [ 20 ], we set the significance level at 5% and the minimum path coefficients to between 0.05 and 0.1. Based on these criteria, a minimum sample size of 619 was determined.

Data Source and Collection

A professional surveying company, WenJuanXing, was invited to collect the data through its web-based panel. The panel of WenJuanXing consists of 2.6 million members, with an average of over 1 million questionnaire respondents daily. At the beginning of the project, a survey manager collaborated with the research team to screen and recruit participants using the company’s internal social network platform. All of the eligible panel members received a survey invitation, and a voluntary response sampling method was used. The survey manager checked the data quality using WenJuanXing’s artificial intelligence data quality control system to ensure that respondents met our inclusion criteria and provided valid responses, thus ensuring a high level of data accuracy and integrity. The inclusion criteria were (1) aged older than 18 years, (2) able to understand and read Chinese, and (3) agreed to provide informed consent. All eligible respondents were invited to participate in a web-based survey. The first section of the survey was the informed consent, which the participants were required to read and agree to before proceeding. All the participants who agreed to participate in the survey were asked to complete six questionnaires covering (1) demographics and socioeconomic status, (2) COVID-19 information–related questions, (3) a cyberchondria questionnaire, (4) an eHealth literacy questionnaire, (5) an anxiety questionnaire, and (6) a coping strategy questionnaire. The English translations of the questionnaires are presented in Multimedia Appendix 1 . To ensure data quality, we collaborated with the survey company and implemented various indicators. We monitored completion time, excluding responses that took less than 6 minutes. We also tracked ID addresses, ensuring that each ID address could only complete the questionnaire once. To minimize random errors, we used an artificial intelligence formula developed by the survey company to identify and filter any response patterns that appeared to be generated in parallel.

Ethical Considerations

The study protocol and informed consent process were approved by the institutional review board of the Hong Kong Polytechnic University (HSEARS20230502006). Informed consent was collected from all participants. The survey was conducted anonymously, and no personally identifiable information was collected. No compensation was provided by the research team.

Instruments

Cyberchondria severity scale-12.

The Cyberchondria Severity Scale-12 (CSS-12), derived from the 33-item CSS, was used to measure the severity of cyberchondria. The CSS-12 exhibited equally good psychometric properties as the original version and has been validated in Chinese populations [ 21 ]. The CSS-12 items are scored on a Likert-type scale ranging from 1=“never” to 5=“always,” giving total scores ranging from 12 to 60. A higher score indicates a higher severity of suspected cyberchondria. The psychometric properties of the Chinese version of the CSS-12 were reported by Peng et al [ 22 ].

Generalized Anxiety Disorder Assessment

The Generalized Anxiety Disorder Assessment-7 (GAD-7) was used to screen for generalized anxiety disorder and related anxiety disorders [ 23 ]. This scale consists of 7 items designed to assess the frequency of anxiety symptoms during the 2 weeks preceding the survey. The GAD-7 score is calculated by assigning scores of 0, 1, 2, and 3 to the response categories of “not at all,” “several days,” “more than half the days,” and “nearly every day,” respectively. The scores of the 7 questions are then summed, giving a total ranging from 0 to 21, with higher scores indicating a higher severity of anxiety disorders. Many studies have reported the psychometric properties of the GAD-7 in Chinese populations, such as that conducted by Sun et al [ 24 ].

Coping Orientation to Problems Experienced Inventory

The Coping Orientation to Problems Experienced Inventory (Brief-COPE) is a 28-item self-report questionnaire used to measure effective and ineffective strategies for coping with a stressful life event [ 25 ]. The Brief-COPE assesses how a person deals with stressors in their daily life. The questionnaire measures 3 coping strategy dimensions: problem focused, emotion focused, and avoidant focused [ 26 ]. Each item is rated on a 4-point scale. The scores for the 3 overarching coping styles are calculated as average scores. This is done by dividing the sum of the item scores by the number of items. These average scores indicate the extent to which the respondent engages in each coping style. A higher score indicates that the respondent does not have many coping skills. The Chinese version of the Brief-COPE and its psychometric properties in Chinese populations were reported by Wang et al [ 27 ].

Infodemic- and Misinformation-Driven Overuse of Health Care Services

The COVID-19–related infodemic and misinformation-driven medical misbehavior were assessed using 2 self-developed items. The first item was “Do you believe there is an excessive amount of information regarding the COVID virus and vaccine on a daily basis?” The second item was “Has misinformation or disinformation about COVID-19 led you to engage in the overuse of health care services (eg, frequently visiting the doctor/psychiatrist or buying unnecessary medicine)?” The respondents were required to indicate their response to these 2 questions by selecting 1 of 2 options presented dichotomously: yes or no.

Statistical Analysis

Descriptive statistics were used to describe the participants’ background characteristics. Continuous variables (eg, age) were calculated as means and SDs. Categorical variables (eg, sex) were calculated as frequencies and proportions. The Pearson correlation coefficient ( r ) was used to examine the association between measures, where  r ≥0.3 and  r ≥0.5 indicated moderate and large effects, respectively [ 28 , 29 ].

In this study, we used PLS-SEM to estimate the research model parameters, as it works efficiently with small samples and complex models. Compared with covariance-based structural equation modeling, PLS-SEM has several advantages, such as the ability to handle non-normal data and small samples [ 30 ]. Unlike covariance-based structural equation modeling, which focuses on confirming theories, PLS-SEM is a causal-predictive approach that explains variance in the model’s dependent variables [ 31 ]. To improve the model fit, we used the bootstrapping method with 10,000 replications to obtain the estimates of the mean coefficients and 95% CIs [ 32 ]. Composite reliability rho_a (>0.7), composite reliability rho_c (>0.7), and average variance extracted (>0.5) were used to examine the model performance.

PLS-SEM encompasses measurement models that define the relationship between constructs (instruments) and indicator variables and a structural model. The structural model used in this study is presented in Figure 1 . We hypothesized that the infodemic significantly affects misinformation-driven medical misbehavior, resulting in cyberchondria and high anxiety levels. Furthermore, we speculated that coping strategies significantly modify this relationship. To test these hypotheses, we used 3 models that used the full sample to separately investigate the moderating effect of the 3 types of coping strategies (problem focused, emotion focused, and avoidant focused). We analyzed the data and estimated the PLS-SEM parameters using the “SEMinR” package in R (R Foundation for Statistical Computing). A P value of ≤.05 was considered statistically significant.

what is research study all about

Background Characteristics of Participants

A total of 986 respondents completed the web-based survey and provided valid responses, resulting in a response rate of 84%. Among the participants, 51.7% (n=510) were female, approximately 95% (n=933) had completed tertiary education or above, and 71.2% (n=702) resided in urban areas. The participants’ background characteristics are listed in Table 1 .

a A currency exchange rate of 7.23 CNY=US $1 applies.

Mean Scores and Frequency of Responses

The mean score of the GAD-7 was 8.4 (SD 3.8), while the mean score of the CSS-12 was 39.7 (SD 7.5). Problem-focused coping had a higher mean score than emotion- and avoidant-focused coping. Respondents with active employment reported statistically significantly higher mean scores on the GAD and avoidant-focused coping subscale compared to those with nonactive employment. A higher proportion of respondents with chronic diseases experienced an infodemic and exhibited the overuse of health care services relative to those without chronic diseases ( Table 2 ). The correlations between all of the measures are presented in Multimedia Appendix 2 .

a GAD-7: Generalized Anxiety Disorder Assessment-7.

b CSS-12: Cyberchondria Severity Scale-12.

c COPE: Coping Orientation to Problems Experienced Inventory.

g P <.001.

Measurement Models

Tables 3 - 5 present the performance of the measurement models for the 3 coping strategies. The values of rho_C and rho_A were above 0.7, indicating acceptable construct reliability. All 3 constructs had Cronbach α values exceeding the cutoff of 0.7, indicating adequate reliability. Table 2 presents the models’ convergent validity. All the bootstrapped item loadings exceeded 0.3 and were significant at <.05 for the problem- and avoidant-focused models. However, for cyberchondria and the Brief-COPE, none of the average variance extracted values were above 0.5, indicating unsatisfactory model convergent validity.

a AVE: average variance extracted.

b GAD-7: Generalized Anxiety Disorder-7.

d HC: health care.

b GAD-7: Generalized Anxiety Disorder.

Structural Models

The structural model analysis involved estimating path coefficients for the conceptual model. We performed PLS-SEM on the research model 3 times to estimate path coefficients for the models with different coping strategies. We found that H1 was supported. A significant and positive relationship was observed between a high level of infodemic exposure and increased overuse of health care services (coefficient=0.212, 95% CI 0.151-0.271). In addition, the overuse of health care services was correlated with more severe cyberchondria and higher anxiety levels in all the 3 models, supporting H2 and H3. The effect of the overuse of health care services on cyberchondria was larger than its effect on anxiety. All these relationships were statistically significant ( Tables 3 - 5 ).

Moderating Effects

In our moderation analyses ( Figure 2 and Tables 6 and 7 ), we found that emotion- and avoidant-focused coping strategies significantly moderated the relationship between the overuse of health care services and cyberchondria and that between the overuse of health care services and anxiety, respectively, supporting H5 and H6. For the problem-based model (H4), the moderating effect was not significant for the relationship between the overuse of health care services and cyberchondria (coefficient=0.002, 95% CI −0.011 to 0.006), indicating that H4.1 was not supported. Compared with the direct effects on the relationship between the overuse of health care services and cyberchondria or anxiety, a strong ability to cope with difficulties can effectively mitigate the negative effects of the infodemic-driven overuse of health care services on cyberchondria and anxiety.

what is research study all about

a HC: health care.

b GAD: Generalized Anxiety Disorder Assessment.

b CS: coping strategy.

c GAD: Generalized Anxiety Disorder Assessment.

Principal Findings

We performed a series of PLS-SEM analyses to examine the relationships between the infodemic-driven overuse of health care services and cyberchondria and anxiety and determine the moderating effects of 3 types of coping strategies on these relationships. We observed that the individuals who were exposed to an overload of COVID-19–related information were more likely to seek and use extra and unnecessary health care services during the pandemic. Such behavior may lead to a considerable wastage of health resources that are particularly limited during a public health crisis. Although some studies have indicated that during the COVID-19 pandemic individuals with increasing mental health symptoms rarely used mental health services [ 33 - 35 ], we found that the overuse of health care services may contribute to higher levels of depression and cyberchondria during a pandemic. This finding has never been reported before. However, we did not differentiate between the types of health care services, either physical or mental, that the individuals overused during the pandemic. This limitation may affect the implications of our findings for policy making purposes.

Comparisons With Previous Studies

We observed that enhanced coping strategies can mitigate the adverse effects of overusing health care on depression and cyberchondria. Studies have confirmed the association between pandemics and depression, have identified several sources of depression [ 6 , 7 , 10 , 36 , 37 ], and have determined the relationship between depression and cyberchondria [ 38 ]. However, few studies have investigated the relationship between depression or cyberchondria and the infodemic-driven overuse of health care services. Our findings demonstrate that the adverse effects of the pandemic are diverse and require the investigation of individuals’ health from multiple perspectives (ie, infodemic in health communication, the use of health care in health service research, and depression in psychiatry). These effects might not be immediately apparent, but they are all linked to each other and collectively cause harm. Thus, policy makers should develop a comprehensive and cost-effective strategy to address the potential adverse effects of pandemics on people’s health and well-being and better prepare for the next public health crisis.

This study offers new insights into the role of coping strategies in mediating the relationship between health care overuse and depression or cyberchondria during the COVID-19 pandemic. Overall, individuals with strong coping abilities were more likely to report lower levels of depression or cyberchondria than those with weak coping abilities. However, the moderating effects of different coping strategies varied slightly. We discovered that problem-focused coping strategies resulted in lower levels of depression and cyberchondria than avoidant-focused coping strategies. Additionally, emotion-focused coping strategies led to lower levels of depression than the other 2 types of coping strategies. These findings partially align with previous studies. For instance, Li [ 39 ] demonstrated that using both problem-focused and emotion-focused coping strategies was beneficial for psychological well-being. However, previous studies have reported mixed findings. For example, AlHadi et al [ 40 ] indicated that emotion-focused coping strategies were associated with increased depression, anxiety, and sleep disorders in the Saudi Arabian population. Few studies have examined the effect of avoidant-focused coping strategies. In this study, we found that respondents who reported living with chronic diseases exhibited a higher ability to use avoidant-focused coping. This finding is partially consistent with a previous study that found a positive relationship between avoidance-focused coping strategies and mental health in women with heart disease [ 41 ]. Individuals with medical conditions are more likely to adopt avoidant coping strategies. Firouzbakht et al [ 42 ] explained that avoidance is an effective strategy for handling short-term stress and is more likely to be adopted by certain patient groups.

We found that individuals who favor emotion-focused coping strategies to overcome difficulties are able to effectively mitigate the adverse effects of excessive health care use on depression and cyberchondria relative to those who opt for the other 2 coping strategies. This finding is not entirely surprising or unexpected. It is, in fact, quite reasonable when one considers that scholars and researchers in the field have previously indicated that people have a tendency to adopt emotion-focused strategies, especially when they find themselves in situations that are uncontrollable or unpredictable, such as the ongoing global pandemic [ 43 ]. Some studies have found that age can have a significant impact on an individual’s coping strategy preferences. For instance, younger adults were more likely to use emotion-focused coping strategies during the acute phase of the SARS outbreak, whereas older adults used this particular strategy several months after the outbreak had initially occurred [ 44 ]. This suggests that the coping strategies adopted by individuals can vary greatly depending on their age and the stage of the crisis they are experiencing. However, in the context of this study, we did not observe any significant differences in the coping strategy preferences of the different age groups. This could be due to a variety of factors, but a possible explanation is that our model incorporated the COVID-19 infodemic. In this context, it is understandable that providing emotional support might be more important than providing real solutions. This is particularly true in the current digital age, where the internet offers unlimited information sources for people to explore, which can often lead to information overload and increased anxiety. Therefore, emotion-focused coping strategies could be more beneficial in helping individuals navigate the sea of information and manage their emotional responses effectively.

In this study, we used self-developed items to measure the infodemic and overuse of health care services. While this approach allowed us to collect data that were directly related to the research questions, it may have introduced some potential issues. First, self-developed items may have less validity and reliability than standardized questionnaires. This could affect the accuracy of measurements and the validity of findings. Second, using self-developed items may limit comparability with other studies that use standardized questionnaires. Standardized questionnaires allow for easy comparison across studies and populations. The lack of a common metric may make it challenging to compare the findings of this study to other studies or to aggregate them in future meta-analyses. Finally, self-developed items may be more susceptible to response bias. They may not have considered factors like social desirability bias or acquiescence bias as standardized questionnaires do. This could have skewed the responses and affected the accuracy of the findings. Despite these limitations, the study’s findings provide valuable insights and pave the way for future research in this area.

Main Contributions of This Study

The importance of preparedness, prevention, and emergency response to infodemiology is highly encouraged by the WHO [ 45 ]. This study makes a significant contribution by exploring and empirically evaluating the relationship between the infodemic, the overuse of health care services, cyberchondria, and anxiety in the context of the COVID-19 pandemic. It provides empirical evidence supporting the assertion that a high level of infodemic can lead to the increased overuse of health care services, resulting in more severe cyberchondria and heightened anxiety levels. This finding adds a new dimension to our understanding of the psychological impacts of the infodemic, especially in the context of a global public health crisis. Additionally, this study highlights that adopting appropriate coping strategies can potentially reduce the severity of cyberchondria and anxiety, even among people facing high levels of the infodemic and the overuse of health care services.

Future Research

The study’s findings emphasize the importance of coping strategies in reducing the negative effects of the infodemic and the excessive use of health care. Future research could focus on developing and testing interventions to improve coping skills, such as cognitive-behavioral, mindfulness-based, or psychoeducational approaches. Additionally, other factors like social support, personality traits, or health literacy may moderate the relationship between infodemic, health care overuse, cyberchondria, and anxiety. Future research could further explore these variables. This study’s findings may not apply to all populations, so future research could investigate these relationships in different groups, including those with pre-existing mental health conditions, health care professionals, or diverse cultural contexts. By pursuing these future directions, researchers could build on this study’s findings, thereby enhancing our understanding of the psychological impact of infodemic and developing effective interventions.

Limitations

This study has several limitations that need to be addressed. A primary limitation is that the data were cross-sectional and self-reporting, which can introduce several biases. Social desirability bias may occur when respondents provide answers they believe are socially acceptable rather than truthful. Recall bias may also be present, as the respondents were asked to recall experiences from months or even a year ago. The data are also prone to response bias, as respondents may agree or disagree with statements regardless of their content. These biases may have affected the accuracy of the findings. In the future, we will try to collect data at multiple time points to reduce the biases and identify changes over time. Second, the data used in this analysis were obtained from a web-based survey, which excluded individuals who are not familiar with web-based surveys or do not have access to the internet. This could have resulted in selection bias. Additionally, due to the nature of the web-based survey, the demographic information of our sample was highly skewed. The majority of the respondents were young and highly educated and were frequent internet users who may have experienced more infodemic effects than older and less educated individuals. This may have affected the reliability of our findings. A quota sampling method could be used in future studies to improve the representativeness of the sample. Third, the study was conducted in China; thus, it is important to consider the unique context of China when interpreting the results. It is necessary to conduct further research in different cultural and regional contexts to determine the generalizability of the results. Finally, the evaluation of health care service overuse and strength of the infodemic relied on 2 self-developed items, which may have affected the measurement properties and limited the reliability of our findings. The development of standardized questionnaires to measure the infodemic and the overuse of health care services during a pandemic would be a valuable contribution to future research in this field.

Conclusions

This study is the first to demonstrate a significant correlation between the infodemic-driven overuse of health care services and high levels of depression and cyberchondria in the Chinese population during the COVID-19 pandemic. We find that 3 types of coping strategies can effectively mitigate the adverse effects of infodemic-driven health care overuse on depression and cyberchondria. Among them, emotion-focused coping strategies have stronger moderating effects than the other 2 types of coping strategies. These findings provide empirical evidence that can guide policy makers in developing strategies to reduce cyberchondria, provide accurate information about public health crises, and promote adaptive coping strategies to effectively manage future public health crises.

Data Availability

The data sets generated and analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions

RHX contributed to developing the study concept and design, data analysis and interpretation, software, writing the original draft, and review and editing. CC contributed to data collection, software, and review and editing. Both authors approved the submitted version.

Conflicts of Interest

None declared.

English-translated questionnaire.

Correlations between measures.

  • Joseph AM, Fernandez V, Kritzman S, Eaddy I, Cook OM, Lambros S, et al. COVID-19 misinformation on social media: a scoping review. Cureus. 2022;14(4):e24601. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Farsi D, Martinez-Menchaca HR, Ahmed M, Farsi N. Social media and health care (Part II): narrative review of social media use by patients. J Med Internet Res. 2022;24(1):e30379. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Health topic - Infodemic. World Health Organization. 2023. URL: https://www.who.int/health-topics/infodemic#tab=tab_1 [accessed 2023-05-14]
  • Gogol M, Siebenhofer A. [Choosing wisely—against overuse in healthcare systems—activities in Germany and Austria in geriatric medicine]. Wien Med Wochenschr. 2016;166(5-6):155-160. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Morgan DJ, Leppin AL, Smith CD, Korenstein D. A practical framework for understanding and reducing medical overuse: conceptualizing overuse through the patient-clinician interaction. J Hosp Med. 2017;12(5):346-351. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Alnazly E, Khraisat OM, Al-Bashaireh AM, Bryant CL. Anxiety, depression, stress, fear and social support during COVID-19 pandemic among Jordanian healthcare workers. PLoS One. 2021;16(3):e0247679. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Choi EPH, Hui BPH, Wan EYF. Depression and anxiety in Hong Kong during COVID-19. Int J Environ Res Public Health. 2020;17(10):3740. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Tomasoni D, Bai F, Castoldi R, Barbanotti D, Falcinella C, Mulè G, et al. Anxiety and depression symptoms after virological clearance of COVID-19: a cross-sectional study in Milan, Italy. J Med Virol. 2021;93(2):1175-1179. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Tran HTT, Nguyen MH, Pham TTM, Kim GB, Nguyen HT, Nguyen NM, et al. Predictors of eHealth literacy and its associations with preventive behaviors, fear of COVID-19, anxiety, and depression among undergraduate nursing students: a cross-sectional survey. Int J Environ Res Public Health. 2022;19(7):3766. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Bareeqa SB, Ahmed SI, Samar SS, Yasin W, Zehra S, Monese GM, et al. Prevalence of depression, anxiety and stress in China during COVID-19 pandemic: a systematic review with meta-analysis. Int J Psychiatry Med. 2021;56(4):210-227. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Starcevic V, Berle D. Cyberchondria: towards a better understanding of excessive health-related internet use. Expert Rev Neurother. 2013;13(2):205-213. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Smith AC, Thomas E, Snoswell CL, Haydon H, Mehrotra A, Clemensen J, et al. Telehealth for global emergencies: implications for coronavirus disease 2019 (COVID-19). J Telemed Telecare. 2020;26(5):309-313. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Gallotti R, Valle F, Castaldo N, Sacco P, De Domenico M. Assessing the risks of 'infodemics' in response to COVID-19 epidemics. Nat Hum Behav. 2020;4(12):1285-1293. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Yang F. Coping strategies, cyberbullying behaviors, and depression among Chinese netizens during the COVID-19 pandemic: a web-based nationwide survey. J Affect Disord. 2021;281:138-144. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Fluharty M, Bu F, Steptoe A, Fancourt D. Coping strategies and mental health trajectories during the first 21 weeks of COVID-19 lockdown in the United Kingdom. Soc Sci Med. 2021;279:113958. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Shigeto A, Laxman DJ, Landy JF, Scheier LM. Typologies of coping in young adults in the context of the COVID-19 pandemic. J Gen Psychol. 2021;148(3):272-304. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Hang CN, Yu PD, Chen S, Tan CW, Chen G. MEGA: Machine Learning-Enhanced Graph Analytics for infodemic risk management. IEEE J Biomed Health Inform. 2023;27(12):6100-6111. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lazarus RS. Coping theory and research: past, present, and future. Psychosom Med. 1993;55(3):234-247. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wechsler B. Coping and coping strategies: a behavioural view. Appl Anim Behav Sci. 1995;43(2):123-134. [ FREE Full text ] [ CrossRef ]
  • Hair JF, Hair J, Hult GTM, Ringle CM, Sarstedt M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks, CA. SAGE; 2022.
  • McElroy E, Kearney M, Touhey J, Evans J, Cooke Y, Shevlin M. The CSS-12: development and validation of a short-form version of the cyberchondria severity scale. Cyberpsychol Behav Soc Netw. 2019;22(5):330-335. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Peng XQ, Chen Y, Zhang YC, Liu F, He HY, Luo T, et al. The status and influencing factors of cyberchondria during the COVID-19 epidemic. a cross-sectional study in Nanyang City of China. Front Psychol. 2021;12:712703. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092-1097. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Sun J, Liang K, Chi X, Chen S. Psychometric properties of the Generalized Anxiety Disorder Scale-7 Item (GAD-7) in a large sample of Chinese Adolescents. Healthcare (Basel). 2021;9(12):1709. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Carver CS. You want to measure coping but your protocol's too long: consider the brief COPE. Int J Behav Med. 1997;4(1):92-100. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Poulus D, Coulter TJ, Trotter MG, Polman R. Stress and coping in Esports and the influence of mental toughness. Front Psychol. 2020;11:628. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wang AWT, Cheng CP, Chang CS, Chen DR, Chen ST, Shieh V, et al. Does the factor structure of the brief COPE fit different types of traumatic events? Eur J Psychol Assess. 2018;34(3):162-173. [ FREE Full text ] [ CrossRef ]
  • Brown TA. Confirmatory Factor Analysis for Applied Research, Second Edition. New York, NY. Guilford Publications; 2015.
  • Nunnally JC. Psychometric Theory, 3rd Edition. New York, NY. Tata McGraw-Hill Education; 1994.
  • Hair JF, Sarstedt M, Pieper TM, Ringle CM. The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications. Long Range Plann. 2012;45(5-6):320-340. [ FREE Full text ] [ CrossRef ]
  • Streukens S, Leroi-Werelds S. Bootstrapping and PLS-SEM: a step-by-step guide to get more out of your bootstrap results. Eur Manag J. 2016;34(6):618-632. [ FREE Full text ] [ CrossRef ]
  • Hair JF, Hult GTM, Ringle CM, Sarstedt M, Danks NP, Ray S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook. Cham, Switzerland. Springer International Publishing; 2021.
  • Liberman JN, Bhattacharjee S, Rui P, Ruetsch C, Rothman B, Kulkarni A, et al. Impact of the COVID-19 pandemic on healthcare resource utilization in individuals with major depressive disorder. Health Serv Res Manag Epidemiol. 2022;9:23333928221111864. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Saunders R, Buckman JEJ, Leibowitz J, Cape J, Pilling S. Trends in depression and anxiety symptom severity among mental health service attendees during the COVID-19 pandemic. J Affect Disord. 2021;289:105-109. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lee J, Jeong HJ, Kim S. Stress, anxiety, and depression among undergraduate students during the COVID-19 pandemic and their use of mental health services. Innov High Educ. 2021;46(5):519-538. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Luceño-Moreno L, Talavera-Velasco B, García-Albuerne Y, Martín-García J. Symptoms of posttraumatic stress, anxiety, depression, levels of resilience and burnout in Spanish health personnel during the COVID-19 pandemic. Int J Environ Res Public Health. 2020;17(15):5514. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chen J, Liu X, Wang D, Jin Y, He M, Ma Y, et al. Risk factors for depression and anxiety in healthcare workers deployed during the COVID-19 outbreak in China. Soc Psychiatry Psychiatr Epidemiol. 2021;56(1):47-55. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Jungmann SM, Witthöft M. Health anxiety, cyberchondria, and coping in the current COVID-19 pandemic: which factors are related to coronavirus anxiety? J Anxiety Disord. 2020;73:102239. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Li Q. Psychosocial and coping responses toward 2019 coronavirus diseases (COVID-19): a cross-sectional study within the Chinese general population. QJM. 2020;113(10):731-738. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • AlHadi AN, Alarabi MA, AlMansoor KM. Mental health and its association with coping strategies and intolerance of uncertainty during the COVID-19 pandemic among the general population in Saudi Arabia: cross-sectional study. BMC Psychiatry. 2021;21(1):382. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Sidhu A, Arora AK. A study of mental health and coping among women with coronary heart disease and women without coronary heart disease. Int J Adv Res Dev. 2017;2(6):1-3. [ FREE Full text ]
  • Firouzbakht M, Rahmani N, Nia HS, Omidvar S. Coping strategies and depression during the COVID-19 pandemic in pregnant women: a cross sectional study. BMC Psychiatry. 2022;22(1):153. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chew QH, Wei KC, Vasoo S, Chua HC, Sim K. Narrative synthesis of psychological and coping responses towards emerging infectious disease outbreaks in the general population: practical considerations for the COVID-19 pandemic. Singapore Med J. 2020;61(7):350-356. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Yeung DYL, Fung HH. Age differences in coping and emotional responses toward SARS: a longitudinal study of Hong Kong Chinese. Aging Ment Health. 2007;11(5):579-587. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wilhelm E, Ballalai I, Belanger ME, Benjamin P, Bertrand-Ferrandis C, Bezbaruah S, et al. Measuring the burden of infodemics: summary of the methods and results of the Fifth WHO Infodemic Management Conference. JMIR Infodemiology. 2023;3:e44207. [ FREE Full text ] [ CrossRef ] [ Medline ]

Abbreviations

Edited by G Eysenbach, T de Azevedo Cardoso; submitted 05.10.23; peer-reviewed by K Wang, J Chen, CN Hang, E Vashishtha, D Liu; comments to author 06.11.23; revised version received 14.11.23; accepted 22.03.24; published 09.04.24.

©Richard Huan Xu, Caiyun Chen. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 09.04.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

Screening & Prevention

Guides & resources, salt lake city, utah county, community clinics, our cancer center, faculty & students, volunteering.

what is research study all about

The Surprising Connection Between Male Infertility and Family Cancer Risk

Read Time: 3 minutes

Joemy Ramsay, PhD

In a recent study , researchers at Huntsman Cancer Institute at the University of Utah (the U) found a surprising trend in families with male infertility: an increased risk of certain cancers. This discovery could lead to a more personalized approach to cancer risk assessments, making cancer prevention more effective.

According to the National Institutes of Health, around 9% of men at reproductive age have experienced fertility problems .

“We know that men who experience infertility tend to have more health issues like cardiovascular disease, autoimmune conditions, earlier mortality, chronic health conditions, and cancer,” says Joemy Ramsay, PhD , the study's lead investigator, researcher at Huntsman Cancer Institute, and assistant professor in the Division of Urology at the U. “We wanted to look at whether the family members of these men were at higher risk for these conditions.”

Ramsay has a background in public health, specializing in occupational and environmental exposure. This study represents the first step in determining family members’ correlated risk levels to diseases, such as cancer. Ramsay explains that since family members share similar genetic factors, environments,  and lifestyles, it would be easier to identify other things impacting their cancer risk. Once general risk has been assessed, etiological factors can be more accurately evaluated in determining the part they play in a diagnosis.

Using the Utah Population Database , one of the world’s richest sources of genetic and public health information, Ramsay and her team, which included Heidi Hanson, MS, PhD , Nicola Camp, PhD , and Myke Madsen , looked at parents, siblings, children, and even aunts, uncles, and cousins, of men who have been diagnosed with infertility.

“It is important to have these conversations with our families and bring your concerns to your medical team.”

By observing several types of cancer at once, the team was able to develop an algorithm that clusters similar things together. This algorithm made it possible to identify roughly 13 characteristic patterns. The patterns were based on families possessing similar multi-cancer risks, instead of looking at only one cancer type at a time.

“Both cancer and subfertility are complex diseases and processes,” says Ramsay. “This method helps create similar family groups, making it easier to uncover the reason behind a family being at high risk for certain diseases over others.”

For families with male infertility, these findings may prompt additional conversations with their doctors.

“While the link is still not fully understood, it is important to have these conversations with our families and bring your concerns to your medical team,” says Ramsay.

Further research is needed to continue to establish a link between male infertility and cancer risk. Understanding the reason behind a risk may ultimately lead to more personalized courses of treatment, screening, and prevention.

Huntsman Cancer Institute leads the way in educating patients on how to prevent and treat cancer. For more information on genetic testing, visit our Family Cancer Assessment Clinic .

This study was supported by the National Institutes of Health/National Cancer Institute including P30 CA042014 and Huntsman Cancer Foundation . The chatbots were developed in a recently completed trial funded by the Inherited Cancer Syndrome Collaborative of the Cancer Moonshot initiative.

Media Contact

Heather Simonsen Public Relations Huntsman Cancer Institute Email Us 801 581-3194

About Huntsman Cancer Institute at the University of Utah

Huntsman Cancer Institute at the University of Utah (the U) is the National Cancer Institute-designated Comprehensive Cancer Center for Utah, Idaho, Montana, Nevada, and Wyoming. With a legacy of innovative cancer research, groundbreaking discoveries, and world-class patient care, we are transforming the way cancer is understood, prevented, diagnosed, treated, and survived. Huntsman Cancer Institute focuses on delivering a cancer-free frontier to all communities in the area we serve . We have more than 300 open clinical trials and 250 research teams studying cancer at any given time. More genes for inherited cancers have been discovered at Huntsman Cancer Institute than at any other cancer center. Our scientists are world-renowned for understanding how cancer begins and using that knowledge to develop innovative approaches to treat each patient’s unique disease. Huntsman Cancer Institute was founded by Jon M. and Karen Huntsman.

Resources for Media

Cancer touches all of us..

  • Cancer Research

A Solar Eclipse Means Big Science

By Katrina Miller April 1, 2024

  • Share full article

Katrina Miller

On April 8, cameras all over North America will make a “megamovie” of the sun’s corona, like this one from the 2017 eclipse. The time lapse will help scientists track the behavior of jets and plumes on the sun’s surface.

There’s more science happening along the path of totality →

An app named SunSketcher will help the public take pictures of the eclipse with their phones.

Scientists will use these images to study deviations in the shape of the solar surface , which will help them understand the sun’s churning behavior below.

The sun right now is approaching peak activity. More than 40 telescope stations along the eclipse’s path will record totality.

By comparing these videos to what was captured in 2017 — when the sun was at a lull — researchers can learn how the sun’s magnetism drives the solar wind, or particles that stream through the solar system.

Students will launch giant balloons equipped with cameras and sensors along the eclipse’s path.

Their measurements may improve weather forecasting , and also produce a bird’s eye view of the moon’s shadow moving across the Earth.

Ham radio operators will send signals to each other across the path of totality to study how the density of electrons in Earth’s upper atmosphere changes .

This can help quantify how space weather produced by the sun disrupts radar communication systems.

(Animation by Dr. Joseph Huba, Syntek Technologies; HamSCI Project, Dr. Nathaniel Frissell, the University of Scranton, NSF and NASA.)

NASA is also studying Earth’s atmosphere, but far from the path of totality.

In Virginia, the agency will launch rockets during the eclipse to measure how local drops in sunlight cause ripple effects hundreds of miles away . The data will clarify how eclipses and other solar events affect satellite communications, including GPS.

Biologists in San Antonio plan to stash recording devices in beehives to study how bees orient themselves using sunlight , and how the insects respond to the sudden atmospheric changes during a total eclipse.

Two researchers in southern Illinois will analyze social media posts to understand tourism patterns in remote towns , including when visitors arrive, where they come from and what they do during their visits.

Results can help bolster infrastructure to support large events in rural areas.

Read more about the eclipse:

The sun flares at the edge of the moon during a total eclipse.

Advertisement

  • Skip to main content
  • Keyboard shortcuts for audio player

A professor worried no one would read an algae study. So she had it put to music

Neda Ulaby - Square

Dead fish washed ashore in a red tide in 2018 in Sanibel, Fla. Joe Raedle/Getty Images hide caption

Dead fish washed ashore in a red tide in 2018 in Sanibel, Fla.

An anthropology professor at the University of South Florida recently published a paper she knew barely anyone would read. At least, not outside her field.

The paper, co-authored with three other professors, had to do with the impact of algae blooms and depletion of coral reefs on the region's tourism industry. The work was glum, says Heather O'Leary . It involved tracking visitors' reactions to the environment on social media.

"Part of the data for months was just reading tweets: dead fish, dead fish, dead fish," she recalls. "We were really thinking every day about the Gulf of Mexico and the waters that surround us, especially in St. Pete as a peninsula, about those risks, and the risks to our coastal economy."

Changing The Climate Of Protest With Aerial Art

The Picture Show

Changing the climate of protest with aerial art.

But attending concerts at USF's School of Music inspired and gladdened her. So she reached out to its director of bands, Matthew McCutchen .

"I'm studying climate change and what's going down at the coral reefs," he remembers her saying. "And I've got all this data and I'd like to know if there's any way that we can turn it into music."

Indeed there was. Composition professor Paul Reller worked with students to map pitch, rhythm and duration to the data. It came alive, O'Leary says, in ways it simply does not on a spreadsheet.

what is research study all about

Matthew McCutchen, Heather O'Leary and Hunter Pomeroy at the University of South Florida Symphonic Band & Wind Ensemble show at USF Concert Hall. Aiden Michael McKahan/University of South Florida hide caption

Matthew McCutchen, Heather O'Leary and Hunter Pomeroy at the University of South Florida Symphonic Band & Wind Ensemble show at USF Concert Hall.

"My students were really excited to start thinking about how the other students, the music students, heard patterns that we did not see in some of the repetitions," she says. With music, she added, "you can start to sense with different parts of your mind and your body that there are patterns happening and that they're important."

In this case, she says, the patterns revealed the economic impact of pollution on coastal Florida communities. The complex challenge is a symptom of other, bigger problems. "The world is going to see more and more of these purportedly 'wicked problems,' the ones that take multiple people with different types of training and background to solve," O'Leary says.

Climate Scientist Tries Arts To Stir Hearts Regarding Earth's Fate

Joe's Big Idea

Climate scientist tries arts to stir hearts regarding earth's fate.

The University of South Florida is excited about this composition . Other departments are getting involved, including communications, education and library science. Now, a group of faculty and students are working to bring together music and the environment in related projects, such as an augmented reality experience based on this composition. The group, which calls itself CRESCENDO (Communicating Research Expansively through Sonification and Community-Engaged Neuroaesthetic Data-literacy Opportunities) wants to spread awareness about the algae blooms, data literacy and democratizing science.

Edited for radio and the web by Rose Friedman. Produced for the web by Beth Novey. Produced for the radio by Isabella Gomez Sarmiento.

  • science and music
  • University of South Florida
  • algae bloom

COMMENTS

  1. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  2. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  3. Research 101: Understanding Research Studies

    The basis of a scientific research study follows a common pattern: Define the question. Gather information and resources. Form hypotheses. Perform an experiment and collect data. Analyze the data ...

  4. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  5. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  6. Study designs: Part 1

    The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on "study designs," we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

  7. Research

    Meta-research is the study of research through the use of research methods. Also known as "research on research", it aims to reduce waste and increase the quality of research in all fields. Meta-research concerns itself with the detection of bias, methodological flaws, and other errors and inefficiencies.

  8. A Beginner's Guide to Starting the Research Process

    Step 3: Formulate research questions. Next, based on the problem statement, you need to write one or more research questions. These target exactly what you want to find out. They might focus on describing, comparing, evaluating, or explaining the research problem.

  9. Explaining How Research Works

    Placing research in the bigger context of its field and where it fits into the scientific process can help people better understand and interpret new findings as they emerge. A single study usually uncovers only a piece of a larger puzzle. Questions about how the world works are often investigated on many different levels.

  10. Research Methods--Quantitative, Qualitative, and More: Overview

    About Research Methods. This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge.

  11. What Is Research?

    Research is the deliberate, purposeful, and systematic gathering of data, information, facts, and/or opinions for the advancement of personal, societal, or overall human knowledge. Based on this definition, we all do research all the time. Most of this research is casual research. Asking friends what they think of different restaurants, looking ...

  12. Clinical Research What is It

    Clinical research is the comprehensive study of the safety and effectiveness of the most promising advances in patient care. Clinical research is different than laboratory research. It involves people who volunteer to help us better understand medicine and health. Lab research generally does not involve people — although it helps us learn ...

  13. What is Research?

    The purpose of research is to further understand the world and to learn how this knowledge can be applied to better everyday life. It is an integral part of problem solving. Although research can take many forms, there are three main purposes of research: Exploratory: Exploratory research is the first research to be conducted around a problem ...

  14. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  15. What Is Research Methodology? Definition + Examples

    As we mentioned, research methodology refers to the collection of practical decisions regarding what data you'll collect, from who, how you'll collect it and how you'll analyse it. Research design, on the other hand, is more about the overall strategy you'll adopt in your study. For example, whether you'll use an experimental design ...

  16. Module 1: Introduction: What is Research?

    Research is a process to discover new knowledge. In the Code of Federal Regulations (45 CFR 46.102 (d)) pertaining to the protection of human subjects research is defined as: "A systematic investigation (i.e., the gathering and analysis of information) designed to develop or contribute to generalizable knowledge.".

  17. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  18. Research

    Research is a careful and detailed study into a specific problem, concern, or issue using the scientific method. It's the adult form of the science fair projects back in elementary school, where ...

  19. What is Research?: The Truth about Research

    Fact #4. Research is Answering a Question. Any time you do research, you are simply trying to answer a question. In the process of answering that question, you may find that even more questions pop up. For instance, you may wonder why the sky is blue. You learn that it has to do with the way light refracts.

  20. All of Us Research Program

    The All of Us Research Program is a historic effort to gather data from one million or more people living in the United States to accelerate research and improve health. By taking into account individual differences in genes, environment, and lifestyle, researchers will uncover paths toward delivering precision medicine.

  21. (PDF) What is research? A conceptual understanding

    Research is a systematic endeavor to acquire understanding, broaden knowledge, or find answers to unanswered questions. It is a methodical and structured undertaking to investigate the natural and ...

  22. (PDF) What Is Research, and Why Do People Do It?

    Abstract. spiepr Abs1 Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply ...

  23. What is your study all about

    Our study is all about awareness of every college student of education department on the effectiveness of modular learning and their academic performance. Because of the outbreak of the new corona-virus all schools and institutions needs to deal with new set up when it comes in learning. Our topic will discuss the effectiveness of one of most ...

  24. Framingham Heart Study recognizes 75 years, three generations of

    The Framingham Heart study has become a "must read" for students in the medical field, speakers said, and is only continuing to grow and give researchers robust data to understand brain, lung ...

  25. The new science of death: 'There's something happening in the brain

    Slowly, the spiritualists left the field of research for the loftier domains of Christian talk radio, and the parapsychologists and physicalists started bringing near-death studies closer to the ...

  26. Chasing the eclipse with sounding rockets and high-altitude planes

    Scientific teams will use sounding rockets and high-altitude research planes to study the total solar eclipse to better understand the sun and its impact on Earth.

  27. Journal of Medical Internet Research

    Background: The COVID-19 pandemic has led to a substantial increase in health information, which has, in turn, caused a significant rise in cyberchondria and anxiety among individuals who search for web-based medical information. To cope with this information overload and safeguard their mental well-being, individuals may adopt various strategies.

  28. The Surprising Connection Between Male Infertility and Family Cancer

    In a recent study, researchers at Huntsman Cancer Institute at the University of Utah (the U) found a surprising trend in families with male infertility: an increased risk of certain cancers. This discovery could lead to a more personalized approach to cancer risk assessments, making cancer prevention more effective. According to the National Institutes of Health, around 9% of men at ...

  29. April 8 Total Solar Eclipse Means Big Science

    A Solar Eclipse Means Big Science. On April 8, cameras all over North America will make a "megamovie" of the sun's corona, like this one from the 2017 eclipse. The time lapse will help ...

  30. A professor worried no one would read an algae study. So she had it put

    Now, a group of faculty and students are working to bring together music and the environment in related projects, such as an augmented reality experience based on this composition. The group ...